mm: vmscan: move logic from balance_pgdat() to kswapd_shrink_zone()
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129 * From 0 .. 100. Higher means more swappy.
130 */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec, lru);
153
154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158 * Add a shrinker callback to be called from the vm
159 */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 atomic_long_set(&shrinker->nr_in_batch, 0);
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170 * Remove one
171 */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183 {
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
205 *
206 * Returns the number of slab objects which we shrunk.
207 */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 unsigned long nr_pages_scanned,
210 unsigned long lru_pages)
211 {
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
214
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 int shrink_ret = 0;
229 long nr;
230 long new_nr;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
284 while (total_scan >= batch_size) {
285 int nr_before;
286
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 batch_size);
290 if (shrink_ret == -1)
291 break;
292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
296
297 cond_resched();
298 }
299
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 }
313 up_read(&shrinker_rwsem);
314 out:
315 cond_resched();
316 return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
326 return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
331 {
332 if (current->flags & PF_SWAPWRITE)
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339 }
340
341 /*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353 static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355 {
356 lock_page(page);
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
359 unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
377 */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 struct scan_control *sc)
380 {
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
404 if (page_has_private(page)) {
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
407 printk("%s: orphaned page\n", __func__);
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
432 if (res == AOP_WRITEPAGE_ACTIVATE) {
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
436
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447 }
448
449 /*
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
452 */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
457
458 spin_lock_irq(&mapping->tree_lock);
459 /*
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
483 */
484 if (!page_freeze_refs(page, 2))
485 goto cannot_free;
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
489 goto cannot_free;
490 }
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
495 spin_unlock_irq(&mapping->tree_lock);
496 swapcache_free(swap, page);
497 } else {
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
502 __delete_from_page_cache(page);
503 spin_unlock_irq(&mapping->tree_lock);
504 mem_cgroup_uncharge_cache_page(page);
505
506 if (freepage != NULL)
507 freepage(page);
508 }
509
510 return 1;
511
512 cannot_free:
513 spin_unlock_irq(&mapping->tree_lock);
514 return 0;
515 }
516
517 /*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535 }
536
537 /**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
546 void putback_lru_page(struct page *page)
547 {
548 int lru;
549 int active = !!TestClearPageActive(page);
550 int was_unevictable = PageUnevictable(page);
551
552 VM_BUG_ON(PageLRU(page));
553
554 redo:
555 ClearPageUnevictable(page);
556
557 if (page_evictable(page)) {
558 /*
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
563 */
564 lru = active + page_lru_base_type(page);
565 lru_cache_add_lru(page, lru);
566 } else {
567 /*
568 * Put unevictable pages directly on zone's unevictable
569 * list.
570 */
571 lru = LRU_UNEVICTABLE;
572 add_page_to_unevictable_list(page);
573 /*
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
577 * isolation/check_move_unevictable_pages,
578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 * the page back to the evictable list.
580 *
581 * The other side is TestClearPageMlocked() or shmem_lock().
582 */
583 smp_mb();
584 }
585
586 /*
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
590 */
591 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592 if (!isolate_lru_page(page)) {
593 put_page(page);
594 goto redo;
595 }
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
599 */
600 }
601
602 if (was_unevictable && lru != LRU_UNEVICTABLE)
603 count_vm_event(UNEVICTABLE_PGRESCUED);
604 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 count_vm_event(UNEVICTABLE_PGCULLED);
606
607 put_page(page); /* drop ref from isolate */
608 }
609
610 enum page_references {
611 PAGEREF_RECLAIM,
612 PAGEREF_RECLAIM_CLEAN,
613 PAGEREF_KEEP,
614 PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618 struct scan_control *sc)
619 {
620 int referenced_ptes, referenced_page;
621 unsigned long vm_flags;
622
623 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 &vm_flags);
625 referenced_page = TestClearPageReferenced(page);
626
627 /*
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
630 */
631 if (vm_flags & VM_LOCKED)
632 return PAGEREF_RECLAIM;
633
634 if (referenced_ptes) {
635 if (PageSwapBacked(page))
636 return PAGEREF_ACTIVATE;
637 /*
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
641 * than once.
642 *
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
646 *
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
649 * quickly recovered.
650 */
651 SetPageReferenced(page);
652
653 if (referenced_page || referenced_ptes > 1)
654 return PAGEREF_ACTIVATE;
655
656 /*
657 * Activate file-backed executable pages after first usage.
658 */
659 if (vm_flags & VM_EXEC)
660 return PAGEREF_ACTIVATE;
661
662 return PAGEREF_KEEP;
663 }
664
665 /* Reclaim if clean, defer dirty pages to writeback */
666 if (referenced_page && !PageSwapBacked(page))
667 return PAGEREF_RECLAIM_CLEAN;
668
669 return PAGEREF_RECLAIM;
670 }
671
672 /*
673 * shrink_page_list() returns the number of reclaimed pages
674 */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676 struct zone *zone,
677 struct scan_control *sc,
678 enum ttu_flags ttu_flags,
679 unsigned long *ret_nr_unqueued_dirty,
680 unsigned long *ret_nr_writeback,
681 bool force_reclaim)
682 {
683 LIST_HEAD(ret_pages);
684 LIST_HEAD(free_pages);
685 int pgactivate = 0;
686 unsigned long nr_unqueued_dirty = 0;
687 unsigned long nr_dirty = 0;
688 unsigned long nr_congested = 0;
689 unsigned long nr_reclaimed = 0;
690 unsigned long nr_writeback = 0;
691
692 cond_resched();
693
694 mem_cgroup_uncharge_start();
695 while (!list_empty(page_list)) {
696 struct address_space *mapping;
697 struct page *page;
698 int may_enter_fs;
699 enum page_references references = PAGEREF_RECLAIM_CLEAN;
700
701 cond_resched();
702
703 page = lru_to_page(page_list);
704 list_del(&page->lru);
705
706 if (!trylock_page(page))
707 goto keep;
708
709 VM_BUG_ON(PageActive(page));
710 VM_BUG_ON(page_zone(page) != zone);
711
712 sc->nr_scanned++;
713
714 if (unlikely(!page_evictable(page)))
715 goto cull_mlocked;
716
717 if (!sc->may_unmap && page_mapped(page))
718 goto keep_locked;
719
720 /* Double the slab pressure for mapped and swapcache pages */
721 if (page_mapped(page) || PageSwapCache(page))
722 sc->nr_scanned++;
723
724 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727 /*
728 * If a page at the tail of the LRU is under writeback, there
729 * are three cases to consider.
730 *
731 * 1) If reclaim is encountering an excessive number of pages
732 * under writeback and this page is both under writeback and
733 * PageReclaim then it indicates that pages are being queued
734 * for IO but are being recycled through the LRU before the
735 * IO can complete. Waiting on the page itself risks an
736 * indefinite stall if it is impossible to writeback the
737 * page due to IO error or disconnected storage so instead
738 * block for HZ/10 or until some IO completes then clear the
739 * ZONE_WRITEBACK flag to recheck if the condition exists.
740 *
741 * 2) Global reclaim encounters a page, memcg encounters a
742 * page that is not marked for immediate reclaim or
743 * the caller does not have __GFP_IO. In this case mark
744 * the page for immediate reclaim and continue scanning.
745 *
746 * __GFP_IO is checked because a loop driver thread might
747 * enter reclaim, and deadlock if it waits on a page for
748 * which it is needed to do the write (loop masks off
749 * __GFP_IO|__GFP_FS for this reason); but more thought
750 * would probably show more reasons.
751 *
752 * Don't require __GFP_FS, since we're not going into the
753 * FS, just waiting on its writeback completion. Worryingly,
754 * ext4 gfs2 and xfs allocate pages with
755 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
756 * may_enter_fs here is liable to OOM on them.
757 *
758 * 3) memcg encounters a page that is not already marked
759 * PageReclaim. memcg does not have any dirty pages
760 * throttling so we could easily OOM just because too many
761 * pages are in writeback and there is nothing else to
762 * reclaim. Wait for the writeback to complete.
763 */
764 if (PageWriteback(page)) {
765 /* Case 1 above */
766 if (current_is_kswapd() &&
767 PageReclaim(page) &&
768 zone_is_reclaim_writeback(zone)) {
769 unlock_page(page);
770 congestion_wait(BLK_RW_ASYNC, HZ/10);
771 zone_clear_flag(zone, ZONE_WRITEBACK);
772 goto keep;
773
774 /* Case 2 above */
775 } else if (global_reclaim(sc) ||
776 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
777 /*
778 * This is slightly racy - end_page_writeback()
779 * might have just cleared PageReclaim, then
780 * setting PageReclaim here end up interpreted
781 * as PageReadahead - but that does not matter
782 * enough to care. What we do want is for this
783 * page to have PageReclaim set next time memcg
784 * reclaim reaches the tests above, so it will
785 * then wait_on_page_writeback() to avoid OOM;
786 * and it's also appropriate in global reclaim.
787 */
788 SetPageReclaim(page);
789 nr_writeback++;
790
791 goto keep_locked;
792
793 /* Case 3 above */
794 } else {
795 wait_on_page_writeback(page);
796 }
797 }
798
799 if (!force_reclaim)
800 references = page_check_references(page, sc);
801
802 switch (references) {
803 case PAGEREF_ACTIVATE:
804 goto activate_locked;
805 case PAGEREF_KEEP:
806 goto keep_locked;
807 case PAGEREF_RECLAIM:
808 case PAGEREF_RECLAIM_CLEAN:
809 ; /* try to reclaim the page below */
810 }
811
812 /*
813 * Anonymous process memory has backing store?
814 * Try to allocate it some swap space here.
815 */
816 if (PageAnon(page) && !PageSwapCache(page)) {
817 if (!(sc->gfp_mask & __GFP_IO))
818 goto keep_locked;
819 if (!add_to_swap(page, page_list))
820 goto activate_locked;
821 may_enter_fs = 1;
822 }
823
824 mapping = page_mapping(page);
825
826 /*
827 * The page is mapped into the page tables of one or more
828 * processes. Try to unmap it here.
829 */
830 if (page_mapped(page) && mapping) {
831 switch (try_to_unmap(page, ttu_flags)) {
832 case SWAP_FAIL:
833 goto activate_locked;
834 case SWAP_AGAIN:
835 goto keep_locked;
836 case SWAP_MLOCK:
837 goto cull_mlocked;
838 case SWAP_SUCCESS:
839 ; /* try to free the page below */
840 }
841 }
842
843 if (PageDirty(page)) {
844 nr_dirty++;
845
846 if (!PageWriteback(page))
847 nr_unqueued_dirty++;
848
849 /*
850 * Only kswapd can writeback filesystem pages to
851 * avoid risk of stack overflow but only writeback
852 * if many dirty pages have been encountered.
853 */
854 if (page_is_file_cache(page) &&
855 (!current_is_kswapd() ||
856 !zone_is_reclaim_dirty(zone))) {
857 /*
858 * Immediately reclaim when written back.
859 * Similar in principal to deactivate_page()
860 * except we already have the page isolated
861 * and know it's dirty
862 */
863 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
864 SetPageReclaim(page);
865
866 goto keep_locked;
867 }
868
869 if (references == PAGEREF_RECLAIM_CLEAN)
870 goto keep_locked;
871 if (!may_enter_fs)
872 goto keep_locked;
873 if (!sc->may_writepage)
874 goto keep_locked;
875
876 /* Page is dirty, try to write it out here */
877 switch (pageout(page, mapping, sc)) {
878 case PAGE_KEEP:
879 nr_congested++;
880 goto keep_locked;
881 case PAGE_ACTIVATE:
882 goto activate_locked;
883 case PAGE_SUCCESS:
884 if (PageWriteback(page))
885 goto keep;
886 if (PageDirty(page))
887 goto keep;
888
889 /*
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
892 */
893 if (!trylock_page(page))
894 goto keep;
895 if (PageDirty(page) || PageWriteback(page))
896 goto keep_locked;
897 mapping = page_mapping(page);
898 case PAGE_CLEAN:
899 ; /* try to free the page below */
900 }
901 }
902
903 /*
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
906 * the page as well.
907 *
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
913 * will do this, as well as the blockdev mapping.
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
916 *
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
923 */
924 if (page_has_private(page)) {
925 if (!try_to_release_page(page, sc->gfp_mask))
926 goto activate_locked;
927 if (!mapping && page_count(page) == 1) {
928 unlock_page(page);
929 if (put_page_testzero(page))
930 goto free_it;
931 else {
932 /*
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
938 */
939 nr_reclaimed++;
940 continue;
941 }
942 }
943 }
944
945 if (!mapping || !__remove_mapping(mapping, page))
946 goto keep_locked;
947
948 /*
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
954 */
955 __clear_page_locked(page);
956 free_it:
957 nr_reclaimed++;
958
959 /*
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
962 */
963 list_add(&page->lru, &free_pages);
964 continue;
965
966 cull_mlocked:
967 if (PageSwapCache(page))
968 try_to_free_swap(page);
969 unlock_page(page);
970 putback_lru_page(page);
971 continue;
972
973 activate_locked:
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page) && vm_swap_full())
976 try_to_free_swap(page);
977 VM_BUG_ON(PageActive(page));
978 SetPageActive(page);
979 pgactivate++;
980 keep_locked:
981 unlock_page(page);
982 keep:
983 list_add(&page->lru, &ret_pages);
984 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
985 }
986
987 /*
988 * Tag a zone as congested if all the dirty pages encountered were
989 * backed by a congested BDI. In this case, reclaimers should just
990 * back off and wait for congestion to clear because further reclaim
991 * will encounter the same problem
992 */
993 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
994 zone_set_flag(zone, ZONE_CONGESTED);
995
996 free_hot_cold_page_list(&free_pages, 1);
997
998 list_splice(&ret_pages, page_list);
999 count_vm_events(PGACTIVATE, pgactivate);
1000 mem_cgroup_uncharge_end();
1001 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1002 *ret_nr_writeback += nr_writeback;
1003 return nr_reclaimed;
1004 }
1005
1006 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1007 struct list_head *page_list)
1008 {
1009 struct scan_control sc = {
1010 .gfp_mask = GFP_KERNEL,
1011 .priority = DEF_PRIORITY,
1012 .may_unmap = 1,
1013 };
1014 unsigned long ret, dummy1, dummy2;
1015 struct page *page, *next;
1016 LIST_HEAD(clean_pages);
1017
1018 list_for_each_entry_safe(page, next, page_list, lru) {
1019 if (page_is_file_cache(page) && !PageDirty(page)) {
1020 ClearPageActive(page);
1021 list_move(&page->lru, &clean_pages);
1022 }
1023 }
1024
1025 ret = shrink_page_list(&clean_pages, zone, &sc,
1026 TTU_UNMAP|TTU_IGNORE_ACCESS,
1027 &dummy1, &dummy2, true);
1028 list_splice(&clean_pages, page_list);
1029 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1030 return ret;
1031 }
1032
1033 /*
1034 * Attempt to remove the specified page from its LRU. Only take this page
1035 * if it is of the appropriate PageActive status. Pages which are being
1036 * freed elsewhere are also ignored.
1037 *
1038 * page: page to consider
1039 * mode: one of the LRU isolation modes defined above
1040 *
1041 * returns 0 on success, -ve errno on failure.
1042 */
1043 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1044 {
1045 int ret = -EINVAL;
1046
1047 /* Only take pages on the LRU. */
1048 if (!PageLRU(page))
1049 return ret;
1050
1051 /* Compaction should not handle unevictable pages but CMA can do so */
1052 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1053 return ret;
1054
1055 ret = -EBUSY;
1056
1057 /*
1058 * To minimise LRU disruption, the caller can indicate that it only
1059 * wants to isolate pages it will be able to operate on without
1060 * blocking - clean pages for the most part.
1061 *
1062 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1063 * is used by reclaim when it is cannot write to backing storage
1064 *
1065 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1066 * that it is possible to migrate without blocking
1067 */
1068 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1069 /* All the caller can do on PageWriteback is block */
1070 if (PageWriteback(page))
1071 return ret;
1072
1073 if (PageDirty(page)) {
1074 struct address_space *mapping;
1075
1076 /* ISOLATE_CLEAN means only clean pages */
1077 if (mode & ISOLATE_CLEAN)
1078 return ret;
1079
1080 /*
1081 * Only pages without mappings or that have a
1082 * ->migratepage callback are possible to migrate
1083 * without blocking
1084 */
1085 mapping = page_mapping(page);
1086 if (mapping && !mapping->a_ops->migratepage)
1087 return ret;
1088 }
1089 }
1090
1091 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1092 return ret;
1093
1094 if (likely(get_page_unless_zero(page))) {
1095 /*
1096 * Be careful not to clear PageLRU until after we're
1097 * sure the page is not being freed elsewhere -- the
1098 * page release code relies on it.
1099 */
1100 ClearPageLRU(page);
1101 ret = 0;
1102 }
1103
1104 return ret;
1105 }
1106
1107 /*
1108 * zone->lru_lock is heavily contended. Some of the functions that
1109 * shrink the lists perform better by taking out a batch of pages
1110 * and working on them outside the LRU lock.
1111 *
1112 * For pagecache intensive workloads, this function is the hottest
1113 * spot in the kernel (apart from copy_*_user functions).
1114 *
1115 * Appropriate locks must be held before calling this function.
1116 *
1117 * @nr_to_scan: The number of pages to look through on the list.
1118 * @lruvec: The LRU vector to pull pages from.
1119 * @dst: The temp list to put pages on to.
1120 * @nr_scanned: The number of pages that were scanned.
1121 * @sc: The scan_control struct for this reclaim session
1122 * @mode: One of the LRU isolation modes
1123 * @lru: LRU list id for isolating
1124 *
1125 * returns how many pages were moved onto *@dst.
1126 */
1127 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1128 struct lruvec *lruvec, struct list_head *dst,
1129 unsigned long *nr_scanned, struct scan_control *sc,
1130 isolate_mode_t mode, enum lru_list lru)
1131 {
1132 struct list_head *src = &lruvec->lists[lru];
1133 unsigned long nr_taken = 0;
1134 unsigned long scan;
1135
1136 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1137 struct page *page;
1138 int nr_pages;
1139
1140 page = lru_to_page(src);
1141 prefetchw_prev_lru_page(page, src, flags);
1142
1143 VM_BUG_ON(!PageLRU(page));
1144
1145 switch (__isolate_lru_page(page, mode)) {
1146 case 0:
1147 nr_pages = hpage_nr_pages(page);
1148 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1149 list_move(&page->lru, dst);
1150 nr_taken += nr_pages;
1151 break;
1152
1153 case -EBUSY:
1154 /* else it is being freed elsewhere */
1155 list_move(&page->lru, src);
1156 continue;
1157
1158 default:
1159 BUG();
1160 }
1161 }
1162
1163 *nr_scanned = scan;
1164 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1165 nr_taken, mode, is_file_lru(lru));
1166 return nr_taken;
1167 }
1168
1169 /**
1170 * isolate_lru_page - tries to isolate a page from its LRU list
1171 * @page: page to isolate from its LRU list
1172 *
1173 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1174 * vmstat statistic corresponding to whatever LRU list the page was on.
1175 *
1176 * Returns 0 if the page was removed from an LRU list.
1177 * Returns -EBUSY if the page was not on an LRU list.
1178 *
1179 * The returned page will have PageLRU() cleared. If it was found on
1180 * the active list, it will have PageActive set. If it was found on
1181 * the unevictable list, it will have the PageUnevictable bit set. That flag
1182 * may need to be cleared by the caller before letting the page go.
1183 *
1184 * The vmstat statistic corresponding to the list on which the page was
1185 * found will be decremented.
1186 *
1187 * Restrictions:
1188 * (1) Must be called with an elevated refcount on the page. This is a
1189 * fundamentnal difference from isolate_lru_pages (which is called
1190 * without a stable reference).
1191 * (2) the lru_lock must not be held.
1192 * (3) interrupts must be enabled.
1193 */
1194 int isolate_lru_page(struct page *page)
1195 {
1196 int ret = -EBUSY;
1197
1198 VM_BUG_ON(!page_count(page));
1199
1200 if (PageLRU(page)) {
1201 struct zone *zone = page_zone(page);
1202 struct lruvec *lruvec;
1203
1204 spin_lock_irq(&zone->lru_lock);
1205 lruvec = mem_cgroup_page_lruvec(page, zone);
1206 if (PageLRU(page)) {
1207 int lru = page_lru(page);
1208 get_page(page);
1209 ClearPageLRU(page);
1210 del_page_from_lru_list(page, lruvec, lru);
1211 ret = 0;
1212 }
1213 spin_unlock_irq(&zone->lru_lock);
1214 }
1215 return ret;
1216 }
1217
1218 /*
1219 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1220 * then get resheduled. When there are massive number of tasks doing page
1221 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1222 * the LRU list will go small and be scanned faster than necessary, leading to
1223 * unnecessary swapping, thrashing and OOM.
1224 */
1225 static int too_many_isolated(struct zone *zone, int file,
1226 struct scan_control *sc)
1227 {
1228 unsigned long inactive, isolated;
1229
1230 if (current_is_kswapd())
1231 return 0;
1232
1233 if (!global_reclaim(sc))
1234 return 0;
1235
1236 if (file) {
1237 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1238 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1239 } else {
1240 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1241 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1242 }
1243
1244 /*
1245 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1246 * won't get blocked by normal direct-reclaimers, forming a circular
1247 * deadlock.
1248 */
1249 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1250 inactive >>= 3;
1251
1252 return isolated > inactive;
1253 }
1254
1255 static noinline_for_stack void
1256 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1257 {
1258 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1259 struct zone *zone = lruvec_zone(lruvec);
1260 LIST_HEAD(pages_to_free);
1261
1262 /*
1263 * Put back any unfreeable pages.
1264 */
1265 while (!list_empty(page_list)) {
1266 struct page *page = lru_to_page(page_list);
1267 int lru;
1268
1269 VM_BUG_ON(PageLRU(page));
1270 list_del(&page->lru);
1271 if (unlikely(!page_evictable(page))) {
1272 spin_unlock_irq(&zone->lru_lock);
1273 putback_lru_page(page);
1274 spin_lock_irq(&zone->lru_lock);
1275 continue;
1276 }
1277
1278 lruvec = mem_cgroup_page_lruvec(page, zone);
1279
1280 SetPageLRU(page);
1281 lru = page_lru(page);
1282 add_page_to_lru_list(page, lruvec, lru);
1283
1284 if (is_active_lru(lru)) {
1285 int file = is_file_lru(lru);
1286 int numpages = hpage_nr_pages(page);
1287 reclaim_stat->recent_rotated[file] += numpages;
1288 }
1289 if (put_page_testzero(page)) {
1290 __ClearPageLRU(page);
1291 __ClearPageActive(page);
1292 del_page_from_lru_list(page, lruvec, lru);
1293
1294 if (unlikely(PageCompound(page))) {
1295 spin_unlock_irq(&zone->lru_lock);
1296 (*get_compound_page_dtor(page))(page);
1297 spin_lock_irq(&zone->lru_lock);
1298 } else
1299 list_add(&page->lru, &pages_to_free);
1300 }
1301 }
1302
1303 /*
1304 * To save our caller's stack, now use input list for pages to free.
1305 */
1306 list_splice(&pages_to_free, page_list);
1307 }
1308
1309 /*
1310 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1311 * of reclaimed pages
1312 */
1313 static noinline_for_stack unsigned long
1314 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1315 struct scan_control *sc, enum lru_list lru)
1316 {
1317 LIST_HEAD(page_list);
1318 unsigned long nr_scanned;
1319 unsigned long nr_reclaimed = 0;
1320 unsigned long nr_taken;
1321 unsigned long nr_dirty = 0;
1322 unsigned long nr_writeback = 0;
1323 isolate_mode_t isolate_mode = 0;
1324 int file = is_file_lru(lru);
1325 struct zone *zone = lruvec_zone(lruvec);
1326 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1327
1328 while (unlikely(too_many_isolated(zone, file, sc))) {
1329 congestion_wait(BLK_RW_ASYNC, HZ/10);
1330
1331 /* We are about to die and free our memory. Return now. */
1332 if (fatal_signal_pending(current))
1333 return SWAP_CLUSTER_MAX;
1334 }
1335
1336 lru_add_drain();
1337
1338 if (!sc->may_unmap)
1339 isolate_mode |= ISOLATE_UNMAPPED;
1340 if (!sc->may_writepage)
1341 isolate_mode |= ISOLATE_CLEAN;
1342
1343 spin_lock_irq(&zone->lru_lock);
1344
1345 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1346 &nr_scanned, sc, isolate_mode, lru);
1347
1348 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1349 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1350
1351 if (global_reclaim(sc)) {
1352 zone->pages_scanned += nr_scanned;
1353 if (current_is_kswapd())
1354 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1355 else
1356 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1357 }
1358 spin_unlock_irq(&zone->lru_lock);
1359
1360 if (nr_taken == 0)
1361 return 0;
1362
1363 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1364 &nr_dirty, &nr_writeback, false);
1365
1366 spin_lock_irq(&zone->lru_lock);
1367
1368 reclaim_stat->recent_scanned[file] += nr_taken;
1369
1370 if (global_reclaim(sc)) {
1371 if (current_is_kswapd())
1372 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1373 nr_reclaimed);
1374 else
1375 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1376 nr_reclaimed);
1377 }
1378
1379 putback_inactive_pages(lruvec, &page_list);
1380
1381 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1382
1383 spin_unlock_irq(&zone->lru_lock);
1384
1385 free_hot_cold_page_list(&page_list, 1);
1386
1387 /*
1388 * If reclaim is isolating dirty pages under writeback, it implies
1389 * that the long-lived page allocation rate is exceeding the page
1390 * laundering rate. Either the global limits are not being effective
1391 * at throttling processes due to the page distribution throughout
1392 * zones or there is heavy usage of a slow backing device. The
1393 * only option is to throttle from reclaim context which is not ideal
1394 * as there is no guarantee the dirtying process is throttled in the
1395 * same way balance_dirty_pages() manages.
1396 *
1397 * This scales the number of dirty pages that must be under writeback
1398 * before throttling depending on priority. It is a simple backoff
1399 * function that has the most effect in the range DEF_PRIORITY to
1400 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1401 * in trouble and reclaim is considered to be in trouble.
1402 *
1403 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1404 * DEF_PRIORITY-1 50% must be PageWriteback
1405 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1406 * ...
1407 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1408 * isolated page is PageWriteback
1409 */
1410 if (nr_writeback && nr_writeback >=
1411 (nr_taken >> (DEF_PRIORITY - sc->priority))) {
1412 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1413 zone_set_flag(zone, ZONE_WRITEBACK);
1414 }
1415
1416 /*
1417 * Similarly, if many dirty pages are encountered that are not
1418 * currently being written then flag that kswapd should start
1419 * writing back pages.
1420 */
1421 if (global_reclaim(sc) && nr_dirty &&
1422 nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
1423 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1424
1425 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1426 zone_idx(zone),
1427 nr_scanned, nr_reclaimed,
1428 sc->priority,
1429 trace_shrink_flags(file));
1430 return nr_reclaimed;
1431 }
1432
1433 /*
1434 * This moves pages from the active list to the inactive list.
1435 *
1436 * We move them the other way if the page is referenced by one or more
1437 * processes, from rmap.
1438 *
1439 * If the pages are mostly unmapped, the processing is fast and it is
1440 * appropriate to hold zone->lru_lock across the whole operation. But if
1441 * the pages are mapped, the processing is slow (page_referenced()) so we
1442 * should drop zone->lru_lock around each page. It's impossible to balance
1443 * this, so instead we remove the pages from the LRU while processing them.
1444 * It is safe to rely on PG_active against the non-LRU pages in here because
1445 * nobody will play with that bit on a non-LRU page.
1446 *
1447 * The downside is that we have to touch page->_count against each page.
1448 * But we had to alter page->flags anyway.
1449 */
1450
1451 static void move_active_pages_to_lru(struct lruvec *lruvec,
1452 struct list_head *list,
1453 struct list_head *pages_to_free,
1454 enum lru_list lru)
1455 {
1456 struct zone *zone = lruvec_zone(lruvec);
1457 unsigned long pgmoved = 0;
1458 struct page *page;
1459 int nr_pages;
1460
1461 while (!list_empty(list)) {
1462 page = lru_to_page(list);
1463 lruvec = mem_cgroup_page_lruvec(page, zone);
1464
1465 VM_BUG_ON(PageLRU(page));
1466 SetPageLRU(page);
1467
1468 nr_pages = hpage_nr_pages(page);
1469 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1470 list_move(&page->lru, &lruvec->lists[lru]);
1471 pgmoved += nr_pages;
1472
1473 if (put_page_testzero(page)) {
1474 __ClearPageLRU(page);
1475 __ClearPageActive(page);
1476 del_page_from_lru_list(page, lruvec, lru);
1477
1478 if (unlikely(PageCompound(page))) {
1479 spin_unlock_irq(&zone->lru_lock);
1480 (*get_compound_page_dtor(page))(page);
1481 spin_lock_irq(&zone->lru_lock);
1482 } else
1483 list_add(&page->lru, pages_to_free);
1484 }
1485 }
1486 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1487 if (!is_active_lru(lru))
1488 __count_vm_events(PGDEACTIVATE, pgmoved);
1489 }
1490
1491 static void shrink_active_list(unsigned long nr_to_scan,
1492 struct lruvec *lruvec,
1493 struct scan_control *sc,
1494 enum lru_list lru)
1495 {
1496 unsigned long nr_taken;
1497 unsigned long nr_scanned;
1498 unsigned long vm_flags;
1499 LIST_HEAD(l_hold); /* The pages which were snipped off */
1500 LIST_HEAD(l_active);
1501 LIST_HEAD(l_inactive);
1502 struct page *page;
1503 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1504 unsigned long nr_rotated = 0;
1505 isolate_mode_t isolate_mode = 0;
1506 int file = is_file_lru(lru);
1507 struct zone *zone = lruvec_zone(lruvec);
1508
1509 lru_add_drain();
1510
1511 if (!sc->may_unmap)
1512 isolate_mode |= ISOLATE_UNMAPPED;
1513 if (!sc->may_writepage)
1514 isolate_mode |= ISOLATE_CLEAN;
1515
1516 spin_lock_irq(&zone->lru_lock);
1517
1518 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1519 &nr_scanned, sc, isolate_mode, lru);
1520 if (global_reclaim(sc))
1521 zone->pages_scanned += nr_scanned;
1522
1523 reclaim_stat->recent_scanned[file] += nr_taken;
1524
1525 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1526 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1527 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1528 spin_unlock_irq(&zone->lru_lock);
1529
1530 while (!list_empty(&l_hold)) {
1531 cond_resched();
1532 page = lru_to_page(&l_hold);
1533 list_del(&page->lru);
1534
1535 if (unlikely(!page_evictable(page))) {
1536 putback_lru_page(page);
1537 continue;
1538 }
1539
1540 if (unlikely(buffer_heads_over_limit)) {
1541 if (page_has_private(page) && trylock_page(page)) {
1542 if (page_has_private(page))
1543 try_to_release_page(page, 0);
1544 unlock_page(page);
1545 }
1546 }
1547
1548 if (page_referenced(page, 0, sc->target_mem_cgroup,
1549 &vm_flags)) {
1550 nr_rotated += hpage_nr_pages(page);
1551 /*
1552 * Identify referenced, file-backed active pages and
1553 * give them one more trip around the active list. So
1554 * that executable code get better chances to stay in
1555 * memory under moderate memory pressure. Anon pages
1556 * are not likely to be evicted by use-once streaming
1557 * IO, plus JVM can create lots of anon VM_EXEC pages,
1558 * so we ignore them here.
1559 */
1560 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1561 list_add(&page->lru, &l_active);
1562 continue;
1563 }
1564 }
1565
1566 ClearPageActive(page); /* we are de-activating */
1567 list_add(&page->lru, &l_inactive);
1568 }
1569
1570 /*
1571 * Move pages back to the lru list.
1572 */
1573 spin_lock_irq(&zone->lru_lock);
1574 /*
1575 * Count referenced pages from currently used mappings as rotated,
1576 * even though only some of them are actually re-activated. This
1577 * helps balance scan pressure between file and anonymous pages in
1578 * get_scan_ratio.
1579 */
1580 reclaim_stat->recent_rotated[file] += nr_rotated;
1581
1582 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1583 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1584 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1585 spin_unlock_irq(&zone->lru_lock);
1586
1587 free_hot_cold_page_list(&l_hold, 1);
1588 }
1589
1590 #ifdef CONFIG_SWAP
1591 static int inactive_anon_is_low_global(struct zone *zone)
1592 {
1593 unsigned long active, inactive;
1594
1595 active = zone_page_state(zone, NR_ACTIVE_ANON);
1596 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1597
1598 if (inactive * zone->inactive_ratio < active)
1599 return 1;
1600
1601 return 0;
1602 }
1603
1604 /**
1605 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1606 * @lruvec: LRU vector to check
1607 *
1608 * Returns true if the zone does not have enough inactive anon pages,
1609 * meaning some active anon pages need to be deactivated.
1610 */
1611 static int inactive_anon_is_low(struct lruvec *lruvec)
1612 {
1613 /*
1614 * If we don't have swap space, anonymous page deactivation
1615 * is pointless.
1616 */
1617 if (!total_swap_pages)
1618 return 0;
1619
1620 if (!mem_cgroup_disabled())
1621 return mem_cgroup_inactive_anon_is_low(lruvec);
1622
1623 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1624 }
1625 #else
1626 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1627 {
1628 return 0;
1629 }
1630 #endif
1631
1632 /**
1633 * inactive_file_is_low - check if file pages need to be deactivated
1634 * @lruvec: LRU vector to check
1635 *
1636 * When the system is doing streaming IO, memory pressure here
1637 * ensures that active file pages get deactivated, until more
1638 * than half of the file pages are on the inactive list.
1639 *
1640 * Once we get to that situation, protect the system's working
1641 * set from being evicted by disabling active file page aging.
1642 *
1643 * This uses a different ratio than the anonymous pages, because
1644 * the page cache uses a use-once replacement algorithm.
1645 */
1646 static int inactive_file_is_low(struct lruvec *lruvec)
1647 {
1648 unsigned long inactive;
1649 unsigned long active;
1650
1651 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1652 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1653
1654 return active > inactive;
1655 }
1656
1657 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1658 {
1659 if (is_file_lru(lru))
1660 return inactive_file_is_low(lruvec);
1661 else
1662 return inactive_anon_is_low(lruvec);
1663 }
1664
1665 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1666 struct lruvec *lruvec, struct scan_control *sc)
1667 {
1668 if (is_active_lru(lru)) {
1669 if (inactive_list_is_low(lruvec, lru))
1670 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1671 return 0;
1672 }
1673
1674 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1675 }
1676
1677 static int vmscan_swappiness(struct scan_control *sc)
1678 {
1679 if (global_reclaim(sc))
1680 return vm_swappiness;
1681 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1682 }
1683
1684 enum scan_balance {
1685 SCAN_EQUAL,
1686 SCAN_FRACT,
1687 SCAN_ANON,
1688 SCAN_FILE,
1689 };
1690
1691 /*
1692 * Determine how aggressively the anon and file LRU lists should be
1693 * scanned. The relative value of each set of LRU lists is determined
1694 * by looking at the fraction of the pages scanned we did rotate back
1695 * onto the active list instead of evict.
1696 *
1697 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1698 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1699 */
1700 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1701 unsigned long *nr)
1702 {
1703 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1704 u64 fraction[2];
1705 u64 denominator = 0; /* gcc */
1706 struct zone *zone = lruvec_zone(lruvec);
1707 unsigned long anon_prio, file_prio;
1708 enum scan_balance scan_balance;
1709 unsigned long anon, file, free;
1710 bool force_scan = false;
1711 unsigned long ap, fp;
1712 enum lru_list lru;
1713
1714 /*
1715 * If the zone or memcg is small, nr[l] can be 0. This
1716 * results in no scanning on this priority and a potential
1717 * priority drop. Global direct reclaim can go to the next
1718 * zone and tends to have no problems. Global kswapd is for
1719 * zone balancing and it needs to scan a minimum amount. When
1720 * reclaiming for a memcg, a priority drop can cause high
1721 * latencies, so it's better to scan a minimum amount there as
1722 * well.
1723 */
1724 if (current_is_kswapd() && zone->all_unreclaimable)
1725 force_scan = true;
1726 if (!global_reclaim(sc))
1727 force_scan = true;
1728
1729 /* If we have no swap space, do not bother scanning anon pages. */
1730 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1731 scan_balance = SCAN_FILE;
1732 goto out;
1733 }
1734
1735 /*
1736 * Global reclaim will swap to prevent OOM even with no
1737 * swappiness, but memcg users want to use this knob to
1738 * disable swapping for individual groups completely when
1739 * using the memory controller's swap limit feature would be
1740 * too expensive.
1741 */
1742 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1743 scan_balance = SCAN_FILE;
1744 goto out;
1745 }
1746
1747 /*
1748 * Do not apply any pressure balancing cleverness when the
1749 * system is close to OOM, scan both anon and file equally
1750 * (unless the swappiness setting disagrees with swapping).
1751 */
1752 if (!sc->priority && vmscan_swappiness(sc)) {
1753 scan_balance = SCAN_EQUAL;
1754 goto out;
1755 }
1756
1757 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1758 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1759 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1760 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1761
1762 /*
1763 * If it's foreseeable that reclaiming the file cache won't be
1764 * enough to get the zone back into a desirable shape, we have
1765 * to swap. Better start now and leave the - probably heavily
1766 * thrashing - remaining file pages alone.
1767 */
1768 if (global_reclaim(sc)) {
1769 free = zone_page_state(zone, NR_FREE_PAGES);
1770 if (unlikely(file + free <= high_wmark_pages(zone))) {
1771 scan_balance = SCAN_ANON;
1772 goto out;
1773 }
1774 }
1775
1776 /*
1777 * There is enough inactive page cache, do not reclaim
1778 * anything from the anonymous working set right now.
1779 */
1780 if (!inactive_file_is_low(lruvec)) {
1781 scan_balance = SCAN_FILE;
1782 goto out;
1783 }
1784
1785 scan_balance = SCAN_FRACT;
1786
1787 /*
1788 * With swappiness at 100, anonymous and file have the same priority.
1789 * This scanning priority is essentially the inverse of IO cost.
1790 */
1791 anon_prio = vmscan_swappiness(sc);
1792 file_prio = 200 - anon_prio;
1793
1794 /*
1795 * OK, so we have swap space and a fair amount of page cache
1796 * pages. We use the recently rotated / recently scanned
1797 * ratios to determine how valuable each cache is.
1798 *
1799 * Because workloads change over time (and to avoid overflow)
1800 * we keep these statistics as a floating average, which ends
1801 * up weighing recent references more than old ones.
1802 *
1803 * anon in [0], file in [1]
1804 */
1805 spin_lock_irq(&zone->lru_lock);
1806 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1807 reclaim_stat->recent_scanned[0] /= 2;
1808 reclaim_stat->recent_rotated[0] /= 2;
1809 }
1810
1811 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1812 reclaim_stat->recent_scanned[1] /= 2;
1813 reclaim_stat->recent_rotated[1] /= 2;
1814 }
1815
1816 /*
1817 * The amount of pressure on anon vs file pages is inversely
1818 * proportional to the fraction of recently scanned pages on
1819 * each list that were recently referenced and in active use.
1820 */
1821 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1822 ap /= reclaim_stat->recent_rotated[0] + 1;
1823
1824 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1825 fp /= reclaim_stat->recent_rotated[1] + 1;
1826 spin_unlock_irq(&zone->lru_lock);
1827
1828 fraction[0] = ap;
1829 fraction[1] = fp;
1830 denominator = ap + fp + 1;
1831 out:
1832 for_each_evictable_lru(lru) {
1833 int file = is_file_lru(lru);
1834 unsigned long size;
1835 unsigned long scan;
1836
1837 size = get_lru_size(lruvec, lru);
1838 scan = size >> sc->priority;
1839
1840 if (!scan && force_scan)
1841 scan = min(size, SWAP_CLUSTER_MAX);
1842
1843 switch (scan_balance) {
1844 case SCAN_EQUAL:
1845 /* Scan lists relative to size */
1846 break;
1847 case SCAN_FRACT:
1848 /*
1849 * Scan types proportional to swappiness and
1850 * their relative recent reclaim efficiency.
1851 */
1852 scan = div64_u64(scan * fraction[file], denominator);
1853 break;
1854 case SCAN_FILE:
1855 case SCAN_ANON:
1856 /* Scan one type exclusively */
1857 if ((scan_balance == SCAN_FILE) != file)
1858 scan = 0;
1859 break;
1860 default:
1861 /* Look ma, no brain */
1862 BUG();
1863 }
1864 nr[lru] = scan;
1865 }
1866 }
1867
1868 /*
1869 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1870 */
1871 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1872 {
1873 unsigned long nr[NR_LRU_LISTS];
1874 unsigned long targets[NR_LRU_LISTS];
1875 unsigned long nr_to_scan;
1876 enum lru_list lru;
1877 unsigned long nr_reclaimed = 0;
1878 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1879 struct blk_plug plug;
1880 bool scan_adjusted = false;
1881
1882 get_scan_count(lruvec, sc, nr);
1883
1884 /* Record the original scan target for proportional adjustments later */
1885 memcpy(targets, nr, sizeof(nr));
1886
1887 blk_start_plug(&plug);
1888 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1889 nr[LRU_INACTIVE_FILE]) {
1890 unsigned long nr_anon, nr_file, percentage;
1891 unsigned long nr_scanned;
1892
1893 for_each_evictable_lru(lru) {
1894 if (nr[lru]) {
1895 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1896 nr[lru] -= nr_to_scan;
1897
1898 nr_reclaimed += shrink_list(lru, nr_to_scan,
1899 lruvec, sc);
1900 }
1901 }
1902
1903 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1904 continue;
1905
1906 /*
1907 * For global direct reclaim, reclaim only the number of pages
1908 * requested. Less care is taken to scan proportionally as it
1909 * is more important to minimise direct reclaim stall latency
1910 * than it is to properly age the LRU lists.
1911 */
1912 if (global_reclaim(sc) && !current_is_kswapd())
1913 break;
1914
1915 /*
1916 * For kswapd and memcg, reclaim at least the number of pages
1917 * requested. Ensure that the anon and file LRUs shrink
1918 * proportionally what was requested by get_scan_count(). We
1919 * stop reclaiming one LRU and reduce the amount scanning
1920 * proportional to the original scan target.
1921 */
1922 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1923 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1924
1925 if (nr_file > nr_anon) {
1926 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1927 targets[LRU_ACTIVE_ANON] + 1;
1928 lru = LRU_BASE;
1929 percentage = nr_anon * 100 / scan_target;
1930 } else {
1931 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1932 targets[LRU_ACTIVE_FILE] + 1;
1933 lru = LRU_FILE;
1934 percentage = nr_file * 100 / scan_target;
1935 }
1936
1937 /* Stop scanning the smaller of the LRU */
1938 nr[lru] = 0;
1939 nr[lru + LRU_ACTIVE] = 0;
1940
1941 /*
1942 * Recalculate the other LRU scan count based on its original
1943 * scan target and the percentage scanning already complete
1944 */
1945 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1946 nr_scanned = targets[lru] - nr[lru];
1947 nr[lru] = targets[lru] * (100 - percentage) / 100;
1948 nr[lru] -= min(nr[lru], nr_scanned);
1949
1950 lru += LRU_ACTIVE;
1951 nr_scanned = targets[lru] - nr[lru];
1952 nr[lru] = targets[lru] * (100 - percentage) / 100;
1953 nr[lru] -= min(nr[lru], nr_scanned);
1954
1955 scan_adjusted = true;
1956 }
1957 blk_finish_plug(&plug);
1958 sc->nr_reclaimed += nr_reclaimed;
1959
1960 /*
1961 * Even if we did not try to evict anon pages at all, we want to
1962 * rebalance the anon lru active/inactive ratio.
1963 */
1964 if (inactive_anon_is_low(lruvec))
1965 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1966 sc, LRU_ACTIVE_ANON);
1967
1968 throttle_vm_writeout(sc->gfp_mask);
1969 }
1970
1971 /* Use reclaim/compaction for costly allocs or under memory pressure */
1972 static bool in_reclaim_compaction(struct scan_control *sc)
1973 {
1974 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1975 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1976 sc->priority < DEF_PRIORITY - 2))
1977 return true;
1978
1979 return false;
1980 }
1981
1982 /*
1983 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1984 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1985 * true if more pages should be reclaimed such that when the page allocator
1986 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1987 * It will give up earlier than that if there is difficulty reclaiming pages.
1988 */
1989 static inline bool should_continue_reclaim(struct zone *zone,
1990 unsigned long nr_reclaimed,
1991 unsigned long nr_scanned,
1992 struct scan_control *sc)
1993 {
1994 unsigned long pages_for_compaction;
1995 unsigned long inactive_lru_pages;
1996
1997 /* If not in reclaim/compaction mode, stop */
1998 if (!in_reclaim_compaction(sc))
1999 return false;
2000
2001 /* Consider stopping depending on scan and reclaim activity */
2002 if (sc->gfp_mask & __GFP_REPEAT) {
2003 /*
2004 * For __GFP_REPEAT allocations, stop reclaiming if the
2005 * full LRU list has been scanned and we are still failing
2006 * to reclaim pages. This full LRU scan is potentially
2007 * expensive but a __GFP_REPEAT caller really wants to succeed
2008 */
2009 if (!nr_reclaimed && !nr_scanned)
2010 return false;
2011 } else {
2012 /*
2013 * For non-__GFP_REPEAT allocations which can presumably
2014 * fail without consequence, stop if we failed to reclaim
2015 * any pages from the last SWAP_CLUSTER_MAX number of
2016 * pages that were scanned. This will return to the
2017 * caller faster at the risk reclaim/compaction and
2018 * the resulting allocation attempt fails
2019 */
2020 if (!nr_reclaimed)
2021 return false;
2022 }
2023
2024 /*
2025 * If we have not reclaimed enough pages for compaction and the
2026 * inactive lists are large enough, continue reclaiming
2027 */
2028 pages_for_compaction = (2UL << sc->order);
2029 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2030 if (get_nr_swap_pages() > 0)
2031 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2032 if (sc->nr_reclaimed < pages_for_compaction &&
2033 inactive_lru_pages > pages_for_compaction)
2034 return true;
2035
2036 /* If compaction would go ahead or the allocation would succeed, stop */
2037 switch (compaction_suitable(zone, sc->order)) {
2038 case COMPACT_PARTIAL:
2039 case COMPACT_CONTINUE:
2040 return false;
2041 default:
2042 return true;
2043 }
2044 }
2045
2046 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2047 {
2048 unsigned long nr_reclaimed, nr_scanned;
2049
2050 do {
2051 struct mem_cgroup *root = sc->target_mem_cgroup;
2052 struct mem_cgroup_reclaim_cookie reclaim = {
2053 .zone = zone,
2054 .priority = sc->priority,
2055 };
2056 struct mem_cgroup *memcg;
2057
2058 nr_reclaimed = sc->nr_reclaimed;
2059 nr_scanned = sc->nr_scanned;
2060
2061 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2062 do {
2063 struct lruvec *lruvec;
2064
2065 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2066
2067 shrink_lruvec(lruvec, sc);
2068
2069 /*
2070 * Direct reclaim and kswapd have to scan all memory
2071 * cgroups to fulfill the overall scan target for the
2072 * zone.
2073 *
2074 * Limit reclaim, on the other hand, only cares about
2075 * nr_to_reclaim pages to be reclaimed and it will
2076 * retry with decreasing priority if one round over the
2077 * whole hierarchy is not sufficient.
2078 */
2079 if (!global_reclaim(sc) &&
2080 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2081 mem_cgroup_iter_break(root, memcg);
2082 break;
2083 }
2084 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2085 } while (memcg);
2086
2087 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2088 sc->nr_scanned - nr_scanned,
2089 sc->nr_reclaimed - nr_reclaimed);
2090
2091 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2092 sc->nr_scanned - nr_scanned, sc));
2093 }
2094
2095 /* Returns true if compaction should go ahead for a high-order request */
2096 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2097 {
2098 unsigned long balance_gap, watermark;
2099 bool watermark_ok;
2100
2101 /* Do not consider compaction for orders reclaim is meant to satisfy */
2102 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2103 return false;
2104
2105 /*
2106 * Compaction takes time to run and there are potentially other
2107 * callers using the pages just freed. Continue reclaiming until
2108 * there is a buffer of free pages available to give compaction
2109 * a reasonable chance of completing and allocating the page
2110 */
2111 balance_gap = min(low_wmark_pages(zone),
2112 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2113 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2114 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2115 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2116
2117 /*
2118 * If compaction is deferred, reclaim up to a point where
2119 * compaction will have a chance of success when re-enabled
2120 */
2121 if (compaction_deferred(zone, sc->order))
2122 return watermark_ok;
2123
2124 /* If compaction is not ready to start, keep reclaiming */
2125 if (!compaction_suitable(zone, sc->order))
2126 return false;
2127
2128 return watermark_ok;
2129 }
2130
2131 /*
2132 * This is the direct reclaim path, for page-allocating processes. We only
2133 * try to reclaim pages from zones which will satisfy the caller's allocation
2134 * request.
2135 *
2136 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2137 * Because:
2138 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2139 * allocation or
2140 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2141 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2142 * zone defense algorithm.
2143 *
2144 * If a zone is deemed to be full of pinned pages then just give it a light
2145 * scan then give up on it.
2146 *
2147 * This function returns true if a zone is being reclaimed for a costly
2148 * high-order allocation and compaction is ready to begin. This indicates to
2149 * the caller that it should consider retrying the allocation instead of
2150 * further reclaim.
2151 */
2152 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2153 {
2154 struct zoneref *z;
2155 struct zone *zone;
2156 unsigned long nr_soft_reclaimed;
2157 unsigned long nr_soft_scanned;
2158 bool aborted_reclaim = false;
2159
2160 /*
2161 * If the number of buffer_heads in the machine exceeds the maximum
2162 * allowed level, force direct reclaim to scan the highmem zone as
2163 * highmem pages could be pinning lowmem pages storing buffer_heads
2164 */
2165 if (buffer_heads_over_limit)
2166 sc->gfp_mask |= __GFP_HIGHMEM;
2167
2168 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2169 gfp_zone(sc->gfp_mask), sc->nodemask) {
2170 if (!populated_zone(zone))
2171 continue;
2172 /*
2173 * Take care memory controller reclaiming has small influence
2174 * to global LRU.
2175 */
2176 if (global_reclaim(sc)) {
2177 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2178 continue;
2179 if (zone->all_unreclaimable &&
2180 sc->priority != DEF_PRIORITY)
2181 continue; /* Let kswapd poll it */
2182 if (IS_ENABLED(CONFIG_COMPACTION)) {
2183 /*
2184 * If we already have plenty of memory free for
2185 * compaction in this zone, don't free any more.
2186 * Even though compaction is invoked for any
2187 * non-zero order, only frequent costly order
2188 * reclamation is disruptive enough to become a
2189 * noticeable problem, like transparent huge
2190 * page allocations.
2191 */
2192 if (compaction_ready(zone, sc)) {
2193 aborted_reclaim = true;
2194 continue;
2195 }
2196 }
2197 /*
2198 * This steals pages from memory cgroups over softlimit
2199 * and returns the number of reclaimed pages and
2200 * scanned pages. This works for global memory pressure
2201 * and balancing, not for a memcg's limit.
2202 */
2203 nr_soft_scanned = 0;
2204 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2205 sc->order, sc->gfp_mask,
2206 &nr_soft_scanned);
2207 sc->nr_reclaimed += nr_soft_reclaimed;
2208 sc->nr_scanned += nr_soft_scanned;
2209 /* need some check for avoid more shrink_zone() */
2210 }
2211
2212 shrink_zone(zone, sc);
2213 }
2214
2215 return aborted_reclaim;
2216 }
2217
2218 static bool zone_reclaimable(struct zone *zone)
2219 {
2220 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2221 }
2222
2223 /* All zones in zonelist are unreclaimable? */
2224 static bool all_unreclaimable(struct zonelist *zonelist,
2225 struct scan_control *sc)
2226 {
2227 struct zoneref *z;
2228 struct zone *zone;
2229
2230 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2231 gfp_zone(sc->gfp_mask), sc->nodemask) {
2232 if (!populated_zone(zone))
2233 continue;
2234 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2235 continue;
2236 if (!zone->all_unreclaimable)
2237 return false;
2238 }
2239
2240 return true;
2241 }
2242
2243 /*
2244 * This is the main entry point to direct page reclaim.
2245 *
2246 * If a full scan of the inactive list fails to free enough memory then we
2247 * are "out of memory" and something needs to be killed.
2248 *
2249 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2250 * high - the zone may be full of dirty or under-writeback pages, which this
2251 * caller can't do much about. We kick the writeback threads and take explicit
2252 * naps in the hope that some of these pages can be written. But if the
2253 * allocating task holds filesystem locks which prevent writeout this might not
2254 * work, and the allocation attempt will fail.
2255 *
2256 * returns: 0, if no pages reclaimed
2257 * else, the number of pages reclaimed
2258 */
2259 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2260 struct scan_control *sc,
2261 struct shrink_control *shrink)
2262 {
2263 unsigned long total_scanned = 0;
2264 struct reclaim_state *reclaim_state = current->reclaim_state;
2265 struct zoneref *z;
2266 struct zone *zone;
2267 unsigned long writeback_threshold;
2268 bool aborted_reclaim;
2269
2270 delayacct_freepages_start();
2271
2272 if (global_reclaim(sc))
2273 count_vm_event(ALLOCSTALL);
2274
2275 do {
2276 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2277 sc->priority);
2278 sc->nr_scanned = 0;
2279 aborted_reclaim = shrink_zones(zonelist, sc);
2280
2281 /*
2282 * Don't shrink slabs when reclaiming memory from
2283 * over limit cgroups
2284 */
2285 if (global_reclaim(sc)) {
2286 unsigned long lru_pages = 0;
2287 for_each_zone_zonelist(zone, z, zonelist,
2288 gfp_zone(sc->gfp_mask)) {
2289 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2290 continue;
2291
2292 lru_pages += zone_reclaimable_pages(zone);
2293 }
2294
2295 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2296 if (reclaim_state) {
2297 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2298 reclaim_state->reclaimed_slab = 0;
2299 }
2300 }
2301 total_scanned += sc->nr_scanned;
2302 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2303 goto out;
2304
2305 /*
2306 * If we're getting trouble reclaiming, start doing
2307 * writepage even in laptop mode.
2308 */
2309 if (sc->priority < DEF_PRIORITY - 2)
2310 sc->may_writepage = 1;
2311
2312 /*
2313 * Try to write back as many pages as we just scanned. This
2314 * tends to cause slow streaming writers to write data to the
2315 * disk smoothly, at the dirtying rate, which is nice. But
2316 * that's undesirable in laptop mode, where we *want* lumpy
2317 * writeout. So in laptop mode, write out the whole world.
2318 */
2319 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2320 if (total_scanned > writeback_threshold) {
2321 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2322 WB_REASON_TRY_TO_FREE_PAGES);
2323 sc->may_writepage = 1;
2324 }
2325
2326 /* Take a nap, wait for some writeback to complete */
2327 if (!sc->hibernation_mode && sc->nr_scanned &&
2328 sc->priority < DEF_PRIORITY - 2) {
2329 struct zone *preferred_zone;
2330
2331 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2332 &cpuset_current_mems_allowed,
2333 &preferred_zone);
2334 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2335 }
2336 } while (--sc->priority >= 0);
2337
2338 out:
2339 delayacct_freepages_end();
2340
2341 if (sc->nr_reclaimed)
2342 return sc->nr_reclaimed;
2343
2344 /*
2345 * As hibernation is going on, kswapd is freezed so that it can't mark
2346 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2347 * check.
2348 */
2349 if (oom_killer_disabled)
2350 return 0;
2351
2352 /* Aborted reclaim to try compaction? don't OOM, then */
2353 if (aborted_reclaim)
2354 return 1;
2355
2356 /* top priority shrink_zones still had more to do? don't OOM, then */
2357 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2358 return 1;
2359
2360 return 0;
2361 }
2362
2363 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2364 {
2365 struct zone *zone;
2366 unsigned long pfmemalloc_reserve = 0;
2367 unsigned long free_pages = 0;
2368 int i;
2369 bool wmark_ok;
2370
2371 for (i = 0; i <= ZONE_NORMAL; i++) {
2372 zone = &pgdat->node_zones[i];
2373 pfmemalloc_reserve += min_wmark_pages(zone);
2374 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2375 }
2376
2377 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2378
2379 /* kswapd must be awake if processes are being throttled */
2380 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2381 pgdat->classzone_idx = min(pgdat->classzone_idx,
2382 (enum zone_type)ZONE_NORMAL);
2383 wake_up_interruptible(&pgdat->kswapd_wait);
2384 }
2385
2386 return wmark_ok;
2387 }
2388
2389 /*
2390 * Throttle direct reclaimers if backing storage is backed by the network
2391 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2392 * depleted. kswapd will continue to make progress and wake the processes
2393 * when the low watermark is reached.
2394 *
2395 * Returns true if a fatal signal was delivered during throttling. If this
2396 * happens, the page allocator should not consider triggering the OOM killer.
2397 */
2398 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2399 nodemask_t *nodemask)
2400 {
2401 struct zone *zone;
2402 int high_zoneidx = gfp_zone(gfp_mask);
2403 pg_data_t *pgdat;
2404
2405 /*
2406 * Kernel threads should not be throttled as they may be indirectly
2407 * responsible for cleaning pages necessary for reclaim to make forward
2408 * progress. kjournald for example may enter direct reclaim while
2409 * committing a transaction where throttling it could forcing other
2410 * processes to block on log_wait_commit().
2411 */
2412 if (current->flags & PF_KTHREAD)
2413 goto out;
2414
2415 /*
2416 * If a fatal signal is pending, this process should not throttle.
2417 * It should return quickly so it can exit and free its memory
2418 */
2419 if (fatal_signal_pending(current))
2420 goto out;
2421
2422 /* Check if the pfmemalloc reserves are ok */
2423 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2424 pgdat = zone->zone_pgdat;
2425 if (pfmemalloc_watermark_ok(pgdat))
2426 goto out;
2427
2428 /* Account for the throttling */
2429 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2430
2431 /*
2432 * If the caller cannot enter the filesystem, it's possible that it
2433 * is due to the caller holding an FS lock or performing a journal
2434 * transaction in the case of a filesystem like ext[3|4]. In this case,
2435 * it is not safe to block on pfmemalloc_wait as kswapd could be
2436 * blocked waiting on the same lock. Instead, throttle for up to a
2437 * second before continuing.
2438 */
2439 if (!(gfp_mask & __GFP_FS)) {
2440 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2441 pfmemalloc_watermark_ok(pgdat), HZ);
2442
2443 goto check_pending;
2444 }
2445
2446 /* Throttle until kswapd wakes the process */
2447 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2448 pfmemalloc_watermark_ok(pgdat));
2449
2450 check_pending:
2451 if (fatal_signal_pending(current))
2452 return true;
2453
2454 out:
2455 return false;
2456 }
2457
2458 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2459 gfp_t gfp_mask, nodemask_t *nodemask)
2460 {
2461 unsigned long nr_reclaimed;
2462 struct scan_control sc = {
2463 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2464 .may_writepage = !laptop_mode,
2465 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2466 .may_unmap = 1,
2467 .may_swap = 1,
2468 .order = order,
2469 .priority = DEF_PRIORITY,
2470 .target_mem_cgroup = NULL,
2471 .nodemask = nodemask,
2472 };
2473 struct shrink_control shrink = {
2474 .gfp_mask = sc.gfp_mask,
2475 };
2476
2477 /*
2478 * Do not enter reclaim if fatal signal was delivered while throttled.
2479 * 1 is returned so that the page allocator does not OOM kill at this
2480 * point.
2481 */
2482 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2483 return 1;
2484
2485 trace_mm_vmscan_direct_reclaim_begin(order,
2486 sc.may_writepage,
2487 gfp_mask);
2488
2489 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2490
2491 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2492
2493 return nr_reclaimed;
2494 }
2495
2496 #ifdef CONFIG_MEMCG
2497
2498 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2499 gfp_t gfp_mask, bool noswap,
2500 struct zone *zone,
2501 unsigned long *nr_scanned)
2502 {
2503 struct scan_control sc = {
2504 .nr_scanned = 0,
2505 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2506 .may_writepage = !laptop_mode,
2507 .may_unmap = 1,
2508 .may_swap = !noswap,
2509 .order = 0,
2510 .priority = 0,
2511 .target_mem_cgroup = memcg,
2512 };
2513 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2514
2515 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2516 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2517
2518 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2519 sc.may_writepage,
2520 sc.gfp_mask);
2521
2522 /*
2523 * NOTE: Although we can get the priority field, using it
2524 * here is not a good idea, since it limits the pages we can scan.
2525 * if we don't reclaim here, the shrink_zone from balance_pgdat
2526 * will pick up pages from other mem cgroup's as well. We hack
2527 * the priority and make it zero.
2528 */
2529 shrink_lruvec(lruvec, &sc);
2530
2531 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2532
2533 *nr_scanned = sc.nr_scanned;
2534 return sc.nr_reclaimed;
2535 }
2536
2537 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2538 gfp_t gfp_mask,
2539 bool noswap)
2540 {
2541 struct zonelist *zonelist;
2542 unsigned long nr_reclaimed;
2543 int nid;
2544 struct scan_control sc = {
2545 .may_writepage = !laptop_mode,
2546 .may_unmap = 1,
2547 .may_swap = !noswap,
2548 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2549 .order = 0,
2550 .priority = DEF_PRIORITY,
2551 .target_mem_cgroup = memcg,
2552 .nodemask = NULL, /* we don't care the placement */
2553 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2554 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2555 };
2556 struct shrink_control shrink = {
2557 .gfp_mask = sc.gfp_mask,
2558 };
2559
2560 /*
2561 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2562 * take care of from where we get pages. So the node where we start the
2563 * scan does not need to be the current node.
2564 */
2565 nid = mem_cgroup_select_victim_node(memcg);
2566
2567 zonelist = NODE_DATA(nid)->node_zonelists;
2568
2569 trace_mm_vmscan_memcg_reclaim_begin(0,
2570 sc.may_writepage,
2571 sc.gfp_mask);
2572
2573 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2574
2575 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2576
2577 return nr_reclaimed;
2578 }
2579 #endif
2580
2581 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2582 {
2583 struct mem_cgroup *memcg;
2584
2585 if (!total_swap_pages)
2586 return;
2587
2588 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2589 do {
2590 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2591
2592 if (inactive_anon_is_low(lruvec))
2593 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2594 sc, LRU_ACTIVE_ANON);
2595
2596 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2597 } while (memcg);
2598 }
2599
2600 static bool zone_balanced(struct zone *zone, int order,
2601 unsigned long balance_gap, int classzone_idx)
2602 {
2603 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2604 balance_gap, classzone_idx, 0))
2605 return false;
2606
2607 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2608 !compaction_suitable(zone, order))
2609 return false;
2610
2611 return true;
2612 }
2613
2614 /*
2615 * pgdat_balanced() is used when checking if a node is balanced.
2616 *
2617 * For order-0, all zones must be balanced!
2618 *
2619 * For high-order allocations only zones that meet watermarks and are in a
2620 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2621 * total of balanced pages must be at least 25% of the zones allowed by
2622 * classzone_idx for the node to be considered balanced. Forcing all zones to
2623 * be balanced for high orders can cause excessive reclaim when there are
2624 * imbalanced zones.
2625 * The choice of 25% is due to
2626 * o a 16M DMA zone that is balanced will not balance a zone on any
2627 * reasonable sized machine
2628 * o On all other machines, the top zone must be at least a reasonable
2629 * percentage of the middle zones. For example, on 32-bit x86, highmem
2630 * would need to be at least 256M for it to be balance a whole node.
2631 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2632 * to balance a node on its own. These seemed like reasonable ratios.
2633 */
2634 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2635 {
2636 unsigned long managed_pages = 0;
2637 unsigned long balanced_pages = 0;
2638 int i;
2639
2640 /* Check the watermark levels */
2641 for (i = 0; i <= classzone_idx; i++) {
2642 struct zone *zone = pgdat->node_zones + i;
2643
2644 if (!populated_zone(zone))
2645 continue;
2646
2647 managed_pages += zone->managed_pages;
2648
2649 /*
2650 * A special case here:
2651 *
2652 * balance_pgdat() skips over all_unreclaimable after
2653 * DEF_PRIORITY. Effectively, it considers them balanced so
2654 * they must be considered balanced here as well!
2655 */
2656 if (zone->all_unreclaimable) {
2657 balanced_pages += zone->managed_pages;
2658 continue;
2659 }
2660
2661 if (zone_balanced(zone, order, 0, i))
2662 balanced_pages += zone->managed_pages;
2663 else if (!order)
2664 return false;
2665 }
2666
2667 if (order)
2668 return balanced_pages >= (managed_pages >> 2);
2669 else
2670 return true;
2671 }
2672
2673 /*
2674 * Prepare kswapd for sleeping. This verifies that there are no processes
2675 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2676 *
2677 * Returns true if kswapd is ready to sleep
2678 */
2679 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2680 int classzone_idx)
2681 {
2682 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2683 if (remaining)
2684 return false;
2685
2686 /*
2687 * There is a potential race between when kswapd checks its watermarks
2688 * and a process gets throttled. There is also a potential race if
2689 * processes get throttled, kswapd wakes, a large process exits therby
2690 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2691 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2692 * so wake them now if necessary. If necessary, processes will wake
2693 * kswapd and get throttled again
2694 */
2695 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2696 wake_up(&pgdat->pfmemalloc_wait);
2697 return false;
2698 }
2699
2700 return pgdat_balanced(pgdat, order, classzone_idx);
2701 }
2702
2703 /*
2704 * kswapd shrinks the zone by the number of pages required to reach
2705 * the high watermark.
2706 *
2707 * Returns true if kswapd scanned at least the requested number of pages to
2708 * reclaim or if the lack of progress was due to pages under writeback.
2709 * This is used to determine if the scanning priority needs to be raised.
2710 */
2711 static bool kswapd_shrink_zone(struct zone *zone,
2712 int classzone_idx,
2713 struct scan_control *sc,
2714 unsigned long lru_pages,
2715 unsigned long *nr_attempted)
2716 {
2717 unsigned long nr_slab;
2718 int testorder = sc->order;
2719 unsigned long balance_gap;
2720 struct reclaim_state *reclaim_state = current->reclaim_state;
2721 struct shrink_control shrink = {
2722 .gfp_mask = sc->gfp_mask,
2723 };
2724 bool lowmem_pressure;
2725
2726 /* Reclaim above the high watermark. */
2727 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2728
2729 /*
2730 * Kswapd reclaims only single pages with compaction enabled. Trying
2731 * too hard to reclaim until contiguous free pages have become
2732 * available can hurt performance by evicting too much useful data
2733 * from memory. Do not reclaim more than needed for compaction.
2734 */
2735 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2736 compaction_suitable(zone, sc->order) !=
2737 COMPACT_SKIPPED)
2738 testorder = 0;
2739
2740 /*
2741 * We put equal pressure on every zone, unless one zone has way too
2742 * many pages free already. The "too many pages" is defined as the
2743 * high wmark plus a "gap" where the gap is either the low
2744 * watermark or 1% of the zone, whichever is smaller.
2745 */
2746 balance_gap = min(low_wmark_pages(zone),
2747 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2748 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2749
2750 /*
2751 * If there is no low memory pressure or the zone is balanced then no
2752 * reclaim is necessary
2753 */
2754 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2755 if (!lowmem_pressure && zone_balanced(zone, testorder,
2756 balance_gap, classzone_idx))
2757 return true;
2758
2759 shrink_zone(zone, sc);
2760
2761 reclaim_state->reclaimed_slab = 0;
2762 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2763 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2764
2765 /* Account for the number of pages attempted to reclaim */
2766 *nr_attempted += sc->nr_to_reclaim;
2767
2768 if (nr_slab == 0 && !zone_reclaimable(zone))
2769 zone->all_unreclaimable = 1;
2770
2771 zone_clear_flag(zone, ZONE_WRITEBACK);
2772
2773 /*
2774 * If a zone reaches its high watermark, consider it to be no longer
2775 * congested. It's possible there are dirty pages backed by congested
2776 * BDIs but as pressure is relieved, speculatively avoid congestion
2777 * waits.
2778 */
2779 if (!zone->all_unreclaimable &&
2780 zone_balanced(zone, testorder, 0, classzone_idx)) {
2781 zone_clear_flag(zone, ZONE_CONGESTED);
2782 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2783 }
2784
2785 return sc->nr_scanned >= sc->nr_to_reclaim;
2786 }
2787
2788 /*
2789 * For kswapd, balance_pgdat() will work across all this node's zones until
2790 * they are all at high_wmark_pages(zone).
2791 *
2792 * Returns the final order kswapd was reclaiming at
2793 *
2794 * There is special handling here for zones which are full of pinned pages.
2795 * This can happen if the pages are all mlocked, or if they are all used by
2796 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2797 * What we do is to detect the case where all pages in the zone have been
2798 * scanned twice and there has been zero successful reclaim. Mark the zone as
2799 * dead and from now on, only perform a short scan. Basically we're polling
2800 * the zone for when the problem goes away.
2801 *
2802 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2803 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2804 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2805 * lower zones regardless of the number of free pages in the lower zones. This
2806 * interoperates with the page allocator fallback scheme to ensure that aging
2807 * of pages is balanced across the zones.
2808 */
2809 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2810 int *classzone_idx)
2811 {
2812 int i;
2813 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2814 unsigned long nr_soft_reclaimed;
2815 unsigned long nr_soft_scanned;
2816 struct scan_control sc = {
2817 .gfp_mask = GFP_KERNEL,
2818 .priority = DEF_PRIORITY,
2819 .may_unmap = 1,
2820 .may_swap = 1,
2821 .may_writepage = !laptop_mode,
2822 .order = order,
2823 .target_mem_cgroup = NULL,
2824 };
2825 count_vm_event(PAGEOUTRUN);
2826
2827 do {
2828 unsigned long lru_pages = 0;
2829 unsigned long nr_attempted = 0;
2830 bool raise_priority = true;
2831 bool pgdat_needs_compaction = (order > 0);
2832
2833 sc.nr_reclaimed = 0;
2834
2835 /*
2836 * Scan in the highmem->dma direction for the highest
2837 * zone which needs scanning
2838 */
2839 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2840 struct zone *zone = pgdat->node_zones + i;
2841
2842 if (!populated_zone(zone))
2843 continue;
2844
2845 if (zone->all_unreclaimable &&
2846 sc.priority != DEF_PRIORITY)
2847 continue;
2848
2849 /*
2850 * Do some background aging of the anon list, to give
2851 * pages a chance to be referenced before reclaiming.
2852 */
2853 age_active_anon(zone, &sc);
2854
2855 /*
2856 * If the number of buffer_heads in the machine
2857 * exceeds the maximum allowed level and this node
2858 * has a highmem zone, force kswapd to reclaim from
2859 * it to relieve lowmem pressure.
2860 */
2861 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2862 end_zone = i;
2863 break;
2864 }
2865
2866 if (!zone_balanced(zone, order, 0, 0)) {
2867 end_zone = i;
2868 break;
2869 } else {
2870 /*
2871 * If balanced, clear the dirty and congested
2872 * flags
2873 */
2874 zone_clear_flag(zone, ZONE_CONGESTED);
2875 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2876 }
2877 }
2878
2879 if (i < 0)
2880 goto out;
2881
2882 for (i = 0; i <= end_zone; i++) {
2883 struct zone *zone = pgdat->node_zones + i;
2884
2885 if (!populated_zone(zone))
2886 continue;
2887
2888 lru_pages += zone_reclaimable_pages(zone);
2889
2890 /*
2891 * If any zone is currently balanced then kswapd will
2892 * not call compaction as it is expected that the
2893 * necessary pages are already available.
2894 */
2895 if (pgdat_needs_compaction &&
2896 zone_watermark_ok(zone, order,
2897 low_wmark_pages(zone),
2898 *classzone_idx, 0))
2899 pgdat_needs_compaction = false;
2900 }
2901
2902 /*
2903 * If we're getting trouble reclaiming, start doing writepage
2904 * even in laptop mode.
2905 */
2906 if (sc.priority < DEF_PRIORITY - 2)
2907 sc.may_writepage = 1;
2908
2909 /*
2910 * Now scan the zone in the dma->highmem direction, stopping
2911 * at the last zone which needs scanning.
2912 *
2913 * We do this because the page allocator works in the opposite
2914 * direction. This prevents the page allocator from allocating
2915 * pages behind kswapd's direction of progress, which would
2916 * cause too much scanning of the lower zones.
2917 */
2918 for (i = 0; i <= end_zone; i++) {
2919 struct zone *zone = pgdat->node_zones + i;
2920
2921 if (!populated_zone(zone))
2922 continue;
2923
2924 if (zone->all_unreclaimable &&
2925 sc.priority != DEF_PRIORITY)
2926 continue;
2927
2928 sc.nr_scanned = 0;
2929
2930 nr_soft_scanned = 0;
2931 /*
2932 * Call soft limit reclaim before calling shrink_zone.
2933 */
2934 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2935 order, sc.gfp_mask,
2936 &nr_soft_scanned);
2937 sc.nr_reclaimed += nr_soft_reclaimed;
2938
2939 /*
2940 * There should be no need to raise the scanning
2941 * priority if enough pages are already being scanned
2942 * that that high watermark would be met at 100%
2943 * efficiency.
2944 */
2945 if (kswapd_shrink_zone(zone, end_zone, &sc,
2946 lru_pages, &nr_attempted))
2947 raise_priority = false;
2948 }
2949
2950 /*
2951 * If the low watermark is met there is no need for processes
2952 * to be throttled on pfmemalloc_wait as they should not be
2953 * able to safely make forward progress. Wake them
2954 */
2955 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2956 pfmemalloc_watermark_ok(pgdat))
2957 wake_up(&pgdat->pfmemalloc_wait);
2958
2959 /*
2960 * Fragmentation may mean that the system cannot be rebalanced
2961 * for high-order allocations in all zones. If twice the
2962 * allocation size has been reclaimed and the zones are still
2963 * not balanced then recheck the watermarks at order-0 to
2964 * prevent kswapd reclaiming excessively. Assume that a
2965 * process requested a high-order can direct reclaim/compact.
2966 */
2967 if (order && sc.nr_reclaimed >= 2UL << order)
2968 order = sc.order = 0;
2969
2970 /* Check if kswapd should be suspending */
2971 if (try_to_freeze() || kthread_should_stop())
2972 break;
2973
2974 /*
2975 * Compact if necessary and kswapd is reclaiming at least the
2976 * high watermark number of pages as requsted
2977 */
2978 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
2979 compact_pgdat(pgdat, order);
2980
2981 /*
2982 * Raise priority if scanning rate is too low or there was no
2983 * progress in reclaiming pages
2984 */
2985 if (raise_priority || !sc.nr_reclaimed)
2986 sc.priority--;
2987 } while (sc.priority >= 1 &&
2988 !pgdat_balanced(pgdat, order, *classzone_idx));
2989
2990 out:
2991 /*
2992 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2993 * makes a decision on the order we were last reclaiming at. However,
2994 * if another caller entered the allocator slow path while kswapd
2995 * was awake, order will remain at the higher level
2996 */
2997 *classzone_idx = end_zone;
2998 return order;
2999 }
3000
3001 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3002 {
3003 long remaining = 0;
3004 DEFINE_WAIT(wait);
3005
3006 if (freezing(current) || kthread_should_stop())
3007 return;
3008
3009 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3010
3011 /* Try to sleep for a short interval */
3012 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3013 remaining = schedule_timeout(HZ/10);
3014 finish_wait(&pgdat->kswapd_wait, &wait);
3015 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3016 }
3017
3018 /*
3019 * After a short sleep, check if it was a premature sleep. If not, then
3020 * go fully to sleep until explicitly woken up.
3021 */
3022 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3023 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3024
3025 /*
3026 * vmstat counters are not perfectly accurate and the estimated
3027 * value for counters such as NR_FREE_PAGES can deviate from the
3028 * true value by nr_online_cpus * threshold. To avoid the zone
3029 * watermarks being breached while under pressure, we reduce the
3030 * per-cpu vmstat threshold while kswapd is awake and restore
3031 * them before going back to sleep.
3032 */
3033 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3034
3035 /*
3036 * Compaction records what page blocks it recently failed to
3037 * isolate pages from and skips them in the future scanning.
3038 * When kswapd is going to sleep, it is reasonable to assume
3039 * that pages and compaction may succeed so reset the cache.
3040 */
3041 reset_isolation_suitable(pgdat);
3042
3043 if (!kthread_should_stop())
3044 schedule();
3045
3046 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3047 } else {
3048 if (remaining)
3049 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3050 else
3051 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3052 }
3053 finish_wait(&pgdat->kswapd_wait, &wait);
3054 }
3055
3056 /*
3057 * The background pageout daemon, started as a kernel thread
3058 * from the init process.
3059 *
3060 * This basically trickles out pages so that we have _some_
3061 * free memory available even if there is no other activity
3062 * that frees anything up. This is needed for things like routing
3063 * etc, where we otherwise might have all activity going on in
3064 * asynchronous contexts that cannot page things out.
3065 *
3066 * If there are applications that are active memory-allocators
3067 * (most normal use), this basically shouldn't matter.
3068 */
3069 static int kswapd(void *p)
3070 {
3071 unsigned long order, new_order;
3072 unsigned balanced_order;
3073 int classzone_idx, new_classzone_idx;
3074 int balanced_classzone_idx;
3075 pg_data_t *pgdat = (pg_data_t*)p;
3076 struct task_struct *tsk = current;
3077
3078 struct reclaim_state reclaim_state = {
3079 .reclaimed_slab = 0,
3080 };
3081 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3082
3083 lockdep_set_current_reclaim_state(GFP_KERNEL);
3084
3085 if (!cpumask_empty(cpumask))
3086 set_cpus_allowed_ptr(tsk, cpumask);
3087 current->reclaim_state = &reclaim_state;
3088
3089 /*
3090 * Tell the memory management that we're a "memory allocator",
3091 * and that if we need more memory we should get access to it
3092 * regardless (see "__alloc_pages()"). "kswapd" should
3093 * never get caught in the normal page freeing logic.
3094 *
3095 * (Kswapd normally doesn't need memory anyway, but sometimes
3096 * you need a small amount of memory in order to be able to
3097 * page out something else, and this flag essentially protects
3098 * us from recursively trying to free more memory as we're
3099 * trying to free the first piece of memory in the first place).
3100 */
3101 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3102 set_freezable();
3103
3104 order = new_order = 0;
3105 balanced_order = 0;
3106 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3107 balanced_classzone_idx = classzone_idx;
3108 for ( ; ; ) {
3109 bool ret;
3110
3111 /*
3112 * If the last balance_pgdat was unsuccessful it's unlikely a
3113 * new request of a similar or harder type will succeed soon
3114 * so consider going to sleep on the basis we reclaimed at
3115 */
3116 if (balanced_classzone_idx >= new_classzone_idx &&
3117 balanced_order == new_order) {
3118 new_order = pgdat->kswapd_max_order;
3119 new_classzone_idx = pgdat->classzone_idx;
3120 pgdat->kswapd_max_order = 0;
3121 pgdat->classzone_idx = pgdat->nr_zones - 1;
3122 }
3123
3124 if (order < new_order || classzone_idx > new_classzone_idx) {
3125 /*
3126 * Don't sleep if someone wants a larger 'order'
3127 * allocation or has tigher zone constraints
3128 */
3129 order = new_order;
3130 classzone_idx = new_classzone_idx;
3131 } else {
3132 kswapd_try_to_sleep(pgdat, balanced_order,
3133 balanced_classzone_idx);
3134 order = pgdat->kswapd_max_order;
3135 classzone_idx = pgdat->classzone_idx;
3136 new_order = order;
3137 new_classzone_idx = classzone_idx;
3138 pgdat->kswapd_max_order = 0;
3139 pgdat->classzone_idx = pgdat->nr_zones - 1;
3140 }
3141
3142 ret = try_to_freeze();
3143 if (kthread_should_stop())
3144 break;
3145
3146 /*
3147 * We can speed up thawing tasks if we don't call balance_pgdat
3148 * after returning from the refrigerator
3149 */
3150 if (!ret) {
3151 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3152 balanced_classzone_idx = classzone_idx;
3153 balanced_order = balance_pgdat(pgdat, order,
3154 &balanced_classzone_idx);
3155 }
3156 }
3157
3158 current->reclaim_state = NULL;
3159 return 0;
3160 }
3161
3162 /*
3163 * A zone is low on free memory, so wake its kswapd task to service it.
3164 */
3165 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3166 {
3167 pg_data_t *pgdat;
3168
3169 if (!populated_zone(zone))
3170 return;
3171
3172 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3173 return;
3174 pgdat = zone->zone_pgdat;
3175 if (pgdat->kswapd_max_order < order) {
3176 pgdat->kswapd_max_order = order;
3177 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3178 }
3179 if (!waitqueue_active(&pgdat->kswapd_wait))
3180 return;
3181 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3182 return;
3183
3184 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3185 wake_up_interruptible(&pgdat->kswapd_wait);
3186 }
3187
3188 /*
3189 * The reclaimable count would be mostly accurate.
3190 * The less reclaimable pages may be
3191 * - mlocked pages, which will be moved to unevictable list when encountered
3192 * - mapped pages, which may require several travels to be reclaimed
3193 * - dirty pages, which is not "instantly" reclaimable
3194 */
3195 unsigned long global_reclaimable_pages(void)
3196 {
3197 int nr;
3198
3199 nr = global_page_state(NR_ACTIVE_FILE) +
3200 global_page_state(NR_INACTIVE_FILE);
3201
3202 if (get_nr_swap_pages() > 0)
3203 nr += global_page_state(NR_ACTIVE_ANON) +
3204 global_page_state(NR_INACTIVE_ANON);
3205
3206 return nr;
3207 }
3208
3209 unsigned long zone_reclaimable_pages(struct zone *zone)
3210 {
3211 int nr;
3212
3213 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3214 zone_page_state(zone, NR_INACTIVE_FILE);
3215
3216 if (get_nr_swap_pages() > 0)
3217 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3218 zone_page_state(zone, NR_INACTIVE_ANON);
3219
3220 return nr;
3221 }
3222
3223 #ifdef CONFIG_HIBERNATION
3224 /*
3225 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3226 * freed pages.
3227 *
3228 * Rather than trying to age LRUs the aim is to preserve the overall
3229 * LRU order by reclaiming preferentially
3230 * inactive > active > active referenced > active mapped
3231 */
3232 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3233 {
3234 struct reclaim_state reclaim_state;
3235 struct scan_control sc = {
3236 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3237 .may_swap = 1,
3238 .may_unmap = 1,
3239 .may_writepage = 1,
3240 .nr_to_reclaim = nr_to_reclaim,
3241 .hibernation_mode = 1,
3242 .order = 0,
3243 .priority = DEF_PRIORITY,
3244 };
3245 struct shrink_control shrink = {
3246 .gfp_mask = sc.gfp_mask,
3247 };
3248 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3249 struct task_struct *p = current;
3250 unsigned long nr_reclaimed;
3251
3252 p->flags |= PF_MEMALLOC;
3253 lockdep_set_current_reclaim_state(sc.gfp_mask);
3254 reclaim_state.reclaimed_slab = 0;
3255 p->reclaim_state = &reclaim_state;
3256
3257 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3258
3259 p->reclaim_state = NULL;
3260 lockdep_clear_current_reclaim_state();
3261 p->flags &= ~PF_MEMALLOC;
3262
3263 return nr_reclaimed;
3264 }
3265 #endif /* CONFIG_HIBERNATION */
3266
3267 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3268 not required for correctness. So if the last cpu in a node goes
3269 away, we get changed to run anywhere: as the first one comes back,
3270 restore their cpu bindings. */
3271 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3272 void *hcpu)
3273 {
3274 int nid;
3275
3276 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3277 for_each_node_state(nid, N_MEMORY) {
3278 pg_data_t *pgdat = NODE_DATA(nid);
3279 const struct cpumask *mask;
3280
3281 mask = cpumask_of_node(pgdat->node_id);
3282
3283 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3284 /* One of our CPUs online: restore mask */
3285 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3286 }
3287 }
3288 return NOTIFY_OK;
3289 }
3290
3291 /*
3292 * This kswapd start function will be called by init and node-hot-add.
3293 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3294 */
3295 int kswapd_run(int nid)
3296 {
3297 pg_data_t *pgdat = NODE_DATA(nid);
3298 int ret = 0;
3299
3300 if (pgdat->kswapd)
3301 return 0;
3302
3303 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3304 if (IS_ERR(pgdat->kswapd)) {
3305 /* failure at boot is fatal */
3306 BUG_ON(system_state == SYSTEM_BOOTING);
3307 pr_err("Failed to start kswapd on node %d\n", nid);
3308 ret = PTR_ERR(pgdat->kswapd);
3309 pgdat->kswapd = NULL;
3310 }
3311 return ret;
3312 }
3313
3314 /*
3315 * Called by memory hotplug when all memory in a node is offlined. Caller must
3316 * hold lock_memory_hotplug().
3317 */
3318 void kswapd_stop(int nid)
3319 {
3320 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3321
3322 if (kswapd) {
3323 kthread_stop(kswapd);
3324 NODE_DATA(nid)->kswapd = NULL;
3325 }
3326 }
3327
3328 static int __init kswapd_init(void)
3329 {
3330 int nid;
3331
3332 swap_setup();
3333 for_each_node_state(nid, N_MEMORY)
3334 kswapd_run(nid);
3335 hotcpu_notifier(cpu_callback, 0);
3336 return 0;
3337 }
3338
3339 module_init(kswapd_init)
3340
3341 #ifdef CONFIG_NUMA
3342 /*
3343 * Zone reclaim mode
3344 *
3345 * If non-zero call zone_reclaim when the number of free pages falls below
3346 * the watermarks.
3347 */
3348 int zone_reclaim_mode __read_mostly;
3349
3350 #define RECLAIM_OFF 0
3351 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3352 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3353 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3354
3355 /*
3356 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3357 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3358 * a zone.
3359 */
3360 #define ZONE_RECLAIM_PRIORITY 4
3361
3362 /*
3363 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3364 * occur.
3365 */
3366 int sysctl_min_unmapped_ratio = 1;
3367
3368 /*
3369 * If the number of slab pages in a zone grows beyond this percentage then
3370 * slab reclaim needs to occur.
3371 */
3372 int sysctl_min_slab_ratio = 5;
3373
3374 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3375 {
3376 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3377 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3378 zone_page_state(zone, NR_ACTIVE_FILE);
3379
3380 /*
3381 * It's possible for there to be more file mapped pages than
3382 * accounted for by the pages on the file LRU lists because
3383 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3384 */
3385 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3386 }
3387
3388 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3389 static long zone_pagecache_reclaimable(struct zone *zone)
3390 {
3391 long nr_pagecache_reclaimable;
3392 long delta = 0;
3393
3394 /*
3395 * If RECLAIM_SWAP is set, then all file pages are considered
3396 * potentially reclaimable. Otherwise, we have to worry about
3397 * pages like swapcache and zone_unmapped_file_pages() provides
3398 * a better estimate
3399 */
3400 if (zone_reclaim_mode & RECLAIM_SWAP)
3401 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3402 else
3403 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3404
3405 /* If we can't clean pages, remove dirty pages from consideration */
3406 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3407 delta += zone_page_state(zone, NR_FILE_DIRTY);
3408
3409 /* Watch for any possible underflows due to delta */
3410 if (unlikely(delta > nr_pagecache_reclaimable))
3411 delta = nr_pagecache_reclaimable;
3412
3413 return nr_pagecache_reclaimable - delta;
3414 }
3415
3416 /*
3417 * Try to free up some pages from this zone through reclaim.
3418 */
3419 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3420 {
3421 /* Minimum pages needed in order to stay on node */
3422 const unsigned long nr_pages = 1 << order;
3423 struct task_struct *p = current;
3424 struct reclaim_state reclaim_state;
3425 struct scan_control sc = {
3426 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3427 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3428 .may_swap = 1,
3429 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3430 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3431 .order = order,
3432 .priority = ZONE_RECLAIM_PRIORITY,
3433 };
3434 struct shrink_control shrink = {
3435 .gfp_mask = sc.gfp_mask,
3436 };
3437 unsigned long nr_slab_pages0, nr_slab_pages1;
3438
3439 cond_resched();
3440 /*
3441 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3442 * and we also need to be able to write out pages for RECLAIM_WRITE
3443 * and RECLAIM_SWAP.
3444 */
3445 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3446 lockdep_set_current_reclaim_state(gfp_mask);
3447 reclaim_state.reclaimed_slab = 0;
3448 p->reclaim_state = &reclaim_state;
3449
3450 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3451 /*
3452 * Free memory by calling shrink zone with increasing
3453 * priorities until we have enough memory freed.
3454 */
3455 do {
3456 shrink_zone(zone, &sc);
3457 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3458 }
3459
3460 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3461 if (nr_slab_pages0 > zone->min_slab_pages) {
3462 /*
3463 * shrink_slab() does not currently allow us to determine how
3464 * many pages were freed in this zone. So we take the current
3465 * number of slab pages and shake the slab until it is reduced
3466 * by the same nr_pages that we used for reclaiming unmapped
3467 * pages.
3468 *
3469 * Note that shrink_slab will free memory on all zones and may
3470 * take a long time.
3471 */
3472 for (;;) {
3473 unsigned long lru_pages = zone_reclaimable_pages(zone);
3474
3475 /* No reclaimable slab or very low memory pressure */
3476 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3477 break;
3478
3479 /* Freed enough memory */
3480 nr_slab_pages1 = zone_page_state(zone,
3481 NR_SLAB_RECLAIMABLE);
3482 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3483 break;
3484 }
3485
3486 /*
3487 * Update nr_reclaimed by the number of slab pages we
3488 * reclaimed from this zone.
3489 */
3490 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3491 if (nr_slab_pages1 < nr_slab_pages0)
3492 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3493 }
3494
3495 p->reclaim_state = NULL;
3496 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3497 lockdep_clear_current_reclaim_state();
3498 return sc.nr_reclaimed >= nr_pages;
3499 }
3500
3501 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3502 {
3503 int node_id;
3504 int ret;
3505
3506 /*
3507 * Zone reclaim reclaims unmapped file backed pages and
3508 * slab pages if we are over the defined limits.
3509 *
3510 * A small portion of unmapped file backed pages is needed for
3511 * file I/O otherwise pages read by file I/O will be immediately
3512 * thrown out if the zone is overallocated. So we do not reclaim
3513 * if less than a specified percentage of the zone is used by
3514 * unmapped file backed pages.
3515 */
3516 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3517 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3518 return ZONE_RECLAIM_FULL;
3519
3520 if (zone->all_unreclaimable)
3521 return ZONE_RECLAIM_FULL;
3522
3523 /*
3524 * Do not scan if the allocation should not be delayed.
3525 */
3526 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3527 return ZONE_RECLAIM_NOSCAN;
3528
3529 /*
3530 * Only run zone reclaim on the local zone or on zones that do not
3531 * have associated processors. This will favor the local processor
3532 * over remote processors and spread off node memory allocations
3533 * as wide as possible.
3534 */
3535 node_id = zone_to_nid(zone);
3536 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3537 return ZONE_RECLAIM_NOSCAN;
3538
3539 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3540 return ZONE_RECLAIM_NOSCAN;
3541
3542 ret = __zone_reclaim(zone, gfp_mask, order);
3543 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3544
3545 if (!ret)
3546 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3547
3548 return ret;
3549 }
3550 #endif
3551
3552 /*
3553 * page_evictable - test whether a page is evictable
3554 * @page: the page to test
3555 *
3556 * Test whether page is evictable--i.e., should be placed on active/inactive
3557 * lists vs unevictable list.
3558 *
3559 * Reasons page might not be evictable:
3560 * (1) page's mapping marked unevictable
3561 * (2) page is part of an mlocked VMA
3562 *
3563 */
3564 int page_evictable(struct page *page)
3565 {
3566 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3567 }
3568
3569 #ifdef CONFIG_SHMEM
3570 /**
3571 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3572 * @pages: array of pages to check
3573 * @nr_pages: number of pages to check
3574 *
3575 * Checks pages for evictability and moves them to the appropriate lru list.
3576 *
3577 * This function is only used for SysV IPC SHM_UNLOCK.
3578 */
3579 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3580 {
3581 struct lruvec *lruvec;
3582 struct zone *zone = NULL;
3583 int pgscanned = 0;
3584 int pgrescued = 0;
3585 int i;
3586
3587 for (i = 0; i < nr_pages; i++) {
3588 struct page *page = pages[i];
3589 struct zone *pagezone;
3590
3591 pgscanned++;
3592 pagezone = page_zone(page);
3593 if (pagezone != zone) {
3594 if (zone)
3595 spin_unlock_irq(&zone->lru_lock);
3596 zone = pagezone;
3597 spin_lock_irq(&zone->lru_lock);
3598 }
3599 lruvec = mem_cgroup_page_lruvec(page, zone);
3600
3601 if (!PageLRU(page) || !PageUnevictable(page))
3602 continue;
3603
3604 if (page_evictable(page)) {
3605 enum lru_list lru = page_lru_base_type(page);
3606
3607 VM_BUG_ON(PageActive(page));
3608 ClearPageUnevictable(page);
3609 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3610 add_page_to_lru_list(page, lruvec, lru);
3611 pgrescued++;
3612 }
3613 }
3614
3615 if (zone) {
3616 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3617 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3618 spin_unlock_irq(&zone->lru_lock);
3619 }
3620 }
3621 #endif /* CONFIG_SHMEM */
3622
3623 static void warn_scan_unevictable_pages(void)
3624 {
3625 printk_once(KERN_WARNING
3626 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3627 "disabled for lack of a legitimate use case. If you have "
3628 "one, please send an email to linux-mm@kvack.org.\n",
3629 current->comm);
3630 }
3631
3632 /*
3633 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3634 * all nodes' unevictable lists for evictable pages
3635 */
3636 unsigned long scan_unevictable_pages;
3637
3638 int scan_unevictable_handler(struct ctl_table *table, int write,
3639 void __user *buffer,
3640 size_t *length, loff_t *ppos)
3641 {
3642 warn_scan_unevictable_pages();
3643 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3644 scan_unevictable_pages = 0;
3645 return 0;
3646 }
3647
3648 #ifdef CONFIG_NUMA
3649 /*
3650 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3651 * a specified node's per zone unevictable lists for evictable pages.
3652 */
3653
3654 static ssize_t read_scan_unevictable_node(struct device *dev,
3655 struct device_attribute *attr,
3656 char *buf)
3657 {
3658 warn_scan_unevictable_pages();
3659 return sprintf(buf, "0\n"); /* always zero; should fit... */
3660 }
3661
3662 static ssize_t write_scan_unevictable_node(struct device *dev,
3663 struct device_attribute *attr,
3664 const char *buf, size_t count)
3665 {
3666 warn_scan_unevictable_pages();
3667 return 1;
3668 }
3669
3670
3671 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3672 read_scan_unevictable_node,
3673 write_scan_unevictable_node);
3674
3675 int scan_unevictable_register_node(struct node *node)
3676 {
3677 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3678 }
3679
3680 void scan_unevictable_unregister_node(struct node *node)
3681 {
3682 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3683 }
3684 #endif
This page took 0.102673 seconds and 6 git commands to generate.