mm: consider all swapped back pages in used-once logic
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
86
87 /*
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 * are scanned.
90 */
91 nodemask_t *nodemask;
92 };
93
94 struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
96 struct zone *zone;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130 * From 0 .. 100. Higher means more swappy.
131 */
132 int vm_swappiness = 60;
133 long vm_total_pages; /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 return !sc->target_mem_cgroup;
142 }
143
144 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
145 {
146 return !mz->mem_cgroup;
147 }
148 #else
149 static bool global_reclaim(struct scan_control *sc)
150 {
151 return true;
152 }
153
154 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
155 {
156 return true;
157 }
158 #endif
159
160 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
161 {
162 if (!scanning_global_lru(mz))
163 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
164
165 return &mz->zone->reclaim_stat;
166 }
167
168 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
169 enum lru_list lru)
170 {
171 if (!scanning_global_lru(mz))
172 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
173 zone_to_nid(mz->zone),
174 zone_idx(mz->zone),
175 BIT(lru));
176
177 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182 * Add a shrinker callback to be called from the vm
183 */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186 atomic_long_set(&shrinker->nr_in_batch, 0);
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194 * Remove one
195 */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207 {
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233 unsigned long nr_pages_scanned,
234 unsigned long lru_pages)
235 {
236 struct shrinker *shrinker;
237 unsigned long ret = 0;
238
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 long total_scan;
251 long max_pass;
252 int shrink_ret = 0;
253 long nr;
254 long new_nr;
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
257
258 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 if (max_pass <= 0)
260 continue;
261
262 /*
263 * copy the current shrinker scan count into a local variable
264 * and zero it so that other concurrent shrinker invocations
265 * don't also do this scanning work.
266 */
267 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269 total_scan = nr;
270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271 delta *= max_pass;
272 do_div(delta, lru_pages + 1);
273 total_scan += delta;
274 if (total_scan < 0) {
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
279 }
280
281 /*
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
289 *
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
292 */
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
295
296 /*
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
300 */
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
303
304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
307
308 while (total_scan >= batch_size) {
309 int nr_before;
310
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
313 batch_size);
314 if (shrink_ret == -1)
315 break;
316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
320
321 cond_resched();
322 }
323
324 /*
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
328 */
329 if (total_scan > 0)
330 new_nr = atomic_long_add_return(total_scan,
331 &shrinker->nr_in_batch);
332 else
333 new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336 }
337 up_read(&shrinker_rwsem);
338 out:
339 cond_resched();
340 return ret;
341 }
342
343 static inline int is_page_cache_freeable(struct page *page)
344 {
345 /*
346 * A freeable page cache page is referenced only by the caller
347 * that isolated the page, the page cache radix tree and
348 * optional buffer heads at page->private.
349 */
350 return page_count(page) - page_has_private(page) == 2;
351 }
352
353 static int may_write_to_queue(struct backing_dev_info *bdi,
354 struct scan_control *sc)
355 {
356 if (current->flags & PF_SWAPWRITE)
357 return 1;
358 if (!bdi_write_congested(bdi))
359 return 1;
360 if (bdi == current->backing_dev_info)
361 return 1;
362 return 0;
363 }
364
365 /*
366 * We detected a synchronous write error writing a page out. Probably
367 * -ENOSPC. We need to propagate that into the address_space for a subsequent
368 * fsync(), msync() or close().
369 *
370 * The tricky part is that after writepage we cannot touch the mapping: nothing
371 * prevents it from being freed up. But we have a ref on the page and once
372 * that page is locked, the mapping is pinned.
373 *
374 * We're allowed to run sleeping lock_page() here because we know the caller has
375 * __GFP_FS.
376 */
377 static void handle_write_error(struct address_space *mapping,
378 struct page *page, int error)
379 {
380 lock_page(page);
381 if (page_mapping(page) == mapping)
382 mapping_set_error(mapping, error);
383 unlock_page(page);
384 }
385
386 /* possible outcome of pageout() */
387 typedef enum {
388 /* failed to write page out, page is locked */
389 PAGE_KEEP,
390 /* move page to the active list, page is locked */
391 PAGE_ACTIVATE,
392 /* page has been sent to the disk successfully, page is unlocked */
393 PAGE_SUCCESS,
394 /* page is clean and locked */
395 PAGE_CLEAN,
396 } pageout_t;
397
398 /*
399 * pageout is called by shrink_page_list() for each dirty page.
400 * Calls ->writepage().
401 */
402 static pageout_t pageout(struct page *page, struct address_space *mapping,
403 struct scan_control *sc)
404 {
405 /*
406 * If the page is dirty, only perform writeback if that write
407 * will be non-blocking. To prevent this allocation from being
408 * stalled by pagecache activity. But note that there may be
409 * stalls if we need to run get_block(). We could test
410 * PagePrivate for that.
411 *
412 * If this process is currently in __generic_file_aio_write() against
413 * this page's queue, we can perform writeback even if that
414 * will block.
415 *
416 * If the page is swapcache, write it back even if that would
417 * block, for some throttling. This happens by accident, because
418 * swap_backing_dev_info is bust: it doesn't reflect the
419 * congestion state of the swapdevs. Easy to fix, if needed.
420 */
421 if (!is_page_cache_freeable(page))
422 return PAGE_KEEP;
423 if (!mapping) {
424 /*
425 * Some data journaling orphaned pages can have
426 * page->mapping == NULL while being dirty with clean buffers.
427 */
428 if (page_has_private(page)) {
429 if (try_to_free_buffers(page)) {
430 ClearPageDirty(page);
431 printk("%s: orphaned page\n", __func__);
432 return PAGE_CLEAN;
433 }
434 }
435 return PAGE_KEEP;
436 }
437 if (mapping->a_ops->writepage == NULL)
438 return PAGE_ACTIVATE;
439 if (!may_write_to_queue(mapping->backing_dev_info, sc))
440 return PAGE_KEEP;
441
442 if (clear_page_dirty_for_io(page)) {
443 int res;
444 struct writeback_control wbc = {
445 .sync_mode = WB_SYNC_NONE,
446 .nr_to_write = SWAP_CLUSTER_MAX,
447 .range_start = 0,
448 .range_end = LLONG_MAX,
449 .for_reclaim = 1,
450 };
451
452 SetPageReclaim(page);
453 res = mapping->a_ops->writepage(page, &wbc);
454 if (res < 0)
455 handle_write_error(mapping, page, res);
456 if (res == AOP_WRITEPAGE_ACTIVATE) {
457 ClearPageReclaim(page);
458 return PAGE_ACTIVATE;
459 }
460
461 if (!PageWriteback(page)) {
462 /* synchronous write or broken a_ops? */
463 ClearPageReclaim(page);
464 }
465 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
466 inc_zone_page_state(page, NR_VMSCAN_WRITE);
467 return PAGE_SUCCESS;
468 }
469
470 return PAGE_CLEAN;
471 }
472
473 /*
474 * Same as remove_mapping, but if the page is removed from the mapping, it
475 * gets returned with a refcount of 0.
476 */
477 static int __remove_mapping(struct address_space *mapping, struct page *page)
478 {
479 BUG_ON(!PageLocked(page));
480 BUG_ON(mapping != page_mapping(page));
481
482 spin_lock_irq(&mapping->tree_lock);
483 /*
484 * The non racy check for a busy page.
485 *
486 * Must be careful with the order of the tests. When someone has
487 * a ref to the page, it may be possible that they dirty it then
488 * drop the reference. So if PageDirty is tested before page_count
489 * here, then the following race may occur:
490 *
491 * get_user_pages(&page);
492 * [user mapping goes away]
493 * write_to(page);
494 * !PageDirty(page) [good]
495 * SetPageDirty(page);
496 * put_page(page);
497 * !page_count(page) [good, discard it]
498 *
499 * [oops, our write_to data is lost]
500 *
501 * Reversing the order of the tests ensures such a situation cannot
502 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
503 * load is not satisfied before that of page->_count.
504 *
505 * Note that if SetPageDirty is always performed via set_page_dirty,
506 * and thus under tree_lock, then this ordering is not required.
507 */
508 if (!page_freeze_refs(page, 2))
509 goto cannot_free;
510 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
511 if (unlikely(PageDirty(page))) {
512 page_unfreeze_refs(page, 2);
513 goto cannot_free;
514 }
515
516 if (PageSwapCache(page)) {
517 swp_entry_t swap = { .val = page_private(page) };
518 __delete_from_swap_cache(page);
519 spin_unlock_irq(&mapping->tree_lock);
520 swapcache_free(swap, page);
521 } else {
522 void (*freepage)(struct page *);
523
524 freepage = mapping->a_ops->freepage;
525
526 __delete_from_page_cache(page);
527 spin_unlock_irq(&mapping->tree_lock);
528 mem_cgroup_uncharge_cache_page(page);
529
530 if (freepage != NULL)
531 freepage(page);
532 }
533
534 return 1;
535
536 cannot_free:
537 spin_unlock_irq(&mapping->tree_lock);
538 return 0;
539 }
540
541 /*
542 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
543 * someone else has a ref on the page, abort and return 0. If it was
544 * successfully detached, return 1. Assumes the caller has a single ref on
545 * this page.
546 */
547 int remove_mapping(struct address_space *mapping, struct page *page)
548 {
549 if (__remove_mapping(mapping, page)) {
550 /*
551 * Unfreezing the refcount with 1 rather than 2 effectively
552 * drops the pagecache ref for us without requiring another
553 * atomic operation.
554 */
555 page_unfreeze_refs(page, 1);
556 return 1;
557 }
558 return 0;
559 }
560
561 /**
562 * putback_lru_page - put previously isolated page onto appropriate LRU list
563 * @page: page to be put back to appropriate lru list
564 *
565 * Add previously isolated @page to appropriate LRU list.
566 * Page may still be unevictable for other reasons.
567 *
568 * lru_lock must not be held, interrupts must be enabled.
569 */
570 void putback_lru_page(struct page *page)
571 {
572 int lru;
573 int active = !!TestClearPageActive(page);
574 int was_unevictable = PageUnevictable(page);
575
576 VM_BUG_ON(PageLRU(page));
577
578 redo:
579 ClearPageUnevictable(page);
580
581 if (page_evictable(page, NULL)) {
582 /*
583 * For evictable pages, we can use the cache.
584 * In event of a race, worst case is we end up with an
585 * unevictable page on [in]active list.
586 * We know how to handle that.
587 */
588 lru = active + page_lru_base_type(page);
589 lru_cache_add_lru(page, lru);
590 } else {
591 /*
592 * Put unevictable pages directly on zone's unevictable
593 * list.
594 */
595 lru = LRU_UNEVICTABLE;
596 add_page_to_unevictable_list(page);
597 /*
598 * When racing with an mlock or AS_UNEVICTABLE clearing
599 * (page is unlocked) make sure that if the other thread
600 * does not observe our setting of PG_lru and fails
601 * isolation/check_move_unevictable_pages,
602 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
603 * the page back to the evictable list.
604 *
605 * The other side is TestClearPageMlocked() or shmem_lock().
606 */
607 smp_mb();
608 }
609
610 /*
611 * page's status can change while we move it among lru. If an evictable
612 * page is on unevictable list, it never be freed. To avoid that,
613 * check after we added it to the list, again.
614 */
615 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
616 if (!isolate_lru_page(page)) {
617 put_page(page);
618 goto redo;
619 }
620 /* This means someone else dropped this page from LRU
621 * So, it will be freed or putback to LRU again. There is
622 * nothing to do here.
623 */
624 }
625
626 if (was_unevictable && lru != LRU_UNEVICTABLE)
627 count_vm_event(UNEVICTABLE_PGRESCUED);
628 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
629 count_vm_event(UNEVICTABLE_PGCULLED);
630
631 put_page(page); /* drop ref from isolate */
632 }
633
634 enum page_references {
635 PAGEREF_RECLAIM,
636 PAGEREF_RECLAIM_CLEAN,
637 PAGEREF_KEEP,
638 PAGEREF_ACTIVATE,
639 };
640
641 static enum page_references page_check_references(struct page *page,
642 struct mem_cgroup_zone *mz,
643 struct scan_control *sc)
644 {
645 int referenced_ptes, referenced_page;
646 unsigned long vm_flags;
647
648 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
649 &vm_flags);
650 referenced_page = TestClearPageReferenced(page);
651
652 /*
653 * Mlock lost the isolation race with us. Let try_to_unmap()
654 * move the page to the unevictable list.
655 */
656 if (vm_flags & VM_LOCKED)
657 return PAGEREF_RECLAIM;
658
659 if (referenced_ptes) {
660 if (PageSwapBacked(page))
661 return PAGEREF_ACTIVATE;
662 /*
663 * All mapped pages start out with page table
664 * references from the instantiating fault, so we need
665 * to look twice if a mapped file page is used more
666 * than once.
667 *
668 * Mark it and spare it for another trip around the
669 * inactive list. Another page table reference will
670 * lead to its activation.
671 *
672 * Note: the mark is set for activated pages as well
673 * so that recently deactivated but used pages are
674 * quickly recovered.
675 */
676 SetPageReferenced(page);
677
678 if (referenced_page || referenced_ptes > 1)
679 return PAGEREF_ACTIVATE;
680
681 /*
682 * Activate file-backed executable pages after first usage.
683 */
684 if (vm_flags & VM_EXEC)
685 return PAGEREF_ACTIVATE;
686
687 return PAGEREF_KEEP;
688 }
689
690 /* Reclaim if clean, defer dirty pages to writeback */
691 if (referenced_page && !PageSwapBacked(page))
692 return PAGEREF_RECLAIM_CLEAN;
693
694 return PAGEREF_RECLAIM;
695 }
696
697 /*
698 * shrink_page_list() returns the number of reclaimed pages
699 */
700 static unsigned long shrink_page_list(struct list_head *page_list,
701 struct mem_cgroup_zone *mz,
702 struct scan_control *sc,
703 int priority,
704 unsigned long *ret_nr_dirty,
705 unsigned long *ret_nr_writeback)
706 {
707 LIST_HEAD(ret_pages);
708 LIST_HEAD(free_pages);
709 int pgactivate = 0;
710 unsigned long nr_dirty = 0;
711 unsigned long nr_congested = 0;
712 unsigned long nr_reclaimed = 0;
713 unsigned long nr_writeback = 0;
714
715 cond_resched();
716
717 while (!list_empty(page_list)) {
718 enum page_references references;
719 struct address_space *mapping;
720 struct page *page;
721 int may_enter_fs;
722
723 cond_resched();
724
725 page = lru_to_page(page_list);
726 list_del(&page->lru);
727
728 if (!trylock_page(page))
729 goto keep;
730
731 VM_BUG_ON(PageActive(page));
732 VM_BUG_ON(page_zone(page) != mz->zone);
733
734 sc->nr_scanned++;
735
736 if (unlikely(!page_evictable(page, NULL)))
737 goto cull_mlocked;
738
739 if (!sc->may_unmap && page_mapped(page))
740 goto keep_locked;
741
742 /* Double the slab pressure for mapped and swapcache pages */
743 if (page_mapped(page) || PageSwapCache(page))
744 sc->nr_scanned++;
745
746 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
747 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
748
749 if (PageWriteback(page)) {
750 nr_writeback++;
751 unlock_page(page);
752 goto keep;
753 }
754
755 references = page_check_references(page, mz, sc);
756 switch (references) {
757 case PAGEREF_ACTIVATE:
758 goto activate_locked;
759 case PAGEREF_KEEP:
760 goto keep_locked;
761 case PAGEREF_RECLAIM:
762 case PAGEREF_RECLAIM_CLEAN:
763 ; /* try to reclaim the page below */
764 }
765
766 /*
767 * Anonymous process memory has backing store?
768 * Try to allocate it some swap space here.
769 */
770 if (PageAnon(page) && !PageSwapCache(page)) {
771 if (!(sc->gfp_mask & __GFP_IO))
772 goto keep_locked;
773 if (!add_to_swap(page))
774 goto activate_locked;
775 may_enter_fs = 1;
776 }
777
778 mapping = page_mapping(page);
779
780 /*
781 * The page is mapped into the page tables of one or more
782 * processes. Try to unmap it here.
783 */
784 if (page_mapped(page) && mapping) {
785 switch (try_to_unmap(page, TTU_UNMAP)) {
786 case SWAP_FAIL:
787 goto activate_locked;
788 case SWAP_AGAIN:
789 goto keep_locked;
790 case SWAP_MLOCK:
791 goto cull_mlocked;
792 case SWAP_SUCCESS:
793 ; /* try to free the page below */
794 }
795 }
796
797 if (PageDirty(page)) {
798 nr_dirty++;
799
800 /*
801 * Only kswapd can writeback filesystem pages to
802 * avoid risk of stack overflow but do not writeback
803 * unless under significant pressure.
804 */
805 if (page_is_file_cache(page) &&
806 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
807 /*
808 * Immediately reclaim when written back.
809 * Similar in principal to deactivate_page()
810 * except we already have the page isolated
811 * and know it's dirty
812 */
813 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
814 SetPageReclaim(page);
815
816 goto keep_locked;
817 }
818
819 if (references == PAGEREF_RECLAIM_CLEAN)
820 goto keep_locked;
821 if (!may_enter_fs)
822 goto keep_locked;
823 if (!sc->may_writepage)
824 goto keep_locked;
825
826 /* Page is dirty, try to write it out here */
827 switch (pageout(page, mapping, sc)) {
828 case PAGE_KEEP:
829 nr_congested++;
830 goto keep_locked;
831 case PAGE_ACTIVATE:
832 goto activate_locked;
833 case PAGE_SUCCESS:
834 if (PageWriteback(page))
835 goto keep;
836 if (PageDirty(page))
837 goto keep;
838
839 /*
840 * A synchronous write - probably a ramdisk. Go
841 * ahead and try to reclaim the page.
842 */
843 if (!trylock_page(page))
844 goto keep;
845 if (PageDirty(page) || PageWriteback(page))
846 goto keep_locked;
847 mapping = page_mapping(page);
848 case PAGE_CLEAN:
849 ; /* try to free the page below */
850 }
851 }
852
853 /*
854 * If the page has buffers, try to free the buffer mappings
855 * associated with this page. If we succeed we try to free
856 * the page as well.
857 *
858 * We do this even if the page is PageDirty().
859 * try_to_release_page() does not perform I/O, but it is
860 * possible for a page to have PageDirty set, but it is actually
861 * clean (all its buffers are clean). This happens if the
862 * buffers were written out directly, with submit_bh(). ext3
863 * will do this, as well as the blockdev mapping.
864 * try_to_release_page() will discover that cleanness and will
865 * drop the buffers and mark the page clean - it can be freed.
866 *
867 * Rarely, pages can have buffers and no ->mapping. These are
868 * the pages which were not successfully invalidated in
869 * truncate_complete_page(). We try to drop those buffers here
870 * and if that worked, and the page is no longer mapped into
871 * process address space (page_count == 1) it can be freed.
872 * Otherwise, leave the page on the LRU so it is swappable.
873 */
874 if (page_has_private(page)) {
875 if (!try_to_release_page(page, sc->gfp_mask))
876 goto activate_locked;
877 if (!mapping && page_count(page) == 1) {
878 unlock_page(page);
879 if (put_page_testzero(page))
880 goto free_it;
881 else {
882 /*
883 * rare race with speculative reference.
884 * the speculative reference will free
885 * this page shortly, so we may
886 * increment nr_reclaimed here (and
887 * leave it off the LRU).
888 */
889 nr_reclaimed++;
890 continue;
891 }
892 }
893 }
894
895 if (!mapping || !__remove_mapping(mapping, page))
896 goto keep_locked;
897
898 /*
899 * At this point, we have no other references and there is
900 * no way to pick any more up (removed from LRU, removed
901 * from pagecache). Can use non-atomic bitops now (and
902 * we obviously don't have to worry about waking up a process
903 * waiting on the page lock, because there are no references.
904 */
905 __clear_page_locked(page);
906 free_it:
907 nr_reclaimed++;
908
909 /*
910 * Is there need to periodically free_page_list? It would
911 * appear not as the counts should be low
912 */
913 list_add(&page->lru, &free_pages);
914 continue;
915
916 cull_mlocked:
917 if (PageSwapCache(page))
918 try_to_free_swap(page);
919 unlock_page(page);
920 putback_lru_page(page);
921 continue;
922
923 activate_locked:
924 /* Not a candidate for swapping, so reclaim swap space. */
925 if (PageSwapCache(page) && vm_swap_full())
926 try_to_free_swap(page);
927 VM_BUG_ON(PageActive(page));
928 SetPageActive(page);
929 pgactivate++;
930 keep_locked:
931 unlock_page(page);
932 keep:
933 list_add(&page->lru, &ret_pages);
934 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
935 }
936
937 /*
938 * Tag a zone as congested if all the dirty pages encountered were
939 * backed by a congested BDI. In this case, reclaimers should just
940 * back off and wait for congestion to clear because further reclaim
941 * will encounter the same problem
942 */
943 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
944 zone_set_flag(mz->zone, ZONE_CONGESTED);
945
946 free_hot_cold_page_list(&free_pages, 1);
947
948 list_splice(&ret_pages, page_list);
949 count_vm_events(PGACTIVATE, pgactivate);
950 *ret_nr_dirty += nr_dirty;
951 *ret_nr_writeback += nr_writeback;
952 return nr_reclaimed;
953 }
954
955 /*
956 * Attempt to remove the specified page from its LRU. Only take this page
957 * if it is of the appropriate PageActive status. Pages which are being
958 * freed elsewhere are also ignored.
959 *
960 * page: page to consider
961 * mode: one of the LRU isolation modes defined above
962 *
963 * returns 0 on success, -ve errno on failure.
964 */
965 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
966 {
967 bool all_lru_mode;
968 int ret = -EINVAL;
969
970 /* Only take pages on the LRU. */
971 if (!PageLRU(page))
972 return ret;
973
974 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
975 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
976
977 /*
978 * When checking the active state, we need to be sure we are
979 * dealing with comparible boolean values. Take the logical not
980 * of each.
981 */
982 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
983 return ret;
984
985 if (!all_lru_mode && !!page_is_file_cache(page) != file)
986 return ret;
987
988 /* Do not give back unevictable pages for compaction */
989 if (PageUnevictable(page))
990 return ret;
991
992 ret = -EBUSY;
993
994 /*
995 * To minimise LRU disruption, the caller can indicate that it only
996 * wants to isolate pages it will be able to operate on without
997 * blocking - clean pages for the most part.
998 *
999 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1000 * is used by reclaim when it is cannot write to backing storage
1001 *
1002 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1003 * that it is possible to migrate without blocking
1004 */
1005 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1006 /* All the caller can do on PageWriteback is block */
1007 if (PageWriteback(page))
1008 return ret;
1009
1010 if (PageDirty(page)) {
1011 struct address_space *mapping;
1012
1013 /* ISOLATE_CLEAN means only clean pages */
1014 if (mode & ISOLATE_CLEAN)
1015 return ret;
1016
1017 /*
1018 * Only pages without mappings or that have a
1019 * ->migratepage callback are possible to migrate
1020 * without blocking
1021 */
1022 mapping = page_mapping(page);
1023 if (mapping && !mapping->a_ops->migratepage)
1024 return ret;
1025 }
1026 }
1027
1028 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1029 return ret;
1030
1031 if (likely(get_page_unless_zero(page))) {
1032 /*
1033 * Be careful not to clear PageLRU until after we're
1034 * sure the page is not being freed elsewhere -- the
1035 * page release code relies on it.
1036 */
1037 ClearPageLRU(page);
1038 ret = 0;
1039 }
1040
1041 return ret;
1042 }
1043
1044 /*
1045 * zone->lru_lock is heavily contended. Some of the functions that
1046 * shrink the lists perform better by taking out a batch of pages
1047 * and working on them outside the LRU lock.
1048 *
1049 * For pagecache intensive workloads, this function is the hottest
1050 * spot in the kernel (apart from copy_*_user functions).
1051 *
1052 * Appropriate locks must be held before calling this function.
1053 *
1054 * @nr_to_scan: The number of pages to look through on the list.
1055 * @mz: The mem_cgroup_zone to pull pages from.
1056 * @dst: The temp list to put pages on to.
1057 * @nr_scanned: The number of pages that were scanned.
1058 * @sc: The scan_control struct for this reclaim session
1059 * @mode: One of the LRU isolation modes
1060 * @active: True [1] if isolating active pages
1061 * @file: True [1] if isolating file [!anon] pages
1062 *
1063 * returns how many pages were moved onto *@dst.
1064 */
1065 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1066 struct mem_cgroup_zone *mz, struct list_head *dst,
1067 unsigned long *nr_scanned, struct scan_control *sc,
1068 isolate_mode_t mode, int active, int file)
1069 {
1070 struct lruvec *lruvec;
1071 struct list_head *src;
1072 unsigned long nr_taken = 0;
1073 unsigned long scan;
1074 int lru = LRU_BASE;
1075
1076 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1077 if (active)
1078 lru += LRU_ACTIVE;
1079 if (file)
1080 lru += LRU_FILE;
1081 src = &lruvec->lists[lru];
1082
1083 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1084 struct page *page;
1085
1086 page = lru_to_page(src);
1087 prefetchw_prev_lru_page(page, src, flags);
1088
1089 VM_BUG_ON(!PageLRU(page));
1090
1091 switch (__isolate_lru_page(page, mode, file)) {
1092 case 0:
1093 mem_cgroup_lru_del(page);
1094 list_move(&page->lru, dst);
1095 nr_taken += hpage_nr_pages(page);
1096 break;
1097
1098 case -EBUSY:
1099 /* else it is being freed elsewhere */
1100 list_move(&page->lru, src);
1101 continue;
1102
1103 default:
1104 BUG();
1105 }
1106 }
1107
1108 *nr_scanned = scan;
1109
1110 trace_mm_vmscan_lru_isolate(sc->order,
1111 nr_to_scan, scan,
1112 nr_taken,
1113 mode, file);
1114 return nr_taken;
1115 }
1116
1117 /**
1118 * isolate_lru_page - tries to isolate a page from its LRU list
1119 * @page: page to isolate from its LRU list
1120 *
1121 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1122 * vmstat statistic corresponding to whatever LRU list the page was on.
1123 *
1124 * Returns 0 if the page was removed from an LRU list.
1125 * Returns -EBUSY if the page was not on an LRU list.
1126 *
1127 * The returned page will have PageLRU() cleared. If it was found on
1128 * the active list, it will have PageActive set. If it was found on
1129 * the unevictable list, it will have the PageUnevictable bit set. That flag
1130 * may need to be cleared by the caller before letting the page go.
1131 *
1132 * The vmstat statistic corresponding to the list on which the page was
1133 * found will be decremented.
1134 *
1135 * Restrictions:
1136 * (1) Must be called with an elevated refcount on the page. This is a
1137 * fundamentnal difference from isolate_lru_pages (which is called
1138 * without a stable reference).
1139 * (2) the lru_lock must not be held.
1140 * (3) interrupts must be enabled.
1141 */
1142 int isolate_lru_page(struct page *page)
1143 {
1144 int ret = -EBUSY;
1145
1146 VM_BUG_ON(!page_count(page));
1147
1148 if (PageLRU(page)) {
1149 struct zone *zone = page_zone(page);
1150
1151 spin_lock_irq(&zone->lru_lock);
1152 if (PageLRU(page)) {
1153 int lru = page_lru(page);
1154 ret = 0;
1155 get_page(page);
1156 ClearPageLRU(page);
1157
1158 del_page_from_lru_list(zone, page, lru);
1159 }
1160 spin_unlock_irq(&zone->lru_lock);
1161 }
1162 return ret;
1163 }
1164
1165 /*
1166 * Are there way too many processes in the direct reclaim path already?
1167 */
1168 static int too_many_isolated(struct zone *zone, int file,
1169 struct scan_control *sc)
1170 {
1171 unsigned long inactive, isolated;
1172
1173 if (current_is_kswapd())
1174 return 0;
1175
1176 if (!global_reclaim(sc))
1177 return 0;
1178
1179 if (file) {
1180 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1181 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1182 } else {
1183 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1184 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1185 }
1186
1187 return isolated > inactive;
1188 }
1189
1190 static noinline_for_stack void
1191 putback_inactive_pages(struct mem_cgroup_zone *mz,
1192 struct list_head *page_list)
1193 {
1194 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1195 struct zone *zone = mz->zone;
1196 LIST_HEAD(pages_to_free);
1197
1198 /*
1199 * Put back any unfreeable pages.
1200 */
1201 while (!list_empty(page_list)) {
1202 struct page *page = lru_to_page(page_list);
1203 int lru;
1204
1205 VM_BUG_ON(PageLRU(page));
1206 list_del(&page->lru);
1207 if (unlikely(!page_evictable(page, NULL))) {
1208 spin_unlock_irq(&zone->lru_lock);
1209 putback_lru_page(page);
1210 spin_lock_irq(&zone->lru_lock);
1211 continue;
1212 }
1213 SetPageLRU(page);
1214 lru = page_lru(page);
1215 add_page_to_lru_list(zone, page, lru);
1216 if (is_active_lru(lru)) {
1217 int file = is_file_lru(lru);
1218 int numpages = hpage_nr_pages(page);
1219 reclaim_stat->recent_rotated[file] += numpages;
1220 }
1221 if (put_page_testzero(page)) {
1222 __ClearPageLRU(page);
1223 __ClearPageActive(page);
1224 del_page_from_lru_list(zone, page, lru);
1225
1226 if (unlikely(PageCompound(page))) {
1227 spin_unlock_irq(&zone->lru_lock);
1228 (*get_compound_page_dtor(page))(page);
1229 spin_lock_irq(&zone->lru_lock);
1230 } else
1231 list_add(&page->lru, &pages_to_free);
1232 }
1233 }
1234
1235 /*
1236 * To save our caller's stack, now use input list for pages to free.
1237 */
1238 list_splice(&pages_to_free, page_list);
1239 }
1240
1241 static noinline_for_stack void
1242 update_isolated_counts(struct mem_cgroup_zone *mz,
1243 struct list_head *page_list,
1244 unsigned long *nr_anon,
1245 unsigned long *nr_file)
1246 {
1247 struct zone *zone = mz->zone;
1248 unsigned int count[NR_LRU_LISTS] = { 0, };
1249 unsigned long nr_active = 0;
1250 struct page *page;
1251 int lru;
1252
1253 /*
1254 * Count pages and clear active flags
1255 */
1256 list_for_each_entry(page, page_list, lru) {
1257 int numpages = hpage_nr_pages(page);
1258 lru = page_lru_base_type(page);
1259 if (PageActive(page)) {
1260 lru += LRU_ACTIVE;
1261 ClearPageActive(page);
1262 nr_active += numpages;
1263 }
1264 count[lru] += numpages;
1265 }
1266
1267 preempt_disable();
1268 __count_vm_events(PGDEACTIVATE, nr_active);
1269
1270 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1271 -count[LRU_ACTIVE_FILE]);
1272 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1273 -count[LRU_INACTIVE_FILE]);
1274 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1275 -count[LRU_ACTIVE_ANON]);
1276 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1277 -count[LRU_INACTIVE_ANON]);
1278
1279 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1280 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1281
1282 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1283 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1284 preempt_enable();
1285 }
1286
1287 /*
1288 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1289 * of reclaimed pages
1290 */
1291 static noinline_for_stack unsigned long
1292 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1293 struct scan_control *sc, int priority, int file)
1294 {
1295 LIST_HEAD(page_list);
1296 unsigned long nr_scanned;
1297 unsigned long nr_reclaimed = 0;
1298 unsigned long nr_taken;
1299 unsigned long nr_anon;
1300 unsigned long nr_file;
1301 unsigned long nr_dirty = 0;
1302 unsigned long nr_writeback = 0;
1303 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1304 struct zone *zone = mz->zone;
1305 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1306
1307 while (unlikely(too_many_isolated(zone, file, sc))) {
1308 congestion_wait(BLK_RW_ASYNC, HZ/10);
1309
1310 /* We are about to die and free our memory. Return now. */
1311 if (fatal_signal_pending(current))
1312 return SWAP_CLUSTER_MAX;
1313 }
1314
1315 lru_add_drain();
1316
1317 if (!sc->may_unmap)
1318 isolate_mode |= ISOLATE_UNMAPPED;
1319 if (!sc->may_writepage)
1320 isolate_mode |= ISOLATE_CLEAN;
1321
1322 spin_lock_irq(&zone->lru_lock);
1323
1324 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1325 sc, isolate_mode, 0, file);
1326 if (global_reclaim(sc)) {
1327 zone->pages_scanned += nr_scanned;
1328 if (current_is_kswapd())
1329 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1330 nr_scanned);
1331 else
1332 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1333 nr_scanned);
1334 }
1335 spin_unlock_irq(&zone->lru_lock);
1336
1337 if (nr_taken == 0)
1338 return 0;
1339
1340 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1341
1342 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1343 &nr_dirty, &nr_writeback);
1344
1345 spin_lock_irq(&zone->lru_lock);
1346
1347 reclaim_stat->recent_scanned[0] += nr_anon;
1348 reclaim_stat->recent_scanned[1] += nr_file;
1349
1350 if (global_reclaim(sc)) {
1351 if (current_is_kswapd())
1352 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1353 nr_reclaimed);
1354 else
1355 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1356 nr_reclaimed);
1357 }
1358
1359 putback_inactive_pages(mz, &page_list);
1360
1361 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1362 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1363
1364 spin_unlock_irq(&zone->lru_lock);
1365
1366 free_hot_cold_page_list(&page_list, 1);
1367
1368 /*
1369 * If reclaim is isolating dirty pages under writeback, it implies
1370 * that the long-lived page allocation rate is exceeding the page
1371 * laundering rate. Either the global limits are not being effective
1372 * at throttling processes due to the page distribution throughout
1373 * zones or there is heavy usage of a slow backing device. The
1374 * only option is to throttle from reclaim context which is not ideal
1375 * as there is no guarantee the dirtying process is throttled in the
1376 * same way balance_dirty_pages() manages.
1377 *
1378 * This scales the number of dirty pages that must be under writeback
1379 * before throttling depending on priority. It is a simple backoff
1380 * function that has the most effect in the range DEF_PRIORITY to
1381 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1382 * in trouble and reclaim is considered to be in trouble.
1383 *
1384 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1385 * DEF_PRIORITY-1 50% must be PageWriteback
1386 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1387 * ...
1388 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1389 * isolated page is PageWriteback
1390 */
1391 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1392 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1393
1394 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1395 zone_idx(zone),
1396 nr_scanned, nr_reclaimed,
1397 priority,
1398 trace_shrink_flags(file));
1399 return nr_reclaimed;
1400 }
1401
1402 /*
1403 * This moves pages from the active list to the inactive list.
1404 *
1405 * We move them the other way if the page is referenced by one or more
1406 * processes, from rmap.
1407 *
1408 * If the pages are mostly unmapped, the processing is fast and it is
1409 * appropriate to hold zone->lru_lock across the whole operation. But if
1410 * the pages are mapped, the processing is slow (page_referenced()) so we
1411 * should drop zone->lru_lock around each page. It's impossible to balance
1412 * this, so instead we remove the pages from the LRU while processing them.
1413 * It is safe to rely on PG_active against the non-LRU pages in here because
1414 * nobody will play with that bit on a non-LRU page.
1415 *
1416 * The downside is that we have to touch page->_count against each page.
1417 * But we had to alter page->flags anyway.
1418 */
1419
1420 static void move_active_pages_to_lru(struct zone *zone,
1421 struct list_head *list,
1422 struct list_head *pages_to_free,
1423 enum lru_list lru)
1424 {
1425 unsigned long pgmoved = 0;
1426 struct page *page;
1427
1428 while (!list_empty(list)) {
1429 struct lruvec *lruvec;
1430
1431 page = lru_to_page(list);
1432
1433 VM_BUG_ON(PageLRU(page));
1434 SetPageLRU(page);
1435
1436 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1437 list_move(&page->lru, &lruvec->lists[lru]);
1438 pgmoved += hpage_nr_pages(page);
1439
1440 if (put_page_testzero(page)) {
1441 __ClearPageLRU(page);
1442 __ClearPageActive(page);
1443 del_page_from_lru_list(zone, page, lru);
1444
1445 if (unlikely(PageCompound(page))) {
1446 spin_unlock_irq(&zone->lru_lock);
1447 (*get_compound_page_dtor(page))(page);
1448 spin_lock_irq(&zone->lru_lock);
1449 } else
1450 list_add(&page->lru, pages_to_free);
1451 }
1452 }
1453 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1454 if (!is_active_lru(lru))
1455 __count_vm_events(PGDEACTIVATE, pgmoved);
1456 }
1457
1458 static void shrink_active_list(unsigned long nr_to_scan,
1459 struct mem_cgroup_zone *mz,
1460 struct scan_control *sc,
1461 int priority, int file)
1462 {
1463 unsigned long nr_taken;
1464 unsigned long nr_scanned;
1465 unsigned long vm_flags;
1466 LIST_HEAD(l_hold); /* The pages which were snipped off */
1467 LIST_HEAD(l_active);
1468 LIST_HEAD(l_inactive);
1469 struct page *page;
1470 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1471 unsigned long nr_rotated = 0;
1472 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1473 struct zone *zone = mz->zone;
1474
1475 lru_add_drain();
1476
1477 if (!sc->may_unmap)
1478 isolate_mode |= ISOLATE_UNMAPPED;
1479 if (!sc->may_writepage)
1480 isolate_mode |= ISOLATE_CLEAN;
1481
1482 spin_lock_irq(&zone->lru_lock);
1483
1484 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1485 isolate_mode, 1, file);
1486 if (global_reclaim(sc))
1487 zone->pages_scanned += nr_scanned;
1488
1489 reclaim_stat->recent_scanned[file] += nr_taken;
1490
1491 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1492 if (file)
1493 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1494 else
1495 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1496 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1497 spin_unlock_irq(&zone->lru_lock);
1498
1499 while (!list_empty(&l_hold)) {
1500 cond_resched();
1501 page = lru_to_page(&l_hold);
1502 list_del(&page->lru);
1503
1504 if (unlikely(!page_evictable(page, NULL))) {
1505 putback_lru_page(page);
1506 continue;
1507 }
1508
1509 if (unlikely(buffer_heads_over_limit)) {
1510 if (page_has_private(page) && trylock_page(page)) {
1511 if (page_has_private(page))
1512 try_to_release_page(page, 0);
1513 unlock_page(page);
1514 }
1515 }
1516
1517 if (page_referenced(page, 0, sc->target_mem_cgroup,
1518 &vm_flags)) {
1519 nr_rotated += hpage_nr_pages(page);
1520 /*
1521 * Identify referenced, file-backed active pages and
1522 * give them one more trip around the active list. So
1523 * that executable code get better chances to stay in
1524 * memory under moderate memory pressure. Anon pages
1525 * are not likely to be evicted by use-once streaming
1526 * IO, plus JVM can create lots of anon VM_EXEC pages,
1527 * so we ignore them here.
1528 */
1529 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1530 list_add(&page->lru, &l_active);
1531 continue;
1532 }
1533 }
1534
1535 ClearPageActive(page); /* we are de-activating */
1536 list_add(&page->lru, &l_inactive);
1537 }
1538
1539 /*
1540 * Move pages back to the lru list.
1541 */
1542 spin_lock_irq(&zone->lru_lock);
1543 /*
1544 * Count referenced pages from currently used mappings as rotated,
1545 * even though only some of them are actually re-activated. This
1546 * helps balance scan pressure between file and anonymous pages in
1547 * get_scan_ratio.
1548 */
1549 reclaim_stat->recent_rotated[file] += nr_rotated;
1550
1551 move_active_pages_to_lru(zone, &l_active, &l_hold,
1552 LRU_ACTIVE + file * LRU_FILE);
1553 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1554 LRU_BASE + file * LRU_FILE);
1555 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1556 spin_unlock_irq(&zone->lru_lock);
1557
1558 free_hot_cold_page_list(&l_hold, 1);
1559 }
1560
1561 #ifdef CONFIG_SWAP
1562 static int inactive_anon_is_low_global(struct zone *zone)
1563 {
1564 unsigned long active, inactive;
1565
1566 active = zone_page_state(zone, NR_ACTIVE_ANON);
1567 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1568
1569 if (inactive * zone->inactive_ratio < active)
1570 return 1;
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1577 * @zone: zone to check
1578 * @sc: scan control of this context
1579 *
1580 * Returns true if the zone does not have enough inactive anon pages,
1581 * meaning some active anon pages need to be deactivated.
1582 */
1583 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1584 {
1585 /*
1586 * If we don't have swap space, anonymous page deactivation
1587 * is pointless.
1588 */
1589 if (!total_swap_pages)
1590 return 0;
1591
1592 if (!scanning_global_lru(mz))
1593 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1594 mz->zone);
1595
1596 return inactive_anon_is_low_global(mz->zone);
1597 }
1598 #else
1599 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1600 {
1601 return 0;
1602 }
1603 #endif
1604
1605 static int inactive_file_is_low_global(struct zone *zone)
1606 {
1607 unsigned long active, inactive;
1608
1609 active = zone_page_state(zone, NR_ACTIVE_FILE);
1610 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1611
1612 return (active > inactive);
1613 }
1614
1615 /**
1616 * inactive_file_is_low - check if file pages need to be deactivated
1617 * @mz: memory cgroup and zone to check
1618 *
1619 * When the system is doing streaming IO, memory pressure here
1620 * ensures that active file pages get deactivated, until more
1621 * than half of the file pages are on the inactive list.
1622 *
1623 * Once we get to that situation, protect the system's working
1624 * set from being evicted by disabling active file page aging.
1625 *
1626 * This uses a different ratio than the anonymous pages, because
1627 * the page cache uses a use-once replacement algorithm.
1628 */
1629 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1630 {
1631 if (!scanning_global_lru(mz))
1632 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1633 mz->zone);
1634
1635 return inactive_file_is_low_global(mz->zone);
1636 }
1637
1638 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1639 {
1640 if (file)
1641 return inactive_file_is_low(mz);
1642 else
1643 return inactive_anon_is_low(mz);
1644 }
1645
1646 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1647 struct mem_cgroup_zone *mz,
1648 struct scan_control *sc, int priority)
1649 {
1650 int file = is_file_lru(lru);
1651
1652 if (is_active_lru(lru)) {
1653 if (inactive_list_is_low(mz, file))
1654 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1655 return 0;
1656 }
1657
1658 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1659 }
1660
1661 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1662 struct scan_control *sc)
1663 {
1664 if (global_reclaim(sc))
1665 return vm_swappiness;
1666 return mem_cgroup_swappiness(mz->mem_cgroup);
1667 }
1668
1669 /*
1670 * Determine how aggressively the anon and file LRU lists should be
1671 * scanned. The relative value of each set of LRU lists is determined
1672 * by looking at the fraction of the pages scanned we did rotate back
1673 * onto the active list instead of evict.
1674 *
1675 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1676 */
1677 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1678 unsigned long *nr, int priority)
1679 {
1680 unsigned long anon, file, free;
1681 unsigned long anon_prio, file_prio;
1682 unsigned long ap, fp;
1683 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1684 u64 fraction[2], denominator;
1685 enum lru_list lru;
1686 int noswap = 0;
1687 bool force_scan = false;
1688
1689 /*
1690 * If the zone or memcg is small, nr[l] can be 0. This
1691 * results in no scanning on this priority and a potential
1692 * priority drop. Global direct reclaim can go to the next
1693 * zone and tends to have no problems. Global kswapd is for
1694 * zone balancing and it needs to scan a minimum amount. When
1695 * reclaiming for a memcg, a priority drop can cause high
1696 * latencies, so it's better to scan a minimum amount there as
1697 * well.
1698 */
1699 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1700 force_scan = true;
1701 if (!global_reclaim(sc))
1702 force_scan = true;
1703
1704 /* If we have no swap space, do not bother scanning anon pages. */
1705 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1706 noswap = 1;
1707 fraction[0] = 0;
1708 fraction[1] = 1;
1709 denominator = 1;
1710 goto out;
1711 }
1712
1713 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1714 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1715 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1716 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1717
1718 if (global_reclaim(sc)) {
1719 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1720 /* If we have very few page cache pages,
1721 force-scan anon pages. */
1722 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1723 fraction[0] = 1;
1724 fraction[1] = 0;
1725 denominator = 1;
1726 goto out;
1727 }
1728 }
1729
1730 /*
1731 * With swappiness at 100, anonymous and file have the same priority.
1732 * This scanning priority is essentially the inverse of IO cost.
1733 */
1734 anon_prio = vmscan_swappiness(mz, sc);
1735 file_prio = 200 - vmscan_swappiness(mz, sc);
1736
1737 /*
1738 * OK, so we have swap space and a fair amount of page cache
1739 * pages. We use the recently rotated / recently scanned
1740 * ratios to determine how valuable each cache is.
1741 *
1742 * Because workloads change over time (and to avoid overflow)
1743 * we keep these statistics as a floating average, which ends
1744 * up weighing recent references more than old ones.
1745 *
1746 * anon in [0], file in [1]
1747 */
1748 spin_lock_irq(&mz->zone->lru_lock);
1749 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1750 reclaim_stat->recent_scanned[0] /= 2;
1751 reclaim_stat->recent_rotated[0] /= 2;
1752 }
1753
1754 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1755 reclaim_stat->recent_scanned[1] /= 2;
1756 reclaim_stat->recent_rotated[1] /= 2;
1757 }
1758
1759 /*
1760 * The amount of pressure on anon vs file pages is inversely
1761 * proportional to the fraction of recently scanned pages on
1762 * each list that were recently referenced and in active use.
1763 */
1764 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1765 ap /= reclaim_stat->recent_rotated[0] + 1;
1766
1767 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1768 fp /= reclaim_stat->recent_rotated[1] + 1;
1769 spin_unlock_irq(&mz->zone->lru_lock);
1770
1771 fraction[0] = ap;
1772 fraction[1] = fp;
1773 denominator = ap + fp + 1;
1774 out:
1775 for_each_evictable_lru(lru) {
1776 int file = is_file_lru(lru);
1777 unsigned long scan;
1778
1779 scan = zone_nr_lru_pages(mz, lru);
1780 if (priority || noswap) {
1781 scan >>= priority;
1782 if (!scan && force_scan)
1783 scan = SWAP_CLUSTER_MAX;
1784 scan = div64_u64(scan * fraction[file], denominator);
1785 }
1786 nr[lru] = scan;
1787 }
1788 }
1789
1790 /* Use reclaim/compaction for costly allocs or under memory pressure */
1791 static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1792 {
1793 if (COMPACTION_BUILD && sc->order &&
1794 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1795 priority < DEF_PRIORITY - 2))
1796 return true;
1797
1798 return false;
1799 }
1800
1801 /*
1802 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1803 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1804 * true if more pages should be reclaimed such that when the page allocator
1805 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1806 * It will give up earlier than that if there is difficulty reclaiming pages.
1807 */
1808 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1809 unsigned long nr_reclaimed,
1810 unsigned long nr_scanned,
1811 int priority,
1812 struct scan_control *sc)
1813 {
1814 unsigned long pages_for_compaction;
1815 unsigned long inactive_lru_pages;
1816
1817 /* If not in reclaim/compaction mode, stop */
1818 if (!in_reclaim_compaction(priority, sc))
1819 return false;
1820
1821 /* Consider stopping depending on scan and reclaim activity */
1822 if (sc->gfp_mask & __GFP_REPEAT) {
1823 /*
1824 * For __GFP_REPEAT allocations, stop reclaiming if the
1825 * full LRU list has been scanned and we are still failing
1826 * to reclaim pages. This full LRU scan is potentially
1827 * expensive but a __GFP_REPEAT caller really wants to succeed
1828 */
1829 if (!nr_reclaimed && !nr_scanned)
1830 return false;
1831 } else {
1832 /*
1833 * For non-__GFP_REPEAT allocations which can presumably
1834 * fail without consequence, stop if we failed to reclaim
1835 * any pages from the last SWAP_CLUSTER_MAX number of
1836 * pages that were scanned. This will return to the
1837 * caller faster at the risk reclaim/compaction and
1838 * the resulting allocation attempt fails
1839 */
1840 if (!nr_reclaimed)
1841 return false;
1842 }
1843
1844 /*
1845 * If we have not reclaimed enough pages for compaction and the
1846 * inactive lists are large enough, continue reclaiming
1847 */
1848 pages_for_compaction = (2UL << sc->order);
1849 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1850 if (nr_swap_pages > 0)
1851 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1852 if (sc->nr_reclaimed < pages_for_compaction &&
1853 inactive_lru_pages > pages_for_compaction)
1854 return true;
1855
1856 /* If compaction would go ahead or the allocation would succeed, stop */
1857 switch (compaction_suitable(mz->zone, sc->order)) {
1858 case COMPACT_PARTIAL:
1859 case COMPACT_CONTINUE:
1860 return false;
1861 default:
1862 return true;
1863 }
1864 }
1865
1866 /*
1867 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1868 */
1869 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1870 struct scan_control *sc)
1871 {
1872 unsigned long nr[NR_LRU_LISTS];
1873 unsigned long nr_to_scan;
1874 enum lru_list lru;
1875 unsigned long nr_reclaimed, nr_scanned;
1876 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1877 struct blk_plug plug;
1878
1879 restart:
1880 nr_reclaimed = 0;
1881 nr_scanned = sc->nr_scanned;
1882 get_scan_count(mz, sc, nr, priority);
1883
1884 blk_start_plug(&plug);
1885 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1886 nr[LRU_INACTIVE_FILE]) {
1887 for_each_evictable_lru(lru) {
1888 if (nr[lru]) {
1889 nr_to_scan = min_t(unsigned long,
1890 nr[lru], SWAP_CLUSTER_MAX);
1891 nr[lru] -= nr_to_scan;
1892
1893 nr_reclaimed += shrink_list(lru, nr_to_scan,
1894 mz, sc, priority);
1895 }
1896 }
1897 /*
1898 * On large memory systems, scan >> priority can become
1899 * really large. This is fine for the starting priority;
1900 * we want to put equal scanning pressure on each zone.
1901 * However, if the VM has a harder time of freeing pages,
1902 * with multiple processes reclaiming pages, the total
1903 * freeing target can get unreasonably large.
1904 */
1905 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1906 break;
1907 }
1908 blk_finish_plug(&plug);
1909 sc->nr_reclaimed += nr_reclaimed;
1910
1911 /*
1912 * Even if we did not try to evict anon pages at all, we want to
1913 * rebalance the anon lru active/inactive ratio.
1914 */
1915 if (inactive_anon_is_low(mz))
1916 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1917
1918 /* reclaim/compaction might need reclaim to continue */
1919 if (should_continue_reclaim(mz, nr_reclaimed,
1920 sc->nr_scanned - nr_scanned,
1921 priority, sc))
1922 goto restart;
1923
1924 throttle_vm_writeout(sc->gfp_mask);
1925 }
1926
1927 static void shrink_zone(int priority, struct zone *zone,
1928 struct scan_control *sc)
1929 {
1930 struct mem_cgroup *root = sc->target_mem_cgroup;
1931 struct mem_cgroup_reclaim_cookie reclaim = {
1932 .zone = zone,
1933 .priority = priority,
1934 };
1935 struct mem_cgroup *memcg;
1936
1937 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1938 do {
1939 struct mem_cgroup_zone mz = {
1940 .mem_cgroup = memcg,
1941 .zone = zone,
1942 };
1943
1944 shrink_mem_cgroup_zone(priority, &mz, sc);
1945 /*
1946 * Limit reclaim has historically picked one memcg and
1947 * scanned it with decreasing priority levels until
1948 * nr_to_reclaim had been reclaimed. This priority
1949 * cycle is thus over after a single memcg.
1950 *
1951 * Direct reclaim and kswapd, on the other hand, have
1952 * to scan all memory cgroups to fulfill the overall
1953 * scan target for the zone.
1954 */
1955 if (!global_reclaim(sc)) {
1956 mem_cgroup_iter_break(root, memcg);
1957 break;
1958 }
1959 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1960 } while (memcg);
1961 }
1962
1963 /* Returns true if compaction should go ahead for a high-order request */
1964 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1965 {
1966 unsigned long balance_gap, watermark;
1967 bool watermark_ok;
1968
1969 /* Do not consider compaction for orders reclaim is meant to satisfy */
1970 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1971 return false;
1972
1973 /*
1974 * Compaction takes time to run and there are potentially other
1975 * callers using the pages just freed. Continue reclaiming until
1976 * there is a buffer of free pages available to give compaction
1977 * a reasonable chance of completing and allocating the page
1978 */
1979 balance_gap = min(low_wmark_pages(zone),
1980 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1981 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1982 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1983 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1984
1985 /*
1986 * If compaction is deferred, reclaim up to a point where
1987 * compaction will have a chance of success when re-enabled
1988 */
1989 if (compaction_deferred(zone, sc->order))
1990 return watermark_ok;
1991
1992 /* If compaction is not ready to start, keep reclaiming */
1993 if (!compaction_suitable(zone, sc->order))
1994 return false;
1995
1996 return watermark_ok;
1997 }
1998
1999 /*
2000 * This is the direct reclaim path, for page-allocating processes. We only
2001 * try to reclaim pages from zones which will satisfy the caller's allocation
2002 * request.
2003 *
2004 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2005 * Because:
2006 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2007 * allocation or
2008 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2009 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2010 * zone defense algorithm.
2011 *
2012 * If a zone is deemed to be full of pinned pages then just give it a light
2013 * scan then give up on it.
2014 *
2015 * This function returns true if a zone is being reclaimed for a costly
2016 * high-order allocation and compaction is ready to begin. This indicates to
2017 * the caller that it should consider retrying the allocation instead of
2018 * further reclaim.
2019 */
2020 static bool shrink_zones(int priority, struct zonelist *zonelist,
2021 struct scan_control *sc)
2022 {
2023 struct zoneref *z;
2024 struct zone *zone;
2025 unsigned long nr_soft_reclaimed;
2026 unsigned long nr_soft_scanned;
2027 bool aborted_reclaim = false;
2028
2029 /*
2030 * If the number of buffer_heads in the machine exceeds the maximum
2031 * allowed level, force direct reclaim to scan the highmem zone as
2032 * highmem pages could be pinning lowmem pages storing buffer_heads
2033 */
2034 if (buffer_heads_over_limit)
2035 sc->gfp_mask |= __GFP_HIGHMEM;
2036
2037 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2038 gfp_zone(sc->gfp_mask), sc->nodemask) {
2039 if (!populated_zone(zone))
2040 continue;
2041 /*
2042 * Take care memory controller reclaiming has small influence
2043 * to global LRU.
2044 */
2045 if (global_reclaim(sc)) {
2046 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2047 continue;
2048 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2049 continue; /* Let kswapd poll it */
2050 if (COMPACTION_BUILD) {
2051 /*
2052 * If we already have plenty of memory free for
2053 * compaction in this zone, don't free any more.
2054 * Even though compaction is invoked for any
2055 * non-zero order, only frequent costly order
2056 * reclamation is disruptive enough to become a
2057 * noticeable problem, like transparent huge
2058 * page allocations.
2059 */
2060 if (compaction_ready(zone, sc)) {
2061 aborted_reclaim = true;
2062 continue;
2063 }
2064 }
2065 /*
2066 * This steals pages from memory cgroups over softlimit
2067 * and returns the number of reclaimed pages and
2068 * scanned pages. This works for global memory pressure
2069 * and balancing, not for a memcg's limit.
2070 */
2071 nr_soft_scanned = 0;
2072 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2073 sc->order, sc->gfp_mask,
2074 &nr_soft_scanned);
2075 sc->nr_reclaimed += nr_soft_reclaimed;
2076 sc->nr_scanned += nr_soft_scanned;
2077 /* need some check for avoid more shrink_zone() */
2078 }
2079
2080 shrink_zone(priority, zone, sc);
2081 }
2082
2083 return aborted_reclaim;
2084 }
2085
2086 static bool zone_reclaimable(struct zone *zone)
2087 {
2088 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2089 }
2090
2091 /* All zones in zonelist are unreclaimable? */
2092 static bool all_unreclaimable(struct zonelist *zonelist,
2093 struct scan_control *sc)
2094 {
2095 struct zoneref *z;
2096 struct zone *zone;
2097
2098 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2099 gfp_zone(sc->gfp_mask), sc->nodemask) {
2100 if (!populated_zone(zone))
2101 continue;
2102 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2103 continue;
2104 if (!zone->all_unreclaimable)
2105 return false;
2106 }
2107
2108 return true;
2109 }
2110
2111 /*
2112 * This is the main entry point to direct page reclaim.
2113 *
2114 * If a full scan of the inactive list fails to free enough memory then we
2115 * are "out of memory" and something needs to be killed.
2116 *
2117 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2118 * high - the zone may be full of dirty or under-writeback pages, which this
2119 * caller can't do much about. We kick the writeback threads and take explicit
2120 * naps in the hope that some of these pages can be written. But if the
2121 * allocating task holds filesystem locks which prevent writeout this might not
2122 * work, and the allocation attempt will fail.
2123 *
2124 * returns: 0, if no pages reclaimed
2125 * else, the number of pages reclaimed
2126 */
2127 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2128 struct scan_control *sc,
2129 struct shrink_control *shrink)
2130 {
2131 int priority;
2132 unsigned long total_scanned = 0;
2133 struct reclaim_state *reclaim_state = current->reclaim_state;
2134 struct zoneref *z;
2135 struct zone *zone;
2136 unsigned long writeback_threshold;
2137 bool aborted_reclaim;
2138
2139 delayacct_freepages_start();
2140
2141 if (global_reclaim(sc))
2142 count_vm_event(ALLOCSTALL);
2143
2144 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2145 sc->nr_scanned = 0;
2146 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2147
2148 /*
2149 * Don't shrink slabs when reclaiming memory from
2150 * over limit cgroups
2151 */
2152 if (global_reclaim(sc)) {
2153 unsigned long lru_pages = 0;
2154 for_each_zone_zonelist(zone, z, zonelist,
2155 gfp_zone(sc->gfp_mask)) {
2156 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2157 continue;
2158
2159 lru_pages += zone_reclaimable_pages(zone);
2160 }
2161
2162 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2163 if (reclaim_state) {
2164 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2165 reclaim_state->reclaimed_slab = 0;
2166 }
2167 }
2168 total_scanned += sc->nr_scanned;
2169 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2170 goto out;
2171
2172 /*
2173 * Try to write back as many pages as we just scanned. This
2174 * tends to cause slow streaming writers to write data to the
2175 * disk smoothly, at the dirtying rate, which is nice. But
2176 * that's undesirable in laptop mode, where we *want* lumpy
2177 * writeout. So in laptop mode, write out the whole world.
2178 */
2179 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2180 if (total_scanned > writeback_threshold) {
2181 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2182 WB_REASON_TRY_TO_FREE_PAGES);
2183 sc->may_writepage = 1;
2184 }
2185
2186 /* Take a nap, wait for some writeback to complete */
2187 if (!sc->hibernation_mode && sc->nr_scanned &&
2188 priority < DEF_PRIORITY - 2) {
2189 struct zone *preferred_zone;
2190
2191 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2192 &cpuset_current_mems_allowed,
2193 &preferred_zone);
2194 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2195 }
2196 }
2197
2198 out:
2199 delayacct_freepages_end();
2200
2201 if (sc->nr_reclaimed)
2202 return sc->nr_reclaimed;
2203
2204 /*
2205 * As hibernation is going on, kswapd is freezed so that it can't mark
2206 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2207 * check.
2208 */
2209 if (oom_killer_disabled)
2210 return 0;
2211
2212 /* Aborted reclaim to try compaction? don't OOM, then */
2213 if (aborted_reclaim)
2214 return 1;
2215
2216 /* top priority shrink_zones still had more to do? don't OOM, then */
2217 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2218 return 1;
2219
2220 return 0;
2221 }
2222
2223 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2224 gfp_t gfp_mask, nodemask_t *nodemask)
2225 {
2226 unsigned long nr_reclaimed;
2227 struct scan_control sc = {
2228 .gfp_mask = gfp_mask,
2229 .may_writepage = !laptop_mode,
2230 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2231 .may_unmap = 1,
2232 .may_swap = 1,
2233 .order = order,
2234 .target_mem_cgroup = NULL,
2235 .nodemask = nodemask,
2236 };
2237 struct shrink_control shrink = {
2238 .gfp_mask = sc.gfp_mask,
2239 };
2240
2241 trace_mm_vmscan_direct_reclaim_begin(order,
2242 sc.may_writepage,
2243 gfp_mask);
2244
2245 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2246
2247 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2248
2249 return nr_reclaimed;
2250 }
2251
2252 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2253
2254 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2255 gfp_t gfp_mask, bool noswap,
2256 struct zone *zone,
2257 unsigned long *nr_scanned)
2258 {
2259 struct scan_control sc = {
2260 .nr_scanned = 0,
2261 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2262 .may_writepage = !laptop_mode,
2263 .may_unmap = 1,
2264 .may_swap = !noswap,
2265 .order = 0,
2266 .target_mem_cgroup = memcg,
2267 };
2268 struct mem_cgroup_zone mz = {
2269 .mem_cgroup = memcg,
2270 .zone = zone,
2271 };
2272
2273 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2274 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2275
2276 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2277 sc.may_writepage,
2278 sc.gfp_mask);
2279
2280 /*
2281 * NOTE: Although we can get the priority field, using it
2282 * here is not a good idea, since it limits the pages we can scan.
2283 * if we don't reclaim here, the shrink_zone from balance_pgdat
2284 * will pick up pages from other mem cgroup's as well. We hack
2285 * the priority and make it zero.
2286 */
2287 shrink_mem_cgroup_zone(0, &mz, &sc);
2288
2289 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2290
2291 *nr_scanned = sc.nr_scanned;
2292 return sc.nr_reclaimed;
2293 }
2294
2295 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2296 gfp_t gfp_mask,
2297 bool noswap)
2298 {
2299 struct zonelist *zonelist;
2300 unsigned long nr_reclaimed;
2301 int nid;
2302 struct scan_control sc = {
2303 .may_writepage = !laptop_mode,
2304 .may_unmap = 1,
2305 .may_swap = !noswap,
2306 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2307 .order = 0,
2308 .target_mem_cgroup = memcg,
2309 .nodemask = NULL, /* we don't care the placement */
2310 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2311 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2312 };
2313 struct shrink_control shrink = {
2314 .gfp_mask = sc.gfp_mask,
2315 };
2316
2317 /*
2318 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2319 * take care of from where we get pages. So the node where we start the
2320 * scan does not need to be the current node.
2321 */
2322 nid = mem_cgroup_select_victim_node(memcg);
2323
2324 zonelist = NODE_DATA(nid)->node_zonelists;
2325
2326 trace_mm_vmscan_memcg_reclaim_begin(0,
2327 sc.may_writepage,
2328 sc.gfp_mask);
2329
2330 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2331
2332 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2333
2334 return nr_reclaimed;
2335 }
2336 #endif
2337
2338 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2339 int priority)
2340 {
2341 struct mem_cgroup *memcg;
2342
2343 if (!total_swap_pages)
2344 return;
2345
2346 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2347 do {
2348 struct mem_cgroup_zone mz = {
2349 .mem_cgroup = memcg,
2350 .zone = zone,
2351 };
2352
2353 if (inactive_anon_is_low(&mz))
2354 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2355 sc, priority, 0);
2356
2357 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2358 } while (memcg);
2359 }
2360
2361 /*
2362 * pgdat_balanced is used when checking if a node is balanced for high-order
2363 * allocations. Only zones that meet watermarks and are in a zone allowed
2364 * by the callers classzone_idx are added to balanced_pages. The total of
2365 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2366 * for the node to be considered balanced. Forcing all zones to be balanced
2367 * for high orders can cause excessive reclaim when there are imbalanced zones.
2368 * The choice of 25% is due to
2369 * o a 16M DMA zone that is balanced will not balance a zone on any
2370 * reasonable sized machine
2371 * o On all other machines, the top zone must be at least a reasonable
2372 * percentage of the middle zones. For example, on 32-bit x86, highmem
2373 * would need to be at least 256M for it to be balance a whole node.
2374 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2375 * to balance a node on its own. These seemed like reasonable ratios.
2376 */
2377 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2378 int classzone_idx)
2379 {
2380 unsigned long present_pages = 0;
2381 int i;
2382
2383 for (i = 0; i <= classzone_idx; i++)
2384 present_pages += pgdat->node_zones[i].present_pages;
2385
2386 /* A special case here: if zone has no page, we think it's balanced */
2387 return balanced_pages >= (present_pages >> 2);
2388 }
2389
2390 /* is kswapd sleeping prematurely? */
2391 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2392 int classzone_idx)
2393 {
2394 int i;
2395 unsigned long balanced = 0;
2396 bool all_zones_ok = true;
2397
2398 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2399 if (remaining)
2400 return true;
2401
2402 /* Check the watermark levels */
2403 for (i = 0; i <= classzone_idx; i++) {
2404 struct zone *zone = pgdat->node_zones + i;
2405
2406 if (!populated_zone(zone))
2407 continue;
2408
2409 /*
2410 * balance_pgdat() skips over all_unreclaimable after
2411 * DEF_PRIORITY. Effectively, it considers them balanced so
2412 * they must be considered balanced here as well if kswapd
2413 * is to sleep
2414 */
2415 if (zone->all_unreclaimable) {
2416 balanced += zone->present_pages;
2417 continue;
2418 }
2419
2420 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2421 i, 0))
2422 all_zones_ok = false;
2423 else
2424 balanced += zone->present_pages;
2425 }
2426
2427 /*
2428 * For high-order requests, the balanced zones must contain at least
2429 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2430 * must be balanced
2431 */
2432 if (order)
2433 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2434 else
2435 return !all_zones_ok;
2436 }
2437
2438 /*
2439 * For kswapd, balance_pgdat() will work across all this node's zones until
2440 * they are all at high_wmark_pages(zone).
2441 *
2442 * Returns the final order kswapd was reclaiming at
2443 *
2444 * There is special handling here for zones which are full of pinned pages.
2445 * This can happen if the pages are all mlocked, or if they are all used by
2446 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2447 * What we do is to detect the case where all pages in the zone have been
2448 * scanned twice and there has been zero successful reclaim. Mark the zone as
2449 * dead and from now on, only perform a short scan. Basically we're polling
2450 * the zone for when the problem goes away.
2451 *
2452 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2453 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2454 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2455 * lower zones regardless of the number of free pages in the lower zones. This
2456 * interoperates with the page allocator fallback scheme to ensure that aging
2457 * of pages is balanced across the zones.
2458 */
2459 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2460 int *classzone_idx)
2461 {
2462 int all_zones_ok;
2463 unsigned long balanced;
2464 int priority;
2465 int i;
2466 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2467 unsigned long total_scanned;
2468 struct reclaim_state *reclaim_state = current->reclaim_state;
2469 unsigned long nr_soft_reclaimed;
2470 unsigned long nr_soft_scanned;
2471 struct scan_control sc = {
2472 .gfp_mask = GFP_KERNEL,
2473 .may_unmap = 1,
2474 .may_swap = 1,
2475 /*
2476 * kswapd doesn't want to be bailed out while reclaim. because
2477 * we want to put equal scanning pressure on each zone.
2478 */
2479 .nr_to_reclaim = ULONG_MAX,
2480 .order = order,
2481 .target_mem_cgroup = NULL,
2482 };
2483 struct shrink_control shrink = {
2484 .gfp_mask = sc.gfp_mask,
2485 };
2486 loop_again:
2487 total_scanned = 0;
2488 sc.nr_reclaimed = 0;
2489 sc.may_writepage = !laptop_mode;
2490 count_vm_event(PAGEOUTRUN);
2491
2492 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2493 unsigned long lru_pages = 0;
2494 int has_under_min_watermark_zone = 0;
2495
2496 all_zones_ok = 1;
2497 balanced = 0;
2498
2499 /*
2500 * Scan in the highmem->dma direction for the highest
2501 * zone which needs scanning
2502 */
2503 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2504 struct zone *zone = pgdat->node_zones + i;
2505
2506 if (!populated_zone(zone))
2507 continue;
2508
2509 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2510 continue;
2511
2512 /*
2513 * Do some background aging of the anon list, to give
2514 * pages a chance to be referenced before reclaiming.
2515 */
2516 age_active_anon(zone, &sc, priority);
2517
2518 /*
2519 * If the number of buffer_heads in the machine
2520 * exceeds the maximum allowed level and this node
2521 * has a highmem zone, force kswapd to reclaim from
2522 * it to relieve lowmem pressure.
2523 */
2524 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2525 end_zone = i;
2526 break;
2527 }
2528
2529 if (!zone_watermark_ok_safe(zone, order,
2530 high_wmark_pages(zone), 0, 0)) {
2531 end_zone = i;
2532 break;
2533 } else {
2534 /* If balanced, clear the congested flag */
2535 zone_clear_flag(zone, ZONE_CONGESTED);
2536 }
2537 }
2538 if (i < 0)
2539 goto out;
2540
2541 for (i = 0; i <= end_zone; i++) {
2542 struct zone *zone = pgdat->node_zones + i;
2543
2544 lru_pages += zone_reclaimable_pages(zone);
2545 }
2546
2547 /*
2548 * Now scan the zone in the dma->highmem direction, stopping
2549 * at the last zone which needs scanning.
2550 *
2551 * We do this because the page allocator works in the opposite
2552 * direction. This prevents the page allocator from allocating
2553 * pages behind kswapd's direction of progress, which would
2554 * cause too much scanning of the lower zones.
2555 */
2556 for (i = 0; i <= end_zone; i++) {
2557 struct zone *zone = pgdat->node_zones + i;
2558 int nr_slab, testorder;
2559 unsigned long balance_gap;
2560
2561 if (!populated_zone(zone))
2562 continue;
2563
2564 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2565 continue;
2566
2567 sc.nr_scanned = 0;
2568
2569 nr_soft_scanned = 0;
2570 /*
2571 * Call soft limit reclaim before calling shrink_zone.
2572 */
2573 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2574 order, sc.gfp_mask,
2575 &nr_soft_scanned);
2576 sc.nr_reclaimed += nr_soft_reclaimed;
2577 total_scanned += nr_soft_scanned;
2578
2579 /*
2580 * We put equal pressure on every zone, unless
2581 * one zone has way too many pages free
2582 * already. The "too many pages" is defined
2583 * as the high wmark plus a "gap" where the
2584 * gap is either the low watermark or 1%
2585 * of the zone, whichever is smaller.
2586 */
2587 balance_gap = min(low_wmark_pages(zone),
2588 (zone->present_pages +
2589 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2590 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2591 /*
2592 * Kswapd reclaims only single pages with compaction
2593 * enabled. Trying too hard to reclaim until contiguous
2594 * free pages have become available can hurt performance
2595 * by evicting too much useful data from memory.
2596 * Do not reclaim more than needed for compaction.
2597 */
2598 testorder = order;
2599 if (COMPACTION_BUILD && order &&
2600 compaction_suitable(zone, order) !=
2601 COMPACT_SKIPPED)
2602 testorder = 0;
2603
2604 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2605 !zone_watermark_ok_safe(zone, testorder,
2606 high_wmark_pages(zone) + balance_gap,
2607 end_zone, 0)) {
2608 shrink_zone(priority, zone, &sc);
2609
2610 reclaim_state->reclaimed_slab = 0;
2611 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2612 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2613 total_scanned += sc.nr_scanned;
2614
2615 if (nr_slab == 0 && !zone_reclaimable(zone))
2616 zone->all_unreclaimable = 1;
2617 }
2618
2619 /*
2620 * If we've done a decent amount of scanning and
2621 * the reclaim ratio is low, start doing writepage
2622 * even in laptop mode
2623 */
2624 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2625 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2626 sc.may_writepage = 1;
2627
2628 if (zone->all_unreclaimable) {
2629 if (end_zone && end_zone == i)
2630 end_zone--;
2631 continue;
2632 }
2633
2634 if (!zone_watermark_ok_safe(zone, testorder,
2635 high_wmark_pages(zone), end_zone, 0)) {
2636 all_zones_ok = 0;
2637 /*
2638 * We are still under min water mark. This
2639 * means that we have a GFP_ATOMIC allocation
2640 * failure risk. Hurry up!
2641 */
2642 if (!zone_watermark_ok_safe(zone, order,
2643 min_wmark_pages(zone), end_zone, 0))
2644 has_under_min_watermark_zone = 1;
2645 } else {
2646 /*
2647 * If a zone reaches its high watermark,
2648 * consider it to be no longer congested. It's
2649 * possible there are dirty pages backed by
2650 * congested BDIs but as pressure is relieved,
2651 * spectulatively avoid congestion waits
2652 */
2653 zone_clear_flag(zone, ZONE_CONGESTED);
2654 if (i <= *classzone_idx)
2655 balanced += zone->present_pages;
2656 }
2657
2658 }
2659 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2660 break; /* kswapd: all done */
2661 /*
2662 * OK, kswapd is getting into trouble. Take a nap, then take
2663 * another pass across the zones.
2664 */
2665 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2666 if (has_under_min_watermark_zone)
2667 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2668 else
2669 congestion_wait(BLK_RW_ASYNC, HZ/10);
2670 }
2671
2672 /*
2673 * We do this so kswapd doesn't build up large priorities for
2674 * example when it is freeing in parallel with allocators. It
2675 * matches the direct reclaim path behaviour in terms of impact
2676 * on zone->*_priority.
2677 */
2678 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2679 break;
2680 }
2681 out:
2682
2683 /*
2684 * order-0: All zones must meet high watermark for a balanced node
2685 * high-order: Balanced zones must make up at least 25% of the node
2686 * for the node to be balanced
2687 */
2688 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2689 cond_resched();
2690
2691 try_to_freeze();
2692
2693 /*
2694 * Fragmentation may mean that the system cannot be
2695 * rebalanced for high-order allocations in all zones.
2696 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2697 * it means the zones have been fully scanned and are still
2698 * not balanced. For high-order allocations, there is
2699 * little point trying all over again as kswapd may
2700 * infinite loop.
2701 *
2702 * Instead, recheck all watermarks at order-0 as they
2703 * are the most important. If watermarks are ok, kswapd will go
2704 * back to sleep. High-order users can still perform direct
2705 * reclaim if they wish.
2706 */
2707 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2708 order = sc.order = 0;
2709
2710 goto loop_again;
2711 }
2712
2713 /*
2714 * If kswapd was reclaiming at a higher order, it has the option of
2715 * sleeping without all zones being balanced. Before it does, it must
2716 * ensure that the watermarks for order-0 on *all* zones are met and
2717 * that the congestion flags are cleared. The congestion flag must
2718 * be cleared as kswapd is the only mechanism that clears the flag
2719 * and it is potentially going to sleep here.
2720 */
2721 if (order) {
2722 int zones_need_compaction = 1;
2723
2724 for (i = 0; i <= end_zone; i++) {
2725 struct zone *zone = pgdat->node_zones + i;
2726
2727 if (!populated_zone(zone))
2728 continue;
2729
2730 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2731 continue;
2732
2733 /* Would compaction fail due to lack of free memory? */
2734 if (COMPACTION_BUILD &&
2735 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2736 goto loop_again;
2737
2738 /* Confirm the zone is balanced for order-0 */
2739 if (!zone_watermark_ok(zone, 0,
2740 high_wmark_pages(zone), 0, 0)) {
2741 order = sc.order = 0;
2742 goto loop_again;
2743 }
2744
2745 /* Check if the memory needs to be defragmented. */
2746 if (zone_watermark_ok(zone, order,
2747 low_wmark_pages(zone), *classzone_idx, 0))
2748 zones_need_compaction = 0;
2749
2750 /* If balanced, clear the congested flag */
2751 zone_clear_flag(zone, ZONE_CONGESTED);
2752 }
2753
2754 if (zones_need_compaction)
2755 compact_pgdat(pgdat, order);
2756 }
2757
2758 /*
2759 * Return the order we were reclaiming at so sleeping_prematurely()
2760 * makes a decision on the order we were last reclaiming at. However,
2761 * if another caller entered the allocator slow path while kswapd
2762 * was awake, order will remain at the higher level
2763 */
2764 *classzone_idx = end_zone;
2765 return order;
2766 }
2767
2768 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2769 {
2770 long remaining = 0;
2771 DEFINE_WAIT(wait);
2772
2773 if (freezing(current) || kthread_should_stop())
2774 return;
2775
2776 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2777
2778 /* Try to sleep for a short interval */
2779 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2780 remaining = schedule_timeout(HZ/10);
2781 finish_wait(&pgdat->kswapd_wait, &wait);
2782 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2783 }
2784
2785 /*
2786 * After a short sleep, check if it was a premature sleep. If not, then
2787 * go fully to sleep until explicitly woken up.
2788 */
2789 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2790 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2791
2792 /*
2793 * vmstat counters are not perfectly accurate and the estimated
2794 * value for counters such as NR_FREE_PAGES can deviate from the
2795 * true value by nr_online_cpus * threshold. To avoid the zone
2796 * watermarks being breached while under pressure, we reduce the
2797 * per-cpu vmstat threshold while kswapd is awake and restore
2798 * them before going back to sleep.
2799 */
2800 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2801 schedule();
2802 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2803 } else {
2804 if (remaining)
2805 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2806 else
2807 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2808 }
2809 finish_wait(&pgdat->kswapd_wait, &wait);
2810 }
2811
2812 /*
2813 * The background pageout daemon, started as a kernel thread
2814 * from the init process.
2815 *
2816 * This basically trickles out pages so that we have _some_
2817 * free memory available even if there is no other activity
2818 * that frees anything up. This is needed for things like routing
2819 * etc, where we otherwise might have all activity going on in
2820 * asynchronous contexts that cannot page things out.
2821 *
2822 * If there are applications that are active memory-allocators
2823 * (most normal use), this basically shouldn't matter.
2824 */
2825 static int kswapd(void *p)
2826 {
2827 unsigned long order, new_order;
2828 unsigned balanced_order;
2829 int classzone_idx, new_classzone_idx;
2830 int balanced_classzone_idx;
2831 pg_data_t *pgdat = (pg_data_t*)p;
2832 struct task_struct *tsk = current;
2833
2834 struct reclaim_state reclaim_state = {
2835 .reclaimed_slab = 0,
2836 };
2837 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2838
2839 lockdep_set_current_reclaim_state(GFP_KERNEL);
2840
2841 if (!cpumask_empty(cpumask))
2842 set_cpus_allowed_ptr(tsk, cpumask);
2843 current->reclaim_state = &reclaim_state;
2844
2845 /*
2846 * Tell the memory management that we're a "memory allocator",
2847 * and that if we need more memory we should get access to it
2848 * regardless (see "__alloc_pages()"). "kswapd" should
2849 * never get caught in the normal page freeing logic.
2850 *
2851 * (Kswapd normally doesn't need memory anyway, but sometimes
2852 * you need a small amount of memory in order to be able to
2853 * page out something else, and this flag essentially protects
2854 * us from recursively trying to free more memory as we're
2855 * trying to free the first piece of memory in the first place).
2856 */
2857 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2858 set_freezable();
2859
2860 order = new_order = 0;
2861 balanced_order = 0;
2862 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2863 balanced_classzone_idx = classzone_idx;
2864 for ( ; ; ) {
2865 int ret;
2866
2867 /*
2868 * If the last balance_pgdat was unsuccessful it's unlikely a
2869 * new request of a similar or harder type will succeed soon
2870 * so consider going to sleep on the basis we reclaimed at
2871 */
2872 if (balanced_classzone_idx >= new_classzone_idx &&
2873 balanced_order == new_order) {
2874 new_order = pgdat->kswapd_max_order;
2875 new_classzone_idx = pgdat->classzone_idx;
2876 pgdat->kswapd_max_order = 0;
2877 pgdat->classzone_idx = pgdat->nr_zones - 1;
2878 }
2879
2880 if (order < new_order || classzone_idx > new_classzone_idx) {
2881 /*
2882 * Don't sleep if someone wants a larger 'order'
2883 * allocation or has tigher zone constraints
2884 */
2885 order = new_order;
2886 classzone_idx = new_classzone_idx;
2887 } else {
2888 kswapd_try_to_sleep(pgdat, balanced_order,
2889 balanced_classzone_idx);
2890 order = pgdat->kswapd_max_order;
2891 classzone_idx = pgdat->classzone_idx;
2892 new_order = order;
2893 new_classzone_idx = classzone_idx;
2894 pgdat->kswapd_max_order = 0;
2895 pgdat->classzone_idx = pgdat->nr_zones - 1;
2896 }
2897
2898 ret = try_to_freeze();
2899 if (kthread_should_stop())
2900 break;
2901
2902 /*
2903 * We can speed up thawing tasks if we don't call balance_pgdat
2904 * after returning from the refrigerator
2905 */
2906 if (!ret) {
2907 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2908 balanced_classzone_idx = classzone_idx;
2909 balanced_order = balance_pgdat(pgdat, order,
2910 &balanced_classzone_idx);
2911 }
2912 }
2913 return 0;
2914 }
2915
2916 /*
2917 * A zone is low on free memory, so wake its kswapd task to service it.
2918 */
2919 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2920 {
2921 pg_data_t *pgdat;
2922
2923 if (!populated_zone(zone))
2924 return;
2925
2926 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2927 return;
2928 pgdat = zone->zone_pgdat;
2929 if (pgdat->kswapd_max_order < order) {
2930 pgdat->kswapd_max_order = order;
2931 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2932 }
2933 if (!waitqueue_active(&pgdat->kswapd_wait))
2934 return;
2935 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2936 return;
2937
2938 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2939 wake_up_interruptible(&pgdat->kswapd_wait);
2940 }
2941
2942 /*
2943 * The reclaimable count would be mostly accurate.
2944 * The less reclaimable pages may be
2945 * - mlocked pages, which will be moved to unevictable list when encountered
2946 * - mapped pages, which may require several travels to be reclaimed
2947 * - dirty pages, which is not "instantly" reclaimable
2948 */
2949 unsigned long global_reclaimable_pages(void)
2950 {
2951 int nr;
2952
2953 nr = global_page_state(NR_ACTIVE_FILE) +
2954 global_page_state(NR_INACTIVE_FILE);
2955
2956 if (nr_swap_pages > 0)
2957 nr += global_page_state(NR_ACTIVE_ANON) +
2958 global_page_state(NR_INACTIVE_ANON);
2959
2960 return nr;
2961 }
2962
2963 unsigned long zone_reclaimable_pages(struct zone *zone)
2964 {
2965 int nr;
2966
2967 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2968 zone_page_state(zone, NR_INACTIVE_FILE);
2969
2970 if (nr_swap_pages > 0)
2971 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2972 zone_page_state(zone, NR_INACTIVE_ANON);
2973
2974 return nr;
2975 }
2976
2977 #ifdef CONFIG_HIBERNATION
2978 /*
2979 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2980 * freed pages.
2981 *
2982 * Rather than trying to age LRUs the aim is to preserve the overall
2983 * LRU order by reclaiming preferentially
2984 * inactive > active > active referenced > active mapped
2985 */
2986 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2987 {
2988 struct reclaim_state reclaim_state;
2989 struct scan_control sc = {
2990 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2991 .may_swap = 1,
2992 .may_unmap = 1,
2993 .may_writepage = 1,
2994 .nr_to_reclaim = nr_to_reclaim,
2995 .hibernation_mode = 1,
2996 .order = 0,
2997 };
2998 struct shrink_control shrink = {
2999 .gfp_mask = sc.gfp_mask,
3000 };
3001 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3002 struct task_struct *p = current;
3003 unsigned long nr_reclaimed;
3004
3005 p->flags |= PF_MEMALLOC;
3006 lockdep_set_current_reclaim_state(sc.gfp_mask);
3007 reclaim_state.reclaimed_slab = 0;
3008 p->reclaim_state = &reclaim_state;
3009
3010 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3011
3012 p->reclaim_state = NULL;
3013 lockdep_clear_current_reclaim_state();
3014 p->flags &= ~PF_MEMALLOC;
3015
3016 return nr_reclaimed;
3017 }
3018 #endif /* CONFIG_HIBERNATION */
3019
3020 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3021 not required for correctness. So if the last cpu in a node goes
3022 away, we get changed to run anywhere: as the first one comes back,
3023 restore their cpu bindings. */
3024 static int __devinit cpu_callback(struct notifier_block *nfb,
3025 unsigned long action, void *hcpu)
3026 {
3027 int nid;
3028
3029 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3030 for_each_node_state(nid, N_HIGH_MEMORY) {
3031 pg_data_t *pgdat = NODE_DATA(nid);
3032 const struct cpumask *mask;
3033
3034 mask = cpumask_of_node(pgdat->node_id);
3035
3036 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3037 /* One of our CPUs online: restore mask */
3038 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3039 }
3040 }
3041 return NOTIFY_OK;
3042 }
3043
3044 /*
3045 * This kswapd start function will be called by init and node-hot-add.
3046 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3047 */
3048 int kswapd_run(int nid)
3049 {
3050 pg_data_t *pgdat = NODE_DATA(nid);
3051 int ret = 0;
3052
3053 if (pgdat->kswapd)
3054 return 0;
3055
3056 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3057 if (IS_ERR(pgdat->kswapd)) {
3058 /* failure at boot is fatal */
3059 BUG_ON(system_state == SYSTEM_BOOTING);
3060 printk("Failed to start kswapd on node %d\n",nid);
3061 ret = -1;
3062 }
3063 return ret;
3064 }
3065
3066 /*
3067 * Called by memory hotplug when all memory in a node is offlined.
3068 */
3069 void kswapd_stop(int nid)
3070 {
3071 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3072
3073 if (kswapd)
3074 kthread_stop(kswapd);
3075 }
3076
3077 static int __init kswapd_init(void)
3078 {
3079 int nid;
3080
3081 swap_setup();
3082 for_each_node_state(nid, N_HIGH_MEMORY)
3083 kswapd_run(nid);
3084 hotcpu_notifier(cpu_callback, 0);
3085 return 0;
3086 }
3087
3088 module_init(kswapd_init)
3089
3090 #ifdef CONFIG_NUMA
3091 /*
3092 * Zone reclaim mode
3093 *
3094 * If non-zero call zone_reclaim when the number of free pages falls below
3095 * the watermarks.
3096 */
3097 int zone_reclaim_mode __read_mostly;
3098
3099 #define RECLAIM_OFF 0
3100 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3101 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3102 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3103
3104 /*
3105 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3106 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3107 * a zone.
3108 */
3109 #define ZONE_RECLAIM_PRIORITY 4
3110
3111 /*
3112 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3113 * occur.
3114 */
3115 int sysctl_min_unmapped_ratio = 1;
3116
3117 /*
3118 * If the number of slab pages in a zone grows beyond this percentage then
3119 * slab reclaim needs to occur.
3120 */
3121 int sysctl_min_slab_ratio = 5;
3122
3123 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3124 {
3125 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3126 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3127 zone_page_state(zone, NR_ACTIVE_FILE);
3128
3129 /*
3130 * It's possible for there to be more file mapped pages than
3131 * accounted for by the pages on the file LRU lists because
3132 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3133 */
3134 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3135 }
3136
3137 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3138 static long zone_pagecache_reclaimable(struct zone *zone)
3139 {
3140 long nr_pagecache_reclaimable;
3141 long delta = 0;
3142
3143 /*
3144 * If RECLAIM_SWAP is set, then all file pages are considered
3145 * potentially reclaimable. Otherwise, we have to worry about
3146 * pages like swapcache and zone_unmapped_file_pages() provides
3147 * a better estimate
3148 */
3149 if (zone_reclaim_mode & RECLAIM_SWAP)
3150 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3151 else
3152 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3153
3154 /* If we can't clean pages, remove dirty pages from consideration */
3155 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3156 delta += zone_page_state(zone, NR_FILE_DIRTY);
3157
3158 /* Watch for any possible underflows due to delta */
3159 if (unlikely(delta > nr_pagecache_reclaimable))
3160 delta = nr_pagecache_reclaimable;
3161
3162 return nr_pagecache_reclaimable - delta;
3163 }
3164
3165 /*
3166 * Try to free up some pages from this zone through reclaim.
3167 */
3168 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3169 {
3170 /* Minimum pages needed in order to stay on node */
3171 const unsigned long nr_pages = 1 << order;
3172 struct task_struct *p = current;
3173 struct reclaim_state reclaim_state;
3174 int priority;
3175 struct scan_control sc = {
3176 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3177 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3178 .may_swap = 1,
3179 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3180 SWAP_CLUSTER_MAX),
3181 .gfp_mask = gfp_mask,
3182 .order = order,
3183 };
3184 struct shrink_control shrink = {
3185 .gfp_mask = sc.gfp_mask,
3186 };
3187 unsigned long nr_slab_pages0, nr_slab_pages1;
3188
3189 cond_resched();
3190 /*
3191 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3192 * and we also need to be able to write out pages for RECLAIM_WRITE
3193 * and RECLAIM_SWAP.
3194 */
3195 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3196 lockdep_set_current_reclaim_state(gfp_mask);
3197 reclaim_state.reclaimed_slab = 0;
3198 p->reclaim_state = &reclaim_state;
3199
3200 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3201 /*
3202 * Free memory by calling shrink zone with increasing
3203 * priorities until we have enough memory freed.
3204 */
3205 priority = ZONE_RECLAIM_PRIORITY;
3206 do {
3207 shrink_zone(priority, zone, &sc);
3208 priority--;
3209 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3210 }
3211
3212 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3213 if (nr_slab_pages0 > zone->min_slab_pages) {
3214 /*
3215 * shrink_slab() does not currently allow us to determine how
3216 * many pages were freed in this zone. So we take the current
3217 * number of slab pages and shake the slab until it is reduced
3218 * by the same nr_pages that we used for reclaiming unmapped
3219 * pages.
3220 *
3221 * Note that shrink_slab will free memory on all zones and may
3222 * take a long time.
3223 */
3224 for (;;) {
3225 unsigned long lru_pages = zone_reclaimable_pages(zone);
3226
3227 /* No reclaimable slab or very low memory pressure */
3228 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3229 break;
3230
3231 /* Freed enough memory */
3232 nr_slab_pages1 = zone_page_state(zone,
3233 NR_SLAB_RECLAIMABLE);
3234 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3235 break;
3236 }
3237
3238 /*
3239 * Update nr_reclaimed by the number of slab pages we
3240 * reclaimed from this zone.
3241 */
3242 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3243 if (nr_slab_pages1 < nr_slab_pages0)
3244 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3245 }
3246
3247 p->reclaim_state = NULL;
3248 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3249 lockdep_clear_current_reclaim_state();
3250 return sc.nr_reclaimed >= nr_pages;
3251 }
3252
3253 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3254 {
3255 int node_id;
3256 int ret;
3257
3258 /*
3259 * Zone reclaim reclaims unmapped file backed pages and
3260 * slab pages if we are over the defined limits.
3261 *
3262 * A small portion of unmapped file backed pages is needed for
3263 * file I/O otherwise pages read by file I/O will be immediately
3264 * thrown out if the zone is overallocated. So we do not reclaim
3265 * if less than a specified percentage of the zone is used by
3266 * unmapped file backed pages.
3267 */
3268 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3269 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3270 return ZONE_RECLAIM_FULL;
3271
3272 if (zone->all_unreclaimable)
3273 return ZONE_RECLAIM_FULL;
3274
3275 /*
3276 * Do not scan if the allocation should not be delayed.
3277 */
3278 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3279 return ZONE_RECLAIM_NOSCAN;
3280
3281 /*
3282 * Only run zone reclaim on the local zone or on zones that do not
3283 * have associated processors. This will favor the local processor
3284 * over remote processors and spread off node memory allocations
3285 * as wide as possible.
3286 */
3287 node_id = zone_to_nid(zone);
3288 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3289 return ZONE_RECLAIM_NOSCAN;
3290
3291 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3292 return ZONE_RECLAIM_NOSCAN;
3293
3294 ret = __zone_reclaim(zone, gfp_mask, order);
3295 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3296
3297 if (!ret)
3298 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3299
3300 return ret;
3301 }
3302 #endif
3303
3304 /*
3305 * page_evictable - test whether a page is evictable
3306 * @page: the page to test
3307 * @vma: the VMA in which the page is or will be mapped, may be NULL
3308 *
3309 * Test whether page is evictable--i.e., should be placed on active/inactive
3310 * lists vs unevictable list. The vma argument is !NULL when called from the
3311 * fault path to determine how to instantate a new page.
3312 *
3313 * Reasons page might not be evictable:
3314 * (1) page's mapping marked unevictable
3315 * (2) page is part of an mlocked VMA
3316 *
3317 */
3318 int page_evictable(struct page *page, struct vm_area_struct *vma)
3319 {
3320
3321 if (mapping_unevictable(page_mapping(page)))
3322 return 0;
3323
3324 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3325 return 0;
3326
3327 return 1;
3328 }
3329
3330 #ifdef CONFIG_SHMEM
3331 /**
3332 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3333 * @pages: array of pages to check
3334 * @nr_pages: number of pages to check
3335 *
3336 * Checks pages for evictability and moves them to the appropriate lru list.
3337 *
3338 * This function is only used for SysV IPC SHM_UNLOCK.
3339 */
3340 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3341 {
3342 struct lruvec *lruvec;
3343 struct zone *zone = NULL;
3344 int pgscanned = 0;
3345 int pgrescued = 0;
3346 int i;
3347
3348 for (i = 0; i < nr_pages; i++) {
3349 struct page *page = pages[i];
3350 struct zone *pagezone;
3351
3352 pgscanned++;
3353 pagezone = page_zone(page);
3354 if (pagezone != zone) {
3355 if (zone)
3356 spin_unlock_irq(&zone->lru_lock);
3357 zone = pagezone;
3358 spin_lock_irq(&zone->lru_lock);
3359 }
3360
3361 if (!PageLRU(page) || !PageUnevictable(page))
3362 continue;
3363
3364 if (page_evictable(page, NULL)) {
3365 enum lru_list lru = page_lru_base_type(page);
3366
3367 VM_BUG_ON(PageActive(page));
3368 ClearPageUnevictable(page);
3369 __dec_zone_state(zone, NR_UNEVICTABLE);
3370 lruvec = mem_cgroup_lru_move_lists(zone, page,
3371 LRU_UNEVICTABLE, lru);
3372 list_move(&page->lru, &lruvec->lists[lru]);
3373 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3374 pgrescued++;
3375 }
3376 }
3377
3378 if (zone) {
3379 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3380 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3381 spin_unlock_irq(&zone->lru_lock);
3382 }
3383 }
3384 #endif /* CONFIG_SHMEM */
3385
3386 static void warn_scan_unevictable_pages(void)
3387 {
3388 printk_once(KERN_WARNING
3389 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3390 "disabled for lack of a legitimate use case. If you have "
3391 "one, please send an email to linux-mm@kvack.org.\n",
3392 current->comm);
3393 }
3394
3395 /*
3396 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3397 * all nodes' unevictable lists for evictable pages
3398 */
3399 unsigned long scan_unevictable_pages;
3400
3401 int scan_unevictable_handler(struct ctl_table *table, int write,
3402 void __user *buffer,
3403 size_t *length, loff_t *ppos)
3404 {
3405 warn_scan_unevictable_pages();
3406 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3407 scan_unevictable_pages = 0;
3408 return 0;
3409 }
3410
3411 #ifdef CONFIG_NUMA
3412 /*
3413 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3414 * a specified node's per zone unevictable lists for evictable pages.
3415 */
3416
3417 static ssize_t read_scan_unevictable_node(struct device *dev,
3418 struct device_attribute *attr,
3419 char *buf)
3420 {
3421 warn_scan_unevictable_pages();
3422 return sprintf(buf, "0\n"); /* always zero; should fit... */
3423 }
3424
3425 static ssize_t write_scan_unevictable_node(struct device *dev,
3426 struct device_attribute *attr,
3427 const char *buf, size_t count)
3428 {
3429 warn_scan_unevictable_pages();
3430 return 1;
3431 }
3432
3433
3434 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3435 read_scan_unevictable_node,
3436 write_scan_unevictable_node);
3437
3438 int scan_unevictable_register_node(struct node *node)
3439 {
3440 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3441 }
3442
3443 void scan_unevictable_unregister_node(struct node *node)
3444 {
3445 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3446 }
3447 #endif
This page took 0.129272 seconds and 5 git commands to generate.