mm/mempool.c: convert kmalloc_node(...GFP_ZERO...) to kzalloc_node(...)
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129 * From 0 .. 100. Higher means more swappy.
130 */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 return true;
146 }
147 #endif
148
149 unsigned long zone_reclaimable_pages(struct zone *zone)
150 {
151 int nr;
152
153 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154 zone_page_state(zone, NR_INACTIVE_FILE);
155
156 if (get_nr_swap_pages() > 0)
157 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158 zone_page_state(zone, NR_INACTIVE_ANON);
159
160 return nr;
161 }
162
163 bool zone_reclaimable(struct zone *zone)
164 {
165 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166 }
167
168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
169 {
170 if (!mem_cgroup_disabled())
171 return mem_cgroup_get_lru_size(lruvec, lru);
172
173 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
174 }
175
176 /*
177 * Add a shrinker callback to be called from the vm
178 */
179 void register_shrinker(struct shrinker *shrinker)
180 {
181 atomic_long_set(&shrinker->nr_in_batch, 0);
182 down_write(&shrinker_rwsem);
183 list_add_tail(&shrinker->list, &shrinker_list);
184 up_write(&shrinker_rwsem);
185 }
186 EXPORT_SYMBOL(register_shrinker);
187
188 /*
189 * Remove one
190 */
191 void unregister_shrinker(struct shrinker *shrinker)
192 {
193 down_write(&shrinker_rwsem);
194 list_del(&shrinker->list);
195 up_write(&shrinker_rwsem);
196 }
197 EXPORT_SYMBOL(unregister_shrinker);
198
199 static inline int do_shrinker_shrink(struct shrinker *shrinker,
200 struct shrink_control *sc,
201 unsigned long nr_to_scan)
202 {
203 sc->nr_to_scan = nr_to_scan;
204 return (*shrinker->shrink)(shrinker, sc);
205 }
206
207 #define SHRINK_BATCH 128
208 /*
209 * Call the shrink functions to age shrinkable caches
210 *
211 * Here we assume it costs one seek to replace a lru page and that it also
212 * takes a seek to recreate a cache object. With this in mind we age equal
213 * percentages of the lru and ageable caches. This should balance the seeks
214 * generated by these structures.
215 *
216 * If the vm encountered mapped pages on the LRU it increase the pressure on
217 * slab to avoid swapping.
218 *
219 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
220 *
221 * `lru_pages' represents the number of on-LRU pages in all the zones which
222 * are eligible for the caller's allocation attempt. It is used for balancing
223 * slab reclaim versus page reclaim.
224 *
225 * Returns the number of slab objects which we shrunk.
226 */
227 unsigned long shrink_slab(struct shrink_control *shrink,
228 unsigned long nr_pages_scanned,
229 unsigned long lru_pages)
230 {
231 struct shrinker *shrinker;
232 unsigned long ret = 0;
233
234 if (nr_pages_scanned == 0)
235 nr_pages_scanned = SWAP_CLUSTER_MAX;
236
237 if (!down_read_trylock(&shrinker_rwsem)) {
238 /* Assume we'll be able to shrink next time */
239 ret = 1;
240 goto out;
241 }
242
243 list_for_each_entry(shrinker, &shrinker_list, list) {
244 unsigned long long delta;
245 long total_scan;
246 long max_pass;
247 int shrink_ret = 0;
248 long nr;
249 long new_nr;
250 long batch_size = shrinker->batch ? shrinker->batch
251 : SHRINK_BATCH;
252
253 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
254 if (max_pass <= 0)
255 continue;
256
257 /*
258 * copy the current shrinker scan count into a local variable
259 * and zero it so that other concurrent shrinker invocations
260 * don't also do this scanning work.
261 */
262 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
263
264 total_scan = nr;
265 delta = (4 * nr_pages_scanned) / shrinker->seeks;
266 delta *= max_pass;
267 do_div(delta, lru_pages + 1);
268 total_scan += delta;
269 if (total_scan < 0) {
270 printk(KERN_ERR "shrink_slab: %pF negative objects to "
271 "delete nr=%ld\n",
272 shrinker->shrink, total_scan);
273 total_scan = max_pass;
274 }
275
276 /*
277 * We need to avoid excessive windup on filesystem shrinkers
278 * due to large numbers of GFP_NOFS allocations causing the
279 * shrinkers to return -1 all the time. This results in a large
280 * nr being built up so when a shrink that can do some work
281 * comes along it empties the entire cache due to nr >>>
282 * max_pass. This is bad for sustaining a working set in
283 * memory.
284 *
285 * Hence only allow the shrinker to scan the entire cache when
286 * a large delta change is calculated directly.
287 */
288 if (delta < max_pass / 4)
289 total_scan = min(total_scan, max_pass / 2);
290
291 /*
292 * Avoid risking looping forever due to too large nr value:
293 * never try to free more than twice the estimate number of
294 * freeable entries.
295 */
296 if (total_scan > max_pass * 2)
297 total_scan = max_pass * 2;
298
299 trace_mm_shrink_slab_start(shrinker, shrink, nr,
300 nr_pages_scanned, lru_pages,
301 max_pass, delta, total_scan);
302
303 while (total_scan >= batch_size) {
304 int nr_before;
305
306 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
307 shrink_ret = do_shrinker_shrink(shrinker, shrink,
308 batch_size);
309 if (shrink_ret == -1)
310 break;
311 if (shrink_ret < nr_before)
312 ret += nr_before - shrink_ret;
313 count_vm_events(SLABS_SCANNED, batch_size);
314 total_scan -= batch_size;
315
316 cond_resched();
317 }
318
319 /*
320 * move the unused scan count back into the shrinker in a
321 * manner that handles concurrent updates. If we exhausted the
322 * scan, there is no need to do an update.
323 */
324 if (total_scan > 0)
325 new_nr = atomic_long_add_return(total_scan,
326 &shrinker->nr_in_batch);
327 else
328 new_nr = atomic_long_read(&shrinker->nr_in_batch);
329
330 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
331 }
332 up_read(&shrinker_rwsem);
333 out:
334 cond_resched();
335 return ret;
336 }
337
338 static inline int is_page_cache_freeable(struct page *page)
339 {
340 /*
341 * A freeable page cache page is referenced only by the caller
342 * that isolated the page, the page cache radix tree and
343 * optional buffer heads at page->private.
344 */
345 return page_count(page) - page_has_private(page) == 2;
346 }
347
348 static int may_write_to_queue(struct backing_dev_info *bdi,
349 struct scan_control *sc)
350 {
351 if (current->flags & PF_SWAPWRITE)
352 return 1;
353 if (!bdi_write_congested(bdi))
354 return 1;
355 if (bdi == current->backing_dev_info)
356 return 1;
357 return 0;
358 }
359
360 /*
361 * We detected a synchronous write error writing a page out. Probably
362 * -ENOSPC. We need to propagate that into the address_space for a subsequent
363 * fsync(), msync() or close().
364 *
365 * The tricky part is that after writepage we cannot touch the mapping: nothing
366 * prevents it from being freed up. But we have a ref on the page and once
367 * that page is locked, the mapping is pinned.
368 *
369 * We're allowed to run sleeping lock_page() here because we know the caller has
370 * __GFP_FS.
371 */
372 static void handle_write_error(struct address_space *mapping,
373 struct page *page, int error)
374 {
375 lock_page(page);
376 if (page_mapping(page) == mapping)
377 mapping_set_error(mapping, error);
378 unlock_page(page);
379 }
380
381 /* possible outcome of pageout() */
382 typedef enum {
383 /* failed to write page out, page is locked */
384 PAGE_KEEP,
385 /* move page to the active list, page is locked */
386 PAGE_ACTIVATE,
387 /* page has been sent to the disk successfully, page is unlocked */
388 PAGE_SUCCESS,
389 /* page is clean and locked */
390 PAGE_CLEAN,
391 } pageout_t;
392
393 /*
394 * pageout is called by shrink_page_list() for each dirty page.
395 * Calls ->writepage().
396 */
397 static pageout_t pageout(struct page *page, struct address_space *mapping,
398 struct scan_control *sc)
399 {
400 /*
401 * If the page is dirty, only perform writeback if that write
402 * will be non-blocking. To prevent this allocation from being
403 * stalled by pagecache activity. But note that there may be
404 * stalls if we need to run get_block(). We could test
405 * PagePrivate for that.
406 *
407 * If this process is currently in __generic_file_aio_write() against
408 * this page's queue, we can perform writeback even if that
409 * will block.
410 *
411 * If the page is swapcache, write it back even if that would
412 * block, for some throttling. This happens by accident, because
413 * swap_backing_dev_info is bust: it doesn't reflect the
414 * congestion state of the swapdevs. Easy to fix, if needed.
415 */
416 if (!is_page_cache_freeable(page))
417 return PAGE_KEEP;
418 if (!mapping) {
419 /*
420 * Some data journaling orphaned pages can have
421 * page->mapping == NULL while being dirty with clean buffers.
422 */
423 if (page_has_private(page)) {
424 if (try_to_free_buffers(page)) {
425 ClearPageDirty(page);
426 printk("%s: orphaned page\n", __func__);
427 return PAGE_CLEAN;
428 }
429 }
430 return PAGE_KEEP;
431 }
432 if (mapping->a_ops->writepage == NULL)
433 return PAGE_ACTIVATE;
434 if (!may_write_to_queue(mapping->backing_dev_info, sc))
435 return PAGE_KEEP;
436
437 if (clear_page_dirty_for_io(page)) {
438 int res;
439 struct writeback_control wbc = {
440 .sync_mode = WB_SYNC_NONE,
441 .nr_to_write = SWAP_CLUSTER_MAX,
442 .range_start = 0,
443 .range_end = LLONG_MAX,
444 .for_reclaim = 1,
445 };
446
447 SetPageReclaim(page);
448 res = mapping->a_ops->writepage(page, &wbc);
449 if (res < 0)
450 handle_write_error(mapping, page, res);
451 if (res == AOP_WRITEPAGE_ACTIVATE) {
452 ClearPageReclaim(page);
453 return PAGE_ACTIVATE;
454 }
455
456 if (!PageWriteback(page)) {
457 /* synchronous write or broken a_ops? */
458 ClearPageReclaim(page);
459 }
460 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
461 inc_zone_page_state(page, NR_VMSCAN_WRITE);
462 return PAGE_SUCCESS;
463 }
464
465 return PAGE_CLEAN;
466 }
467
468 /*
469 * Same as remove_mapping, but if the page is removed from the mapping, it
470 * gets returned with a refcount of 0.
471 */
472 static int __remove_mapping(struct address_space *mapping, struct page *page)
473 {
474 BUG_ON(!PageLocked(page));
475 BUG_ON(mapping != page_mapping(page));
476
477 spin_lock_irq(&mapping->tree_lock);
478 /*
479 * The non racy check for a busy page.
480 *
481 * Must be careful with the order of the tests. When someone has
482 * a ref to the page, it may be possible that they dirty it then
483 * drop the reference. So if PageDirty is tested before page_count
484 * here, then the following race may occur:
485 *
486 * get_user_pages(&page);
487 * [user mapping goes away]
488 * write_to(page);
489 * !PageDirty(page) [good]
490 * SetPageDirty(page);
491 * put_page(page);
492 * !page_count(page) [good, discard it]
493 *
494 * [oops, our write_to data is lost]
495 *
496 * Reversing the order of the tests ensures such a situation cannot
497 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
498 * load is not satisfied before that of page->_count.
499 *
500 * Note that if SetPageDirty is always performed via set_page_dirty,
501 * and thus under tree_lock, then this ordering is not required.
502 */
503 if (!page_freeze_refs(page, 2))
504 goto cannot_free;
505 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
506 if (unlikely(PageDirty(page))) {
507 page_unfreeze_refs(page, 2);
508 goto cannot_free;
509 }
510
511 if (PageSwapCache(page)) {
512 swp_entry_t swap = { .val = page_private(page) };
513 __delete_from_swap_cache(page);
514 spin_unlock_irq(&mapping->tree_lock);
515 swapcache_free(swap, page);
516 } else {
517 void (*freepage)(struct page *);
518
519 freepage = mapping->a_ops->freepage;
520
521 __delete_from_page_cache(page);
522 spin_unlock_irq(&mapping->tree_lock);
523 mem_cgroup_uncharge_cache_page(page);
524
525 if (freepage != NULL)
526 freepage(page);
527 }
528
529 return 1;
530
531 cannot_free:
532 spin_unlock_irq(&mapping->tree_lock);
533 return 0;
534 }
535
536 /*
537 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
538 * someone else has a ref on the page, abort and return 0. If it was
539 * successfully detached, return 1. Assumes the caller has a single ref on
540 * this page.
541 */
542 int remove_mapping(struct address_space *mapping, struct page *page)
543 {
544 if (__remove_mapping(mapping, page)) {
545 /*
546 * Unfreezing the refcount with 1 rather than 2 effectively
547 * drops the pagecache ref for us without requiring another
548 * atomic operation.
549 */
550 page_unfreeze_refs(page, 1);
551 return 1;
552 }
553 return 0;
554 }
555
556 /**
557 * putback_lru_page - put previously isolated page onto appropriate LRU list
558 * @page: page to be put back to appropriate lru list
559 *
560 * Add previously isolated @page to appropriate LRU list.
561 * Page may still be unevictable for other reasons.
562 *
563 * lru_lock must not be held, interrupts must be enabled.
564 */
565 void putback_lru_page(struct page *page)
566 {
567 bool is_unevictable;
568 int was_unevictable = PageUnevictable(page);
569
570 VM_BUG_ON(PageLRU(page));
571
572 redo:
573 ClearPageUnevictable(page);
574
575 if (page_evictable(page)) {
576 /*
577 * For evictable pages, we can use the cache.
578 * In event of a race, worst case is we end up with an
579 * unevictable page on [in]active list.
580 * We know how to handle that.
581 */
582 is_unevictable = false;
583 lru_cache_add(page);
584 } else {
585 /*
586 * Put unevictable pages directly on zone's unevictable
587 * list.
588 */
589 is_unevictable = true;
590 add_page_to_unevictable_list(page);
591 /*
592 * When racing with an mlock or AS_UNEVICTABLE clearing
593 * (page is unlocked) make sure that if the other thread
594 * does not observe our setting of PG_lru and fails
595 * isolation/check_move_unevictable_pages,
596 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
597 * the page back to the evictable list.
598 *
599 * The other side is TestClearPageMlocked() or shmem_lock().
600 */
601 smp_mb();
602 }
603
604 /*
605 * page's status can change while we move it among lru. If an evictable
606 * page is on unevictable list, it never be freed. To avoid that,
607 * check after we added it to the list, again.
608 */
609 if (is_unevictable && page_evictable(page)) {
610 if (!isolate_lru_page(page)) {
611 put_page(page);
612 goto redo;
613 }
614 /* This means someone else dropped this page from LRU
615 * So, it will be freed or putback to LRU again. There is
616 * nothing to do here.
617 */
618 }
619
620 if (was_unevictable && !is_unevictable)
621 count_vm_event(UNEVICTABLE_PGRESCUED);
622 else if (!was_unevictable && is_unevictable)
623 count_vm_event(UNEVICTABLE_PGCULLED);
624
625 put_page(page); /* drop ref from isolate */
626 }
627
628 enum page_references {
629 PAGEREF_RECLAIM,
630 PAGEREF_RECLAIM_CLEAN,
631 PAGEREF_KEEP,
632 PAGEREF_ACTIVATE,
633 };
634
635 static enum page_references page_check_references(struct page *page,
636 struct scan_control *sc)
637 {
638 int referenced_ptes, referenced_page;
639 unsigned long vm_flags;
640
641 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
642 &vm_flags);
643 referenced_page = TestClearPageReferenced(page);
644
645 /*
646 * Mlock lost the isolation race with us. Let try_to_unmap()
647 * move the page to the unevictable list.
648 */
649 if (vm_flags & VM_LOCKED)
650 return PAGEREF_RECLAIM;
651
652 if (referenced_ptes) {
653 if (PageSwapBacked(page))
654 return PAGEREF_ACTIVATE;
655 /*
656 * All mapped pages start out with page table
657 * references from the instantiating fault, so we need
658 * to look twice if a mapped file page is used more
659 * than once.
660 *
661 * Mark it and spare it for another trip around the
662 * inactive list. Another page table reference will
663 * lead to its activation.
664 *
665 * Note: the mark is set for activated pages as well
666 * so that recently deactivated but used pages are
667 * quickly recovered.
668 */
669 SetPageReferenced(page);
670
671 if (referenced_page || referenced_ptes > 1)
672 return PAGEREF_ACTIVATE;
673
674 /*
675 * Activate file-backed executable pages after first usage.
676 */
677 if (vm_flags & VM_EXEC)
678 return PAGEREF_ACTIVATE;
679
680 return PAGEREF_KEEP;
681 }
682
683 /* Reclaim if clean, defer dirty pages to writeback */
684 if (referenced_page && !PageSwapBacked(page))
685 return PAGEREF_RECLAIM_CLEAN;
686
687 return PAGEREF_RECLAIM;
688 }
689
690 /* Check if a page is dirty or under writeback */
691 static void page_check_dirty_writeback(struct page *page,
692 bool *dirty, bool *writeback)
693 {
694 struct address_space *mapping;
695
696 /*
697 * Anonymous pages are not handled by flushers and must be written
698 * from reclaim context. Do not stall reclaim based on them
699 */
700 if (!page_is_file_cache(page)) {
701 *dirty = false;
702 *writeback = false;
703 return;
704 }
705
706 /* By default assume that the page flags are accurate */
707 *dirty = PageDirty(page);
708 *writeback = PageWriteback(page);
709
710 /* Verify dirty/writeback state if the filesystem supports it */
711 if (!page_has_private(page))
712 return;
713
714 mapping = page_mapping(page);
715 if (mapping && mapping->a_ops->is_dirty_writeback)
716 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
717 }
718
719 /*
720 * shrink_page_list() returns the number of reclaimed pages
721 */
722 static unsigned long shrink_page_list(struct list_head *page_list,
723 struct zone *zone,
724 struct scan_control *sc,
725 enum ttu_flags ttu_flags,
726 unsigned long *ret_nr_dirty,
727 unsigned long *ret_nr_unqueued_dirty,
728 unsigned long *ret_nr_congested,
729 unsigned long *ret_nr_writeback,
730 unsigned long *ret_nr_immediate,
731 bool force_reclaim)
732 {
733 LIST_HEAD(ret_pages);
734 LIST_HEAD(free_pages);
735 int pgactivate = 0;
736 unsigned long nr_unqueued_dirty = 0;
737 unsigned long nr_dirty = 0;
738 unsigned long nr_congested = 0;
739 unsigned long nr_reclaimed = 0;
740 unsigned long nr_writeback = 0;
741 unsigned long nr_immediate = 0;
742
743 cond_resched();
744
745 mem_cgroup_uncharge_start();
746 while (!list_empty(page_list)) {
747 struct address_space *mapping;
748 struct page *page;
749 int may_enter_fs;
750 enum page_references references = PAGEREF_RECLAIM_CLEAN;
751 bool dirty, writeback;
752
753 cond_resched();
754
755 page = lru_to_page(page_list);
756 list_del(&page->lru);
757
758 if (!trylock_page(page))
759 goto keep;
760
761 VM_BUG_ON(PageActive(page));
762 VM_BUG_ON(page_zone(page) != zone);
763
764 sc->nr_scanned++;
765
766 if (unlikely(!page_evictable(page)))
767 goto cull_mlocked;
768
769 if (!sc->may_unmap && page_mapped(page))
770 goto keep_locked;
771
772 /* Double the slab pressure for mapped and swapcache pages */
773 if (page_mapped(page) || PageSwapCache(page))
774 sc->nr_scanned++;
775
776 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
777 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
778
779 /*
780 * The number of dirty pages determines if a zone is marked
781 * reclaim_congested which affects wait_iff_congested. kswapd
782 * will stall and start writing pages if the tail of the LRU
783 * is all dirty unqueued pages.
784 */
785 page_check_dirty_writeback(page, &dirty, &writeback);
786 if (dirty || writeback)
787 nr_dirty++;
788
789 if (dirty && !writeback)
790 nr_unqueued_dirty++;
791
792 /*
793 * Treat this page as congested if the underlying BDI is or if
794 * pages are cycling through the LRU so quickly that the
795 * pages marked for immediate reclaim are making it to the
796 * end of the LRU a second time.
797 */
798 mapping = page_mapping(page);
799 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
800 (writeback && PageReclaim(page)))
801 nr_congested++;
802
803 /*
804 * If a page at the tail of the LRU is under writeback, there
805 * are three cases to consider.
806 *
807 * 1) If reclaim is encountering an excessive number of pages
808 * under writeback and this page is both under writeback and
809 * PageReclaim then it indicates that pages are being queued
810 * for IO but are being recycled through the LRU before the
811 * IO can complete. Waiting on the page itself risks an
812 * indefinite stall if it is impossible to writeback the
813 * page due to IO error or disconnected storage so instead
814 * note that the LRU is being scanned too quickly and the
815 * caller can stall after page list has been processed.
816 *
817 * 2) Global reclaim encounters a page, memcg encounters a
818 * page that is not marked for immediate reclaim or
819 * the caller does not have __GFP_IO. In this case mark
820 * the page for immediate reclaim and continue scanning.
821 *
822 * __GFP_IO is checked because a loop driver thread might
823 * enter reclaim, and deadlock if it waits on a page for
824 * which it is needed to do the write (loop masks off
825 * __GFP_IO|__GFP_FS for this reason); but more thought
826 * would probably show more reasons.
827 *
828 * Don't require __GFP_FS, since we're not going into the
829 * FS, just waiting on its writeback completion. Worryingly,
830 * ext4 gfs2 and xfs allocate pages with
831 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
832 * may_enter_fs here is liable to OOM on them.
833 *
834 * 3) memcg encounters a page that is not already marked
835 * PageReclaim. memcg does not have any dirty pages
836 * throttling so we could easily OOM just because too many
837 * pages are in writeback and there is nothing else to
838 * reclaim. Wait for the writeback to complete.
839 */
840 if (PageWriteback(page)) {
841 /* Case 1 above */
842 if (current_is_kswapd() &&
843 PageReclaim(page) &&
844 zone_is_reclaim_writeback(zone)) {
845 nr_immediate++;
846 goto keep_locked;
847
848 /* Case 2 above */
849 } else if (global_reclaim(sc) ||
850 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
851 /*
852 * This is slightly racy - end_page_writeback()
853 * might have just cleared PageReclaim, then
854 * setting PageReclaim here end up interpreted
855 * as PageReadahead - but that does not matter
856 * enough to care. What we do want is for this
857 * page to have PageReclaim set next time memcg
858 * reclaim reaches the tests above, so it will
859 * then wait_on_page_writeback() to avoid OOM;
860 * and it's also appropriate in global reclaim.
861 */
862 SetPageReclaim(page);
863 nr_writeback++;
864
865 goto keep_locked;
866
867 /* Case 3 above */
868 } else {
869 wait_on_page_writeback(page);
870 }
871 }
872
873 if (!force_reclaim)
874 references = page_check_references(page, sc);
875
876 switch (references) {
877 case PAGEREF_ACTIVATE:
878 goto activate_locked;
879 case PAGEREF_KEEP:
880 goto keep_locked;
881 case PAGEREF_RECLAIM:
882 case PAGEREF_RECLAIM_CLEAN:
883 ; /* try to reclaim the page below */
884 }
885
886 /*
887 * Anonymous process memory has backing store?
888 * Try to allocate it some swap space here.
889 */
890 if (PageAnon(page) && !PageSwapCache(page)) {
891 if (!(sc->gfp_mask & __GFP_IO))
892 goto keep_locked;
893 if (!add_to_swap(page, page_list))
894 goto activate_locked;
895 may_enter_fs = 1;
896
897 /* Adding to swap updated mapping */
898 mapping = page_mapping(page);
899 }
900
901 /*
902 * The page is mapped into the page tables of one or more
903 * processes. Try to unmap it here.
904 */
905 if (page_mapped(page) && mapping) {
906 switch (try_to_unmap(page, ttu_flags)) {
907 case SWAP_FAIL:
908 goto activate_locked;
909 case SWAP_AGAIN:
910 goto keep_locked;
911 case SWAP_MLOCK:
912 goto cull_mlocked;
913 case SWAP_SUCCESS:
914 ; /* try to free the page below */
915 }
916 }
917
918 if (PageDirty(page)) {
919 /*
920 * Only kswapd can writeback filesystem pages to
921 * avoid risk of stack overflow but only writeback
922 * if many dirty pages have been encountered.
923 */
924 if (page_is_file_cache(page) &&
925 (!current_is_kswapd() ||
926 !zone_is_reclaim_dirty(zone))) {
927 /*
928 * Immediately reclaim when written back.
929 * Similar in principal to deactivate_page()
930 * except we already have the page isolated
931 * and know it's dirty
932 */
933 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
934 SetPageReclaim(page);
935
936 goto keep_locked;
937 }
938
939 if (references == PAGEREF_RECLAIM_CLEAN)
940 goto keep_locked;
941 if (!may_enter_fs)
942 goto keep_locked;
943 if (!sc->may_writepage)
944 goto keep_locked;
945
946 /* Page is dirty, try to write it out here */
947 switch (pageout(page, mapping, sc)) {
948 case PAGE_KEEP:
949 goto keep_locked;
950 case PAGE_ACTIVATE:
951 goto activate_locked;
952 case PAGE_SUCCESS:
953 if (PageWriteback(page))
954 goto keep;
955 if (PageDirty(page))
956 goto keep;
957
958 /*
959 * A synchronous write - probably a ramdisk. Go
960 * ahead and try to reclaim the page.
961 */
962 if (!trylock_page(page))
963 goto keep;
964 if (PageDirty(page) || PageWriteback(page))
965 goto keep_locked;
966 mapping = page_mapping(page);
967 case PAGE_CLEAN:
968 ; /* try to free the page below */
969 }
970 }
971
972 /*
973 * If the page has buffers, try to free the buffer mappings
974 * associated with this page. If we succeed we try to free
975 * the page as well.
976 *
977 * We do this even if the page is PageDirty().
978 * try_to_release_page() does not perform I/O, but it is
979 * possible for a page to have PageDirty set, but it is actually
980 * clean (all its buffers are clean). This happens if the
981 * buffers were written out directly, with submit_bh(). ext3
982 * will do this, as well as the blockdev mapping.
983 * try_to_release_page() will discover that cleanness and will
984 * drop the buffers and mark the page clean - it can be freed.
985 *
986 * Rarely, pages can have buffers and no ->mapping. These are
987 * the pages which were not successfully invalidated in
988 * truncate_complete_page(). We try to drop those buffers here
989 * and if that worked, and the page is no longer mapped into
990 * process address space (page_count == 1) it can be freed.
991 * Otherwise, leave the page on the LRU so it is swappable.
992 */
993 if (page_has_private(page)) {
994 if (!try_to_release_page(page, sc->gfp_mask))
995 goto activate_locked;
996 if (!mapping && page_count(page) == 1) {
997 unlock_page(page);
998 if (put_page_testzero(page))
999 goto free_it;
1000 else {
1001 /*
1002 * rare race with speculative reference.
1003 * the speculative reference will free
1004 * this page shortly, so we may
1005 * increment nr_reclaimed here (and
1006 * leave it off the LRU).
1007 */
1008 nr_reclaimed++;
1009 continue;
1010 }
1011 }
1012 }
1013
1014 if (!mapping || !__remove_mapping(mapping, page))
1015 goto keep_locked;
1016
1017 /*
1018 * At this point, we have no other references and there is
1019 * no way to pick any more up (removed from LRU, removed
1020 * from pagecache). Can use non-atomic bitops now (and
1021 * we obviously don't have to worry about waking up a process
1022 * waiting on the page lock, because there are no references.
1023 */
1024 __clear_page_locked(page);
1025 free_it:
1026 nr_reclaimed++;
1027
1028 /*
1029 * Is there need to periodically free_page_list? It would
1030 * appear not as the counts should be low
1031 */
1032 list_add(&page->lru, &free_pages);
1033 continue;
1034
1035 cull_mlocked:
1036 if (PageSwapCache(page))
1037 try_to_free_swap(page);
1038 unlock_page(page);
1039 putback_lru_page(page);
1040 continue;
1041
1042 activate_locked:
1043 /* Not a candidate for swapping, so reclaim swap space. */
1044 if (PageSwapCache(page) && vm_swap_full())
1045 try_to_free_swap(page);
1046 VM_BUG_ON(PageActive(page));
1047 SetPageActive(page);
1048 pgactivate++;
1049 keep_locked:
1050 unlock_page(page);
1051 keep:
1052 list_add(&page->lru, &ret_pages);
1053 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1054 }
1055
1056 free_hot_cold_page_list(&free_pages, 1);
1057
1058 list_splice(&ret_pages, page_list);
1059 count_vm_events(PGACTIVATE, pgactivate);
1060 mem_cgroup_uncharge_end();
1061 *ret_nr_dirty += nr_dirty;
1062 *ret_nr_congested += nr_congested;
1063 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1064 *ret_nr_writeback += nr_writeback;
1065 *ret_nr_immediate += nr_immediate;
1066 return nr_reclaimed;
1067 }
1068
1069 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1070 struct list_head *page_list)
1071 {
1072 struct scan_control sc = {
1073 .gfp_mask = GFP_KERNEL,
1074 .priority = DEF_PRIORITY,
1075 .may_unmap = 1,
1076 };
1077 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1078 struct page *page, *next;
1079 LIST_HEAD(clean_pages);
1080
1081 list_for_each_entry_safe(page, next, page_list, lru) {
1082 if (page_is_file_cache(page) && !PageDirty(page)) {
1083 ClearPageActive(page);
1084 list_move(&page->lru, &clean_pages);
1085 }
1086 }
1087
1088 ret = shrink_page_list(&clean_pages, zone, &sc,
1089 TTU_UNMAP|TTU_IGNORE_ACCESS,
1090 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1091 list_splice(&clean_pages, page_list);
1092 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1093 return ret;
1094 }
1095
1096 /*
1097 * Attempt to remove the specified page from its LRU. Only take this page
1098 * if it is of the appropriate PageActive status. Pages which are being
1099 * freed elsewhere are also ignored.
1100 *
1101 * page: page to consider
1102 * mode: one of the LRU isolation modes defined above
1103 *
1104 * returns 0 on success, -ve errno on failure.
1105 */
1106 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1107 {
1108 int ret = -EINVAL;
1109
1110 /* Only take pages on the LRU. */
1111 if (!PageLRU(page))
1112 return ret;
1113
1114 /* Compaction should not handle unevictable pages but CMA can do so */
1115 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1116 return ret;
1117
1118 ret = -EBUSY;
1119
1120 /*
1121 * To minimise LRU disruption, the caller can indicate that it only
1122 * wants to isolate pages it will be able to operate on without
1123 * blocking - clean pages for the most part.
1124 *
1125 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1126 * is used by reclaim when it is cannot write to backing storage
1127 *
1128 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1129 * that it is possible to migrate without blocking
1130 */
1131 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1132 /* All the caller can do on PageWriteback is block */
1133 if (PageWriteback(page))
1134 return ret;
1135
1136 if (PageDirty(page)) {
1137 struct address_space *mapping;
1138
1139 /* ISOLATE_CLEAN means only clean pages */
1140 if (mode & ISOLATE_CLEAN)
1141 return ret;
1142
1143 /*
1144 * Only pages without mappings or that have a
1145 * ->migratepage callback are possible to migrate
1146 * without blocking
1147 */
1148 mapping = page_mapping(page);
1149 if (mapping && !mapping->a_ops->migratepage)
1150 return ret;
1151 }
1152 }
1153
1154 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1155 return ret;
1156
1157 if (likely(get_page_unless_zero(page))) {
1158 /*
1159 * Be careful not to clear PageLRU until after we're
1160 * sure the page is not being freed elsewhere -- the
1161 * page release code relies on it.
1162 */
1163 ClearPageLRU(page);
1164 ret = 0;
1165 }
1166
1167 return ret;
1168 }
1169
1170 /*
1171 * zone->lru_lock is heavily contended. Some of the functions that
1172 * shrink the lists perform better by taking out a batch of pages
1173 * and working on them outside the LRU lock.
1174 *
1175 * For pagecache intensive workloads, this function is the hottest
1176 * spot in the kernel (apart from copy_*_user functions).
1177 *
1178 * Appropriate locks must be held before calling this function.
1179 *
1180 * @nr_to_scan: The number of pages to look through on the list.
1181 * @lruvec: The LRU vector to pull pages from.
1182 * @dst: The temp list to put pages on to.
1183 * @nr_scanned: The number of pages that were scanned.
1184 * @sc: The scan_control struct for this reclaim session
1185 * @mode: One of the LRU isolation modes
1186 * @lru: LRU list id for isolating
1187 *
1188 * returns how many pages were moved onto *@dst.
1189 */
1190 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1191 struct lruvec *lruvec, struct list_head *dst,
1192 unsigned long *nr_scanned, struct scan_control *sc,
1193 isolate_mode_t mode, enum lru_list lru)
1194 {
1195 struct list_head *src = &lruvec->lists[lru];
1196 unsigned long nr_taken = 0;
1197 unsigned long scan;
1198
1199 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1200 struct page *page;
1201 int nr_pages;
1202
1203 page = lru_to_page(src);
1204 prefetchw_prev_lru_page(page, src, flags);
1205
1206 VM_BUG_ON(!PageLRU(page));
1207
1208 switch (__isolate_lru_page(page, mode)) {
1209 case 0:
1210 nr_pages = hpage_nr_pages(page);
1211 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1212 list_move(&page->lru, dst);
1213 nr_taken += nr_pages;
1214 break;
1215
1216 case -EBUSY:
1217 /* else it is being freed elsewhere */
1218 list_move(&page->lru, src);
1219 continue;
1220
1221 default:
1222 BUG();
1223 }
1224 }
1225
1226 *nr_scanned = scan;
1227 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1228 nr_taken, mode, is_file_lru(lru));
1229 return nr_taken;
1230 }
1231
1232 /**
1233 * isolate_lru_page - tries to isolate a page from its LRU list
1234 * @page: page to isolate from its LRU list
1235 *
1236 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1237 * vmstat statistic corresponding to whatever LRU list the page was on.
1238 *
1239 * Returns 0 if the page was removed from an LRU list.
1240 * Returns -EBUSY if the page was not on an LRU list.
1241 *
1242 * The returned page will have PageLRU() cleared. If it was found on
1243 * the active list, it will have PageActive set. If it was found on
1244 * the unevictable list, it will have the PageUnevictable bit set. That flag
1245 * may need to be cleared by the caller before letting the page go.
1246 *
1247 * The vmstat statistic corresponding to the list on which the page was
1248 * found will be decremented.
1249 *
1250 * Restrictions:
1251 * (1) Must be called with an elevated refcount on the page. This is a
1252 * fundamentnal difference from isolate_lru_pages (which is called
1253 * without a stable reference).
1254 * (2) the lru_lock must not be held.
1255 * (3) interrupts must be enabled.
1256 */
1257 int isolate_lru_page(struct page *page)
1258 {
1259 int ret = -EBUSY;
1260
1261 VM_BUG_ON(!page_count(page));
1262
1263 if (PageLRU(page)) {
1264 struct zone *zone = page_zone(page);
1265 struct lruvec *lruvec;
1266
1267 spin_lock_irq(&zone->lru_lock);
1268 lruvec = mem_cgroup_page_lruvec(page, zone);
1269 if (PageLRU(page)) {
1270 int lru = page_lru(page);
1271 get_page(page);
1272 ClearPageLRU(page);
1273 del_page_from_lru_list(page, lruvec, lru);
1274 ret = 0;
1275 }
1276 spin_unlock_irq(&zone->lru_lock);
1277 }
1278 return ret;
1279 }
1280
1281 /*
1282 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1283 * then get resheduled. When there are massive number of tasks doing page
1284 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1285 * the LRU list will go small and be scanned faster than necessary, leading to
1286 * unnecessary swapping, thrashing and OOM.
1287 */
1288 static int too_many_isolated(struct zone *zone, int file,
1289 struct scan_control *sc)
1290 {
1291 unsigned long inactive, isolated;
1292
1293 if (current_is_kswapd())
1294 return 0;
1295
1296 if (!global_reclaim(sc))
1297 return 0;
1298
1299 if (file) {
1300 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1301 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1302 } else {
1303 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1304 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1305 }
1306
1307 /*
1308 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1309 * won't get blocked by normal direct-reclaimers, forming a circular
1310 * deadlock.
1311 */
1312 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1313 inactive >>= 3;
1314
1315 return isolated > inactive;
1316 }
1317
1318 static noinline_for_stack void
1319 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1320 {
1321 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1322 struct zone *zone = lruvec_zone(lruvec);
1323 LIST_HEAD(pages_to_free);
1324
1325 /*
1326 * Put back any unfreeable pages.
1327 */
1328 while (!list_empty(page_list)) {
1329 struct page *page = lru_to_page(page_list);
1330 int lru;
1331
1332 VM_BUG_ON(PageLRU(page));
1333 list_del(&page->lru);
1334 if (unlikely(!page_evictable(page))) {
1335 spin_unlock_irq(&zone->lru_lock);
1336 putback_lru_page(page);
1337 spin_lock_irq(&zone->lru_lock);
1338 continue;
1339 }
1340
1341 lruvec = mem_cgroup_page_lruvec(page, zone);
1342
1343 SetPageLRU(page);
1344 lru = page_lru(page);
1345 add_page_to_lru_list(page, lruvec, lru);
1346
1347 if (is_active_lru(lru)) {
1348 int file = is_file_lru(lru);
1349 int numpages = hpage_nr_pages(page);
1350 reclaim_stat->recent_rotated[file] += numpages;
1351 }
1352 if (put_page_testzero(page)) {
1353 __ClearPageLRU(page);
1354 __ClearPageActive(page);
1355 del_page_from_lru_list(page, lruvec, lru);
1356
1357 if (unlikely(PageCompound(page))) {
1358 spin_unlock_irq(&zone->lru_lock);
1359 (*get_compound_page_dtor(page))(page);
1360 spin_lock_irq(&zone->lru_lock);
1361 } else
1362 list_add(&page->lru, &pages_to_free);
1363 }
1364 }
1365
1366 /*
1367 * To save our caller's stack, now use input list for pages to free.
1368 */
1369 list_splice(&pages_to_free, page_list);
1370 }
1371
1372 /*
1373 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1374 * of reclaimed pages
1375 */
1376 static noinline_for_stack unsigned long
1377 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1378 struct scan_control *sc, enum lru_list lru)
1379 {
1380 LIST_HEAD(page_list);
1381 unsigned long nr_scanned;
1382 unsigned long nr_reclaimed = 0;
1383 unsigned long nr_taken;
1384 unsigned long nr_dirty = 0;
1385 unsigned long nr_congested = 0;
1386 unsigned long nr_unqueued_dirty = 0;
1387 unsigned long nr_writeback = 0;
1388 unsigned long nr_immediate = 0;
1389 isolate_mode_t isolate_mode = 0;
1390 int file = is_file_lru(lru);
1391 struct zone *zone = lruvec_zone(lruvec);
1392 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1393
1394 while (unlikely(too_many_isolated(zone, file, sc))) {
1395 congestion_wait(BLK_RW_ASYNC, HZ/10);
1396
1397 /* We are about to die and free our memory. Return now. */
1398 if (fatal_signal_pending(current))
1399 return SWAP_CLUSTER_MAX;
1400 }
1401
1402 lru_add_drain();
1403
1404 if (!sc->may_unmap)
1405 isolate_mode |= ISOLATE_UNMAPPED;
1406 if (!sc->may_writepage)
1407 isolate_mode |= ISOLATE_CLEAN;
1408
1409 spin_lock_irq(&zone->lru_lock);
1410
1411 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1412 &nr_scanned, sc, isolate_mode, lru);
1413
1414 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1415 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1416
1417 if (global_reclaim(sc)) {
1418 zone->pages_scanned += nr_scanned;
1419 if (current_is_kswapd())
1420 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1421 else
1422 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1423 }
1424 spin_unlock_irq(&zone->lru_lock);
1425
1426 if (nr_taken == 0)
1427 return 0;
1428
1429 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1430 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1431 &nr_writeback, &nr_immediate,
1432 false);
1433
1434 spin_lock_irq(&zone->lru_lock);
1435
1436 reclaim_stat->recent_scanned[file] += nr_taken;
1437
1438 if (global_reclaim(sc)) {
1439 if (current_is_kswapd())
1440 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1441 nr_reclaimed);
1442 else
1443 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1444 nr_reclaimed);
1445 }
1446
1447 putback_inactive_pages(lruvec, &page_list);
1448
1449 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1450
1451 spin_unlock_irq(&zone->lru_lock);
1452
1453 free_hot_cold_page_list(&page_list, 1);
1454
1455 /*
1456 * If reclaim is isolating dirty pages under writeback, it implies
1457 * that the long-lived page allocation rate is exceeding the page
1458 * laundering rate. Either the global limits are not being effective
1459 * at throttling processes due to the page distribution throughout
1460 * zones or there is heavy usage of a slow backing device. The
1461 * only option is to throttle from reclaim context which is not ideal
1462 * as there is no guarantee the dirtying process is throttled in the
1463 * same way balance_dirty_pages() manages.
1464 *
1465 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1466 * of pages under pages flagged for immediate reclaim and stall if any
1467 * are encountered in the nr_immediate check below.
1468 */
1469 if (nr_writeback && nr_writeback == nr_taken)
1470 zone_set_flag(zone, ZONE_WRITEBACK);
1471
1472 /*
1473 * memcg will stall in page writeback so only consider forcibly
1474 * stalling for global reclaim
1475 */
1476 if (global_reclaim(sc)) {
1477 /*
1478 * Tag a zone as congested if all the dirty pages scanned were
1479 * backed by a congested BDI and wait_iff_congested will stall.
1480 */
1481 if (nr_dirty && nr_dirty == nr_congested)
1482 zone_set_flag(zone, ZONE_CONGESTED);
1483
1484 /*
1485 * If dirty pages are scanned that are not queued for IO, it
1486 * implies that flushers are not keeping up. In this case, flag
1487 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1488 * pages from reclaim context. It will forcibly stall in the
1489 * next check.
1490 */
1491 if (nr_unqueued_dirty == nr_taken)
1492 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1493
1494 /*
1495 * In addition, if kswapd scans pages marked marked for
1496 * immediate reclaim and under writeback (nr_immediate), it
1497 * implies that pages are cycling through the LRU faster than
1498 * they are written so also forcibly stall.
1499 */
1500 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1501 congestion_wait(BLK_RW_ASYNC, HZ/10);
1502 }
1503
1504 /*
1505 * Stall direct reclaim for IO completions if underlying BDIs or zone
1506 * is congested. Allow kswapd to continue until it starts encountering
1507 * unqueued dirty pages or cycling through the LRU too quickly.
1508 */
1509 if (!sc->hibernation_mode && !current_is_kswapd())
1510 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1511
1512 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1513 zone_idx(zone),
1514 nr_scanned, nr_reclaimed,
1515 sc->priority,
1516 trace_shrink_flags(file));
1517 return nr_reclaimed;
1518 }
1519
1520 /*
1521 * This moves pages from the active list to the inactive list.
1522 *
1523 * We move them the other way if the page is referenced by one or more
1524 * processes, from rmap.
1525 *
1526 * If the pages are mostly unmapped, the processing is fast and it is
1527 * appropriate to hold zone->lru_lock across the whole operation. But if
1528 * the pages are mapped, the processing is slow (page_referenced()) so we
1529 * should drop zone->lru_lock around each page. It's impossible to balance
1530 * this, so instead we remove the pages from the LRU while processing them.
1531 * It is safe to rely on PG_active against the non-LRU pages in here because
1532 * nobody will play with that bit on a non-LRU page.
1533 *
1534 * The downside is that we have to touch page->_count against each page.
1535 * But we had to alter page->flags anyway.
1536 */
1537
1538 static void move_active_pages_to_lru(struct lruvec *lruvec,
1539 struct list_head *list,
1540 struct list_head *pages_to_free,
1541 enum lru_list lru)
1542 {
1543 struct zone *zone = lruvec_zone(lruvec);
1544 unsigned long pgmoved = 0;
1545 struct page *page;
1546 int nr_pages;
1547
1548 while (!list_empty(list)) {
1549 page = lru_to_page(list);
1550 lruvec = mem_cgroup_page_lruvec(page, zone);
1551
1552 VM_BUG_ON(PageLRU(page));
1553 SetPageLRU(page);
1554
1555 nr_pages = hpage_nr_pages(page);
1556 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1557 list_move(&page->lru, &lruvec->lists[lru]);
1558 pgmoved += nr_pages;
1559
1560 if (put_page_testzero(page)) {
1561 __ClearPageLRU(page);
1562 __ClearPageActive(page);
1563 del_page_from_lru_list(page, lruvec, lru);
1564
1565 if (unlikely(PageCompound(page))) {
1566 spin_unlock_irq(&zone->lru_lock);
1567 (*get_compound_page_dtor(page))(page);
1568 spin_lock_irq(&zone->lru_lock);
1569 } else
1570 list_add(&page->lru, pages_to_free);
1571 }
1572 }
1573 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1574 if (!is_active_lru(lru))
1575 __count_vm_events(PGDEACTIVATE, pgmoved);
1576 }
1577
1578 static void shrink_active_list(unsigned long nr_to_scan,
1579 struct lruvec *lruvec,
1580 struct scan_control *sc,
1581 enum lru_list lru)
1582 {
1583 unsigned long nr_taken;
1584 unsigned long nr_scanned;
1585 unsigned long vm_flags;
1586 LIST_HEAD(l_hold); /* The pages which were snipped off */
1587 LIST_HEAD(l_active);
1588 LIST_HEAD(l_inactive);
1589 struct page *page;
1590 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1591 unsigned long nr_rotated = 0;
1592 isolate_mode_t isolate_mode = 0;
1593 int file = is_file_lru(lru);
1594 struct zone *zone = lruvec_zone(lruvec);
1595
1596 lru_add_drain();
1597
1598 if (!sc->may_unmap)
1599 isolate_mode |= ISOLATE_UNMAPPED;
1600 if (!sc->may_writepage)
1601 isolate_mode |= ISOLATE_CLEAN;
1602
1603 spin_lock_irq(&zone->lru_lock);
1604
1605 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1606 &nr_scanned, sc, isolate_mode, lru);
1607 if (global_reclaim(sc))
1608 zone->pages_scanned += nr_scanned;
1609
1610 reclaim_stat->recent_scanned[file] += nr_taken;
1611
1612 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1613 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1614 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1615 spin_unlock_irq(&zone->lru_lock);
1616
1617 while (!list_empty(&l_hold)) {
1618 cond_resched();
1619 page = lru_to_page(&l_hold);
1620 list_del(&page->lru);
1621
1622 if (unlikely(!page_evictable(page))) {
1623 putback_lru_page(page);
1624 continue;
1625 }
1626
1627 if (unlikely(buffer_heads_over_limit)) {
1628 if (page_has_private(page) && trylock_page(page)) {
1629 if (page_has_private(page))
1630 try_to_release_page(page, 0);
1631 unlock_page(page);
1632 }
1633 }
1634
1635 if (page_referenced(page, 0, sc->target_mem_cgroup,
1636 &vm_flags)) {
1637 nr_rotated += hpage_nr_pages(page);
1638 /*
1639 * Identify referenced, file-backed active pages and
1640 * give them one more trip around the active list. So
1641 * that executable code get better chances to stay in
1642 * memory under moderate memory pressure. Anon pages
1643 * are not likely to be evicted by use-once streaming
1644 * IO, plus JVM can create lots of anon VM_EXEC pages,
1645 * so we ignore them here.
1646 */
1647 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1648 list_add(&page->lru, &l_active);
1649 continue;
1650 }
1651 }
1652
1653 ClearPageActive(page); /* we are de-activating */
1654 list_add(&page->lru, &l_inactive);
1655 }
1656
1657 /*
1658 * Move pages back to the lru list.
1659 */
1660 spin_lock_irq(&zone->lru_lock);
1661 /*
1662 * Count referenced pages from currently used mappings as rotated,
1663 * even though only some of them are actually re-activated. This
1664 * helps balance scan pressure between file and anonymous pages in
1665 * get_scan_ratio.
1666 */
1667 reclaim_stat->recent_rotated[file] += nr_rotated;
1668
1669 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1670 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1671 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1672 spin_unlock_irq(&zone->lru_lock);
1673
1674 free_hot_cold_page_list(&l_hold, 1);
1675 }
1676
1677 #ifdef CONFIG_SWAP
1678 static int inactive_anon_is_low_global(struct zone *zone)
1679 {
1680 unsigned long active, inactive;
1681
1682 active = zone_page_state(zone, NR_ACTIVE_ANON);
1683 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1684
1685 if (inactive * zone->inactive_ratio < active)
1686 return 1;
1687
1688 return 0;
1689 }
1690
1691 /**
1692 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1693 * @lruvec: LRU vector to check
1694 *
1695 * Returns true if the zone does not have enough inactive anon pages,
1696 * meaning some active anon pages need to be deactivated.
1697 */
1698 static int inactive_anon_is_low(struct lruvec *lruvec)
1699 {
1700 /*
1701 * If we don't have swap space, anonymous page deactivation
1702 * is pointless.
1703 */
1704 if (!total_swap_pages)
1705 return 0;
1706
1707 if (!mem_cgroup_disabled())
1708 return mem_cgroup_inactive_anon_is_low(lruvec);
1709
1710 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1711 }
1712 #else
1713 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1714 {
1715 return 0;
1716 }
1717 #endif
1718
1719 /**
1720 * inactive_file_is_low - check if file pages need to be deactivated
1721 * @lruvec: LRU vector to check
1722 *
1723 * When the system is doing streaming IO, memory pressure here
1724 * ensures that active file pages get deactivated, until more
1725 * than half of the file pages are on the inactive list.
1726 *
1727 * Once we get to that situation, protect the system's working
1728 * set from being evicted by disabling active file page aging.
1729 *
1730 * This uses a different ratio than the anonymous pages, because
1731 * the page cache uses a use-once replacement algorithm.
1732 */
1733 static int inactive_file_is_low(struct lruvec *lruvec)
1734 {
1735 unsigned long inactive;
1736 unsigned long active;
1737
1738 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1739 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1740
1741 return active > inactive;
1742 }
1743
1744 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1745 {
1746 if (is_file_lru(lru))
1747 return inactive_file_is_low(lruvec);
1748 else
1749 return inactive_anon_is_low(lruvec);
1750 }
1751
1752 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1753 struct lruvec *lruvec, struct scan_control *sc)
1754 {
1755 if (is_active_lru(lru)) {
1756 if (inactive_list_is_low(lruvec, lru))
1757 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1758 return 0;
1759 }
1760
1761 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1762 }
1763
1764 static int vmscan_swappiness(struct scan_control *sc)
1765 {
1766 if (global_reclaim(sc))
1767 return vm_swappiness;
1768 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1769 }
1770
1771 enum scan_balance {
1772 SCAN_EQUAL,
1773 SCAN_FRACT,
1774 SCAN_ANON,
1775 SCAN_FILE,
1776 };
1777
1778 /*
1779 * Determine how aggressively the anon and file LRU lists should be
1780 * scanned. The relative value of each set of LRU lists is determined
1781 * by looking at the fraction of the pages scanned we did rotate back
1782 * onto the active list instead of evict.
1783 *
1784 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1785 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1786 */
1787 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1788 unsigned long *nr)
1789 {
1790 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1791 u64 fraction[2];
1792 u64 denominator = 0; /* gcc */
1793 struct zone *zone = lruvec_zone(lruvec);
1794 unsigned long anon_prio, file_prio;
1795 enum scan_balance scan_balance;
1796 unsigned long anon, file, free;
1797 bool force_scan = false;
1798 unsigned long ap, fp;
1799 enum lru_list lru;
1800
1801 /*
1802 * If the zone or memcg is small, nr[l] can be 0. This
1803 * results in no scanning on this priority and a potential
1804 * priority drop. Global direct reclaim can go to the next
1805 * zone and tends to have no problems. Global kswapd is for
1806 * zone balancing and it needs to scan a minimum amount. When
1807 * reclaiming for a memcg, a priority drop can cause high
1808 * latencies, so it's better to scan a minimum amount there as
1809 * well.
1810 */
1811 if (current_is_kswapd() && !zone_reclaimable(zone))
1812 force_scan = true;
1813 if (!global_reclaim(sc))
1814 force_scan = true;
1815
1816 /* If we have no swap space, do not bother scanning anon pages. */
1817 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1818 scan_balance = SCAN_FILE;
1819 goto out;
1820 }
1821
1822 /*
1823 * Global reclaim will swap to prevent OOM even with no
1824 * swappiness, but memcg users want to use this knob to
1825 * disable swapping for individual groups completely when
1826 * using the memory controller's swap limit feature would be
1827 * too expensive.
1828 */
1829 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1830 scan_balance = SCAN_FILE;
1831 goto out;
1832 }
1833
1834 /*
1835 * Do not apply any pressure balancing cleverness when the
1836 * system is close to OOM, scan both anon and file equally
1837 * (unless the swappiness setting disagrees with swapping).
1838 */
1839 if (!sc->priority && vmscan_swappiness(sc)) {
1840 scan_balance = SCAN_EQUAL;
1841 goto out;
1842 }
1843
1844 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1845 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1846 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1847 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1848
1849 /*
1850 * If it's foreseeable that reclaiming the file cache won't be
1851 * enough to get the zone back into a desirable shape, we have
1852 * to swap. Better start now and leave the - probably heavily
1853 * thrashing - remaining file pages alone.
1854 */
1855 if (global_reclaim(sc)) {
1856 free = zone_page_state(zone, NR_FREE_PAGES);
1857 if (unlikely(file + free <= high_wmark_pages(zone))) {
1858 scan_balance = SCAN_ANON;
1859 goto out;
1860 }
1861 }
1862
1863 /*
1864 * There is enough inactive page cache, do not reclaim
1865 * anything from the anonymous working set right now.
1866 */
1867 if (!inactive_file_is_low(lruvec)) {
1868 scan_balance = SCAN_FILE;
1869 goto out;
1870 }
1871
1872 scan_balance = SCAN_FRACT;
1873
1874 /*
1875 * With swappiness at 100, anonymous and file have the same priority.
1876 * This scanning priority is essentially the inverse of IO cost.
1877 */
1878 anon_prio = vmscan_swappiness(sc);
1879 file_prio = 200 - anon_prio;
1880
1881 /*
1882 * OK, so we have swap space and a fair amount of page cache
1883 * pages. We use the recently rotated / recently scanned
1884 * ratios to determine how valuable each cache is.
1885 *
1886 * Because workloads change over time (and to avoid overflow)
1887 * we keep these statistics as a floating average, which ends
1888 * up weighing recent references more than old ones.
1889 *
1890 * anon in [0], file in [1]
1891 */
1892 spin_lock_irq(&zone->lru_lock);
1893 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1894 reclaim_stat->recent_scanned[0] /= 2;
1895 reclaim_stat->recent_rotated[0] /= 2;
1896 }
1897
1898 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1899 reclaim_stat->recent_scanned[1] /= 2;
1900 reclaim_stat->recent_rotated[1] /= 2;
1901 }
1902
1903 /*
1904 * The amount of pressure on anon vs file pages is inversely
1905 * proportional to the fraction of recently scanned pages on
1906 * each list that were recently referenced and in active use.
1907 */
1908 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1909 ap /= reclaim_stat->recent_rotated[0] + 1;
1910
1911 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1912 fp /= reclaim_stat->recent_rotated[1] + 1;
1913 spin_unlock_irq(&zone->lru_lock);
1914
1915 fraction[0] = ap;
1916 fraction[1] = fp;
1917 denominator = ap + fp + 1;
1918 out:
1919 for_each_evictable_lru(lru) {
1920 int file = is_file_lru(lru);
1921 unsigned long size;
1922 unsigned long scan;
1923
1924 size = get_lru_size(lruvec, lru);
1925 scan = size >> sc->priority;
1926
1927 if (!scan && force_scan)
1928 scan = min(size, SWAP_CLUSTER_MAX);
1929
1930 switch (scan_balance) {
1931 case SCAN_EQUAL:
1932 /* Scan lists relative to size */
1933 break;
1934 case SCAN_FRACT:
1935 /*
1936 * Scan types proportional to swappiness and
1937 * their relative recent reclaim efficiency.
1938 */
1939 scan = div64_u64(scan * fraction[file], denominator);
1940 break;
1941 case SCAN_FILE:
1942 case SCAN_ANON:
1943 /* Scan one type exclusively */
1944 if ((scan_balance == SCAN_FILE) != file)
1945 scan = 0;
1946 break;
1947 default:
1948 /* Look ma, no brain */
1949 BUG();
1950 }
1951 nr[lru] = scan;
1952 }
1953 }
1954
1955 /*
1956 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1957 */
1958 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1959 {
1960 unsigned long nr[NR_LRU_LISTS];
1961 unsigned long targets[NR_LRU_LISTS];
1962 unsigned long nr_to_scan;
1963 enum lru_list lru;
1964 unsigned long nr_reclaimed = 0;
1965 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1966 struct blk_plug plug;
1967 bool scan_adjusted = false;
1968
1969 get_scan_count(lruvec, sc, nr);
1970
1971 /* Record the original scan target for proportional adjustments later */
1972 memcpy(targets, nr, sizeof(nr));
1973
1974 blk_start_plug(&plug);
1975 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1976 nr[LRU_INACTIVE_FILE]) {
1977 unsigned long nr_anon, nr_file, percentage;
1978 unsigned long nr_scanned;
1979
1980 for_each_evictable_lru(lru) {
1981 if (nr[lru]) {
1982 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1983 nr[lru] -= nr_to_scan;
1984
1985 nr_reclaimed += shrink_list(lru, nr_to_scan,
1986 lruvec, sc);
1987 }
1988 }
1989
1990 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1991 continue;
1992
1993 /*
1994 * For global direct reclaim, reclaim only the number of pages
1995 * requested. Less care is taken to scan proportionally as it
1996 * is more important to minimise direct reclaim stall latency
1997 * than it is to properly age the LRU lists.
1998 */
1999 if (global_reclaim(sc) && !current_is_kswapd())
2000 break;
2001
2002 /*
2003 * For kswapd and memcg, reclaim at least the number of pages
2004 * requested. Ensure that the anon and file LRUs shrink
2005 * proportionally what was requested by get_scan_count(). We
2006 * stop reclaiming one LRU and reduce the amount scanning
2007 * proportional to the original scan target.
2008 */
2009 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2010 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2011
2012 if (nr_file > nr_anon) {
2013 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2014 targets[LRU_ACTIVE_ANON] + 1;
2015 lru = LRU_BASE;
2016 percentage = nr_anon * 100 / scan_target;
2017 } else {
2018 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2019 targets[LRU_ACTIVE_FILE] + 1;
2020 lru = LRU_FILE;
2021 percentage = nr_file * 100 / scan_target;
2022 }
2023
2024 /* Stop scanning the smaller of the LRU */
2025 nr[lru] = 0;
2026 nr[lru + LRU_ACTIVE] = 0;
2027
2028 /*
2029 * Recalculate the other LRU scan count based on its original
2030 * scan target and the percentage scanning already complete
2031 */
2032 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2033 nr_scanned = targets[lru] - nr[lru];
2034 nr[lru] = targets[lru] * (100 - percentage) / 100;
2035 nr[lru] -= min(nr[lru], nr_scanned);
2036
2037 lru += LRU_ACTIVE;
2038 nr_scanned = targets[lru] - nr[lru];
2039 nr[lru] = targets[lru] * (100 - percentage) / 100;
2040 nr[lru] -= min(nr[lru], nr_scanned);
2041
2042 scan_adjusted = true;
2043 }
2044 blk_finish_plug(&plug);
2045 sc->nr_reclaimed += nr_reclaimed;
2046
2047 /*
2048 * Even if we did not try to evict anon pages at all, we want to
2049 * rebalance the anon lru active/inactive ratio.
2050 */
2051 if (inactive_anon_is_low(lruvec))
2052 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2053 sc, LRU_ACTIVE_ANON);
2054
2055 throttle_vm_writeout(sc->gfp_mask);
2056 }
2057
2058 /* Use reclaim/compaction for costly allocs or under memory pressure */
2059 static bool in_reclaim_compaction(struct scan_control *sc)
2060 {
2061 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2062 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2063 sc->priority < DEF_PRIORITY - 2))
2064 return true;
2065
2066 return false;
2067 }
2068
2069 /*
2070 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2071 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2072 * true if more pages should be reclaimed such that when the page allocator
2073 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2074 * It will give up earlier than that if there is difficulty reclaiming pages.
2075 */
2076 static inline bool should_continue_reclaim(struct zone *zone,
2077 unsigned long nr_reclaimed,
2078 unsigned long nr_scanned,
2079 struct scan_control *sc)
2080 {
2081 unsigned long pages_for_compaction;
2082 unsigned long inactive_lru_pages;
2083
2084 /* If not in reclaim/compaction mode, stop */
2085 if (!in_reclaim_compaction(sc))
2086 return false;
2087
2088 /* Consider stopping depending on scan and reclaim activity */
2089 if (sc->gfp_mask & __GFP_REPEAT) {
2090 /*
2091 * For __GFP_REPEAT allocations, stop reclaiming if the
2092 * full LRU list has been scanned and we are still failing
2093 * to reclaim pages. This full LRU scan is potentially
2094 * expensive but a __GFP_REPEAT caller really wants to succeed
2095 */
2096 if (!nr_reclaimed && !nr_scanned)
2097 return false;
2098 } else {
2099 /*
2100 * For non-__GFP_REPEAT allocations which can presumably
2101 * fail without consequence, stop if we failed to reclaim
2102 * any pages from the last SWAP_CLUSTER_MAX number of
2103 * pages that were scanned. This will return to the
2104 * caller faster at the risk reclaim/compaction and
2105 * the resulting allocation attempt fails
2106 */
2107 if (!nr_reclaimed)
2108 return false;
2109 }
2110
2111 /*
2112 * If we have not reclaimed enough pages for compaction and the
2113 * inactive lists are large enough, continue reclaiming
2114 */
2115 pages_for_compaction = (2UL << sc->order);
2116 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2117 if (get_nr_swap_pages() > 0)
2118 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2119 if (sc->nr_reclaimed < pages_for_compaction &&
2120 inactive_lru_pages > pages_for_compaction)
2121 return true;
2122
2123 /* If compaction would go ahead or the allocation would succeed, stop */
2124 switch (compaction_suitable(zone, sc->order)) {
2125 case COMPACT_PARTIAL:
2126 case COMPACT_CONTINUE:
2127 return false;
2128 default:
2129 return true;
2130 }
2131 }
2132
2133 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2134 {
2135 unsigned long nr_reclaimed, nr_scanned;
2136
2137 do {
2138 struct mem_cgroup *root = sc->target_mem_cgroup;
2139 struct mem_cgroup_reclaim_cookie reclaim = {
2140 .zone = zone,
2141 .priority = sc->priority,
2142 };
2143 struct mem_cgroup *memcg;
2144
2145 nr_reclaimed = sc->nr_reclaimed;
2146 nr_scanned = sc->nr_scanned;
2147
2148 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2149 do {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2153
2154 shrink_lruvec(lruvec, sc);
2155
2156 /*
2157 * Direct reclaim and kswapd have to scan all memory
2158 * cgroups to fulfill the overall scan target for the
2159 * zone.
2160 *
2161 * Limit reclaim, on the other hand, only cares about
2162 * nr_to_reclaim pages to be reclaimed and it will
2163 * retry with decreasing priority if one round over the
2164 * whole hierarchy is not sufficient.
2165 */
2166 if (!global_reclaim(sc) &&
2167 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2168 mem_cgroup_iter_break(root, memcg);
2169 break;
2170 }
2171 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2172 } while (memcg);
2173
2174 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2175 sc->nr_scanned - nr_scanned,
2176 sc->nr_reclaimed - nr_reclaimed);
2177
2178 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2179 sc->nr_scanned - nr_scanned, sc));
2180 }
2181
2182 /* Returns true if compaction should go ahead for a high-order request */
2183 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2184 {
2185 unsigned long balance_gap, watermark;
2186 bool watermark_ok;
2187
2188 /* Do not consider compaction for orders reclaim is meant to satisfy */
2189 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2190 return false;
2191
2192 /*
2193 * Compaction takes time to run and there are potentially other
2194 * callers using the pages just freed. Continue reclaiming until
2195 * there is a buffer of free pages available to give compaction
2196 * a reasonable chance of completing and allocating the page
2197 */
2198 balance_gap = min(low_wmark_pages(zone),
2199 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2200 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2201 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2202 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2203
2204 /*
2205 * If compaction is deferred, reclaim up to a point where
2206 * compaction will have a chance of success when re-enabled
2207 */
2208 if (compaction_deferred(zone, sc->order))
2209 return watermark_ok;
2210
2211 /* If compaction is not ready to start, keep reclaiming */
2212 if (!compaction_suitable(zone, sc->order))
2213 return false;
2214
2215 return watermark_ok;
2216 }
2217
2218 /*
2219 * This is the direct reclaim path, for page-allocating processes. We only
2220 * try to reclaim pages from zones which will satisfy the caller's allocation
2221 * request.
2222 *
2223 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2224 * Because:
2225 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2226 * allocation or
2227 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2228 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2229 * zone defense algorithm.
2230 *
2231 * If a zone is deemed to be full of pinned pages then just give it a light
2232 * scan then give up on it.
2233 *
2234 * This function returns true if a zone is being reclaimed for a costly
2235 * high-order allocation and compaction is ready to begin. This indicates to
2236 * the caller that it should consider retrying the allocation instead of
2237 * further reclaim.
2238 */
2239 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2240 {
2241 struct zoneref *z;
2242 struct zone *zone;
2243 unsigned long nr_soft_reclaimed;
2244 unsigned long nr_soft_scanned;
2245 bool aborted_reclaim = false;
2246
2247 /*
2248 * If the number of buffer_heads in the machine exceeds the maximum
2249 * allowed level, force direct reclaim to scan the highmem zone as
2250 * highmem pages could be pinning lowmem pages storing buffer_heads
2251 */
2252 if (buffer_heads_over_limit)
2253 sc->gfp_mask |= __GFP_HIGHMEM;
2254
2255 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2256 gfp_zone(sc->gfp_mask), sc->nodemask) {
2257 if (!populated_zone(zone))
2258 continue;
2259 /*
2260 * Take care memory controller reclaiming has small influence
2261 * to global LRU.
2262 */
2263 if (global_reclaim(sc)) {
2264 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2265 continue;
2266 if (sc->priority != DEF_PRIORITY &&
2267 !zone_reclaimable(zone))
2268 continue; /* Let kswapd poll it */
2269 if (IS_ENABLED(CONFIG_COMPACTION)) {
2270 /*
2271 * If we already have plenty of memory free for
2272 * compaction in this zone, don't free any more.
2273 * Even though compaction is invoked for any
2274 * non-zero order, only frequent costly order
2275 * reclamation is disruptive enough to become a
2276 * noticeable problem, like transparent huge
2277 * page allocations.
2278 */
2279 if (compaction_ready(zone, sc)) {
2280 aborted_reclaim = true;
2281 continue;
2282 }
2283 }
2284 /*
2285 * This steals pages from memory cgroups over softlimit
2286 * and returns the number of reclaimed pages and
2287 * scanned pages. This works for global memory pressure
2288 * and balancing, not for a memcg's limit.
2289 */
2290 nr_soft_scanned = 0;
2291 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2292 sc->order, sc->gfp_mask,
2293 &nr_soft_scanned);
2294 sc->nr_reclaimed += nr_soft_reclaimed;
2295 sc->nr_scanned += nr_soft_scanned;
2296 /* need some check for avoid more shrink_zone() */
2297 }
2298
2299 shrink_zone(zone, sc);
2300 }
2301
2302 return aborted_reclaim;
2303 }
2304
2305 /* All zones in zonelist are unreclaimable? */
2306 static bool all_unreclaimable(struct zonelist *zonelist,
2307 struct scan_control *sc)
2308 {
2309 struct zoneref *z;
2310 struct zone *zone;
2311
2312 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2313 gfp_zone(sc->gfp_mask), sc->nodemask) {
2314 if (!populated_zone(zone))
2315 continue;
2316 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2317 continue;
2318 if (zone_reclaimable(zone))
2319 return false;
2320 }
2321
2322 return true;
2323 }
2324
2325 /*
2326 * This is the main entry point to direct page reclaim.
2327 *
2328 * If a full scan of the inactive list fails to free enough memory then we
2329 * are "out of memory" and something needs to be killed.
2330 *
2331 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2332 * high - the zone may be full of dirty or under-writeback pages, which this
2333 * caller can't do much about. We kick the writeback threads and take explicit
2334 * naps in the hope that some of these pages can be written. But if the
2335 * allocating task holds filesystem locks which prevent writeout this might not
2336 * work, and the allocation attempt will fail.
2337 *
2338 * returns: 0, if no pages reclaimed
2339 * else, the number of pages reclaimed
2340 */
2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342 struct scan_control *sc,
2343 struct shrink_control *shrink)
2344 {
2345 unsigned long total_scanned = 0;
2346 struct reclaim_state *reclaim_state = current->reclaim_state;
2347 struct zoneref *z;
2348 struct zone *zone;
2349 unsigned long writeback_threshold;
2350 bool aborted_reclaim;
2351
2352 delayacct_freepages_start();
2353
2354 if (global_reclaim(sc))
2355 count_vm_event(ALLOCSTALL);
2356
2357 do {
2358 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2359 sc->priority);
2360 sc->nr_scanned = 0;
2361 aborted_reclaim = shrink_zones(zonelist, sc);
2362
2363 /*
2364 * Don't shrink slabs when reclaiming memory from over limit
2365 * cgroups but do shrink slab at least once when aborting
2366 * reclaim for compaction to avoid unevenly scanning file/anon
2367 * LRU pages over slab pages.
2368 */
2369 if (global_reclaim(sc)) {
2370 unsigned long lru_pages = 0;
2371 for_each_zone_zonelist(zone, z, zonelist,
2372 gfp_zone(sc->gfp_mask)) {
2373 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2374 continue;
2375
2376 lru_pages += zone_reclaimable_pages(zone);
2377 }
2378
2379 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2380 if (reclaim_state) {
2381 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2382 reclaim_state->reclaimed_slab = 0;
2383 }
2384 }
2385 total_scanned += sc->nr_scanned;
2386 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2387 goto out;
2388
2389 /*
2390 * If we're getting trouble reclaiming, start doing
2391 * writepage even in laptop mode.
2392 */
2393 if (sc->priority < DEF_PRIORITY - 2)
2394 sc->may_writepage = 1;
2395
2396 /*
2397 * Try to write back as many pages as we just scanned. This
2398 * tends to cause slow streaming writers to write data to the
2399 * disk smoothly, at the dirtying rate, which is nice. But
2400 * that's undesirable in laptop mode, where we *want* lumpy
2401 * writeout. So in laptop mode, write out the whole world.
2402 */
2403 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2404 if (total_scanned > writeback_threshold) {
2405 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2406 WB_REASON_TRY_TO_FREE_PAGES);
2407 sc->may_writepage = 1;
2408 }
2409 } while (--sc->priority >= 0 && !aborted_reclaim);
2410
2411 out:
2412 delayacct_freepages_end();
2413
2414 if (sc->nr_reclaimed)
2415 return sc->nr_reclaimed;
2416
2417 /*
2418 * As hibernation is going on, kswapd is freezed so that it can't mark
2419 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2420 * check.
2421 */
2422 if (oom_killer_disabled)
2423 return 0;
2424
2425 /* Aborted reclaim to try compaction? don't OOM, then */
2426 if (aborted_reclaim)
2427 return 1;
2428
2429 /* top priority shrink_zones still had more to do? don't OOM, then */
2430 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2431 return 1;
2432
2433 return 0;
2434 }
2435
2436 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2437 {
2438 struct zone *zone;
2439 unsigned long pfmemalloc_reserve = 0;
2440 unsigned long free_pages = 0;
2441 int i;
2442 bool wmark_ok;
2443
2444 for (i = 0; i <= ZONE_NORMAL; i++) {
2445 zone = &pgdat->node_zones[i];
2446 pfmemalloc_reserve += min_wmark_pages(zone);
2447 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2448 }
2449
2450 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2451
2452 /* kswapd must be awake if processes are being throttled */
2453 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2454 pgdat->classzone_idx = min(pgdat->classzone_idx,
2455 (enum zone_type)ZONE_NORMAL);
2456 wake_up_interruptible(&pgdat->kswapd_wait);
2457 }
2458
2459 return wmark_ok;
2460 }
2461
2462 /*
2463 * Throttle direct reclaimers if backing storage is backed by the network
2464 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2465 * depleted. kswapd will continue to make progress and wake the processes
2466 * when the low watermark is reached.
2467 *
2468 * Returns true if a fatal signal was delivered during throttling. If this
2469 * happens, the page allocator should not consider triggering the OOM killer.
2470 */
2471 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2472 nodemask_t *nodemask)
2473 {
2474 struct zone *zone;
2475 int high_zoneidx = gfp_zone(gfp_mask);
2476 pg_data_t *pgdat;
2477
2478 /*
2479 * Kernel threads should not be throttled as they may be indirectly
2480 * responsible for cleaning pages necessary for reclaim to make forward
2481 * progress. kjournald for example may enter direct reclaim while
2482 * committing a transaction where throttling it could forcing other
2483 * processes to block on log_wait_commit().
2484 */
2485 if (current->flags & PF_KTHREAD)
2486 goto out;
2487
2488 /*
2489 * If a fatal signal is pending, this process should not throttle.
2490 * It should return quickly so it can exit and free its memory
2491 */
2492 if (fatal_signal_pending(current))
2493 goto out;
2494
2495 /* Check if the pfmemalloc reserves are ok */
2496 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2497 pgdat = zone->zone_pgdat;
2498 if (pfmemalloc_watermark_ok(pgdat))
2499 goto out;
2500
2501 /* Account for the throttling */
2502 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2503
2504 /*
2505 * If the caller cannot enter the filesystem, it's possible that it
2506 * is due to the caller holding an FS lock or performing a journal
2507 * transaction in the case of a filesystem like ext[3|4]. In this case,
2508 * it is not safe to block on pfmemalloc_wait as kswapd could be
2509 * blocked waiting on the same lock. Instead, throttle for up to a
2510 * second before continuing.
2511 */
2512 if (!(gfp_mask & __GFP_FS)) {
2513 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2514 pfmemalloc_watermark_ok(pgdat), HZ);
2515
2516 goto check_pending;
2517 }
2518
2519 /* Throttle until kswapd wakes the process */
2520 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2521 pfmemalloc_watermark_ok(pgdat));
2522
2523 check_pending:
2524 if (fatal_signal_pending(current))
2525 return true;
2526
2527 out:
2528 return false;
2529 }
2530
2531 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2532 gfp_t gfp_mask, nodemask_t *nodemask)
2533 {
2534 unsigned long nr_reclaimed;
2535 struct scan_control sc = {
2536 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2537 .may_writepage = !laptop_mode,
2538 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2539 .may_unmap = 1,
2540 .may_swap = 1,
2541 .order = order,
2542 .priority = DEF_PRIORITY,
2543 .target_mem_cgroup = NULL,
2544 .nodemask = nodemask,
2545 };
2546 struct shrink_control shrink = {
2547 .gfp_mask = sc.gfp_mask,
2548 };
2549
2550 /*
2551 * Do not enter reclaim if fatal signal was delivered while throttled.
2552 * 1 is returned so that the page allocator does not OOM kill at this
2553 * point.
2554 */
2555 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2556 return 1;
2557
2558 trace_mm_vmscan_direct_reclaim_begin(order,
2559 sc.may_writepage,
2560 gfp_mask);
2561
2562 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2563
2564 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2565
2566 return nr_reclaimed;
2567 }
2568
2569 #ifdef CONFIG_MEMCG
2570
2571 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2572 gfp_t gfp_mask, bool noswap,
2573 struct zone *zone,
2574 unsigned long *nr_scanned)
2575 {
2576 struct scan_control sc = {
2577 .nr_scanned = 0,
2578 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2579 .may_writepage = !laptop_mode,
2580 .may_unmap = 1,
2581 .may_swap = !noswap,
2582 .order = 0,
2583 .priority = 0,
2584 .target_mem_cgroup = memcg,
2585 };
2586 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2587
2588 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2589 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2590
2591 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2592 sc.may_writepage,
2593 sc.gfp_mask);
2594
2595 /*
2596 * NOTE: Although we can get the priority field, using it
2597 * here is not a good idea, since it limits the pages we can scan.
2598 * if we don't reclaim here, the shrink_zone from balance_pgdat
2599 * will pick up pages from other mem cgroup's as well. We hack
2600 * the priority and make it zero.
2601 */
2602 shrink_lruvec(lruvec, &sc);
2603
2604 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2605
2606 *nr_scanned = sc.nr_scanned;
2607 return sc.nr_reclaimed;
2608 }
2609
2610 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2611 gfp_t gfp_mask,
2612 bool noswap)
2613 {
2614 struct zonelist *zonelist;
2615 unsigned long nr_reclaimed;
2616 int nid;
2617 struct scan_control sc = {
2618 .may_writepage = !laptop_mode,
2619 .may_unmap = 1,
2620 .may_swap = !noswap,
2621 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2622 .order = 0,
2623 .priority = DEF_PRIORITY,
2624 .target_mem_cgroup = memcg,
2625 .nodemask = NULL, /* we don't care the placement */
2626 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2628 };
2629 struct shrink_control shrink = {
2630 .gfp_mask = sc.gfp_mask,
2631 };
2632
2633 /*
2634 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2635 * take care of from where we get pages. So the node where we start the
2636 * scan does not need to be the current node.
2637 */
2638 nid = mem_cgroup_select_victim_node(memcg);
2639
2640 zonelist = NODE_DATA(nid)->node_zonelists;
2641
2642 trace_mm_vmscan_memcg_reclaim_begin(0,
2643 sc.may_writepage,
2644 sc.gfp_mask);
2645
2646 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2647
2648 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2649
2650 return nr_reclaimed;
2651 }
2652 #endif
2653
2654 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2655 {
2656 struct mem_cgroup *memcg;
2657
2658 if (!total_swap_pages)
2659 return;
2660
2661 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2662 do {
2663 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2664
2665 if (inactive_anon_is_low(lruvec))
2666 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2667 sc, LRU_ACTIVE_ANON);
2668
2669 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2670 } while (memcg);
2671 }
2672
2673 static bool zone_balanced(struct zone *zone, int order,
2674 unsigned long balance_gap, int classzone_idx)
2675 {
2676 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2677 balance_gap, classzone_idx, 0))
2678 return false;
2679
2680 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2681 !compaction_suitable(zone, order))
2682 return false;
2683
2684 return true;
2685 }
2686
2687 /*
2688 * pgdat_balanced() is used when checking if a node is balanced.
2689 *
2690 * For order-0, all zones must be balanced!
2691 *
2692 * For high-order allocations only zones that meet watermarks and are in a
2693 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2694 * total of balanced pages must be at least 25% of the zones allowed by
2695 * classzone_idx for the node to be considered balanced. Forcing all zones to
2696 * be balanced for high orders can cause excessive reclaim when there are
2697 * imbalanced zones.
2698 * The choice of 25% is due to
2699 * o a 16M DMA zone that is balanced will not balance a zone on any
2700 * reasonable sized machine
2701 * o On all other machines, the top zone must be at least a reasonable
2702 * percentage of the middle zones. For example, on 32-bit x86, highmem
2703 * would need to be at least 256M for it to be balance a whole node.
2704 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2705 * to balance a node on its own. These seemed like reasonable ratios.
2706 */
2707 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2708 {
2709 unsigned long managed_pages = 0;
2710 unsigned long balanced_pages = 0;
2711 int i;
2712
2713 /* Check the watermark levels */
2714 for (i = 0; i <= classzone_idx; i++) {
2715 struct zone *zone = pgdat->node_zones + i;
2716
2717 if (!populated_zone(zone))
2718 continue;
2719
2720 managed_pages += zone->managed_pages;
2721
2722 /*
2723 * A special case here:
2724 *
2725 * balance_pgdat() skips over all_unreclaimable after
2726 * DEF_PRIORITY. Effectively, it considers them balanced so
2727 * they must be considered balanced here as well!
2728 */
2729 if (!zone_reclaimable(zone)) {
2730 balanced_pages += zone->managed_pages;
2731 continue;
2732 }
2733
2734 if (zone_balanced(zone, order, 0, i))
2735 balanced_pages += zone->managed_pages;
2736 else if (!order)
2737 return false;
2738 }
2739
2740 if (order)
2741 return balanced_pages >= (managed_pages >> 2);
2742 else
2743 return true;
2744 }
2745
2746 /*
2747 * Prepare kswapd for sleeping. This verifies that there are no processes
2748 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2749 *
2750 * Returns true if kswapd is ready to sleep
2751 */
2752 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2753 int classzone_idx)
2754 {
2755 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2756 if (remaining)
2757 return false;
2758
2759 /*
2760 * There is a potential race between when kswapd checks its watermarks
2761 * and a process gets throttled. There is also a potential race if
2762 * processes get throttled, kswapd wakes, a large process exits therby
2763 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2764 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2765 * so wake them now if necessary. If necessary, processes will wake
2766 * kswapd and get throttled again
2767 */
2768 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2769 wake_up(&pgdat->pfmemalloc_wait);
2770 return false;
2771 }
2772
2773 return pgdat_balanced(pgdat, order, classzone_idx);
2774 }
2775
2776 /*
2777 * kswapd shrinks the zone by the number of pages required to reach
2778 * the high watermark.
2779 *
2780 * Returns true if kswapd scanned at least the requested number of pages to
2781 * reclaim or if the lack of progress was due to pages under writeback.
2782 * This is used to determine if the scanning priority needs to be raised.
2783 */
2784 static bool kswapd_shrink_zone(struct zone *zone,
2785 int classzone_idx,
2786 struct scan_control *sc,
2787 unsigned long lru_pages,
2788 unsigned long *nr_attempted)
2789 {
2790 int testorder = sc->order;
2791 unsigned long balance_gap;
2792 struct reclaim_state *reclaim_state = current->reclaim_state;
2793 struct shrink_control shrink = {
2794 .gfp_mask = sc->gfp_mask,
2795 };
2796 bool lowmem_pressure;
2797
2798 /* Reclaim above the high watermark. */
2799 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2800
2801 /*
2802 * Kswapd reclaims only single pages with compaction enabled. Trying
2803 * too hard to reclaim until contiguous free pages have become
2804 * available can hurt performance by evicting too much useful data
2805 * from memory. Do not reclaim more than needed for compaction.
2806 */
2807 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2808 compaction_suitable(zone, sc->order) !=
2809 COMPACT_SKIPPED)
2810 testorder = 0;
2811
2812 /*
2813 * We put equal pressure on every zone, unless one zone has way too
2814 * many pages free already. The "too many pages" is defined as the
2815 * high wmark plus a "gap" where the gap is either the low
2816 * watermark or 1% of the zone, whichever is smaller.
2817 */
2818 balance_gap = min(low_wmark_pages(zone),
2819 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2820 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2821
2822 /*
2823 * If there is no low memory pressure or the zone is balanced then no
2824 * reclaim is necessary
2825 */
2826 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2827 if (!lowmem_pressure && zone_balanced(zone, testorder,
2828 balance_gap, classzone_idx))
2829 return true;
2830
2831 shrink_zone(zone, sc);
2832
2833 reclaim_state->reclaimed_slab = 0;
2834 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2835 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2836
2837 /* Account for the number of pages attempted to reclaim */
2838 *nr_attempted += sc->nr_to_reclaim;
2839
2840 zone_clear_flag(zone, ZONE_WRITEBACK);
2841
2842 /*
2843 * If a zone reaches its high watermark, consider it to be no longer
2844 * congested. It's possible there are dirty pages backed by congested
2845 * BDIs but as pressure is relieved, speculatively avoid congestion
2846 * waits.
2847 */
2848 if (zone_reclaimable(zone) &&
2849 zone_balanced(zone, testorder, 0, classzone_idx)) {
2850 zone_clear_flag(zone, ZONE_CONGESTED);
2851 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2852 }
2853
2854 return sc->nr_scanned >= sc->nr_to_reclaim;
2855 }
2856
2857 /*
2858 * For kswapd, balance_pgdat() will work across all this node's zones until
2859 * they are all at high_wmark_pages(zone).
2860 *
2861 * Returns the final order kswapd was reclaiming at
2862 *
2863 * There is special handling here for zones which are full of pinned pages.
2864 * This can happen if the pages are all mlocked, or if they are all used by
2865 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2866 * What we do is to detect the case where all pages in the zone have been
2867 * scanned twice and there has been zero successful reclaim. Mark the zone as
2868 * dead and from now on, only perform a short scan. Basically we're polling
2869 * the zone for when the problem goes away.
2870 *
2871 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2872 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2873 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2874 * lower zones regardless of the number of free pages in the lower zones. This
2875 * interoperates with the page allocator fallback scheme to ensure that aging
2876 * of pages is balanced across the zones.
2877 */
2878 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2879 int *classzone_idx)
2880 {
2881 int i;
2882 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2883 unsigned long nr_soft_reclaimed;
2884 unsigned long nr_soft_scanned;
2885 struct scan_control sc = {
2886 .gfp_mask = GFP_KERNEL,
2887 .priority = DEF_PRIORITY,
2888 .may_unmap = 1,
2889 .may_swap = 1,
2890 .may_writepage = !laptop_mode,
2891 .order = order,
2892 .target_mem_cgroup = NULL,
2893 };
2894 count_vm_event(PAGEOUTRUN);
2895
2896 do {
2897 unsigned long lru_pages = 0;
2898 unsigned long nr_attempted = 0;
2899 bool raise_priority = true;
2900 bool pgdat_needs_compaction = (order > 0);
2901
2902 sc.nr_reclaimed = 0;
2903
2904 /*
2905 * Scan in the highmem->dma direction for the highest
2906 * zone which needs scanning
2907 */
2908 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2909 struct zone *zone = pgdat->node_zones + i;
2910
2911 if (!populated_zone(zone))
2912 continue;
2913
2914 if (sc.priority != DEF_PRIORITY &&
2915 !zone_reclaimable(zone))
2916 continue;
2917
2918 /*
2919 * Do some background aging of the anon list, to give
2920 * pages a chance to be referenced before reclaiming.
2921 */
2922 age_active_anon(zone, &sc);
2923
2924 /*
2925 * If the number of buffer_heads in the machine
2926 * exceeds the maximum allowed level and this node
2927 * has a highmem zone, force kswapd to reclaim from
2928 * it to relieve lowmem pressure.
2929 */
2930 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2931 end_zone = i;
2932 break;
2933 }
2934
2935 if (!zone_balanced(zone, order, 0, 0)) {
2936 end_zone = i;
2937 break;
2938 } else {
2939 /*
2940 * If balanced, clear the dirty and congested
2941 * flags
2942 */
2943 zone_clear_flag(zone, ZONE_CONGESTED);
2944 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2945 }
2946 }
2947
2948 if (i < 0)
2949 goto out;
2950
2951 for (i = 0; i <= end_zone; i++) {
2952 struct zone *zone = pgdat->node_zones + i;
2953
2954 if (!populated_zone(zone))
2955 continue;
2956
2957 lru_pages += zone_reclaimable_pages(zone);
2958
2959 /*
2960 * If any zone is currently balanced then kswapd will
2961 * not call compaction as it is expected that the
2962 * necessary pages are already available.
2963 */
2964 if (pgdat_needs_compaction &&
2965 zone_watermark_ok(zone, order,
2966 low_wmark_pages(zone),
2967 *classzone_idx, 0))
2968 pgdat_needs_compaction = false;
2969 }
2970
2971 /*
2972 * If we're getting trouble reclaiming, start doing writepage
2973 * even in laptop mode.
2974 */
2975 if (sc.priority < DEF_PRIORITY - 2)
2976 sc.may_writepage = 1;
2977
2978 /*
2979 * Now scan the zone in the dma->highmem direction, stopping
2980 * at the last zone which needs scanning.
2981 *
2982 * We do this because the page allocator works in the opposite
2983 * direction. This prevents the page allocator from allocating
2984 * pages behind kswapd's direction of progress, which would
2985 * cause too much scanning of the lower zones.
2986 */
2987 for (i = 0; i <= end_zone; i++) {
2988 struct zone *zone = pgdat->node_zones + i;
2989
2990 if (!populated_zone(zone))
2991 continue;
2992
2993 if (sc.priority != DEF_PRIORITY &&
2994 !zone_reclaimable(zone))
2995 continue;
2996
2997 sc.nr_scanned = 0;
2998
2999 nr_soft_scanned = 0;
3000 /*
3001 * Call soft limit reclaim before calling shrink_zone.
3002 */
3003 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3004 order, sc.gfp_mask,
3005 &nr_soft_scanned);
3006 sc.nr_reclaimed += nr_soft_reclaimed;
3007
3008 /*
3009 * There should be no need to raise the scanning
3010 * priority if enough pages are already being scanned
3011 * that that high watermark would be met at 100%
3012 * efficiency.
3013 */
3014 if (kswapd_shrink_zone(zone, end_zone, &sc,
3015 lru_pages, &nr_attempted))
3016 raise_priority = false;
3017 }
3018
3019 /*
3020 * If the low watermark is met there is no need for processes
3021 * to be throttled on pfmemalloc_wait as they should not be
3022 * able to safely make forward progress. Wake them
3023 */
3024 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3025 pfmemalloc_watermark_ok(pgdat))
3026 wake_up(&pgdat->pfmemalloc_wait);
3027
3028 /*
3029 * Fragmentation may mean that the system cannot be rebalanced
3030 * for high-order allocations in all zones. If twice the
3031 * allocation size has been reclaimed and the zones are still
3032 * not balanced then recheck the watermarks at order-0 to
3033 * prevent kswapd reclaiming excessively. Assume that a
3034 * process requested a high-order can direct reclaim/compact.
3035 */
3036 if (order && sc.nr_reclaimed >= 2UL << order)
3037 order = sc.order = 0;
3038
3039 /* Check if kswapd should be suspending */
3040 if (try_to_freeze() || kthread_should_stop())
3041 break;
3042
3043 /*
3044 * Compact if necessary and kswapd is reclaiming at least the
3045 * high watermark number of pages as requsted
3046 */
3047 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3048 compact_pgdat(pgdat, order);
3049
3050 /*
3051 * Raise priority if scanning rate is too low or there was no
3052 * progress in reclaiming pages
3053 */
3054 if (raise_priority || !sc.nr_reclaimed)
3055 sc.priority--;
3056 } while (sc.priority >= 1 &&
3057 !pgdat_balanced(pgdat, order, *classzone_idx));
3058
3059 out:
3060 /*
3061 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3062 * makes a decision on the order we were last reclaiming at. However,
3063 * if another caller entered the allocator slow path while kswapd
3064 * was awake, order will remain at the higher level
3065 */
3066 *classzone_idx = end_zone;
3067 return order;
3068 }
3069
3070 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3071 {
3072 long remaining = 0;
3073 DEFINE_WAIT(wait);
3074
3075 if (freezing(current) || kthread_should_stop())
3076 return;
3077
3078 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3079
3080 /* Try to sleep for a short interval */
3081 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3082 remaining = schedule_timeout(HZ/10);
3083 finish_wait(&pgdat->kswapd_wait, &wait);
3084 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3085 }
3086
3087 /*
3088 * After a short sleep, check if it was a premature sleep. If not, then
3089 * go fully to sleep until explicitly woken up.
3090 */
3091 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3092 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3093
3094 /*
3095 * vmstat counters are not perfectly accurate and the estimated
3096 * value for counters such as NR_FREE_PAGES can deviate from the
3097 * true value by nr_online_cpus * threshold. To avoid the zone
3098 * watermarks being breached while under pressure, we reduce the
3099 * per-cpu vmstat threshold while kswapd is awake and restore
3100 * them before going back to sleep.
3101 */
3102 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3103
3104 /*
3105 * Compaction records what page blocks it recently failed to
3106 * isolate pages from and skips them in the future scanning.
3107 * When kswapd is going to sleep, it is reasonable to assume
3108 * that pages and compaction may succeed so reset the cache.
3109 */
3110 reset_isolation_suitable(pgdat);
3111
3112 if (!kthread_should_stop())
3113 schedule();
3114
3115 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3116 } else {
3117 if (remaining)
3118 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3119 else
3120 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3121 }
3122 finish_wait(&pgdat->kswapd_wait, &wait);
3123 }
3124
3125 /*
3126 * The background pageout daemon, started as a kernel thread
3127 * from the init process.
3128 *
3129 * This basically trickles out pages so that we have _some_
3130 * free memory available even if there is no other activity
3131 * that frees anything up. This is needed for things like routing
3132 * etc, where we otherwise might have all activity going on in
3133 * asynchronous contexts that cannot page things out.
3134 *
3135 * If there are applications that are active memory-allocators
3136 * (most normal use), this basically shouldn't matter.
3137 */
3138 static int kswapd(void *p)
3139 {
3140 unsigned long order, new_order;
3141 unsigned balanced_order;
3142 int classzone_idx, new_classzone_idx;
3143 int balanced_classzone_idx;
3144 pg_data_t *pgdat = (pg_data_t*)p;
3145 struct task_struct *tsk = current;
3146
3147 struct reclaim_state reclaim_state = {
3148 .reclaimed_slab = 0,
3149 };
3150 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3151
3152 lockdep_set_current_reclaim_state(GFP_KERNEL);
3153
3154 if (!cpumask_empty(cpumask))
3155 set_cpus_allowed_ptr(tsk, cpumask);
3156 current->reclaim_state = &reclaim_state;
3157
3158 /*
3159 * Tell the memory management that we're a "memory allocator",
3160 * and that if we need more memory we should get access to it
3161 * regardless (see "__alloc_pages()"). "kswapd" should
3162 * never get caught in the normal page freeing logic.
3163 *
3164 * (Kswapd normally doesn't need memory anyway, but sometimes
3165 * you need a small amount of memory in order to be able to
3166 * page out something else, and this flag essentially protects
3167 * us from recursively trying to free more memory as we're
3168 * trying to free the first piece of memory in the first place).
3169 */
3170 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3171 set_freezable();
3172
3173 order = new_order = 0;
3174 balanced_order = 0;
3175 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3176 balanced_classzone_idx = classzone_idx;
3177 for ( ; ; ) {
3178 bool ret;
3179
3180 /*
3181 * If the last balance_pgdat was unsuccessful it's unlikely a
3182 * new request of a similar or harder type will succeed soon
3183 * so consider going to sleep on the basis we reclaimed at
3184 */
3185 if (balanced_classzone_idx >= new_classzone_idx &&
3186 balanced_order == new_order) {
3187 new_order = pgdat->kswapd_max_order;
3188 new_classzone_idx = pgdat->classzone_idx;
3189 pgdat->kswapd_max_order = 0;
3190 pgdat->classzone_idx = pgdat->nr_zones - 1;
3191 }
3192
3193 if (order < new_order || classzone_idx > new_classzone_idx) {
3194 /*
3195 * Don't sleep if someone wants a larger 'order'
3196 * allocation or has tigher zone constraints
3197 */
3198 order = new_order;
3199 classzone_idx = new_classzone_idx;
3200 } else {
3201 kswapd_try_to_sleep(pgdat, balanced_order,
3202 balanced_classzone_idx);
3203 order = pgdat->kswapd_max_order;
3204 classzone_idx = pgdat->classzone_idx;
3205 new_order = order;
3206 new_classzone_idx = classzone_idx;
3207 pgdat->kswapd_max_order = 0;
3208 pgdat->classzone_idx = pgdat->nr_zones - 1;
3209 }
3210
3211 ret = try_to_freeze();
3212 if (kthread_should_stop())
3213 break;
3214
3215 /*
3216 * We can speed up thawing tasks if we don't call balance_pgdat
3217 * after returning from the refrigerator
3218 */
3219 if (!ret) {
3220 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3221 balanced_classzone_idx = classzone_idx;
3222 balanced_order = balance_pgdat(pgdat, order,
3223 &balanced_classzone_idx);
3224 }
3225 }
3226
3227 current->reclaim_state = NULL;
3228 return 0;
3229 }
3230
3231 /*
3232 * A zone is low on free memory, so wake its kswapd task to service it.
3233 */
3234 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3235 {
3236 pg_data_t *pgdat;
3237
3238 if (!populated_zone(zone))
3239 return;
3240
3241 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3242 return;
3243 pgdat = zone->zone_pgdat;
3244 if (pgdat->kswapd_max_order < order) {
3245 pgdat->kswapd_max_order = order;
3246 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3247 }
3248 if (!waitqueue_active(&pgdat->kswapd_wait))
3249 return;
3250 if (zone_balanced(zone, order, 0, 0))
3251 return;
3252
3253 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3254 wake_up_interruptible(&pgdat->kswapd_wait);
3255 }
3256
3257 /*
3258 * The reclaimable count would be mostly accurate.
3259 * The less reclaimable pages may be
3260 * - mlocked pages, which will be moved to unevictable list when encountered
3261 * - mapped pages, which may require several travels to be reclaimed
3262 * - dirty pages, which is not "instantly" reclaimable
3263 */
3264 unsigned long global_reclaimable_pages(void)
3265 {
3266 int nr;
3267
3268 nr = global_page_state(NR_ACTIVE_FILE) +
3269 global_page_state(NR_INACTIVE_FILE);
3270
3271 if (get_nr_swap_pages() > 0)
3272 nr += global_page_state(NR_ACTIVE_ANON) +
3273 global_page_state(NR_INACTIVE_ANON);
3274
3275 return nr;
3276 }
3277
3278 #ifdef CONFIG_HIBERNATION
3279 /*
3280 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3281 * freed pages.
3282 *
3283 * Rather than trying to age LRUs the aim is to preserve the overall
3284 * LRU order by reclaiming preferentially
3285 * inactive > active > active referenced > active mapped
3286 */
3287 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3288 {
3289 struct reclaim_state reclaim_state;
3290 struct scan_control sc = {
3291 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3292 .may_swap = 1,
3293 .may_unmap = 1,
3294 .may_writepage = 1,
3295 .nr_to_reclaim = nr_to_reclaim,
3296 .hibernation_mode = 1,
3297 .order = 0,
3298 .priority = DEF_PRIORITY,
3299 };
3300 struct shrink_control shrink = {
3301 .gfp_mask = sc.gfp_mask,
3302 };
3303 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3304 struct task_struct *p = current;
3305 unsigned long nr_reclaimed;
3306
3307 p->flags |= PF_MEMALLOC;
3308 lockdep_set_current_reclaim_state(sc.gfp_mask);
3309 reclaim_state.reclaimed_slab = 0;
3310 p->reclaim_state = &reclaim_state;
3311
3312 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3313
3314 p->reclaim_state = NULL;
3315 lockdep_clear_current_reclaim_state();
3316 p->flags &= ~PF_MEMALLOC;
3317
3318 return nr_reclaimed;
3319 }
3320 #endif /* CONFIG_HIBERNATION */
3321
3322 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3323 not required for correctness. So if the last cpu in a node goes
3324 away, we get changed to run anywhere: as the first one comes back,
3325 restore their cpu bindings. */
3326 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3327 void *hcpu)
3328 {
3329 int nid;
3330
3331 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3332 for_each_node_state(nid, N_MEMORY) {
3333 pg_data_t *pgdat = NODE_DATA(nid);
3334 const struct cpumask *mask;
3335
3336 mask = cpumask_of_node(pgdat->node_id);
3337
3338 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3339 /* One of our CPUs online: restore mask */
3340 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3341 }
3342 }
3343 return NOTIFY_OK;
3344 }
3345
3346 /*
3347 * This kswapd start function will be called by init and node-hot-add.
3348 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3349 */
3350 int kswapd_run(int nid)
3351 {
3352 pg_data_t *pgdat = NODE_DATA(nid);
3353 int ret = 0;
3354
3355 if (pgdat->kswapd)
3356 return 0;
3357
3358 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3359 if (IS_ERR(pgdat->kswapd)) {
3360 /* failure at boot is fatal */
3361 BUG_ON(system_state == SYSTEM_BOOTING);
3362 pr_err("Failed to start kswapd on node %d\n", nid);
3363 ret = PTR_ERR(pgdat->kswapd);
3364 pgdat->kswapd = NULL;
3365 }
3366 return ret;
3367 }
3368
3369 /*
3370 * Called by memory hotplug when all memory in a node is offlined. Caller must
3371 * hold lock_memory_hotplug().
3372 */
3373 void kswapd_stop(int nid)
3374 {
3375 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3376
3377 if (kswapd) {
3378 kthread_stop(kswapd);
3379 NODE_DATA(nid)->kswapd = NULL;
3380 }
3381 }
3382
3383 static int __init kswapd_init(void)
3384 {
3385 int nid;
3386
3387 swap_setup();
3388 for_each_node_state(nid, N_MEMORY)
3389 kswapd_run(nid);
3390 hotcpu_notifier(cpu_callback, 0);
3391 return 0;
3392 }
3393
3394 module_init(kswapd_init)
3395
3396 #ifdef CONFIG_NUMA
3397 /*
3398 * Zone reclaim mode
3399 *
3400 * If non-zero call zone_reclaim when the number of free pages falls below
3401 * the watermarks.
3402 */
3403 int zone_reclaim_mode __read_mostly;
3404
3405 #define RECLAIM_OFF 0
3406 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3407 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3408 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3409
3410 /*
3411 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3412 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3413 * a zone.
3414 */
3415 #define ZONE_RECLAIM_PRIORITY 4
3416
3417 /*
3418 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3419 * occur.
3420 */
3421 int sysctl_min_unmapped_ratio = 1;
3422
3423 /*
3424 * If the number of slab pages in a zone grows beyond this percentage then
3425 * slab reclaim needs to occur.
3426 */
3427 int sysctl_min_slab_ratio = 5;
3428
3429 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3430 {
3431 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3432 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3433 zone_page_state(zone, NR_ACTIVE_FILE);
3434
3435 /*
3436 * It's possible for there to be more file mapped pages than
3437 * accounted for by the pages on the file LRU lists because
3438 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3439 */
3440 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3441 }
3442
3443 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3444 static long zone_pagecache_reclaimable(struct zone *zone)
3445 {
3446 long nr_pagecache_reclaimable;
3447 long delta = 0;
3448
3449 /*
3450 * If RECLAIM_SWAP is set, then all file pages are considered
3451 * potentially reclaimable. Otherwise, we have to worry about
3452 * pages like swapcache and zone_unmapped_file_pages() provides
3453 * a better estimate
3454 */
3455 if (zone_reclaim_mode & RECLAIM_SWAP)
3456 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3457 else
3458 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3459
3460 /* If we can't clean pages, remove dirty pages from consideration */
3461 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3462 delta += zone_page_state(zone, NR_FILE_DIRTY);
3463
3464 /* Watch for any possible underflows due to delta */
3465 if (unlikely(delta > nr_pagecache_reclaimable))
3466 delta = nr_pagecache_reclaimable;
3467
3468 return nr_pagecache_reclaimable - delta;
3469 }
3470
3471 /*
3472 * Try to free up some pages from this zone through reclaim.
3473 */
3474 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3475 {
3476 /* Minimum pages needed in order to stay on node */
3477 const unsigned long nr_pages = 1 << order;
3478 struct task_struct *p = current;
3479 struct reclaim_state reclaim_state;
3480 struct scan_control sc = {
3481 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3482 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3483 .may_swap = 1,
3484 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3485 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3486 .order = order,
3487 .priority = ZONE_RECLAIM_PRIORITY,
3488 };
3489 struct shrink_control shrink = {
3490 .gfp_mask = sc.gfp_mask,
3491 };
3492 unsigned long nr_slab_pages0, nr_slab_pages1;
3493
3494 cond_resched();
3495 /*
3496 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3497 * and we also need to be able to write out pages for RECLAIM_WRITE
3498 * and RECLAIM_SWAP.
3499 */
3500 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3501 lockdep_set_current_reclaim_state(gfp_mask);
3502 reclaim_state.reclaimed_slab = 0;
3503 p->reclaim_state = &reclaim_state;
3504
3505 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3506 /*
3507 * Free memory by calling shrink zone with increasing
3508 * priorities until we have enough memory freed.
3509 */
3510 do {
3511 shrink_zone(zone, &sc);
3512 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3513 }
3514
3515 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3516 if (nr_slab_pages0 > zone->min_slab_pages) {
3517 /*
3518 * shrink_slab() does not currently allow us to determine how
3519 * many pages were freed in this zone. So we take the current
3520 * number of slab pages and shake the slab until it is reduced
3521 * by the same nr_pages that we used for reclaiming unmapped
3522 * pages.
3523 *
3524 * Note that shrink_slab will free memory on all zones and may
3525 * take a long time.
3526 */
3527 for (;;) {
3528 unsigned long lru_pages = zone_reclaimable_pages(zone);
3529
3530 /* No reclaimable slab or very low memory pressure */
3531 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3532 break;
3533
3534 /* Freed enough memory */
3535 nr_slab_pages1 = zone_page_state(zone,
3536 NR_SLAB_RECLAIMABLE);
3537 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3538 break;
3539 }
3540
3541 /*
3542 * Update nr_reclaimed by the number of slab pages we
3543 * reclaimed from this zone.
3544 */
3545 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3546 if (nr_slab_pages1 < nr_slab_pages0)
3547 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3548 }
3549
3550 p->reclaim_state = NULL;
3551 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3552 lockdep_clear_current_reclaim_state();
3553 return sc.nr_reclaimed >= nr_pages;
3554 }
3555
3556 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3557 {
3558 int node_id;
3559 int ret;
3560
3561 /*
3562 * Zone reclaim reclaims unmapped file backed pages and
3563 * slab pages if we are over the defined limits.
3564 *
3565 * A small portion of unmapped file backed pages is needed for
3566 * file I/O otherwise pages read by file I/O will be immediately
3567 * thrown out if the zone is overallocated. So we do not reclaim
3568 * if less than a specified percentage of the zone is used by
3569 * unmapped file backed pages.
3570 */
3571 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3572 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3573 return ZONE_RECLAIM_FULL;
3574
3575 if (!zone_reclaimable(zone))
3576 return ZONE_RECLAIM_FULL;
3577
3578 /*
3579 * Do not scan if the allocation should not be delayed.
3580 */
3581 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3582 return ZONE_RECLAIM_NOSCAN;
3583
3584 /*
3585 * Only run zone reclaim on the local zone or on zones that do not
3586 * have associated processors. This will favor the local processor
3587 * over remote processors and spread off node memory allocations
3588 * as wide as possible.
3589 */
3590 node_id = zone_to_nid(zone);
3591 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3592 return ZONE_RECLAIM_NOSCAN;
3593
3594 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3595 return ZONE_RECLAIM_NOSCAN;
3596
3597 ret = __zone_reclaim(zone, gfp_mask, order);
3598 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3599
3600 if (!ret)
3601 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3602
3603 return ret;
3604 }
3605 #endif
3606
3607 /*
3608 * page_evictable - test whether a page is evictable
3609 * @page: the page to test
3610 *
3611 * Test whether page is evictable--i.e., should be placed on active/inactive
3612 * lists vs unevictable list.
3613 *
3614 * Reasons page might not be evictable:
3615 * (1) page's mapping marked unevictable
3616 * (2) page is part of an mlocked VMA
3617 *
3618 */
3619 int page_evictable(struct page *page)
3620 {
3621 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3622 }
3623
3624 #ifdef CONFIG_SHMEM
3625 /**
3626 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3627 * @pages: array of pages to check
3628 * @nr_pages: number of pages to check
3629 *
3630 * Checks pages for evictability and moves them to the appropriate lru list.
3631 *
3632 * This function is only used for SysV IPC SHM_UNLOCK.
3633 */
3634 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3635 {
3636 struct lruvec *lruvec;
3637 struct zone *zone = NULL;
3638 int pgscanned = 0;
3639 int pgrescued = 0;
3640 int i;
3641
3642 for (i = 0; i < nr_pages; i++) {
3643 struct page *page = pages[i];
3644 struct zone *pagezone;
3645
3646 pgscanned++;
3647 pagezone = page_zone(page);
3648 if (pagezone != zone) {
3649 if (zone)
3650 spin_unlock_irq(&zone->lru_lock);
3651 zone = pagezone;
3652 spin_lock_irq(&zone->lru_lock);
3653 }
3654 lruvec = mem_cgroup_page_lruvec(page, zone);
3655
3656 if (!PageLRU(page) || !PageUnevictable(page))
3657 continue;
3658
3659 if (page_evictable(page)) {
3660 enum lru_list lru = page_lru_base_type(page);
3661
3662 VM_BUG_ON(PageActive(page));
3663 ClearPageUnevictable(page);
3664 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3665 add_page_to_lru_list(page, lruvec, lru);
3666 pgrescued++;
3667 }
3668 }
3669
3670 if (zone) {
3671 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3672 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3673 spin_unlock_irq(&zone->lru_lock);
3674 }
3675 }
3676 #endif /* CONFIG_SHMEM */
3677
3678 static void warn_scan_unevictable_pages(void)
3679 {
3680 printk_once(KERN_WARNING
3681 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3682 "disabled for lack of a legitimate use case. If you have "
3683 "one, please send an email to linux-mm@kvack.org.\n",
3684 current->comm);
3685 }
3686
3687 /*
3688 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3689 * all nodes' unevictable lists for evictable pages
3690 */
3691 unsigned long scan_unevictable_pages;
3692
3693 int scan_unevictable_handler(struct ctl_table *table, int write,
3694 void __user *buffer,
3695 size_t *length, loff_t *ppos)
3696 {
3697 warn_scan_unevictable_pages();
3698 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3699 scan_unevictable_pages = 0;
3700 return 0;
3701 }
3702
3703 #ifdef CONFIG_NUMA
3704 /*
3705 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3706 * a specified node's per zone unevictable lists for evictable pages.
3707 */
3708
3709 static ssize_t read_scan_unevictable_node(struct device *dev,
3710 struct device_attribute *attr,
3711 char *buf)
3712 {
3713 warn_scan_unevictable_pages();
3714 return sprintf(buf, "0\n"); /* always zero; should fit... */
3715 }
3716
3717 static ssize_t write_scan_unevictable_node(struct device *dev,
3718 struct device_attribute *attr,
3719 const char *buf, size_t count)
3720 {
3721 warn_scan_unevictable_pages();
3722 return 1;
3723 }
3724
3725
3726 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3727 read_scan_unevictable_node,
3728 write_scan_unevictable_node);
3729
3730 int scan_unevictable_register_node(struct node *node)
3731 {
3732 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3733 }
3734
3735 void scan_unevictable_unregister_node(struct node *node)
3736 {
3737 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3738 }
3739 #endif
This page took 0.104947 seconds and 5 git commands to generate.