Merge branch 'simplify_PRT' into release
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
60
61 int may_writepage;
62
63 /* Can pages be swapped as part of reclaim? */
64 int may_swap;
65
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
71
72 int swappiness;
73
74 int all_unreclaimable;
75
76 int order;
77
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
80
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 unsigned long *scanned, int order, int mode,
84 struct zone *z, struct mem_cgroup *mem_cont,
85 int active, int file);
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field) \
92 do { \
93 if ((_page)->lru.prev != _base) { \
94 struct page *prev; \
95 \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
98 } \
99 } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
112 } \
113 } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119 * From 0 .. 100. Higher means more swappy.
120 */
121 int vm_swappiness = 60;
122 long vm_total_pages; /* The total number of pages which the VM controls */
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
129 #else
130 #define scanning_global_lru(sc) (1)
131 #endif
132
133 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134 struct scan_control *sc)
135 {
136 if (!scanning_global_lru(sc))
137 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
138
139 return &zone->reclaim_stat;
140 }
141
142 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
143 enum lru_list lru)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
147
148 return zone_page_state(zone, NR_LRU_BASE + lru);
149 }
150
151
152 /*
153 * Add a shrinker callback to be called from the vm
154 */
155 void register_shrinker(struct shrinker *shrinker)
156 {
157 shrinker->nr = 0;
158 down_write(&shrinker_rwsem);
159 list_add_tail(&shrinker->list, &shrinker_list);
160 up_write(&shrinker_rwsem);
161 }
162 EXPORT_SYMBOL(register_shrinker);
163
164 /*
165 * Remove one
166 */
167 void unregister_shrinker(struct shrinker *shrinker)
168 {
169 down_write(&shrinker_rwsem);
170 list_del(&shrinker->list);
171 up_write(&shrinker_rwsem);
172 }
173 EXPORT_SYMBOL(unregister_shrinker);
174
175 #define SHRINK_BATCH 128
176 /*
177 * Call the shrink functions to age shrinkable caches
178 *
179 * Here we assume it costs one seek to replace a lru page and that it also
180 * takes a seek to recreate a cache object. With this in mind we age equal
181 * percentages of the lru and ageable caches. This should balance the seeks
182 * generated by these structures.
183 *
184 * If the vm encountered mapped pages on the LRU it increase the pressure on
185 * slab to avoid swapping.
186 *
187 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
188 *
189 * `lru_pages' represents the number of on-LRU pages in all the zones which
190 * are eligible for the caller's allocation attempt. It is used for balancing
191 * slab reclaim versus page reclaim.
192 *
193 * Returns the number of slab objects which we shrunk.
194 */
195 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
196 unsigned long lru_pages)
197 {
198 struct shrinker *shrinker;
199 unsigned long ret = 0;
200
201 if (scanned == 0)
202 scanned = SWAP_CLUSTER_MAX;
203
204 if (!down_read_trylock(&shrinker_rwsem))
205 return 1; /* Assume we'll be able to shrink next time */
206
207 list_for_each_entry(shrinker, &shrinker_list, list) {
208 unsigned long long delta;
209 unsigned long total_scan;
210 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
211
212 delta = (4 * scanned) / shrinker->seeks;
213 delta *= max_pass;
214 do_div(delta, lru_pages + 1);
215 shrinker->nr += delta;
216 if (shrinker->nr < 0) {
217 printk(KERN_ERR "%s: nr=%ld\n",
218 __func__, shrinker->nr);
219 shrinker->nr = max_pass;
220 }
221
222 /*
223 * Avoid risking looping forever due to too large nr value:
224 * never try to free more than twice the estimate number of
225 * freeable entries.
226 */
227 if (shrinker->nr > max_pass * 2)
228 shrinker->nr = max_pass * 2;
229
230 total_scan = shrinker->nr;
231 shrinker->nr = 0;
232
233 while (total_scan >= SHRINK_BATCH) {
234 long this_scan = SHRINK_BATCH;
235 int shrink_ret;
236 int nr_before;
237
238 nr_before = (*shrinker->shrink)(0, gfp_mask);
239 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
240 if (shrink_ret == -1)
241 break;
242 if (shrink_ret < nr_before)
243 ret += nr_before - shrink_ret;
244 count_vm_events(SLABS_SCANNED, this_scan);
245 total_scan -= this_scan;
246
247 cond_resched();
248 }
249
250 shrinker->nr += total_scan;
251 }
252 up_read(&shrinker_rwsem);
253 return ret;
254 }
255
256 /* Called without lock on whether page is mapped, so answer is unstable */
257 static inline int page_mapping_inuse(struct page *page)
258 {
259 struct address_space *mapping;
260
261 /* Page is in somebody's page tables. */
262 if (page_mapped(page))
263 return 1;
264
265 /* Be more reluctant to reclaim swapcache than pagecache */
266 if (PageSwapCache(page))
267 return 1;
268
269 mapping = page_mapping(page);
270 if (!mapping)
271 return 0;
272
273 /* File is mmap'd by somebody? */
274 return mapping_mapped(mapping);
275 }
276
277 static inline int is_page_cache_freeable(struct page *page)
278 {
279 return page_count(page) - !!PagePrivate(page) == 2;
280 }
281
282 static int may_write_to_queue(struct backing_dev_info *bdi)
283 {
284 if (current->flags & PF_SWAPWRITE)
285 return 1;
286 if (!bdi_write_congested(bdi))
287 return 1;
288 if (bdi == current->backing_dev_info)
289 return 1;
290 return 0;
291 }
292
293 /*
294 * We detected a synchronous write error writing a page out. Probably
295 * -ENOSPC. We need to propagate that into the address_space for a subsequent
296 * fsync(), msync() or close().
297 *
298 * The tricky part is that after writepage we cannot touch the mapping: nothing
299 * prevents it from being freed up. But we have a ref on the page and once
300 * that page is locked, the mapping is pinned.
301 *
302 * We're allowed to run sleeping lock_page() here because we know the caller has
303 * __GFP_FS.
304 */
305 static void handle_write_error(struct address_space *mapping,
306 struct page *page, int error)
307 {
308 lock_page(page);
309 if (page_mapping(page) == mapping)
310 mapping_set_error(mapping, error);
311 unlock_page(page);
312 }
313
314 /* Request for sync pageout. */
315 enum pageout_io {
316 PAGEOUT_IO_ASYNC,
317 PAGEOUT_IO_SYNC,
318 };
319
320 /* possible outcome of pageout() */
321 typedef enum {
322 /* failed to write page out, page is locked */
323 PAGE_KEEP,
324 /* move page to the active list, page is locked */
325 PAGE_ACTIVATE,
326 /* page has been sent to the disk successfully, page is unlocked */
327 PAGE_SUCCESS,
328 /* page is clean and locked */
329 PAGE_CLEAN,
330 } pageout_t;
331
332 /*
333 * pageout is called by shrink_page_list() for each dirty page.
334 * Calls ->writepage().
335 */
336 static pageout_t pageout(struct page *page, struct address_space *mapping,
337 enum pageout_io sync_writeback)
338 {
339 /*
340 * If the page is dirty, only perform writeback if that write
341 * will be non-blocking. To prevent this allocation from being
342 * stalled by pagecache activity. But note that there may be
343 * stalls if we need to run get_block(). We could test
344 * PagePrivate for that.
345 *
346 * If this process is currently in generic_file_write() against
347 * this page's queue, we can perform writeback even if that
348 * will block.
349 *
350 * If the page is swapcache, write it back even if that would
351 * block, for some throttling. This happens by accident, because
352 * swap_backing_dev_info is bust: it doesn't reflect the
353 * congestion state of the swapdevs. Easy to fix, if needed.
354 * See swapfile.c:page_queue_congested().
355 */
356 if (!is_page_cache_freeable(page))
357 return PAGE_KEEP;
358 if (!mapping) {
359 /*
360 * Some data journaling orphaned pages can have
361 * page->mapping == NULL while being dirty with clean buffers.
362 */
363 if (PagePrivate(page)) {
364 if (try_to_free_buffers(page)) {
365 ClearPageDirty(page);
366 printk("%s: orphaned page\n", __func__);
367 return PAGE_CLEAN;
368 }
369 }
370 return PAGE_KEEP;
371 }
372 if (mapping->a_ops->writepage == NULL)
373 return PAGE_ACTIVATE;
374 if (!may_write_to_queue(mapping->backing_dev_info))
375 return PAGE_KEEP;
376
377 if (clear_page_dirty_for_io(page)) {
378 int res;
379 struct writeback_control wbc = {
380 .sync_mode = WB_SYNC_NONE,
381 .nr_to_write = SWAP_CLUSTER_MAX,
382 .range_start = 0,
383 .range_end = LLONG_MAX,
384 .nonblocking = 1,
385 .for_reclaim = 1,
386 };
387
388 SetPageReclaim(page);
389 res = mapping->a_ops->writepage(page, &wbc);
390 if (res < 0)
391 handle_write_error(mapping, page, res);
392 if (res == AOP_WRITEPAGE_ACTIVATE) {
393 ClearPageReclaim(page);
394 return PAGE_ACTIVATE;
395 }
396
397 /*
398 * Wait on writeback if requested to. This happens when
399 * direct reclaiming a large contiguous area and the
400 * first attempt to free a range of pages fails.
401 */
402 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
403 wait_on_page_writeback(page);
404
405 if (!PageWriteback(page)) {
406 /* synchronous write or broken a_ops? */
407 ClearPageReclaim(page);
408 }
409 inc_zone_page_state(page, NR_VMSCAN_WRITE);
410 return PAGE_SUCCESS;
411 }
412
413 return PAGE_CLEAN;
414 }
415
416 /*
417 * Same as remove_mapping, but if the page is removed from the mapping, it
418 * gets returned with a refcount of 0.
419 */
420 static int __remove_mapping(struct address_space *mapping, struct page *page)
421 {
422 BUG_ON(!PageLocked(page));
423 BUG_ON(mapping != page_mapping(page));
424
425 spin_lock_irq(&mapping->tree_lock);
426 /*
427 * The non racy check for a busy page.
428 *
429 * Must be careful with the order of the tests. When someone has
430 * a ref to the page, it may be possible that they dirty it then
431 * drop the reference. So if PageDirty is tested before page_count
432 * here, then the following race may occur:
433 *
434 * get_user_pages(&page);
435 * [user mapping goes away]
436 * write_to(page);
437 * !PageDirty(page) [good]
438 * SetPageDirty(page);
439 * put_page(page);
440 * !page_count(page) [good, discard it]
441 *
442 * [oops, our write_to data is lost]
443 *
444 * Reversing the order of the tests ensures such a situation cannot
445 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
446 * load is not satisfied before that of page->_count.
447 *
448 * Note that if SetPageDirty is always performed via set_page_dirty,
449 * and thus under tree_lock, then this ordering is not required.
450 */
451 if (!page_freeze_refs(page, 2))
452 goto cannot_free;
453 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
454 if (unlikely(PageDirty(page))) {
455 page_unfreeze_refs(page, 2);
456 goto cannot_free;
457 }
458
459 if (PageSwapCache(page)) {
460 swp_entry_t swap = { .val = page_private(page) };
461 __delete_from_swap_cache(page);
462 spin_unlock_irq(&mapping->tree_lock);
463 swap_free(swap);
464 } else {
465 __remove_from_page_cache(page);
466 spin_unlock_irq(&mapping->tree_lock);
467 }
468
469 return 1;
470
471 cannot_free:
472 spin_unlock_irq(&mapping->tree_lock);
473 return 0;
474 }
475
476 /*
477 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
478 * someone else has a ref on the page, abort and return 0. If it was
479 * successfully detached, return 1. Assumes the caller has a single ref on
480 * this page.
481 */
482 int remove_mapping(struct address_space *mapping, struct page *page)
483 {
484 if (__remove_mapping(mapping, page)) {
485 /*
486 * Unfreezing the refcount with 1 rather than 2 effectively
487 * drops the pagecache ref for us without requiring another
488 * atomic operation.
489 */
490 page_unfreeze_refs(page, 1);
491 return 1;
492 }
493 return 0;
494 }
495
496 /**
497 * putback_lru_page - put previously isolated page onto appropriate LRU list
498 * @page: page to be put back to appropriate lru list
499 *
500 * Add previously isolated @page to appropriate LRU list.
501 * Page may still be unevictable for other reasons.
502 *
503 * lru_lock must not be held, interrupts must be enabled.
504 */
505 #ifdef CONFIG_UNEVICTABLE_LRU
506 void putback_lru_page(struct page *page)
507 {
508 int lru;
509 int active = !!TestClearPageActive(page);
510 int was_unevictable = PageUnevictable(page);
511
512 VM_BUG_ON(PageLRU(page));
513
514 redo:
515 ClearPageUnevictable(page);
516
517 if (page_evictable(page, NULL)) {
518 /*
519 * For evictable pages, we can use the cache.
520 * In event of a race, worst case is we end up with an
521 * unevictable page on [in]active list.
522 * We know how to handle that.
523 */
524 lru = active + page_is_file_cache(page);
525 lru_cache_add_lru(page, lru);
526 } else {
527 /*
528 * Put unevictable pages directly on zone's unevictable
529 * list.
530 */
531 lru = LRU_UNEVICTABLE;
532 add_page_to_unevictable_list(page);
533 }
534
535 /*
536 * page's status can change while we move it among lru. If an evictable
537 * page is on unevictable list, it never be freed. To avoid that,
538 * check after we added it to the list, again.
539 */
540 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
541 if (!isolate_lru_page(page)) {
542 put_page(page);
543 goto redo;
544 }
545 /* This means someone else dropped this page from LRU
546 * So, it will be freed or putback to LRU again. There is
547 * nothing to do here.
548 */
549 }
550
551 if (was_unevictable && lru != LRU_UNEVICTABLE)
552 count_vm_event(UNEVICTABLE_PGRESCUED);
553 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
554 count_vm_event(UNEVICTABLE_PGCULLED);
555
556 put_page(page); /* drop ref from isolate */
557 }
558
559 #else /* CONFIG_UNEVICTABLE_LRU */
560
561 void putback_lru_page(struct page *page)
562 {
563 int lru;
564 VM_BUG_ON(PageLRU(page));
565
566 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
567 lru_cache_add_lru(page, lru);
568 put_page(page);
569 }
570 #endif /* CONFIG_UNEVICTABLE_LRU */
571
572
573 /*
574 * shrink_page_list() returns the number of reclaimed pages
575 */
576 static unsigned long shrink_page_list(struct list_head *page_list,
577 struct scan_control *sc,
578 enum pageout_io sync_writeback)
579 {
580 LIST_HEAD(ret_pages);
581 struct pagevec freed_pvec;
582 int pgactivate = 0;
583 unsigned long nr_reclaimed = 0;
584
585 cond_resched();
586
587 pagevec_init(&freed_pvec, 1);
588 while (!list_empty(page_list)) {
589 struct address_space *mapping;
590 struct page *page;
591 int may_enter_fs;
592 int referenced;
593
594 cond_resched();
595
596 page = lru_to_page(page_list);
597 list_del(&page->lru);
598
599 if (!trylock_page(page))
600 goto keep;
601
602 VM_BUG_ON(PageActive(page));
603
604 sc->nr_scanned++;
605
606 if (unlikely(!page_evictable(page, NULL)))
607 goto cull_mlocked;
608
609 if (!sc->may_swap && page_mapped(page))
610 goto keep_locked;
611
612 /* Double the slab pressure for mapped and swapcache pages */
613 if (page_mapped(page) || PageSwapCache(page))
614 sc->nr_scanned++;
615
616 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
617 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
618
619 if (PageWriteback(page)) {
620 /*
621 * Synchronous reclaim is performed in two passes,
622 * first an asynchronous pass over the list to
623 * start parallel writeback, and a second synchronous
624 * pass to wait for the IO to complete. Wait here
625 * for any page for which writeback has already
626 * started.
627 */
628 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
629 wait_on_page_writeback(page);
630 else
631 goto keep_locked;
632 }
633
634 referenced = page_referenced(page, 1, sc->mem_cgroup);
635 /* In active use or really unfreeable? Activate it. */
636 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
637 referenced && page_mapping_inuse(page))
638 goto activate_locked;
639
640 /*
641 * Anonymous process memory has backing store?
642 * Try to allocate it some swap space here.
643 */
644 if (PageAnon(page) && !PageSwapCache(page)) {
645 if (!(sc->gfp_mask & __GFP_IO))
646 goto keep_locked;
647 if (!add_to_swap(page))
648 goto activate_locked;
649 may_enter_fs = 1;
650 }
651
652 mapping = page_mapping(page);
653
654 /*
655 * The page is mapped into the page tables of one or more
656 * processes. Try to unmap it here.
657 */
658 if (page_mapped(page) && mapping) {
659 switch (try_to_unmap(page, 0)) {
660 case SWAP_FAIL:
661 goto activate_locked;
662 case SWAP_AGAIN:
663 goto keep_locked;
664 case SWAP_MLOCK:
665 goto cull_mlocked;
666 case SWAP_SUCCESS:
667 ; /* try to free the page below */
668 }
669 }
670
671 if (PageDirty(page)) {
672 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
673 goto keep_locked;
674 if (!may_enter_fs)
675 goto keep_locked;
676 if (!sc->may_writepage)
677 goto keep_locked;
678
679 /* Page is dirty, try to write it out here */
680 switch (pageout(page, mapping, sync_writeback)) {
681 case PAGE_KEEP:
682 goto keep_locked;
683 case PAGE_ACTIVATE:
684 goto activate_locked;
685 case PAGE_SUCCESS:
686 if (PageWriteback(page) || PageDirty(page))
687 goto keep;
688 /*
689 * A synchronous write - probably a ramdisk. Go
690 * ahead and try to reclaim the page.
691 */
692 if (!trylock_page(page))
693 goto keep;
694 if (PageDirty(page) || PageWriteback(page))
695 goto keep_locked;
696 mapping = page_mapping(page);
697 case PAGE_CLEAN:
698 ; /* try to free the page below */
699 }
700 }
701
702 /*
703 * If the page has buffers, try to free the buffer mappings
704 * associated with this page. If we succeed we try to free
705 * the page as well.
706 *
707 * We do this even if the page is PageDirty().
708 * try_to_release_page() does not perform I/O, but it is
709 * possible for a page to have PageDirty set, but it is actually
710 * clean (all its buffers are clean). This happens if the
711 * buffers were written out directly, with submit_bh(). ext3
712 * will do this, as well as the blockdev mapping.
713 * try_to_release_page() will discover that cleanness and will
714 * drop the buffers and mark the page clean - it can be freed.
715 *
716 * Rarely, pages can have buffers and no ->mapping. These are
717 * the pages which were not successfully invalidated in
718 * truncate_complete_page(). We try to drop those buffers here
719 * and if that worked, and the page is no longer mapped into
720 * process address space (page_count == 1) it can be freed.
721 * Otherwise, leave the page on the LRU so it is swappable.
722 */
723 if (PagePrivate(page)) {
724 if (!try_to_release_page(page, sc->gfp_mask))
725 goto activate_locked;
726 if (!mapping && page_count(page) == 1) {
727 unlock_page(page);
728 if (put_page_testzero(page))
729 goto free_it;
730 else {
731 /*
732 * rare race with speculative reference.
733 * the speculative reference will free
734 * this page shortly, so we may
735 * increment nr_reclaimed here (and
736 * leave it off the LRU).
737 */
738 nr_reclaimed++;
739 continue;
740 }
741 }
742 }
743
744 if (!mapping || !__remove_mapping(mapping, page))
745 goto keep_locked;
746
747 /*
748 * At this point, we have no other references and there is
749 * no way to pick any more up (removed from LRU, removed
750 * from pagecache). Can use non-atomic bitops now (and
751 * we obviously don't have to worry about waking up a process
752 * waiting on the page lock, because there are no references.
753 */
754 __clear_page_locked(page);
755 free_it:
756 nr_reclaimed++;
757 if (!pagevec_add(&freed_pvec, page)) {
758 __pagevec_free(&freed_pvec);
759 pagevec_reinit(&freed_pvec);
760 }
761 continue;
762
763 cull_mlocked:
764 if (PageSwapCache(page))
765 try_to_free_swap(page);
766 unlock_page(page);
767 putback_lru_page(page);
768 continue;
769
770 activate_locked:
771 /* Not a candidate for swapping, so reclaim swap space. */
772 if (PageSwapCache(page) && vm_swap_full())
773 try_to_free_swap(page);
774 VM_BUG_ON(PageActive(page));
775 SetPageActive(page);
776 pgactivate++;
777 keep_locked:
778 unlock_page(page);
779 keep:
780 list_add(&page->lru, &ret_pages);
781 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
782 }
783 list_splice(&ret_pages, page_list);
784 if (pagevec_count(&freed_pvec))
785 __pagevec_free(&freed_pvec);
786 count_vm_events(PGACTIVATE, pgactivate);
787 return nr_reclaimed;
788 }
789
790 /* LRU Isolation modes. */
791 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
792 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
793 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
794
795 /*
796 * Attempt to remove the specified page from its LRU. Only take this page
797 * if it is of the appropriate PageActive status. Pages which are being
798 * freed elsewhere are also ignored.
799 *
800 * page: page to consider
801 * mode: one of the LRU isolation modes defined above
802 *
803 * returns 0 on success, -ve errno on failure.
804 */
805 int __isolate_lru_page(struct page *page, int mode, int file)
806 {
807 int ret = -EINVAL;
808
809 /* Only take pages on the LRU. */
810 if (!PageLRU(page))
811 return ret;
812
813 /*
814 * When checking the active state, we need to be sure we are
815 * dealing with comparible boolean values. Take the logical not
816 * of each.
817 */
818 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
819 return ret;
820
821 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
822 return ret;
823
824 /*
825 * When this function is being called for lumpy reclaim, we
826 * initially look into all LRU pages, active, inactive and
827 * unevictable; only give shrink_page_list evictable pages.
828 */
829 if (PageUnevictable(page))
830 return ret;
831
832 ret = -EBUSY;
833
834 if (likely(get_page_unless_zero(page))) {
835 /*
836 * Be careful not to clear PageLRU until after we're
837 * sure the page is not being freed elsewhere -- the
838 * page release code relies on it.
839 */
840 ClearPageLRU(page);
841 ret = 0;
842 mem_cgroup_del_lru(page);
843 }
844
845 return ret;
846 }
847
848 /*
849 * zone->lru_lock is heavily contended. Some of the functions that
850 * shrink the lists perform better by taking out a batch of pages
851 * and working on them outside the LRU lock.
852 *
853 * For pagecache intensive workloads, this function is the hottest
854 * spot in the kernel (apart from copy_*_user functions).
855 *
856 * Appropriate locks must be held before calling this function.
857 *
858 * @nr_to_scan: The number of pages to look through on the list.
859 * @src: The LRU list to pull pages off.
860 * @dst: The temp list to put pages on to.
861 * @scanned: The number of pages that were scanned.
862 * @order: The caller's attempted allocation order
863 * @mode: One of the LRU isolation modes
864 * @file: True [1] if isolating file [!anon] pages
865 *
866 * returns how many pages were moved onto *@dst.
867 */
868 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
869 struct list_head *src, struct list_head *dst,
870 unsigned long *scanned, int order, int mode, int file)
871 {
872 unsigned long nr_taken = 0;
873 unsigned long scan;
874
875 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
876 struct page *page;
877 unsigned long pfn;
878 unsigned long end_pfn;
879 unsigned long page_pfn;
880 int zone_id;
881
882 page = lru_to_page(src);
883 prefetchw_prev_lru_page(page, src, flags);
884
885 VM_BUG_ON(!PageLRU(page));
886
887 switch (__isolate_lru_page(page, mode, file)) {
888 case 0:
889 list_move(&page->lru, dst);
890 nr_taken++;
891 break;
892
893 case -EBUSY:
894 /* else it is being freed elsewhere */
895 list_move(&page->lru, src);
896 continue;
897
898 default:
899 BUG();
900 }
901
902 if (!order)
903 continue;
904
905 /*
906 * Attempt to take all pages in the order aligned region
907 * surrounding the tag page. Only take those pages of
908 * the same active state as that tag page. We may safely
909 * round the target page pfn down to the requested order
910 * as the mem_map is guarenteed valid out to MAX_ORDER,
911 * where that page is in a different zone we will detect
912 * it from its zone id and abort this block scan.
913 */
914 zone_id = page_zone_id(page);
915 page_pfn = page_to_pfn(page);
916 pfn = page_pfn & ~((1 << order) - 1);
917 end_pfn = pfn + (1 << order);
918 for (; pfn < end_pfn; pfn++) {
919 struct page *cursor_page;
920
921 /* The target page is in the block, ignore it. */
922 if (unlikely(pfn == page_pfn))
923 continue;
924
925 /* Avoid holes within the zone. */
926 if (unlikely(!pfn_valid_within(pfn)))
927 break;
928
929 cursor_page = pfn_to_page(pfn);
930
931 /* Check that we have not crossed a zone boundary. */
932 if (unlikely(page_zone_id(cursor_page) != zone_id))
933 continue;
934 switch (__isolate_lru_page(cursor_page, mode, file)) {
935 case 0:
936 list_move(&cursor_page->lru, dst);
937 nr_taken++;
938 scan++;
939 break;
940
941 case -EBUSY:
942 /* else it is being freed elsewhere */
943 list_move(&cursor_page->lru, src);
944 default:
945 break; /* ! on LRU or wrong list */
946 }
947 }
948 }
949
950 *scanned = scan;
951 return nr_taken;
952 }
953
954 static unsigned long isolate_pages_global(unsigned long nr,
955 struct list_head *dst,
956 unsigned long *scanned, int order,
957 int mode, struct zone *z,
958 struct mem_cgroup *mem_cont,
959 int active, int file)
960 {
961 int lru = LRU_BASE;
962 if (active)
963 lru += LRU_ACTIVE;
964 if (file)
965 lru += LRU_FILE;
966 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
967 mode, !!file);
968 }
969
970 /*
971 * clear_active_flags() is a helper for shrink_active_list(), clearing
972 * any active bits from the pages in the list.
973 */
974 static unsigned long clear_active_flags(struct list_head *page_list,
975 unsigned int *count)
976 {
977 int nr_active = 0;
978 int lru;
979 struct page *page;
980
981 list_for_each_entry(page, page_list, lru) {
982 lru = page_is_file_cache(page);
983 if (PageActive(page)) {
984 lru += LRU_ACTIVE;
985 ClearPageActive(page);
986 nr_active++;
987 }
988 count[lru]++;
989 }
990
991 return nr_active;
992 }
993
994 /**
995 * isolate_lru_page - tries to isolate a page from its LRU list
996 * @page: page to isolate from its LRU list
997 *
998 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
999 * vmstat statistic corresponding to whatever LRU list the page was on.
1000 *
1001 * Returns 0 if the page was removed from an LRU list.
1002 * Returns -EBUSY if the page was not on an LRU list.
1003 *
1004 * The returned page will have PageLRU() cleared. If it was found on
1005 * the active list, it will have PageActive set. If it was found on
1006 * the unevictable list, it will have the PageUnevictable bit set. That flag
1007 * may need to be cleared by the caller before letting the page go.
1008 *
1009 * The vmstat statistic corresponding to the list on which the page was
1010 * found will be decremented.
1011 *
1012 * Restrictions:
1013 * (1) Must be called with an elevated refcount on the page. This is a
1014 * fundamentnal difference from isolate_lru_pages (which is called
1015 * without a stable reference).
1016 * (2) the lru_lock must not be held.
1017 * (3) interrupts must be enabled.
1018 */
1019 int isolate_lru_page(struct page *page)
1020 {
1021 int ret = -EBUSY;
1022
1023 if (PageLRU(page)) {
1024 struct zone *zone = page_zone(page);
1025
1026 spin_lock_irq(&zone->lru_lock);
1027 if (PageLRU(page) && get_page_unless_zero(page)) {
1028 int lru = page_lru(page);
1029 ret = 0;
1030 ClearPageLRU(page);
1031
1032 del_page_from_lru_list(zone, page, lru);
1033 }
1034 spin_unlock_irq(&zone->lru_lock);
1035 }
1036 return ret;
1037 }
1038
1039 /*
1040 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1041 * of reclaimed pages
1042 */
1043 static unsigned long shrink_inactive_list(unsigned long max_scan,
1044 struct zone *zone, struct scan_control *sc,
1045 int priority, int file)
1046 {
1047 LIST_HEAD(page_list);
1048 struct pagevec pvec;
1049 unsigned long nr_scanned = 0;
1050 unsigned long nr_reclaimed = 0;
1051 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1052
1053 pagevec_init(&pvec, 1);
1054
1055 lru_add_drain();
1056 spin_lock_irq(&zone->lru_lock);
1057 do {
1058 struct page *page;
1059 unsigned long nr_taken;
1060 unsigned long nr_scan;
1061 unsigned long nr_freed;
1062 unsigned long nr_active;
1063 unsigned int count[NR_LRU_LISTS] = { 0, };
1064 int mode = ISOLATE_INACTIVE;
1065
1066 /*
1067 * If we need a large contiguous chunk of memory, or have
1068 * trouble getting a small set of contiguous pages, we
1069 * will reclaim both active and inactive pages.
1070 *
1071 * We use the same threshold as pageout congestion_wait below.
1072 */
1073 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074 mode = ISOLATE_BOTH;
1075 else if (sc->order && priority < DEF_PRIORITY - 2)
1076 mode = ISOLATE_BOTH;
1077
1078 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1079 &page_list, &nr_scan, sc->order, mode,
1080 zone, sc->mem_cgroup, 0, file);
1081 nr_active = clear_active_flags(&page_list, count);
1082 __count_vm_events(PGDEACTIVATE, nr_active);
1083
1084 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1085 -count[LRU_ACTIVE_FILE]);
1086 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1087 -count[LRU_INACTIVE_FILE]);
1088 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1089 -count[LRU_ACTIVE_ANON]);
1090 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1091 -count[LRU_INACTIVE_ANON]);
1092
1093 if (scanning_global_lru(sc))
1094 zone->pages_scanned += nr_scan;
1095
1096 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1097 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1098 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1099 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1100
1101 spin_unlock_irq(&zone->lru_lock);
1102
1103 nr_scanned += nr_scan;
1104 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1105
1106 /*
1107 * If we are direct reclaiming for contiguous pages and we do
1108 * not reclaim everything in the list, try again and wait
1109 * for IO to complete. This will stall high-order allocations
1110 * but that should be acceptable to the caller
1111 */
1112 if (nr_freed < nr_taken && !current_is_kswapd() &&
1113 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1114 congestion_wait(WRITE, HZ/10);
1115
1116 /*
1117 * The attempt at page out may have made some
1118 * of the pages active, mark them inactive again.
1119 */
1120 nr_active = clear_active_flags(&page_list, count);
1121 count_vm_events(PGDEACTIVATE, nr_active);
1122
1123 nr_freed += shrink_page_list(&page_list, sc,
1124 PAGEOUT_IO_SYNC);
1125 }
1126
1127 nr_reclaimed += nr_freed;
1128 local_irq_disable();
1129 if (current_is_kswapd()) {
1130 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1131 __count_vm_events(KSWAPD_STEAL, nr_freed);
1132 } else if (scanning_global_lru(sc))
1133 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1134
1135 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1136
1137 if (nr_taken == 0)
1138 goto done;
1139
1140 spin_lock(&zone->lru_lock);
1141 /*
1142 * Put back any unfreeable pages.
1143 */
1144 while (!list_empty(&page_list)) {
1145 int lru;
1146 page = lru_to_page(&page_list);
1147 VM_BUG_ON(PageLRU(page));
1148 list_del(&page->lru);
1149 if (unlikely(!page_evictable(page, NULL))) {
1150 spin_unlock_irq(&zone->lru_lock);
1151 putback_lru_page(page);
1152 spin_lock_irq(&zone->lru_lock);
1153 continue;
1154 }
1155 SetPageLRU(page);
1156 lru = page_lru(page);
1157 add_page_to_lru_list(zone, page, lru);
1158 if (PageActive(page)) {
1159 int file = !!page_is_file_cache(page);
1160 reclaim_stat->recent_rotated[file]++;
1161 }
1162 if (!pagevec_add(&pvec, page)) {
1163 spin_unlock_irq(&zone->lru_lock);
1164 __pagevec_release(&pvec);
1165 spin_lock_irq(&zone->lru_lock);
1166 }
1167 }
1168 } while (nr_scanned < max_scan);
1169 spin_unlock(&zone->lru_lock);
1170 done:
1171 local_irq_enable();
1172 pagevec_release(&pvec);
1173 return nr_reclaimed;
1174 }
1175
1176 /*
1177 * We are about to scan this zone at a certain priority level. If that priority
1178 * level is smaller (ie: more urgent) than the previous priority, then note
1179 * that priority level within the zone. This is done so that when the next
1180 * process comes in to scan this zone, it will immediately start out at this
1181 * priority level rather than having to build up its own scanning priority.
1182 * Here, this priority affects only the reclaim-mapped threshold.
1183 */
1184 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1185 {
1186 if (priority < zone->prev_priority)
1187 zone->prev_priority = priority;
1188 }
1189
1190 /*
1191 * This moves pages from the active list to the inactive list.
1192 *
1193 * We move them the other way if the page is referenced by one or more
1194 * processes, from rmap.
1195 *
1196 * If the pages are mostly unmapped, the processing is fast and it is
1197 * appropriate to hold zone->lru_lock across the whole operation. But if
1198 * the pages are mapped, the processing is slow (page_referenced()) so we
1199 * should drop zone->lru_lock around each page. It's impossible to balance
1200 * this, so instead we remove the pages from the LRU while processing them.
1201 * It is safe to rely on PG_active against the non-LRU pages in here because
1202 * nobody will play with that bit on a non-LRU page.
1203 *
1204 * The downside is that we have to touch page->_count against each page.
1205 * But we had to alter page->flags anyway.
1206 */
1207
1208
1209 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1210 struct scan_control *sc, int priority, int file)
1211 {
1212 unsigned long pgmoved;
1213 int pgdeactivate = 0;
1214 unsigned long pgscanned;
1215 LIST_HEAD(l_hold); /* The pages which were snipped off */
1216 LIST_HEAD(l_inactive);
1217 struct page *page;
1218 struct pagevec pvec;
1219 enum lru_list lru;
1220 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1221
1222 lru_add_drain();
1223 spin_lock_irq(&zone->lru_lock);
1224 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1225 ISOLATE_ACTIVE, zone,
1226 sc->mem_cgroup, 1, file);
1227 /*
1228 * zone->pages_scanned is used for detect zone's oom
1229 * mem_cgroup remembers nr_scan by itself.
1230 */
1231 if (scanning_global_lru(sc)) {
1232 zone->pages_scanned += pgscanned;
1233 }
1234 reclaim_stat->recent_scanned[!!file] += pgmoved;
1235
1236 if (file)
1237 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1238 else
1239 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1240 spin_unlock_irq(&zone->lru_lock);
1241
1242 pgmoved = 0;
1243 while (!list_empty(&l_hold)) {
1244 cond_resched();
1245 page = lru_to_page(&l_hold);
1246 list_del(&page->lru);
1247
1248 if (unlikely(!page_evictable(page, NULL))) {
1249 putback_lru_page(page);
1250 continue;
1251 }
1252
1253 /* page_referenced clears PageReferenced */
1254 if (page_mapping_inuse(page) &&
1255 page_referenced(page, 0, sc->mem_cgroup))
1256 pgmoved++;
1257
1258 list_add(&page->lru, &l_inactive);
1259 }
1260
1261 /*
1262 * Move the pages to the [file or anon] inactive list.
1263 */
1264 pagevec_init(&pvec, 1);
1265 pgmoved = 0;
1266 lru = LRU_BASE + file * LRU_FILE;
1267
1268 spin_lock_irq(&zone->lru_lock);
1269 /*
1270 * Count referenced pages from currently used mappings as
1271 * rotated, even though they are moved to the inactive list.
1272 * This helps balance scan pressure between file and anonymous
1273 * pages in get_scan_ratio.
1274 */
1275 reclaim_stat->recent_rotated[!!file] += pgmoved;
1276
1277 while (!list_empty(&l_inactive)) {
1278 page = lru_to_page(&l_inactive);
1279 prefetchw_prev_lru_page(page, &l_inactive, flags);
1280 VM_BUG_ON(PageLRU(page));
1281 SetPageLRU(page);
1282 VM_BUG_ON(!PageActive(page));
1283 ClearPageActive(page);
1284
1285 list_move(&page->lru, &zone->lru[lru].list);
1286 mem_cgroup_add_lru_list(page, lru);
1287 pgmoved++;
1288 if (!pagevec_add(&pvec, page)) {
1289 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1290 spin_unlock_irq(&zone->lru_lock);
1291 pgdeactivate += pgmoved;
1292 pgmoved = 0;
1293 if (buffer_heads_over_limit)
1294 pagevec_strip(&pvec);
1295 __pagevec_release(&pvec);
1296 spin_lock_irq(&zone->lru_lock);
1297 }
1298 }
1299 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1300 pgdeactivate += pgmoved;
1301 if (buffer_heads_over_limit) {
1302 spin_unlock_irq(&zone->lru_lock);
1303 pagevec_strip(&pvec);
1304 spin_lock_irq(&zone->lru_lock);
1305 }
1306 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1307 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1308 spin_unlock_irq(&zone->lru_lock);
1309 if (vm_swap_full())
1310 pagevec_swap_free(&pvec);
1311
1312 pagevec_release(&pvec);
1313 }
1314
1315 static int inactive_anon_is_low_global(struct zone *zone)
1316 {
1317 unsigned long active, inactive;
1318
1319 active = zone_page_state(zone, NR_ACTIVE_ANON);
1320 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1321
1322 if (inactive * zone->inactive_ratio < active)
1323 return 1;
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1330 * @zone: zone to check
1331 * @sc: scan control of this context
1332 *
1333 * Returns true if the zone does not have enough inactive anon pages,
1334 * meaning some active anon pages need to be deactivated.
1335 */
1336 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1337 {
1338 int low;
1339
1340 if (scanning_global_lru(sc))
1341 low = inactive_anon_is_low_global(zone);
1342 else
1343 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1344 return low;
1345 }
1346
1347 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1348 struct zone *zone, struct scan_control *sc, int priority)
1349 {
1350 int file = is_file_lru(lru);
1351
1352 if (lru == LRU_ACTIVE_FILE) {
1353 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1354 return 0;
1355 }
1356
1357 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1358 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1359 return 0;
1360 }
1361 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1362 }
1363
1364 /*
1365 * Determine how aggressively the anon and file LRU lists should be
1366 * scanned. The relative value of each set of LRU lists is determined
1367 * by looking at the fraction of the pages scanned we did rotate back
1368 * onto the active list instead of evict.
1369 *
1370 * percent[0] specifies how much pressure to put on ram/swap backed
1371 * memory, while percent[1] determines pressure on the file LRUs.
1372 */
1373 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1374 unsigned long *percent)
1375 {
1376 unsigned long anon, file, free;
1377 unsigned long anon_prio, file_prio;
1378 unsigned long ap, fp;
1379 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1380
1381 /* If we have no swap space, do not bother scanning anon pages. */
1382 if (nr_swap_pages <= 0) {
1383 percent[0] = 0;
1384 percent[1] = 100;
1385 return;
1386 }
1387
1388 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1389 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1390 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1391 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1392
1393 if (scanning_global_lru(sc)) {
1394 free = zone_page_state(zone, NR_FREE_PAGES);
1395 /* If we have very few page cache pages,
1396 force-scan anon pages. */
1397 if (unlikely(file + free <= zone->pages_high)) {
1398 percent[0] = 100;
1399 percent[1] = 0;
1400 return;
1401 }
1402 }
1403
1404 /*
1405 * OK, so we have swap space and a fair amount of page cache
1406 * pages. We use the recently rotated / recently scanned
1407 * ratios to determine how valuable each cache is.
1408 *
1409 * Because workloads change over time (and to avoid overflow)
1410 * we keep these statistics as a floating average, which ends
1411 * up weighing recent references more than old ones.
1412 *
1413 * anon in [0], file in [1]
1414 */
1415 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1416 spin_lock_irq(&zone->lru_lock);
1417 reclaim_stat->recent_scanned[0] /= 2;
1418 reclaim_stat->recent_rotated[0] /= 2;
1419 spin_unlock_irq(&zone->lru_lock);
1420 }
1421
1422 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1423 spin_lock_irq(&zone->lru_lock);
1424 reclaim_stat->recent_scanned[1] /= 2;
1425 reclaim_stat->recent_rotated[1] /= 2;
1426 spin_unlock_irq(&zone->lru_lock);
1427 }
1428
1429 /*
1430 * With swappiness at 100, anonymous and file have the same priority.
1431 * This scanning priority is essentially the inverse of IO cost.
1432 */
1433 anon_prio = sc->swappiness;
1434 file_prio = 200 - sc->swappiness;
1435
1436 /*
1437 * The amount of pressure on anon vs file pages is inversely
1438 * proportional to the fraction of recently scanned pages on
1439 * each list that were recently referenced and in active use.
1440 */
1441 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1442 ap /= reclaim_stat->recent_rotated[0] + 1;
1443
1444 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1445 fp /= reclaim_stat->recent_rotated[1] + 1;
1446
1447 /* Normalize to percentages */
1448 percent[0] = 100 * ap / (ap + fp + 1);
1449 percent[1] = 100 - percent[0];
1450 }
1451
1452
1453 /*
1454 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1455 */
1456 static void shrink_zone(int priority, struct zone *zone,
1457 struct scan_control *sc)
1458 {
1459 unsigned long nr[NR_LRU_LISTS];
1460 unsigned long nr_to_scan;
1461 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1462 enum lru_list l;
1463 unsigned long nr_reclaimed = sc->nr_reclaimed;
1464 unsigned long swap_cluster_max = sc->swap_cluster_max;
1465
1466 get_scan_ratio(zone, sc, percent);
1467
1468 for_each_evictable_lru(l) {
1469 int file = is_file_lru(l);
1470 int scan;
1471
1472 scan = zone_page_state(zone, NR_LRU_BASE + l);
1473 if (priority) {
1474 scan >>= priority;
1475 scan = (scan * percent[file]) / 100;
1476 }
1477 if (scanning_global_lru(sc)) {
1478 zone->lru[l].nr_scan += scan;
1479 nr[l] = zone->lru[l].nr_scan;
1480 if (nr[l] >= swap_cluster_max)
1481 zone->lru[l].nr_scan = 0;
1482 else
1483 nr[l] = 0;
1484 } else
1485 nr[l] = scan;
1486 }
1487
1488 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1489 nr[LRU_INACTIVE_FILE]) {
1490 for_each_evictable_lru(l) {
1491 if (nr[l]) {
1492 nr_to_scan = min(nr[l], swap_cluster_max);
1493 nr[l] -= nr_to_scan;
1494
1495 nr_reclaimed += shrink_list(l, nr_to_scan,
1496 zone, sc, priority);
1497 }
1498 }
1499 /*
1500 * On large memory systems, scan >> priority can become
1501 * really large. This is fine for the starting priority;
1502 * we want to put equal scanning pressure on each zone.
1503 * However, if the VM has a harder time of freeing pages,
1504 * with multiple processes reclaiming pages, the total
1505 * freeing target can get unreasonably large.
1506 */
1507 if (nr_reclaimed > swap_cluster_max &&
1508 priority < DEF_PRIORITY && !current_is_kswapd())
1509 break;
1510 }
1511
1512 sc->nr_reclaimed = nr_reclaimed;
1513
1514 /*
1515 * Even if we did not try to evict anon pages at all, we want to
1516 * rebalance the anon lru active/inactive ratio.
1517 */
1518 if (inactive_anon_is_low(zone, sc))
1519 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1520
1521 throttle_vm_writeout(sc->gfp_mask);
1522 }
1523
1524 /*
1525 * This is the direct reclaim path, for page-allocating processes. We only
1526 * try to reclaim pages from zones which will satisfy the caller's allocation
1527 * request.
1528 *
1529 * We reclaim from a zone even if that zone is over pages_high. Because:
1530 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1531 * allocation or
1532 * b) The zones may be over pages_high but they must go *over* pages_high to
1533 * satisfy the `incremental min' zone defense algorithm.
1534 *
1535 * If a zone is deemed to be full of pinned pages then just give it a light
1536 * scan then give up on it.
1537 */
1538 static void shrink_zones(int priority, struct zonelist *zonelist,
1539 struct scan_control *sc)
1540 {
1541 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1542 struct zoneref *z;
1543 struct zone *zone;
1544
1545 sc->all_unreclaimable = 1;
1546 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1547 if (!populated_zone(zone))
1548 continue;
1549 /*
1550 * Take care memory controller reclaiming has small influence
1551 * to global LRU.
1552 */
1553 if (scanning_global_lru(sc)) {
1554 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1555 continue;
1556 note_zone_scanning_priority(zone, priority);
1557
1558 if (zone_is_all_unreclaimable(zone) &&
1559 priority != DEF_PRIORITY)
1560 continue; /* Let kswapd poll it */
1561 sc->all_unreclaimable = 0;
1562 } else {
1563 /*
1564 * Ignore cpuset limitation here. We just want to reduce
1565 * # of used pages by us regardless of memory shortage.
1566 */
1567 sc->all_unreclaimable = 0;
1568 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1569 priority);
1570 }
1571
1572 shrink_zone(priority, zone, sc);
1573 }
1574 }
1575
1576 /*
1577 * This is the main entry point to direct page reclaim.
1578 *
1579 * If a full scan of the inactive list fails to free enough memory then we
1580 * are "out of memory" and something needs to be killed.
1581 *
1582 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1583 * high - the zone may be full of dirty or under-writeback pages, which this
1584 * caller can't do much about. We kick pdflush and take explicit naps in the
1585 * hope that some of these pages can be written. But if the allocating task
1586 * holds filesystem locks which prevent writeout this might not work, and the
1587 * allocation attempt will fail.
1588 *
1589 * returns: 0, if no pages reclaimed
1590 * else, the number of pages reclaimed
1591 */
1592 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1593 struct scan_control *sc)
1594 {
1595 int priority;
1596 unsigned long ret = 0;
1597 unsigned long total_scanned = 0;
1598 struct reclaim_state *reclaim_state = current->reclaim_state;
1599 unsigned long lru_pages = 0;
1600 struct zoneref *z;
1601 struct zone *zone;
1602 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1603
1604 delayacct_freepages_start();
1605
1606 if (scanning_global_lru(sc))
1607 count_vm_event(ALLOCSTALL);
1608 /*
1609 * mem_cgroup will not do shrink_slab.
1610 */
1611 if (scanning_global_lru(sc)) {
1612 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1613
1614 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1615 continue;
1616
1617 lru_pages += zone_lru_pages(zone);
1618 }
1619 }
1620
1621 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1622 sc->nr_scanned = 0;
1623 if (!priority)
1624 disable_swap_token();
1625 shrink_zones(priority, zonelist, sc);
1626 /*
1627 * Don't shrink slabs when reclaiming memory from
1628 * over limit cgroups
1629 */
1630 if (scanning_global_lru(sc)) {
1631 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1632 if (reclaim_state) {
1633 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1634 reclaim_state->reclaimed_slab = 0;
1635 }
1636 }
1637 total_scanned += sc->nr_scanned;
1638 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1639 ret = sc->nr_reclaimed;
1640 goto out;
1641 }
1642
1643 /*
1644 * Try to write back as many pages as we just scanned. This
1645 * tends to cause slow streaming writers to write data to the
1646 * disk smoothly, at the dirtying rate, which is nice. But
1647 * that's undesirable in laptop mode, where we *want* lumpy
1648 * writeout. So in laptop mode, write out the whole world.
1649 */
1650 if (total_scanned > sc->swap_cluster_max +
1651 sc->swap_cluster_max / 2) {
1652 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1653 sc->may_writepage = 1;
1654 }
1655
1656 /* Take a nap, wait for some writeback to complete */
1657 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1658 congestion_wait(WRITE, HZ/10);
1659 }
1660 /* top priority shrink_zones still had more to do? don't OOM, then */
1661 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1662 ret = sc->nr_reclaimed;
1663 out:
1664 /*
1665 * Now that we've scanned all the zones at this priority level, note
1666 * that level within the zone so that the next thread which performs
1667 * scanning of this zone will immediately start out at this priority
1668 * level. This affects only the decision whether or not to bring
1669 * mapped pages onto the inactive list.
1670 */
1671 if (priority < 0)
1672 priority = 0;
1673
1674 if (scanning_global_lru(sc)) {
1675 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1676
1677 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1678 continue;
1679
1680 zone->prev_priority = priority;
1681 }
1682 } else
1683 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1684
1685 delayacct_freepages_end();
1686
1687 return ret;
1688 }
1689
1690 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1691 gfp_t gfp_mask)
1692 {
1693 struct scan_control sc = {
1694 .gfp_mask = gfp_mask,
1695 .may_writepage = !laptop_mode,
1696 .swap_cluster_max = SWAP_CLUSTER_MAX,
1697 .may_swap = 1,
1698 .swappiness = vm_swappiness,
1699 .order = order,
1700 .mem_cgroup = NULL,
1701 .isolate_pages = isolate_pages_global,
1702 };
1703
1704 return do_try_to_free_pages(zonelist, &sc);
1705 }
1706
1707 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1708
1709 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1710 gfp_t gfp_mask,
1711 bool noswap,
1712 unsigned int swappiness)
1713 {
1714 struct scan_control sc = {
1715 .may_writepage = !laptop_mode,
1716 .may_swap = 1,
1717 .swap_cluster_max = SWAP_CLUSTER_MAX,
1718 .swappiness = swappiness,
1719 .order = 0,
1720 .mem_cgroup = mem_cont,
1721 .isolate_pages = mem_cgroup_isolate_pages,
1722 };
1723 struct zonelist *zonelist;
1724
1725 if (noswap)
1726 sc.may_swap = 0;
1727
1728 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1729 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1730 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1731 return do_try_to_free_pages(zonelist, &sc);
1732 }
1733 #endif
1734
1735 /*
1736 * For kswapd, balance_pgdat() will work across all this node's zones until
1737 * they are all at pages_high.
1738 *
1739 * Returns the number of pages which were actually freed.
1740 *
1741 * There is special handling here for zones which are full of pinned pages.
1742 * This can happen if the pages are all mlocked, or if they are all used by
1743 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1744 * What we do is to detect the case where all pages in the zone have been
1745 * scanned twice and there has been zero successful reclaim. Mark the zone as
1746 * dead and from now on, only perform a short scan. Basically we're polling
1747 * the zone for when the problem goes away.
1748 *
1749 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1750 * zones which have free_pages > pages_high, but once a zone is found to have
1751 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1752 * of the number of free pages in the lower zones. This interoperates with
1753 * the page allocator fallback scheme to ensure that aging of pages is balanced
1754 * across the zones.
1755 */
1756 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1757 {
1758 int all_zones_ok;
1759 int priority;
1760 int i;
1761 unsigned long total_scanned;
1762 struct reclaim_state *reclaim_state = current->reclaim_state;
1763 struct scan_control sc = {
1764 .gfp_mask = GFP_KERNEL,
1765 .may_swap = 1,
1766 .swap_cluster_max = SWAP_CLUSTER_MAX,
1767 .swappiness = vm_swappiness,
1768 .order = order,
1769 .mem_cgroup = NULL,
1770 .isolate_pages = isolate_pages_global,
1771 };
1772 /*
1773 * temp_priority is used to remember the scanning priority at which
1774 * this zone was successfully refilled to free_pages == pages_high.
1775 */
1776 int temp_priority[MAX_NR_ZONES];
1777
1778 loop_again:
1779 total_scanned = 0;
1780 sc.nr_reclaimed = 0;
1781 sc.may_writepage = !laptop_mode;
1782 count_vm_event(PAGEOUTRUN);
1783
1784 for (i = 0; i < pgdat->nr_zones; i++)
1785 temp_priority[i] = DEF_PRIORITY;
1786
1787 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1788 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1789 unsigned long lru_pages = 0;
1790
1791 /* The swap token gets in the way of swapout... */
1792 if (!priority)
1793 disable_swap_token();
1794
1795 all_zones_ok = 1;
1796
1797 /*
1798 * Scan in the highmem->dma direction for the highest
1799 * zone which needs scanning
1800 */
1801 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1802 struct zone *zone = pgdat->node_zones + i;
1803
1804 if (!populated_zone(zone))
1805 continue;
1806
1807 if (zone_is_all_unreclaimable(zone) &&
1808 priority != DEF_PRIORITY)
1809 continue;
1810
1811 /*
1812 * Do some background aging of the anon list, to give
1813 * pages a chance to be referenced before reclaiming.
1814 */
1815 if (inactive_anon_is_low(zone, &sc))
1816 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1817 &sc, priority, 0);
1818
1819 if (!zone_watermark_ok(zone, order, zone->pages_high,
1820 0, 0)) {
1821 end_zone = i;
1822 break;
1823 }
1824 }
1825 if (i < 0)
1826 goto out;
1827
1828 for (i = 0; i <= end_zone; i++) {
1829 struct zone *zone = pgdat->node_zones + i;
1830
1831 lru_pages += zone_lru_pages(zone);
1832 }
1833
1834 /*
1835 * Now scan the zone in the dma->highmem direction, stopping
1836 * at the last zone which needs scanning.
1837 *
1838 * We do this because the page allocator works in the opposite
1839 * direction. This prevents the page allocator from allocating
1840 * pages behind kswapd's direction of progress, which would
1841 * cause too much scanning of the lower zones.
1842 */
1843 for (i = 0; i <= end_zone; i++) {
1844 struct zone *zone = pgdat->node_zones + i;
1845 int nr_slab;
1846
1847 if (!populated_zone(zone))
1848 continue;
1849
1850 if (zone_is_all_unreclaimable(zone) &&
1851 priority != DEF_PRIORITY)
1852 continue;
1853
1854 if (!zone_watermark_ok(zone, order, zone->pages_high,
1855 end_zone, 0))
1856 all_zones_ok = 0;
1857 temp_priority[i] = priority;
1858 sc.nr_scanned = 0;
1859 note_zone_scanning_priority(zone, priority);
1860 /*
1861 * We put equal pressure on every zone, unless one
1862 * zone has way too many pages free already.
1863 */
1864 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1865 end_zone, 0))
1866 shrink_zone(priority, zone, &sc);
1867 reclaim_state->reclaimed_slab = 0;
1868 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1869 lru_pages);
1870 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1871 total_scanned += sc.nr_scanned;
1872 if (zone_is_all_unreclaimable(zone))
1873 continue;
1874 if (nr_slab == 0 && zone->pages_scanned >=
1875 (zone_lru_pages(zone) * 6))
1876 zone_set_flag(zone,
1877 ZONE_ALL_UNRECLAIMABLE);
1878 /*
1879 * If we've done a decent amount of scanning and
1880 * the reclaim ratio is low, start doing writepage
1881 * even in laptop mode
1882 */
1883 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1884 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1885 sc.may_writepage = 1;
1886 }
1887 if (all_zones_ok)
1888 break; /* kswapd: all done */
1889 /*
1890 * OK, kswapd is getting into trouble. Take a nap, then take
1891 * another pass across the zones.
1892 */
1893 if (total_scanned && priority < DEF_PRIORITY - 2)
1894 congestion_wait(WRITE, HZ/10);
1895
1896 /*
1897 * We do this so kswapd doesn't build up large priorities for
1898 * example when it is freeing in parallel with allocators. It
1899 * matches the direct reclaim path behaviour in terms of impact
1900 * on zone->*_priority.
1901 */
1902 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1903 break;
1904 }
1905 out:
1906 /*
1907 * Note within each zone the priority level at which this zone was
1908 * brought into a happy state. So that the next thread which scans this
1909 * zone will start out at that priority level.
1910 */
1911 for (i = 0; i < pgdat->nr_zones; i++) {
1912 struct zone *zone = pgdat->node_zones + i;
1913
1914 zone->prev_priority = temp_priority[i];
1915 }
1916 if (!all_zones_ok) {
1917 cond_resched();
1918
1919 try_to_freeze();
1920
1921 /*
1922 * Fragmentation may mean that the system cannot be
1923 * rebalanced for high-order allocations in all zones.
1924 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1925 * it means the zones have been fully scanned and are still
1926 * not balanced. For high-order allocations, there is
1927 * little point trying all over again as kswapd may
1928 * infinite loop.
1929 *
1930 * Instead, recheck all watermarks at order-0 as they
1931 * are the most important. If watermarks are ok, kswapd will go
1932 * back to sleep. High-order users can still perform direct
1933 * reclaim if they wish.
1934 */
1935 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1936 order = sc.order = 0;
1937
1938 goto loop_again;
1939 }
1940
1941 return sc.nr_reclaimed;
1942 }
1943
1944 /*
1945 * The background pageout daemon, started as a kernel thread
1946 * from the init process.
1947 *
1948 * This basically trickles out pages so that we have _some_
1949 * free memory available even if there is no other activity
1950 * that frees anything up. This is needed for things like routing
1951 * etc, where we otherwise might have all activity going on in
1952 * asynchronous contexts that cannot page things out.
1953 *
1954 * If there are applications that are active memory-allocators
1955 * (most normal use), this basically shouldn't matter.
1956 */
1957 static int kswapd(void *p)
1958 {
1959 unsigned long order;
1960 pg_data_t *pgdat = (pg_data_t*)p;
1961 struct task_struct *tsk = current;
1962 DEFINE_WAIT(wait);
1963 struct reclaim_state reclaim_state = {
1964 .reclaimed_slab = 0,
1965 };
1966 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1967
1968 if (!cpumask_empty(cpumask))
1969 set_cpus_allowed_ptr(tsk, cpumask);
1970 current->reclaim_state = &reclaim_state;
1971
1972 /*
1973 * Tell the memory management that we're a "memory allocator",
1974 * and that if we need more memory we should get access to it
1975 * regardless (see "__alloc_pages()"). "kswapd" should
1976 * never get caught in the normal page freeing logic.
1977 *
1978 * (Kswapd normally doesn't need memory anyway, but sometimes
1979 * you need a small amount of memory in order to be able to
1980 * page out something else, and this flag essentially protects
1981 * us from recursively trying to free more memory as we're
1982 * trying to free the first piece of memory in the first place).
1983 */
1984 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1985 set_freezable();
1986
1987 order = 0;
1988 for ( ; ; ) {
1989 unsigned long new_order;
1990
1991 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1992 new_order = pgdat->kswapd_max_order;
1993 pgdat->kswapd_max_order = 0;
1994 if (order < new_order) {
1995 /*
1996 * Don't sleep if someone wants a larger 'order'
1997 * allocation
1998 */
1999 order = new_order;
2000 } else {
2001 if (!freezing(current))
2002 schedule();
2003
2004 order = pgdat->kswapd_max_order;
2005 }
2006 finish_wait(&pgdat->kswapd_wait, &wait);
2007
2008 if (!try_to_freeze()) {
2009 /* We can speed up thawing tasks if we don't call
2010 * balance_pgdat after returning from the refrigerator
2011 */
2012 balance_pgdat(pgdat, order);
2013 }
2014 }
2015 return 0;
2016 }
2017
2018 /*
2019 * A zone is low on free memory, so wake its kswapd task to service it.
2020 */
2021 void wakeup_kswapd(struct zone *zone, int order)
2022 {
2023 pg_data_t *pgdat;
2024
2025 if (!populated_zone(zone))
2026 return;
2027
2028 pgdat = zone->zone_pgdat;
2029 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2030 return;
2031 if (pgdat->kswapd_max_order < order)
2032 pgdat->kswapd_max_order = order;
2033 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2034 return;
2035 if (!waitqueue_active(&pgdat->kswapd_wait))
2036 return;
2037 wake_up_interruptible(&pgdat->kswapd_wait);
2038 }
2039
2040 unsigned long global_lru_pages(void)
2041 {
2042 return global_page_state(NR_ACTIVE_ANON)
2043 + global_page_state(NR_ACTIVE_FILE)
2044 + global_page_state(NR_INACTIVE_ANON)
2045 + global_page_state(NR_INACTIVE_FILE);
2046 }
2047
2048 #ifdef CONFIG_PM
2049 /*
2050 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2051 * from LRU lists system-wide, for given pass and priority, and returns the
2052 * number of reclaimed pages
2053 *
2054 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2055 */
2056 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2057 int pass, struct scan_control *sc)
2058 {
2059 struct zone *zone;
2060 unsigned long nr_to_scan, ret = 0;
2061 enum lru_list l;
2062
2063 for_each_zone(zone) {
2064
2065 if (!populated_zone(zone))
2066 continue;
2067
2068 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2069 continue;
2070
2071 for_each_evictable_lru(l) {
2072 /* For pass = 0, we don't shrink the active list */
2073 if (pass == 0 &&
2074 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2075 continue;
2076
2077 zone->lru[l].nr_scan +=
2078 (zone_page_state(zone, NR_LRU_BASE + l)
2079 >> prio) + 1;
2080 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2081 zone->lru[l].nr_scan = 0;
2082 nr_to_scan = min(nr_pages,
2083 zone_page_state(zone,
2084 NR_LRU_BASE + l));
2085 ret += shrink_list(l, nr_to_scan, zone,
2086 sc, prio);
2087 if (ret >= nr_pages)
2088 return ret;
2089 }
2090 }
2091 }
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * Try to free `nr_pages' of memory, system-wide, and return the number of
2098 * freed pages.
2099 *
2100 * Rather than trying to age LRUs the aim is to preserve the overall
2101 * LRU order by reclaiming preferentially
2102 * inactive > active > active referenced > active mapped
2103 */
2104 unsigned long shrink_all_memory(unsigned long nr_pages)
2105 {
2106 unsigned long lru_pages, nr_slab;
2107 unsigned long ret = 0;
2108 int pass;
2109 struct reclaim_state reclaim_state;
2110 struct scan_control sc = {
2111 .gfp_mask = GFP_KERNEL,
2112 .may_swap = 0,
2113 .swap_cluster_max = nr_pages,
2114 .may_writepage = 1,
2115 .swappiness = vm_swappiness,
2116 .isolate_pages = isolate_pages_global,
2117 };
2118
2119 current->reclaim_state = &reclaim_state;
2120
2121 lru_pages = global_lru_pages();
2122 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2123 /* If slab caches are huge, it's better to hit them first */
2124 while (nr_slab >= lru_pages) {
2125 reclaim_state.reclaimed_slab = 0;
2126 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2127 if (!reclaim_state.reclaimed_slab)
2128 break;
2129
2130 ret += reclaim_state.reclaimed_slab;
2131 if (ret >= nr_pages)
2132 goto out;
2133
2134 nr_slab -= reclaim_state.reclaimed_slab;
2135 }
2136
2137 /*
2138 * We try to shrink LRUs in 5 passes:
2139 * 0 = Reclaim from inactive_list only
2140 * 1 = Reclaim from active list but don't reclaim mapped
2141 * 2 = 2nd pass of type 1
2142 * 3 = Reclaim mapped (normal reclaim)
2143 * 4 = 2nd pass of type 3
2144 */
2145 for (pass = 0; pass < 5; pass++) {
2146 int prio;
2147
2148 /* Force reclaiming mapped pages in the passes #3 and #4 */
2149 if (pass > 2) {
2150 sc.may_swap = 1;
2151 sc.swappiness = 100;
2152 }
2153
2154 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2155 unsigned long nr_to_scan = nr_pages - ret;
2156
2157 sc.nr_scanned = 0;
2158 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2159 if (ret >= nr_pages)
2160 goto out;
2161
2162 reclaim_state.reclaimed_slab = 0;
2163 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2164 global_lru_pages());
2165 ret += reclaim_state.reclaimed_slab;
2166 if (ret >= nr_pages)
2167 goto out;
2168
2169 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2170 congestion_wait(WRITE, HZ / 10);
2171 }
2172 }
2173
2174 /*
2175 * If ret = 0, we could not shrink LRUs, but there may be something
2176 * in slab caches
2177 */
2178 if (!ret) {
2179 do {
2180 reclaim_state.reclaimed_slab = 0;
2181 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2182 ret += reclaim_state.reclaimed_slab;
2183 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2184 }
2185
2186 out:
2187 current->reclaim_state = NULL;
2188
2189 return ret;
2190 }
2191 #endif
2192
2193 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2194 not required for correctness. So if the last cpu in a node goes
2195 away, we get changed to run anywhere: as the first one comes back,
2196 restore their cpu bindings. */
2197 static int __devinit cpu_callback(struct notifier_block *nfb,
2198 unsigned long action, void *hcpu)
2199 {
2200 int nid;
2201
2202 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2203 for_each_node_state(nid, N_HIGH_MEMORY) {
2204 pg_data_t *pgdat = NODE_DATA(nid);
2205 node_to_cpumask_ptr(mask, pgdat->node_id);
2206
2207 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2208 /* One of our CPUs online: restore mask */
2209 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2210 }
2211 }
2212 return NOTIFY_OK;
2213 }
2214
2215 /*
2216 * This kswapd start function will be called by init and node-hot-add.
2217 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2218 */
2219 int kswapd_run(int nid)
2220 {
2221 pg_data_t *pgdat = NODE_DATA(nid);
2222 int ret = 0;
2223
2224 if (pgdat->kswapd)
2225 return 0;
2226
2227 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2228 if (IS_ERR(pgdat->kswapd)) {
2229 /* failure at boot is fatal */
2230 BUG_ON(system_state == SYSTEM_BOOTING);
2231 printk("Failed to start kswapd on node %d\n",nid);
2232 ret = -1;
2233 }
2234 return ret;
2235 }
2236
2237 static int __init kswapd_init(void)
2238 {
2239 int nid;
2240
2241 swap_setup();
2242 for_each_node_state(nid, N_HIGH_MEMORY)
2243 kswapd_run(nid);
2244 hotcpu_notifier(cpu_callback, 0);
2245 return 0;
2246 }
2247
2248 module_init(kswapd_init)
2249
2250 #ifdef CONFIG_NUMA
2251 /*
2252 * Zone reclaim mode
2253 *
2254 * If non-zero call zone_reclaim when the number of free pages falls below
2255 * the watermarks.
2256 */
2257 int zone_reclaim_mode __read_mostly;
2258
2259 #define RECLAIM_OFF 0
2260 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2261 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2262 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2263
2264 /*
2265 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2266 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2267 * a zone.
2268 */
2269 #define ZONE_RECLAIM_PRIORITY 4
2270
2271 /*
2272 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2273 * occur.
2274 */
2275 int sysctl_min_unmapped_ratio = 1;
2276
2277 /*
2278 * If the number of slab pages in a zone grows beyond this percentage then
2279 * slab reclaim needs to occur.
2280 */
2281 int sysctl_min_slab_ratio = 5;
2282
2283 /*
2284 * Try to free up some pages from this zone through reclaim.
2285 */
2286 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2287 {
2288 /* Minimum pages needed in order to stay on node */
2289 const unsigned long nr_pages = 1 << order;
2290 struct task_struct *p = current;
2291 struct reclaim_state reclaim_state;
2292 int priority;
2293 struct scan_control sc = {
2294 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2295 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2296 .swap_cluster_max = max_t(unsigned long, nr_pages,
2297 SWAP_CLUSTER_MAX),
2298 .gfp_mask = gfp_mask,
2299 .swappiness = vm_swappiness,
2300 .isolate_pages = isolate_pages_global,
2301 };
2302 unsigned long slab_reclaimable;
2303
2304 disable_swap_token();
2305 cond_resched();
2306 /*
2307 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2308 * and we also need to be able to write out pages for RECLAIM_WRITE
2309 * and RECLAIM_SWAP.
2310 */
2311 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2312 reclaim_state.reclaimed_slab = 0;
2313 p->reclaim_state = &reclaim_state;
2314
2315 if (zone_page_state(zone, NR_FILE_PAGES) -
2316 zone_page_state(zone, NR_FILE_MAPPED) >
2317 zone->min_unmapped_pages) {
2318 /*
2319 * Free memory by calling shrink zone with increasing
2320 * priorities until we have enough memory freed.
2321 */
2322 priority = ZONE_RECLAIM_PRIORITY;
2323 do {
2324 note_zone_scanning_priority(zone, priority);
2325 shrink_zone(priority, zone, &sc);
2326 priority--;
2327 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2328 }
2329
2330 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2331 if (slab_reclaimable > zone->min_slab_pages) {
2332 /*
2333 * shrink_slab() does not currently allow us to determine how
2334 * many pages were freed in this zone. So we take the current
2335 * number of slab pages and shake the slab until it is reduced
2336 * by the same nr_pages that we used for reclaiming unmapped
2337 * pages.
2338 *
2339 * Note that shrink_slab will free memory on all zones and may
2340 * take a long time.
2341 */
2342 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2343 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2344 slab_reclaimable - nr_pages)
2345 ;
2346
2347 /*
2348 * Update nr_reclaimed by the number of slab pages we
2349 * reclaimed from this zone.
2350 */
2351 sc.nr_reclaimed += slab_reclaimable -
2352 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2353 }
2354
2355 p->reclaim_state = NULL;
2356 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2357 return sc.nr_reclaimed >= nr_pages;
2358 }
2359
2360 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2361 {
2362 int node_id;
2363 int ret;
2364
2365 /*
2366 * Zone reclaim reclaims unmapped file backed pages and
2367 * slab pages if we are over the defined limits.
2368 *
2369 * A small portion of unmapped file backed pages is needed for
2370 * file I/O otherwise pages read by file I/O will be immediately
2371 * thrown out if the zone is overallocated. So we do not reclaim
2372 * if less than a specified percentage of the zone is used by
2373 * unmapped file backed pages.
2374 */
2375 if (zone_page_state(zone, NR_FILE_PAGES) -
2376 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2377 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2378 <= zone->min_slab_pages)
2379 return 0;
2380
2381 if (zone_is_all_unreclaimable(zone))
2382 return 0;
2383
2384 /*
2385 * Do not scan if the allocation should not be delayed.
2386 */
2387 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2388 return 0;
2389
2390 /*
2391 * Only run zone reclaim on the local zone or on zones that do not
2392 * have associated processors. This will favor the local processor
2393 * over remote processors and spread off node memory allocations
2394 * as wide as possible.
2395 */
2396 node_id = zone_to_nid(zone);
2397 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2398 return 0;
2399
2400 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2401 return 0;
2402 ret = __zone_reclaim(zone, gfp_mask, order);
2403 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2404
2405 return ret;
2406 }
2407 #endif
2408
2409 #ifdef CONFIG_UNEVICTABLE_LRU
2410 /*
2411 * page_evictable - test whether a page is evictable
2412 * @page: the page to test
2413 * @vma: the VMA in which the page is or will be mapped, may be NULL
2414 *
2415 * Test whether page is evictable--i.e., should be placed on active/inactive
2416 * lists vs unevictable list. The vma argument is !NULL when called from the
2417 * fault path to determine how to instantate a new page.
2418 *
2419 * Reasons page might not be evictable:
2420 * (1) page's mapping marked unevictable
2421 * (2) page is part of an mlocked VMA
2422 *
2423 */
2424 int page_evictable(struct page *page, struct vm_area_struct *vma)
2425 {
2426
2427 if (mapping_unevictable(page_mapping(page)))
2428 return 0;
2429
2430 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2431 return 0;
2432
2433 return 1;
2434 }
2435
2436 /**
2437 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2438 * @page: page to check evictability and move to appropriate lru list
2439 * @zone: zone page is in
2440 *
2441 * Checks a page for evictability and moves the page to the appropriate
2442 * zone lru list.
2443 *
2444 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2445 * have PageUnevictable set.
2446 */
2447 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2448 {
2449 VM_BUG_ON(PageActive(page));
2450
2451 retry:
2452 ClearPageUnevictable(page);
2453 if (page_evictable(page, NULL)) {
2454 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2455
2456 __dec_zone_state(zone, NR_UNEVICTABLE);
2457 list_move(&page->lru, &zone->lru[l].list);
2458 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2459 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2460 __count_vm_event(UNEVICTABLE_PGRESCUED);
2461 } else {
2462 /*
2463 * rotate unevictable list
2464 */
2465 SetPageUnevictable(page);
2466 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2467 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2468 if (page_evictable(page, NULL))
2469 goto retry;
2470 }
2471 }
2472
2473 /**
2474 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2475 * @mapping: struct address_space to scan for evictable pages
2476 *
2477 * Scan all pages in mapping. Check unevictable pages for
2478 * evictability and move them to the appropriate zone lru list.
2479 */
2480 void scan_mapping_unevictable_pages(struct address_space *mapping)
2481 {
2482 pgoff_t next = 0;
2483 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2484 PAGE_CACHE_SHIFT;
2485 struct zone *zone;
2486 struct pagevec pvec;
2487
2488 if (mapping->nrpages == 0)
2489 return;
2490
2491 pagevec_init(&pvec, 0);
2492 while (next < end &&
2493 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2494 int i;
2495 int pg_scanned = 0;
2496
2497 zone = NULL;
2498
2499 for (i = 0; i < pagevec_count(&pvec); i++) {
2500 struct page *page = pvec.pages[i];
2501 pgoff_t page_index = page->index;
2502 struct zone *pagezone = page_zone(page);
2503
2504 pg_scanned++;
2505 if (page_index > next)
2506 next = page_index;
2507 next++;
2508
2509 if (pagezone != zone) {
2510 if (zone)
2511 spin_unlock_irq(&zone->lru_lock);
2512 zone = pagezone;
2513 spin_lock_irq(&zone->lru_lock);
2514 }
2515
2516 if (PageLRU(page) && PageUnevictable(page))
2517 check_move_unevictable_page(page, zone);
2518 }
2519 if (zone)
2520 spin_unlock_irq(&zone->lru_lock);
2521 pagevec_release(&pvec);
2522
2523 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2524 }
2525
2526 }
2527
2528 /**
2529 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2530 * @zone - zone of which to scan the unevictable list
2531 *
2532 * Scan @zone's unevictable LRU lists to check for pages that have become
2533 * evictable. Move those that have to @zone's inactive list where they
2534 * become candidates for reclaim, unless shrink_inactive_zone() decides
2535 * to reactivate them. Pages that are still unevictable are rotated
2536 * back onto @zone's unevictable list.
2537 */
2538 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2539 static void scan_zone_unevictable_pages(struct zone *zone)
2540 {
2541 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2542 unsigned long scan;
2543 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2544
2545 while (nr_to_scan > 0) {
2546 unsigned long batch_size = min(nr_to_scan,
2547 SCAN_UNEVICTABLE_BATCH_SIZE);
2548
2549 spin_lock_irq(&zone->lru_lock);
2550 for (scan = 0; scan < batch_size; scan++) {
2551 struct page *page = lru_to_page(l_unevictable);
2552
2553 if (!trylock_page(page))
2554 continue;
2555
2556 prefetchw_prev_lru_page(page, l_unevictable, flags);
2557
2558 if (likely(PageLRU(page) && PageUnevictable(page)))
2559 check_move_unevictable_page(page, zone);
2560
2561 unlock_page(page);
2562 }
2563 spin_unlock_irq(&zone->lru_lock);
2564
2565 nr_to_scan -= batch_size;
2566 }
2567 }
2568
2569
2570 /**
2571 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2572 *
2573 * A really big hammer: scan all zones' unevictable LRU lists to check for
2574 * pages that have become evictable. Move those back to the zones'
2575 * inactive list where they become candidates for reclaim.
2576 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2577 * and we add swap to the system. As such, it runs in the context of a task
2578 * that has possibly/probably made some previously unevictable pages
2579 * evictable.
2580 */
2581 static void scan_all_zones_unevictable_pages(void)
2582 {
2583 struct zone *zone;
2584
2585 for_each_zone(zone) {
2586 scan_zone_unevictable_pages(zone);
2587 }
2588 }
2589
2590 /*
2591 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2592 * all nodes' unevictable lists for evictable pages
2593 */
2594 unsigned long scan_unevictable_pages;
2595
2596 int scan_unevictable_handler(struct ctl_table *table, int write,
2597 struct file *file, void __user *buffer,
2598 size_t *length, loff_t *ppos)
2599 {
2600 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2601
2602 if (write && *(unsigned long *)table->data)
2603 scan_all_zones_unevictable_pages();
2604
2605 scan_unevictable_pages = 0;
2606 return 0;
2607 }
2608
2609 /*
2610 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2611 * a specified node's per zone unevictable lists for evictable pages.
2612 */
2613
2614 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2615 struct sysdev_attribute *attr,
2616 char *buf)
2617 {
2618 return sprintf(buf, "0\n"); /* always zero; should fit... */
2619 }
2620
2621 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2622 struct sysdev_attribute *attr,
2623 const char *buf, size_t count)
2624 {
2625 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2626 struct zone *zone;
2627 unsigned long res;
2628 unsigned long req = strict_strtoul(buf, 10, &res);
2629
2630 if (!req)
2631 return 1; /* zero is no-op */
2632
2633 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2634 if (!populated_zone(zone))
2635 continue;
2636 scan_zone_unevictable_pages(zone);
2637 }
2638 return 1;
2639 }
2640
2641
2642 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2643 read_scan_unevictable_node,
2644 write_scan_unevictable_node);
2645
2646 int scan_unevictable_register_node(struct node *node)
2647 {
2648 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2649 }
2650
2651 void scan_unevictable_unregister_node(struct node *node)
2652 {
2653 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2654 }
2655
2656 #endif
This page took 0.088255 seconds and 5 git commands to generate.