mm: vmscan: when reclaiming for compaction, ensure there are sufficient free pages...
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /*
107 * The memory cgroup that hit its limit and as a result is the
108 * primary target of this reclaim invocation.
109 */
110 struct mem_cgroup *target_mem_cgroup;
111
112 /*
113 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 * are scanned.
115 */
116 nodemask_t *nodemask;
117 };
118
119 struct mem_cgroup_zone {
120 struct mem_cgroup *mem_cgroup;
121 struct zone *zone;
122 };
123
124 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126 #ifdef ARCH_HAS_PREFETCH
127 #define prefetch_prev_lru_page(_page, _base, _field) \
128 do { \
129 if ((_page)->lru.prev != _base) { \
130 struct page *prev; \
131 \
132 prev = lru_to_page(&(_page->lru)); \
133 prefetch(&prev->_field); \
134 } \
135 } while (0)
136 #else
137 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138 #endif
139
140 #ifdef ARCH_HAS_PREFETCHW
141 #define prefetchw_prev_lru_page(_page, _base, _field) \
142 do { \
143 if ((_page)->lru.prev != _base) { \
144 struct page *prev; \
145 \
146 prev = lru_to_page(&(_page->lru)); \
147 prefetchw(&prev->_field); \
148 } \
149 } while (0)
150 #else
151 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152 #endif
153
154 /*
155 * From 0 .. 100. Higher means more swappy.
156 */
157 int vm_swappiness = 60;
158 long vm_total_pages; /* The total number of pages which the VM controls */
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170 {
171 return !mz->mem_cgroup;
172 }
173 #else
174 static bool global_reclaim(struct scan_control *sc)
175 {
176 return true;
177 }
178
179 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 {
181 return true;
182 }
183 #endif
184
185 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186 {
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190 return &mz->zone->reclaim_stat;
191 }
192
193 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194 enum lru_list lru)
195 {
196 if (!scanning_global_lru(mz))
197 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198 zone_to_nid(mz->zone),
199 zone_idx(mz->zone),
200 BIT(lru));
201
202 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 }
204
205
206 /*
207 * Add a shrinker callback to be called from the vm
208 */
209 void register_shrinker(struct shrinker *shrinker)
210 {
211 atomic_long_set(&shrinker->nr_in_batch, 0);
212 down_write(&shrinker_rwsem);
213 list_add_tail(&shrinker->list, &shrinker_list);
214 up_write(&shrinker_rwsem);
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219 * Remove one
220 */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 }
227 EXPORT_SYMBOL(unregister_shrinker);
228
229 static inline int do_shrinker_shrink(struct shrinker *shrinker,
230 struct shrink_control *sc,
231 unsigned long nr_to_scan)
232 {
233 sc->nr_to_scan = nr_to_scan;
234 return (*shrinker->shrink)(shrinker, sc);
235 }
236
237 #define SHRINK_BATCH 128
238 /*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object. With this in mind we age equal
243 * percentages of the lru and ageable caches. This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt. It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257 unsigned long shrink_slab(struct shrink_control *shrink,
258 unsigned long nr_pages_scanned,
259 unsigned long lru_pages)
260 {
261 struct shrinker *shrinker;
262 unsigned long ret = 0;
263
264 if (nr_pages_scanned == 0)
265 nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267 if (!down_read_trylock(&shrinker_rwsem)) {
268 /* Assume we'll be able to shrink next time */
269 ret = 1;
270 goto out;
271 }
272
273 list_for_each_entry(shrinker, &shrinker_list, list) {
274 unsigned long long delta;
275 long total_scan;
276 long max_pass;
277 int shrink_ret = 0;
278 long nr;
279 long new_nr;
280 long batch_size = shrinker->batch ? shrinker->batch
281 : SHRINK_BATCH;
282
283 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284 if (max_pass <= 0)
285 continue;
286
287 /*
288 * copy the current shrinker scan count into a local variable
289 * and zero it so that other concurrent shrinker invocations
290 * don't also do this scanning work.
291 */
292 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294 total_scan = nr;
295 delta = (4 * nr_pages_scanned) / shrinker->seeks;
296 delta *= max_pass;
297 do_div(delta, lru_pages + 1);
298 total_scan += delta;
299 if (total_scan < 0) {
300 printk(KERN_ERR "shrink_slab: %pF negative objects to "
301 "delete nr=%ld\n",
302 shrinker->shrink, total_scan);
303 total_scan = max_pass;
304 }
305
306 /*
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * max_pass. This is bad for sustaining a working set in
313 * memory.
314 *
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
317 */
318 if (delta < max_pass / 4)
319 total_scan = min(total_scan, max_pass / 2);
320
321 /*
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
325 */
326 if (total_scan > max_pass * 2)
327 total_scan = max_pass * 2;
328
329 trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 nr_pages_scanned, lru_pages,
331 max_pass, delta, total_scan);
332
333 while (total_scan >= batch_size) {
334 int nr_before;
335
336 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337 shrink_ret = do_shrinker_shrink(shrinker, shrink,
338 batch_size);
339 if (shrink_ret == -1)
340 break;
341 if (shrink_ret < nr_before)
342 ret += nr_before - shrink_ret;
343 count_vm_events(SLABS_SCANNED, batch_size);
344 total_scan -= batch_size;
345
346 cond_resched();
347 }
348
349 /*
350 * move the unused scan count back into the shrinker in a
351 * manner that handles concurrent updates. If we exhausted the
352 * scan, there is no need to do an update.
353 */
354 if (total_scan > 0)
355 new_nr = atomic_long_add_return(total_scan,
356 &shrinker->nr_in_batch);
357 else
358 new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361 }
362 up_read(&shrinker_rwsem);
363 out:
364 cond_resched();
365 return ret;
366 }
367
368 static void set_reclaim_mode(int priority, struct scan_control *sc,
369 bool sync)
370 {
371 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373 /*
374 * Initially assume we are entering either lumpy reclaim or
375 * reclaim/compaction.Depending on the order, we will either set the
376 * sync mode or just reclaim order-0 pages later.
377 */
378 if (COMPACTION_BUILD)
379 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380 else
381 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383 /*
384 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385 * restricting when its set to either costly allocations or when
386 * under memory pressure
387 */
388 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389 sc->reclaim_mode |= syncmode;
390 else if (sc->order && priority < DEF_PRIORITY - 2)
391 sc->reclaim_mode |= syncmode;
392 else
393 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 }
395
396 static void reset_reclaim_mode(struct scan_control *sc)
397 {
398 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 }
400
401 static inline int is_page_cache_freeable(struct page *page)
402 {
403 /*
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
407 */
408 return page_count(page) - page_has_private(page) == 2;
409 }
410
411 static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
413 {
414 if (current->flags & PF_SWAPWRITE)
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
420
421 /* lumpy reclaim for hugepage often need a lot of write */
422 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423 return 1;
424 return 0;
425 }
426
427 /*
428 * We detected a synchronous write error writing a page out. Probably
429 * -ENOSPC. We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up. But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439 static void handle_write_error(struct address_space *mapping,
440 struct page *page, int error)
441 {
442 lock_page(page);
443 if (page_mapping(page) == mapping)
444 mapping_set_error(mapping, error);
445 unlock_page(page);
446 }
447
448 /* possible outcome of pageout() */
449 typedef enum {
450 /* failed to write page out, page is locked */
451 PAGE_KEEP,
452 /* move page to the active list, page is locked */
453 PAGE_ACTIVATE,
454 /* page has been sent to the disk successfully, page is unlocked */
455 PAGE_SUCCESS,
456 /* page is clean and locked */
457 PAGE_CLEAN,
458 } pageout_t;
459
460 /*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464 static pageout_t pageout(struct page *page, struct address_space *mapping,
465 struct scan_control *sc)
466 {
467 /*
468 * If the page is dirty, only perform writeback if that write
469 * will be non-blocking. To prevent this allocation from being
470 * stalled by pagecache activity. But note that there may be
471 * stalls if we need to run get_block(). We could test
472 * PagePrivate for that.
473 *
474 * If this process is currently in __generic_file_aio_write() against
475 * this page's queue, we can perform writeback even if that
476 * will block.
477 *
478 * If the page is swapcache, write it back even if that would
479 * block, for some throttling. This happens by accident, because
480 * swap_backing_dev_info is bust: it doesn't reflect the
481 * congestion state of the swapdevs. Easy to fix, if needed.
482 */
483 if (!is_page_cache_freeable(page))
484 return PAGE_KEEP;
485 if (!mapping) {
486 /*
487 * Some data journaling orphaned pages can have
488 * page->mapping == NULL while being dirty with clean buffers.
489 */
490 if (page_has_private(page)) {
491 if (try_to_free_buffers(page)) {
492 ClearPageDirty(page);
493 printk("%s: orphaned page\n", __func__);
494 return PAGE_CLEAN;
495 }
496 }
497 return PAGE_KEEP;
498 }
499 if (mapping->a_ops->writepage == NULL)
500 return PAGE_ACTIVATE;
501 if (!may_write_to_queue(mapping->backing_dev_info, sc))
502 return PAGE_KEEP;
503
504 if (clear_page_dirty_for_io(page)) {
505 int res;
506 struct writeback_control wbc = {
507 .sync_mode = WB_SYNC_NONE,
508 .nr_to_write = SWAP_CLUSTER_MAX,
509 .range_start = 0,
510 .range_end = LLONG_MAX,
511 .for_reclaim = 1,
512 };
513
514 SetPageReclaim(page);
515 res = mapping->a_ops->writepage(page, &wbc);
516 if (res < 0)
517 handle_write_error(mapping, page, res);
518 if (res == AOP_WRITEPAGE_ACTIVATE) {
519 ClearPageReclaim(page);
520 return PAGE_ACTIVATE;
521 }
522
523 if (!PageWriteback(page)) {
524 /* synchronous write or broken a_ops? */
525 ClearPageReclaim(page);
526 }
527 trace_mm_vmscan_writepage(page,
528 trace_reclaim_flags(page, sc->reclaim_mode));
529 inc_zone_page_state(page, NR_VMSCAN_WRITE);
530 return PAGE_SUCCESS;
531 }
532
533 return PAGE_CLEAN;
534 }
535
536 /*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540 static int __remove_mapping(struct address_space *mapping, struct page *page)
541 {
542 BUG_ON(!PageLocked(page));
543 BUG_ON(mapping != page_mapping(page));
544
545 spin_lock_irq(&mapping->tree_lock);
546 /*
547 * The non racy check for a busy page.
548 *
549 * Must be careful with the order of the tests. When someone has
550 * a ref to the page, it may be possible that they dirty it then
551 * drop the reference. So if PageDirty is tested before page_count
552 * here, then the following race may occur:
553 *
554 * get_user_pages(&page);
555 * [user mapping goes away]
556 * write_to(page);
557 * !PageDirty(page) [good]
558 * SetPageDirty(page);
559 * put_page(page);
560 * !page_count(page) [good, discard it]
561 *
562 * [oops, our write_to data is lost]
563 *
564 * Reversing the order of the tests ensures such a situation cannot
565 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566 * load is not satisfied before that of page->_count.
567 *
568 * Note that if SetPageDirty is always performed via set_page_dirty,
569 * and thus under tree_lock, then this ordering is not required.
570 */
571 if (!page_freeze_refs(page, 2))
572 goto cannot_free;
573 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574 if (unlikely(PageDirty(page))) {
575 page_unfreeze_refs(page, 2);
576 goto cannot_free;
577 }
578
579 if (PageSwapCache(page)) {
580 swp_entry_t swap = { .val = page_private(page) };
581 __delete_from_swap_cache(page);
582 spin_unlock_irq(&mapping->tree_lock);
583 swapcache_free(swap, page);
584 } else {
585 void (*freepage)(struct page *);
586
587 freepage = mapping->a_ops->freepage;
588
589 __delete_from_page_cache(page);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
592
593 if (freepage != NULL)
594 freepage(page);
595 }
596
597 return 1;
598
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
602 }
603
604 /*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 if (__remove_mapping(mapping, page)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622 }
623
624 /**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633 void putback_lru_page(struct page *page)
634 {
635 int lru;
636 int active = !!TestClearPageActive(page);
637 int was_unevictable = PageUnevictable(page);
638
639 VM_BUG_ON(PageLRU(page));
640
641 redo:
642 ClearPageUnevictable(page);
643
644 if (page_evictable(page, NULL)) {
645 /*
646 * For evictable pages, we can use the cache.
647 * In event of a race, worst case is we end up with an
648 * unevictable page on [in]active list.
649 * We know how to handle that.
650 */
651 lru = active + page_lru_base_type(page);
652 lru_cache_add_lru(page, lru);
653 } else {
654 /*
655 * Put unevictable pages directly on zone's unevictable
656 * list.
657 */
658 lru = LRU_UNEVICTABLE;
659 add_page_to_unevictable_list(page);
660 /*
661 * When racing with an mlock or AS_UNEVICTABLE clearing
662 * (page is unlocked) make sure that if the other thread
663 * does not observe our setting of PG_lru and fails
664 * isolation/check_move_unevictable_page,
665 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 * the page back to the evictable list.
667 *
668 * The other side is TestClearPageMlocked() or shmem_lock().
669 */
670 smp_mb();
671 }
672
673 /*
674 * page's status can change while we move it among lru. If an evictable
675 * page is on unevictable list, it never be freed. To avoid that,
676 * check after we added it to the list, again.
677 */
678 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679 if (!isolate_lru_page(page)) {
680 put_page(page);
681 goto redo;
682 }
683 /* This means someone else dropped this page from LRU
684 * So, it will be freed or putback to LRU again. There is
685 * nothing to do here.
686 */
687 }
688
689 if (was_unevictable && lru != LRU_UNEVICTABLE)
690 count_vm_event(UNEVICTABLE_PGRESCUED);
691 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692 count_vm_event(UNEVICTABLE_PGCULLED);
693
694 put_page(page); /* drop ref from isolate */
695 }
696
697 enum page_references {
698 PAGEREF_RECLAIM,
699 PAGEREF_RECLAIM_CLEAN,
700 PAGEREF_KEEP,
701 PAGEREF_ACTIVATE,
702 };
703
704 static enum page_references page_check_references(struct page *page,
705 struct mem_cgroup_zone *mz,
706 struct scan_control *sc)
707 {
708 int referenced_ptes, referenced_page;
709 unsigned long vm_flags;
710
711 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712 referenced_page = TestClearPageReferenced(page);
713
714 /* Lumpy reclaim - ignore references */
715 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 return PAGEREF_RECLAIM;
717
718 /*
719 * Mlock lost the isolation race with us. Let try_to_unmap()
720 * move the page to the unevictable list.
721 */
722 if (vm_flags & VM_LOCKED)
723 return PAGEREF_RECLAIM;
724
725 if (referenced_ptes) {
726 if (PageAnon(page))
727 return PAGEREF_ACTIVATE;
728 /*
729 * All mapped pages start out with page table
730 * references from the instantiating fault, so we need
731 * to look twice if a mapped file page is used more
732 * than once.
733 *
734 * Mark it and spare it for another trip around the
735 * inactive list. Another page table reference will
736 * lead to its activation.
737 *
738 * Note: the mark is set for activated pages as well
739 * so that recently deactivated but used pages are
740 * quickly recovered.
741 */
742 SetPageReferenced(page);
743
744 if (referenced_page || referenced_ptes > 1)
745 return PAGEREF_ACTIVATE;
746
747 /*
748 * Activate file-backed executable pages after first usage.
749 */
750 if (vm_flags & VM_EXEC)
751 return PAGEREF_ACTIVATE;
752
753 return PAGEREF_KEEP;
754 }
755
756 /* Reclaim if clean, defer dirty pages to writeback */
757 if (referenced_page && !PageSwapBacked(page))
758 return PAGEREF_RECLAIM_CLEAN;
759
760 return PAGEREF_RECLAIM;
761 }
762
763 /*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767 struct mem_cgroup_zone *mz,
768 struct scan_control *sc,
769 int priority,
770 unsigned long *ret_nr_dirty,
771 unsigned long *ret_nr_writeback)
772 {
773 LIST_HEAD(ret_pages);
774 LIST_HEAD(free_pages);
775 int pgactivate = 0;
776 unsigned long nr_dirty = 0;
777 unsigned long nr_congested = 0;
778 unsigned long nr_reclaimed = 0;
779 unsigned long nr_writeback = 0;
780
781 cond_resched();
782
783 while (!list_empty(page_list)) {
784 enum page_references references;
785 struct address_space *mapping;
786 struct page *page;
787 int may_enter_fs;
788
789 cond_resched();
790
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
793
794 if (!trylock_page(page))
795 goto keep;
796
797 VM_BUG_ON(PageActive(page));
798 VM_BUG_ON(page_zone(page) != mz->zone);
799
800 sc->nr_scanned++;
801
802 if (unlikely(!page_evictable(page, NULL)))
803 goto cull_mlocked;
804
805 if (!sc->may_unmap && page_mapped(page))
806 goto keep_locked;
807
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
811
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815 if (PageWriteback(page)) {
816 nr_writeback++;
817 /*
818 * Synchronous reclaim cannot queue pages for
819 * writeback due to the possibility of stack overflow
820 * but if it encounters a page under writeback, wait
821 * for the IO to complete.
822 */
823 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824 may_enter_fs)
825 wait_on_page_writeback(page);
826 else {
827 unlock_page(page);
828 goto keep_lumpy;
829 }
830 }
831
832 references = page_check_references(page, mz, sc);
833 switch (references) {
834 case PAGEREF_ACTIVATE:
835 goto activate_locked;
836 case PAGEREF_KEEP:
837 goto keep_locked;
838 case PAGEREF_RECLAIM:
839 case PAGEREF_RECLAIM_CLEAN:
840 ; /* try to reclaim the page below */
841 }
842
843 /*
844 * Anonymous process memory has backing store?
845 * Try to allocate it some swap space here.
846 */
847 if (PageAnon(page) && !PageSwapCache(page)) {
848 if (!(sc->gfp_mask & __GFP_IO))
849 goto keep_locked;
850 if (!add_to_swap(page))
851 goto activate_locked;
852 may_enter_fs = 1;
853 }
854
855 mapping = page_mapping(page);
856
857 /*
858 * The page is mapped into the page tables of one or more
859 * processes. Try to unmap it here.
860 */
861 if (page_mapped(page) && mapping) {
862 switch (try_to_unmap(page, TTU_UNMAP)) {
863 case SWAP_FAIL:
864 goto activate_locked;
865 case SWAP_AGAIN:
866 goto keep_locked;
867 case SWAP_MLOCK:
868 goto cull_mlocked;
869 case SWAP_SUCCESS:
870 ; /* try to free the page below */
871 }
872 }
873
874 if (PageDirty(page)) {
875 nr_dirty++;
876
877 /*
878 * Only kswapd can writeback filesystem pages to
879 * avoid risk of stack overflow but do not writeback
880 * unless under significant pressure.
881 */
882 if (page_is_file_cache(page) &&
883 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884 /*
885 * Immediately reclaim when written back.
886 * Similar in principal to deactivate_page()
887 * except we already have the page isolated
888 * and know it's dirty
889 */
890 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891 SetPageReclaim(page);
892
893 goto keep_locked;
894 }
895
896 if (references == PAGEREF_RECLAIM_CLEAN)
897 goto keep_locked;
898 if (!may_enter_fs)
899 goto keep_locked;
900 if (!sc->may_writepage)
901 goto keep_locked;
902
903 /* Page is dirty, try to write it out here */
904 switch (pageout(page, mapping, sc)) {
905 case PAGE_KEEP:
906 nr_congested++;
907 goto keep_locked;
908 case PAGE_ACTIVATE:
909 goto activate_locked;
910 case PAGE_SUCCESS:
911 if (PageWriteback(page))
912 goto keep_lumpy;
913 if (PageDirty(page))
914 goto keep;
915
916 /*
917 * A synchronous write - probably a ramdisk. Go
918 * ahead and try to reclaim the page.
919 */
920 if (!trylock_page(page))
921 goto keep;
922 if (PageDirty(page) || PageWriteback(page))
923 goto keep_locked;
924 mapping = page_mapping(page);
925 case PAGE_CLEAN:
926 ; /* try to free the page below */
927 }
928 }
929
930 /*
931 * If the page has buffers, try to free the buffer mappings
932 * associated with this page. If we succeed we try to free
933 * the page as well.
934 *
935 * We do this even if the page is PageDirty().
936 * try_to_release_page() does not perform I/O, but it is
937 * possible for a page to have PageDirty set, but it is actually
938 * clean (all its buffers are clean). This happens if the
939 * buffers were written out directly, with submit_bh(). ext3
940 * will do this, as well as the blockdev mapping.
941 * try_to_release_page() will discover that cleanness and will
942 * drop the buffers and mark the page clean - it can be freed.
943 *
944 * Rarely, pages can have buffers and no ->mapping. These are
945 * the pages which were not successfully invalidated in
946 * truncate_complete_page(). We try to drop those buffers here
947 * and if that worked, and the page is no longer mapped into
948 * process address space (page_count == 1) it can be freed.
949 * Otherwise, leave the page on the LRU so it is swappable.
950 */
951 if (page_has_private(page)) {
952 if (!try_to_release_page(page, sc->gfp_mask))
953 goto activate_locked;
954 if (!mapping && page_count(page) == 1) {
955 unlock_page(page);
956 if (put_page_testzero(page))
957 goto free_it;
958 else {
959 /*
960 * rare race with speculative reference.
961 * the speculative reference will free
962 * this page shortly, so we may
963 * increment nr_reclaimed here (and
964 * leave it off the LRU).
965 */
966 nr_reclaimed++;
967 continue;
968 }
969 }
970 }
971
972 if (!mapping || !__remove_mapping(mapping, page))
973 goto keep_locked;
974
975 /*
976 * At this point, we have no other references and there is
977 * no way to pick any more up (removed from LRU, removed
978 * from pagecache). Can use non-atomic bitops now (and
979 * we obviously don't have to worry about waking up a process
980 * waiting on the page lock, because there are no references.
981 */
982 __clear_page_locked(page);
983 free_it:
984 nr_reclaimed++;
985
986 /*
987 * Is there need to periodically free_page_list? It would
988 * appear not as the counts should be low
989 */
990 list_add(&page->lru, &free_pages);
991 continue;
992
993 cull_mlocked:
994 if (PageSwapCache(page))
995 try_to_free_swap(page);
996 unlock_page(page);
997 putback_lru_page(page);
998 reset_reclaim_mode(sc);
999 continue;
1000
1001 activate_locked:
1002 /* Not a candidate for swapping, so reclaim swap space. */
1003 if (PageSwapCache(page) && vm_swap_full())
1004 try_to_free_swap(page);
1005 VM_BUG_ON(PageActive(page));
1006 SetPageActive(page);
1007 pgactivate++;
1008 keep_locked:
1009 unlock_page(page);
1010 keep:
1011 reset_reclaim_mode(sc);
1012 keep_lumpy:
1013 list_add(&page->lru, &ret_pages);
1014 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015 }
1016
1017 /*
1018 * Tag a zone as congested if all the dirty pages encountered were
1019 * backed by a congested BDI. In this case, reclaimers should just
1020 * back off and wait for congestion to clear because further reclaim
1021 * will encounter the same problem
1022 */
1023 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024 zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026 free_hot_cold_page_list(&free_pages, 1);
1027
1028 list_splice(&ret_pages, page_list);
1029 count_vm_events(PGACTIVATE, pgactivate);
1030 *ret_nr_dirty += nr_dirty;
1031 *ret_nr_writeback += nr_writeback;
1032 return nr_reclaimed;
1033 }
1034
1035 /*
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046 {
1047 bool all_lru_mode;
1048 int ret = -EINVAL;
1049
1050 /* Only take pages on the LRU. */
1051 if (!PageLRU(page))
1052 return ret;
1053
1054 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057 /*
1058 * When checking the active state, we need to be sure we are
1059 * dealing with comparible boolean values. Take the logical not
1060 * of each.
1061 */
1062 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063 return ret;
1064
1065 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 return ret;
1067
1068 /*
1069 * When this function is being called for lumpy reclaim, we
1070 * initially look into all LRU pages, active, inactive and
1071 * unevictable; only give shrink_page_list evictable pages.
1072 */
1073 if (PageUnevictable(page))
1074 return ret;
1075
1076 ret = -EBUSY;
1077
1078 /*
1079 * To minimise LRU disruption, the caller can indicate that it only
1080 * wants to isolate pages it will be able to operate on without
1081 * blocking - clean pages for the most part.
1082 *
1083 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084 * is used by reclaim when it is cannot write to backing storage
1085 *
1086 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087 * that it is possible to migrate without blocking
1088 */
1089 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090 /* All the caller can do on PageWriteback is block */
1091 if (PageWriteback(page))
1092 return ret;
1093
1094 if (PageDirty(page)) {
1095 struct address_space *mapping;
1096
1097 /* ISOLATE_CLEAN means only clean pages */
1098 if (mode & ISOLATE_CLEAN)
1099 return ret;
1100
1101 /*
1102 * Only pages without mappings or that have a
1103 * ->migratepage callback are possible to migrate
1104 * without blocking
1105 */
1106 mapping = page_mapping(page);
1107 if (mapping && !mapping->a_ops->migratepage)
1108 return ret;
1109 }
1110 }
1111
1112 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113 return ret;
1114
1115 if (likely(get_page_unless_zero(page))) {
1116 /*
1117 * Be careful not to clear PageLRU until after we're
1118 * sure the page is not being freed elsewhere -- the
1119 * page release code relies on it.
1120 */
1121 ClearPageLRU(page);
1122 ret = 0;
1123 }
1124
1125 return ret;
1126 }
1127
1128 /*
1129 * zone->lru_lock is heavily contended. Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1132 *
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1135 *
1136 * Appropriate locks must be held before calling this function.
1137 *
1138 * @nr_to_scan: The number of pages to look through on the list.
1139 * @src: The LRU list to pull pages off.
1140 * @dst: The temp list to put pages on to.
1141 * @scanned: The number of pages that were scanned.
1142 * @order: The caller's attempted allocation order
1143 * @mode: One of the LRU isolation modes
1144 * @file: True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
1148 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149 struct list_head *src, struct list_head *dst,
1150 unsigned long *scanned, int order, isolate_mode_t mode,
1151 int file)
1152 {
1153 unsigned long nr_taken = 0;
1154 unsigned long nr_lumpy_taken = 0;
1155 unsigned long nr_lumpy_dirty = 0;
1156 unsigned long nr_lumpy_failed = 0;
1157 unsigned long scan;
1158
1159 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1160 struct page *page;
1161 unsigned long pfn;
1162 unsigned long end_pfn;
1163 unsigned long page_pfn;
1164 int zone_id;
1165
1166 page = lru_to_page(src);
1167 prefetchw_prev_lru_page(page, src, flags);
1168
1169 VM_BUG_ON(!PageLRU(page));
1170
1171 switch (__isolate_lru_page(page, mode, file)) {
1172 case 0:
1173 mem_cgroup_lru_del(page);
1174 list_move(&page->lru, dst);
1175 nr_taken += hpage_nr_pages(page);
1176 break;
1177
1178 case -EBUSY:
1179 /* else it is being freed elsewhere */
1180 list_move(&page->lru, src);
1181 continue;
1182
1183 default:
1184 BUG();
1185 }
1186
1187 if (!order)
1188 continue;
1189
1190 /*
1191 * Attempt to take all pages in the order aligned region
1192 * surrounding the tag page. Only take those pages of
1193 * the same active state as that tag page. We may safely
1194 * round the target page pfn down to the requested order
1195 * as the mem_map is guaranteed valid out to MAX_ORDER,
1196 * where that page is in a different zone we will detect
1197 * it from its zone id and abort this block scan.
1198 */
1199 zone_id = page_zone_id(page);
1200 page_pfn = page_to_pfn(page);
1201 pfn = page_pfn & ~((1 << order) - 1);
1202 end_pfn = pfn + (1 << order);
1203 for (; pfn < end_pfn; pfn++) {
1204 struct page *cursor_page;
1205
1206 /* The target page is in the block, ignore it. */
1207 if (unlikely(pfn == page_pfn))
1208 continue;
1209
1210 /* Avoid holes within the zone. */
1211 if (unlikely(!pfn_valid_within(pfn)))
1212 break;
1213
1214 cursor_page = pfn_to_page(pfn);
1215
1216 /* Check that we have not crossed a zone boundary. */
1217 if (unlikely(page_zone_id(cursor_page) != zone_id))
1218 break;
1219
1220 /*
1221 * If we don't have enough swap space, reclaiming of
1222 * anon page which don't already have a swap slot is
1223 * pointless.
1224 */
1225 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1226 !PageSwapCache(cursor_page))
1227 break;
1228
1229 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1230 unsigned int isolated_pages;
1231
1232 mem_cgroup_lru_del(cursor_page);
1233 list_move(&cursor_page->lru, dst);
1234 isolated_pages = hpage_nr_pages(cursor_page);
1235 nr_taken += isolated_pages;
1236 nr_lumpy_taken += isolated_pages;
1237 if (PageDirty(cursor_page))
1238 nr_lumpy_dirty += isolated_pages;
1239 scan++;
1240 pfn += isolated_pages - 1;
1241 } else {
1242 /*
1243 * Check if the page is freed already.
1244 *
1245 * We can't use page_count() as that
1246 * requires compound_head and we don't
1247 * have a pin on the page here. If a
1248 * page is tail, we may or may not
1249 * have isolated the head, so assume
1250 * it's not free, it'd be tricky to
1251 * track the head status without a
1252 * page pin.
1253 */
1254 if (!PageTail(cursor_page) &&
1255 !atomic_read(&cursor_page->_count))
1256 continue;
1257 break;
1258 }
1259 }
1260
1261 /* If we break out of the loop above, lumpy reclaim failed */
1262 if (pfn < end_pfn)
1263 nr_lumpy_failed++;
1264 }
1265
1266 *scanned = scan;
1267
1268 trace_mm_vmscan_lru_isolate(order,
1269 nr_to_scan, scan,
1270 nr_taken,
1271 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1272 mode, file);
1273 return nr_taken;
1274 }
1275
1276 static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1277 struct list_head *dst,
1278 unsigned long *scanned, int order,
1279 isolate_mode_t mode, int active, int file)
1280 {
1281 struct lruvec *lruvec;
1282 int lru = LRU_BASE;
1283
1284 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1285 if (active)
1286 lru += LRU_ACTIVE;
1287 if (file)
1288 lru += LRU_FILE;
1289 return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1290 scanned, order, mode, file);
1291 }
1292
1293 /*
1294 * clear_active_flags() is a helper for shrink_active_list(), clearing
1295 * any active bits from the pages in the list.
1296 */
1297 static unsigned long clear_active_flags(struct list_head *page_list,
1298 unsigned int *count)
1299 {
1300 int nr_active = 0;
1301 int lru;
1302 struct page *page;
1303
1304 list_for_each_entry(page, page_list, lru) {
1305 int numpages = hpage_nr_pages(page);
1306 lru = page_lru_base_type(page);
1307 if (PageActive(page)) {
1308 lru += LRU_ACTIVE;
1309 ClearPageActive(page);
1310 nr_active += numpages;
1311 }
1312 if (count)
1313 count[lru] += numpages;
1314 }
1315
1316 return nr_active;
1317 }
1318
1319 /**
1320 * isolate_lru_page - tries to isolate a page from its LRU list
1321 * @page: page to isolate from its LRU list
1322 *
1323 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1324 * vmstat statistic corresponding to whatever LRU list the page was on.
1325 *
1326 * Returns 0 if the page was removed from an LRU list.
1327 * Returns -EBUSY if the page was not on an LRU list.
1328 *
1329 * The returned page will have PageLRU() cleared. If it was found on
1330 * the active list, it will have PageActive set. If it was found on
1331 * the unevictable list, it will have the PageUnevictable bit set. That flag
1332 * may need to be cleared by the caller before letting the page go.
1333 *
1334 * The vmstat statistic corresponding to the list on which the page was
1335 * found will be decremented.
1336 *
1337 * Restrictions:
1338 * (1) Must be called with an elevated refcount on the page. This is a
1339 * fundamentnal difference from isolate_lru_pages (which is called
1340 * without a stable reference).
1341 * (2) the lru_lock must not be held.
1342 * (3) interrupts must be enabled.
1343 */
1344 int isolate_lru_page(struct page *page)
1345 {
1346 int ret = -EBUSY;
1347
1348 VM_BUG_ON(!page_count(page));
1349
1350 if (PageLRU(page)) {
1351 struct zone *zone = page_zone(page);
1352
1353 spin_lock_irq(&zone->lru_lock);
1354 if (PageLRU(page)) {
1355 int lru = page_lru(page);
1356 ret = 0;
1357 get_page(page);
1358 ClearPageLRU(page);
1359
1360 del_page_from_lru_list(zone, page, lru);
1361 }
1362 spin_unlock_irq(&zone->lru_lock);
1363 }
1364 return ret;
1365 }
1366
1367 /*
1368 * Are there way too many processes in the direct reclaim path already?
1369 */
1370 static int too_many_isolated(struct zone *zone, int file,
1371 struct scan_control *sc)
1372 {
1373 unsigned long inactive, isolated;
1374
1375 if (current_is_kswapd())
1376 return 0;
1377
1378 if (!global_reclaim(sc))
1379 return 0;
1380
1381 if (file) {
1382 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384 } else {
1385 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387 }
1388
1389 return isolated > inactive;
1390 }
1391
1392 /*
1393 * TODO: Try merging with migrations version of putback_lru_pages
1394 */
1395 static noinline_for_stack void
1396 putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1397 unsigned long nr_anon, unsigned long nr_file,
1398 struct list_head *page_list)
1399 {
1400 struct page *page;
1401 struct pagevec pvec;
1402 struct zone *zone = mz->zone;
1403 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404
1405 pagevec_init(&pvec, 1);
1406
1407 /*
1408 * Put back any unfreeable pages.
1409 */
1410 spin_lock(&zone->lru_lock);
1411 while (!list_empty(page_list)) {
1412 int lru;
1413 page = lru_to_page(page_list);
1414 VM_BUG_ON(PageLRU(page));
1415 list_del(&page->lru);
1416 if (unlikely(!page_evictable(page, NULL))) {
1417 spin_unlock_irq(&zone->lru_lock);
1418 putback_lru_page(page);
1419 spin_lock_irq(&zone->lru_lock);
1420 continue;
1421 }
1422 SetPageLRU(page);
1423 lru = page_lru(page);
1424 add_page_to_lru_list(zone, page, lru);
1425 if (is_active_lru(lru)) {
1426 int file = is_file_lru(lru);
1427 int numpages = hpage_nr_pages(page);
1428 reclaim_stat->recent_rotated[file] += numpages;
1429 }
1430 if (!pagevec_add(&pvec, page)) {
1431 spin_unlock_irq(&zone->lru_lock);
1432 __pagevec_release(&pvec);
1433 spin_lock_irq(&zone->lru_lock);
1434 }
1435 }
1436 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1437 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1438
1439 spin_unlock_irq(&zone->lru_lock);
1440 pagevec_release(&pvec);
1441 }
1442
1443 static noinline_for_stack void
1444 update_isolated_counts(struct mem_cgroup_zone *mz,
1445 struct scan_control *sc,
1446 unsigned long *nr_anon,
1447 unsigned long *nr_file,
1448 struct list_head *isolated_list)
1449 {
1450 unsigned long nr_active;
1451 struct zone *zone = mz->zone;
1452 unsigned int count[NR_LRU_LISTS] = { 0, };
1453 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1454
1455 nr_active = clear_active_flags(isolated_list, count);
1456 __count_vm_events(PGDEACTIVATE, nr_active);
1457
1458 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1459 -count[LRU_ACTIVE_FILE]);
1460 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1461 -count[LRU_INACTIVE_FILE]);
1462 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1463 -count[LRU_ACTIVE_ANON]);
1464 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1465 -count[LRU_INACTIVE_ANON]);
1466
1467 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1468 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1469 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1470 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1471
1472 reclaim_stat->recent_scanned[0] += *nr_anon;
1473 reclaim_stat->recent_scanned[1] += *nr_file;
1474 }
1475
1476 /*
1477 * Returns true if a direct reclaim should wait on pages under writeback.
1478 *
1479 * If we are direct reclaiming for contiguous pages and we do not reclaim
1480 * everything in the list, try again and wait for writeback IO to complete.
1481 * This will stall high-order allocations noticeably. Only do that when really
1482 * need to free the pages under high memory pressure.
1483 */
1484 static inline bool should_reclaim_stall(unsigned long nr_taken,
1485 unsigned long nr_freed,
1486 int priority,
1487 struct scan_control *sc)
1488 {
1489 int lumpy_stall_priority;
1490
1491 /* kswapd should not stall on sync IO */
1492 if (current_is_kswapd())
1493 return false;
1494
1495 /* Only stall on lumpy reclaim */
1496 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1497 return false;
1498
1499 /* If we have reclaimed everything on the isolated list, no stall */
1500 if (nr_freed == nr_taken)
1501 return false;
1502
1503 /*
1504 * For high-order allocations, there are two stall thresholds.
1505 * High-cost allocations stall immediately where as lower
1506 * order allocations such as stacks require the scanning
1507 * priority to be much higher before stalling.
1508 */
1509 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1510 lumpy_stall_priority = DEF_PRIORITY;
1511 else
1512 lumpy_stall_priority = DEF_PRIORITY / 3;
1513
1514 return priority <= lumpy_stall_priority;
1515 }
1516
1517 /*
1518 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1519 * of reclaimed pages
1520 */
1521 static noinline_for_stack unsigned long
1522 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1523 struct scan_control *sc, int priority, int file)
1524 {
1525 LIST_HEAD(page_list);
1526 unsigned long nr_scanned;
1527 unsigned long nr_reclaimed = 0;
1528 unsigned long nr_taken;
1529 unsigned long nr_anon;
1530 unsigned long nr_file;
1531 unsigned long nr_dirty = 0;
1532 unsigned long nr_writeback = 0;
1533 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1534 struct zone *zone = mz->zone;
1535
1536 while (unlikely(too_many_isolated(zone, file, sc))) {
1537 congestion_wait(BLK_RW_ASYNC, HZ/10);
1538
1539 /* We are about to die and free our memory. Return now. */
1540 if (fatal_signal_pending(current))
1541 return SWAP_CLUSTER_MAX;
1542 }
1543
1544 set_reclaim_mode(priority, sc, false);
1545 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1546 reclaim_mode |= ISOLATE_ACTIVE;
1547
1548 lru_add_drain();
1549
1550 if (!sc->may_unmap)
1551 reclaim_mode |= ISOLATE_UNMAPPED;
1552 if (!sc->may_writepage)
1553 reclaim_mode |= ISOLATE_CLEAN;
1554
1555 spin_lock_irq(&zone->lru_lock);
1556
1557 nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1558 &nr_scanned, sc->order,
1559 reclaim_mode, 0, file);
1560 if (global_reclaim(sc)) {
1561 zone->pages_scanned += nr_scanned;
1562 if (current_is_kswapd())
1563 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1564 nr_scanned);
1565 else
1566 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1567 nr_scanned);
1568 }
1569
1570 if (nr_taken == 0) {
1571 spin_unlock_irq(&zone->lru_lock);
1572 return 0;
1573 }
1574
1575 update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1576
1577 spin_unlock_irq(&zone->lru_lock);
1578
1579 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1580 &nr_dirty, &nr_writeback);
1581
1582 /* Check if we should syncronously wait for writeback */
1583 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1584 set_reclaim_mode(priority, sc, true);
1585 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1586 priority, &nr_dirty, &nr_writeback);
1587 }
1588
1589 local_irq_disable();
1590 if (current_is_kswapd())
1591 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1592 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1593
1594 putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1595
1596 /*
1597 * If reclaim is isolating dirty pages under writeback, it implies
1598 * that the long-lived page allocation rate is exceeding the page
1599 * laundering rate. Either the global limits are not being effective
1600 * at throttling processes due to the page distribution throughout
1601 * zones or there is heavy usage of a slow backing device. The
1602 * only option is to throttle from reclaim context which is not ideal
1603 * as there is no guarantee the dirtying process is throttled in the
1604 * same way balance_dirty_pages() manages.
1605 *
1606 * This scales the number of dirty pages that must be under writeback
1607 * before throttling depending on priority. It is a simple backoff
1608 * function that has the most effect in the range DEF_PRIORITY to
1609 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1610 * in trouble and reclaim is considered to be in trouble.
1611 *
1612 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1613 * DEF_PRIORITY-1 50% must be PageWriteback
1614 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1615 * ...
1616 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1617 * isolated page is PageWriteback
1618 */
1619 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1620 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1621
1622 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1623 zone_idx(zone),
1624 nr_scanned, nr_reclaimed,
1625 priority,
1626 trace_shrink_flags(file, sc->reclaim_mode));
1627 return nr_reclaimed;
1628 }
1629
1630 /*
1631 * This moves pages from the active list to the inactive list.
1632 *
1633 * We move them the other way if the page is referenced by one or more
1634 * processes, from rmap.
1635 *
1636 * If the pages are mostly unmapped, the processing is fast and it is
1637 * appropriate to hold zone->lru_lock across the whole operation. But if
1638 * the pages are mapped, the processing is slow (page_referenced()) so we
1639 * should drop zone->lru_lock around each page. It's impossible to balance
1640 * this, so instead we remove the pages from the LRU while processing them.
1641 * It is safe to rely on PG_active against the non-LRU pages in here because
1642 * nobody will play with that bit on a non-LRU page.
1643 *
1644 * The downside is that we have to touch page->_count against each page.
1645 * But we had to alter page->flags anyway.
1646 */
1647
1648 static void move_active_pages_to_lru(struct zone *zone,
1649 struct list_head *list,
1650 enum lru_list lru)
1651 {
1652 unsigned long pgmoved = 0;
1653 struct pagevec pvec;
1654 struct page *page;
1655
1656 pagevec_init(&pvec, 1);
1657
1658 while (!list_empty(list)) {
1659 struct lruvec *lruvec;
1660
1661 page = lru_to_page(list);
1662
1663 VM_BUG_ON(PageLRU(page));
1664 SetPageLRU(page);
1665
1666 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1667 list_move(&page->lru, &lruvec->lists[lru]);
1668 pgmoved += hpage_nr_pages(page);
1669
1670 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1671 spin_unlock_irq(&zone->lru_lock);
1672 if (buffer_heads_over_limit)
1673 pagevec_strip(&pvec);
1674 __pagevec_release(&pvec);
1675 spin_lock_irq(&zone->lru_lock);
1676 }
1677 }
1678 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1679 if (!is_active_lru(lru))
1680 __count_vm_events(PGDEACTIVATE, pgmoved);
1681 }
1682
1683 static void shrink_active_list(unsigned long nr_pages,
1684 struct mem_cgroup_zone *mz,
1685 struct scan_control *sc,
1686 int priority, int file)
1687 {
1688 unsigned long nr_taken;
1689 unsigned long pgscanned;
1690 unsigned long vm_flags;
1691 LIST_HEAD(l_hold); /* The pages which were snipped off */
1692 LIST_HEAD(l_active);
1693 LIST_HEAD(l_inactive);
1694 struct page *page;
1695 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1696 unsigned long nr_rotated = 0;
1697 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1698 struct zone *zone = mz->zone;
1699
1700 lru_add_drain();
1701
1702 if (!sc->may_unmap)
1703 reclaim_mode |= ISOLATE_UNMAPPED;
1704 if (!sc->may_writepage)
1705 reclaim_mode |= ISOLATE_CLEAN;
1706
1707 spin_lock_irq(&zone->lru_lock);
1708
1709 nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1710 &pgscanned, sc->order,
1711 reclaim_mode, 1, file);
1712
1713 if (global_reclaim(sc))
1714 zone->pages_scanned += pgscanned;
1715
1716 reclaim_stat->recent_scanned[file] += nr_taken;
1717
1718 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1719 if (file)
1720 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1721 else
1722 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1723 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1724 spin_unlock_irq(&zone->lru_lock);
1725
1726 while (!list_empty(&l_hold)) {
1727 cond_resched();
1728 page = lru_to_page(&l_hold);
1729 list_del(&page->lru);
1730
1731 if (unlikely(!page_evictable(page, NULL))) {
1732 putback_lru_page(page);
1733 continue;
1734 }
1735
1736 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1737 nr_rotated += hpage_nr_pages(page);
1738 /*
1739 * Identify referenced, file-backed active pages and
1740 * give them one more trip around the active list. So
1741 * that executable code get better chances to stay in
1742 * memory under moderate memory pressure. Anon pages
1743 * are not likely to be evicted by use-once streaming
1744 * IO, plus JVM can create lots of anon VM_EXEC pages,
1745 * so we ignore them here.
1746 */
1747 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1748 list_add(&page->lru, &l_active);
1749 continue;
1750 }
1751 }
1752
1753 ClearPageActive(page); /* we are de-activating */
1754 list_add(&page->lru, &l_inactive);
1755 }
1756
1757 /*
1758 * Move pages back to the lru list.
1759 */
1760 spin_lock_irq(&zone->lru_lock);
1761 /*
1762 * Count referenced pages from currently used mappings as rotated,
1763 * even though only some of them are actually re-activated. This
1764 * helps balance scan pressure between file and anonymous pages in
1765 * get_scan_ratio.
1766 */
1767 reclaim_stat->recent_rotated[file] += nr_rotated;
1768
1769 move_active_pages_to_lru(zone, &l_active,
1770 LRU_ACTIVE + file * LRU_FILE);
1771 move_active_pages_to_lru(zone, &l_inactive,
1772 LRU_BASE + file * LRU_FILE);
1773 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1774 spin_unlock_irq(&zone->lru_lock);
1775 }
1776
1777 #ifdef CONFIG_SWAP
1778 static int inactive_anon_is_low_global(struct zone *zone)
1779 {
1780 unsigned long active, inactive;
1781
1782 active = zone_page_state(zone, NR_ACTIVE_ANON);
1783 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1784
1785 if (inactive * zone->inactive_ratio < active)
1786 return 1;
1787
1788 return 0;
1789 }
1790
1791 /**
1792 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1793 * @zone: zone to check
1794 * @sc: scan control of this context
1795 *
1796 * Returns true if the zone does not have enough inactive anon pages,
1797 * meaning some active anon pages need to be deactivated.
1798 */
1799 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1800 {
1801 /*
1802 * If we don't have swap space, anonymous page deactivation
1803 * is pointless.
1804 */
1805 if (!total_swap_pages)
1806 return 0;
1807
1808 if (!scanning_global_lru(mz))
1809 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1810 mz->zone);
1811
1812 return inactive_anon_is_low_global(mz->zone);
1813 }
1814 #else
1815 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1816 {
1817 return 0;
1818 }
1819 #endif
1820
1821 static int inactive_file_is_low_global(struct zone *zone)
1822 {
1823 unsigned long active, inactive;
1824
1825 active = zone_page_state(zone, NR_ACTIVE_FILE);
1826 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1827
1828 return (active > inactive);
1829 }
1830
1831 /**
1832 * inactive_file_is_low - check if file pages need to be deactivated
1833 * @mz: memory cgroup and zone to check
1834 *
1835 * When the system is doing streaming IO, memory pressure here
1836 * ensures that active file pages get deactivated, until more
1837 * than half of the file pages are on the inactive list.
1838 *
1839 * Once we get to that situation, protect the system's working
1840 * set from being evicted by disabling active file page aging.
1841 *
1842 * This uses a different ratio than the anonymous pages, because
1843 * the page cache uses a use-once replacement algorithm.
1844 */
1845 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1846 {
1847 if (!scanning_global_lru(mz))
1848 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1849 mz->zone);
1850
1851 return inactive_file_is_low_global(mz->zone);
1852 }
1853
1854 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1855 {
1856 if (file)
1857 return inactive_file_is_low(mz);
1858 else
1859 return inactive_anon_is_low(mz);
1860 }
1861
1862 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1863 struct mem_cgroup_zone *mz,
1864 struct scan_control *sc, int priority)
1865 {
1866 int file = is_file_lru(lru);
1867
1868 if (is_active_lru(lru)) {
1869 if (inactive_list_is_low(mz, file))
1870 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1871 return 0;
1872 }
1873
1874 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1875 }
1876
1877 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1878 struct scan_control *sc)
1879 {
1880 if (global_reclaim(sc))
1881 return vm_swappiness;
1882 return mem_cgroup_swappiness(mz->mem_cgroup);
1883 }
1884
1885 /*
1886 * Determine how aggressively the anon and file LRU lists should be
1887 * scanned. The relative value of each set of LRU lists is determined
1888 * by looking at the fraction of the pages scanned we did rotate back
1889 * onto the active list instead of evict.
1890 *
1891 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1892 */
1893 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1894 unsigned long *nr, int priority)
1895 {
1896 unsigned long anon, file, free;
1897 unsigned long anon_prio, file_prio;
1898 unsigned long ap, fp;
1899 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1900 u64 fraction[2], denominator;
1901 enum lru_list l;
1902 int noswap = 0;
1903 bool force_scan = false;
1904
1905 /*
1906 * If the zone or memcg is small, nr[l] can be 0. This
1907 * results in no scanning on this priority and a potential
1908 * priority drop. Global direct reclaim can go to the next
1909 * zone and tends to have no problems. Global kswapd is for
1910 * zone balancing and it needs to scan a minimum amount. When
1911 * reclaiming for a memcg, a priority drop can cause high
1912 * latencies, so it's better to scan a minimum amount there as
1913 * well.
1914 */
1915 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1916 force_scan = true;
1917 if (!global_reclaim(sc))
1918 force_scan = true;
1919
1920 /* If we have no swap space, do not bother scanning anon pages. */
1921 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1922 noswap = 1;
1923 fraction[0] = 0;
1924 fraction[1] = 1;
1925 denominator = 1;
1926 goto out;
1927 }
1928
1929 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1930 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1931 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1932 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1933
1934 if (global_reclaim(sc)) {
1935 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1936 /* If we have very few page cache pages,
1937 force-scan anon pages. */
1938 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1939 fraction[0] = 1;
1940 fraction[1] = 0;
1941 denominator = 1;
1942 goto out;
1943 }
1944 }
1945
1946 /*
1947 * With swappiness at 100, anonymous and file have the same priority.
1948 * This scanning priority is essentially the inverse of IO cost.
1949 */
1950 anon_prio = vmscan_swappiness(mz, sc);
1951 file_prio = 200 - vmscan_swappiness(mz, sc);
1952
1953 /*
1954 * OK, so we have swap space and a fair amount of page cache
1955 * pages. We use the recently rotated / recently scanned
1956 * ratios to determine how valuable each cache is.
1957 *
1958 * Because workloads change over time (and to avoid overflow)
1959 * we keep these statistics as a floating average, which ends
1960 * up weighing recent references more than old ones.
1961 *
1962 * anon in [0], file in [1]
1963 */
1964 spin_lock_irq(&mz->zone->lru_lock);
1965 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1966 reclaim_stat->recent_scanned[0] /= 2;
1967 reclaim_stat->recent_rotated[0] /= 2;
1968 }
1969
1970 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1971 reclaim_stat->recent_scanned[1] /= 2;
1972 reclaim_stat->recent_rotated[1] /= 2;
1973 }
1974
1975 /*
1976 * The amount of pressure on anon vs file pages is inversely
1977 * proportional to the fraction of recently scanned pages on
1978 * each list that were recently referenced and in active use.
1979 */
1980 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1981 ap /= reclaim_stat->recent_rotated[0] + 1;
1982
1983 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1984 fp /= reclaim_stat->recent_rotated[1] + 1;
1985 spin_unlock_irq(&mz->zone->lru_lock);
1986
1987 fraction[0] = ap;
1988 fraction[1] = fp;
1989 denominator = ap + fp + 1;
1990 out:
1991 for_each_evictable_lru(l) {
1992 int file = is_file_lru(l);
1993 unsigned long scan;
1994
1995 scan = zone_nr_lru_pages(mz, l);
1996 if (priority || noswap) {
1997 scan >>= priority;
1998 if (!scan && force_scan)
1999 scan = SWAP_CLUSTER_MAX;
2000 scan = div64_u64(scan * fraction[file], denominator);
2001 }
2002 nr[l] = scan;
2003 }
2004 }
2005
2006 /*
2007 * Reclaim/compaction depends on a number of pages being freed. To avoid
2008 * disruption to the system, a small number of order-0 pages continue to be
2009 * rotated and reclaimed in the normal fashion. However, by the time we get
2010 * back to the allocator and call try_to_compact_zone(), we ensure that
2011 * there are enough free pages for it to be likely successful
2012 */
2013 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2014 unsigned long nr_reclaimed,
2015 unsigned long nr_scanned,
2016 struct scan_control *sc)
2017 {
2018 unsigned long pages_for_compaction;
2019 unsigned long inactive_lru_pages;
2020
2021 /* If not in reclaim/compaction mode, stop */
2022 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2023 return false;
2024
2025 /* Consider stopping depending on scan and reclaim activity */
2026 if (sc->gfp_mask & __GFP_REPEAT) {
2027 /*
2028 * For __GFP_REPEAT allocations, stop reclaiming if the
2029 * full LRU list has been scanned and we are still failing
2030 * to reclaim pages. This full LRU scan is potentially
2031 * expensive but a __GFP_REPEAT caller really wants to succeed
2032 */
2033 if (!nr_reclaimed && !nr_scanned)
2034 return false;
2035 } else {
2036 /*
2037 * For non-__GFP_REPEAT allocations which can presumably
2038 * fail without consequence, stop if we failed to reclaim
2039 * any pages from the last SWAP_CLUSTER_MAX number of
2040 * pages that were scanned. This will return to the
2041 * caller faster at the risk reclaim/compaction and
2042 * the resulting allocation attempt fails
2043 */
2044 if (!nr_reclaimed)
2045 return false;
2046 }
2047
2048 /*
2049 * If we have not reclaimed enough pages for compaction and the
2050 * inactive lists are large enough, continue reclaiming
2051 */
2052 pages_for_compaction = (2UL << sc->order);
2053 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2054 if (nr_swap_pages > 0)
2055 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2056 if (sc->nr_reclaimed < pages_for_compaction &&
2057 inactive_lru_pages > pages_for_compaction)
2058 return true;
2059
2060 /* If compaction would go ahead or the allocation would succeed, stop */
2061 switch (compaction_suitable(mz->zone, sc->order)) {
2062 case COMPACT_PARTIAL:
2063 case COMPACT_CONTINUE:
2064 return false;
2065 default:
2066 return true;
2067 }
2068 }
2069
2070 /*
2071 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2072 */
2073 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2074 struct scan_control *sc)
2075 {
2076 unsigned long nr[NR_LRU_LISTS];
2077 unsigned long nr_to_scan;
2078 enum lru_list l;
2079 unsigned long nr_reclaimed, nr_scanned;
2080 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2081 struct blk_plug plug;
2082
2083 restart:
2084 nr_reclaimed = 0;
2085 nr_scanned = sc->nr_scanned;
2086 get_scan_count(mz, sc, nr, priority);
2087
2088 blk_start_plug(&plug);
2089 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2090 nr[LRU_INACTIVE_FILE]) {
2091 for_each_evictable_lru(l) {
2092 if (nr[l]) {
2093 nr_to_scan = min_t(unsigned long,
2094 nr[l], SWAP_CLUSTER_MAX);
2095 nr[l] -= nr_to_scan;
2096
2097 nr_reclaimed += shrink_list(l, nr_to_scan,
2098 mz, sc, priority);
2099 }
2100 }
2101 /*
2102 * On large memory systems, scan >> priority can become
2103 * really large. This is fine for the starting priority;
2104 * we want to put equal scanning pressure on each zone.
2105 * However, if the VM has a harder time of freeing pages,
2106 * with multiple processes reclaiming pages, the total
2107 * freeing target can get unreasonably large.
2108 */
2109 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2110 break;
2111 }
2112 blk_finish_plug(&plug);
2113 sc->nr_reclaimed += nr_reclaimed;
2114
2115 /*
2116 * Even if we did not try to evict anon pages at all, we want to
2117 * rebalance the anon lru active/inactive ratio.
2118 */
2119 if (inactive_anon_is_low(mz))
2120 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2121
2122 /* reclaim/compaction might need reclaim to continue */
2123 if (should_continue_reclaim(mz, nr_reclaimed,
2124 sc->nr_scanned - nr_scanned, sc))
2125 goto restart;
2126
2127 throttle_vm_writeout(sc->gfp_mask);
2128 }
2129
2130 static void shrink_zone(int priority, struct zone *zone,
2131 struct scan_control *sc)
2132 {
2133 struct mem_cgroup *root = sc->target_mem_cgroup;
2134 struct mem_cgroup_reclaim_cookie reclaim = {
2135 .zone = zone,
2136 .priority = priority,
2137 };
2138 struct mem_cgroup *memcg;
2139
2140 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2141 do {
2142 struct mem_cgroup_zone mz = {
2143 .mem_cgroup = memcg,
2144 .zone = zone,
2145 };
2146
2147 shrink_mem_cgroup_zone(priority, &mz, sc);
2148 /*
2149 * Limit reclaim has historically picked one memcg and
2150 * scanned it with decreasing priority levels until
2151 * nr_to_reclaim had been reclaimed. This priority
2152 * cycle is thus over after a single memcg.
2153 *
2154 * Direct reclaim and kswapd, on the other hand, have
2155 * to scan all memory cgroups to fulfill the overall
2156 * scan target for the zone.
2157 */
2158 if (!global_reclaim(sc)) {
2159 mem_cgroup_iter_break(root, memcg);
2160 break;
2161 }
2162 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2163 } while (memcg);
2164 }
2165
2166 /* Returns true if compaction should go ahead for a high-order request */
2167 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2168 {
2169 unsigned long balance_gap, watermark;
2170 bool watermark_ok;
2171
2172 /* Do not consider compaction for orders reclaim is meant to satisfy */
2173 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2174 return false;
2175
2176 /*
2177 * Compaction takes time to run and there are potentially other
2178 * callers using the pages just freed. Continue reclaiming until
2179 * there is a buffer of free pages available to give compaction
2180 * a reasonable chance of completing and allocating the page
2181 */
2182 balance_gap = min(low_wmark_pages(zone),
2183 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2184 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2185 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2186 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2187
2188 /*
2189 * If compaction is deferred, reclaim up to a point where
2190 * compaction will have a chance of success when re-enabled
2191 */
2192 if (compaction_deferred(zone))
2193 return watermark_ok;
2194
2195 /* If compaction is not ready to start, keep reclaiming */
2196 if (!compaction_suitable(zone, sc->order))
2197 return false;
2198
2199 return watermark_ok;
2200 }
2201
2202 /*
2203 * This is the direct reclaim path, for page-allocating processes. We only
2204 * try to reclaim pages from zones which will satisfy the caller's allocation
2205 * request.
2206 *
2207 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2208 * Because:
2209 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2210 * allocation or
2211 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2212 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2213 * zone defense algorithm.
2214 *
2215 * If a zone is deemed to be full of pinned pages then just give it a light
2216 * scan then give up on it.
2217 *
2218 * This function returns true if a zone is being reclaimed for a costly
2219 * high-order allocation and compaction is ready to begin. This indicates to
2220 * the caller that it should retry the allocation or fail.
2221 */
2222 static bool shrink_zones(int priority, struct zonelist *zonelist,
2223 struct scan_control *sc)
2224 {
2225 struct zoneref *z;
2226 struct zone *zone;
2227 unsigned long nr_soft_reclaimed;
2228 unsigned long nr_soft_scanned;
2229 bool should_abort_reclaim = false;
2230
2231 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2232 gfp_zone(sc->gfp_mask), sc->nodemask) {
2233 if (!populated_zone(zone))
2234 continue;
2235 /*
2236 * Take care memory controller reclaiming has small influence
2237 * to global LRU.
2238 */
2239 if (global_reclaim(sc)) {
2240 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2241 continue;
2242 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2243 continue; /* Let kswapd poll it */
2244 if (COMPACTION_BUILD) {
2245 /*
2246 * If we already have plenty of memory free for
2247 * compaction in this zone, don't free any more.
2248 * Even though compaction is invoked for any
2249 * non-zero order, only frequent costly order
2250 * reclamation is disruptive enough to become a
2251 * noticable problem, like transparent huge page
2252 * allocations.
2253 */
2254 if (compaction_ready(zone, sc)) {
2255 should_abort_reclaim = true;
2256 continue;
2257 }
2258 }
2259 /*
2260 * This steals pages from memory cgroups over softlimit
2261 * and returns the number of reclaimed pages and
2262 * scanned pages. This works for global memory pressure
2263 * and balancing, not for a memcg's limit.
2264 */
2265 nr_soft_scanned = 0;
2266 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2267 sc->order, sc->gfp_mask,
2268 &nr_soft_scanned);
2269 sc->nr_reclaimed += nr_soft_reclaimed;
2270 sc->nr_scanned += nr_soft_scanned;
2271 /* need some check for avoid more shrink_zone() */
2272 }
2273
2274 shrink_zone(priority, zone, sc);
2275 }
2276
2277 return should_abort_reclaim;
2278 }
2279
2280 static bool zone_reclaimable(struct zone *zone)
2281 {
2282 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2283 }
2284
2285 /* All zones in zonelist are unreclaimable? */
2286 static bool all_unreclaimable(struct zonelist *zonelist,
2287 struct scan_control *sc)
2288 {
2289 struct zoneref *z;
2290 struct zone *zone;
2291
2292 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2293 gfp_zone(sc->gfp_mask), sc->nodemask) {
2294 if (!populated_zone(zone))
2295 continue;
2296 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2297 continue;
2298 if (!zone->all_unreclaimable)
2299 return false;
2300 }
2301
2302 return true;
2303 }
2304
2305 /*
2306 * This is the main entry point to direct page reclaim.
2307 *
2308 * If a full scan of the inactive list fails to free enough memory then we
2309 * are "out of memory" and something needs to be killed.
2310 *
2311 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2312 * high - the zone may be full of dirty or under-writeback pages, which this
2313 * caller can't do much about. We kick the writeback threads and take explicit
2314 * naps in the hope that some of these pages can be written. But if the
2315 * allocating task holds filesystem locks which prevent writeout this might not
2316 * work, and the allocation attempt will fail.
2317 *
2318 * returns: 0, if no pages reclaimed
2319 * else, the number of pages reclaimed
2320 */
2321 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2322 struct scan_control *sc,
2323 struct shrink_control *shrink)
2324 {
2325 int priority;
2326 unsigned long total_scanned = 0;
2327 struct reclaim_state *reclaim_state = current->reclaim_state;
2328 struct zoneref *z;
2329 struct zone *zone;
2330 unsigned long writeback_threshold;
2331 bool should_abort_reclaim;
2332
2333 get_mems_allowed();
2334 delayacct_freepages_start();
2335
2336 if (global_reclaim(sc))
2337 count_vm_event(ALLOCSTALL);
2338
2339 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2340 sc->nr_scanned = 0;
2341 if (!priority)
2342 disable_swap_token(sc->target_mem_cgroup);
2343 should_abort_reclaim = shrink_zones(priority, zonelist, sc);
2344 if (should_abort_reclaim)
2345 break;
2346
2347 /*
2348 * Don't shrink slabs when reclaiming memory from
2349 * over limit cgroups
2350 */
2351 if (global_reclaim(sc)) {
2352 unsigned long lru_pages = 0;
2353 for_each_zone_zonelist(zone, z, zonelist,
2354 gfp_zone(sc->gfp_mask)) {
2355 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2356 continue;
2357
2358 lru_pages += zone_reclaimable_pages(zone);
2359 }
2360
2361 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2362 if (reclaim_state) {
2363 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2364 reclaim_state->reclaimed_slab = 0;
2365 }
2366 }
2367 total_scanned += sc->nr_scanned;
2368 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2369 goto out;
2370
2371 /*
2372 * Try to write back as many pages as we just scanned. This
2373 * tends to cause slow streaming writers to write data to the
2374 * disk smoothly, at the dirtying rate, which is nice. But
2375 * that's undesirable in laptop mode, where we *want* lumpy
2376 * writeout. So in laptop mode, write out the whole world.
2377 */
2378 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2379 if (total_scanned > writeback_threshold) {
2380 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2381 WB_REASON_TRY_TO_FREE_PAGES);
2382 sc->may_writepage = 1;
2383 }
2384
2385 /* Take a nap, wait for some writeback to complete */
2386 if (!sc->hibernation_mode && sc->nr_scanned &&
2387 priority < DEF_PRIORITY - 2) {
2388 struct zone *preferred_zone;
2389
2390 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2391 &cpuset_current_mems_allowed,
2392 &preferred_zone);
2393 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2394 }
2395 }
2396
2397 out:
2398 delayacct_freepages_end();
2399 put_mems_allowed();
2400
2401 if (sc->nr_reclaimed)
2402 return sc->nr_reclaimed;
2403
2404 /*
2405 * As hibernation is going on, kswapd is freezed so that it can't mark
2406 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2407 * check.
2408 */
2409 if (oom_killer_disabled)
2410 return 0;
2411
2412 /* Aborting reclaim to try compaction? don't OOM, then */
2413 if (should_abort_reclaim)
2414 return 1;
2415
2416 /* top priority shrink_zones still had more to do? don't OOM, then */
2417 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2418 return 1;
2419
2420 return 0;
2421 }
2422
2423 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2424 gfp_t gfp_mask, nodemask_t *nodemask)
2425 {
2426 unsigned long nr_reclaimed;
2427 struct scan_control sc = {
2428 .gfp_mask = gfp_mask,
2429 .may_writepage = !laptop_mode,
2430 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2431 .may_unmap = 1,
2432 .may_swap = 1,
2433 .order = order,
2434 .target_mem_cgroup = NULL,
2435 .nodemask = nodemask,
2436 };
2437 struct shrink_control shrink = {
2438 .gfp_mask = sc.gfp_mask,
2439 };
2440
2441 trace_mm_vmscan_direct_reclaim_begin(order,
2442 sc.may_writepage,
2443 gfp_mask);
2444
2445 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2446
2447 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2448
2449 return nr_reclaimed;
2450 }
2451
2452 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2453
2454 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2455 gfp_t gfp_mask, bool noswap,
2456 struct zone *zone,
2457 unsigned long *nr_scanned)
2458 {
2459 struct scan_control sc = {
2460 .nr_scanned = 0,
2461 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2462 .may_writepage = !laptop_mode,
2463 .may_unmap = 1,
2464 .may_swap = !noswap,
2465 .order = 0,
2466 .target_mem_cgroup = memcg,
2467 };
2468 struct mem_cgroup_zone mz = {
2469 .mem_cgroup = memcg,
2470 .zone = zone,
2471 };
2472
2473 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2474 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2475
2476 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2477 sc.may_writepage,
2478 sc.gfp_mask);
2479
2480 /*
2481 * NOTE: Although we can get the priority field, using it
2482 * here is not a good idea, since it limits the pages we can scan.
2483 * if we don't reclaim here, the shrink_zone from balance_pgdat
2484 * will pick up pages from other mem cgroup's as well. We hack
2485 * the priority and make it zero.
2486 */
2487 shrink_mem_cgroup_zone(0, &mz, &sc);
2488
2489 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2490
2491 *nr_scanned = sc.nr_scanned;
2492 return sc.nr_reclaimed;
2493 }
2494
2495 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2496 gfp_t gfp_mask,
2497 bool noswap)
2498 {
2499 struct zonelist *zonelist;
2500 unsigned long nr_reclaimed;
2501 int nid;
2502 struct scan_control sc = {
2503 .may_writepage = !laptop_mode,
2504 .may_unmap = 1,
2505 .may_swap = !noswap,
2506 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2507 .order = 0,
2508 .target_mem_cgroup = memcg,
2509 .nodemask = NULL, /* we don't care the placement */
2510 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2511 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2512 };
2513 struct shrink_control shrink = {
2514 .gfp_mask = sc.gfp_mask,
2515 };
2516
2517 /*
2518 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2519 * take care of from where we get pages. So the node where we start the
2520 * scan does not need to be the current node.
2521 */
2522 nid = mem_cgroup_select_victim_node(memcg);
2523
2524 zonelist = NODE_DATA(nid)->node_zonelists;
2525
2526 trace_mm_vmscan_memcg_reclaim_begin(0,
2527 sc.may_writepage,
2528 sc.gfp_mask);
2529
2530 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2531
2532 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2533
2534 return nr_reclaimed;
2535 }
2536 #endif
2537
2538 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2539 int priority)
2540 {
2541 struct mem_cgroup *memcg;
2542
2543 if (!total_swap_pages)
2544 return;
2545
2546 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2547 do {
2548 struct mem_cgroup_zone mz = {
2549 .mem_cgroup = memcg,
2550 .zone = zone,
2551 };
2552
2553 if (inactive_anon_is_low(&mz))
2554 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2555 sc, priority, 0);
2556
2557 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2558 } while (memcg);
2559 }
2560
2561 /*
2562 * pgdat_balanced is used when checking if a node is balanced for high-order
2563 * allocations. Only zones that meet watermarks and are in a zone allowed
2564 * by the callers classzone_idx are added to balanced_pages. The total of
2565 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2566 * for the node to be considered balanced. Forcing all zones to be balanced
2567 * for high orders can cause excessive reclaim when there are imbalanced zones.
2568 * The choice of 25% is due to
2569 * o a 16M DMA zone that is balanced will not balance a zone on any
2570 * reasonable sized machine
2571 * o On all other machines, the top zone must be at least a reasonable
2572 * percentage of the middle zones. For example, on 32-bit x86, highmem
2573 * would need to be at least 256M for it to be balance a whole node.
2574 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2575 * to balance a node on its own. These seemed like reasonable ratios.
2576 */
2577 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2578 int classzone_idx)
2579 {
2580 unsigned long present_pages = 0;
2581 int i;
2582
2583 for (i = 0; i <= classzone_idx; i++)
2584 present_pages += pgdat->node_zones[i].present_pages;
2585
2586 /* A special case here: if zone has no page, we think it's balanced */
2587 return balanced_pages >= (present_pages >> 2);
2588 }
2589
2590 /* is kswapd sleeping prematurely? */
2591 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2592 int classzone_idx)
2593 {
2594 int i;
2595 unsigned long balanced = 0;
2596 bool all_zones_ok = true;
2597
2598 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2599 if (remaining)
2600 return true;
2601
2602 /* Check the watermark levels */
2603 for (i = 0; i <= classzone_idx; i++) {
2604 struct zone *zone = pgdat->node_zones + i;
2605
2606 if (!populated_zone(zone))
2607 continue;
2608
2609 /*
2610 * balance_pgdat() skips over all_unreclaimable after
2611 * DEF_PRIORITY. Effectively, it considers them balanced so
2612 * they must be considered balanced here as well if kswapd
2613 * is to sleep
2614 */
2615 if (zone->all_unreclaimable) {
2616 balanced += zone->present_pages;
2617 continue;
2618 }
2619
2620 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2621 i, 0))
2622 all_zones_ok = false;
2623 else
2624 balanced += zone->present_pages;
2625 }
2626
2627 /*
2628 * For high-order requests, the balanced zones must contain at least
2629 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2630 * must be balanced
2631 */
2632 if (order)
2633 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2634 else
2635 return !all_zones_ok;
2636 }
2637
2638 /*
2639 * For kswapd, balance_pgdat() will work across all this node's zones until
2640 * they are all at high_wmark_pages(zone).
2641 *
2642 * Returns the final order kswapd was reclaiming at
2643 *
2644 * There is special handling here for zones which are full of pinned pages.
2645 * This can happen if the pages are all mlocked, or if they are all used by
2646 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2647 * What we do is to detect the case where all pages in the zone have been
2648 * scanned twice and there has been zero successful reclaim. Mark the zone as
2649 * dead and from now on, only perform a short scan. Basically we're polling
2650 * the zone for when the problem goes away.
2651 *
2652 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2653 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2654 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2655 * lower zones regardless of the number of free pages in the lower zones. This
2656 * interoperates with the page allocator fallback scheme to ensure that aging
2657 * of pages is balanced across the zones.
2658 */
2659 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2660 int *classzone_idx)
2661 {
2662 int all_zones_ok;
2663 unsigned long balanced;
2664 int priority;
2665 int i;
2666 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2667 unsigned long total_scanned;
2668 struct reclaim_state *reclaim_state = current->reclaim_state;
2669 unsigned long nr_soft_reclaimed;
2670 unsigned long nr_soft_scanned;
2671 struct scan_control sc = {
2672 .gfp_mask = GFP_KERNEL,
2673 .may_unmap = 1,
2674 .may_swap = 1,
2675 /*
2676 * kswapd doesn't want to be bailed out while reclaim. because
2677 * we want to put equal scanning pressure on each zone.
2678 */
2679 .nr_to_reclaim = ULONG_MAX,
2680 .order = order,
2681 .target_mem_cgroup = NULL,
2682 };
2683 struct shrink_control shrink = {
2684 .gfp_mask = sc.gfp_mask,
2685 };
2686 loop_again:
2687 total_scanned = 0;
2688 sc.nr_reclaimed = 0;
2689 sc.may_writepage = !laptop_mode;
2690 count_vm_event(PAGEOUTRUN);
2691
2692 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2693 unsigned long lru_pages = 0;
2694 int has_under_min_watermark_zone = 0;
2695
2696 /* The swap token gets in the way of swapout... */
2697 if (!priority)
2698 disable_swap_token(NULL);
2699
2700 all_zones_ok = 1;
2701 balanced = 0;
2702
2703 /*
2704 * Scan in the highmem->dma direction for the highest
2705 * zone which needs scanning
2706 */
2707 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2708 struct zone *zone = pgdat->node_zones + i;
2709
2710 if (!populated_zone(zone))
2711 continue;
2712
2713 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2714 continue;
2715
2716 /*
2717 * Do some background aging of the anon list, to give
2718 * pages a chance to be referenced before reclaiming.
2719 */
2720 age_active_anon(zone, &sc, priority);
2721
2722 if (!zone_watermark_ok_safe(zone, order,
2723 high_wmark_pages(zone), 0, 0)) {
2724 end_zone = i;
2725 break;
2726 } else {
2727 /* If balanced, clear the congested flag */
2728 zone_clear_flag(zone, ZONE_CONGESTED);
2729 }
2730 }
2731 if (i < 0)
2732 goto out;
2733
2734 for (i = 0; i <= end_zone; i++) {
2735 struct zone *zone = pgdat->node_zones + i;
2736
2737 lru_pages += zone_reclaimable_pages(zone);
2738 }
2739
2740 /*
2741 * Now scan the zone in the dma->highmem direction, stopping
2742 * at the last zone which needs scanning.
2743 *
2744 * We do this because the page allocator works in the opposite
2745 * direction. This prevents the page allocator from allocating
2746 * pages behind kswapd's direction of progress, which would
2747 * cause too much scanning of the lower zones.
2748 */
2749 for (i = 0; i <= end_zone; i++) {
2750 struct zone *zone = pgdat->node_zones + i;
2751 int nr_slab;
2752 unsigned long balance_gap;
2753
2754 if (!populated_zone(zone))
2755 continue;
2756
2757 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2758 continue;
2759
2760 sc.nr_scanned = 0;
2761
2762 nr_soft_scanned = 0;
2763 /*
2764 * Call soft limit reclaim before calling shrink_zone.
2765 */
2766 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2767 order, sc.gfp_mask,
2768 &nr_soft_scanned);
2769 sc.nr_reclaimed += nr_soft_reclaimed;
2770 total_scanned += nr_soft_scanned;
2771
2772 /*
2773 * We put equal pressure on every zone, unless
2774 * one zone has way too many pages free
2775 * already. The "too many pages" is defined
2776 * as the high wmark plus a "gap" where the
2777 * gap is either the low watermark or 1%
2778 * of the zone, whichever is smaller.
2779 */
2780 balance_gap = min(low_wmark_pages(zone),
2781 (zone->present_pages +
2782 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2783 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2784 if (!zone_watermark_ok_safe(zone, order,
2785 high_wmark_pages(zone) + balance_gap,
2786 end_zone, 0)) {
2787 shrink_zone(priority, zone, &sc);
2788
2789 reclaim_state->reclaimed_slab = 0;
2790 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2791 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2792 total_scanned += sc.nr_scanned;
2793
2794 if (nr_slab == 0 && !zone_reclaimable(zone))
2795 zone->all_unreclaimable = 1;
2796 }
2797
2798 /*
2799 * If we've done a decent amount of scanning and
2800 * the reclaim ratio is low, start doing writepage
2801 * even in laptop mode
2802 */
2803 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2804 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2805 sc.may_writepage = 1;
2806
2807 if (zone->all_unreclaimable) {
2808 if (end_zone && end_zone == i)
2809 end_zone--;
2810 continue;
2811 }
2812
2813 if (!zone_watermark_ok_safe(zone, order,
2814 high_wmark_pages(zone), end_zone, 0)) {
2815 all_zones_ok = 0;
2816 /*
2817 * We are still under min water mark. This
2818 * means that we have a GFP_ATOMIC allocation
2819 * failure risk. Hurry up!
2820 */
2821 if (!zone_watermark_ok_safe(zone, order,
2822 min_wmark_pages(zone), end_zone, 0))
2823 has_under_min_watermark_zone = 1;
2824 } else {
2825 /*
2826 * If a zone reaches its high watermark,
2827 * consider it to be no longer congested. It's
2828 * possible there are dirty pages backed by
2829 * congested BDIs but as pressure is relieved,
2830 * spectulatively avoid congestion waits
2831 */
2832 zone_clear_flag(zone, ZONE_CONGESTED);
2833 if (i <= *classzone_idx)
2834 balanced += zone->present_pages;
2835 }
2836
2837 }
2838 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2839 break; /* kswapd: all done */
2840 /*
2841 * OK, kswapd is getting into trouble. Take a nap, then take
2842 * another pass across the zones.
2843 */
2844 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2845 if (has_under_min_watermark_zone)
2846 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2847 else
2848 congestion_wait(BLK_RW_ASYNC, HZ/10);
2849 }
2850
2851 /*
2852 * We do this so kswapd doesn't build up large priorities for
2853 * example when it is freeing in parallel with allocators. It
2854 * matches the direct reclaim path behaviour in terms of impact
2855 * on zone->*_priority.
2856 */
2857 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2858 break;
2859 }
2860 out:
2861
2862 /*
2863 * order-0: All zones must meet high watermark for a balanced node
2864 * high-order: Balanced zones must make up at least 25% of the node
2865 * for the node to be balanced
2866 */
2867 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2868 cond_resched();
2869
2870 try_to_freeze();
2871
2872 /*
2873 * Fragmentation may mean that the system cannot be
2874 * rebalanced for high-order allocations in all zones.
2875 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2876 * it means the zones have been fully scanned and are still
2877 * not balanced. For high-order allocations, there is
2878 * little point trying all over again as kswapd may
2879 * infinite loop.
2880 *
2881 * Instead, recheck all watermarks at order-0 as they
2882 * are the most important. If watermarks are ok, kswapd will go
2883 * back to sleep. High-order users can still perform direct
2884 * reclaim if they wish.
2885 */
2886 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2887 order = sc.order = 0;
2888
2889 goto loop_again;
2890 }
2891
2892 /*
2893 * If kswapd was reclaiming at a higher order, it has the option of
2894 * sleeping without all zones being balanced. Before it does, it must
2895 * ensure that the watermarks for order-0 on *all* zones are met and
2896 * that the congestion flags are cleared. The congestion flag must
2897 * be cleared as kswapd is the only mechanism that clears the flag
2898 * and it is potentially going to sleep here.
2899 */
2900 if (order) {
2901 for (i = 0; i <= end_zone; i++) {
2902 struct zone *zone = pgdat->node_zones + i;
2903
2904 if (!populated_zone(zone))
2905 continue;
2906
2907 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2908 continue;
2909
2910 /* Confirm the zone is balanced for order-0 */
2911 if (!zone_watermark_ok(zone, 0,
2912 high_wmark_pages(zone), 0, 0)) {
2913 order = sc.order = 0;
2914 goto loop_again;
2915 }
2916
2917 /* If balanced, clear the congested flag */
2918 zone_clear_flag(zone, ZONE_CONGESTED);
2919 if (i <= *classzone_idx)
2920 balanced += zone->present_pages;
2921 }
2922 }
2923
2924 /*
2925 * Return the order we were reclaiming at so sleeping_prematurely()
2926 * makes a decision on the order we were last reclaiming at. However,
2927 * if another caller entered the allocator slow path while kswapd
2928 * was awake, order will remain at the higher level
2929 */
2930 *classzone_idx = end_zone;
2931 return order;
2932 }
2933
2934 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2935 {
2936 long remaining = 0;
2937 DEFINE_WAIT(wait);
2938
2939 if (freezing(current) || kthread_should_stop())
2940 return;
2941
2942 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2943
2944 /* Try to sleep for a short interval */
2945 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2946 remaining = schedule_timeout(HZ/10);
2947 finish_wait(&pgdat->kswapd_wait, &wait);
2948 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2949 }
2950
2951 /*
2952 * After a short sleep, check if it was a premature sleep. If not, then
2953 * go fully to sleep until explicitly woken up.
2954 */
2955 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2956 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2957
2958 /*
2959 * vmstat counters are not perfectly accurate and the estimated
2960 * value for counters such as NR_FREE_PAGES can deviate from the
2961 * true value by nr_online_cpus * threshold. To avoid the zone
2962 * watermarks being breached while under pressure, we reduce the
2963 * per-cpu vmstat threshold while kswapd is awake and restore
2964 * them before going back to sleep.
2965 */
2966 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2967 schedule();
2968 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2969 } else {
2970 if (remaining)
2971 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2972 else
2973 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2974 }
2975 finish_wait(&pgdat->kswapd_wait, &wait);
2976 }
2977
2978 /*
2979 * The background pageout daemon, started as a kernel thread
2980 * from the init process.
2981 *
2982 * This basically trickles out pages so that we have _some_
2983 * free memory available even if there is no other activity
2984 * that frees anything up. This is needed for things like routing
2985 * etc, where we otherwise might have all activity going on in
2986 * asynchronous contexts that cannot page things out.
2987 *
2988 * If there are applications that are active memory-allocators
2989 * (most normal use), this basically shouldn't matter.
2990 */
2991 static int kswapd(void *p)
2992 {
2993 unsigned long order, new_order;
2994 unsigned balanced_order;
2995 int classzone_idx, new_classzone_idx;
2996 int balanced_classzone_idx;
2997 pg_data_t *pgdat = (pg_data_t*)p;
2998 struct task_struct *tsk = current;
2999
3000 struct reclaim_state reclaim_state = {
3001 .reclaimed_slab = 0,
3002 };
3003 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3004
3005 lockdep_set_current_reclaim_state(GFP_KERNEL);
3006
3007 if (!cpumask_empty(cpumask))
3008 set_cpus_allowed_ptr(tsk, cpumask);
3009 current->reclaim_state = &reclaim_state;
3010
3011 /*
3012 * Tell the memory management that we're a "memory allocator",
3013 * and that if we need more memory we should get access to it
3014 * regardless (see "__alloc_pages()"). "kswapd" should
3015 * never get caught in the normal page freeing logic.
3016 *
3017 * (Kswapd normally doesn't need memory anyway, but sometimes
3018 * you need a small amount of memory in order to be able to
3019 * page out something else, and this flag essentially protects
3020 * us from recursively trying to free more memory as we're
3021 * trying to free the first piece of memory in the first place).
3022 */
3023 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3024 set_freezable();
3025
3026 order = new_order = 0;
3027 balanced_order = 0;
3028 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3029 balanced_classzone_idx = classzone_idx;
3030 for ( ; ; ) {
3031 int ret;
3032
3033 /*
3034 * If the last balance_pgdat was unsuccessful it's unlikely a
3035 * new request of a similar or harder type will succeed soon
3036 * so consider going to sleep on the basis we reclaimed at
3037 */
3038 if (balanced_classzone_idx >= new_classzone_idx &&
3039 balanced_order == new_order) {
3040 new_order = pgdat->kswapd_max_order;
3041 new_classzone_idx = pgdat->classzone_idx;
3042 pgdat->kswapd_max_order = 0;
3043 pgdat->classzone_idx = pgdat->nr_zones - 1;
3044 }
3045
3046 if (order < new_order || classzone_idx > new_classzone_idx) {
3047 /*
3048 * Don't sleep if someone wants a larger 'order'
3049 * allocation or has tigher zone constraints
3050 */
3051 order = new_order;
3052 classzone_idx = new_classzone_idx;
3053 } else {
3054 kswapd_try_to_sleep(pgdat, balanced_order,
3055 balanced_classzone_idx);
3056 order = pgdat->kswapd_max_order;
3057 classzone_idx = pgdat->classzone_idx;
3058 new_order = order;
3059 new_classzone_idx = classzone_idx;
3060 pgdat->kswapd_max_order = 0;
3061 pgdat->classzone_idx = pgdat->nr_zones - 1;
3062 }
3063
3064 ret = try_to_freeze();
3065 if (kthread_should_stop())
3066 break;
3067
3068 /*
3069 * We can speed up thawing tasks if we don't call balance_pgdat
3070 * after returning from the refrigerator
3071 */
3072 if (!ret) {
3073 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3074 balanced_classzone_idx = classzone_idx;
3075 balanced_order = balance_pgdat(pgdat, order,
3076 &balanced_classzone_idx);
3077 }
3078 }
3079 return 0;
3080 }
3081
3082 /*
3083 * A zone is low on free memory, so wake its kswapd task to service it.
3084 */
3085 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3086 {
3087 pg_data_t *pgdat;
3088
3089 if (!populated_zone(zone))
3090 return;
3091
3092 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3093 return;
3094 pgdat = zone->zone_pgdat;
3095 if (pgdat->kswapd_max_order < order) {
3096 pgdat->kswapd_max_order = order;
3097 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3098 }
3099 if (!waitqueue_active(&pgdat->kswapd_wait))
3100 return;
3101 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3102 return;
3103
3104 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3105 wake_up_interruptible(&pgdat->kswapd_wait);
3106 }
3107
3108 /*
3109 * The reclaimable count would be mostly accurate.
3110 * The less reclaimable pages may be
3111 * - mlocked pages, which will be moved to unevictable list when encountered
3112 * - mapped pages, which may require several travels to be reclaimed
3113 * - dirty pages, which is not "instantly" reclaimable
3114 */
3115 unsigned long global_reclaimable_pages(void)
3116 {
3117 int nr;
3118
3119 nr = global_page_state(NR_ACTIVE_FILE) +
3120 global_page_state(NR_INACTIVE_FILE);
3121
3122 if (nr_swap_pages > 0)
3123 nr += global_page_state(NR_ACTIVE_ANON) +
3124 global_page_state(NR_INACTIVE_ANON);
3125
3126 return nr;
3127 }
3128
3129 unsigned long zone_reclaimable_pages(struct zone *zone)
3130 {
3131 int nr;
3132
3133 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3134 zone_page_state(zone, NR_INACTIVE_FILE);
3135
3136 if (nr_swap_pages > 0)
3137 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3138 zone_page_state(zone, NR_INACTIVE_ANON);
3139
3140 return nr;
3141 }
3142
3143 #ifdef CONFIG_HIBERNATION
3144 /*
3145 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3146 * freed pages.
3147 *
3148 * Rather than trying to age LRUs the aim is to preserve the overall
3149 * LRU order by reclaiming preferentially
3150 * inactive > active > active referenced > active mapped
3151 */
3152 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3153 {
3154 struct reclaim_state reclaim_state;
3155 struct scan_control sc = {
3156 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3157 .may_swap = 1,
3158 .may_unmap = 1,
3159 .may_writepage = 1,
3160 .nr_to_reclaim = nr_to_reclaim,
3161 .hibernation_mode = 1,
3162 .order = 0,
3163 };
3164 struct shrink_control shrink = {
3165 .gfp_mask = sc.gfp_mask,
3166 };
3167 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3168 struct task_struct *p = current;
3169 unsigned long nr_reclaimed;
3170
3171 p->flags |= PF_MEMALLOC;
3172 lockdep_set_current_reclaim_state(sc.gfp_mask);
3173 reclaim_state.reclaimed_slab = 0;
3174 p->reclaim_state = &reclaim_state;
3175
3176 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3177
3178 p->reclaim_state = NULL;
3179 lockdep_clear_current_reclaim_state();
3180 p->flags &= ~PF_MEMALLOC;
3181
3182 return nr_reclaimed;
3183 }
3184 #endif /* CONFIG_HIBERNATION */
3185
3186 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3187 not required for correctness. So if the last cpu in a node goes
3188 away, we get changed to run anywhere: as the first one comes back,
3189 restore their cpu bindings. */
3190 static int __devinit cpu_callback(struct notifier_block *nfb,
3191 unsigned long action, void *hcpu)
3192 {
3193 int nid;
3194
3195 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3196 for_each_node_state(nid, N_HIGH_MEMORY) {
3197 pg_data_t *pgdat = NODE_DATA(nid);
3198 const struct cpumask *mask;
3199
3200 mask = cpumask_of_node(pgdat->node_id);
3201
3202 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3203 /* One of our CPUs online: restore mask */
3204 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3205 }
3206 }
3207 return NOTIFY_OK;
3208 }
3209
3210 /*
3211 * This kswapd start function will be called by init and node-hot-add.
3212 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3213 */
3214 int kswapd_run(int nid)
3215 {
3216 pg_data_t *pgdat = NODE_DATA(nid);
3217 int ret = 0;
3218
3219 if (pgdat->kswapd)
3220 return 0;
3221
3222 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3223 if (IS_ERR(pgdat->kswapd)) {
3224 /* failure at boot is fatal */
3225 BUG_ON(system_state == SYSTEM_BOOTING);
3226 printk("Failed to start kswapd on node %d\n",nid);
3227 ret = -1;
3228 }
3229 return ret;
3230 }
3231
3232 /*
3233 * Called by memory hotplug when all memory in a node is offlined.
3234 */
3235 void kswapd_stop(int nid)
3236 {
3237 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3238
3239 if (kswapd)
3240 kthread_stop(kswapd);
3241 }
3242
3243 static int __init kswapd_init(void)
3244 {
3245 int nid;
3246
3247 swap_setup();
3248 for_each_node_state(nid, N_HIGH_MEMORY)
3249 kswapd_run(nid);
3250 hotcpu_notifier(cpu_callback, 0);
3251 return 0;
3252 }
3253
3254 module_init(kswapd_init)
3255
3256 #ifdef CONFIG_NUMA
3257 /*
3258 * Zone reclaim mode
3259 *
3260 * If non-zero call zone_reclaim when the number of free pages falls below
3261 * the watermarks.
3262 */
3263 int zone_reclaim_mode __read_mostly;
3264
3265 #define RECLAIM_OFF 0
3266 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3267 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3268 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3269
3270 /*
3271 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3272 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3273 * a zone.
3274 */
3275 #define ZONE_RECLAIM_PRIORITY 4
3276
3277 /*
3278 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3279 * occur.
3280 */
3281 int sysctl_min_unmapped_ratio = 1;
3282
3283 /*
3284 * If the number of slab pages in a zone grows beyond this percentage then
3285 * slab reclaim needs to occur.
3286 */
3287 int sysctl_min_slab_ratio = 5;
3288
3289 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3290 {
3291 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3292 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3293 zone_page_state(zone, NR_ACTIVE_FILE);
3294
3295 /*
3296 * It's possible for there to be more file mapped pages than
3297 * accounted for by the pages on the file LRU lists because
3298 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3299 */
3300 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3301 }
3302
3303 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3304 static long zone_pagecache_reclaimable(struct zone *zone)
3305 {
3306 long nr_pagecache_reclaimable;
3307 long delta = 0;
3308
3309 /*
3310 * If RECLAIM_SWAP is set, then all file pages are considered
3311 * potentially reclaimable. Otherwise, we have to worry about
3312 * pages like swapcache and zone_unmapped_file_pages() provides
3313 * a better estimate
3314 */
3315 if (zone_reclaim_mode & RECLAIM_SWAP)
3316 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3317 else
3318 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3319
3320 /* If we can't clean pages, remove dirty pages from consideration */
3321 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3322 delta += zone_page_state(zone, NR_FILE_DIRTY);
3323
3324 /* Watch for any possible underflows due to delta */
3325 if (unlikely(delta > nr_pagecache_reclaimable))
3326 delta = nr_pagecache_reclaimable;
3327
3328 return nr_pagecache_reclaimable - delta;
3329 }
3330
3331 /*
3332 * Try to free up some pages from this zone through reclaim.
3333 */
3334 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3335 {
3336 /* Minimum pages needed in order to stay on node */
3337 const unsigned long nr_pages = 1 << order;
3338 struct task_struct *p = current;
3339 struct reclaim_state reclaim_state;
3340 int priority;
3341 struct scan_control sc = {
3342 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3343 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3344 .may_swap = 1,
3345 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3346 SWAP_CLUSTER_MAX),
3347 .gfp_mask = gfp_mask,
3348 .order = order,
3349 };
3350 struct shrink_control shrink = {
3351 .gfp_mask = sc.gfp_mask,
3352 };
3353 unsigned long nr_slab_pages0, nr_slab_pages1;
3354
3355 cond_resched();
3356 /*
3357 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3358 * and we also need to be able to write out pages for RECLAIM_WRITE
3359 * and RECLAIM_SWAP.
3360 */
3361 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3362 lockdep_set_current_reclaim_state(gfp_mask);
3363 reclaim_state.reclaimed_slab = 0;
3364 p->reclaim_state = &reclaim_state;
3365
3366 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3367 /*
3368 * Free memory by calling shrink zone with increasing
3369 * priorities until we have enough memory freed.
3370 */
3371 priority = ZONE_RECLAIM_PRIORITY;
3372 do {
3373 shrink_zone(priority, zone, &sc);
3374 priority--;
3375 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3376 }
3377
3378 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3379 if (nr_slab_pages0 > zone->min_slab_pages) {
3380 /*
3381 * shrink_slab() does not currently allow us to determine how
3382 * many pages were freed in this zone. So we take the current
3383 * number of slab pages and shake the slab until it is reduced
3384 * by the same nr_pages that we used for reclaiming unmapped
3385 * pages.
3386 *
3387 * Note that shrink_slab will free memory on all zones and may
3388 * take a long time.
3389 */
3390 for (;;) {
3391 unsigned long lru_pages = zone_reclaimable_pages(zone);
3392
3393 /* No reclaimable slab or very low memory pressure */
3394 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3395 break;
3396
3397 /* Freed enough memory */
3398 nr_slab_pages1 = zone_page_state(zone,
3399 NR_SLAB_RECLAIMABLE);
3400 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3401 break;
3402 }
3403
3404 /*
3405 * Update nr_reclaimed by the number of slab pages we
3406 * reclaimed from this zone.
3407 */
3408 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3409 if (nr_slab_pages1 < nr_slab_pages0)
3410 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3411 }
3412
3413 p->reclaim_state = NULL;
3414 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3415 lockdep_clear_current_reclaim_state();
3416 return sc.nr_reclaimed >= nr_pages;
3417 }
3418
3419 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3420 {
3421 int node_id;
3422 int ret;
3423
3424 /*
3425 * Zone reclaim reclaims unmapped file backed pages and
3426 * slab pages if we are over the defined limits.
3427 *
3428 * A small portion of unmapped file backed pages is needed for
3429 * file I/O otherwise pages read by file I/O will be immediately
3430 * thrown out if the zone is overallocated. So we do not reclaim
3431 * if less than a specified percentage of the zone is used by
3432 * unmapped file backed pages.
3433 */
3434 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3435 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3436 return ZONE_RECLAIM_FULL;
3437
3438 if (zone->all_unreclaimable)
3439 return ZONE_RECLAIM_FULL;
3440
3441 /*
3442 * Do not scan if the allocation should not be delayed.
3443 */
3444 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3445 return ZONE_RECLAIM_NOSCAN;
3446
3447 /*
3448 * Only run zone reclaim on the local zone or on zones that do not
3449 * have associated processors. This will favor the local processor
3450 * over remote processors and spread off node memory allocations
3451 * as wide as possible.
3452 */
3453 node_id = zone_to_nid(zone);
3454 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3455 return ZONE_RECLAIM_NOSCAN;
3456
3457 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3458 return ZONE_RECLAIM_NOSCAN;
3459
3460 ret = __zone_reclaim(zone, gfp_mask, order);
3461 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3462
3463 if (!ret)
3464 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3465
3466 return ret;
3467 }
3468 #endif
3469
3470 /*
3471 * page_evictable - test whether a page is evictable
3472 * @page: the page to test
3473 * @vma: the VMA in which the page is or will be mapped, may be NULL
3474 *
3475 * Test whether page is evictable--i.e., should be placed on active/inactive
3476 * lists vs unevictable list. The vma argument is !NULL when called from the
3477 * fault path to determine how to instantate a new page.
3478 *
3479 * Reasons page might not be evictable:
3480 * (1) page's mapping marked unevictable
3481 * (2) page is part of an mlocked VMA
3482 *
3483 */
3484 int page_evictable(struct page *page, struct vm_area_struct *vma)
3485 {
3486
3487 if (mapping_unevictable(page_mapping(page)))
3488 return 0;
3489
3490 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3491 return 0;
3492
3493 return 1;
3494 }
3495
3496 /**
3497 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3498 * @page: page to check evictability and move to appropriate lru list
3499 * @zone: zone page is in
3500 *
3501 * Checks a page for evictability and moves the page to the appropriate
3502 * zone lru list.
3503 *
3504 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3505 * have PageUnevictable set.
3506 */
3507 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3508 {
3509 struct lruvec *lruvec;
3510
3511 VM_BUG_ON(PageActive(page));
3512 retry:
3513 ClearPageUnevictable(page);
3514 if (page_evictable(page, NULL)) {
3515 enum lru_list l = page_lru_base_type(page);
3516
3517 __dec_zone_state(zone, NR_UNEVICTABLE);
3518 lruvec = mem_cgroup_lru_move_lists(zone, page,
3519 LRU_UNEVICTABLE, l);
3520 list_move(&page->lru, &lruvec->lists[l]);
3521 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3522 __count_vm_event(UNEVICTABLE_PGRESCUED);
3523 } else {
3524 /*
3525 * rotate unevictable list
3526 */
3527 SetPageUnevictable(page);
3528 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3529 LRU_UNEVICTABLE);
3530 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3531 if (page_evictable(page, NULL))
3532 goto retry;
3533 }
3534 }
3535
3536 /**
3537 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3538 * @mapping: struct address_space to scan for evictable pages
3539 *
3540 * Scan all pages in mapping. Check unevictable pages for
3541 * evictability and move them to the appropriate zone lru list.
3542 */
3543 void scan_mapping_unevictable_pages(struct address_space *mapping)
3544 {
3545 pgoff_t next = 0;
3546 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3547 PAGE_CACHE_SHIFT;
3548 struct zone *zone;
3549 struct pagevec pvec;
3550
3551 if (mapping->nrpages == 0)
3552 return;
3553
3554 pagevec_init(&pvec, 0);
3555 while (next < end &&
3556 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3557 int i;
3558 int pg_scanned = 0;
3559
3560 zone = NULL;
3561
3562 for (i = 0; i < pagevec_count(&pvec); i++) {
3563 struct page *page = pvec.pages[i];
3564 pgoff_t page_index = page->index;
3565 struct zone *pagezone = page_zone(page);
3566
3567 pg_scanned++;
3568 if (page_index > next)
3569 next = page_index;
3570 next++;
3571
3572 if (pagezone != zone) {
3573 if (zone)
3574 spin_unlock_irq(&zone->lru_lock);
3575 zone = pagezone;
3576 spin_lock_irq(&zone->lru_lock);
3577 }
3578
3579 if (PageLRU(page) && PageUnevictable(page))
3580 check_move_unevictable_page(page, zone);
3581 }
3582 if (zone)
3583 spin_unlock_irq(&zone->lru_lock);
3584 pagevec_release(&pvec);
3585
3586 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3587 }
3588
3589 }
3590
3591 static void warn_scan_unevictable_pages(void)
3592 {
3593 printk_once(KERN_WARNING
3594 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3595 "disabled for lack of a legitimate use case. If you have "
3596 "one, please send an email to linux-mm@kvack.org.\n",
3597 current->comm);
3598 }
3599
3600 /*
3601 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3602 * all nodes' unevictable lists for evictable pages
3603 */
3604 unsigned long scan_unevictable_pages;
3605
3606 int scan_unevictable_handler(struct ctl_table *table, int write,
3607 void __user *buffer,
3608 size_t *length, loff_t *ppos)
3609 {
3610 warn_scan_unevictable_pages();
3611 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3612 scan_unevictable_pages = 0;
3613 return 0;
3614 }
3615
3616 #ifdef CONFIG_NUMA
3617 /*
3618 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3619 * a specified node's per zone unevictable lists for evictable pages.
3620 */
3621
3622 static ssize_t read_scan_unevictable_node(struct device *dev,
3623 struct device_attribute *attr,
3624 char *buf)
3625 {
3626 warn_scan_unevictable_pages();
3627 return sprintf(buf, "0\n"); /* always zero; should fit... */
3628 }
3629
3630 static ssize_t write_scan_unevictable_node(struct device *dev,
3631 struct device_attribute *attr,
3632 const char *buf, size_t count)
3633 {
3634 warn_scan_unevictable_pages();
3635 return 1;
3636 }
3637
3638
3639 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3640 read_scan_unevictable_node,
3641 write_scan_unevictable_node);
3642
3643 int scan_unevictable_register_node(struct node *node)
3644 {
3645 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3646 }
3647
3648 void scan_unevictable_unregister_node(struct node *node)
3649 {
3650 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3651 }
3652 #endif
This page took 0.485476 seconds and 5 git commands to generate.