mm, vmscan: move LRU lists to node
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
108 };
109
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137
138 /*
139 * From 0 .. 100. Higher means more swappy.
140 */
141 int vm_swappiness = 60;
142 /*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146 unsigned long vm_total_pages;
147
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 return !sc->target_mem_cgroup;
155 }
156
157 /**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 return true;
179 #endif
180 return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 return true;
186 }
187
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 return true;
191 }
192 #endif
193
194 /*
195 * This misses isolated pages which are not accounted for to save counters.
196 * As the data only determines if reclaim or compaction continues, it is
197 * not expected that isolated pages will be a dominating factor.
198 */
199 unsigned long zone_reclaimable_pages(struct zone *zone)
200 {
201 unsigned long nr;
202
203 nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
204 if (get_nr_swap_pages() > 0)
205 nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);
206
207 return nr;
208 }
209
210 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
211 {
212 unsigned long nr;
213
214 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
215 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
216 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
217
218 if (get_nr_swap_pages() > 0)
219 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
222
223 return nr;
224 }
225
226 bool pgdat_reclaimable(struct pglist_data *pgdat)
227 {
228 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
229 pgdat_reclaimable_pages(pgdat) * 6;
230 }
231
232 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
233 {
234 if (!mem_cgroup_disabled())
235 return mem_cgroup_get_lru_size(lruvec, lru);
236
237 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
238 }
239
240 /*
241 * Add a shrinker callback to be called from the vm.
242 */
243 int register_shrinker(struct shrinker *shrinker)
244 {
245 size_t size = sizeof(*shrinker->nr_deferred);
246
247 if (shrinker->flags & SHRINKER_NUMA_AWARE)
248 size *= nr_node_ids;
249
250 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
251 if (!shrinker->nr_deferred)
252 return -ENOMEM;
253
254 down_write(&shrinker_rwsem);
255 list_add_tail(&shrinker->list, &shrinker_list);
256 up_write(&shrinker_rwsem);
257 return 0;
258 }
259 EXPORT_SYMBOL(register_shrinker);
260
261 /*
262 * Remove one
263 */
264 void unregister_shrinker(struct shrinker *shrinker)
265 {
266 down_write(&shrinker_rwsem);
267 list_del(&shrinker->list);
268 up_write(&shrinker_rwsem);
269 kfree(shrinker->nr_deferred);
270 }
271 EXPORT_SYMBOL(unregister_shrinker);
272
273 #define SHRINK_BATCH 128
274
275 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
276 struct shrinker *shrinker,
277 unsigned long nr_scanned,
278 unsigned long nr_eligible)
279 {
280 unsigned long freed = 0;
281 unsigned long long delta;
282 long total_scan;
283 long freeable;
284 long nr;
285 long new_nr;
286 int nid = shrinkctl->nid;
287 long batch_size = shrinker->batch ? shrinker->batch
288 : SHRINK_BATCH;
289
290 freeable = shrinker->count_objects(shrinker, shrinkctl);
291 if (freeable == 0)
292 return 0;
293
294 /*
295 * copy the current shrinker scan count into a local variable
296 * and zero it so that other concurrent shrinker invocations
297 * don't also do this scanning work.
298 */
299 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
300
301 total_scan = nr;
302 delta = (4 * nr_scanned) / shrinker->seeks;
303 delta *= freeable;
304 do_div(delta, nr_eligible + 1);
305 total_scan += delta;
306 if (total_scan < 0) {
307 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
308 shrinker->scan_objects, total_scan);
309 total_scan = freeable;
310 }
311
312 /*
313 * We need to avoid excessive windup on filesystem shrinkers
314 * due to large numbers of GFP_NOFS allocations causing the
315 * shrinkers to return -1 all the time. This results in a large
316 * nr being built up so when a shrink that can do some work
317 * comes along it empties the entire cache due to nr >>>
318 * freeable. This is bad for sustaining a working set in
319 * memory.
320 *
321 * Hence only allow the shrinker to scan the entire cache when
322 * a large delta change is calculated directly.
323 */
324 if (delta < freeable / 4)
325 total_scan = min(total_scan, freeable / 2);
326
327 /*
328 * Avoid risking looping forever due to too large nr value:
329 * never try to free more than twice the estimate number of
330 * freeable entries.
331 */
332 if (total_scan > freeable * 2)
333 total_scan = freeable * 2;
334
335 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
336 nr_scanned, nr_eligible,
337 freeable, delta, total_scan);
338
339 /*
340 * Normally, we should not scan less than batch_size objects in one
341 * pass to avoid too frequent shrinker calls, but if the slab has less
342 * than batch_size objects in total and we are really tight on memory,
343 * we will try to reclaim all available objects, otherwise we can end
344 * up failing allocations although there are plenty of reclaimable
345 * objects spread over several slabs with usage less than the
346 * batch_size.
347 *
348 * We detect the "tight on memory" situations by looking at the total
349 * number of objects we want to scan (total_scan). If it is greater
350 * than the total number of objects on slab (freeable), we must be
351 * scanning at high prio and therefore should try to reclaim as much as
352 * possible.
353 */
354 while (total_scan >= batch_size ||
355 total_scan >= freeable) {
356 unsigned long ret;
357 unsigned long nr_to_scan = min(batch_size, total_scan);
358
359 shrinkctl->nr_to_scan = nr_to_scan;
360 ret = shrinker->scan_objects(shrinker, shrinkctl);
361 if (ret == SHRINK_STOP)
362 break;
363 freed += ret;
364
365 count_vm_events(SLABS_SCANNED, nr_to_scan);
366 total_scan -= nr_to_scan;
367
368 cond_resched();
369 }
370
371 /*
372 * move the unused scan count back into the shrinker in a
373 * manner that handles concurrent updates. If we exhausted the
374 * scan, there is no need to do an update.
375 */
376 if (total_scan > 0)
377 new_nr = atomic_long_add_return(total_scan,
378 &shrinker->nr_deferred[nid]);
379 else
380 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
381
382 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
383 return freed;
384 }
385
386 /**
387 * shrink_slab - shrink slab caches
388 * @gfp_mask: allocation context
389 * @nid: node whose slab caches to target
390 * @memcg: memory cgroup whose slab caches to target
391 * @nr_scanned: pressure numerator
392 * @nr_eligible: pressure denominator
393 *
394 * Call the shrink functions to age shrinkable caches.
395 *
396 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
397 * unaware shrinkers will receive a node id of 0 instead.
398 *
399 * @memcg specifies the memory cgroup to target. If it is not NULL,
400 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
401 * objects from the memory cgroup specified. Otherwise, only unaware
402 * shrinkers are called.
403 *
404 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
405 * the available objects should be scanned. Page reclaim for example
406 * passes the number of pages scanned and the number of pages on the
407 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
408 * when it encountered mapped pages. The ratio is further biased by
409 * the ->seeks setting of the shrink function, which indicates the
410 * cost to recreate an object relative to that of an LRU page.
411 *
412 * Returns the number of reclaimed slab objects.
413 */
414 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
415 struct mem_cgroup *memcg,
416 unsigned long nr_scanned,
417 unsigned long nr_eligible)
418 {
419 struct shrinker *shrinker;
420 unsigned long freed = 0;
421
422 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
423 return 0;
424
425 if (nr_scanned == 0)
426 nr_scanned = SWAP_CLUSTER_MAX;
427
428 if (!down_read_trylock(&shrinker_rwsem)) {
429 /*
430 * If we would return 0, our callers would understand that we
431 * have nothing else to shrink and give up trying. By returning
432 * 1 we keep it going and assume we'll be able to shrink next
433 * time.
434 */
435 freed = 1;
436 goto out;
437 }
438
439 list_for_each_entry(shrinker, &shrinker_list, list) {
440 struct shrink_control sc = {
441 .gfp_mask = gfp_mask,
442 .nid = nid,
443 .memcg = memcg,
444 };
445
446 /*
447 * If kernel memory accounting is disabled, we ignore
448 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
449 * passing NULL for memcg.
450 */
451 if (memcg_kmem_enabled() &&
452 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
453 continue;
454
455 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
456 sc.nid = 0;
457
458 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
459 }
460
461 up_read(&shrinker_rwsem);
462 out:
463 cond_resched();
464 return freed;
465 }
466
467 void drop_slab_node(int nid)
468 {
469 unsigned long freed;
470
471 do {
472 struct mem_cgroup *memcg = NULL;
473
474 freed = 0;
475 do {
476 freed += shrink_slab(GFP_KERNEL, nid, memcg,
477 1000, 1000);
478 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
479 } while (freed > 10);
480 }
481
482 void drop_slab(void)
483 {
484 int nid;
485
486 for_each_online_node(nid)
487 drop_slab_node(nid);
488 }
489
490 static inline int is_page_cache_freeable(struct page *page)
491 {
492 /*
493 * A freeable page cache page is referenced only by the caller
494 * that isolated the page, the page cache radix tree and
495 * optional buffer heads at page->private.
496 */
497 return page_count(page) - page_has_private(page) == 2;
498 }
499
500 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
501 {
502 if (current->flags & PF_SWAPWRITE)
503 return 1;
504 if (!inode_write_congested(inode))
505 return 1;
506 if (inode_to_bdi(inode) == current->backing_dev_info)
507 return 1;
508 return 0;
509 }
510
511 /*
512 * We detected a synchronous write error writing a page out. Probably
513 * -ENOSPC. We need to propagate that into the address_space for a subsequent
514 * fsync(), msync() or close().
515 *
516 * The tricky part is that after writepage we cannot touch the mapping: nothing
517 * prevents it from being freed up. But we have a ref on the page and once
518 * that page is locked, the mapping is pinned.
519 *
520 * We're allowed to run sleeping lock_page() here because we know the caller has
521 * __GFP_FS.
522 */
523 static void handle_write_error(struct address_space *mapping,
524 struct page *page, int error)
525 {
526 lock_page(page);
527 if (page_mapping(page) == mapping)
528 mapping_set_error(mapping, error);
529 unlock_page(page);
530 }
531
532 /* possible outcome of pageout() */
533 typedef enum {
534 /* failed to write page out, page is locked */
535 PAGE_KEEP,
536 /* move page to the active list, page is locked */
537 PAGE_ACTIVATE,
538 /* page has been sent to the disk successfully, page is unlocked */
539 PAGE_SUCCESS,
540 /* page is clean and locked */
541 PAGE_CLEAN,
542 } pageout_t;
543
544 /*
545 * pageout is called by shrink_page_list() for each dirty page.
546 * Calls ->writepage().
547 */
548 static pageout_t pageout(struct page *page, struct address_space *mapping,
549 struct scan_control *sc)
550 {
551 /*
552 * If the page is dirty, only perform writeback if that write
553 * will be non-blocking. To prevent this allocation from being
554 * stalled by pagecache activity. But note that there may be
555 * stalls if we need to run get_block(). We could test
556 * PagePrivate for that.
557 *
558 * If this process is currently in __generic_file_write_iter() against
559 * this page's queue, we can perform writeback even if that
560 * will block.
561 *
562 * If the page is swapcache, write it back even if that would
563 * block, for some throttling. This happens by accident, because
564 * swap_backing_dev_info is bust: it doesn't reflect the
565 * congestion state of the swapdevs. Easy to fix, if needed.
566 */
567 if (!is_page_cache_freeable(page))
568 return PAGE_KEEP;
569 if (!mapping) {
570 /*
571 * Some data journaling orphaned pages can have
572 * page->mapping == NULL while being dirty with clean buffers.
573 */
574 if (page_has_private(page)) {
575 if (try_to_free_buffers(page)) {
576 ClearPageDirty(page);
577 pr_info("%s: orphaned page\n", __func__);
578 return PAGE_CLEAN;
579 }
580 }
581 return PAGE_KEEP;
582 }
583 if (mapping->a_ops->writepage == NULL)
584 return PAGE_ACTIVATE;
585 if (!may_write_to_inode(mapping->host, sc))
586 return PAGE_KEEP;
587
588 if (clear_page_dirty_for_io(page)) {
589 int res;
590 struct writeback_control wbc = {
591 .sync_mode = WB_SYNC_NONE,
592 .nr_to_write = SWAP_CLUSTER_MAX,
593 .range_start = 0,
594 .range_end = LLONG_MAX,
595 .for_reclaim = 1,
596 };
597
598 SetPageReclaim(page);
599 res = mapping->a_ops->writepage(page, &wbc);
600 if (res < 0)
601 handle_write_error(mapping, page, res);
602 if (res == AOP_WRITEPAGE_ACTIVATE) {
603 ClearPageReclaim(page);
604 return PAGE_ACTIVATE;
605 }
606
607 if (!PageWriteback(page)) {
608 /* synchronous write or broken a_ops? */
609 ClearPageReclaim(page);
610 }
611 trace_mm_vmscan_writepage(page);
612 inc_zone_page_state(page, NR_VMSCAN_WRITE);
613 return PAGE_SUCCESS;
614 }
615
616 return PAGE_CLEAN;
617 }
618
619 /*
620 * Same as remove_mapping, but if the page is removed from the mapping, it
621 * gets returned with a refcount of 0.
622 */
623 static int __remove_mapping(struct address_space *mapping, struct page *page,
624 bool reclaimed)
625 {
626 unsigned long flags;
627
628 BUG_ON(!PageLocked(page));
629 BUG_ON(mapping != page_mapping(page));
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 /*
633 * The non racy check for a busy page.
634 *
635 * Must be careful with the order of the tests. When someone has
636 * a ref to the page, it may be possible that they dirty it then
637 * drop the reference. So if PageDirty is tested before page_count
638 * here, then the following race may occur:
639 *
640 * get_user_pages(&page);
641 * [user mapping goes away]
642 * write_to(page);
643 * !PageDirty(page) [good]
644 * SetPageDirty(page);
645 * put_page(page);
646 * !page_count(page) [good, discard it]
647 *
648 * [oops, our write_to data is lost]
649 *
650 * Reversing the order of the tests ensures such a situation cannot
651 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
652 * load is not satisfied before that of page->_refcount.
653 *
654 * Note that if SetPageDirty is always performed via set_page_dirty,
655 * and thus under tree_lock, then this ordering is not required.
656 */
657 if (!page_ref_freeze(page, 2))
658 goto cannot_free;
659 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
660 if (unlikely(PageDirty(page))) {
661 page_ref_unfreeze(page, 2);
662 goto cannot_free;
663 }
664
665 if (PageSwapCache(page)) {
666 swp_entry_t swap = { .val = page_private(page) };
667 mem_cgroup_swapout(page, swap);
668 __delete_from_swap_cache(page);
669 spin_unlock_irqrestore(&mapping->tree_lock, flags);
670 swapcache_free(swap);
671 } else {
672 void (*freepage)(struct page *);
673 void *shadow = NULL;
674
675 freepage = mapping->a_ops->freepage;
676 /*
677 * Remember a shadow entry for reclaimed file cache in
678 * order to detect refaults, thus thrashing, later on.
679 *
680 * But don't store shadows in an address space that is
681 * already exiting. This is not just an optizimation,
682 * inode reclaim needs to empty out the radix tree or
683 * the nodes are lost. Don't plant shadows behind its
684 * back.
685 *
686 * We also don't store shadows for DAX mappings because the
687 * only page cache pages found in these are zero pages
688 * covering holes, and because we don't want to mix DAX
689 * exceptional entries and shadow exceptional entries in the
690 * same page_tree.
691 */
692 if (reclaimed && page_is_file_cache(page) &&
693 !mapping_exiting(mapping) && !dax_mapping(mapping))
694 shadow = workingset_eviction(mapping, page);
695 __delete_from_page_cache(page, shadow);
696 spin_unlock_irqrestore(&mapping->tree_lock, flags);
697
698 if (freepage != NULL)
699 freepage(page);
700 }
701
702 return 1;
703
704 cannot_free:
705 spin_unlock_irqrestore(&mapping->tree_lock, flags);
706 return 0;
707 }
708
709 /*
710 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
711 * someone else has a ref on the page, abort and return 0. If it was
712 * successfully detached, return 1. Assumes the caller has a single ref on
713 * this page.
714 */
715 int remove_mapping(struct address_space *mapping, struct page *page)
716 {
717 if (__remove_mapping(mapping, page, false)) {
718 /*
719 * Unfreezing the refcount with 1 rather than 2 effectively
720 * drops the pagecache ref for us without requiring another
721 * atomic operation.
722 */
723 page_ref_unfreeze(page, 1);
724 return 1;
725 }
726 return 0;
727 }
728
729 /**
730 * putback_lru_page - put previously isolated page onto appropriate LRU list
731 * @page: page to be put back to appropriate lru list
732 *
733 * Add previously isolated @page to appropriate LRU list.
734 * Page may still be unevictable for other reasons.
735 *
736 * lru_lock must not be held, interrupts must be enabled.
737 */
738 void putback_lru_page(struct page *page)
739 {
740 bool is_unevictable;
741 int was_unevictable = PageUnevictable(page);
742
743 VM_BUG_ON_PAGE(PageLRU(page), page);
744
745 redo:
746 ClearPageUnevictable(page);
747
748 if (page_evictable(page)) {
749 /*
750 * For evictable pages, we can use the cache.
751 * In event of a race, worst case is we end up with an
752 * unevictable page on [in]active list.
753 * We know how to handle that.
754 */
755 is_unevictable = false;
756 lru_cache_add(page);
757 } else {
758 /*
759 * Put unevictable pages directly on zone's unevictable
760 * list.
761 */
762 is_unevictable = true;
763 add_page_to_unevictable_list(page);
764 /*
765 * When racing with an mlock or AS_UNEVICTABLE clearing
766 * (page is unlocked) make sure that if the other thread
767 * does not observe our setting of PG_lru and fails
768 * isolation/check_move_unevictable_pages,
769 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
770 * the page back to the evictable list.
771 *
772 * The other side is TestClearPageMlocked() or shmem_lock().
773 */
774 smp_mb();
775 }
776
777 /*
778 * page's status can change while we move it among lru. If an evictable
779 * page is on unevictable list, it never be freed. To avoid that,
780 * check after we added it to the list, again.
781 */
782 if (is_unevictable && page_evictable(page)) {
783 if (!isolate_lru_page(page)) {
784 put_page(page);
785 goto redo;
786 }
787 /* This means someone else dropped this page from LRU
788 * So, it will be freed or putback to LRU again. There is
789 * nothing to do here.
790 */
791 }
792
793 if (was_unevictable && !is_unevictable)
794 count_vm_event(UNEVICTABLE_PGRESCUED);
795 else if (!was_unevictable && is_unevictable)
796 count_vm_event(UNEVICTABLE_PGCULLED);
797
798 put_page(page); /* drop ref from isolate */
799 }
800
801 enum page_references {
802 PAGEREF_RECLAIM,
803 PAGEREF_RECLAIM_CLEAN,
804 PAGEREF_KEEP,
805 PAGEREF_ACTIVATE,
806 };
807
808 static enum page_references page_check_references(struct page *page,
809 struct scan_control *sc)
810 {
811 int referenced_ptes, referenced_page;
812 unsigned long vm_flags;
813
814 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
815 &vm_flags);
816 referenced_page = TestClearPageReferenced(page);
817
818 /*
819 * Mlock lost the isolation race with us. Let try_to_unmap()
820 * move the page to the unevictable list.
821 */
822 if (vm_flags & VM_LOCKED)
823 return PAGEREF_RECLAIM;
824
825 if (referenced_ptes) {
826 if (PageSwapBacked(page))
827 return PAGEREF_ACTIVATE;
828 /*
829 * All mapped pages start out with page table
830 * references from the instantiating fault, so we need
831 * to look twice if a mapped file page is used more
832 * than once.
833 *
834 * Mark it and spare it for another trip around the
835 * inactive list. Another page table reference will
836 * lead to its activation.
837 *
838 * Note: the mark is set for activated pages as well
839 * so that recently deactivated but used pages are
840 * quickly recovered.
841 */
842 SetPageReferenced(page);
843
844 if (referenced_page || referenced_ptes > 1)
845 return PAGEREF_ACTIVATE;
846
847 /*
848 * Activate file-backed executable pages after first usage.
849 */
850 if (vm_flags & VM_EXEC)
851 return PAGEREF_ACTIVATE;
852
853 return PAGEREF_KEEP;
854 }
855
856 /* Reclaim if clean, defer dirty pages to writeback */
857 if (referenced_page && !PageSwapBacked(page))
858 return PAGEREF_RECLAIM_CLEAN;
859
860 return PAGEREF_RECLAIM;
861 }
862
863 /* Check if a page is dirty or under writeback */
864 static void page_check_dirty_writeback(struct page *page,
865 bool *dirty, bool *writeback)
866 {
867 struct address_space *mapping;
868
869 /*
870 * Anonymous pages are not handled by flushers and must be written
871 * from reclaim context. Do not stall reclaim based on them
872 */
873 if (!page_is_file_cache(page)) {
874 *dirty = false;
875 *writeback = false;
876 return;
877 }
878
879 /* By default assume that the page flags are accurate */
880 *dirty = PageDirty(page);
881 *writeback = PageWriteback(page);
882
883 /* Verify dirty/writeback state if the filesystem supports it */
884 if (!page_has_private(page))
885 return;
886
887 mapping = page_mapping(page);
888 if (mapping && mapping->a_ops->is_dirty_writeback)
889 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
890 }
891
892 /*
893 * shrink_page_list() returns the number of reclaimed pages
894 */
895 static unsigned long shrink_page_list(struct list_head *page_list,
896 struct pglist_data *pgdat,
897 struct scan_control *sc,
898 enum ttu_flags ttu_flags,
899 unsigned long *ret_nr_dirty,
900 unsigned long *ret_nr_unqueued_dirty,
901 unsigned long *ret_nr_congested,
902 unsigned long *ret_nr_writeback,
903 unsigned long *ret_nr_immediate,
904 bool force_reclaim)
905 {
906 LIST_HEAD(ret_pages);
907 LIST_HEAD(free_pages);
908 int pgactivate = 0;
909 unsigned long nr_unqueued_dirty = 0;
910 unsigned long nr_dirty = 0;
911 unsigned long nr_congested = 0;
912 unsigned long nr_reclaimed = 0;
913 unsigned long nr_writeback = 0;
914 unsigned long nr_immediate = 0;
915
916 cond_resched();
917
918 while (!list_empty(page_list)) {
919 struct address_space *mapping;
920 struct page *page;
921 int may_enter_fs;
922 enum page_references references = PAGEREF_RECLAIM_CLEAN;
923 bool dirty, writeback;
924 bool lazyfree = false;
925 int ret = SWAP_SUCCESS;
926
927 cond_resched();
928
929 page = lru_to_page(page_list);
930 list_del(&page->lru);
931
932 if (!trylock_page(page))
933 goto keep;
934
935 VM_BUG_ON_PAGE(PageActive(page), page);
936
937 sc->nr_scanned++;
938
939 if (unlikely(!page_evictable(page)))
940 goto cull_mlocked;
941
942 if (!sc->may_unmap && page_mapped(page))
943 goto keep_locked;
944
945 /* Double the slab pressure for mapped and swapcache pages */
946 if (page_mapped(page) || PageSwapCache(page))
947 sc->nr_scanned++;
948
949 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
950 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
951
952 /*
953 * The number of dirty pages determines if a zone is marked
954 * reclaim_congested which affects wait_iff_congested. kswapd
955 * will stall and start writing pages if the tail of the LRU
956 * is all dirty unqueued pages.
957 */
958 page_check_dirty_writeback(page, &dirty, &writeback);
959 if (dirty || writeback)
960 nr_dirty++;
961
962 if (dirty && !writeback)
963 nr_unqueued_dirty++;
964
965 /*
966 * Treat this page as congested if the underlying BDI is or if
967 * pages are cycling through the LRU so quickly that the
968 * pages marked for immediate reclaim are making it to the
969 * end of the LRU a second time.
970 */
971 mapping = page_mapping(page);
972 if (((dirty || writeback) && mapping &&
973 inode_write_congested(mapping->host)) ||
974 (writeback && PageReclaim(page)))
975 nr_congested++;
976
977 /*
978 * If a page at the tail of the LRU is under writeback, there
979 * are three cases to consider.
980 *
981 * 1) If reclaim is encountering an excessive number of pages
982 * under writeback and this page is both under writeback and
983 * PageReclaim then it indicates that pages are being queued
984 * for IO but are being recycled through the LRU before the
985 * IO can complete. Waiting on the page itself risks an
986 * indefinite stall if it is impossible to writeback the
987 * page due to IO error or disconnected storage so instead
988 * note that the LRU is being scanned too quickly and the
989 * caller can stall after page list has been processed.
990 *
991 * 2) Global or new memcg reclaim encounters a page that is
992 * not marked for immediate reclaim, or the caller does not
993 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
994 * not to fs). In this case mark the page for immediate
995 * reclaim and continue scanning.
996 *
997 * Require may_enter_fs because we would wait on fs, which
998 * may not have submitted IO yet. And the loop driver might
999 * enter reclaim, and deadlock if it waits on a page for
1000 * which it is needed to do the write (loop masks off
1001 * __GFP_IO|__GFP_FS for this reason); but more thought
1002 * would probably show more reasons.
1003 *
1004 * 3) Legacy memcg encounters a page that is already marked
1005 * PageReclaim. memcg does not have any dirty pages
1006 * throttling so we could easily OOM just because too many
1007 * pages are in writeback and there is nothing else to
1008 * reclaim. Wait for the writeback to complete.
1009 */
1010 if (PageWriteback(page)) {
1011 /* Case 1 above */
1012 if (current_is_kswapd() &&
1013 PageReclaim(page) &&
1014 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1015 nr_immediate++;
1016 goto keep_locked;
1017
1018 /* Case 2 above */
1019 } else if (sane_reclaim(sc) ||
1020 !PageReclaim(page) || !may_enter_fs) {
1021 /*
1022 * This is slightly racy - end_page_writeback()
1023 * might have just cleared PageReclaim, then
1024 * setting PageReclaim here end up interpreted
1025 * as PageReadahead - but that does not matter
1026 * enough to care. What we do want is for this
1027 * page to have PageReclaim set next time memcg
1028 * reclaim reaches the tests above, so it will
1029 * then wait_on_page_writeback() to avoid OOM;
1030 * and it's also appropriate in global reclaim.
1031 */
1032 SetPageReclaim(page);
1033 nr_writeback++;
1034 goto keep_locked;
1035
1036 /* Case 3 above */
1037 } else {
1038 unlock_page(page);
1039 wait_on_page_writeback(page);
1040 /* then go back and try same page again */
1041 list_add_tail(&page->lru, page_list);
1042 continue;
1043 }
1044 }
1045
1046 if (!force_reclaim)
1047 references = page_check_references(page, sc);
1048
1049 switch (references) {
1050 case PAGEREF_ACTIVATE:
1051 goto activate_locked;
1052 case PAGEREF_KEEP:
1053 goto keep_locked;
1054 case PAGEREF_RECLAIM:
1055 case PAGEREF_RECLAIM_CLEAN:
1056 ; /* try to reclaim the page below */
1057 }
1058
1059 /*
1060 * Anonymous process memory has backing store?
1061 * Try to allocate it some swap space here.
1062 */
1063 if (PageAnon(page) && !PageSwapCache(page)) {
1064 if (!(sc->gfp_mask & __GFP_IO))
1065 goto keep_locked;
1066 if (!add_to_swap(page, page_list))
1067 goto activate_locked;
1068 lazyfree = true;
1069 may_enter_fs = 1;
1070
1071 /* Adding to swap updated mapping */
1072 mapping = page_mapping(page);
1073 } else if (unlikely(PageTransHuge(page))) {
1074 /* Split file THP */
1075 if (split_huge_page_to_list(page, page_list))
1076 goto keep_locked;
1077 }
1078
1079 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1080
1081 /*
1082 * The page is mapped into the page tables of one or more
1083 * processes. Try to unmap it here.
1084 */
1085 if (page_mapped(page) && mapping) {
1086 switch (ret = try_to_unmap(page, lazyfree ?
1087 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1088 (ttu_flags | TTU_BATCH_FLUSH))) {
1089 case SWAP_FAIL:
1090 goto activate_locked;
1091 case SWAP_AGAIN:
1092 goto keep_locked;
1093 case SWAP_MLOCK:
1094 goto cull_mlocked;
1095 case SWAP_LZFREE:
1096 goto lazyfree;
1097 case SWAP_SUCCESS:
1098 ; /* try to free the page below */
1099 }
1100 }
1101
1102 if (PageDirty(page)) {
1103 /*
1104 * Only kswapd can writeback filesystem pages to
1105 * avoid risk of stack overflow but only writeback
1106 * if many dirty pages have been encountered.
1107 */
1108 if (page_is_file_cache(page) &&
1109 (!current_is_kswapd() ||
1110 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1111 /*
1112 * Immediately reclaim when written back.
1113 * Similar in principal to deactivate_page()
1114 * except we already have the page isolated
1115 * and know it's dirty
1116 */
1117 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1118 SetPageReclaim(page);
1119
1120 goto keep_locked;
1121 }
1122
1123 if (references == PAGEREF_RECLAIM_CLEAN)
1124 goto keep_locked;
1125 if (!may_enter_fs)
1126 goto keep_locked;
1127 if (!sc->may_writepage)
1128 goto keep_locked;
1129
1130 /*
1131 * Page is dirty. Flush the TLB if a writable entry
1132 * potentially exists to avoid CPU writes after IO
1133 * starts and then write it out here.
1134 */
1135 try_to_unmap_flush_dirty();
1136 switch (pageout(page, mapping, sc)) {
1137 case PAGE_KEEP:
1138 goto keep_locked;
1139 case PAGE_ACTIVATE:
1140 goto activate_locked;
1141 case PAGE_SUCCESS:
1142 if (PageWriteback(page))
1143 goto keep;
1144 if (PageDirty(page))
1145 goto keep;
1146
1147 /*
1148 * A synchronous write - probably a ramdisk. Go
1149 * ahead and try to reclaim the page.
1150 */
1151 if (!trylock_page(page))
1152 goto keep;
1153 if (PageDirty(page) || PageWriteback(page))
1154 goto keep_locked;
1155 mapping = page_mapping(page);
1156 case PAGE_CLEAN:
1157 ; /* try to free the page below */
1158 }
1159 }
1160
1161 /*
1162 * If the page has buffers, try to free the buffer mappings
1163 * associated with this page. If we succeed we try to free
1164 * the page as well.
1165 *
1166 * We do this even if the page is PageDirty().
1167 * try_to_release_page() does not perform I/O, but it is
1168 * possible for a page to have PageDirty set, but it is actually
1169 * clean (all its buffers are clean). This happens if the
1170 * buffers were written out directly, with submit_bh(). ext3
1171 * will do this, as well as the blockdev mapping.
1172 * try_to_release_page() will discover that cleanness and will
1173 * drop the buffers and mark the page clean - it can be freed.
1174 *
1175 * Rarely, pages can have buffers and no ->mapping. These are
1176 * the pages which were not successfully invalidated in
1177 * truncate_complete_page(). We try to drop those buffers here
1178 * and if that worked, and the page is no longer mapped into
1179 * process address space (page_count == 1) it can be freed.
1180 * Otherwise, leave the page on the LRU so it is swappable.
1181 */
1182 if (page_has_private(page)) {
1183 if (!try_to_release_page(page, sc->gfp_mask))
1184 goto activate_locked;
1185 if (!mapping && page_count(page) == 1) {
1186 unlock_page(page);
1187 if (put_page_testzero(page))
1188 goto free_it;
1189 else {
1190 /*
1191 * rare race with speculative reference.
1192 * the speculative reference will free
1193 * this page shortly, so we may
1194 * increment nr_reclaimed here (and
1195 * leave it off the LRU).
1196 */
1197 nr_reclaimed++;
1198 continue;
1199 }
1200 }
1201 }
1202
1203 lazyfree:
1204 if (!mapping || !__remove_mapping(mapping, page, true))
1205 goto keep_locked;
1206
1207 /*
1208 * At this point, we have no other references and there is
1209 * no way to pick any more up (removed from LRU, removed
1210 * from pagecache). Can use non-atomic bitops now (and
1211 * we obviously don't have to worry about waking up a process
1212 * waiting on the page lock, because there are no references.
1213 */
1214 __ClearPageLocked(page);
1215 free_it:
1216 if (ret == SWAP_LZFREE)
1217 count_vm_event(PGLAZYFREED);
1218
1219 nr_reclaimed++;
1220
1221 /*
1222 * Is there need to periodically free_page_list? It would
1223 * appear not as the counts should be low
1224 */
1225 list_add(&page->lru, &free_pages);
1226 continue;
1227
1228 cull_mlocked:
1229 if (PageSwapCache(page))
1230 try_to_free_swap(page);
1231 unlock_page(page);
1232 list_add(&page->lru, &ret_pages);
1233 continue;
1234
1235 activate_locked:
1236 /* Not a candidate for swapping, so reclaim swap space. */
1237 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1238 try_to_free_swap(page);
1239 VM_BUG_ON_PAGE(PageActive(page), page);
1240 SetPageActive(page);
1241 pgactivate++;
1242 keep_locked:
1243 unlock_page(page);
1244 keep:
1245 list_add(&page->lru, &ret_pages);
1246 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1247 }
1248
1249 mem_cgroup_uncharge_list(&free_pages);
1250 try_to_unmap_flush();
1251 free_hot_cold_page_list(&free_pages, true);
1252
1253 list_splice(&ret_pages, page_list);
1254 count_vm_events(PGACTIVATE, pgactivate);
1255
1256 *ret_nr_dirty += nr_dirty;
1257 *ret_nr_congested += nr_congested;
1258 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1259 *ret_nr_writeback += nr_writeback;
1260 *ret_nr_immediate += nr_immediate;
1261 return nr_reclaimed;
1262 }
1263
1264 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1265 struct list_head *page_list)
1266 {
1267 struct scan_control sc = {
1268 .gfp_mask = GFP_KERNEL,
1269 .priority = DEF_PRIORITY,
1270 .may_unmap = 1,
1271 };
1272 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1273 struct page *page, *next;
1274 LIST_HEAD(clean_pages);
1275
1276 list_for_each_entry_safe(page, next, page_list, lru) {
1277 if (page_is_file_cache(page) && !PageDirty(page) &&
1278 !__PageMovable(page)) {
1279 ClearPageActive(page);
1280 list_move(&page->lru, &clean_pages);
1281 }
1282 }
1283
1284 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1285 TTU_UNMAP|TTU_IGNORE_ACCESS,
1286 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1287 list_splice(&clean_pages, page_list);
1288 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1289 return ret;
1290 }
1291
1292 /*
1293 * Attempt to remove the specified page from its LRU. Only take this page
1294 * if it is of the appropriate PageActive status. Pages which are being
1295 * freed elsewhere are also ignored.
1296 *
1297 * page: page to consider
1298 * mode: one of the LRU isolation modes defined above
1299 *
1300 * returns 0 on success, -ve errno on failure.
1301 */
1302 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1303 {
1304 int ret = -EINVAL;
1305
1306 /* Only take pages on the LRU. */
1307 if (!PageLRU(page))
1308 return ret;
1309
1310 /* Compaction should not handle unevictable pages but CMA can do so */
1311 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1312 return ret;
1313
1314 ret = -EBUSY;
1315
1316 /*
1317 * To minimise LRU disruption, the caller can indicate that it only
1318 * wants to isolate pages it will be able to operate on without
1319 * blocking - clean pages for the most part.
1320 *
1321 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1322 * is used by reclaim when it is cannot write to backing storage
1323 *
1324 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1325 * that it is possible to migrate without blocking
1326 */
1327 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1328 /* All the caller can do on PageWriteback is block */
1329 if (PageWriteback(page))
1330 return ret;
1331
1332 if (PageDirty(page)) {
1333 struct address_space *mapping;
1334
1335 /* ISOLATE_CLEAN means only clean pages */
1336 if (mode & ISOLATE_CLEAN)
1337 return ret;
1338
1339 /*
1340 * Only pages without mappings or that have a
1341 * ->migratepage callback are possible to migrate
1342 * without blocking
1343 */
1344 mapping = page_mapping(page);
1345 if (mapping && !mapping->a_ops->migratepage)
1346 return ret;
1347 }
1348 }
1349
1350 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1351 return ret;
1352
1353 if (likely(get_page_unless_zero(page))) {
1354 /*
1355 * Be careful not to clear PageLRU until after we're
1356 * sure the page is not being freed elsewhere -- the
1357 * page release code relies on it.
1358 */
1359 ClearPageLRU(page);
1360 ret = 0;
1361 }
1362
1363 return ret;
1364 }
1365
1366 /*
1367 * zone_lru_lock is heavily contended. Some of the functions that
1368 * shrink the lists perform better by taking out a batch of pages
1369 * and working on them outside the LRU lock.
1370 *
1371 * For pagecache intensive workloads, this function is the hottest
1372 * spot in the kernel (apart from copy_*_user functions).
1373 *
1374 * Appropriate locks must be held before calling this function.
1375 *
1376 * @nr_to_scan: The number of pages to look through on the list.
1377 * @lruvec: The LRU vector to pull pages from.
1378 * @dst: The temp list to put pages on to.
1379 * @nr_scanned: The number of pages that were scanned.
1380 * @sc: The scan_control struct for this reclaim session
1381 * @mode: One of the LRU isolation modes
1382 * @lru: LRU list id for isolating
1383 *
1384 * returns how many pages were moved onto *@dst.
1385 */
1386 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1387 struct lruvec *lruvec, struct list_head *dst,
1388 unsigned long *nr_scanned, struct scan_control *sc,
1389 isolate_mode_t mode, enum lru_list lru)
1390 {
1391 struct list_head *src = &lruvec->lists[lru];
1392 unsigned long nr_taken = 0;
1393 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1394 unsigned long scan, nr_pages;
1395
1396 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1397 !list_empty(src); scan++) {
1398 struct page *page;
1399
1400 page = lru_to_page(src);
1401 prefetchw_prev_lru_page(page, src, flags);
1402
1403 VM_BUG_ON_PAGE(!PageLRU(page), page);
1404
1405 switch (__isolate_lru_page(page, mode)) {
1406 case 0:
1407 nr_pages = hpage_nr_pages(page);
1408 nr_taken += nr_pages;
1409 nr_zone_taken[page_zonenum(page)] += nr_pages;
1410 list_move(&page->lru, dst);
1411 break;
1412
1413 case -EBUSY:
1414 /* else it is being freed elsewhere */
1415 list_move(&page->lru, src);
1416 continue;
1417
1418 default:
1419 BUG();
1420 }
1421 }
1422
1423 *nr_scanned = scan;
1424 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1425 nr_taken, mode, is_file_lru(lru));
1426 for (scan = 0; scan < MAX_NR_ZONES; scan++) {
1427 nr_pages = nr_zone_taken[scan];
1428 if (!nr_pages)
1429 continue;
1430
1431 update_lru_size(lruvec, lru, scan, -nr_pages);
1432 }
1433 return nr_taken;
1434 }
1435
1436 /**
1437 * isolate_lru_page - tries to isolate a page from its LRU list
1438 * @page: page to isolate from its LRU list
1439 *
1440 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1441 * vmstat statistic corresponding to whatever LRU list the page was on.
1442 *
1443 * Returns 0 if the page was removed from an LRU list.
1444 * Returns -EBUSY if the page was not on an LRU list.
1445 *
1446 * The returned page will have PageLRU() cleared. If it was found on
1447 * the active list, it will have PageActive set. If it was found on
1448 * the unevictable list, it will have the PageUnevictable bit set. That flag
1449 * may need to be cleared by the caller before letting the page go.
1450 *
1451 * The vmstat statistic corresponding to the list on which the page was
1452 * found will be decremented.
1453 *
1454 * Restrictions:
1455 * (1) Must be called with an elevated refcount on the page. This is a
1456 * fundamentnal difference from isolate_lru_pages (which is called
1457 * without a stable reference).
1458 * (2) the lru_lock must not be held.
1459 * (3) interrupts must be enabled.
1460 */
1461 int isolate_lru_page(struct page *page)
1462 {
1463 int ret = -EBUSY;
1464
1465 VM_BUG_ON_PAGE(!page_count(page), page);
1466 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1467
1468 if (PageLRU(page)) {
1469 struct zone *zone = page_zone(page);
1470 struct lruvec *lruvec;
1471
1472 spin_lock_irq(zone_lru_lock(zone));
1473 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1474 if (PageLRU(page)) {
1475 int lru = page_lru(page);
1476 get_page(page);
1477 ClearPageLRU(page);
1478 del_page_from_lru_list(page, lruvec, lru);
1479 ret = 0;
1480 }
1481 spin_unlock_irq(zone_lru_lock(zone));
1482 }
1483 return ret;
1484 }
1485
1486 /*
1487 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1488 * then get resheduled. When there are massive number of tasks doing page
1489 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1490 * the LRU list will go small and be scanned faster than necessary, leading to
1491 * unnecessary swapping, thrashing and OOM.
1492 */
1493 static int too_many_isolated(struct pglist_data *pgdat, int file,
1494 struct scan_control *sc)
1495 {
1496 unsigned long inactive, isolated;
1497
1498 if (current_is_kswapd())
1499 return 0;
1500
1501 if (!sane_reclaim(sc))
1502 return 0;
1503
1504 if (file) {
1505 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1506 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1507 } else {
1508 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1509 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1510 }
1511
1512 /*
1513 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1514 * won't get blocked by normal direct-reclaimers, forming a circular
1515 * deadlock.
1516 */
1517 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1518 inactive >>= 3;
1519
1520 return isolated > inactive;
1521 }
1522
1523 static noinline_for_stack void
1524 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1525 {
1526 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1527 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1528 LIST_HEAD(pages_to_free);
1529
1530 /*
1531 * Put back any unfreeable pages.
1532 */
1533 while (!list_empty(page_list)) {
1534 struct page *page = lru_to_page(page_list);
1535 int lru;
1536
1537 VM_BUG_ON_PAGE(PageLRU(page), page);
1538 list_del(&page->lru);
1539 if (unlikely(!page_evictable(page))) {
1540 spin_unlock_irq(&pgdat->lru_lock);
1541 putback_lru_page(page);
1542 spin_lock_irq(&pgdat->lru_lock);
1543 continue;
1544 }
1545
1546 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1547
1548 SetPageLRU(page);
1549 lru = page_lru(page);
1550 add_page_to_lru_list(page, lruvec, lru);
1551
1552 if (is_active_lru(lru)) {
1553 int file = is_file_lru(lru);
1554 int numpages = hpage_nr_pages(page);
1555 reclaim_stat->recent_rotated[file] += numpages;
1556 }
1557 if (put_page_testzero(page)) {
1558 __ClearPageLRU(page);
1559 __ClearPageActive(page);
1560 del_page_from_lru_list(page, lruvec, lru);
1561
1562 if (unlikely(PageCompound(page))) {
1563 spin_unlock_irq(&pgdat->lru_lock);
1564 mem_cgroup_uncharge(page);
1565 (*get_compound_page_dtor(page))(page);
1566 spin_lock_irq(&pgdat->lru_lock);
1567 } else
1568 list_add(&page->lru, &pages_to_free);
1569 }
1570 }
1571
1572 /*
1573 * To save our caller's stack, now use input list for pages to free.
1574 */
1575 list_splice(&pages_to_free, page_list);
1576 }
1577
1578 /*
1579 * If a kernel thread (such as nfsd for loop-back mounts) services
1580 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1581 * In that case we should only throttle if the backing device it is
1582 * writing to is congested. In other cases it is safe to throttle.
1583 */
1584 static int current_may_throttle(void)
1585 {
1586 return !(current->flags & PF_LESS_THROTTLE) ||
1587 current->backing_dev_info == NULL ||
1588 bdi_write_congested(current->backing_dev_info);
1589 }
1590
1591 /*
1592 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1593 * of reclaimed pages
1594 */
1595 static noinline_for_stack unsigned long
1596 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1597 struct scan_control *sc, enum lru_list lru)
1598 {
1599 LIST_HEAD(page_list);
1600 unsigned long nr_scanned;
1601 unsigned long nr_reclaimed = 0;
1602 unsigned long nr_taken;
1603 unsigned long nr_dirty = 0;
1604 unsigned long nr_congested = 0;
1605 unsigned long nr_unqueued_dirty = 0;
1606 unsigned long nr_writeback = 0;
1607 unsigned long nr_immediate = 0;
1608 isolate_mode_t isolate_mode = 0;
1609 int file = is_file_lru(lru);
1610 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1611 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1612
1613 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1614 congestion_wait(BLK_RW_ASYNC, HZ/10);
1615
1616 /* We are about to die and free our memory. Return now. */
1617 if (fatal_signal_pending(current))
1618 return SWAP_CLUSTER_MAX;
1619 }
1620
1621 lru_add_drain();
1622
1623 if (!sc->may_unmap)
1624 isolate_mode |= ISOLATE_UNMAPPED;
1625 if (!sc->may_writepage)
1626 isolate_mode |= ISOLATE_CLEAN;
1627
1628 spin_lock_irq(&pgdat->lru_lock);
1629
1630 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1631 &nr_scanned, sc, isolate_mode, lru);
1632
1633 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1634 reclaim_stat->recent_scanned[file] += nr_taken;
1635
1636 if (global_reclaim(sc)) {
1637 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1638 if (current_is_kswapd())
1639 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1640 else
1641 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1642 }
1643 spin_unlock_irq(&pgdat->lru_lock);
1644
1645 if (nr_taken == 0)
1646 return 0;
1647
1648 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1649 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1650 &nr_writeback, &nr_immediate,
1651 false);
1652
1653 spin_lock_irq(&pgdat->lru_lock);
1654
1655 if (global_reclaim(sc)) {
1656 if (current_is_kswapd())
1657 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1658 else
1659 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1660 }
1661
1662 putback_inactive_pages(lruvec, &page_list);
1663
1664 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1665
1666 spin_unlock_irq(&pgdat->lru_lock);
1667
1668 mem_cgroup_uncharge_list(&page_list);
1669 free_hot_cold_page_list(&page_list, true);
1670
1671 /*
1672 * If reclaim is isolating dirty pages under writeback, it implies
1673 * that the long-lived page allocation rate is exceeding the page
1674 * laundering rate. Either the global limits are not being effective
1675 * at throttling processes due to the page distribution throughout
1676 * zones or there is heavy usage of a slow backing device. The
1677 * only option is to throttle from reclaim context which is not ideal
1678 * as there is no guarantee the dirtying process is throttled in the
1679 * same way balance_dirty_pages() manages.
1680 *
1681 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1682 * of pages under pages flagged for immediate reclaim and stall if any
1683 * are encountered in the nr_immediate check below.
1684 */
1685 if (nr_writeback && nr_writeback == nr_taken)
1686 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1687
1688 /*
1689 * Legacy memcg will stall in page writeback so avoid forcibly
1690 * stalling here.
1691 */
1692 if (sane_reclaim(sc)) {
1693 /*
1694 * Tag a zone as congested if all the dirty pages scanned were
1695 * backed by a congested BDI and wait_iff_congested will stall.
1696 */
1697 if (nr_dirty && nr_dirty == nr_congested)
1698 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1699
1700 /*
1701 * If dirty pages are scanned that are not queued for IO, it
1702 * implies that flushers are not keeping up. In this case, flag
1703 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1704 * reclaim context.
1705 */
1706 if (nr_unqueued_dirty == nr_taken)
1707 set_bit(PGDAT_DIRTY, &pgdat->flags);
1708
1709 /*
1710 * If kswapd scans pages marked marked for immediate
1711 * reclaim and under writeback (nr_immediate), it implies
1712 * that pages are cycling through the LRU faster than
1713 * they are written so also forcibly stall.
1714 */
1715 if (nr_immediate && current_may_throttle())
1716 congestion_wait(BLK_RW_ASYNC, HZ/10);
1717 }
1718
1719 /*
1720 * Stall direct reclaim for IO completions if underlying BDIs or zone
1721 * is congested. Allow kswapd to continue until it starts encountering
1722 * unqueued dirty pages or cycling through the LRU too quickly.
1723 */
1724 if (!sc->hibernation_mode && !current_is_kswapd() &&
1725 current_may_throttle())
1726 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1727
1728 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1729 nr_scanned, nr_reclaimed,
1730 sc->priority, file);
1731 return nr_reclaimed;
1732 }
1733
1734 /*
1735 * This moves pages from the active list to the inactive list.
1736 *
1737 * We move them the other way if the page is referenced by one or more
1738 * processes, from rmap.
1739 *
1740 * If the pages are mostly unmapped, the processing is fast and it is
1741 * appropriate to hold zone_lru_lock across the whole operation. But if
1742 * the pages are mapped, the processing is slow (page_referenced()) so we
1743 * should drop zone_lru_lock around each page. It's impossible to balance
1744 * this, so instead we remove the pages from the LRU while processing them.
1745 * It is safe to rely on PG_active against the non-LRU pages in here because
1746 * nobody will play with that bit on a non-LRU page.
1747 *
1748 * The downside is that we have to touch page->_refcount against each page.
1749 * But we had to alter page->flags anyway.
1750 */
1751
1752 static void move_active_pages_to_lru(struct lruvec *lruvec,
1753 struct list_head *list,
1754 struct list_head *pages_to_free,
1755 enum lru_list lru)
1756 {
1757 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1758 unsigned long pgmoved = 0;
1759 struct page *page;
1760 int nr_pages;
1761
1762 while (!list_empty(list)) {
1763 page = lru_to_page(list);
1764 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1765
1766 VM_BUG_ON_PAGE(PageLRU(page), page);
1767 SetPageLRU(page);
1768
1769 nr_pages = hpage_nr_pages(page);
1770 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1771 list_move(&page->lru, &lruvec->lists[lru]);
1772 pgmoved += nr_pages;
1773
1774 if (put_page_testzero(page)) {
1775 __ClearPageLRU(page);
1776 __ClearPageActive(page);
1777 del_page_from_lru_list(page, lruvec, lru);
1778
1779 if (unlikely(PageCompound(page))) {
1780 spin_unlock_irq(&pgdat->lru_lock);
1781 mem_cgroup_uncharge(page);
1782 (*get_compound_page_dtor(page))(page);
1783 spin_lock_irq(&pgdat->lru_lock);
1784 } else
1785 list_add(&page->lru, pages_to_free);
1786 }
1787 }
1788
1789 if (!is_active_lru(lru))
1790 __count_vm_events(PGDEACTIVATE, pgmoved);
1791 }
1792
1793 static void shrink_active_list(unsigned long nr_to_scan,
1794 struct lruvec *lruvec,
1795 struct scan_control *sc,
1796 enum lru_list lru)
1797 {
1798 unsigned long nr_taken;
1799 unsigned long nr_scanned;
1800 unsigned long vm_flags;
1801 LIST_HEAD(l_hold); /* The pages which were snipped off */
1802 LIST_HEAD(l_active);
1803 LIST_HEAD(l_inactive);
1804 struct page *page;
1805 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1806 unsigned long nr_rotated = 0;
1807 isolate_mode_t isolate_mode = 0;
1808 int file = is_file_lru(lru);
1809 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1810
1811 lru_add_drain();
1812
1813 if (!sc->may_unmap)
1814 isolate_mode |= ISOLATE_UNMAPPED;
1815 if (!sc->may_writepage)
1816 isolate_mode |= ISOLATE_CLEAN;
1817
1818 spin_lock_irq(&pgdat->lru_lock);
1819
1820 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1821 &nr_scanned, sc, isolate_mode, lru);
1822
1823 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1824 reclaim_stat->recent_scanned[file] += nr_taken;
1825
1826 if (global_reclaim(sc))
1827 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1828 __count_vm_events(PGREFILL, nr_scanned);
1829
1830 spin_unlock_irq(&pgdat->lru_lock);
1831
1832 while (!list_empty(&l_hold)) {
1833 cond_resched();
1834 page = lru_to_page(&l_hold);
1835 list_del(&page->lru);
1836
1837 if (unlikely(!page_evictable(page))) {
1838 putback_lru_page(page);
1839 continue;
1840 }
1841
1842 if (unlikely(buffer_heads_over_limit)) {
1843 if (page_has_private(page) && trylock_page(page)) {
1844 if (page_has_private(page))
1845 try_to_release_page(page, 0);
1846 unlock_page(page);
1847 }
1848 }
1849
1850 if (page_referenced(page, 0, sc->target_mem_cgroup,
1851 &vm_flags)) {
1852 nr_rotated += hpage_nr_pages(page);
1853 /*
1854 * Identify referenced, file-backed active pages and
1855 * give them one more trip around the active list. So
1856 * that executable code get better chances to stay in
1857 * memory under moderate memory pressure. Anon pages
1858 * are not likely to be evicted by use-once streaming
1859 * IO, plus JVM can create lots of anon VM_EXEC pages,
1860 * so we ignore them here.
1861 */
1862 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1863 list_add(&page->lru, &l_active);
1864 continue;
1865 }
1866 }
1867
1868 ClearPageActive(page); /* we are de-activating */
1869 list_add(&page->lru, &l_inactive);
1870 }
1871
1872 /*
1873 * Move pages back to the lru list.
1874 */
1875 spin_lock_irq(&pgdat->lru_lock);
1876 /*
1877 * Count referenced pages from currently used mappings as rotated,
1878 * even though only some of them are actually re-activated. This
1879 * helps balance scan pressure between file and anonymous pages in
1880 * get_scan_count.
1881 */
1882 reclaim_stat->recent_rotated[file] += nr_rotated;
1883
1884 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1885 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1886 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1887 spin_unlock_irq(&pgdat->lru_lock);
1888
1889 mem_cgroup_uncharge_list(&l_hold);
1890 free_hot_cold_page_list(&l_hold, true);
1891 }
1892
1893 /*
1894 * The inactive anon list should be small enough that the VM never has
1895 * to do too much work.
1896 *
1897 * The inactive file list should be small enough to leave most memory
1898 * to the established workingset on the scan-resistant active list,
1899 * but large enough to avoid thrashing the aggregate readahead window.
1900 *
1901 * Both inactive lists should also be large enough that each inactive
1902 * page has a chance to be referenced again before it is reclaimed.
1903 *
1904 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1905 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1906 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1907 *
1908 * total target max
1909 * memory ratio inactive
1910 * -------------------------------------
1911 * 10MB 1 5MB
1912 * 100MB 1 50MB
1913 * 1GB 3 250MB
1914 * 10GB 10 0.9GB
1915 * 100GB 31 3GB
1916 * 1TB 101 10GB
1917 * 10TB 320 32GB
1918 */
1919 static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1920 {
1921 unsigned long inactive_ratio;
1922 unsigned long inactive;
1923 unsigned long active;
1924 unsigned long gb;
1925
1926 /*
1927 * If we don't have swap space, anonymous page deactivation
1928 * is pointless.
1929 */
1930 if (!file && !total_swap_pages)
1931 return false;
1932
1933 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1934 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1935
1936 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1937 if (gb)
1938 inactive_ratio = int_sqrt(10 * gb);
1939 else
1940 inactive_ratio = 1;
1941
1942 return inactive * inactive_ratio < active;
1943 }
1944
1945 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1946 struct lruvec *lruvec, struct scan_control *sc)
1947 {
1948 if (is_active_lru(lru)) {
1949 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1950 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1951 return 0;
1952 }
1953
1954 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1955 }
1956
1957 enum scan_balance {
1958 SCAN_EQUAL,
1959 SCAN_FRACT,
1960 SCAN_ANON,
1961 SCAN_FILE,
1962 };
1963
1964 /*
1965 * Determine how aggressively the anon and file LRU lists should be
1966 * scanned. The relative value of each set of LRU lists is determined
1967 * by looking at the fraction of the pages scanned we did rotate back
1968 * onto the active list instead of evict.
1969 *
1970 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1971 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1972 */
1973 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1974 struct scan_control *sc, unsigned long *nr,
1975 unsigned long *lru_pages)
1976 {
1977 int swappiness = mem_cgroup_swappiness(memcg);
1978 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1979 u64 fraction[2];
1980 u64 denominator = 0; /* gcc */
1981 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1982 unsigned long anon_prio, file_prio;
1983 enum scan_balance scan_balance;
1984 unsigned long anon, file;
1985 bool force_scan = false;
1986 unsigned long ap, fp;
1987 enum lru_list lru;
1988 bool some_scanned;
1989 int pass;
1990
1991 /*
1992 * If the zone or memcg is small, nr[l] can be 0. This
1993 * results in no scanning on this priority and a potential
1994 * priority drop. Global direct reclaim can go to the next
1995 * zone and tends to have no problems. Global kswapd is for
1996 * zone balancing and it needs to scan a minimum amount. When
1997 * reclaiming for a memcg, a priority drop can cause high
1998 * latencies, so it's better to scan a minimum amount there as
1999 * well.
2000 */
2001 if (current_is_kswapd()) {
2002 if (!pgdat_reclaimable(pgdat))
2003 force_scan = true;
2004 if (!mem_cgroup_online(memcg))
2005 force_scan = true;
2006 }
2007 if (!global_reclaim(sc))
2008 force_scan = true;
2009
2010 /* If we have no swap space, do not bother scanning anon pages. */
2011 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2012 scan_balance = SCAN_FILE;
2013 goto out;
2014 }
2015
2016 /*
2017 * Global reclaim will swap to prevent OOM even with no
2018 * swappiness, but memcg users want to use this knob to
2019 * disable swapping for individual groups completely when
2020 * using the memory controller's swap limit feature would be
2021 * too expensive.
2022 */
2023 if (!global_reclaim(sc) && !swappiness) {
2024 scan_balance = SCAN_FILE;
2025 goto out;
2026 }
2027
2028 /*
2029 * Do not apply any pressure balancing cleverness when the
2030 * system is close to OOM, scan both anon and file equally
2031 * (unless the swappiness setting disagrees with swapping).
2032 */
2033 if (!sc->priority && swappiness) {
2034 scan_balance = SCAN_EQUAL;
2035 goto out;
2036 }
2037
2038 /*
2039 * Prevent the reclaimer from falling into the cache trap: as
2040 * cache pages start out inactive, every cache fault will tip
2041 * the scan balance towards the file LRU. And as the file LRU
2042 * shrinks, so does the window for rotation from references.
2043 * This means we have a runaway feedback loop where a tiny
2044 * thrashing file LRU becomes infinitely more attractive than
2045 * anon pages. Try to detect this based on file LRU size.
2046 */
2047 if (global_reclaim(sc)) {
2048 unsigned long pgdatfile;
2049 unsigned long pgdatfree;
2050 int z;
2051 unsigned long total_high_wmark = 0;
2052
2053 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2054 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2055 node_page_state(pgdat, NR_INACTIVE_FILE);
2056
2057 for (z = 0; z < MAX_NR_ZONES; z++) {
2058 struct zone *zone = &pgdat->node_zones[z];
2059 if (!populated_zone(zone))
2060 continue;
2061
2062 total_high_wmark += high_wmark_pages(zone);
2063 }
2064
2065 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2066 scan_balance = SCAN_ANON;
2067 goto out;
2068 }
2069 }
2070
2071 /*
2072 * If there is enough inactive page cache, i.e. if the size of the
2073 * inactive list is greater than that of the active list *and* the
2074 * inactive list actually has some pages to scan on this priority, we
2075 * do not reclaim anything from the anonymous working set right now.
2076 * Without the second condition we could end up never scanning an
2077 * lruvec even if it has plenty of old anonymous pages unless the
2078 * system is under heavy pressure.
2079 */
2080 if (!inactive_list_is_low(lruvec, true) &&
2081 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2082 scan_balance = SCAN_FILE;
2083 goto out;
2084 }
2085
2086 scan_balance = SCAN_FRACT;
2087
2088 /*
2089 * With swappiness at 100, anonymous and file have the same priority.
2090 * This scanning priority is essentially the inverse of IO cost.
2091 */
2092 anon_prio = swappiness;
2093 file_prio = 200 - anon_prio;
2094
2095 /*
2096 * OK, so we have swap space and a fair amount of page cache
2097 * pages. We use the recently rotated / recently scanned
2098 * ratios to determine how valuable each cache is.
2099 *
2100 * Because workloads change over time (and to avoid overflow)
2101 * we keep these statistics as a floating average, which ends
2102 * up weighing recent references more than old ones.
2103 *
2104 * anon in [0], file in [1]
2105 */
2106
2107 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2108 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2109 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2110 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2111
2112 spin_lock_irq(&pgdat->lru_lock);
2113 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2114 reclaim_stat->recent_scanned[0] /= 2;
2115 reclaim_stat->recent_rotated[0] /= 2;
2116 }
2117
2118 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2119 reclaim_stat->recent_scanned[1] /= 2;
2120 reclaim_stat->recent_rotated[1] /= 2;
2121 }
2122
2123 /*
2124 * The amount of pressure on anon vs file pages is inversely
2125 * proportional to the fraction of recently scanned pages on
2126 * each list that were recently referenced and in active use.
2127 */
2128 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2129 ap /= reclaim_stat->recent_rotated[0] + 1;
2130
2131 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2132 fp /= reclaim_stat->recent_rotated[1] + 1;
2133 spin_unlock_irq(&pgdat->lru_lock);
2134
2135 fraction[0] = ap;
2136 fraction[1] = fp;
2137 denominator = ap + fp + 1;
2138 out:
2139 some_scanned = false;
2140 /* Only use force_scan on second pass. */
2141 for (pass = 0; !some_scanned && pass < 2; pass++) {
2142 *lru_pages = 0;
2143 for_each_evictable_lru(lru) {
2144 int file = is_file_lru(lru);
2145 unsigned long size;
2146 unsigned long scan;
2147
2148 size = lruvec_lru_size(lruvec, lru);
2149 scan = size >> sc->priority;
2150
2151 if (!scan && pass && force_scan)
2152 scan = min(size, SWAP_CLUSTER_MAX);
2153
2154 switch (scan_balance) {
2155 case SCAN_EQUAL:
2156 /* Scan lists relative to size */
2157 break;
2158 case SCAN_FRACT:
2159 /*
2160 * Scan types proportional to swappiness and
2161 * their relative recent reclaim efficiency.
2162 */
2163 scan = div64_u64(scan * fraction[file],
2164 denominator);
2165 break;
2166 case SCAN_FILE:
2167 case SCAN_ANON:
2168 /* Scan one type exclusively */
2169 if ((scan_balance == SCAN_FILE) != file) {
2170 size = 0;
2171 scan = 0;
2172 }
2173 break;
2174 default:
2175 /* Look ma, no brain */
2176 BUG();
2177 }
2178
2179 *lru_pages += size;
2180 nr[lru] = scan;
2181
2182 /*
2183 * Skip the second pass and don't force_scan,
2184 * if we found something to scan.
2185 */
2186 some_scanned |= !!scan;
2187 }
2188 }
2189 }
2190
2191 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2192 static void init_tlb_ubc(void)
2193 {
2194 /*
2195 * This deliberately does not clear the cpumask as it's expensive
2196 * and unnecessary. If there happens to be data in there then the
2197 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2198 * then will be cleared.
2199 */
2200 current->tlb_ubc.flush_required = false;
2201 }
2202 #else
2203 static inline void init_tlb_ubc(void)
2204 {
2205 }
2206 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2207
2208 /*
2209 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2210 */
2211 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2212 struct scan_control *sc, unsigned long *lru_pages)
2213 {
2214 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2215 unsigned long nr[NR_LRU_LISTS];
2216 unsigned long targets[NR_LRU_LISTS];
2217 unsigned long nr_to_scan;
2218 enum lru_list lru;
2219 unsigned long nr_reclaimed = 0;
2220 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2221 struct blk_plug plug;
2222 bool scan_adjusted;
2223
2224 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2225
2226 /* Record the original scan target for proportional adjustments later */
2227 memcpy(targets, nr, sizeof(nr));
2228
2229 /*
2230 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2231 * event that can occur when there is little memory pressure e.g.
2232 * multiple streaming readers/writers. Hence, we do not abort scanning
2233 * when the requested number of pages are reclaimed when scanning at
2234 * DEF_PRIORITY on the assumption that the fact we are direct
2235 * reclaiming implies that kswapd is not keeping up and it is best to
2236 * do a batch of work at once. For memcg reclaim one check is made to
2237 * abort proportional reclaim if either the file or anon lru has already
2238 * dropped to zero at the first pass.
2239 */
2240 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2241 sc->priority == DEF_PRIORITY);
2242
2243 init_tlb_ubc();
2244
2245 blk_start_plug(&plug);
2246 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2247 nr[LRU_INACTIVE_FILE]) {
2248 unsigned long nr_anon, nr_file, percentage;
2249 unsigned long nr_scanned;
2250
2251 for_each_evictable_lru(lru) {
2252 if (nr[lru]) {
2253 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2254 nr[lru] -= nr_to_scan;
2255
2256 nr_reclaimed += shrink_list(lru, nr_to_scan,
2257 lruvec, sc);
2258 }
2259 }
2260
2261 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2262 continue;
2263
2264 /*
2265 * For kswapd and memcg, reclaim at least the number of pages
2266 * requested. Ensure that the anon and file LRUs are scanned
2267 * proportionally what was requested by get_scan_count(). We
2268 * stop reclaiming one LRU and reduce the amount scanning
2269 * proportional to the original scan target.
2270 */
2271 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2272 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2273
2274 /*
2275 * It's just vindictive to attack the larger once the smaller
2276 * has gone to zero. And given the way we stop scanning the
2277 * smaller below, this makes sure that we only make one nudge
2278 * towards proportionality once we've got nr_to_reclaim.
2279 */
2280 if (!nr_file || !nr_anon)
2281 break;
2282
2283 if (nr_file > nr_anon) {
2284 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2285 targets[LRU_ACTIVE_ANON] + 1;
2286 lru = LRU_BASE;
2287 percentage = nr_anon * 100 / scan_target;
2288 } else {
2289 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2290 targets[LRU_ACTIVE_FILE] + 1;
2291 lru = LRU_FILE;
2292 percentage = nr_file * 100 / scan_target;
2293 }
2294
2295 /* Stop scanning the smaller of the LRU */
2296 nr[lru] = 0;
2297 nr[lru + LRU_ACTIVE] = 0;
2298
2299 /*
2300 * Recalculate the other LRU scan count based on its original
2301 * scan target and the percentage scanning already complete
2302 */
2303 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2304 nr_scanned = targets[lru] - nr[lru];
2305 nr[lru] = targets[lru] * (100 - percentage) / 100;
2306 nr[lru] -= min(nr[lru], nr_scanned);
2307
2308 lru += LRU_ACTIVE;
2309 nr_scanned = targets[lru] - nr[lru];
2310 nr[lru] = targets[lru] * (100 - percentage) / 100;
2311 nr[lru] -= min(nr[lru], nr_scanned);
2312
2313 scan_adjusted = true;
2314 }
2315 blk_finish_plug(&plug);
2316 sc->nr_reclaimed += nr_reclaimed;
2317
2318 /*
2319 * Even if we did not try to evict anon pages at all, we want to
2320 * rebalance the anon lru active/inactive ratio.
2321 */
2322 if (inactive_list_is_low(lruvec, false))
2323 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2324 sc, LRU_ACTIVE_ANON);
2325
2326 throttle_vm_writeout(sc->gfp_mask);
2327 }
2328
2329 /* Use reclaim/compaction for costly allocs or under memory pressure */
2330 static bool in_reclaim_compaction(struct scan_control *sc)
2331 {
2332 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2333 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2334 sc->priority < DEF_PRIORITY - 2))
2335 return true;
2336
2337 return false;
2338 }
2339
2340 /*
2341 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2342 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2343 * true if more pages should be reclaimed such that when the page allocator
2344 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2345 * It will give up earlier than that if there is difficulty reclaiming pages.
2346 */
2347 static inline bool should_continue_reclaim(struct zone *zone,
2348 unsigned long nr_reclaimed,
2349 unsigned long nr_scanned,
2350 struct scan_control *sc)
2351 {
2352 unsigned long pages_for_compaction;
2353 unsigned long inactive_lru_pages;
2354
2355 /* If not in reclaim/compaction mode, stop */
2356 if (!in_reclaim_compaction(sc))
2357 return false;
2358
2359 /* Consider stopping depending on scan and reclaim activity */
2360 if (sc->gfp_mask & __GFP_REPEAT) {
2361 /*
2362 * For __GFP_REPEAT allocations, stop reclaiming if the
2363 * full LRU list has been scanned and we are still failing
2364 * to reclaim pages. This full LRU scan is potentially
2365 * expensive but a __GFP_REPEAT caller really wants to succeed
2366 */
2367 if (!nr_reclaimed && !nr_scanned)
2368 return false;
2369 } else {
2370 /*
2371 * For non-__GFP_REPEAT allocations which can presumably
2372 * fail without consequence, stop if we failed to reclaim
2373 * any pages from the last SWAP_CLUSTER_MAX number of
2374 * pages that were scanned. This will return to the
2375 * caller faster at the risk reclaim/compaction and
2376 * the resulting allocation attempt fails
2377 */
2378 if (!nr_reclaimed)
2379 return false;
2380 }
2381
2382 /*
2383 * If we have not reclaimed enough pages for compaction and the
2384 * inactive lists are large enough, continue reclaiming
2385 */
2386 pages_for_compaction = (2UL << sc->order);
2387 inactive_lru_pages = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE);
2388 if (get_nr_swap_pages() > 0)
2389 inactive_lru_pages += node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
2390 if (sc->nr_reclaimed < pages_for_compaction &&
2391 inactive_lru_pages > pages_for_compaction)
2392 return true;
2393
2394 /* If compaction would go ahead or the allocation would succeed, stop */
2395 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2396 case COMPACT_PARTIAL:
2397 case COMPACT_CONTINUE:
2398 return false;
2399 default:
2400 return true;
2401 }
2402 }
2403
2404 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2405 bool is_classzone)
2406 {
2407 struct reclaim_state *reclaim_state = current->reclaim_state;
2408 unsigned long nr_reclaimed, nr_scanned;
2409 bool reclaimable = false;
2410
2411 do {
2412 struct mem_cgroup *root = sc->target_mem_cgroup;
2413 struct mem_cgroup_reclaim_cookie reclaim = {
2414 .zone = zone,
2415 .priority = sc->priority,
2416 };
2417 unsigned long zone_lru_pages = 0;
2418 struct mem_cgroup *memcg;
2419
2420 nr_reclaimed = sc->nr_reclaimed;
2421 nr_scanned = sc->nr_scanned;
2422
2423 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2424 do {
2425 unsigned long lru_pages;
2426 unsigned long reclaimed;
2427 unsigned long scanned;
2428
2429 if (mem_cgroup_low(root, memcg)) {
2430 if (!sc->may_thrash)
2431 continue;
2432 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2433 }
2434
2435 reclaimed = sc->nr_reclaimed;
2436 scanned = sc->nr_scanned;
2437
2438 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2439 zone_lru_pages += lru_pages;
2440
2441 if (memcg && is_classzone)
2442 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2443 memcg, sc->nr_scanned - scanned,
2444 lru_pages);
2445
2446 /* Record the group's reclaim efficiency */
2447 vmpressure(sc->gfp_mask, memcg, false,
2448 sc->nr_scanned - scanned,
2449 sc->nr_reclaimed - reclaimed);
2450
2451 /*
2452 * Direct reclaim and kswapd have to scan all memory
2453 * cgroups to fulfill the overall scan target for the
2454 * zone.
2455 *
2456 * Limit reclaim, on the other hand, only cares about
2457 * nr_to_reclaim pages to be reclaimed and it will
2458 * retry with decreasing priority if one round over the
2459 * whole hierarchy is not sufficient.
2460 */
2461 if (!global_reclaim(sc) &&
2462 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2463 mem_cgroup_iter_break(root, memcg);
2464 break;
2465 }
2466 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2467
2468 /*
2469 * Shrink the slab caches in the same proportion that
2470 * the eligible LRU pages were scanned.
2471 */
2472 if (global_reclaim(sc) && is_classzone)
2473 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2474 sc->nr_scanned - nr_scanned,
2475 zone_lru_pages);
2476
2477 if (reclaim_state) {
2478 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2479 reclaim_state->reclaimed_slab = 0;
2480 }
2481
2482 /* Record the subtree's reclaim efficiency */
2483 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2484 sc->nr_scanned - nr_scanned,
2485 sc->nr_reclaimed - nr_reclaimed);
2486
2487 if (sc->nr_reclaimed - nr_reclaimed)
2488 reclaimable = true;
2489
2490 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2491 sc->nr_scanned - nr_scanned, sc));
2492
2493 return reclaimable;
2494 }
2495
2496 /*
2497 * Returns true if compaction should go ahead for a high-order request, or
2498 * the high-order allocation would succeed without compaction.
2499 */
2500 static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
2501 {
2502 unsigned long balance_gap, watermark;
2503 bool watermark_ok;
2504
2505 /*
2506 * Compaction takes time to run and there are potentially other
2507 * callers using the pages just freed. Continue reclaiming until
2508 * there is a buffer of free pages available to give compaction
2509 * a reasonable chance of completing and allocating the page
2510 */
2511 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2512 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2513 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2514 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
2515
2516 /*
2517 * If compaction is deferred, reclaim up to a point where
2518 * compaction will have a chance of success when re-enabled
2519 */
2520 if (compaction_deferred(zone, order))
2521 return watermark_ok;
2522
2523 /*
2524 * If compaction is not ready to start and allocation is not likely
2525 * to succeed without it, then keep reclaiming.
2526 */
2527 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
2528 return false;
2529
2530 return watermark_ok;
2531 }
2532
2533 /*
2534 * This is the direct reclaim path, for page-allocating processes. We only
2535 * try to reclaim pages from zones which will satisfy the caller's allocation
2536 * request.
2537 *
2538 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2539 * Because:
2540 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2541 * allocation or
2542 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2543 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2544 * zone defense algorithm.
2545 *
2546 * If a zone is deemed to be full of pinned pages then just give it a light
2547 * scan then give up on it.
2548 */
2549 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2550 {
2551 struct zoneref *z;
2552 struct zone *zone;
2553 unsigned long nr_soft_reclaimed;
2554 unsigned long nr_soft_scanned;
2555 gfp_t orig_mask;
2556 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2557
2558 /*
2559 * If the number of buffer_heads in the machine exceeds the maximum
2560 * allowed level, force direct reclaim to scan the highmem zone as
2561 * highmem pages could be pinning lowmem pages storing buffer_heads
2562 */
2563 orig_mask = sc->gfp_mask;
2564 if (buffer_heads_over_limit)
2565 sc->gfp_mask |= __GFP_HIGHMEM;
2566
2567 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2568 gfp_zone(sc->gfp_mask), sc->nodemask) {
2569 enum zone_type classzone_idx;
2570
2571 if (!populated_zone(zone))
2572 continue;
2573
2574 classzone_idx = requested_highidx;
2575 while (!populated_zone(zone->zone_pgdat->node_zones +
2576 classzone_idx))
2577 classzone_idx--;
2578
2579 /*
2580 * Take care memory controller reclaiming has small influence
2581 * to global LRU.
2582 */
2583 if (global_reclaim(sc)) {
2584 if (!cpuset_zone_allowed(zone,
2585 GFP_KERNEL | __GFP_HARDWALL))
2586 continue;
2587
2588 if (sc->priority != DEF_PRIORITY &&
2589 !pgdat_reclaimable(zone->zone_pgdat))
2590 continue; /* Let kswapd poll it */
2591
2592 /*
2593 * If we already have plenty of memory free for
2594 * compaction in this zone, don't free any more.
2595 * Even though compaction is invoked for any
2596 * non-zero order, only frequent costly order
2597 * reclamation is disruptive enough to become a
2598 * noticeable problem, like transparent huge
2599 * page allocations.
2600 */
2601 if (IS_ENABLED(CONFIG_COMPACTION) &&
2602 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2603 zonelist_zone_idx(z) <= requested_highidx &&
2604 compaction_ready(zone, sc->order, requested_highidx)) {
2605 sc->compaction_ready = true;
2606 continue;
2607 }
2608
2609 /*
2610 * This steals pages from memory cgroups over softlimit
2611 * and returns the number of reclaimed pages and
2612 * scanned pages. This works for global memory pressure
2613 * and balancing, not for a memcg's limit.
2614 */
2615 nr_soft_scanned = 0;
2616 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2617 sc->order, sc->gfp_mask,
2618 &nr_soft_scanned);
2619 sc->nr_reclaimed += nr_soft_reclaimed;
2620 sc->nr_scanned += nr_soft_scanned;
2621 /* need some check for avoid more shrink_zone() */
2622 }
2623
2624 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
2625 }
2626
2627 /*
2628 * Restore to original mask to avoid the impact on the caller if we
2629 * promoted it to __GFP_HIGHMEM.
2630 */
2631 sc->gfp_mask = orig_mask;
2632 }
2633
2634 /*
2635 * This is the main entry point to direct page reclaim.
2636 *
2637 * If a full scan of the inactive list fails to free enough memory then we
2638 * are "out of memory" and something needs to be killed.
2639 *
2640 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2641 * high - the zone may be full of dirty or under-writeback pages, which this
2642 * caller can't do much about. We kick the writeback threads and take explicit
2643 * naps in the hope that some of these pages can be written. But if the
2644 * allocating task holds filesystem locks which prevent writeout this might not
2645 * work, and the allocation attempt will fail.
2646 *
2647 * returns: 0, if no pages reclaimed
2648 * else, the number of pages reclaimed
2649 */
2650 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2651 struct scan_control *sc)
2652 {
2653 int initial_priority = sc->priority;
2654 unsigned long total_scanned = 0;
2655 unsigned long writeback_threshold;
2656 retry:
2657 delayacct_freepages_start();
2658
2659 if (global_reclaim(sc))
2660 count_vm_event(ALLOCSTALL);
2661
2662 do {
2663 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2664 sc->priority);
2665 sc->nr_scanned = 0;
2666 shrink_zones(zonelist, sc);
2667
2668 total_scanned += sc->nr_scanned;
2669 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2670 break;
2671
2672 if (sc->compaction_ready)
2673 break;
2674
2675 /*
2676 * If we're getting trouble reclaiming, start doing
2677 * writepage even in laptop mode.
2678 */
2679 if (sc->priority < DEF_PRIORITY - 2)
2680 sc->may_writepage = 1;
2681
2682 /*
2683 * Try to write back as many pages as we just scanned. This
2684 * tends to cause slow streaming writers to write data to the
2685 * disk smoothly, at the dirtying rate, which is nice. But
2686 * that's undesirable in laptop mode, where we *want* lumpy
2687 * writeout. So in laptop mode, write out the whole world.
2688 */
2689 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2690 if (total_scanned > writeback_threshold) {
2691 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2692 WB_REASON_TRY_TO_FREE_PAGES);
2693 sc->may_writepage = 1;
2694 }
2695 } while (--sc->priority >= 0);
2696
2697 delayacct_freepages_end();
2698
2699 if (sc->nr_reclaimed)
2700 return sc->nr_reclaimed;
2701
2702 /* Aborted reclaim to try compaction? don't OOM, then */
2703 if (sc->compaction_ready)
2704 return 1;
2705
2706 /* Untapped cgroup reserves? Don't OOM, retry. */
2707 if (!sc->may_thrash) {
2708 sc->priority = initial_priority;
2709 sc->may_thrash = 1;
2710 goto retry;
2711 }
2712
2713 return 0;
2714 }
2715
2716 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2717 {
2718 struct zone *zone;
2719 unsigned long pfmemalloc_reserve = 0;
2720 unsigned long free_pages = 0;
2721 int i;
2722 bool wmark_ok;
2723
2724 for (i = 0; i <= ZONE_NORMAL; i++) {
2725 zone = &pgdat->node_zones[i];
2726 if (!populated_zone(zone) ||
2727 pgdat_reclaimable_pages(pgdat) == 0)
2728 continue;
2729
2730 pfmemalloc_reserve += min_wmark_pages(zone);
2731 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2732 }
2733
2734 /* If there are no reserves (unexpected config) then do not throttle */
2735 if (!pfmemalloc_reserve)
2736 return true;
2737
2738 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2739
2740 /* kswapd must be awake if processes are being throttled */
2741 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2742 pgdat->classzone_idx = min(pgdat->classzone_idx,
2743 (enum zone_type)ZONE_NORMAL);
2744 wake_up_interruptible(&pgdat->kswapd_wait);
2745 }
2746
2747 return wmark_ok;
2748 }
2749
2750 /*
2751 * Throttle direct reclaimers if backing storage is backed by the network
2752 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2753 * depleted. kswapd will continue to make progress and wake the processes
2754 * when the low watermark is reached.
2755 *
2756 * Returns true if a fatal signal was delivered during throttling. If this
2757 * happens, the page allocator should not consider triggering the OOM killer.
2758 */
2759 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2760 nodemask_t *nodemask)
2761 {
2762 struct zoneref *z;
2763 struct zone *zone;
2764 pg_data_t *pgdat = NULL;
2765
2766 /*
2767 * Kernel threads should not be throttled as they may be indirectly
2768 * responsible for cleaning pages necessary for reclaim to make forward
2769 * progress. kjournald for example may enter direct reclaim while
2770 * committing a transaction where throttling it could forcing other
2771 * processes to block on log_wait_commit().
2772 */
2773 if (current->flags & PF_KTHREAD)
2774 goto out;
2775
2776 /*
2777 * If a fatal signal is pending, this process should not throttle.
2778 * It should return quickly so it can exit and free its memory
2779 */
2780 if (fatal_signal_pending(current))
2781 goto out;
2782
2783 /*
2784 * Check if the pfmemalloc reserves are ok by finding the first node
2785 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2786 * GFP_KERNEL will be required for allocating network buffers when
2787 * swapping over the network so ZONE_HIGHMEM is unusable.
2788 *
2789 * Throttling is based on the first usable node and throttled processes
2790 * wait on a queue until kswapd makes progress and wakes them. There
2791 * is an affinity then between processes waking up and where reclaim
2792 * progress has been made assuming the process wakes on the same node.
2793 * More importantly, processes running on remote nodes will not compete
2794 * for remote pfmemalloc reserves and processes on different nodes
2795 * should make reasonable progress.
2796 */
2797 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2798 gfp_zone(gfp_mask), nodemask) {
2799 if (zone_idx(zone) > ZONE_NORMAL)
2800 continue;
2801
2802 /* Throttle based on the first usable node */
2803 pgdat = zone->zone_pgdat;
2804 if (pfmemalloc_watermark_ok(pgdat))
2805 goto out;
2806 break;
2807 }
2808
2809 /* If no zone was usable by the allocation flags then do not throttle */
2810 if (!pgdat)
2811 goto out;
2812
2813 /* Account for the throttling */
2814 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2815
2816 /*
2817 * If the caller cannot enter the filesystem, it's possible that it
2818 * is due to the caller holding an FS lock or performing a journal
2819 * transaction in the case of a filesystem like ext[3|4]. In this case,
2820 * it is not safe to block on pfmemalloc_wait as kswapd could be
2821 * blocked waiting on the same lock. Instead, throttle for up to a
2822 * second before continuing.
2823 */
2824 if (!(gfp_mask & __GFP_FS)) {
2825 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2826 pfmemalloc_watermark_ok(pgdat), HZ);
2827
2828 goto check_pending;
2829 }
2830
2831 /* Throttle until kswapd wakes the process */
2832 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2833 pfmemalloc_watermark_ok(pgdat));
2834
2835 check_pending:
2836 if (fatal_signal_pending(current))
2837 return true;
2838
2839 out:
2840 return false;
2841 }
2842
2843 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2844 gfp_t gfp_mask, nodemask_t *nodemask)
2845 {
2846 unsigned long nr_reclaimed;
2847 struct scan_control sc = {
2848 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2849 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2850 .order = order,
2851 .nodemask = nodemask,
2852 .priority = DEF_PRIORITY,
2853 .may_writepage = !laptop_mode,
2854 .may_unmap = 1,
2855 .may_swap = 1,
2856 };
2857
2858 /*
2859 * Do not enter reclaim if fatal signal was delivered while throttled.
2860 * 1 is returned so that the page allocator does not OOM kill at this
2861 * point.
2862 */
2863 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2864 return 1;
2865
2866 trace_mm_vmscan_direct_reclaim_begin(order,
2867 sc.may_writepage,
2868 gfp_mask);
2869
2870 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2871
2872 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2873
2874 return nr_reclaimed;
2875 }
2876
2877 #ifdef CONFIG_MEMCG
2878
2879 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2880 gfp_t gfp_mask, bool noswap,
2881 struct zone *zone,
2882 unsigned long *nr_scanned)
2883 {
2884 struct scan_control sc = {
2885 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2886 .target_mem_cgroup = memcg,
2887 .may_writepage = !laptop_mode,
2888 .may_unmap = 1,
2889 .may_swap = !noswap,
2890 };
2891 unsigned long lru_pages;
2892
2893 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2894 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2895
2896 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2897 sc.may_writepage,
2898 sc.gfp_mask);
2899
2900 /*
2901 * NOTE: Although we can get the priority field, using it
2902 * here is not a good idea, since it limits the pages we can scan.
2903 * if we don't reclaim here, the shrink_zone from balance_pgdat
2904 * will pick up pages from other mem cgroup's as well. We hack
2905 * the priority and make it zero.
2906 */
2907 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2908
2909 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2910
2911 *nr_scanned = sc.nr_scanned;
2912 return sc.nr_reclaimed;
2913 }
2914
2915 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2916 unsigned long nr_pages,
2917 gfp_t gfp_mask,
2918 bool may_swap)
2919 {
2920 struct zonelist *zonelist;
2921 unsigned long nr_reclaimed;
2922 int nid;
2923 struct scan_control sc = {
2924 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2925 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2926 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2927 .target_mem_cgroup = memcg,
2928 .priority = DEF_PRIORITY,
2929 .may_writepage = !laptop_mode,
2930 .may_unmap = 1,
2931 .may_swap = may_swap,
2932 };
2933
2934 /*
2935 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2936 * take care of from where we get pages. So the node where we start the
2937 * scan does not need to be the current node.
2938 */
2939 nid = mem_cgroup_select_victim_node(memcg);
2940
2941 zonelist = NODE_DATA(nid)->node_zonelists;
2942
2943 trace_mm_vmscan_memcg_reclaim_begin(0,
2944 sc.may_writepage,
2945 sc.gfp_mask);
2946
2947 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2948
2949 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2950
2951 return nr_reclaimed;
2952 }
2953 #endif
2954
2955 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2956 {
2957 struct mem_cgroup *memcg;
2958
2959 if (!total_swap_pages)
2960 return;
2961
2962 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2963 do {
2964 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2965
2966 if (inactive_list_is_low(lruvec, false))
2967 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2968 sc, LRU_ACTIVE_ANON);
2969
2970 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2971 } while (memcg);
2972 }
2973
2974 static bool zone_balanced(struct zone *zone, int order, bool highorder,
2975 unsigned long balance_gap, int classzone_idx)
2976 {
2977 unsigned long mark = high_wmark_pages(zone) + balance_gap;
2978
2979 /*
2980 * When checking from pgdat_balanced(), kswapd should stop and sleep
2981 * when it reaches the high order-0 watermark and let kcompactd take
2982 * over. Other callers such as wakeup_kswapd() want to determine the
2983 * true high-order watermark.
2984 */
2985 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2986 mark += (1UL << order);
2987 order = 0;
2988 }
2989
2990 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2991 }
2992
2993 /*
2994 * pgdat_balanced() is used when checking if a node is balanced.
2995 *
2996 * For order-0, all zones must be balanced!
2997 *
2998 * For high-order allocations only zones that meet watermarks and are in a
2999 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3000 * total of balanced pages must be at least 25% of the zones allowed by
3001 * classzone_idx for the node to be considered balanced. Forcing all zones to
3002 * be balanced for high orders can cause excessive reclaim when there are
3003 * imbalanced zones.
3004 * The choice of 25% is due to
3005 * o a 16M DMA zone that is balanced will not balance a zone on any
3006 * reasonable sized machine
3007 * o On all other machines, the top zone must be at least a reasonable
3008 * percentage of the middle zones. For example, on 32-bit x86, highmem
3009 * would need to be at least 256M for it to be balance a whole node.
3010 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3011 * to balance a node on its own. These seemed like reasonable ratios.
3012 */
3013 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3014 {
3015 unsigned long managed_pages = 0;
3016 unsigned long balanced_pages = 0;
3017 int i;
3018
3019 /* Check the watermark levels */
3020 for (i = 0; i <= classzone_idx; i++) {
3021 struct zone *zone = pgdat->node_zones + i;
3022
3023 if (!populated_zone(zone))
3024 continue;
3025
3026 managed_pages += zone->managed_pages;
3027
3028 /*
3029 * A special case here:
3030 *
3031 * balance_pgdat() skips over all_unreclaimable after
3032 * DEF_PRIORITY. Effectively, it considers them balanced so
3033 * they must be considered balanced here as well!
3034 */
3035 if (!pgdat_reclaimable(zone->zone_pgdat)) {
3036 balanced_pages += zone->managed_pages;
3037 continue;
3038 }
3039
3040 if (zone_balanced(zone, order, false, 0, i))
3041 balanced_pages += zone->managed_pages;
3042 else if (!order)
3043 return false;
3044 }
3045
3046 if (order)
3047 return balanced_pages >= (managed_pages >> 2);
3048 else
3049 return true;
3050 }
3051
3052 /*
3053 * Prepare kswapd for sleeping. This verifies that there are no processes
3054 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3055 *
3056 * Returns true if kswapd is ready to sleep
3057 */
3058 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3059 int classzone_idx)
3060 {
3061 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3062 if (remaining)
3063 return false;
3064
3065 /*
3066 * The throttled processes are normally woken up in balance_pgdat() as
3067 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3068 * race between when kswapd checks the watermarks and a process gets
3069 * throttled. There is also a potential race if processes get
3070 * throttled, kswapd wakes, a large process exits thereby balancing the
3071 * zones, which causes kswapd to exit balance_pgdat() before reaching
3072 * the wake up checks. If kswapd is going to sleep, no process should
3073 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3074 * the wake up is premature, processes will wake kswapd and get
3075 * throttled again. The difference from wake ups in balance_pgdat() is
3076 * that here we are under prepare_to_wait().
3077 */
3078 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3079 wake_up_all(&pgdat->pfmemalloc_wait);
3080
3081 return pgdat_balanced(pgdat, order, classzone_idx);
3082 }
3083
3084 /*
3085 * kswapd shrinks the zone by the number of pages required to reach
3086 * the high watermark.
3087 *
3088 * Returns true if kswapd scanned at least the requested number of pages to
3089 * reclaim or if the lack of progress was due to pages under writeback.
3090 * This is used to determine if the scanning priority needs to be raised.
3091 */
3092 static bool kswapd_shrink_zone(struct zone *zone,
3093 int classzone_idx,
3094 struct scan_control *sc)
3095 {
3096 unsigned long balance_gap;
3097 bool lowmem_pressure;
3098 struct pglist_data *pgdat = zone->zone_pgdat;
3099
3100 /* Reclaim above the high watermark. */
3101 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3102
3103 /*
3104 * We put equal pressure on every zone, unless one zone has way too
3105 * many pages free already. The "too many pages" is defined as the
3106 * high wmark plus a "gap" where the gap is either the low
3107 * watermark or 1% of the zone, whichever is smaller.
3108 */
3109 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3110 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3111
3112 /*
3113 * If there is no low memory pressure or the zone is balanced then no
3114 * reclaim is necessary
3115 */
3116 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3117 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3118 balance_gap, classzone_idx))
3119 return true;
3120
3121 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3122
3123 /* TODO: ANOMALY */
3124 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3125
3126 /*
3127 * If a zone reaches its high watermark, consider it to be no longer
3128 * congested. It's possible there are dirty pages backed by congested
3129 * BDIs but as pressure is relieved, speculatively avoid congestion
3130 * waits.
3131 */
3132 if (pgdat_reclaimable(zone->zone_pgdat) &&
3133 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3134 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3135 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3136 }
3137
3138 return sc->nr_scanned >= sc->nr_to_reclaim;
3139 }
3140
3141 /*
3142 * For kswapd, balance_pgdat() will work across all this node's zones until
3143 * they are all at high_wmark_pages(zone).
3144 *
3145 * Returns the highest zone idx kswapd was reclaiming at
3146 *
3147 * There is special handling here for zones which are full of pinned pages.
3148 * This can happen if the pages are all mlocked, or if they are all used by
3149 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3150 * What we do is to detect the case where all pages in the zone have been
3151 * scanned twice and there has been zero successful reclaim. Mark the zone as
3152 * dead and from now on, only perform a short scan. Basically we're polling
3153 * the zone for when the problem goes away.
3154 *
3155 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3156 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3157 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3158 * lower zones regardless of the number of free pages in the lower zones. This
3159 * interoperates with the page allocator fallback scheme to ensure that aging
3160 * of pages is balanced across the zones.
3161 */
3162 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3163 {
3164 int i;
3165 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3166 unsigned long nr_soft_reclaimed;
3167 unsigned long nr_soft_scanned;
3168 struct scan_control sc = {
3169 .gfp_mask = GFP_KERNEL,
3170 .order = order,
3171 .priority = DEF_PRIORITY,
3172 .may_writepage = !laptop_mode,
3173 .may_unmap = 1,
3174 .may_swap = 1,
3175 };
3176 count_vm_event(PAGEOUTRUN);
3177
3178 do {
3179 bool raise_priority = true;
3180
3181 sc.nr_reclaimed = 0;
3182
3183 /*
3184 * Scan in the highmem->dma direction for the highest
3185 * zone which needs scanning
3186 */
3187 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3188 struct zone *zone = pgdat->node_zones + i;
3189
3190 if (!populated_zone(zone))
3191 continue;
3192
3193 if (sc.priority != DEF_PRIORITY &&
3194 !pgdat_reclaimable(zone->zone_pgdat))
3195 continue;
3196
3197 /*
3198 * Do some background aging of the anon list, to give
3199 * pages a chance to be referenced before reclaiming.
3200 */
3201 age_active_anon(zone, &sc);
3202
3203 /*
3204 * If the number of buffer_heads in the machine
3205 * exceeds the maximum allowed level and this node
3206 * has a highmem zone, force kswapd to reclaim from
3207 * it to relieve lowmem pressure.
3208 */
3209 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3210 end_zone = i;
3211 break;
3212 }
3213
3214 if (!zone_balanced(zone, order, false, 0, 0)) {
3215 end_zone = i;
3216 break;
3217 } else {
3218 /*
3219 * If balanced, clear the dirty and congested
3220 * flags
3221 *
3222 * TODO: ANOMALY
3223 */
3224 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3225 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3226 }
3227 }
3228
3229 if (i < 0)
3230 goto out;
3231
3232 /*
3233 * If we're getting trouble reclaiming, start doing writepage
3234 * even in laptop mode.
3235 */
3236 if (sc.priority < DEF_PRIORITY - 2)
3237 sc.may_writepage = 1;
3238
3239 /*
3240 * Now scan the zone in the dma->highmem direction, stopping
3241 * at the last zone which needs scanning.
3242 *
3243 * We do this because the page allocator works in the opposite
3244 * direction. This prevents the page allocator from allocating
3245 * pages behind kswapd's direction of progress, which would
3246 * cause too much scanning of the lower zones.
3247 */
3248 for (i = 0; i <= end_zone; i++) {
3249 struct zone *zone = pgdat->node_zones + i;
3250
3251 if (!populated_zone(zone))
3252 continue;
3253
3254 if (sc.priority != DEF_PRIORITY &&
3255 !pgdat_reclaimable(zone->zone_pgdat))
3256 continue;
3257
3258 sc.nr_scanned = 0;
3259
3260 nr_soft_scanned = 0;
3261 /*
3262 * Call soft limit reclaim before calling shrink_zone.
3263 */
3264 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3265 order, sc.gfp_mask,
3266 &nr_soft_scanned);
3267 sc.nr_reclaimed += nr_soft_reclaimed;
3268
3269 /*
3270 * There should be no need to raise the scanning
3271 * priority if enough pages are already being scanned
3272 * that that high watermark would be met at 100%
3273 * efficiency.
3274 */
3275 if (kswapd_shrink_zone(zone, end_zone, &sc))
3276 raise_priority = false;
3277 }
3278
3279 /*
3280 * If the low watermark is met there is no need for processes
3281 * to be throttled on pfmemalloc_wait as they should not be
3282 * able to safely make forward progress. Wake them
3283 */
3284 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3285 pfmemalloc_watermark_ok(pgdat))
3286 wake_up_all(&pgdat->pfmemalloc_wait);
3287
3288 /* Check if kswapd should be suspending */
3289 if (try_to_freeze() || kthread_should_stop())
3290 break;
3291
3292 /*
3293 * Raise priority if scanning rate is too low or there was no
3294 * progress in reclaiming pages
3295 */
3296 if (raise_priority || !sc.nr_reclaimed)
3297 sc.priority--;
3298 } while (sc.priority >= 1 &&
3299 !pgdat_balanced(pgdat, order, classzone_idx));
3300
3301 out:
3302 /*
3303 * Return the highest zone idx we were reclaiming at so
3304 * prepare_kswapd_sleep() makes the same decisions as here.
3305 */
3306 return end_zone;
3307 }
3308
3309 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3310 int classzone_idx, int balanced_classzone_idx)
3311 {
3312 long remaining = 0;
3313 DEFINE_WAIT(wait);
3314
3315 if (freezing(current) || kthread_should_stop())
3316 return;
3317
3318 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3319
3320 /* Try to sleep for a short interval */
3321 if (prepare_kswapd_sleep(pgdat, order, remaining,
3322 balanced_classzone_idx)) {
3323 /*
3324 * Compaction records what page blocks it recently failed to
3325 * isolate pages from and skips them in the future scanning.
3326 * When kswapd is going to sleep, it is reasonable to assume
3327 * that pages and compaction may succeed so reset the cache.
3328 */
3329 reset_isolation_suitable(pgdat);
3330
3331 /*
3332 * We have freed the memory, now we should compact it to make
3333 * allocation of the requested order possible.
3334 */
3335 wakeup_kcompactd(pgdat, order, classzone_idx);
3336
3337 remaining = schedule_timeout(HZ/10);
3338 finish_wait(&pgdat->kswapd_wait, &wait);
3339 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3340 }
3341
3342 /*
3343 * After a short sleep, check if it was a premature sleep. If not, then
3344 * go fully to sleep until explicitly woken up.
3345 */
3346 if (prepare_kswapd_sleep(pgdat, order, remaining,
3347 balanced_classzone_idx)) {
3348 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3349
3350 /*
3351 * vmstat counters are not perfectly accurate and the estimated
3352 * value for counters such as NR_FREE_PAGES can deviate from the
3353 * true value by nr_online_cpus * threshold. To avoid the zone
3354 * watermarks being breached while under pressure, we reduce the
3355 * per-cpu vmstat threshold while kswapd is awake and restore
3356 * them before going back to sleep.
3357 */
3358 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3359
3360 if (!kthread_should_stop())
3361 schedule();
3362
3363 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3364 } else {
3365 if (remaining)
3366 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3367 else
3368 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3369 }
3370 finish_wait(&pgdat->kswapd_wait, &wait);
3371 }
3372
3373 /*
3374 * The background pageout daemon, started as a kernel thread
3375 * from the init process.
3376 *
3377 * This basically trickles out pages so that we have _some_
3378 * free memory available even if there is no other activity
3379 * that frees anything up. This is needed for things like routing
3380 * etc, where we otherwise might have all activity going on in
3381 * asynchronous contexts that cannot page things out.
3382 *
3383 * If there are applications that are active memory-allocators
3384 * (most normal use), this basically shouldn't matter.
3385 */
3386 static int kswapd(void *p)
3387 {
3388 unsigned long order, new_order;
3389 int classzone_idx, new_classzone_idx;
3390 int balanced_classzone_idx;
3391 pg_data_t *pgdat = (pg_data_t*)p;
3392 struct task_struct *tsk = current;
3393
3394 struct reclaim_state reclaim_state = {
3395 .reclaimed_slab = 0,
3396 };
3397 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3398
3399 lockdep_set_current_reclaim_state(GFP_KERNEL);
3400
3401 if (!cpumask_empty(cpumask))
3402 set_cpus_allowed_ptr(tsk, cpumask);
3403 current->reclaim_state = &reclaim_state;
3404
3405 /*
3406 * Tell the memory management that we're a "memory allocator",
3407 * and that if we need more memory we should get access to it
3408 * regardless (see "__alloc_pages()"). "kswapd" should
3409 * never get caught in the normal page freeing logic.
3410 *
3411 * (Kswapd normally doesn't need memory anyway, but sometimes
3412 * you need a small amount of memory in order to be able to
3413 * page out something else, and this flag essentially protects
3414 * us from recursively trying to free more memory as we're
3415 * trying to free the first piece of memory in the first place).
3416 */
3417 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3418 set_freezable();
3419
3420 order = new_order = 0;
3421 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3422 balanced_classzone_idx = classzone_idx;
3423 for ( ; ; ) {
3424 bool ret;
3425
3426 /*
3427 * While we were reclaiming, there might have been another
3428 * wakeup, so check the values.
3429 */
3430 new_order = pgdat->kswapd_max_order;
3431 new_classzone_idx = pgdat->classzone_idx;
3432 pgdat->kswapd_max_order = 0;
3433 pgdat->classzone_idx = pgdat->nr_zones - 1;
3434
3435 if (order < new_order || classzone_idx > new_classzone_idx) {
3436 /*
3437 * Don't sleep if someone wants a larger 'order'
3438 * allocation or has tigher zone constraints
3439 */
3440 order = new_order;
3441 classzone_idx = new_classzone_idx;
3442 } else {
3443 kswapd_try_to_sleep(pgdat, order, classzone_idx,
3444 balanced_classzone_idx);
3445 order = pgdat->kswapd_max_order;
3446 classzone_idx = pgdat->classzone_idx;
3447 new_order = order;
3448 new_classzone_idx = classzone_idx;
3449 pgdat->kswapd_max_order = 0;
3450 pgdat->classzone_idx = pgdat->nr_zones - 1;
3451 }
3452
3453 ret = try_to_freeze();
3454 if (kthread_should_stop())
3455 break;
3456
3457 /*
3458 * We can speed up thawing tasks if we don't call balance_pgdat
3459 * after returning from the refrigerator
3460 */
3461 if (!ret) {
3462 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3463 balanced_classzone_idx = balance_pgdat(pgdat, order,
3464 classzone_idx);
3465 }
3466 }
3467
3468 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3469 current->reclaim_state = NULL;
3470 lockdep_clear_current_reclaim_state();
3471
3472 return 0;
3473 }
3474
3475 /*
3476 * A zone is low on free memory, so wake its kswapd task to service it.
3477 */
3478 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3479 {
3480 pg_data_t *pgdat;
3481
3482 if (!populated_zone(zone))
3483 return;
3484
3485 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3486 return;
3487 pgdat = zone->zone_pgdat;
3488 if (pgdat->kswapd_max_order < order) {
3489 pgdat->kswapd_max_order = order;
3490 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3491 }
3492 if (!waitqueue_active(&pgdat->kswapd_wait))
3493 return;
3494 if (zone_balanced(zone, order, true, 0, 0))
3495 return;
3496
3497 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3498 wake_up_interruptible(&pgdat->kswapd_wait);
3499 }
3500
3501 #ifdef CONFIG_HIBERNATION
3502 /*
3503 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3504 * freed pages.
3505 *
3506 * Rather than trying to age LRUs the aim is to preserve the overall
3507 * LRU order by reclaiming preferentially
3508 * inactive > active > active referenced > active mapped
3509 */
3510 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3511 {
3512 struct reclaim_state reclaim_state;
3513 struct scan_control sc = {
3514 .nr_to_reclaim = nr_to_reclaim,
3515 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3516 .priority = DEF_PRIORITY,
3517 .may_writepage = 1,
3518 .may_unmap = 1,
3519 .may_swap = 1,
3520 .hibernation_mode = 1,
3521 };
3522 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3523 struct task_struct *p = current;
3524 unsigned long nr_reclaimed;
3525
3526 p->flags |= PF_MEMALLOC;
3527 lockdep_set_current_reclaim_state(sc.gfp_mask);
3528 reclaim_state.reclaimed_slab = 0;
3529 p->reclaim_state = &reclaim_state;
3530
3531 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3532
3533 p->reclaim_state = NULL;
3534 lockdep_clear_current_reclaim_state();
3535 p->flags &= ~PF_MEMALLOC;
3536
3537 return nr_reclaimed;
3538 }
3539 #endif /* CONFIG_HIBERNATION */
3540
3541 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3542 not required for correctness. So if the last cpu in a node goes
3543 away, we get changed to run anywhere: as the first one comes back,
3544 restore their cpu bindings. */
3545 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3546 void *hcpu)
3547 {
3548 int nid;
3549
3550 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3551 for_each_node_state(nid, N_MEMORY) {
3552 pg_data_t *pgdat = NODE_DATA(nid);
3553 const struct cpumask *mask;
3554
3555 mask = cpumask_of_node(pgdat->node_id);
3556
3557 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3558 /* One of our CPUs online: restore mask */
3559 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3560 }
3561 }
3562 return NOTIFY_OK;
3563 }
3564
3565 /*
3566 * This kswapd start function will be called by init and node-hot-add.
3567 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3568 */
3569 int kswapd_run(int nid)
3570 {
3571 pg_data_t *pgdat = NODE_DATA(nid);
3572 int ret = 0;
3573
3574 if (pgdat->kswapd)
3575 return 0;
3576
3577 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3578 if (IS_ERR(pgdat->kswapd)) {
3579 /* failure at boot is fatal */
3580 BUG_ON(system_state == SYSTEM_BOOTING);
3581 pr_err("Failed to start kswapd on node %d\n", nid);
3582 ret = PTR_ERR(pgdat->kswapd);
3583 pgdat->kswapd = NULL;
3584 }
3585 return ret;
3586 }
3587
3588 /*
3589 * Called by memory hotplug when all memory in a node is offlined. Caller must
3590 * hold mem_hotplug_begin/end().
3591 */
3592 void kswapd_stop(int nid)
3593 {
3594 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3595
3596 if (kswapd) {
3597 kthread_stop(kswapd);
3598 NODE_DATA(nid)->kswapd = NULL;
3599 }
3600 }
3601
3602 static int __init kswapd_init(void)
3603 {
3604 int nid;
3605
3606 swap_setup();
3607 for_each_node_state(nid, N_MEMORY)
3608 kswapd_run(nid);
3609 hotcpu_notifier(cpu_callback, 0);
3610 return 0;
3611 }
3612
3613 module_init(kswapd_init)
3614
3615 #ifdef CONFIG_NUMA
3616 /*
3617 * Zone reclaim mode
3618 *
3619 * If non-zero call zone_reclaim when the number of free pages falls below
3620 * the watermarks.
3621 */
3622 int zone_reclaim_mode __read_mostly;
3623
3624 #define RECLAIM_OFF 0
3625 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3626 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3627 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3628
3629 /*
3630 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3631 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3632 * a zone.
3633 */
3634 #define ZONE_RECLAIM_PRIORITY 4
3635
3636 /*
3637 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3638 * occur.
3639 */
3640 int sysctl_min_unmapped_ratio = 1;
3641
3642 /*
3643 * If the number of slab pages in a zone grows beyond this percentage then
3644 * slab reclaim needs to occur.
3645 */
3646 int sysctl_min_slab_ratio = 5;
3647
3648 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3649 {
3650 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3651 unsigned long file_lru = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
3652 node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE);
3653
3654 /*
3655 * It's possible for there to be more file mapped pages than
3656 * accounted for by the pages on the file LRU lists because
3657 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3658 */
3659 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3660 }
3661
3662 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3663 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3664 {
3665 unsigned long nr_pagecache_reclaimable;
3666 unsigned long delta = 0;
3667
3668 /*
3669 * If RECLAIM_UNMAP is set, then all file pages are considered
3670 * potentially reclaimable. Otherwise, we have to worry about
3671 * pages like swapcache and zone_unmapped_file_pages() provides
3672 * a better estimate
3673 */
3674 if (zone_reclaim_mode & RECLAIM_UNMAP)
3675 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3676 else
3677 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3678
3679 /* If we can't clean pages, remove dirty pages from consideration */
3680 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3681 delta += zone_page_state(zone, NR_FILE_DIRTY);
3682
3683 /* Watch for any possible underflows due to delta */
3684 if (unlikely(delta > nr_pagecache_reclaimable))
3685 delta = nr_pagecache_reclaimable;
3686
3687 return nr_pagecache_reclaimable - delta;
3688 }
3689
3690 /*
3691 * Try to free up some pages from this zone through reclaim.
3692 */
3693 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3694 {
3695 /* Minimum pages needed in order to stay on node */
3696 const unsigned long nr_pages = 1 << order;
3697 struct task_struct *p = current;
3698 struct reclaim_state reclaim_state;
3699 struct scan_control sc = {
3700 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3701 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3702 .order = order,
3703 .priority = ZONE_RECLAIM_PRIORITY,
3704 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3705 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3706 .may_swap = 1,
3707 };
3708
3709 cond_resched();
3710 /*
3711 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3712 * and we also need to be able to write out pages for RECLAIM_WRITE
3713 * and RECLAIM_UNMAP.
3714 */
3715 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3716 lockdep_set_current_reclaim_state(gfp_mask);
3717 reclaim_state.reclaimed_slab = 0;
3718 p->reclaim_state = &reclaim_state;
3719
3720 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3721 /*
3722 * Free memory by calling shrink zone with increasing
3723 * priorities until we have enough memory freed.
3724 */
3725 do {
3726 shrink_zone(zone, &sc, true);
3727 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3728 }
3729
3730 p->reclaim_state = NULL;
3731 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3732 lockdep_clear_current_reclaim_state();
3733 return sc.nr_reclaimed >= nr_pages;
3734 }
3735
3736 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3737 {
3738 int node_id;
3739 int ret;
3740
3741 /*
3742 * Zone reclaim reclaims unmapped file backed pages and
3743 * slab pages if we are over the defined limits.
3744 *
3745 * A small portion of unmapped file backed pages is needed for
3746 * file I/O otherwise pages read by file I/O will be immediately
3747 * thrown out if the zone is overallocated. So we do not reclaim
3748 * if less than a specified percentage of the zone is used by
3749 * unmapped file backed pages.
3750 */
3751 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3752 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3753 return ZONE_RECLAIM_FULL;
3754
3755 if (!pgdat_reclaimable(zone->zone_pgdat))
3756 return ZONE_RECLAIM_FULL;
3757
3758 /*
3759 * Do not scan if the allocation should not be delayed.
3760 */
3761 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3762 return ZONE_RECLAIM_NOSCAN;
3763
3764 /*
3765 * Only run zone reclaim on the local zone or on zones that do not
3766 * have associated processors. This will favor the local processor
3767 * over remote processors and spread off node memory allocations
3768 * as wide as possible.
3769 */
3770 node_id = zone_to_nid(zone);
3771 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3772 return ZONE_RECLAIM_NOSCAN;
3773
3774 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3775 return ZONE_RECLAIM_NOSCAN;
3776
3777 ret = __zone_reclaim(zone, gfp_mask, order);
3778 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3779
3780 if (!ret)
3781 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3782
3783 return ret;
3784 }
3785 #endif
3786
3787 /*
3788 * page_evictable - test whether a page is evictable
3789 * @page: the page to test
3790 *
3791 * Test whether page is evictable--i.e., should be placed on active/inactive
3792 * lists vs unevictable list.
3793 *
3794 * Reasons page might not be evictable:
3795 * (1) page's mapping marked unevictable
3796 * (2) page is part of an mlocked VMA
3797 *
3798 */
3799 int page_evictable(struct page *page)
3800 {
3801 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3802 }
3803
3804 #ifdef CONFIG_SHMEM
3805 /**
3806 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3807 * @pages: array of pages to check
3808 * @nr_pages: number of pages to check
3809 *
3810 * Checks pages for evictability and moves them to the appropriate lru list.
3811 *
3812 * This function is only used for SysV IPC SHM_UNLOCK.
3813 */
3814 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3815 {
3816 struct lruvec *lruvec;
3817 struct zone *zone = NULL;
3818 int pgscanned = 0;
3819 int pgrescued = 0;
3820 int i;
3821
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pages[i];
3824 struct zone *pagezone;
3825
3826 pgscanned++;
3827 pagezone = page_zone(page);
3828 if (pagezone != zone) {
3829 if (zone)
3830 spin_unlock_irq(zone_lru_lock(zone));
3831 zone = pagezone;
3832 spin_lock_irq(zone_lru_lock(zone));
3833 }
3834 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
3835
3836 if (!PageLRU(page) || !PageUnevictable(page))
3837 continue;
3838
3839 if (page_evictable(page)) {
3840 enum lru_list lru = page_lru_base_type(page);
3841
3842 VM_BUG_ON_PAGE(PageActive(page), page);
3843 ClearPageUnevictable(page);
3844 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3845 add_page_to_lru_list(page, lruvec, lru);
3846 pgrescued++;
3847 }
3848 }
3849
3850 if (zone) {
3851 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3852 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3853 spin_unlock_irq(zone_lru_lock(zone));
3854 }
3855 }
3856 #endif /* CONFIG_SHMEM */
This page took 0.117599 seconds and 5 git commands to generate.