mm, vmalloc: remove VM_VPAGES
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 /*
140 * From 0 .. 100. Higher means more swappy.
141 */
142 int vm_swappiness = 60;
143 /*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147 unsigned long vm_total_pages;
148
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 return !sc->target_mem_cgroup;
156 }
157
158 /**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 return true;
180 #endif
181 return false;
182 }
183 #else
184 static bool global_reclaim(struct scan_control *sc)
185 {
186 return true;
187 }
188
189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 return true;
192 }
193 #endif
194
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 unsigned long nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207 }
208
209 bool zone_reclaimable(struct zone *zone)
210 {
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
213 }
214
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
219
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
252 /*
253 * Remove one
254 */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263
264 #define SHRINK_BATCH 128
265
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
270 {
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
293 delta = (4 * nr_scanned) / shrinker->seeks;
294 delta *= freeable;
295 do_div(delta, nr_eligible + 1);
296 total_scan += delta;
297 if (total_scan < 0) {
298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 shrinker->scan_objects, total_scan);
300 total_scan = freeable;
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
309 * freeable. This is bad for sustaining a working set in
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
329
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
341 * than the total number of objects on slab (freeable), we must be
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
346 total_scan >= freeable) {
347 unsigned long ret;
348 unsigned long nr_to_scan = min(batch_size, total_scan);
349
350 shrinkctl->nr_to_scan = nr_to_scan;
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
355
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 return freed;
375 }
376
377 /**
378 * shrink_slab - shrink slab caches
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
381 * @memcg: memory cgroup whose slab caches to target
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
384 *
385 * Call the shrink functions to age shrinkable caches.
386 *
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
389 *
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
403 *
404 * Returns the number of reclaimed slab objects.
405 */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
410 {
411 struct shrinker *shrinker;
412 unsigned long freed = 0;
413
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
419
420 if (!down_read_trylock(&shrinker_rwsem)) {
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
428 goto out;
429 }
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
435 .memcg = memcg,
436 };
437
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
443
444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 }
446
447 up_read(&shrinker_rwsem);
448 out:
449 cond_resched();
450 return freed;
451 }
452
453 void drop_slab_node(int nid)
454 {
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466 }
467
468 void drop_slab(void)
469 {
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474 }
475
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
483 return page_count(page) - page_has_private(page) == 2;
484 }
485
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 if (current->flags & PF_SWAPWRITE)
489 return 1;
490 if (!inode_write_congested(inode))
491 return 1;
492 if (inode_to_bdi(inode) == current->backing_dev_info)
493 return 1;
494 return 0;
495 }
496
497 /*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509 static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511 {
512 lock_page(page);
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
515 unlock_page(page);
516 }
517
518 /* possible outcome of pageout() */
519 typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528 } pageout_t;
529
530 /*
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
533 */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 struct scan_control *sc)
536 {
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
544 * If this process is currently in __generic_file_write_iter() against
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
560 if (page_has_private(page)) {
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
563 pr_info("%s: orphaned page\n", __func__);
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
571 if (!may_write_to_inode(mapping->host, sc))
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
579 .range_start = 0,
580 .range_end = LLONG_MAX,
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
588 if (res == AOP_WRITEPAGE_ACTIVATE) {
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
592
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
597 trace_mm_vmscan_writepage(page);
598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603 }
604
605 /*
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
608 */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
611 {
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
617
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
620 /*
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
644 */
645 if (!page_freeze_refs(page, 2))
646 goto cannot_free;
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
650 goto cannot_free;
651 }
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
655 mem_cgroup_swapout(page, swap);
656 __delete_from_swap_cache(page);
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
659 swapcache_free(swap);
660 } else {
661 void (*freepage)(struct page *);
662 void *shadow = NULL;
663
664 freepage = mapping->a_ops->freepage;
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
681
682 if (freepage != NULL)
683 freepage(page);
684 }
685
686 return 1;
687
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
691 return 0;
692 }
693
694 /*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 if (__remove_mapping(mapping, page, false)) {
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712 }
713
714 /**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
723 void putback_lru_page(struct page *page)
724 {
725 bool is_unevictable;
726 int was_unevictable = PageUnevictable(page);
727
728 VM_BUG_ON_PAGE(PageLRU(page), page);
729
730 redo:
731 ClearPageUnevictable(page);
732
733 if (page_evictable(page)) {
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
740 is_unevictable = false;
741 lru_cache_add(page);
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
747 is_unevictable = true;
748 add_page_to_unevictable_list(page);
749 /*
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
753 * isolation/check_move_unevictable_pages,
754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 * the page back to the evictable list.
756 *
757 * The other side is TestClearPageMlocked() or shmem_lock().
758 */
759 smp_mb();
760 }
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
767 if (is_unevictable && page_evictable(page)) {
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
778 if (was_unevictable && !is_unevictable)
779 count_vm_event(UNEVICTABLE_PGRESCUED);
780 else if (!was_unevictable && is_unevictable)
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
783 put_page(page); /* drop ref from isolate */
784 }
785
786 enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
789 PAGEREF_KEEP,
790 PAGEREF_ACTIVATE,
791 };
792
793 static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795 {
796 int referenced_ptes, referenced_page;
797 unsigned long vm_flags;
798
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
801 referenced_page = TestClearPageReferenced(page);
802
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
810 if (referenced_ptes) {
811 if (PageSwapBacked(page))
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
829 if (referenced_page || referenced_ptes > 1)
830 return PAGEREF_ACTIVATE;
831
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
838 return PAGEREF_KEEP;
839 }
840
841 /* Reclaim if clean, defer dirty pages to writeback */
842 if (referenced_page && !PageSwapBacked(page))
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
846 }
847
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851 {
852 struct address_space *mapping;
853
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876
877 /*
878 * shrink_page_list() returns the number of reclaimed pages
879 */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 struct zone *zone,
882 struct scan_control *sc,
883 enum ttu_flags ttu_flags,
884 unsigned long *ret_nr_dirty,
885 unsigned long *ret_nr_unqueued_dirty,
886 unsigned long *ret_nr_congested,
887 unsigned long *ret_nr_writeback,
888 unsigned long *ret_nr_immediate,
889 bool force_reclaim)
890 {
891 LIST_HEAD(ret_pages);
892 LIST_HEAD(free_pages);
893 int pgactivate = 0;
894 unsigned long nr_unqueued_dirty = 0;
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
897 unsigned long nr_reclaimed = 0;
898 unsigned long nr_writeback = 0;
899 unsigned long nr_immediate = 0;
900
901 cond_resched();
902
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 bool dirty, writeback;
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
915 if (!trylock_page(page))
916 goto keep;
917
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
920
921 sc->nr_scanned++;
922
923 if (unlikely(!page_evictable(page)))
924 goto cull_mlocked;
925
926 if (!sc->may_unmap && page_mapped(page))
927 goto keep_locked;
928
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
955 mapping = page_mapping(page);
956 if (((dirty || writeback) && mapping &&
957 inode_write_congested(mapping->host)) ||
958 (writeback && PageReclaim(page)))
959 nr_congested++;
960
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
974 *
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
979 * reclaim and continue scanning.
980 *
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
988 * 3) Legacy memcg encounters a page that is already marked
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
993 */
994 if (PageWriteback(page)) {
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 nr_immediate++;
1000 goto keep_locked;
1001
1002 /* Case 2 above */
1003 } else if (sane_reclaim(sc) ||
1004 !PageReclaim(page) || !may_enter_fs) {
1005 /*
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1015 */
1016 SetPageReclaim(page);
1017 nr_writeback++;
1018 goto keep_locked;
1019
1020 /* Case 3 above */
1021 } else {
1022 unlock_page(page);
1023 wait_on_page_writeback(page);
1024 /* then go back and try same page again */
1025 list_add_tail(&page->lru, page_list);
1026 continue;
1027 }
1028 }
1029
1030 if (!force_reclaim)
1031 references = page_check_references(page, sc);
1032
1033 switch (references) {
1034 case PAGEREF_ACTIVATE:
1035 goto activate_locked;
1036 case PAGEREF_KEEP:
1037 goto keep_locked;
1038 case PAGEREF_RECLAIM:
1039 case PAGEREF_RECLAIM_CLEAN:
1040 ; /* try to reclaim the page below */
1041 }
1042
1043 /*
1044 * Anonymous process memory has backing store?
1045 * Try to allocate it some swap space here.
1046 */
1047 if (PageAnon(page) && !PageSwapCache(page)) {
1048 if (!(sc->gfp_mask & __GFP_IO))
1049 goto keep_locked;
1050 if (!add_to_swap(page, page_list))
1051 goto activate_locked;
1052 may_enter_fs = 1;
1053
1054 /* Adding to swap updated mapping */
1055 mapping = page_mapping(page);
1056 }
1057
1058 /*
1059 * The page is mapped into the page tables of one or more
1060 * processes. Try to unmap it here.
1061 */
1062 if (page_mapped(page) && mapping) {
1063 switch (try_to_unmap(page,
1064 ttu_flags|TTU_BATCH_FLUSH)) {
1065 case SWAP_FAIL:
1066 goto activate_locked;
1067 case SWAP_AGAIN:
1068 goto keep_locked;
1069 case SWAP_MLOCK:
1070 goto cull_mlocked;
1071 case SWAP_SUCCESS:
1072 ; /* try to free the page below */
1073 }
1074 }
1075
1076 if (PageDirty(page)) {
1077 /*
1078 * Only kswapd can writeback filesystem pages to
1079 * avoid risk of stack overflow but only writeback
1080 * if many dirty pages have been encountered.
1081 */
1082 if (page_is_file_cache(page) &&
1083 (!current_is_kswapd() ||
1084 !test_bit(ZONE_DIRTY, &zone->flags))) {
1085 /*
1086 * Immediately reclaim when written back.
1087 * Similar in principal to deactivate_page()
1088 * except we already have the page isolated
1089 * and know it's dirty
1090 */
1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 SetPageReclaim(page);
1093
1094 goto keep_locked;
1095 }
1096
1097 if (references == PAGEREF_RECLAIM_CLEAN)
1098 goto keep_locked;
1099 if (!may_enter_fs)
1100 goto keep_locked;
1101 if (!sc->may_writepage)
1102 goto keep_locked;
1103
1104 /*
1105 * Page is dirty. Flush the TLB if a writable entry
1106 * potentially exists to avoid CPU writes after IO
1107 * starts and then write it out here.
1108 */
1109 try_to_unmap_flush_dirty();
1110 switch (pageout(page, mapping, sc)) {
1111 case PAGE_KEEP:
1112 goto keep_locked;
1113 case PAGE_ACTIVATE:
1114 goto activate_locked;
1115 case PAGE_SUCCESS:
1116 if (PageWriteback(page))
1117 goto keep;
1118 if (PageDirty(page))
1119 goto keep;
1120
1121 /*
1122 * A synchronous write - probably a ramdisk. Go
1123 * ahead and try to reclaim the page.
1124 */
1125 if (!trylock_page(page))
1126 goto keep;
1127 if (PageDirty(page) || PageWriteback(page))
1128 goto keep_locked;
1129 mapping = page_mapping(page);
1130 case PAGE_CLEAN:
1131 ; /* try to free the page below */
1132 }
1133 }
1134
1135 /*
1136 * If the page has buffers, try to free the buffer mappings
1137 * associated with this page. If we succeed we try to free
1138 * the page as well.
1139 *
1140 * We do this even if the page is PageDirty().
1141 * try_to_release_page() does not perform I/O, but it is
1142 * possible for a page to have PageDirty set, but it is actually
1143 * clean (all its buffers are clean). This happens if the
1144 * buffers were written out directly, with submit_bh(). ext3
1145 * will do this, as well as the blockdev mapping.
1146 * try_to_release_page() will discover that cleanness and will
1147 * drop the buffers and mark the page clean - it can be freed.
1148 *
1149 * Rarely, pages can have buffers and no ->mapping. These are
1150 * the pages which were not successfully invalidated in
1151 * truncate_complete_page(). We try to drop those buffers here
1152 * and if that worked, and the page is no longer mapped into
1153 * process address space (page_count == 1) it can be freed.
1154 * Otherwise, leave the page on the LRU so it is swappable.
1155 */
1156 if (page_has_private(page)) {
1157 if (!try_to_release_page(page, sc->gfp_mask))
1158 goto activate_locked;
1159 if (!mapping && page_count(page) == 1) {
1160 unlock_page(page);
1161 if (put_page_testzero(page))
1162 goto free_it;
1163 else {
1164 /*
1165 * rare race with speculative reference.
1166 * the speculative reference will free
1167 * this page shortly, so we may
1168 * increment nr_reclaimed here (and
1169 * leave it off the LRU).
1170 */
1171 nr_reclaimed++;
1172 continue;
1173 }
1174 }
1175 }
1176
1177 if (!mapping || !__remove_mapping(mapping, page, true))
1178 goto keep_locked;
1179
1180 /*
1181 * At this point, we have no other references and there is
1182 * no way to pick any more up (removed from LRU, removed
1183 * from pagecache). Can use non-atomic bitops now (and
1184 * we obviously don't have to worry about waking up a process
1185 * waiting on the page lock, because there are no references.
1186 */
1187 __clear_page_locked(page);
1188 free_it:
1189 nr_reclaimed++;
1190
1191 /*
1192 * Is there need to periodically free_page_list? It would
1193 * appear not as the counts should be low
1194 */
1195 list_add(&page->lru, &free_pages);
1196 continue;
1197
1198 cull_mlocked:
1199 if (PageSwapCache(page))
1200 try_to_free_swap(page);
1201 unlock_page(page);
1202 list_add(&page->lru, &ret_pages);
1203 continue;
1204
1205 activate_locked:
1206 /* Not a candidate for swapping, so reclaim swap space. */
1207 if (PageSwapCache(page) && vm_swap_full())
1208 try_to_free_swap(page);
1209 VM_BUG_ON_PAGE(PageActive(page), page);
1210 SetPageActive(page);
1211 pgactivate++;
1212 keep_locked:
1213 unlock_page(page);
1214 keep:
1215 list_add(&page->lru, &ret_pages);
1216 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1217 }
1218
1219 mem_cgroup_uncharge_list(&free_pages);
1220 try_to_unmap_flush();
1221 free_hot_cold_page_list(&free_pages, true);
1222
1223 list_splice(&ret_pages, page_list);
1224 count_vm_events(PGACTIVATE, pgactivate);
1225
1226 *ret_nr_dirty += nr_dirty;
1227 *ret_nr_congested += nr_congested;
1228 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1229 *ret_nr_writeback += nr_writeback;
1230 *ret_nr_immediate += nr_immediate;
1231 return nr_reclaimed;
1232 }
1233
1234 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1235 struct list_head *page_list)
1236 {
1237 struct scan_control sc = {
1238 .gfp_mask = GFP_KERNEL,
1239 .priority = DEF_PRIORITY,
1240 .may_unmap = 1,
1241 };
1242 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1243 struct page *page, *next;
1244 LIST_HEAD(clean_pages);
1245
1246 list_for_each_entry_safe(page, next, page_list, lru) {
1247 if (page_is_file_cache(page) && !PageDirty(page) &&
1248 !isolated_balloon_page(page)) {
1249 ClearPageActive(page);
1250 list_move(&page->lru, &clean_pages);
1251 }
1252 }
1253
1254 ret = shrink_page_list(&clean_pages, zone, &sc,
1255 TTU_UNMAP|TTU_IGNORE_ACCESS,
1256 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1257 list_splice(&clean_pages, page_list);
1258 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1259 return ret;
1260 }
1261
1262 /*
1263 * Attempt to remove the specified page from its LRU. Only take this page
1264 * if it is of the appropriate PageActive status. Pages which are being
1265 * freed elsewhere are also ignored.
1266 *
1267 * page: page to consider
1268 * mode: one of the LRU isolation modes defined above
1269 *
1270 * returns 0 on success, -ve errno on failure.
1271 */
1272 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1273 {
1274 int ret = -EINVAL;
1275
1276 /* Only take pages on the LRU. */
1277 if (!PageLRU(page))
1278 return ret;
1279
1280 /* Compaction should not handle unevictable pages but CMA can do so */
1281 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1282 return ret;
1283
1284 ret = -EBUSY;
1285
1286 /*
1287 * To minimise LRU disruption, the caller can indicate that it only
1288 * wants to isolate pages it will be able to operate on without
1289 * blocking - clean pages for the most part.
1290 *
1291 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1292 * is used by reclaim when it is cannot write to backing storage
1293 *
1294 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1295 * that it is possible to migrate without blocking
1296 */
1297 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1298 /* All the caller can do on PageWriteback is block */
1299 if (PageWriteback(page))
1300 return ret;
1301
1302 if (PageDirty(page)) {
1303 struct address_space *mapping;
1304
1305 /* ISOLATE_CLEAN means only clean pages */
1306 if (mode & ISOLATE_CLEAN)
1307 return ret;
1308
1309 /*
1310 * Only pages without mappings or that have a
1311 * ->migratepage callback are possible to migrate
1312 * without blocking
1313 */
1314 mapping = page_mapping(page);
1315 if (mapping && !mapping->a_ops->migratepage)
1316 return ret;
1317 }
1318 }
1319
1320 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1321 return ret;
1322
1323 if (likely(get_page_unless_zero(page))) {
1324 /*
1325 * Be careful not to clear PageLRU until after we're
1326 * sure the page is not being freed elsewhere -- the
1327 * page release code relies on it.
1328 */
1329 ClearPageLRU(page);
1330 ret = 0;
1331 }
1332
1333 return ret;
1334 }
1335
1336 /*
1337 * zone->lru_lock is heavily contended. Some of the functions that
1338 * shrink the lists perform better by taking out a batch of pages
1339 * and working on them outside the LRU lock.
1340 *
1341 * For pagecache intensive workloads, this function is the hottest
1342 * spot in the kernel (apart from copy_*_user functions).
1343 *
1344 * Appropriate locks must be held before calling this function.
1345 *
1346 * @nr_to_scan: The number of pages to look through on the list.
1347 * @lruvec: The LRU vector to pull pages from.
1348 * @dst: The temp list to put pages on to.
1349 * @nr_scanned: The number of pages that were scanned.
1350 * @sc: The scan_control struct for this reclaim session
1351 * @mode: One of the LRU isolation modes
1352 * @lru: LRU list id for isolating
1353 *
1354 * returns how many pages were moved onto *@dst.
1355 */
1356 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1357 struct lruvec *lruvec, struct list_head *dst,
1358 unsigned long *nr_scanned, struct scan_control *sc,
1359 isolate_mode_t mode, enum lru_list lru)
1360 {
1361 struct list_head *src = &lruvec->lists[lru];
1362 unsigned long nr_taken = 0;
1363 unsigned long scan;
1364
1365 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1366 !list_empty(src); scan++) {
1367 struct page *page;
1368 int nr_pages;
1369
1370 page = lru_to_page(src);
1371 prefetchw_prev_lru_page(page, src, flags);
1372
1373 VM_BUG_ON_PAGE(!PageLRU(page), page);
1374
1375 switch (__isolate_lru_page(page, mode)) {
1376 case 0:
1377 nr_pages = hpage_nr_pages(page);
1378 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1379 list_move(&page->lru, dst);
1380 nr_taken += nr_pages;
1381 break;
1382
1383 case -EBUSY:
1384 /* else it is being freed elsewhere */
1385 list_move(&page->lru, src);
1386 continue;
1387
1388 default:
1389 BUG();
1390 }
1391 }
1392
1393 *nr_scanned = scan;
1394 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1395 nr_taken, mode, is_file_lru(lru));
1396 return nr_taken;
1397 }
1398
1399 /**
1400 * isolate_lru_page - tries to isolate a page from its LRU list
1401 * @page: page to isolate from its LRU list
1402 *
1403 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1404 * vmstat statistic corresponding to whatever LRU list the page was on.
1405 *
1406 * Returns 0 if the page was removed from an LRU list.
1407 * Returns -EBUSY if the page was not on an LRU list.
1408 *
1409 * The returned page will have PageLRU() cleared. If it was found on
1410 * the active list, it will have PageActive set. If it was found on
1411 * the unevictable list, it will have the PageUnevictable bit set. That flag
1412 * may need to be cleared by the caller before letting the page go.
1413 *
1414 * The vmstat statistic corresponding to the list on which the page was
1415 * found will be decremented.
1416 *
1417 * Restrictions:
1418 * (1) Must be called with an elevated refcount on the page. This is a
1419 * fundamentnal difference from isolate_lru_pages (which is called
1420 * without a stable reference).
1421 * (2) the lru_lock must not be held.
1422 * (3) interrupts must be enabled.
1423 */
1424 int isolate_lru_page(struct page *page)
1425 {
1426 int ret = -EBUSY;
1427
1428 VM_BUG_ON_PAGE(!page_count(page), page);
1429
1430 if (PageLRU(page)) {
1431 struct zone *zone = page_zone(page);
1432 struct lruvec *lruvec;
1433
1434 spin_lock_irq(&zone->lru_lock);
1435 lruvec = mem_cgroup_page_lruvec(page, zone);
1436 if (PageLRU(page)) {
1437 int lru = page_lru(page);
1438 get_page(page);
1439 ClearPageLRU(page);
1440 del_page_from_lru_list(page, lruvec, lru);
1441 ret = 0;
1442 }
1443 spin_unlock_irq(&zone->lru_lock);
1444 }
1445 return ret;
1446 }
1447
1448 /*
1449 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1450 * then get resheduled. When there are massive number of tasks doing page
1451 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1452 * the LRU list will go small and be scanned faster than necessary, leading to
1453 * unnecessary swapping, thrashing and OOM.
1454 */
1455 static int too_many_isolated(struct zone *zone, int file,
1456 struct scan_control *sc)
1457 {
1458 unsigned long inactive, isolated;
1459
1460 if (current_is_kswapd())
1461 return 0;
1462
1463 if (!sane_reclaim(sc))
1464 return 0;
1465
1466 if (file) {
1467 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1468 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1469 } else {
1470 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1471 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1472 }
1473
1474 /*
1475 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1476 * won't get blocked by normal direct-reclaimers, forming a circular
1477 * deadlock.
1478 */
1479 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1480 inactive >>= 3;
1481
1482 return isolated > inactive;
1483 }
1484
1485 static noinline_for_stack void
1486 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1487 {
1488 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1489 struct zone *zone = lruvec_zone(lruvec);
1490 LIST_HEAD(pages_to_free);
1491
1492 /*
1493 * Put back any unfreeable pages.
1494 */
1495 while (!list_empty(page_list)) {
1496 struct page *page = lru_to_page(page_list);
1497 int lru;
1498
1499 VM_BUG_ON_PAGE(PageLRU(page), page);
1500 list_del(&page->lru);
1501 if (unlikely(!page_evictable(page))) {
1502 spin_unlock_irq(&zone->lru_lock);
1503 putback_lru_page(page);
1504 spin_lock_irq(&zone->lru_lock);
1505 continue;
1506 }
1507
1508 lruvec = mem_cgroup_page_lruvec(page, zone);
1509
1510 SetPageLRU(page);
1511 lru = page_lru(page);
1512 add_page_to_lru_list(page, lruvec, lru);
1513
1514 if (is_active_lru(lru)) {
1515 int file = is_file_lru(lru);
1516 int numpages = hpage_nr_pages(page);
1517 reclaim_stat->recent_rotated[file] += numpages;
1518 }
1519 if (put_page_testzero(page)) {
1520 __ClearPageLRU(page);
1521 __ClearPageActive(page);
1522 del_page_from_lru_list(page, lruvec, lru);
1523
1524 if (unlikely(PageCompound(page))) {
1525 spin_unlock_irq(&zone->lru_lock);
1526 mem_cgroup_uncharge(page);
1527 (*get_compound_page_dtor(page))(page);
1528 spin_lock_irq(&zone->lru_lock);
1529 } else
1530 list_add(&page->lru, &pages_to_free);
1531 }
1532 }
1533
1534 /*
1535 * To save our caller's stack, now use input list for pages to free.
1536 */
1537 list_splice(&pages_to_free, page_list);
1538 }
1539
1540 /*
1541 * If a kernel thread (such as nfsd for loop-back mounts) services
1542 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1543 * In that case we should only throttle if the backing device it is
1544 * writing to is congested. In other cases it is safe to throttle.
1545 */
1546 static int current_may_throttle(void)
1547 {
1548 return !(current->flags & PF_LESS_THROTTLE) ||
1549 current->backing_dev_info == NULL ||
1550 bdi_write_congested(current->backing_dev_info);
1551 }
1552
1553 /*
1554 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1555 * of reclaimed pages
1556 */
1557 static noinline_for_stack unsigned long
1558 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1559 struct scan_control *sc, enum lru_list lru)
1560 {
1561 LIST_HEAD(page_list);
1562 unsigned long nr_scanned;
1563 unsigned long nr_reclaimed = 0;
1564 unsigned long nr_taken;
1565 unsigned long nr_dirty = 0;
1566 unsigned long nr_congested = 0;
1567 unsigned long nr_unqueued_dirty = 0;
1568 unsigned long nr_writeback = 0;
1569 unsigned long nr_immediate = 0;
1570 isolate_mode_t isolate_mode = 0;
1571 int file = is_file_lru(lru);
1572 struct zone *zone = lruvec_zone(lruvec);
1573 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1574
1575 while (unlikely(too_many_isolated(zone, file, sc))) {
1576 congestion_wait(BLK_RW_ASYNC, HZ/10);
1577
1578 /* We are about to die and free our memory. Return now. */
1579 if (fatal_signal_pending(current))
1580 return SWAP_CLUSTER_MAX;
1581 }
1582
1583 lru_add_drain();
1584
1585 if (!sc->may_unmap)
1586 isolate_mode |= ISOLATE_UNMAPPED;
1587 if (!sc->may_writepage)
1588 isolate_mode |= ISOLATE_CLEAN;
1589
1590 spin_lock_irq(&zone->lru_lock);
1591
1592 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1593 &nr_scanned, sc, isolate_mode, lru);
1594
1595 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1596 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1597
1598 if (global_reclaim(sc)) {
1599 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1600 if (current_is_kswapd())
1601 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1602 else
1603 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1604 }
1605 spin_unlock_irq(&zone->lru_lock);
1606
1607 if (nr_taken == 0)
1608 return 0;
1609
1610 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1611 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1612 &nr_writeback, &nr_immediate,
1613 false);
1614
1615 spin_lock_irq(&zone->lru_lock);
1616
1617 reclaim_stat->recent_scanned[file] += nr_taken;
1618
1619 if (global_reclaim(sc)) {
1620 if (current_is_kswapd())
1621 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1622 nr_reclaimed);
1623 else
1624 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1625 nr_reclaimed);
1626 }
1627
1628 putback_inactive_pages(lruvec, &page_list);
1629
1630 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1631
1632 spin_unlock_irq(&zone->lru_lock);
1633
1634 mem_cgroup_uncharge_list(&page_list);
1635 free_hot_cold_page_list(&page_list, true);
1636
1637 /*
1638 * If reclaim is isolating dirty pages under writeback, it implies
1639 * that the long-lived page allocation rate is exceeding the page
1640 * laundering rate. Either the global limits are not being effective
1641 * at throttling processes due to the page distribution throughout
1642 * zones or there is heavy usage of a slow backing device. The
1643 * only option is to throttle from reclaim context which is not ideal
1644 * as there is no guarantee the dirtying process is throttled in the
1645 * same way balance_dirty_pages() manages.
1646 *
1647 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1648 * of pages under pages flagged for immediate reclaim and stall if any
1649 * are encountered in the nr_immediate check below.
1650 */
1651 if (nr_writeback && nr_writeback == nr_taken)
1652 set_bit(ZONE_WRITEBACK, &zone->flags);
1653
1654 /*
1655 * Legacy memcg will stall in page writeback so avoid forcibly
1656 * stalling here.
1657 */
1658 if (sane_reclaim(sc)) {
1659 /*
1660 * Tag a zone as congested if all the dirty pages scanned were
1661 * backed by a congested BDI and wait_iff_congested will stall.
1662 */
1663 if (nr_dirty && nr_dirty == nr_congested)
1664 set_bit(ZONE_CONGESTED, &zone->flags);
1665
1666 /*
1667 * If dirty pages are scanned that are not queued for IO, it
1668 * implies that flushers are not keeping up. In this case, flag
1669 * the zone ZONE_DIRTY and kswapd will start writing pages from
1670 * reclaim context.
1671 */
1672 if (nr_unqueued_dirty == nr_taken)
1673 set_bit(ZONE_DIRTY, &zone->flags);
1674
1675 /*
1676 * If kswapd scans pages marked marked for immediate
1677 * reclaim and under writeback (nr_immediate), it implies
1678 * that pages are cycling through the LRU faster than
1679 * they are written so also forcibly stall.
1680 */
1681 if (nr_immediate && current_may_throttle())
1682 congestion_wait(BLK_RW_ASYNC, HZ/10);
1683 }
1684
1685 /*
1686 * Stall direct reclaim for IO completions if underlying BDIs or zone
1687 * is congested. Allow kswapd to continue until it starts encountering
1688 * unqueued dirty pages or cycling through the LRU too quickly.
1689 */
1690 if (!sc->hibernation_mode && !current_is_kswapd() &&
1691 current_may_throttle())
1692 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1693
1694 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1695 sc->priority, file);
1696 return nr_reclaimed;
1697 }
1698
1699 /*
1700 * This moves pages from the active list to the inactive list.
1701 *
1702 * We move them the other way if the page is referenced by one or more
1703 * processes, from rmap.
1704 *
1705 * If the pages are mostly unmapped, the processing is fast and it is
1706 * appropriate to hold zone->lru_lock across the whole operation. But if
1707 * the pages are mapped, the processing is slow (page_referenced()) so we
1708 * should drop zone->lru_lock around each page. It's impossible to balance
1709 * this, so instead we remove the pages from the LRU while processing them.
1710 * It is safe to rely on PG_active against the non-LRU pages in here because
1711 * nobody will play with that bit on a non-LRU page.
1712 *
1713 * The downside is that we have to touch page->_count against each page.
1714 * But we had to alter page->flags anyway.
1715 */
1716
1717 static void move_active_pages_to_lru(struct lruvec *lruvec,
1718 struct list_head *list,
1719 struct list_head *pages_to_free,
1720 enum lru_list lru)
1721 {
1722 struct zone *zone = lruvec_zone(lruvec);
1723 unsigned long pgmoved = 0;
1724 struct page *page;
1725 int nr_pages;
1726
1727 while (!list_empty(list)) {
1728 page = lru_to_page(list);
1729 lruvec = mem_cgroup_page_lruvec(page, zone);
1730
1731 VM_BUG_ON_PAGE(PageLRU(page), page);
1732 SetPageLRU(page);
1733
1734 nr_pages = hpage_nr_pages(page);
1735 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1736 list_move(&page->lru, &lruvec->lists[lru]);
1737 pgmoved += nr_pages;
1738
1739 if (put_page_testzero(page)) {
1740 __ClearPageLRU(page);
1741 __ClearPageActive(page);
1742 del_page_from_lru_list(page, lruvec, lru);
1743
1744 if (unlikely(PageCompound(page))) {
1745 spin_unlock_irq(&zone->lru_lock);
1746 mem_cgroup_uncharge(page);
1747 (*get_compound_page_dtor(page))(page);
1748 spin_lock_irq(&zone->lru_lock);
1749 } else
1750 list_add(&page->lru, pages_to_free);
1751 }
1752 }
1753 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1754 if (!is_active_lru(lru))
1755 __count_vm_events(PGDEACTIVATE, pgmoved);
1756 }
1757
1758 static void shrink_active_list(unsigned long nr_to_scan,
1759 struct lruvec *lruvec,
1760 struct scan_control *sc,
1761 enum lru_list lru)
1762 {
1763 unsigned long nr_taken;
1764 unsigned long nr_scanned;
1765 unsigned long vm_flags;
1766 LIST_HEAD(l_hold); /* The pages which were snipped off */
1767 LIST_HEAD(l_active);
1768 LIST_HEAD(l_inactive);
1769 struct page *page;
1770 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1771 unsigned long nr_rotated = 0;
1772 isolate_mode_t isolate_mode = 0;
1773 int file = is_file_lru(lru);
1774 struct zone *zone = lruvec_zone(lruvec);
1775
1776 lru_add_drain();
1777
1778 if (!sc->may_unmap)
1779 isolate_mode |= ISOLATE_UNMAPPED;
1780 if (!sc->may_writepage)
1781 isolate_mode |= ISOLATE_CLEAN;
1782
1783 spin_lock_irq(&zone->lru_lock);
1784
1785 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1786 &nr_scanned, sc, isolate_mode, lru);
1787 if (global_reclaim(sc))
1788 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1789
1790 reclaim_stat->recent_scanned[file] += nr_taken;
1791
1792 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1793 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1794 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1795 spin_unlock_irq(&zone->lru_lock);
1796
1797 while (!list_empty(&l_hold)) {
1798 cond_resched();
1799 page = lru_to_page(&l_hold);
1800 list_del(&page->lru);
1801
1802 if (unlikely(!page_evictable(page))) {
1803 putback_lru_page(page);
1804 continue;
1805 }
1806
1807 if (unlikely(buffer_heads_over_limit)) {
1808 if (page_has_private(page) && trylock_page(page)) {
1809 if (page_has_private(page))
1810 try_to_release_page(page, 0);
1811 unlock_page(page);
1812 }
1813 }
1814
1815 if (page_referenced(page, 0, sc->target_mem_cgroup,
1816 &vm_flags)) {
1817 nr_rotated += hpage_nr_pages(page);
1818 /*
1819 * Identify referenced, file-backed active pages and
1820 * give them one more trip around the active list. So
1821 * that executable code get better chances to stay in
1822 * memory under moderate memory pressure. Anon pages
1823 * are not likely to be evicted by use-once streaming
1824 * IO, plus JVM can create lots of anon VM_EXEC pages,
1825 * so we ignore them here.
1826 */
1827 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1828 list_add(&page->lru, &l_active);
1829 continue;
1830 }
1831 }
1832
1833 ClearPageActive(page); /* we are de-activating */
1834 list_add(&page->lru, &l_inactive);
1835 }
1836
1837 /*
1838 * Move pages back to the lru list.
1839 */
1840 spin_lock_irq(&zone->lru_lock);
1841 /*
1842 * Count referenced pages from currently used mappings as rotated,
1843 * even though only some of them are actually re-activated. This
1844 * helps balance scan pressure between file and anonymous pages in
1845 * get_scan_count.
1846 */
1847 reclaim_stat->recent_rotated[file] += nr_rotated;
1848
1849 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1850 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1851 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1852 spin_unlock_irq(&zone->lru_lock);
1853
1854 mem_cgroup_uncharge_list(&l_hold);
1855 free_hot_cold_page_list(&l_hold, true);
1856 }
1857
1858 #ifdef CONFIG_SWAP
1859 static bool inactive_anon_is_low_global(struct zone *zone)
1860 {
1861 unsigned long active, inactive;
1862
1863 active = zone_page_state(zone, NR_ACTIVE_ANON);
1864 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1865
1866 return inactive * zone->inactive_ratio < active;
1867 }
1868
1869 /**
1870 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1871 * @lruvec: LRU vector to check
1872 *
1873 * Returns true if the zone does not have enough inactive anon pages,
1874 * meaning some active anon pages need to be deactivated.
1875 */
1876 static bool inactive_anon_is_low(struct lruvec *lruvec)
1877 {
1878 /*
1879 * If we don't have swap space, anonymous page deactivation
1880 * is pointless.
1881 */
1882 if (!total_swap_pages)
1883 return false;
1884
1885 if (!mem_cgroup_disabled())
1886 return mem_cgroup_inactive_anon_is_low(lruvec);
1887
1888 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1889 }
1890 #else
1891 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1892 {
1893 return false;
1894 }
1895 #endif
1896
1897 /**
1898 * inactive_file_is_low - check if file pages need to be deactivated
1899 * @lruvec: LRU vector to check
1900 *
1901 * When the system is doing streaming IO, memory pressure here
1902 * ensures that active file pages get deactivated, until more
1903 * than half of the file pages are on the inactive list.
1904 *
1905 * Once we get to that situation, protect the system's working
1906 * set from being evicted by disabling active file page aging.
1907 *
1908 * This uses a different ratio than the anonymous pages, because
1909 * the page cache uses a use-once replacement algorithm.
1910 */
1911 static bool inactive_file_is_low(struct lruvec *lruvec)
1912 {
1913 unsigned long inactive;
1914 unsigned long active;
1915
1916 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1918
1919 return active > inactive;
1920 }
1921
1922 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1923 {
1924 if (is_file_lru(lru))
1925 return inactive_file_is_low(lruvec);
1926 else
1927 return inactive_anon_is_low(lruvec);
1928 }
1929
1930 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1931 struct lruvec *lruvec, struct scan_control *sc)
1932 {
1933 if (is_active_lru(lru)) {
1934 if (inactive_list_is_low(lruvec, lru))
1935 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1936 return 0;
1937 }
1938
1939 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1940 }
1941
1942 enum scan_balance {
1943 SCAN_EQUAL,
1944 SCAN_FRACT,
1945 SCAN_ANON,
1946 SCAN_FILE,
1947 };
1948
1949 /*
1950 * Determine how aggressively the anon and file LRU lists should be
1951 * scanned. The relative value of each set of LRU lists is determined
1952 * by looking at the fraction of the pages scanned we did rotate back
1953 * onto the active list instead of evict.
1954 *
1955 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1956 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1957 */
1958 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1959 struct scan_control *sc, unsigned long *nr,
1960 unsigned long *lru_pages)
1961 {
1962 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1963 u64 fraction[2];
1964 u64 denominator = 0; /* gcc */
1965 struct zone *zone = lruvec_zone(lruvec);
1966 unsigned long anon_prio, file_prio;
1967 enum scan_balance scan_balance;
1968 unsigned long anon, file;
1969 bool force_scan = false;
1970 unsigned long ap, fp;
1971 enum lru_list lru;
1972 bool some_scanned;
1973 int pass;
1974
1975 /*
1976 * If the zone or memcg is small, nr[l] can be 0. This
1977 * results in no scanning on this priority and a potential
1978 * priority drop. Global direct reclaim can go to the next
1979 * zone and tends to have no problems. Global kswapd is for
1980 * zone balancing and it needs to scan a minimum amount. When
1981 * reclaiming for a memcg, a priority drop can cause high
1982 * latencies, so it's better to scan a minimum amount there as
1983 * well.
1984 */
1985 if (current_is_kswapd()) {
1986 if (!zone_reclaimable(zone))
1987 force_scan = true;
1988 if (!mem_cgroup_lruvec_online(lruvec))
1989 force_scan = true;
1990 }
1991 if (!global_reclaim(sc))
1992 force_scan = true;
1993
1994 /* If we have no swap space, do not bother scanning anon pages. */
1995 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1996 scan_balance = SCAN_FILE;
1997 goto out;
1998 }
1999
2000 /*
2001 * Global reclaim will swap to prevent OOM even with no
2002 * swappiness, but memcg users want to use this knob to
2003 * disable swapping for individual groups completely when
2004 * using the memory controller's swap limit feature would be
2005 * too expensive.
2006 */
2007 if (!global_reclaim(sc) && !swappiness) {
2008 scan_balance = SCAN_FILE;
2009 goto out;
2010 }
2011
2012 /*
2013 * Do not apply any pressure balancing cleverness when the
2014 * system is close to OOM, scan both anon and file equally
2015 * (unless the swappiness setting disagrees with swapping).
2016 */
2017 if (!sc->priority && swappiness) {
2018 scan_balance = SCAN_EQUAL;
2019 goto out;
2020 }
2021
2022 /*
2023 * Prevent the reclaimer from falling into the cache trap: as
2024 * cache pages start out inactive, every cache fault will tip
2025 * the scan balance towards the file LRU. And as the file LRU
2026 * shrinks, so does the window for rotation from references.
2027 * This means we have a runaway feedback loop where a tiny
2028 * thrashing file LRU becomes infinitely more attractive than
2029 * anon pages. Try to detect this based on file LRU size.
2030 */
2031 if (global_reclaim(sc)) {
2032 unsigned long zonefile;
2033 unsigned long zonefree;
2034
2035 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2036 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2037 zone_page_state(zone, NR_INACTIVE_FILE);
2038
2039 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2040 scan_balance = SCAN_ANON;
2041 goto out;
2042 }
2043 }
2044
2045 /*
2046 * There is enough inactive page cache, do not reclaim
2047 * anything from the anonymous working set right now.
2048 */
2049 if (!inactive_file_is_low(lruvec)) {
2050 scan_balance = SCAN_FILE;
2051 goto out;
2052 }
2053
2054 scan_balance = SCAN_FRACT;
2055
2056 /*
2057 * With swappiness at 100, anonymous and file have the same priority.
2058 * This scanning priority is essentially the inverse of IO cost.
2059 */
2060 anon_prio = swappiness;
2061 file_prio = 200 - anon_prio;
2062
2063 /*
2064 * OK, so we have swap space and a fair amount of page cache
2065 * pages. We use the recently rotated / recently scanned
2066 * ratios to determine how valuable each cache is.
2067 *
2068 * Because workloads change over time (and to avoid overflow)
2069 * we keep these statistics as a floating average, which ends
2070 * up weighing recent references more than old ones.
2071 *
2072 * anon in [0], file in [1]
2073 */
2074
2075 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2076 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2077 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2078 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2079
2080 spin_lock_irq(&zone->lru_lock);
2081 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2082 reclaim_stat->recent_scanned[0] /= 2;
2083 reclaim_stat->recent_rotated[0] /= 2;
2084 }
2085
2086 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2087 reclaim_stat->recent_scanned[1] /= 2;
2088 reclaim_stat->recent_rotated[1] /= 2;
2089 }
2090
2091 /*
2092 * The amount of pressure on anon vs file pages is inversely
2093 * proportional to the fraction of recently scanned pages on
2094 * each list that were recently referenced and in active use.
2095 */
2096 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2097 ap /= reclaim_stat->recent_rotated[0] + 1;
2098
2099 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2100 fp /= reclaim_stat->recent_rotated[1] + 1;
2101 spin_unlock_irq(&zone->lru_lock);
2102
2103 fraction[0] = ap;
2104 fraction[1] = fp;
2105 denominator = ap + fp + 1;
2106 out:
2107 some_scanned = false;
2108 /* Only use force_scan on second pass. */
2109 for (pass = 0; !some_scanned && pass < 2; pass++) {
2110 *lru_pages = 0;
2111 for_each_evictable_lru(lru) {
2112 int file = is_file_lru(lru);
2113 unsigned long size;
2114 unsigned long scan;
2115
2116 size = get_lru_size(lruvec, lru);
2117 scan = size >> sc->priority;
2118
2119 if (!scan && pass && force_scan)
2120 scan = min(size, SWAP_CLUSTER_MAX);
2121
2122 switch (scan_balance) {
2123 case SCAN_EQUAL:
2124 /* Scan lists relative to size */
2125 break;
2126 case SCAN_FRACT:
2127 /*
2128 * Scan types proportional to swappiness and
2129 * their relative recent reclaim efficiency.
2130 */
2131 scan = div64_u64(scan * fraction[file],
2132 denominator);
2133 break;
2134 case SCAN_FILE:
2135 case SCAN_ANON:
2136 /* Scan one type exclusively */
2137 if ((scan_balance == SCAN_FILE) != file) {
2138 size = 0;
2139 scan = 0;
2140 }
2141 break;
2142 default:
2143 /* Look ma, no brain */
2144 BUG();
2145 }
2146
2147 *lru_pages += size;
2148 nr[lru] = scan;
2149
2150 /*
2151 * Skip the second pass and don't force_scan,
2152 * if we found something to scan.
2153 */
2154 some_scanned |= !!scan;
2155 }
2156 }
2157 }
2158
2159 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2160 static void init_tlb_ubc(void)
2161 {
2162 /*
2163 * This deliberately does not clear the cpumask as it's expensive
2164 * and unnecessary. If there happens to be data in there then the
2165 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2166 * then will be cleared.
2167 */
2168 current->tlb_ubc.flush_required = false;
2169 }
2170 #else
2171 static inline void init_tlb_ubc(void)
2172 {
2173 }
2174 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2175
2176 /*
2177 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2178 */
2179 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2180 struct scan_control *sc, unsigned long *lru_pages)
2181 {
2182 unsigned long nr[NR_LRU_LISTS];
2183 unsigned long targets[NR_LRU_LISTS];
2184 unsigned long nr_to_scan;
2185 enum lru_list lru;
2186 unsigned long nr_reclaimed = 0;
2187 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2188 struct blk_plug plug;
2189 bool scan_adjusted;
2190
2191 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2192
2193 /* Record the original scan target for proportional adjustments later */
2194 memcpy(targets, nr, sizeof(nr));
2195
2196 /*
2197 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2198 * event that can occur when there is little memory pressure e.g.
2199 * multiple streaming readers/writers. Hence, we do not abort scanning
2200 * when the requested number of pages are reclaimed when scanning at
2201 * DEF_PRIORITY on the assumption that the fact we are direct
2202 * reclaiming implies that kswapd is not keeping up and it is best to
2203 * do a batch of work at once. For memcg reclaim one check is made to
2204 * abort proportional reclaim if either the file or anon lru has already
2205 * dropped to zero at the first pass.
2206 */
2207 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2208 sc->priority == DEF_PRIORITY);
2209
2210 init_tlb_ubc();
2211
2212 blk_start_plug(&plug);
2213 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2214 nr[LRU_INACTIVE_FILE]) {
2215 unsigned long nr_anon, nr_file, percentage;
2216 unsigned long nr_scanned;
2217
2218 for_each_evictable_lru(lru) {
2219 if (nr[lru]) {
2220 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2221 nr[lru] -= nr_to_scan;
2222
2223 nr_reclaimed += shrink_list(lru, nr_to_scan,
2224 lruvec, sc);
2225 }
2226 }
2227
2228 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2229 continue;
2230
2231 /*
2232 * For kswapd and memcg, reclaim at least the number of pages
2233 * requested. Ensure that the anon and file LRUs are scanned
2234 * proportionally what was requested by get_scan_count(). We
2235 * stop reclaiming one LRU and reduce the amount scanning
2236 * proportional to the original scan target.
2237 */
2238 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2239 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2240
2241 /*
2242 * It's just vindictive to attack the larger once the smaller
2243 * has gone to zero. And given the way we stop scanning the
2244 * smaller below, this makes sure that we only make one nudge
2245 * towards proportionality once we've got nr_to_reclaim.
2246 */
2247 if (!nr_file || !nr_anon)
2248 break;
2249
2250 if (nr_file > nr_anon) {
2251 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2252 targets[LRU_ACTIVE_ANON] + 1;
2253 lru = LRU_BASE;
2254 percentage = nr_anon * 100 / scan_target;
2255 } else {
2256 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2257 targets[LRU_ACTIVE_FILE] + 1;
2258 lru = LRU_FILE;
2259 percentage = nr_file * 100 / scan_target;
2260 }
2261
2262 /* Stop scanning the smaller of the LRU */
2263 nr[lru] = 0;
2264 nr[lru + LRU_ACTIVE] = 0;
2265
2266 /*
2267 * Recalculate the other LRU scan count based on its original
2268 * scan target and the percentage scanning already complete
2269 */
2270 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2271 nr_scanned = targets[lru] - nr[lru];
2272 nr[lru] = targets[lru] * (100 - percentage) / 100;
2273 nr[lru] -= min(nr[lru], nr_scanned);
2274
2275 lru += LRU_ACTIVE;
2276 nr_scanned = targets[lru] - nr[lru];
2277 nr[lru] = targets[lru] * (100 - percentage) / 100;
2278 nr[lru] -= min(nr[lru], nr_scanned);
2279
2280 scan_adjusted = true;
2281 }
2282 blk_finish_plug(&plug);
2283 sc->nr_reclaimed += nr_reclaimed;
2284
2285 /*
2286 * Even if we did not try to evict anon pages at all, we want to
2287 * rebalance the anon lru active/inactive ratio.
2288 */
2289 if (inactive_anon_is_low(lruvec))
2290 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2291 sc, LRU_ACTIVE_ANON);
2292
2293 throttle_vm_writeout(sc->gfp_mask);
2294 }
2295
2296 /* Use reclaim/compaction for costly allocs or under memory pressure */
2297 static bool in_reclaim_compaction(struct scan_control *sc)
2298 {
2299 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2300 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2301 sc->priority < DEF_PRIORITY - 2))
2302 return true;
2303
2304 return false;
2305 }
2306
2307 /*
2308 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2309 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2310 * true if more pages should be reclaimed such that when the page allocator
2311 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2312 * It will give up earlier than that if there is difficulty reclaiming pages.
2313 */
2314 static inline bool should_continue_reclaim(struct zone *zone,
2315 unsigned long nr_reclaimed,
2316 unsigned long nr_scanned,
2317 struct scan_control *sc)
2318 {
2319 unsigned long pages_for_compaction;
2320 unsigned long inactive_lru_pages;
2321
2322 /* If not in reclaim/compaction mode, stop */
2323 if (!in_reclaim_compaction(sc))
2324 return false;
2325
2326 /* Consider stopping depending on scan and reclaim activity */
2327 if (sc->gfp_mask & __GFP_REPEAT) {
2328 /*
2329 * For __GFP_REPEAT allocations, stop reclaiming if the
2330 * full LRU list has been scanned and we are still failing
2331 * to reclaim pages. This full LRU scan is potentially
2332 * expensive but a __GFP_REPEAT caller really wants to succeed
2333 */
2334 if (!nr_reclaimed && !nr_scanned)
2335 return false;
2336 } else {
2337 /*
2338 * For non-__GFP_REPEAT allocations which can presumably
2339 * fail without consequence, stop if we failed to reclaim
2340 * any pages from the last SWAP_CLUSTER_MAX number of
2341 * pages that were scanned. This will return to the
2342 * caller faster at the risk reclaim/compaction and
2343 * the resulting allocation attempt fails
2344 */
2345 if (!nr_reclaimed)
2346 return false;
2347 }
2348
2349 /*
2350 * If we have not reclaimed enough pages for compaction and the
2351 * inactive lists are large enough, continue reclaiming
2352 */
2353 pages_for_compaction = (2UL << sc->order);
2354 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2355 if (get_nr_swap_pages() > 0)
2356 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2357 if (sc->nr_reclaimed < pages_for_compaction &&
2358 inactive_lru_pages > pages_for_compaction)
2359 return true;
2360
2361 /* If compaction would go ahead or the allocation would succeed, stop */
2362 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2363 case COMPACT_PARTIAL:
2364 case COMPACT_CONTINUE:
2365 return false;
2366 default:
2367 return true;
2368 }
2369 }
2370
2371 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2372 bool is_classzone)
2373 {
2374 struct reclaim_state *reclaim_state = current->reclaim_state;
2375 unsigned long nr_reclaimed, nr_scanned;
2376 bool reclaimable = false;
2377
2378 do {
2379 struct mem_cgroup *root = sc->target_mem_cgroup;
2380 struct mem_cgroup_reclaim_cookie reclaim = {
2381 .zone = zone,
2382 .priority = sc->priority,
2383 };
2384 unsigned long zone_lru_pages = 0;
2385 struct mem_cgroup *memcg;
2386
2387 nr_reclaimed = sc->nr_reclaimed;
2388 nr_scanned = sc->nr_scanned;
2389
2390 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2391 do {
2392 unsigned long lru_pages;
2393 unsigned long scanned;
2394 struct lruvec *lruvec;
2395 int swappiness;
2396
2397 if (mem_cgroup_low(root, memcg)) {
2398 if (!sc->may_thrash)
2399 continue;
2400 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2401 }
2402
2403 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2404 swappiness = mem_cgroup_swappiness(memcg);
2405 scanned = sc->nr_scanned;
2406
2407 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2408 zone_lru_pages += lru_pages;
2409
2410 if (memcg && is_classzone)
2411 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2412 memcg, sc->nr_scanned - scanned,
2413 lru_pages);
2414
2415 /*
2416 * Direct reclaim and kswapd have to scan all memory
2417 * cgroups to fulfill the overall scan target for the
2418 * zone.
2419 *
2420 * Limit reclaim, on the other hand, only cares about
2421 * nr_to_reclaim pages to be reclaimed and it will
2422 * retry with decreasing priority if one round over the
2423 * whole hierarchy is not sufficient.
2424 */
2425 if (!global_reclaim(sc) &&
2426 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2427 mem_cgroup_iter_break(root, memcg);
2428 break;
2429 }
2430 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2431
2432 /*
2433 * Shrink the slab caches in the same proportion that
2434 * the eligible LRU pages were scanned.
2435 */
2436 if (global_reclaim(sc) && is_classzone)
2437 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2438 sc->nr_scanned - nr_scanned,
2439 zone_lru_pages);
2440
2441 if (reclaim_state) {
2442 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2443 reclaim_state->reclaimed_slab = 0;
2444 }
2445
2446 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2447 sc->nr_scanned - nr_scanned,
2448 sc->nr_reclaimed - nr_reclaimed);
2449
2450 if (sc->nr_reclaimed - nr_reclaimed)
2451 reclaimable = true;
2452
2453 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2454 sc->nr_scanned - nr_scanned, sc));
2455
2456 return reclaimable;
2457 }
2458
2459 /*
2460 * Returns true if compaction should go ahead for a high-order request, or
2461 * the high-order allocation would succeed without compaction.
2462 */
2463 static inline bool compaction_ready(struct zone *zone, int order)
2464 {
2465 unsigned long balance_gap, watermark;
2466 bool watermark_ok;
2467
2468 /*
2469 * Compaction takes time to run and there are potentially other
2470 * callers using the pages just freed. Continue reclaiming until
2471 * there is a buffer of free pages available to give compaction
2472 * a reasonable chance of completing and allocating the page
2473 */
2474 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2475 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2476 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2477 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2478
2479 /*
2480 * If compaction is deferred, reclaim up to a point where
2481 * compaction will have a chance of success when re-enabled
2482 */
2483 if (compaction_deferred(zone, order))
2484 return watermark_ok;
2485
2486 /*
2487 * If compaction is not ready to start and allocation is not likely
2488 * to succeed without it, then keep reclaiming.
2489 */
2490 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2491 return false;
2492
2493 return watermark_ok;
2494 }
2495
2496 /*
2497 * This is the direct reclaim path, for page-allocating processes. We only
2498 * try to reclaim pages from zones which will satisfy the caller's allocation
2499 * request.
2500 *
2501 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2502 * Because:
2503 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2504 * allocation or
2505 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2506 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2507 * zone defense algorithm.
2508 *
2509 * If a zone is deemed to be full of pinned pages then just give it a light
2510 * scan then give up on it.
2511 *
2512 * Returns true if a zone was reclaimable.
2513 */
2514 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2515 {
2516 struct zoneref *z;
2517 struct zone *zone;
2518 unsigned long nr_soft_reclaimed;
2519 unsigned long nr_soft_scanned;
2520 gfp_t orig_mask;
2521 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2522 bool reclaimable = false;
2523
2524 /*
2525 * If the number of buffer_heads in the machine exceeds the maximum
2526 * allowed level, force direct reclaim to scan the highmem zone as
2527 * highmem pages could be pinning lowmem pages storing buffer_heads
2528 */
2529 orig_mask = sc->gfp_mask;
2530 if (buffer_heads_over_limit)
2531 sc->gfp_mask |= __GFP_HIGHMEM;
2532
2533 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2534 requested_highidx, sc->nodemask) {
2535 enum zone_type classzone_idx;
2536
2537 if (!populated_zone(zone))
2538 continue;
2539
2540 classzone_idx = requested_highidx;
2541 while (!populated_zone(zone->zone_pgdat->node_zones +
2542 classzone_idx))
2543 classzone_idx--;
2544
2545 /*
2546 * Take care memory controller reclaiming has small influence
2547 * to global LRU.
2548 */
2549 if (global_reclaim(sc)) {
2550 if (!cpuset_zone_allowed(zone,
2551 GFP_KERNEL | __GFP_HARDWALL))
2552 continue;
2553
2554 if (sc->priority != DEF_PRIORITY &&
2555 !zone_reclaimable(zone))
2556 continue; /* Let kswapd poll it */
2557
2558 /*
2559 * If we already have plenty of memory free for
2560 * compaction in this zone, don't free any more.
2561 * Even though compaction is invoked for any
2562 * non-zero order, only frequent costly order
2563 * reclamation is disruptive enough to become a
2564 * noticeable problem, like transparent huge
2565 * page allocations.
2566 */
2567 if (IS_ENABLED(CONFIG_COMPACTION) &&
2568 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2569 zonelist_zone_idx(z) <= requested_highidx &&
2570 compaction_ready(zone, sc->order)) {
2571 sc->compaction_ready = true;
2572 continue;
2573 }
2574
2575 /*
2576 * This steals pages from memory cgroups over softlimit
2577 * and returns the number of reclaimed pages and
2578 * scanned pages. This works for global memory pressure
2579 * and balancing, not for a memcg's limit.
2580 */
2581 nr_soft_scanned = 0;
2582 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2583 sc->order, sc->gfp_mask,
2584 &nr_soft_scanned);
2585 sc->nr_reclaimed += nr_soft_reclaimed;
2586 sc->nr_scanned += nr_soft_scanned;
2587 if (nr_soft_reclaimed)
2588 reclaimable = true;
2589 /* need some check for avoid more shrink_zone() */
2590 }
2591
2592 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2593 reclaimable = true;
2594
2595 if (global_reclaim(sc) &&
2596 !reclaimable && zone_reclaimable(zone))
2597 reclaimable = true;
2598 }
2599
2600 /*
2601 * Restore to original mask to avoid the impact on the caller if we
2602 * promoted it to __GFP_HIGHMEM.
2603 */
2604 sc->gfp_mask = orig_mask;
2605
2606 return reclaimable;
2607 }
2608
2609 /*
2610 * This is the main entry point to direct page reclaim.
2611 *
2612 * If a full scan of the inactive list fails to free enough memory then we
2613 * are "out of memory" and something needs to be killed.
2614 *
2615 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2616 * high - the zone may be full of dirty or under-writeback pages, which this
2617 * caller can't do much about. We kick the writeback threads and take explicit
2618 * naps in the hope that some of these pages can be written. But if the
2619 * allocating task holds filesystem locks which prevent writeout this might not
2620 * work, and the allocation attempt will fail.
2621 *
2622 * returns: 0, if no pages reclaimed
2623 * else, the number of pages reclaimed
2624 */
2625 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2626 struct scan_control *sc)
2627 {
2628 int initial_priority = sc->priority;
2629 unsigned long total_scanned = 0;
2630 unsigned long writeback_threshold;
2631 bool zones_reclaimable;
2632 retry:
2633 delayacct_freepages_start();
2634
2635 if (global_reclaim(sc))
2636 count_vm_event(ALLOCSTALL);
2637
2638 do {
2639 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2640 sc->priority);
2641 sc->nr_scanned = 0;
2642 zones_reclaimable = shrink_zones(zonelist, sc);
2643
2644 total_scanned += sc->nr_scanned;
2645 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2646 break;
2647
2648 if (sc->compaction_ready)
2649 break;
2650
2651 /*
2652 * If we're getting trouble reclaiming, start doing
2653 * writepage even in laptop mode.
2654 */
2655 if (sc->priority < DEF_PRIORITY - 2)
2656 sc->may_writepage = 1;
2657
2658 /*
2659 * Try to write back as many pages as we just scanned. This
2660 * tends to cause slow streaming writers to write data to the
2661 * disk smoothly, at the dirtying rate, which is nice. But
2662 * that's undesirable in laptop mode, where we *want* lumpy
2663 * writeout. So in laptop mode, write out the whole world.
2664 */
2665 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2666 if (total_scanned > writeback_threshold) {
2667 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2668 WB_REASON_TRY_TO_FREE_PAGES);
2669 sc->may_writepage = 1;
2670 }
2671 } while (--sc->priority >= 0);
2672
2673 delayacct_freepages_end();
2674
2675 if (sc->nr_reclaimed)
2676 return sc->nr_reclaimed;
2677
2678 /* Aborted reclaim to try compaction? don't OOM, then */
2679 if (sc->compaction_ready)
2680 return 1;
2681
2682 /* Untapped cgroup reserves? Don't OOM, retry. */
2683 if (!sc->may_thrash) {
2684 sc->priority = initial_priority;
2685 sc->may_thrash = 1;
2686 goto retry;
2687 }
2688
2689 /* Any of the zones still reclaimable? Don't OOM. */
2690 if (zones_reclaimable)
2691 return 1;
2692
2693 return 0;
2694 }
2695
2696 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2697 {
2698 struct zone *zone;
2699 unsigned long pfmemalloc_reserve = 0;
2700 unsigned long free_pages = 0;
2701 int i;
2702 bool wmark_ok;
2703
2704 for (i = 0; i <= ZONE_NORMAL; i++) {
2705 zone = &pgdat->node_zones[i];
2706 if (!populated_zone(zone) ||
2707 zone_reclaimable_pages(zone) == 0)
2708 continue;
2709
2710 pfmemalloc_reserve += min_wmark_pages(zone);
2711 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2712 }
2713
2714 /* If there are no reserves (unexpected config) then do not throttle */
2715 if (!pfmemalloc_reserve)
2716 return true;
2717
2718 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2719
2720 /* kswapd must be awake if processes are being throttled */
2721 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2722 pgdat->classzone_idx = min(pgdat->classzone_idx,
2723 (enum zone_type)ZONE_NORMAL);
2724 wake_up_interruptible(&pgdat->kswapd_wait);
2725 }
2726
2727 return wmark_ok;
2728 }
2729
2730 /*
2731 * Throttle direct reclaimers if backing storage is backed by the network
2732 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2733 * depleted. kswapd will continue to make progress and wake the processes
2734 * when the low watermark is reached.
2735 *
2736 * Returns true if a fatal signal was delivered during throttling. If this
2737 * happens, the page allocator should not consider triggering the OOM killer.
2738 */
2739 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2740 nodemask_t *nodemask)
2741 {
2742 struct zoneref *z;
2743 struct zone *zone;
2744 pg_data_t *pgdat = NULL;
2745
2746 /*
2747 * Kernel threads should not be throttled as they may be indirectly
2748 * responsible for cleaning pages necessary for reclaim to make forward
2749 * progress. kjournald for example may enter direct reclaim while
2750 * committing a transaction where throttling it could forcing other
2751 * processes to block on log_wait_commit().
2752 */
2753 if (current->flags & PF_KTHREAD)
2754 goto out;
2755
2756 /*
2757 * If a fatal signal is pending, this process should not throttle.
2758 * It should return quickly so it can exit and free its memory
2759 */
2760 if (fatal_signal_pending(current))
2761 goto out;
2762
2763 /*
2764 * Check if the pfmemalloc reserves are ok by finding the first node
2765 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2766 * GFP_KERNEL will be required for allocating network buffers when
2767 * swapping over the network so ZONE_HIGHMEM is unusable.
2768 *
2769 * Throttling is based on the first usable node and throttled processes
2770 * wait on a queue until kswapd makes progress and wakes them. There
2771 * is an affinity then between processes waking up and where reclaim
2772 * progress has been made assuming the process wakes on the same node.
2773 * More importantly, processes running on remote nodes will not compete
2774 * for remote pfmemalloc reserves and processes on different nodes
2775 * should make reasonable progress.
2776 */
2777 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2778 gfp_zone(gfp_mask), nodemask) {
2779 if (zone_idx(zone) > ZONE_NORMAL)
2780 continue;
2781
2782 /* Throttle based on the first usable node */
2783 pgdat = zone->zone_pgdat;
2784 if (pfmemalloc_watermark_ok(pgdat))
2785 goto out;
2786 break;
2787 }
2788
2789 /* If no zone was usable by the allocation flags then do not throttle */
2790 if (!pgdat)
2791 goto out;
2792
2793 /* Account for the throttling */
2794 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2795
2796 /*
2797 * If the caller cannot enter the filesystem, it's possible that it
2798 * is due to the caller holding an FS lock or performing a journal
2799 * transaction in the case of a filesystem like ext[3|4]. In this case,
2800 * it is not safe to block on pfmemalloc_wait as kswapd could be
2801 * blocked waiting on the same lock. Instead, throttle for up to a
2802 * second before continuing.
2803 */
2804 if (!(gfp_mask & __GFP_FS)) {
2805 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2806 pfmemalloc_watermark_ok(pgdat), HZ);
2807
2808 goto check_pending;
2809 }
2810
2811 /* Throttle until kswapd wakes the process */
2812 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2813 pfmemalloc_watermark_ok(pgdat));
2814
2815 check_pending:
2816 if (fatal_signal_pending(current))
2817 return true;
2818
2819 out:
2820 return false;
2821 }
2822
2823 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2824 gfp_t gfp_mask, nodemask_t *nodemask)
2825 {
2826 unsigned long nr_reclaimed;
2827 struct scan_control sc = {
2828 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2829 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2830 .order = order,
2831 .nodemask = nodemask,
2832 .priority = DEF_PRIORITY,
2833 .may_writepage = !laptop_mode,
2834 .may_unmap = 1,
2835 .may_swap = 1,
2836 };
2837
2838 /*
2839 * Do not enter reclaim if fatal signal was delivered while throttled.
2840 * 1 is returned so that the page allocator does not OOM kill at this
2841 * point.
2842 */
2843 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2844 return 1;
2845
2846 trace_mm_vmscan_direct_reclaim_begin(order,
2847 sc.may_writepage,
2848 gfp_mask);
2849
2850 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2851
2852 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2853
2854 return nr_reclaimed;
2855 }
2856
2857 #ifdef CONFIG_MEMCG
2858
2859 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2860 gfp_t gfp_mask, bool noswap,
2861 struct zone *zone,
2862 unsigned long *nr_scanned)
2863 {
2864 struct scan_control sc = {
2865 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2866 .target_mem_cgroup = memcg,
2867 .may_writepage = !laptop_mode,
2868 .may_unmap = 1,
2869 .may_swap = !noswap,
2870 };
2871 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2872 int swappiness = mem_cgroup_swappiness(memcg);
2873 unsigned long lru_pages;
2874
2875 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2876 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2877
2878 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2879 sc.may_writepage,
2880 sc.gfp_mask);
2881
2882 /*
2883 * NOTE: Although we can get the priority field, using it
2884 * here is not a good idea, since it limits the pages we can scan.
2885 * if we don't reclaim here, the shrink_zone from balance_pgdat
2886 * will pick up pages from other mem cgroup's as well. We hack
2887 * the priority and make it zero.
2888 */
2889 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2890
2891 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2892
2893 *nr_scanned = sc.nr_scanned;
2894 return sc.nr_reclaimed;
2895 }
2896
2897 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2898 unsigned long nr_pages,
2899 gfp_t gfp_mask,
2900 bool may_swap)
2901 {
2902 struct zonelist *zonelist;
2903 unsigned long nr_reclaimed;
2904 int nid;
2905 struct scan_control sc = {
2906 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2907 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2908 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2909 .target_mem_cgroup = memcg,
2910 .priority = DEF_PRIORITY,
2911 .may_writepage = !laptop_mode,
2912 .may_unmap = 1,
2913 .may_swap = may_swap,
2914 };
2915
2916 /*
2917 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2918 * take care of from where we get pages. So the node where we start the
2919 * scan does not need to be the current node.
2920 */
2921 nid = mem_cgroup_select_victim_node(memcg);
2922
2923 zonelist = NODE_DATA(nid)->node_zonelists;
2924
2925 trace_mm_vmscan_memcg_reclaim_begin(0,
2926 sc.may_writepage,
2927 sc.gfp_mask);
2928
2929 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2930
2931 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2932
2933 return nr_reclaimed;
2934 }
2935 #endif
2936
2937 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2938 {
2939 struct mem_cgroup *memcg;
2940
2941 if (!total_swap_pages)
2942 return;
2943
2944 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2945 do {
2946 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2947
2948 if (inactive_anon_is_low(lruvec))
2949 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2950 sc, LRU_ACTIVE_ANON);
2951
2952 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2953 } while (memcg);
2954 }
2955
2956 static bool zone_balanced(struct zone *zone, int order,
2957 unsigned long balance_gap, int classzone_idx)
2958 {
2959 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2960 balance_gap, classzone_idx))
2961 return false;
2962
2963 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2964 order, 0, classzone_idx) == COMPACT_SKIPPED)
2965 return false;
2966
2967 return true;
2968 }
2969
2970 /*
2971 * pgdat_balanced() is used when checking if a node is balanced.
2972 *
2973 * For order-0, all zones must be balanced!
2974 *
2975 * For high-order allocations only zones that meet watermarks and are in a
2976 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2977 * total of balanced pages must be at least 25% of the zones allowed by
2978 * classzone_idx for the node to be considered balanced. Forcing all zones to
2979 * be balanced for high orders can cause excessive reclaim when there are
2980 * imbalanced zones.
2981 * The choice of 25% is due to
2982 * o a 16M DMA zone that is balanced will not balance a zone on any
2983 * reasonable sized machine
2984 * o On all other machines, the top zone must be at least a reasonable
2985 * percentage of the middle zones. For example, on 32-bit x86, highmem
2986 * would need to be at least 256M for it to be balance a whole node.
2987 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2988 * to balance a node on its own. These seemed like reasonable ratios.
2989 */
2990 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2991 {
2992 unsigned long managed_pages = 0;
2993 unsigned long balanced_pages = 0;
2994 int i;
2995
2996 /* Check the watermark levels */
2997 for (i = 0; i <= classzone_idx; i++) {
2998 struct zone *zone = pgdat->node_zones + i;
2999
3000 if (!populated_zone(zone))
3001 continue;
3002
3003 managed_pages += zone->managed_pages;
3004
3005 /*
3006 * A special case here:
3007 *
3008 * balance_pgdat() skips over all_unreclaimable after
3009 * DEF_PRIORITY. Effectively, it considers them balanced so
3010 * they must be considered balanced here as well!
3011 */
3012 if (!zone_reclaimable(zone)) {
3013 balanced_pages += zone->managed_pages;
3014 continue;
3015 }
3016
3017 if (zone_balanced(zone, order, 0, i))
3018 balanced_pages += zone->managed_pages;
3019 else if (!order)
3020 return false;
3021 }
3022
3023 if (order)
3024 return balanced_pages >= (managed_pages >> 2);
3025 else
3026 return true;
3027 }
3028
3029 /*
3030 * Prepare kswapd for sleeping. This verifies that there are no processes
3031 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3032 *
3033 * Returns true if kswapd is ready to sleep
3034 */
3035 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3036 int classzone_idx)
3037 {
3038 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3039 if (remaining)
3040 return false;
3041
3042 /*
3043 * The throttled processes are normally woken up in balance_pgdat() as
3044 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3045 * race between when kswapd checks the watermarks and a process gets
3046 * throttled. There is also a potential race if processes get
3047 * throttled, kswapd wakes, a large process exits thereby balancing the
3048 * zones, which causes kswapd to exit balance_pgdat() before reaching
3049 * the wake up checks. If kswapd is going to sleep, no process should
3050 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3051 * the wake up is premature, processes will wake kswapd and get
3052 * throttled again. The difference from wake ups in balance_pgdat() is
3053 * that here we are under prepare_to_wait().
3054 */
3055 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3056 wake_up_all(&pgdat->pfmemalloc_wait);
3057
3058 return pgdat_balanced(pgdat, order, classzone_idx);
3059 }
3060
3061 /*
3062 * kswapd shrinks the zone by the number of pages required to reach
3063 * the high watermark.
3064 *
3065 * Returns true if kswapd scanned at least the requested number of pages to
3066 * reclaim or if the lack of progress was due to pages under writeback.
3067 * This is used to determine if the scanning priority needs to be raised.
3068 */
3069 static bool kswapd_shrink_zone(struct zone *zone,
3070 int classzone_idx,
3071 struct scan_control *sc,
3072 unsigned long *nr_attempted)
3073 {
3074 int testorder = sc->order;
3075 unsigned long balance_gap;
3076 bool lowmem_pressure;
3077
3078 /* Reclaim above the high watermark. */
3079 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3080
3081 /*
3082 * Kswapd reclaims only single pages with compaction enabled. Trying
3083 * too hard to reclaim until contiguous free pages have become
3084 * available can hurt performance by evicting too much useful data
3085 * from memory. Do not reclaim more than needed for compaction.
3086 */
3087 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3088 compaction_suitable(zone, sc->order, 0, classzone_idx)
3089 != COMPACT_SKIPPED)
3090 testorder = 0;
3091
3092 /*
3093 * We put equal pressure on every zone, unless one zone has way too
3094 * many pages free already. The "too many pages" is defined as the
3095 * high wmark plus a "gap" where the gap is either the low
3096 * watermark or 1% of the zone, whichever is smaller.
3097 */
3098 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3099 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3100
3101 /*
3102 * If there is no low memory pressure or the zone is balanced then no
3103 * reclaim is necessary
3104 */
3105 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3106 if (!lowmem_pressure && zone_balanced(zone, testorder,
3107 balance_gap, classzone_idx))
3108 return true;
3109
3110 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3111
3112 /* Account for the number of pages attempted to reclaim */
3113 *nr_attempted += sc->nr_to_reclaim;
3114
3115 clear_bit(ZONE_WRITEBACK, &zone->flags);
3116
3117 /*
3118 * If a zone reaches its high watermark, consider it to be no longer
3119 * congested. It's possible there are dirty pages backed by congested
3120 * BDIs but as pressure is relieved, speculatively avoid congestion
3121 * waits.
3122 */
3123 if (zone_reclaimable(zone) &&
3124 zone_balanced(zone, testorder, 0, classzone_idx)) {
3125 clear_bit(ZONE_CONGESTED, &zone->flags);
3126 clear_bit(ZONE_DIRTY, &zone->flags);
3127 }
3128
3129 return sc->nr_scanned >= sc->nr_to_reclaim;
3130 }
3131
3132 /*
3133 * For kswapd, balance_pgdat() will work across all this node's zones until
3134 * they are all at high_wmark_pages(zone).
3135 *
3136 * Returns the final order kswapd was reclaiming at
3137 *
3138 * There is special handling here for zones which are full of pinned pages.
3139 * This can happen if the pages are all mlocked, or if they are all used by
3140 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3141 * What we do is to detect the case where all pages in the zone have been
3142 * scanned twice and there has been zero successful reclaim. Mark the zone as
3143 * dead and from now on, only perform a short scan. Basically we're polling
3144 * the zone for when the problem goes away.
3145 *
3146 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3147 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3148 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3149 * lower zones regardless of the number of free pages in the lower zones. This
3150 * interoperates with the page allocator fallback scheme to ensure that aging
3151 * of pages is balanced across the zones.
3152 */
3153 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3154 int *classzone_idx)
3155 {
3156 int i;
3157 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3158 unsigned long nr_soft_reclaimed;
3159 unsigned long nr_soft_scanned;
3160 struct scan_control sc = {
3161 .gfp_mask = GFP_KERNEL,
3162 .order = order,
3163 .priority = DEF_PRIORITY,
3164 .may_writepage = !laptop_mode,
3165 .may_unmap = 1,
3166 .may_swap = 1,
3167 };
3168 count_vm_event(PAGEOUTRUN);
3169
3170 do {
3171 unsigned long nr_attempted = 0;
3172 bool raise_priority = true;
3173 bool pgdat_needs_compaction = (order > 0);
3174
3175 sc.nr_reclaimed = 0;
3176
3177 /*
3178 * Scan in the highmem->dma direction for the highest
3179 * zone which needs scanning
3180 */
3181 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3182 struct zone *zone = pgdat->node_zones + i;
3183
3184 if (!populated_zone(zone))
3185 continue;
3186
3187 if (sc.priority != DEF_PRIORITY &&
3188 !zone_reclaimable(zone))
3189 continue;
3190
3191 /*
3192 * Do some background aging of the anon list, to give
3193 * pages a chance to be referenced before reclaiming.
3194 */
3195 age_active_anon(zone, &sc);
3196
3197 /*
3198 * If the number of buffer_heads in the machine
3199 * exceeds the maximum allowed level and this node
3200 * has a highmem zone, force kswapd to reclaim from
3201 * it to relieve lowmem pressure.
3202 */
3203 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3204 end_zone = i;
3205 break;
3206 }
3207
3208 if (!zone_balanced(zone, order, 0, 0)) {
3209 end_zone = i;
3210 break;
3211 } else {
3212 /*
3213 * If balanced, clear the dirty and congested
3214 * flags
3215 */
3216 clear_bit(ZONE_CONGESTED, &zone->flags);
3217 clear_bit(ZONE_DIRTY, &zone->flags);
3218 }
3219 }
3220
3221 if (i < 0)
3222 goto out;
3223
3224 for (i = 0; i <= end_zone; i++) {
3225 struct zone *zone = pgdat->node_zones + i;
3226
3227 if (!populated_zone(zone))
3228 continue;
3229
3230 /*
3231 * If any zone is currently balanced then kswapd will
3232 * not call compaction as it is expected that the
3233 * necessary pages are already available.
3234 */
3235 if (pgdat_needs_compaction &&
3236 zone_watermark_ok(zone, order,
3237 low_wmark_pages(zone),
3238 *classzone_idx, 0))
3239 pgdat_needs_compaction = false;
3240 }
3241
3242 /*
3243 * If we're getting trouble reclaiming, start doing writepage
3244 * even in laptop mode.
3245 */
3246 if (sc.priority < DEF_PRIORITY - 2)
3247 sc.may_writepage = 1;
3248
3249 /*
3250 * Now scan the zone in the dma->highmem direction, stopping
3251 * at the last zone which needs scanning.
3252 *
3253 * We do this because the page allocator works in the opposite
3254 * direction. This prevents the page allocator from allocating
3255 * pages behind kswapd's direction of progress, which would
3256 * cause too much scanning of the lower zones.
3257 */
3258 for (i = 0; i <= end_zone; i++) {
3259 struct zone *zone = pgdat->node_zones + i;
3260
3261 if (!populated_zone(zone))
3262 continue;
3263
3264 if (sc.priority != DEF_PRIORITY &&
3265 !zone_reclaimable(zone))
3266 continue;
3267
3268 sc.nr_scanned = 0;
3269
3270 nr_soft_scanned = 0;
3271 /*
3272 * Call soft limit reclaim before calling shrink_zone.
3273 */
3274 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3275 order, sc.gfp_mask,
3276 &nr_soft_scanned);
3277 sc.nr_reclaimed += nr_soft_reclaimed;
3278
3279 /*
3280 * There should be no need to raise the scanning
3281 * priority if enough pages are already being scanned
3282 * that that high watermark would be met at 100%
3283 * efficiency.
3284 */
3285 if (kswapd_shrink_zone(zone, end_zone,
3286 &sc, &nr_attempted))
3287 raise_priority = false;
3288 }
3289
3290 /*
3291 * If the low watermark is met there is no need for processes
3292 * to be throttled on pfmemalloc_wait as they should not be
3293 * able to safely make forward progress. Wake them
3294 */
3295 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3296 pfmemalloc_watermark_ok(pgdat))
3297 wake_up_all(&pgdat->pfmemalloc_wait);
3298
3299 /*
3300 * Fragmentation may mean that the system cannot be rebalanced
3301 * for high-order allocations in all zones. If twice the
3302 * allocation size has been reclaimed and the zones are still
3303 * not balanced then recheck the watermarks at order-0 to
3304 * prevent kswapd reclaiming excessively. Assume that a
3305 * process requested a high-order can direct reclaim/compact.
3306 */
3307 if (order && sc.nr_reclaimed >= 2UL << order)
3308 order = sc.order = 0;
3309
3310 /* Check if kswapd should be suspending */
3311 if (try_to_freeze() || kthread_should_stop())
3312 break;
3313
3314 /*
3315 * Compact if necessary and kswapd is reclaiming at least the
3316 * high watermark number of pages as requsted
3317 */
3318 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3319 compact_pgdat(pgdat, order);
3320
3321 /*
3322 * Raise priority if scanning rate is too low or there was no
3323 * progress in reclaiming pages
3324 */
3325 if (raise_priority || !sc.nr_reclaimed)
3326 sc.priority--;
3327 } while (sc.priority >= 1 &&
3328 !pgdat_balanced(pgdat, order, *classzone_idx));
3329
3330 out:
3331 /*
3332 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3333 * makes a decision on the order we were last reclaiming at. However,
3334 * if another caller entered the allocator slow path while kswapd
3335 * was awake, order will remain at the higher level
3336 */
3337 *classzone_idx = end_zone;
3338 return order;
3339 }
3340
3341 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3342 {
3343 long remaining = 0;
3344 DEFINE_WAIT(wait);
3345
3346 if (freezing(current) || kthread_should_stop())
3347 return;
3348
3349 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3350
3351 /* Try to sleep for a short interval */
3352 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3353 remaining = schedule_timeout(HZ/10);
3354 finish_wait(&pgdat->kswapd_wait, &wait);
3355 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3356 }
3357
3358 /*
3359 * After a short sleep, check if it was a premature sleep. If not, then
3360 * go fully to sleep until explicitly woken up.
3361 */
3362 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3363 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3364
3365 /*
3366 * vmstat counters are not perfectly accurate and the estimated
3367 * value for counters such as NR_FREE_PAGES can deviate from the
3368 * true value by nr_online_cpus * threshold. To avoid the zone
3369 * watermarks being breached while under pressure, we reduce the
3370 * per-cpu vmstat threshold while kswapd is awake and restore
3371 * them before going back to sleep.
3372 */
3373 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3374
3375 /*
3376 * Compaction records what page blocks it recently failed to
3377 * isolate pages from and skips them in the future scanning.
3378 * When kswapd is going to sleep, it is reasonable to assume
3379 * that pages and compaction may succeed so reset the cache.
3380 */
3381 reset_isolation_suitable(pgdat);
3382
3383 if (!kthread_should_stop())
3384 schedule();
3385
3386 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3387 } else {
3388 if (remaining)
3389 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3390 else
3391 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3392 }
3393 finish_wait(&pgdat->kswapd_wait, &wait);
3394 }
3395
3396 /*
3397 * The background pageout daemon, started as a kernel thread
3398 * from the init process.
3399 *
3400 * This basically trickles out pages so that we have _some_
3401 * free memory available even if there is no other activity
3402 * that frees anything up. This is needed for things like routing
3403 * etc, where we otherwise might have all activity going on in
3404 * asynchronous contexts that cannot page things out.
3405 *
3406 * If there are applications that are active memory-allocators
3407 * (most normal use), this basically shouldn't matter.
3408 */
3409 static int kswapd(void *p)
3410 {
3411 unsigned long order, new_order;
3412 unsigned balanced_order;
3413 int classzone_idx, new_classzone_idx;
3414 int balanced_classzone_idx;
3415 pg_data_t *pgdat = (pg_data_t*)p;
3416 struct task_struct *tsk = current;
3417
3418 struct reclaim_state reclaim_state = {
3419 .reclaimed_slab = 0,
3420 };
3421 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3422
3423 lockdep_set_current_reclaim_state(GFP_KERNEL);
3424
3425 if (!cpumask_empty(cpumask))
3426 set_cpus_allowed_ptr(tsk, cpumask);
3427 current->reclaim_state = &reclaim_state;
3428
3429 /*
3430 * Tell the memory management that we're a "memory allocator",
3431 * and that if we need more memory we should get access to it
3432 * regardless (see "__alloc_pages()"). "kswapd" should
3433 * never get caught in the normal page freeing logic.
3434 *
3435 * (Kswapd normally doesn't need memory anyway, but sometimes
3436 * you need a small amount of memory in order to be able to
3437 * page out something else, and this flag essentially protects
3438 * us from recursively trying to free more memory as we're
3439 * trying to free the first piece of memory in the first place).
3440 */
3441 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3442 set_freezable();
3443
3444 order = new_order = 0;
3445 balanced_order = 0;
3446 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3447 balanced_classzone_idx = classzone_idx;
3448 for ( ; ; ) {
3449 bool ret;
3450
3451 /*
3452 * If the last balance_pgdat was unsuccessful it's unlikely a
3453 * new request of a similar or harder type will succeed soon
3454 * so consider going to sleep on the basis we reclaimed at
3455 */
3456 if (balanced_classzone_idx >= new_classzone_idx &&
3457 balanced_order == new_order) {
3458 new_order = pgdat->kswapd_max_order;
3459 new_classzone_idx = pgdat->classzone_idx;
3460 pgdat->kswapd_max_order = 0;
3461 pgdat->classzone_idx = pgdat->nr_zones - 1;
3462 }
3463
3464 if (order < new_order || classzone_idx > new_classzone_idx) {
3465 /*
3466 * Don't sleep if someone wants a larger 'order'
3467 * allocation or has tigher zone constraints
3468 */
3469 order = new_order;
3470 classzone_idx = new_classzone_idx;
3471 } else {
3472 kswapd_try_to_sleep(pgdat, balanced_order,
3473 balanced_classzone_idx);
3474 order = pgdat->kswapd_max_order;
3475 classzone_idx = pgdat->classzone_idx;
3476 new_order = order;
3477 new_classzone_idx = classzone_idx;
3478 pgdat->kswapd_max_order = 0;
3479 pgdat->classzone_idx = pgdat->nr_zones - 1;
3480 }
3481
3482 ret = try_to_freeze();
3483 if (kthread_should_stop())
3484 break;
3485
3486 /*
3487 * We can speed up thawing tasks if we don't call balance_pgdat
3488 * after returning from the refrigerator
3489 */
3490 if (!ret) {
3491 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3492 balanced_classzone_idx = classzone_idx;
3493 balanced_order = balance_pgdat(pgdat, order,
3494 &balanced_classzone_idx);
3495 }
3496 }
3497
3498 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3499 current->reclaim_state = NULL;
3500 lockdep_clear_current_reclaim_state();
3501
3502 return 0;
3503 }
3504
3505 /*
3506 * A zone is low on free memory, so wake its kswapd task to service it.
3507 */
3508 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3509 {
3510 pg_data_t *pgdat;
3511
3512 if (!populated_zone(zone))
3513 return;
3514
3515 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3516 return;
3517 pgdat = zone->zone_pgdat;
3518 if (pgdat->kswapd_max_order < order) {
3519 pgdat->kswapd_max_order = order;
3520 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3521 }
3522 if (!waitqueue_active(&pgdat->kswapd_wait))
3523 return;
3524 if (zone_balanced(zone, order, 0, 0))
3525 return;
3526
3527 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3528 wake_up_interruptible(&pgdat->kswapd_wait);
3529 }
3530
3531 #ifdef CONFIG_HIBERNATION
3532 /*
3533 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3534 * freed pages.
3535 *
3536 * Rather than trying to age LRUs the aim is to preserve the overall
3537 * LRU order by reclaiming preferentially
3538 * inactive > active > active referenced > active mapped
3539 */
3540 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3541 {
3542 struct reclaim_state reclaim_state;
3543 struct scan_control sc = {
3544 .nr_to_reclaim = nr_to_reclaim,
3545 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3546 .priority = DEF_PRIORITY,
3547 .may_writepage = 1,
3548 .may_unmap = 1,
3549 .may_swap = 1,
3550 .hibernation_mode = 1,
3551 };
3552 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3553 struct task_struct *p = current;
3554 unsigned long nr_reclaimed;
3555
3556 p->flags |= PF_MEMALLOC;
3557 lockdep_set_current_reclaim_state(sc.gfp_mask);
3558 reclaim_state.reclaimed_slab = 0;
3559 p->reclaim_state = &reclaim_state;
3560
3561 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3562
3563 p->reclaim_state = NULL;
3564 lockdep_clear_current_reclaim_state();
3565 p->flags &= ~PF_MEMALLOC;
3566
3567 return nr_reclaimed;
3568 }
3569 #endif /* CONFIG_HIBERNATION */
3570
3571 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3572 not required for correctness. So if the last cpu in a node goes
3573 away, we get changed to run anywhere: as the first one comes back,
3574 restore their cpu bindings. */
3575 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3576 void *hcpu)
3577 {
3578 int nid;
3579
3580 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3581 for_each_node_state(nid, N_MEMORY) {
3582 pg_data_t *pgdat = NODE_DATA(nid);
3583 const struct cpumask *mask;
3584
3585 mask = cpumask_of_node(pgdat->node_id);
3586
3587 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3588 /* One of our CPUs online: restore mask */
3589 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3590 }
3591 }
3592 return NOTIFY_OK;
3593 }
3594
3595 /*
3596 * This kswapd start function will be called by init and node-hot-add.
3597 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3598 */
3599 int kswapd_run(int nid)
3600 {
3601 pg_data_t *pgdat = NODE_DATA(nid);
3602 int ret = 0;
3603
3604 if (pgdat->kswapd)
3605 return 0;
3606
3607 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3608 if (IS_ERR(pgdat->kswapd)) {
3609 /* failure at boot is fatal */
3610 BUG_ON(system_state == SYSTEM_BOOTING);
3611 pr_err("Failed to start kswapd on node %d\n", nid);
3612 ret = PTR_ERR(pgdat->kswapd);
3613 pgdat->kswapd = NULL;
3614 }
3615 return ret;
3616 }
3617
3618 /*
3619 * Called by memory hotplug when all memory in a node is offlined. Caller must
3620 * hold mem_hotplug_begin/end().
3621 */
3622 void kswapd_stop(int nid)
3623 {
3624 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3625
3626 if (kswapd) {
3627 kthread_stop(kswapd);
3628 NODE_DATA(nid)->kswapd = NULL;
3629 }
3630 }
3631
3632 static int __init kswapd_init(void)
3633 {
3634 int nid;
3635
3636 swap_setup();
3637 for_each_node_state(nid, N_MEMORY)
3638 kswapd_run(nid);
3639 hotcpu_notifier(cpu_callback, 0);
3640 return 0;
3641 }
3642
3643 module_init(kswapd_init)
3644
3645 #ifdef CONFIG_NUMA
3646 /*
3647 * Zone reclaim mode
3648 *
3649 * If non-zero call zone_reclaim when the number of free pages falls below
3650 * the watermarks.
3651 */
3652 int zone_reclaim_mode __read_mostly;
3653
3654 #define RECLAIM_OFF 0
3655 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3656 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3657 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3658
3659 /*
3660 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3661 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3662 * a zone.
3663 */
3664 #define ZONE_RECLAIM_PRIORITY 4
3665
3666 /*
3667 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3668 * occur.
3669 */
3670 int sysctl_min_unmapped_ratio = 1;
3671
3672 /*
3673 * If the number of slab pages in a zone grows beyond this percentage then
3674 * slab reclaim needs to occur.
3675 */
3676 int sysctl_min_slab_ratio = 5;
3677
3678 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3679 {
3680 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3681 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3682 zone_page_state(zone, NR_ACTIVE_FILE);
3683
3684 /*
3685 * It's possible for there to be more file mapped pages than
3686 * accounted for by the pages on the file LRU lists because
3687 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3688 */
3689 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3690 }
3691
3692 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3693 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3694 {
3695 unsigned long nr_pagecache_reclaimable;
3696 unsigned long delta = 0;
3697
3698 /*
3699 * If RECLAIM_UNMAP is set, then all file pages are considered
3700 * potentially reclaimable. Otherwise, we have to worry about
3701 * pages like swapcache and zone_unmapped_file_pages() provides
3702 * a better estimate
3703 */
3704 if (zone_reclaim_mode & RECLAIM_UNMAP)
3705 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3706 else
3707 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3708
3709 /* If we can't clean pages, remove dirty pages from consideration */
3710 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3711 delta += zone_page_state(zone, NR_FILE_DIRTY);
3712
3713 /* Watch for any possible underflows due to delta */
3714 if (unlikely(delta > nr_pagecache_reclaimable))
3715 delta = nr_pagecache_reclaimable;
3716
3717 return nr_pagecache_reclaimable - delta;
3718 }
3719
3720 /*
3721 * Try to free up some pages from this zone through reclaim.
3722 */
3723 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3724 {
3725 /* Minimum pages needed in order to stay on node */
3726 const unsigned long nr_pages = 1 << order;
3727 struct task_struct *p = current;
3728 struct reclaim_state reclaim_state;
3729 struct scan_control sc = {
3730 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3731 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3732 .order = order,
3733 .priority = ZONE_RECLAIM_PRIORITY,
3734 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3735 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3736 .may_swap = 1,
3737 };
3738
3739 cond_resched();
3740 /*
3741 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742 * and we also need to be able to write out pages for RECLAIM_WRITE
3743 * and RECLAIM_UNMAP.
3744 */
3745 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3746 lockdep_set_current_reclaim_state(gfp_mask);
3747 reclaim_state.reclaimed_slab = 0;
3748 p->reclaim_state = &reclaim_state;
3749
3750 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3751 /*
3752 * Free memory by calling shrink zone with increasing
3753 * priorities until we have enough memory freed.
3754 */
3755 do {
3756 shrink_zone(zone, &sc, true);
3757 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3758 }
3759
3760 p->reclaim_state = NULL;
3761 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3762 lockdep_clear_current_reclaim_state();
3763 return sc.nr_reclaimed >= nr_pages;
3764 }
3765
3766 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3767 {
3768 int node_id;
3769 int ret;
3770
3771 /*
3772 * Zone reclaim reclaims unmapped file backed pages and
3773 * slab pages if we are over the defined limits.
3774 *
3775 * A small portion of unmapped file backed pages is needed for
3776 * file I/O otherwise pages read by file I/O will be immediately
3777 * thrown out if the zone is overallocated. So we do not reclaim
3778 * if less than a specified percentage of the zone is used by
3779 * unmapped file backed pages.
3780 */
3781 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3782 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3783 return ZONE_RECLAIM_FULL;
3784
3785 if (!zone_reclaimable(zone))
3786 return ZONE_RECLAIM_FULL;
3787
3788 /*
3789 * Do not scan if the allocation should not be delayed.
3790 */
3791 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3792 return ZONE_RECLAIM_NOSCAN;
3793
3794 /*
3795 * Only run zone reclaim on the local zone or on zones that do not
3796 * have associated processors. This will favor the local processor
3797 * over remote processors and spread off node memory allocations
3798 * as wide as possible.
3799 */
3800 node_id = zone_to_nid(zone);
3801 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3802 return ZONE_RECLAIM_NOSCAN;
3803
3804 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3805 return ZONE_RECLAIM_NOSCAN;
3806
3807 ret = __zone_reclaim(zone, gfp_mask, order);
3808 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3809
3810 if (!ret)
3811 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3812
3813 return ret;
3814 }
3815 #endif
3816
3817 /*
3818 * page_evictable - test whether a page is evictable
3819 * @page: the page to test
3820 *
3821 * Test whether page is evictable--i.e., should be placed on active/inactive
3822 * lists vs unevictable list.
3823 *
3824 * Reasons page might not be evictable:
3825 * (1) page's mapping marked unevictable
3826 * (2) page is part of an mlocked VMA
3827 *
3828 */
3829 int page_evictable(struct page *page)
3830 {
3831 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3832 }
3833
3834 #ifdef CONFIG_SHMEM
3835 /**
3836 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3837 * @pages: array of pages to check
3838 * @nr_pages: number of pages to check
3839 *
3840 * Checks pages for evictability and moves them to the appropriate lru list.
3841 *
3842 * This function is only used for SysV IPC SHM_UNLOCK.
3843 */
3844 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3845 {
3846 struct lruvec *lruvec;
3847 struct zone *zone = NULL;
3848 int pgscanned = 0;
3849 int pgrescued = 0;
3850 int i;
3851
3852 for (i = 0; i < nr_pages; i++) {
3853 struct page *page = pages[i];
3854 struct zone *pagezone;
3855
3856 pgscanned++;
3857 pagezone = page_zone(page);
3858 if (pagezone != zone) {
3859 if (zone)
3860 spin_unlock_irq(&zone->lru_lock);
3861 zone = pagezone;
3862 spin_lock_irq(&zone->lru_lock);
3863 }
3864 lruvec = mem_cgroup_page_lruvec(page, zone);
3865
3866 if (!PageLRU(page) || !PageUnevictable(page))
3867 continue;
3868
3869 if (page_evictable(page)) {
3870 enum lru_list lru = page_lru_base_type(page);
3871
3872 VM_BUG_ON_PAGE(PageActive(page), page);
3873 ClearPageUnevictable(page);
3874 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3875 add_page_to_lru_list(page, lruvec, lru);
3876 pgrescued++;
3877 }
3878 }
3879
3880 if (zone) {
3881 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3882 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3883 spin_unlock_irq(&zone->lru_lock);
3884 }
3885 }
3886 #endif /* CONFIG_SHMEM */
This page took 0.104749 seconds and 6 git commands to generate.