mm: vmscan: do not allow kswapd to scan at maximum priority
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129 * From 0 .. 100. Higher means more swappy.
130 */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec, lru);
153
154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158 * Add a shrinker callback to be called from the vm
159 */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 atomic_long_set(&shrinker->nr_in_batch, 0);
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170 * Remove one
171 */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183 {
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
205 *
206 * Returns the number of slab objects which we shrunk.
207 */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 unsigned long nr_pages_scanned,
210 unsigned long lru_pages)
211 {
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
214
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 int shrink_ret = 0;
229 long nr;
230 long new_nr;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
284 while (total_scan >= batch_size) {
285 int nr_before;
286
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 batch_size);
290 if (shrink_ret == -1)
291 break;
292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
296
297 cond_resched();
298 }
299
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 }
313 up_read(&shrinker_rwsem);
314 out:
315 cond_resched();
316 return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
326 return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
331 {
332 if (current->flags & PF_SWAPWRITE)
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339 }
340
341 /*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353 static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355 {
356 lock_page(page);
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
359 unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
377 */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 struct scan_control *sc)
380 {
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
404 if (page_has_private(page)) {
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
407 printk("%s: orphaned page\n", __func__);
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
432 if (res == AOP_WRITEPAGE_ACTIVATE) {
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
436
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447 }
448
449 /*
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
452 */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
457
458 spin_lock_irq(&mapping->tree_lock);
459 /*
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
483 */
484 if (!page_freeze_refs(page, 2))
485 goto cannot_free;
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
489 goto cannot_free;
490 }
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
495 spin_unlock_irq(&mapping->tree_lock);
496 swapcache_free(swap, page);
497 } else {
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
502 __delete_from_page_cache(page);
503 spin_unlock_irq(&mapping->tree_lock);
504 mem_cgroup_uncharge_cache_page(page);
505
506 if (freepage != NULL)
507 freepage(page);
508 }
509
510 return 1;
511
512 cannot_free:
513 spin_unlock_irq(&mapping->tree_lock);
514 return 0;
515 }
516
517 /*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535 }
536
537 /**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
546 void putback_lru_page(struct page *page)
547 {
548 int lru;
549 int active = !!TestClearPageActive(page);
550 int was_unevictable = PageUnevictable(page);
551
552 VM_BUG_ON(PageLRU(page));
553
554 redo:
555 ClearPageUnevictable(page);
556
557 if (page_evictable(page)) {
558 /*
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
563 */
564 lru = active + page_lru_base_type(page);
565 lru_cache_add_lru(page, lru);
566 } else {
567 /*
568 * Put unevictable pages directly on zone's unevictable
569 * list.
570 */
571 lru = LRU_UNEVICTABLE;
572 add_page_to_unevictable_list(page);
573 /*
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
577 * isolation/check_move_unevictable_pages,
578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 * the page back to the evictable list.
580 *
581 * The other side is TestClearPageMlocked() or shmem_lock().
582 */
583 smp_mb();
584 }
585
586 /*
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
590 */
591 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592 if (!isolate_lru_page(page)) {
593 put_page(page);
594 goto redo;
595 }
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
599 */
600 }
601
602 if (was_unevictable && lru != LRU_UNEVICTABLE)
603 count_vm_event(UNEVICTABLE_PGRESCUED);
604 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 count_vm_event(UNEVICTABLE_PGCULLED);
606
607 put_page(page); /* drop ref from isolate */
608 }
609
610 enum page_references {
611 PAGEREF_RECLAIM,
612 PAGEREF_RECLAIM_CLEAN,
613 PAGEREF_KEEP,
614 PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618 struct scan_control *sc)
619 {
620 int referenced_ptes, referenced_page;
621 unsigned long vm_flags;
622
623 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 &vm_flags);
625 referenced_page = TestClearPageReferenced(page);
626
627 /*
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
630 */
631 if (vm_flags & VM_LOCKED)
632 return PAGEREF_RECLAIM;
633
634 if (referenced_ptes) {
635 if (PageSwapBacked(page))
636 return PAGEREF_ACTIVATE;
637 /*
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
641 * than once.
642 *
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
646 *
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
649 * quickly recovered.
650 */
651 SetPageReferenced(page);
652
653 if (referenced_page || referenced_ptes > 1)
654 return PAGEREF_ACTIVATE;
655
656 /*
657 * Activate file-backed executable pages after first usage.
658 */
659 if (vm_flags & VM_EXEC)
660 return PAGEREF_ACTIVATE;
661
662 return PAGEREF_KEEP;
663 }
664
665 /* Reclaim if clean, defer dirty pages to writeback */
666 if (referenced_page && !PageSwapBacked(page))
667 return PAGEREF_RECLAIM_CLEAN;
668
669 return PAGEREF_RECLAIM;
670 }
671
672 /*
673 * shrink_page_list() returns the number of reclaimed pages
674 */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676 struct zone *zone,
677 struct scan_control *sc,
678 enum ttu_flags ttu_flags,
679 unsigned long *ret_nr_dirty,
680 unsigned long *ret_nr_writeback,
681 bool force_reclaim)
682 {
683 LIST_HEAD(ret_pages);
684 LIST_HEAD(free_pages);
685 int pgactivate = 0;
686 unsigned long nr_dirty = 0;
687 unsigned long nr_congested = 0;
688 unsigned long nr_reclaimed = 0;
689 unsigned long nr_writeback = 0;
690
691 cond_resched();
692
693 mem_cgroup_uncharge_start();
694 while (!list_empty(page_list)) {
695 struct address_space *mapping;
696 struct page *page;
697 int may_enter_fs;
698 enum page_references references = PAGEREF_RECLAIM_CLEAN;
699
700 cond_resched();
701
702 page = lru_to_page(page_list);
703 list_del(&page->lru);
704
705 if (!trylock_page(page))
706 goto keep;
707
708 VM_BUG_ON(PageActive(page));
709 VM_BUG_ON(page_zone(page) != zone);
710
711 sc->nr_scanned++;
712
713 if (unlikely(!page_evictable(page)))
714 goto cull_mlocked;
715
716 if (!sc->may_unmap && page_mapped(page))
717 goto keep_locked;
718
719 /* Double the slab pressure for mapped and swapcache pages */
720 if (page_mapped(page) || PageSwapCache(page))
721 sc->nr_scanned++;
722
723 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
724 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
725
726 if (PageWriteback(page)) {
727 /*
728 * memcg doesn't have any dirty pages throttling so we
729 * could easily OOM just because too many pages are in
730 * writeback and there is nothing else to reclaim.
731 *
732 * Check __GFP_IO, certainly because a loop driver
733 * thread might enter reclaim, and deadlock if it waits
734 * on a page for which it is needed to do the write
735 * (loop masks off __GFP_IO|__GFP_FS for this reason);
736 * but more thought would probably show more reasons.
737 *
738 * Don't require __GFP_FS, since we're not going into
739 * the FS, just waiting on its writeback completion.
740 * Worryingly, ext4 gfs2 and xfs allocate pages with
741 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
742 * testing may_enter_fs here is liable to OOM on them.
743 */
744 if (global_reclaim(sc) ||
745 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
746 /*
747 * This is slightly racy - end_page_writeback()
748 * might have just cleared PageReclaim, then
749 * setting PageReclaim here end up interpreted
750 * as PageReadahead - but that does not matter
751 * enough to care. What we do want is for this
752 * page to have PageReclaim set next time memcg
753 * reclaim reaches the tests above, so it will
754 * then wait_on_page_writeback() to avoid OOM;
755 * and it's also appropriate in global reclaim.
756 */
757 SetPageReclaim(page);
758 nr_writeback++;
759 goto keep_locked;
760 }
761 wait_on_page_writeback(page);
762 }
763
764 if (!force_reclaim)
765 references = page_check_references(page, sc);
766
767 switch (references) {
768 case PAGEREF_ACTIVATE:
769 goto activate_locked;
770 case PAGEREF_KEEP:
771 goto keep_locked;
772 case PAGEREF_RECLAIM:
773 case PAGEREF_RECLAIM_CLEAN:
774 ; /* try to reclaim the page below */
775 }
776
777 /*
778 * Anonymous process memory has backing store?
779 * Try to allocate it some swap space here.
780 */
781 if (PageAnon(page) && !PageSwapCache(page)) {
782 if (!(sc->gfp_mask & __GFP_IO))
783 goto keep_locked;
784 if (!add_to_swap(page, page_list))
785 goto activate_locked;
786 may_enter_fs = 1;
787 }
788
789 mapping = page_mapping(page);
790
791 /*
792 * The page is mapped into the page tables of one or more
793 * processes. Try to unmap it here.
794 */
795 if (page_mapped(page) && mapping) {
796 switch (try_to_unmap(page, ttu_flags)) {
797 case SWAP_FAIL:
798 goto activate_locked;
799 case SWAP_AGAIN:
800 goto keep_locked;
801 case SWAP_MLOCK:
802 goto cull_mlocked;
803 case SWAP_SUCCESS:
804 ; /* try to free the page below */
805 }
806 }
807
808 if (PageDirty(page)) {
809 nr_dirty++;
810
811 /*
812 * Only kswapd can writeback filesystem pages to
813 * avoid risk of stack overflow but do not writeback
814 * unless under significant pressure.
815 */
816 if (page_is_file_cache(page) &&
817 (!current_is_kswapd() ||
818 sc->priority >= DEF_PRIORITY - 2)) {
819 /*
820 * Immediately reclaim when written back.
821 * Similar in principal to deactivate_page()
822 * except we already have the page isolated
823 * and know it's dirty
824 */
825 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
826 SetPageReclaim(page);
827
828 goto keep_locked;
829 }
830
831 if (references == PAGEREF_RECLAIM_CLEAN)
832 goto keep_locked;
833 if (!may_enter_fs)
834 goto keep_locked;
835 if (!sc->may_writepage)
836 goto keep_locked;
837
838 /* Page is dirty, try to write it out here */
839 switch (pageout(page, mapping, sc)) {
840 case PAGE_KEEP:
841 nr_congested++;
842 goto keep_locked;
843 case PAGE_ACTIVATE:
844 goto activate_locked;
845 case PAGE_SUCCESS:
846 if (PageWriteback(page))
847 goto keep;
848 if (PageDirty(page))
849 goto keep;
850
851 /*
852 * A synchronous write - probably a ramdisk. Go
853 * ahead and try to reclaim the page.
854 */
855 if (!trylock_page(page))
856 goto keep;
857 if (PageDirty(page) || PageWriteback(page))
858 goto keep_locked;
859 mapping = page_mapping(page);
860 case PAGE_CLEAN:
861 ; /* try to free the page below */
862 }
863 }
864
865 /*
866 * If the page has buffers, try to free the buffer mappings
867 * associated with this page. If we succeed we try to free
868 * the page as well.
869 *
870 * We do this even if the page is PageDirty().
871 * try_to_release_page() does not perform I/O, but it is
872 * possible for a page to have PageDirty set, but it is actually
873 * clean (all its buffers are clean). This happens if the
874 * buffers were written out directly, with submit_bh(). ext3
875 * will do this, as well as the blockdev mapping.
876 * try_to_release_page() will discover that cleanness and will
877 * drop the buffers and mark the page clean - it can be freed.
878 *
879 * Rarely, pages can have buffers and no ->mapping. These are
880 * the pages which were not successfully invalidated in
881 * truncate_complete_page(). We try to drop those buffers here
882 * and if that worked, and the page is no longer mapped into
883 * process address space (page_count == 1) it can be freed.
884 * Otherwise, leave the page on the LRU so it is swappable.
885 */
886 if (page_has_private(page)) {
887 if (!try_to_release_page(page, sc->gfp_mask))
888 goto activate_locked;
889 if (!mapping && page_count(page) == 1) {
890 unlock_page(page);
891 if (put_page_testzero(page))
892 goto free_it;
893 else {
894 /*
895 * rare race with speculative reference.
896 * the speculative reference will free
897 * this page shortly, so we may
898 * increment nr_reclaimed here (and
899 * leave it off the LRU).
900 */
901 nr_reclaimed++;
902 continue;
903 }
904 }
905 }
906
907 if (!mapping || !__remove_mapping(mapping, page))
908 goto keep_locked;
909
910 /*
911 * At this point, we have no other references and there is
912 * no way to pick any more up (removed from LRU, removed
913 * from pagecache). Can use non-atomic bitops now (and
914 * we obviously don't have to worry about waking up a process
915 * waiting on the page lock, because there are no references.
916 */
917 __clear_page_locked(page);
918 free_it:
919 nr_reclaimed++;
920
921 /*
922 * Is there need to periodically free_page_list? It would
923 * appear not as the counts should be low
924 */
925 list_add(&page->lru, &free_pages);
926 continue;
927
928 cull_mlocked:
929 if (PageSwapCache(page))
930 try_to_free_swap(page);
931 unlock_page(page);
932 putback_lru_page(page);
933 continue;
934
935 activate_locked:
936 /* Not a candidate for swapping, so reclaim swap space. */
937 if (PageSwapCache(page) && vm_swap_full())
938 try_to_free_swap(page);
939 VM_BUG_ON(PageActive(page));
940 SetPageActive(page);
941 pgactivate++;
942 keep_locked:
943 unlock_page(page);
944 keep:
945 list_add(&page->lru, &ret_pages);
946 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
947 }
948
949 /*
950 * Tag a zone as congested if all the dirty pages encountered were
951 * backed by a congested BDI. In this case, reclaimers should just
952 * back off and wait for congestion to clear because further reclaim
953 * will encounter the same problem
954 */
955 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
956 zone_set_flag(zone, ZONE_CONGESTED);
957
958 free_hot_cold_page_list(&free_pages, 1);
959
960 list_splice(&ret_pages, page_list);
961 count_vm_events(PGACTIVATE, pgactivate);
962 mem_cgroup_uncharge_end();
963 *ret_nr_dirty += nr_dirty;
964 *ret_nr_writeback += nr_writeback;
965 return nr_reclaimed;
966 }
967
968 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
969 struct list_head *page_list)
970 {
971 struct scan_control sc = {
972 .gfp_mask = GFP_KERNEL,
973 .priority = DEF_PRIORITY,
974 .may_unmap = 1,
975 };
976 unsigned long ret, dummy1, dummy2;
977 struct page *page, *next;
978 LIST_HEAD(clean_pages);
979
980 list_for_each_entry_safe(page, next, page_list, lru) {
981 if (page_is_file_cache(page) && !PageDirty(page)) {
982 ClearPageActive(page);
983 list_move(&page->lru, &clean_pages);
984 }
985 }
986
987 ret = shrink_page_list(&clean_pages, zone, &sc,
988 TTU_UNMAP|TTU_IGNORE_ACCESS,
989 &dummy1, &dummy2, true);
990 list_splice(&clean_pages, page_list);
991 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
992 return ret;
993 }
994
995 /*
996 * Attempt to remove the specified page from its LRU. Only take this page
997 * if it is of the appropriate PageActive status. Pages which are being
998 * freed elsewhere are also ignored.
999 *
1000 * page: page to consider
1001 * mode: one of the LRU isolation modes defined above
1002 *
1003 * returns 0 on success, -ve errno on failure.
1004 */
1005 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1006 {
1007 int ret = -EINVAL;
1008
1009 /* Only take pages on the LRU. */
1010 if (!PageLRU(page))
1011 return ret;
1012
1013 /* Compaction should not handle unevictable pages but CMA can do so */
1014 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1015 return ret;
1016
1017 ret = -EBUSY;
1018
1019 /*
1020 * To minimise LRU disruption, the caller can indicate that it only
1021 * wants to isolate pages it will be able to operate on without
1022 * blocking - clean pages for the most part.
1023 *
1024 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1025 * is used by reclaim when it is cannot write to backing storage
1026 *
1027 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1028 * that it is possible to migrate without blocking
1029 */
1030 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1031 /* All the caller can do on PageWriteback is block */
1032 if (PageWriteback(page))
1033 return ret;
1034
1035 if (PageDirty(page)) {
1036 struct address_space *mapping;
1037
1038 /* ISOLATE_CLEAN means only clean pages */
1039 if (mode & ISOLATE_CLEAN)
1040 return ret;
1041
1042 /*
1043 * Only pages without mappings or that have a
1044 * ->migratepage callback are possible to migrate
1045 * without blocking
1046 */
1047 mapping = page_mapping(page);
1048 if (mapping && !mapping->a_ops->migratepage)
1049 return ret;
1050 }
1051 }
1052
1053 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1054 return ret;
1055
1056 if (likely(get_page_unless_zero(page))) {
1057 /*
1058 * Be careful not to clear PageLRU until after we're
1059 * sure the page is not being freed elsewhere -- the
1060 * page release code relies on it.
1061 */
1062 ClearPageLRU(page);
1063 ret = 0;
1064 }
1065
1066 return ret;
1067 }
1068
1069 /*
1070 * zone->lru_lock is heavily contended. Some of the functions that
1071 * shrink the lists perform better by taking out a batch of pages
1072 * and working on them outside the LRU lock.
1073 *
1074 * For pagecache intensive workloads, this function is the hottest
1075 * spot in the kernel (apart from copy_*_user functions).
1076 *
1077 * Appropriate locks must be held before calling this function.
1078 *
1079 * @nr_to_scan: The number of pages to look through on the list.
1080 * @lruvec: The LRU vector to pull pages from.
1081 * @dst: The temp list to put pages on to.
1082 * @nr_scanned: The number of pages that were scanned.
1083 * @sc: The scan_control struct for this reclaim session
1084 * @mode: One of the LRU isolation modes
1085 * @lru: LRU list id for isolating
1086 *
1087 * returns how many pages were moved onto *@dst.
1088 */
1089 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1090 struct lruvec *lruvec, struct list_head *dst,
1091 unsigned long *nr_scanned, struct scan_control *sc,
1092 isolate_mode_t mode, enum lru_list lru)
1093 {
1094 struct list_head *src = &lruvec->lists[lru];
1095 unsigned long nr_taken = 0;
1096 unsigned long scan;
1097
1098 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1099 struct page *page;
1100 int nr_pages;
1101
1102 page = lru_to_page(src);
1103 prefetchw_prev_lru_page(page, src, flags);
1104
1105 VM_BUG_ON(!PageLRU(page));
1106
1107 switch (__isolate_lru_page(page, mode)) {
1108 case 0:
1109 nr_pages = hpage_nr_pages(page);
1110 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1111 list_move(&page->lru, dst);
1112 nr_taken += nr_pages;
1113 break;
1114
1115 case -EBUSY:
1116 /* else it is being freed elsewhere */
1117 list_move(&page->lru, src);
1118 continue;
1119
1120 default:
1121 BUG();
1122 }
1123 }
1124
1125 *nr_scanned = scan;
1126 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1127 nr_taken, mode, is_file_lru(lru));
1128 return nr_taken;
1129 }
1130
1131 /**
1132 * isolate_lru_page - tries to isolate a page from its LRU list
1133 * @page: page to isolate from its LRU list
1134 *
1135 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1136 * vmstat statistic corresponding to whatever LRU list the page was on.
1137 *
1138 * Returns 0 if the page was removed from an LRU list.
1139 * Returns -EBUSY if the page was not on an LRU list.
1140 *
1141 * The returned page will have PageLRU() cleared. If it was found on
1142 * the active list, it will have PageActive set. If it was found on
1143 * the unevictable list, it will have the PageUnevictable bit set. That flag
1144 * may need to be cleared by the caller before letting the page go.
1145 *
1146 * The vmstat statistic corresponding to the list on which the page was
1147 * found will be decremented.
1148 *
1149 * Restrictions:
1150 * (1) Must be called with an elevated refcount on the page. This is a
1151 * fundamentnal difference from isolate_lru_pages (which is called
1152 * without a stable reference).
1153 * (2) the lru_lock must not be held.
1154 * (3) interrupts must be enabled.
1155 */
1156 int isolate_lru_page(struct page *page)
1157 {
1158 int ret = -EBUSY;
1159
1160 VM_BUG_ON(!page_count(page));
1161
1162 if (PageLRU(page)) {
1163 struct zone *zone = page_zone(page);
1164 struct lruvec *lruvec;
1165
1166 spin_lock_irq(&zone->lru_lock);
1167 lruvec = mem_cgroup_page_lruvec(page, zone);
1168 if (PageLRU(page)) {
1169 int lru = page_lru(page);
1170 get_page(page);
1171 ClearPageLRU(page);
1172 del_page_from_lru_list(page, lruvec, lru);
1173 ret = 0;
1174 }
1175 spin_unlock_irq(&zone->lru_lock);
1176 }
1177 return ret;
1178 }
1179
1180 /*
1181 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1182 * then get resheduled. When there are massive number of tasks doing page
1183 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1184 * the LRU list will go small and be scanned faster than necessary, leading to
1185 * unnecessary swapping, thrashing and OOM.
1186 */
1187 static int too_many_isolated(struct zone *zone, int file,
1188 struct scan_control *sc)
1189 {
1190 unsigned long inactive, isolated;
1191
1192 if (current_is_kswapd())
1193 return 0;
1194
1195 if (!global_reclaim(sc))
1196 return 0;
1197
1198 if (file) {
1199 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1200 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1201 } else {
1202 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1203 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1204 }
1205
1206 /*
1207 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1208 * won't get blocked by normal direct-reclaimers, forming a circular
1209 * deadlock.
1210 */
1211 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1212 inactive >>= 3;
1213
1214 return isolated > inactive;
1215 }
1216
1217 static noinline_for_stack void
1218 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1219 {
1220 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1221 struct zone *zone = lruvec_zone(lruvec);
1222 LIST_HEAD(pages_to_free);
1223
1224 /*
1225 * Put back any unfreeable pages.
1226 */
1227 while (!list_empty(page_list)) {
1228 struct page *page = lru_to_page(page_list);
1229 int lru;
1230
1231 VM_BUG_ON(PageLRU(page));
1232 list_del(&page->lru);
1233 if (unlikely(!page_evictable(page))) {
1234 spin_unlock_irq(&zone->lru_lock);
1235 putback_lru_page(page);
1236 spin_lock_irq(&zone->lru_lock);
1237 continue;
1238 }
1239
1240 lruvec = mem_cgroup_page_lruvec(page, zone);
1241
1242 SetPageLRU(page);
1243 lru = page_lru(page);
1244 add_page_to_lru_list(page, lruvec, lru);
1245
1246 if (is_active_lru(lru)) {
1247 int file = is_file_lru(lru);
1248 int numpages = hpage_nr_pages(page);
1249 reclaim_stat->recent_rotated[file] += numpages;
1250 }
1251 if (put_page_testzero(page)) {
1252 __ClearPageLRU(page);
1253 __ClearPageActive(page);
1254 del_page_from_lru_list(page, lruvec, lru);
1255
1256 if (unlikely(PageCompound(page))) {
1257 spin_unlock_irq(&zone->lru_lock);
1258 (*get_compound_page_dtor(page))(page);
1259 spin_lock_irq(&zone->lru_lock);
1260 } else
1261 list_add(&page->lru, &pages_to_free);
1262 }
1263 }
1264
1265 /*
1266 * To save our caller's stack, now use input list for pages to free.
1267 */
1268 list_splice(&pages_to_free, page_list);
1269 }
1270
1271 /*
1272 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1273 * of reclaimed pages
1274 */
1275 static noinline_for_stack unsigned long
1276 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1277 struct scan_control *sc, enum lru_list lru)
1278 {
1279 LIST_HEAD(page_list);
1280 unsigned long nr_scanned;
1281 unsigned long nr_reclaimed = 0;
1282 unsigned long nr_taken;
1283 unsigned long nr_dirty = 0;
1284 unsigned long nr_writeback = 0;
1285 isolate_mode_t isolate_mode = 0;
1286 int file = is_file_lru(lru);
1287 struct zone *zone = lruvec_zone(lruvec);
1288 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1289
1290 while (unlikely(too_many_isolated(zone, file, sc))) {
1291 congestion_wait(BLK_RW_ASYNC, HZ/10);
1292
1293 /* We are about to die and free our memory. Return now. */
1294 if (fatal_signal_pending(current))
1295 return SWAP_CLUSTER_MAX;
1296 }
1297
1298 lru_add_drain();
1299
1300 if (!sc->may_unmap)
1301 isolate_mode |= ISOLATE_UNMAPPED;
1302 if (!sc->may_writepage)
1303 isolate_mode |= ISOLATE_CLEAN;
1304
1305 spin_lock_irq(&zone->lru_lock);
1306
1307 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1308 &nr_scanned, sc, isolate_mode, lru);
1309
1310 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1311 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1312
1313 if (global_reclaim(sc)) {
1314 zone->pages_scanned += nr_scanned;
1315 if (current_is_kswapd())
1316 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1317 else
1318 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1319 }
1320 spin_unlock_irq(&zone->lru_lock);
1321
1322 if (nr_taken == 0)
1323 return 0;
1324
1325 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1326 &nr_dirty, &nr_writeback, false);
1327
1328 spin_lock_irq(&zone->lru_lock);
1329
1330 reclaim_stat->recent_scanned[file] += nr_taken;
1331
1332 if (global_reclaim(sc)) {
1333 if (current_is_kswapd())
1334 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1335 nr_reclaimed);
1336 else
1337 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1338 nr_reclaimed);
1339 }
1340
1341 putback_inactive_pages(lruvec, &page_list);
1342
1343 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1344
1345 spin_unlock_irq(&zone->lru_lock);
1346
1347 free_hot_cold_page_list(&page_list, 1);
1348
1349 /*
1350 * If reclaim is isolating dirty pages under writeback, it implies
1351 * that the long-lived page allocation rate is exceeding the page
1352 * laundering rate. Either the global limits are not being effective
1353 * at throttling processes due to the page distribution throughout
1354 * zones or there is heavy usage of a slow backing device. The
1355 * only option is to throttle from reclaim context which is not ideal
1356 * as there is no guarantee the dirtying process is throttled in the
1357 * same way balance_dirty_pages() manages.
1358 *
1359 * This scales the number of dirty pages that must be under writeback
1360 * before throttling depending on priority. It is a simple backoff
1361 * function that has the most effect in the range DEF_PRIORITY to
1362 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1363 * in trouble and reclaim is considered to be in trouble.
1364 *
1365 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1366 * DEF_PRIORITY-1 50% must be PageWriteback
1367 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1368 * ...
1369 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1370 * isolated page is PageWriteback
1371 */
1372 if (nr_writeback && nr_writeback >=
1373 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1374 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1375
1376 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1377 zone_idx(zone),
1378 nr_scanned, nr_reclaimed,
1379 sc->priority,
1380 trace_shrink_flags(file));
1381 return nr_reclaimed;
1382 }
1383
1384 /*
1385 * This moves pages from the active list to the inactive list.
1386 *
1387 * We move them the other way if the page is referenced by one or more
1388 * processes, from rmap.
1389 *
1390 * If the pages are mostly unmapped, the processing is fast and it is
1391 * appropriate to hold zone->lru_lock across the whole operation. But if
1392 * the pages are mapped, the processing is slow (page_referenced()) so we
1393 * should drop zone->lru_lock around each page. It's impossible to balance
1394 * this, so instead we remove the pages from the LRU while processing them.
1395 * It is safe to rely on PG_active against the non-LRU pages in here because
1396 * nobody will play with that bit on a non-LRU page.
1397 *
1398 * The downside is that we have to touch page->_count against each page.
1399 * But we had to alter page->flags anyway.
1400 */
1401
1402 static void move_active_pages_to_lru(struct lruvec *lruvec,
1403 struct list_head *list,
1404 struct list_head *pages_to_free,
1405 enum lru_list lru)
1406 {
1407 struct zone *zone = lruvec_zone(lruvec);
1408 unsigned long pgmoved = 0;
1409 struct page *page;
1410 int nr_pages;
1411
1412 while (!list_empty(list)) {
1413 page = lru_to_page(list);
1414 lruvec = mem_cgroup_page_lruvec(page, zone);
1415
1416 VM_BUG_ON(PageLRU(page));
1417 SetPageLRU(page);
1418
1419 nr_pages = hpage_nr_pages(page);
1420 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1421 list_move(&page->lru, &lruvec->lists[lru]);
1422 pgmoved += nr_pages;
1423
1424 if (put_page_testzero(page)) {
1425 __ClearPageLRU(page);
1426 __ClearPageActive(page);
1427 del_page_from_lru_list(page, lruvec, lru);
1428
1429 if (unlikely(PageCompound(page))) {
1430 spin_unlock_irq(&zone->lru_lock);
1431 (*get_compound_page_dtor(page))(page);
1432 spin_lock_irq(&zone->lru_lock);
1433 } else
1434 list_add(&page->lru, pages_to_free);
1435 }
1436 }
1437 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1438 if (!is_active_lru(lru))
1439 __count_vm_events(PGDEACTIVATE, pgmoved);
1440 }
1441
1442 static void shrink_active_list(unsigned long nr_to_scan,
1443 struct lruvec *lruvec,
1444 struct scan_control *sc,
1445 enum lru_list lru)
1446 {
1447 unsigned long nr_taken;
1448 unsigned long nr_scanned;
1449 unsigned long vm_flags;
1450 LIST_HEAD(l_hold); /* The pages which were snipped off */
1451 LIST_HEAD(l_active);
1452 LIST_HEAD(l_inactive);
1453 struct page *page;
1454 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1455 unsigned long nr_rotated = 0;
1456 isolate_mode_t isolate_mode = 0;
1457 int file = is_file_lru(lru);
1458 struct zone *zone = lruvec_zone(lruvec);
1459
1460 lru_add_drain();
1461
1462 if (!sc->may_unmap)
1463 isolate_mode |= ISOLATE_UNMAPPED;
1464 if (!sc->may_writepage)
1465 isolate_mode |= ISOLATE_CLEAN;
1466
1467 spin_lock_irq(&zone->lru_lock);
1468
1469 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1470 &nr_scanned, sc, isolate_mode, lru);
1471 if (global_reclaim(sc))
1472 zone->pages_scanned += nr_scanned;
1473
1474 reclaim_stat->recent_scanned[file] += nr_taken;
1475
1476 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1477 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1478 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1479 spin_unlock_irq(&zone->lru_lock);
1480
1481 while (!list_empty(&l_hold)) {
1482 cond_resched();
1483 page = lru_to_page(&l_hold);
1484 list_del(&page->lru);
1485
1486 if (unlikely(!page_evictable(page))) {
1487 putback_lru_page(page);
1488 continue;
1489 }
1490
1491 if (unlikely(buffer_heads_over_limit)) {
1492 if (page_has_private(page) && trylock_page(page)) {
1493 if (page_has_private(page))
1494 try_to_release_page(page, 0);
1495 unlock_page(page);
1496 }
1497 }
1498
1499 if (page_referenced(page, 0, sc->target_mem_cgroup,
1500 &vm_flags)) {
1501 nr_rotated += hpage_nr_pages(page);
1502 /*
1503 * Identify referenced, file-backed active pages and
1504 * give them one more trip around the active list. So
1505 * that executable code get better chances to stay in
1506 * memory under moderate memory pressure. Anon pages
1507 * are not likely to be evicted by use-once streaming
1508 * IO, plus JVM can create lots of anon VM_EXEC pages,
1509 * so we ignore them here.
1510 */
1511 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1512 list_add(&page->lru, &l_active);
1513 continue;
1514 }
1515 }
1516
1517 ClearPageActive(page); /* we are de-activating */
1518 list_add(&page->lru, &l_inactive);
1519 }
1520
1521 /*
1522 * Move pages back to the lru list.
1523 */
1524 spin_lock_irq(&zone->lru_lock);
1525 /*
1526 * Count referenced pages from currently used mappings as rotated,
1527 * even though only some of them are actually re-activated. This
1528 * helps balance scan pressure between file and anonymous pages in
1529 * get_scan_ratio.
1530 */
1531 reclaim_stat->recent_rotated[file] += nr_rotated;
1532
1533 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1534 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1535 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1536 spin_unlock_irq(&zone->lru_lock);
1537
1538 free_hot_cold_page_list(&l_hold, 1);
1539 }
1540
1541 #ifdef CONFIG_SWAP
1542 static int inactive_anon_is_low_global(struct zone *zone)
1543 {
1544 unsigned long active, inactive;
1545
1546 active = zone_page_state(zone, NR_ACTIVE_ANON);
1547 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1548
1549 if (inactive * zone->inactive_ratio < active)
1550 return 1;
1551
1552 return 0;
1553 }
1554
1555 /**
1556 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1557 * @lruvec: LRU vector to check
1558 *
1559 * Returns true if the zone does not have enough inactive anon pages,
1560 * meaning some active anon pages need to be deactivated.
1561 */
1562 static int inactive_anon_is_low(struct lruvec *lruvec)
1563 {
1564 /*
1565 * If we don't have swap space, anonymous page deactivation
1566 * is pointless.
1567 */
1568 if (!total_swap_pages)
1569 return 0;
1570
1571 if (!mem_cgroup_disabled())
1572 return mem_cgroup_inactive_anon_is_low(lruvec);
1573
1574 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1575 }
1576 #else
1577 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1578 {
1579 return 0;
1580 }
1581 #endif
1582
1583 /**
1584 * inactive_file_is_low - check if file pages need to be deactivated
1585 * @lruvec: LRU vector to check
1586 *
1587 * When the system is doing streaming IO, memory pressure here
1588 * ensures that active file pages get deactivated, until more
1589 * than half of the file pages are on the inactive list.
1590 *
1591 * Once we get to that situation, protect the system's working
1592 * set from being evicted by disabling active file page aging.
1593 *
1594 * This uses a different ratio than the anonymous pages, because
1595 * the page cache uses a use-once replacement algorithm.
1596 */
1597 static int inactive_file_is_low(struct lruvec *lruvec)
1598 {
1599 unsigned long inactive;
1600 unsigned long active;
1601
1602 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1603 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1604
1605 return active > inactive;
1606 }
1607
1608 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1609 {
1610 if (is_file_lru(lru))
1611 return inactive_file_is_low(lruvec);
1612 else
1613 return inactive_anon_is_low(lruvec);
1614 }
1615
1616 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1617 struct lruvec *lruvec, struct scan_control *sc)
1618 {
1619 if (is_active_lru(lru)) {
1620 if (inactive_list_is_low(lruvec, lru))
1621 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1622 return 0;
1623 }
1624
1625 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1626 }
1627
1628 static int vmscan_swappiness(struct scan_control *sc)
1629 {
1630 if (global_reclaim(sc))
1631 return vm_swappiness;
1632 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1633 }
1634
1635 enum scan_balance {
1636 SCAN_EQUAL,
1637 SCAN_FRACT,
1638 SCAN_ANON,
1639 SCAN_FILE,
1640 };
1641
1642 /*
1643 * Determine how aggressively the anon and file LRU lists should be
1644 * scanned. The relative value of each set of LRU lists is determined
1645 * by looking at the fraction of the pages scanned we did rotate back
1646 * onto the active list instead of evict.
1647 *
1648 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1649 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1650 */
1651 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1652 unsigned long *nr)
1653 {
1654 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1655 u64 fraction[2];
1656 u64 denominator = 0; /* gcc */
1657 struct zone *zone = lruvec_zone(lruvec);
1658 unsigned long anon_prio, file_prio;
1659 enum scan_balance scan_balance;
1660 unsigned long anon, file, free;
1661 bool force_scan = false;
1662 unsigned long ap, fp;
1663 enum lru_list lru;
1664
1665 /*
1666 * If the zone or memcg is small, nr[l] can be 0. This
1667 * results in no scanning on this priority and a potential
1668 * priority drop. Global direct reclaim can go to the next
1669 * zone and tends to have no problems. Global kswapd is for
1670 * zone balancing and it needs to scan a minimum amount. When
1671 * reclaiming for a memcg, a priority drop can cause high
1672 * latencies, so it's better to scan a minimum amount there as
1673 * well.
1674 */
1675 if (current_is_kswapd() && zone->all_unreclaimable)
1676 force_scan = true;
1677 if (!global_reclaim(sc))
1678 force_scan = true;
1679
1680 /* If we have no swap space, do not bother scanning anon pages. */
1681 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1682 scan_balance = SCAN_FILE;
1683 goto out;
1684 }
1685
1686 /*
1687 * Global reclaim will swap to prevent OOM even with no
1688 * swappiness, but memcg users want to use this knob to
1689 * disable swapping for individual groups completely when
1690 * using the memory controller's swap limit feature would be
1691 * too expensive.
1692 */
1693 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1694 scan_balance = SCAN_FILE;
1695 goto out;
1696 }
1697
1698 /*
1699 * Do not apply any pressure balancing cleverness when the
1700 * system is close to OOM, scan both anon and file equally
1701 * (unless the swappiness setting disagrees with swapping).
1702 */
1703 if (!sc->priority && vmscan_swappiness(sc)) {
1704 scan_balance = SCAN_EQUAL;
1705 goto out;
1706 }
1707
1708 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1709 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1710 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1711 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1712
1713 /*
1714 * If it's foreseeable that reclaiming the file cache won't be
1715 * enough to get the zone back into a desirable shape, we have
1716 * to swap. Better start now and leave the - probably heavily
1717 * thrashing - remaining file pages alone.
1718 */
1719 if (global_reclaim(sc)) {
1720 free = zone_page_state(zone, NR_FREE_PAGES);
1721 if (unlikely(file + free <= high_wmark_pages(zone))) {
1722 scan_balance = SCAN_ANON;
1723 goto out;
1724 }
1725 }
1726
1727 /*
1728 * There is enough inactive page cache, do not reclaim
1729 * anything from the anonymous working set right now.
1730 */
1731 if (!inactive_file_is_low(lruvec)) {
1732 scan_balance = SCAN_FILE;
1733 goto out;
1734 }
1735
1736 scan_balance = SCAN_FRACT;
1737
1738 /*
1739 * With swappiness at 100, anonymous and file have the same priority.
1740 * This scanning priority is essentially the inverse of IO cost.
1741 */
1742 anon_prio = vmscan_swappiness(sc);
1743 file_prio = 200 - anon_prio;
1744
1745 /*
1746 * OK, so we have swap space and a fair amount of page cache
1747 * pages. We use the recently rotated / recently scanned
1748 * ratios to determine how valuable each cache is.
1749 *
1750 * Because workloads change over time (and to avoid overflow)
1751 * we keep these statistics as a floating average, which ends
1752 * up weighing recent references more than old ones.
1753 *
1754 * anon in [0], file in [1]
1755 */
1756 spin_lock_irq(&zone->lru_lock);
1757 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1758 reclaim_stat->recent_scanned[0] /= 2;
1759 reclaim_stat->recent_rotated[0] /= 2;
1760 }
1761
1762 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1763 reclaim_stat->recent_scanned[1] /= 2;
1764 reclaim_stat->recent_rotated[1] /= 2;
1765 }
1766
1767 /*
1768 * The amount of pressure on anon vs file pages is inversely
1769 * proportional to the fraction of recently scanned pages on
1770 * each list that were recently referenced and in active use.
1771 */
1772 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1773 ap /= reclaim_stat->recent_rotated[0] + 1;
1774
1775 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1776 fp /= reclaim_stat->recent_rotated[1] + 1;
1777 spin_unlock_irq(&zone->lru_lock);
1778
1779 fraction[0] = ap;
1780 fraction[1] = fp;
1781 denominator = ap + fp + 1;
1782 out:
1783 for_each_evictable_lru(lru) {
1784 int file = is_file_lru(lru);
1785 unsigned long size;
1786 unsigned long scan;
1787
1788 size = get_lru_size(lruvec, lru);
1789 scan = size >> sc->priority;
1790
1791 if (!scan && force_scan)
1792 scan = min(size, SWAP_CLUSTER_MAX);
1793
1794 switch (scan_balance) {
1795 case SCAN_EQUAL:
1796 /* Scan lists relative to size */
1797 break;
1798 case SCAN_FRACT:
1799 /*
1800 * Scan types proportional to swappiness and
1801 * their relative recent reclaim efficiency.
1802 */
1803 scan = div64_u64(scan * fraction[file], denominator);
1804 break;
1805 case SCAN_FILE:
1806 case SCAN_ANON:
1807 /* Scan one type exclusively */
1808 if ((scan_balance == SCAN_FILE) != file)
1809 scan = 0;
1810 break;
1811 default:
1812 /* Look ma, no brain */
1813 BUG();
1814 }
1815 nr[lru] = scan;
1816 }
1817 }
1818
1819 /*
1820 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1821 */
1822 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1823 {
1824 unsigned long nr[NR_LRU_LISTS];
1825 unsigned long targets[NR_LRU_LISTS];
1826 unsigned long nr_to_scan;
1827 enum lru_list lru;
1828 unsigned long nr_reclaimed = 0;
1829 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1830 struct blk_plug plug;
1831 bool scan_adjusted = false;
1832
1833 get_scan_count(lruvec, sc, nr);
1834
1835 /* Record the original scan target for proportional adjustments later */
1836 memcpy(targets, nr, sizeof(nr));
1837
1838 blk_start_plug(&plug);
1839 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1840 nr[LRU_INACTIVE_FILE]) {
1841 unsigned long nr_anon, nr_file, percentage;
1842 unsigned long nr_scanned;
1843
1844 for_each_evictable_lru(lru) {
1845 if (nr[lru]) {
1846 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1847 nr[lru] -= nr_to_scan;
1848
1849 nr_reclaimed += shrink_list(lru, nr_to_scan,
1850 lruvec, sc);
1851 }
1852 }
1853
1854 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1855 continue;
1856
1857 /*
1858 * For global direct reclaim, reclaim only the number of pages
1859 * requested. Less care is taken to scan proportionally as it
1860 * is more important to minimise direct reclaim stall latency
1861 * than it is to properly age the LRU lists.
1862 */
1863 if (global_reclaim(sc) && !current_is_kswapd())
1864 break;
1865
1866 /*
1867 * For kswapd and memcg, reclaim at least the number of pages
1868 * requested. Ensure that the anon and file LRUs shrink
1869 * proportionally what was requested by get_scan_count(). We
1870 * stop reclaiming one LRU and reduce the amount scanning
1871 * proportional to the original scan target.
1872 */
1873 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1874 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1875
1876 if (nr_file > nr_anon) {
1877 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1878 targets[LRU_ACTIVE_ANON] + 1;
1879 lru = LRU_BASE;
1880 percentage = nr_anon * 100 / scan_target;
1881 } else {
1882 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1883 targets[LRU_ACTIVE_FILE] + 1;
1884 lru = LRU_FILE;
1885 percentage = nr_file * 100 / scan_target;
1886 }
1887
1888 /* Stop scanning the smaller of the LRU */
1889 nr[lru] = 0;
1890 nr[lru + LRU_ACTIVE] = 0;
1891
1892 /*
1893 * Recalculate the other LRU scan count based on its original
1894 * scan target and the percentage scanning already complete
1895 */
1896 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1897 nr_scanned = targets[lru] - nr[lru];
1898 nr[lru] = targets[lru] * (100 - percentage) / 100;
1899 nr[lru] -= min(nr[lru], nr_scanned);
1900
1901 lru += LRU_ACTIVE;
1902 nr_scanned = targets[lru] - nr[lru];
1903 nr[lru] = targets[lru] * (100 - percentage) / 100;
1904 nr[lru] -= min(nr[lru], nr_scanned);
1905
1906 scan_adjusted = true;
1907 }
1908 blk_finish_plug(&plug);
1909 sc->nr_reclaimed += nr_reclaimed;
1910
1911 /*
1912 * Even if we did not try to evict anon pages at all, we want to
1913 * rebalance the anon lru active/inactive ratio.
1914 */
1915 if (inactive_anon_is_low(lruvec))
1916 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1917 sc, LRU_ACTIVE_ANON);
1918
1919 throttle_vm_writeout(sc->gfp_mask);
1920 }
1921
1922 /* Use reclaim/compaction for costly allocs or under memory pressure */
1923 static bool in_reclaim_compaction(struct scan_control *sc)
1924 {
1925 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1926 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1927 sc->priority < DEF_PRIORITY - 2))
1928 return true;
1929
1930 return false;
1931 }
1932
1933 /*
1934 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1935 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1936 * true if more pages should be reclaimed such that when the page allocator
1937 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1938 * It will give up earlier than that if there is difficulty reclaiming pages.
1939 */
1940 static inline bool should_continue_reclaim(struct zone *zone,
1941 unsigned long nr_reclaimed,
1942 unsigned long nr_scanned,
1943 struct scan_control *sc)
1944 {
1945 unsigned long pages_for_compaction;
1946 unsigned long inactive_lru_pages;
1947
1948 /* If not in reclaim/compaction mode, stop */
1949 if (!in_reclaim_compaction(sc))
1950 return false;
1951
1952 /* Consider stopping depending on scan and reclaim activity */
1953 if (sc->gfp_mask & __GFP_REPEAT) {
1954 /*
1955 * For __GFP_REPEAT allocations, stop reclaiming if the
1956 * full LRU list has been scanned and we are still failing
1957 * to reclaim pages. This full LRU scan is potentially
1958 * expensive but a __GFP_REPEAT caller really wants to succeed
1959 */
1960 if (!nr_reclaimed && !nr_scanned)
1961 return false;
1962 } else {
1963 /*
1964 * For non-__GFP_REPEAT allocations which can presumably
1965 * fail without consequence, stop if we failed to reclaim
1966 * any pages from the last SWAP_CLUSTER_MAX number of
1967 * pages that were scanned. This will return to the
1968 * caller faster at the risk reclaim/compaction and
1969 * the resulting allocation attempt fails
1970 */
1971 if (!nr_reclaimed)
1972 return false;
1973 }
1974
1975 /*
1976 * If we have not reclaimed enough pages for compaction and the
1977 * inactive lists are large enough, continue reclaiming
1978 */
1979 pages_for_compaction = (2UL << sc->order);
1980 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1981 if (get_nr_swap_pages() > 0)
1982 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1983 if (sc->nr_reclaimed < pages_for_compaction &&
1984 inactive_lru_pages > pages_for_compaction)
1985 return true;
1986
1987 /* If compaction would go ahead or the allocation would succeed, stop */
1988 switch (compaction_suitable(zone, sc->order)) {
1989 case COMPACT_PARTIAL:
1990 case COMPACT_CONTINUE:
1991 return false;
1992 default:
1993 return true;
1994 }
1995 }
1996
1997 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1998 {
1999 unsigned long nr_reclaimed, nr_scanned;
2000
2001 do {
2002 struct mem_cgroup *root = sc->target_mem_cgroup;
2003 struct mem_cgroup_reclaim_cookie reclaim = {
2004 .zone = zone,
2005 .priority = sc->priority,
2006 };
2007 struct mem_cgroup *memcg;
2008
2009 nr_reclaimed = sc->nr_reclaimed;
2010 nr_scanned = sc->nr_scanned;
2011
2012 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2013 do {
2014 struct lruvec *lruvec;
2015
2016 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2017
2018 shrink_lruvec(lruvec, sc);
2019
2020 /*
2021 * Direct reclaim and kswapd have to scan all memory
2022 * cgroups to fulfill the overall scan target for the
2023 * zone.
2024 *
2025 * Limit reclaim, on the other hand, only cares about
2026 * nr_to_reclaim pages to be reclaimed and it will
2027 * retry with decreasing priority if one round over the
2028 * whole hierarchy is not sufficient.
2029 */
2030 if (!global_reclaim(sc) &&
2031 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2032 mem_cgroup_iter_break(root, memcg);
2033 break;
2034 }
2035 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2036 } while (memcg);
2037
2038 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2039 sc->nr_scanned - nr_scanned,
2040 sc->nr_reclaimed - nr_reclaimed);
2041
2042 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2043 sc->nr_scanned - nr_scanned, sc));
2044 }
2045
2046 /* Returns true if compaction should go ahead for a high-order request */
2047 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2048 {
2049 unsigned long balance_gap, watermark;
2050 bool watermark_ok;
2051
2052 /* Do not consider compaction for orders reclaim is meant to satisfy */
2053 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2054 return false;
2055
2056 /*
2057 * Compaction takes time to run and there are potentially other
2058 * callers using the pages just freed. Continue reclaiming until
2059 * there is a buffer of free pages available to give compaction
2060 * a reasonable chance of completing and allocating the page
2061 */
2062 balance_gap = min(low_wmark_pages(zone),
2063 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2064 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2065 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2066 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2067
2068 /*
2069 * If compaction is deferred, reclaim up to a point where
2070 * compaction will have a chance of success when re-enabled
2071 */
2072 if (compaction_deferred(zone, sc->order))
2073 return watermark_ok;
2074
2075 /* If compaction is not ready to start, keep reclaiming */
2076 if (!compaction_suitable(zone, sc->order))
2077 return false;
2078
2079 return watermark_ok;
2080 }
2081
2082 /*
2083 * This is the direct reclaim path, for page-allocating processes. We only
2084 * try to reclaim pages from zones which will satisfy the caller's allocation
2085 * request.
2086 *
2087 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2088 * Because:
2089 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2090 * allocation or
2091 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2092 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2093 * zone defense algorithm.
2094 *
2095 * If a zone is deemed to be full of pinned pages then just give it a light
2096 * scan then give up on it.
2097 *
2098 * This function returns true if a zone is being reclaimed for a costly
2099 * high-order allocation and compaction is ready to begin. This indicates to
2100 * the caller that it should consider retrying the allocation instead of
2101 * further reclaim.
2102 */
2103 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2104 {
2105 struct zoneref *z;
2106 struct zone *zone;
2107 unsigned long nr_soft_reclaimed;
2108 unsigned long nr_soft_scanned;
2109 bool aborted_reclaim = false;
2110
2111 /*
2112 * If the number of buffer_heads in the machine exceeds the maximum
2113 * allowed level, force direct reclaim to scan the highmem zone as
2114 * highmem pages could be pinning lowmem pages storing buffer_heads
2115 */
2116 if (buffer_heads_over_limit)
2117 sc->gfp_mask |= __GFP_HIGHMEM;
2118
2119 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2120 gfp_zone(sc->gfp_mask), sc->nodemask) {
2121 if (!populated_zone(zone))
2122 continue;
2123 /*
2124 * Take care memory controller reclaiming has small influence
2125 * to global LRU.
2126 */
2127 if (global_reclaim(sc)) {
2128 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2129 continue;
2130 if (zone->all_unreclaimable &&
2131 sc->priority != DEF_PRIORITY)
2132 continue; /* Let kswapd poll it */
2133 if (IS_ENABLED(CONFIG_COMPACTION)) {
2134 /*
2135 * If we already have plenty of memory free for
2136 * compaction in this zone, don't free any more.
2137 * Even though compaction is invoked for any
2138 * non-zero order, only frequent costly order
2139 * reclamation is disruptive enough to become a
2140 * noticeable problem, like transparent huge
2141 * page allocations.
2142 */
2143 if (compaction_ready(zone, sc)) {
2144 aborted_reclaim = true;
2145 continue;
2146 }
2147 }
2148 /*
2149 * This steals pages from memory cgroups over softlimit
2150 * and returns the number of reclaimed pages and
2151 * scanned pages. This works for global memory pressure
2152 * and balancing, not for a memcg's limit.
2153 */
2154 nr_soft_scanned = 0;
2155 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2156 sc->order, sc->gfp_mask,
2157 &nr_soft_scanned);
2158 sc->nr_reclaimed += nr_soft_reclaimed;
2159 sc->nr_scanned += nr_soft_scanned;
2160 /* need some check for avoid more shrink_zone() */
2161 }
2162
2163 shrink_zone(zone, sc);
2164 }
2165
2166 return aborted_reclaim;
2167 }
2168
2169 static bool zone_reclaimable(struct zone *zone)
2170 {
2171 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2172 }
2173
2174 /* All zones in zonelist are unreclaimable? */
2175 static bool all_unreclaimable(struct zonelist *zonelist,
2176 struct scan_control *sc)
2177 {
2178 struct zoneref *z;
2179 struct zone *zone;
2180
2181 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2182 gfp_zone(sc->gfp_mask), sc->nodemask) {
2183 if (!populated_zone(zone))
2184 continue;
2185 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2186 continue;
2187 if (!zone->all_unreclaimable)
2188 return false;
2189 }
2190
2191 return true;
2192 }
2193
2194 /*
2195 * This is the main entry point to direct page reclaim.
2196 *
2197 * If a full scan of the inactive list fails to free enough memory then we
2198 * are "out of memory" and something needs to be killed.
2199 *
2200 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2201 * high - the zone may be full of dirty or under-writeback pages, which this
2202 * caller can't do much about. We kick the writeback threads and take explicit
2203 * naps in the hope that some of these pages can be written. But if the
2204 * allocating task holds filesystem locks which prevent writeout this might not
2205 * work, and the allocation attempt will fail.
2206 *
2207 * returns: 0, if no pages reclaimed
2208 * else, the number of pages reclaimed
2209 */
2210 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2211 struct scan_control *sc,
2212 struct shrink_control *shrink)
2213 {
2214 unsigned long total_scanned = 0;
2215 struct reclaim_state *reclaim_state = current->reclaim_state;
2216 struct zoneref *z;
2217 struct zone *zone;
2218 unsigned long writeback_threshold;
2219 bool aborted_reclaim;
2220
2221 delayacct_freepages_start();
2222
2223 if (global_reclaim(sc))
2224 count_vm_event(ALLOCSTALL);
2225
2226 do {
2227 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2228 sc->priority);
2229 sc->nr_scanned = 0;
2230 aborted_reclaim = shrink_zones(zonelist, sc);
2231
2232 /*
2233 * Don't shrink slabs when reclaiming memory from
2234 * over limit cgroups
2235 */
2236 if (global_reclaim(sc)) {
2237 unsigned long lru_pages = 0;
2238 for_each_zone_zonelist(zone, z, zonelist,
2239 gfp_zone(sc->gfp_mask)) {
2240 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2241 continue;
2242
2243 lru_pages += zone_reclaimable_pages(zone);
2244 }
2245
2246 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2247 if (reclaim_state) {
2248 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2249 reclaim_state->reclaimed_slab = 0;
2250 }
2251 }
2252 total_scanned += sc->nr_scanned;
2253 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2254 goto out;
2255
2256 /*
2257 * If we're getting trouble reclaiming, start doing
2258 * writepage even in laptop mode.
2259 */
2260 if (sc->priority < DEF_PRIORITY - 2)
2261 sc->may_writepage = 1;
2262
2263 /*
2264 * Try to write back as many pages as we just scanned. This
2265 * tends to cause slow streaming writers to write data to the
2266 * disk smoothly, at the dirtying rate, which is nice. But
2267 * that's undesirable in laptop mode, where we *want* lumpy
2268 * writeout. So in laptop mode, write out the whole world.
2269 */
2270 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2271 if (total_scanned > writeback_threshold) {
2272 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2273 WB_REASON_TRY_TO_FREE_PAGES);
2274 sc->may_writepage = 1;
2275 }
2276
2277 /* Take a nap, wait for some writeback to complete */
2278 if (!sc->hibernation_mode && sc->nr_scanned &&
2279 sc->priority < DEF_PRIORITY - 2) {
2280 struct zone *preferred_zone;
2281
2282 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2283 &cpuset_current_mems_allowed,
2284 &preferred_zone);
2285 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2286 }
2287 } while (--sc->priority >= 0);
2288
2289 out:
2290 delayacct_freepages_end();
2291
2292 if (sc->nr_reclaimed)
2293 return sc->nr_reclaimed;
2294
2295 /*
2296 * As hibernation is going on, kswapd is freezed so that it can't mark
2297 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2298 * check.
2299 */
2300 if (oom_killer_disabled)
2301 return 0;
2302
2303 /* Aborted reclaim to try compaction? don't OOM, then */
2304 if (aborted_reclaim)
2305 return 1;
2306
2307 /* top priority shrink_zones still had more to do? don't OOM, then */
2308 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2309 return 1;
2310
2311 return 0;
2312 }
2313
2314 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2315 {
2316 struct zone *zone;
2317 unsigned long pfmemalloc_reserve = 0;
2318 unsigned long free_pages = 0;
2319 int i;
2320 bool wmark_ok;
2321
2322 for (i = 0; i <= ZONE_NORMAL; i++) {
2323 zone = &pgdat->node_zones[i];
2324 pfmemalloc_reserve += min_wmark_pages(zone);
2325 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2326 }
2327
2328 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2329
2330 /* kswapd must be awake if processes are being throttled */
2331 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2332 pgdat->classzone_idx = min(pgdat->classzone_idx,
2333 (enum zone_type)ZONE_NORMAL);
2334 wake_up_interruptible(&pgdat->kswapd_wait);
2335 }
2336
2337 return wmark_ok;
2338 }
2339
2340 /*
2341 * Throttle direct reclaimers if backing storage is backed by the network
2342 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2343 * depleted. kswapd will continue to make progress and wake the processes
2344 * when the low watermark is reached.
2345 *
2346 * Returns true if a fatal signal was delivered during throttling. If this
2347 * happens, the page allocator should not consider triggering the OOM killer.
2348 */
2349 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2350 nodemask_t *nodemask)
2351 {
2352 struct zone *zone;
2353 int high_zoneidx = gfp_zone(gfp_mask);
2354 pg_data_t *pgdat;
2355
2356 /*
2357 * Kernel threads should not be throttled as they may be indirectly
2358 * responsible for cleaning pages necessary for reclaim to make forward
2359 * progress. kjournald for example may enter direct reclaim while
2360 * committing a transaction where throttling it could forcing other
2361 * processes to block on log_wait_commit().
2362 */
2363 if (current->flags & PF_KTHREAD)
2364 goto out;
2365
2366 /*
2367 * If a fatal signal is pending, this process should not throttle.
2368 * It should return quickly so it can exit and free its memory
2369 */
2370 if (fatal_signal_pending(current))
2371 goto out;
2372
2373 /* Check if the pfmemalloc reserves are ok */
2374 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2375 pgdat = zone->zone_pgdat;
2376 if (pfmemalloc_watermark_ok(pgdat))
2377 goto out;
2378
2379 /* Account for the throttling */
2380 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2381
2382 /*
2383 * If the caller cannot enter the filesystem, it's possible that it
2384 * is due to the caller holding an FS lock or performing a journal
2385 * transaction in the case of a filesystem like ext[3|4]. In this case,
2386 * it is not safe to block on pfmemalloc_wait as kswapd could be
2387 * blocked waiting on the same lock. Instead, throttle for up to a
2388 * second before continuing.
2389 */
2390 if (!(gfp_mask & __GFP_FS)) {
2391 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2392 pfmemalloc_watermark_ok(pgdat), HZ);
2393
2394 goto check_pending;
2395 }
2396
2397 /* Throttle until kswapd wakes the process */
2398 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2399 pfmemalloc_watermark_ok(pgdat));
2400
2401 check_pending:
2402 if (fatal_signal_pending(current))
2403 return true;
2404
2405 out:
2406 return false;
2407 }
2408
2409 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2410 gfp_t gfp_mask, nodemask_t *nodemask)
2411 {
2412 unsigned long nr_reclaimed;
2413 struct scan_control sc = {
2414 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2415 .may_writepage = !laptop_mode,
2416 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2417 .may_unmap = 1,
2418 .may_swap = 1,
2419 .order = order,
2420 .priority = DEF_PRIORITY,
2421 .target_mem_cgroup = NULL,
2422 .nodemask = nodemask,
2423 };
2424 struct shrink_control shrink = {
2425 .gfp_mask = sc.gfp_mask,
2426 };
2427
2428 /*
2429 * Do not enter reclaim if fatal signal was delivered while throttled.
2430 * 1 is returned so that the page allocator does not OOM kill at this
2431 * point.
2432 */
2433 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2434 return 1;
2435
2436 trace_mm_vmscan_direct_reclaim_begin(order,
2437 sc.may_writepage,
2438 gfp_mask);
2439
2440 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2441
2442 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2443
2444 return nr_reclaimed;
2445 }
2446
2447 #ifdef CONFIG_MEMCG
2448
2449 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2450 gfp_t gfp_mask, bool noswap,
2451 struct zone *zone,
2452 unsigned long *nr_scanned)
2453 {
2454 struct scan_control sc = {
2455 .nr_scanned = 0,
2456 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2457 .may_writepage = !laptop_mode,
2458 .may_unmap = 1,
2459 .may_swap = !noswap,
2460 .order = 0,
2461 .priority = 0,
2462 .target_mem_cgroup = memcg,
2463 };
2464 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2465
2466 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2467 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2468
2469 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2470 sc.may_writepage,
2471 sc.gfp_mask);
2472
2473 /*
2474 * NOTE: Although we can get the priority field, using it
2475 * here is not a good idea, since it limits the pages we can scan.
2476 * if we don't reclaim here, the shrink_zone from balance_pgdat
2477 * will pick up pages from other mem cgroup's as well. We hack
2478 * the priority and make it zero.
2479 */
2480 shrink_lruvec(lruvec, &sc);
2481
2482 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2483
2484 *nr_scanned = sc.nr_scanned;
2485 return sc.nr_reclaimed;
2486 }
2487
2488 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2489 gfp_t gfp_mask,
2490 bool noswap)
2491 {
2492 struct zonelist *zonelist;
2493 unsigned long nr_reclaimed;
2494 int nid;
2495 struct scan_control sc = {
2496 .may_writepage = !laptop_mode,
2497 .may_unmap = 1,
2498 .may_swap = !noswap,
2499 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2500 .order = 0,
2501 .priority = DEF_PRIORITY,
2502 .target_mem_cgroup = memcg,
2503 .nodemask = NULL, /* we don't care the placement */
2504 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2505 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2506 };
2507 struct shrink_control shrink = {
2508 .gfp_mask = sc.gfp_mask,
2509 };
2510
2511 /*
2512 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2513 * take care of from where we get pages. So the node where we start the
2514 * scan does not need to be the current node.
2515 */
2516 nid = mem_cgroup_select_victim_node(memcg);
2517
2518 zonelist = NODE_DATA(nid)->node_zonelists;
2519
2520 trace_mm_vmscan_memcg_reclaim_begin(0,
2521 sc.may_writepage,
2522 sc.gfp_mask);
2523
2524 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2525
2526 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2527
2528 return nr_reclaimed;
2529 }
2530 #endif
2531
2532 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2533 {
2534 struct mem_cgroup *memcg;
2535
2536 if (!total_swap_pages)
2537 return;
2538
2539 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2540 do {
2541 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2542
2543 if (inactive_anon_is_low(lruvec))
2544 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2545 sc, LRU_ACTIVE_ANON);
2546
2547 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2548 } while (memcg);
2549 }
2550
2551 static bool zone_balanced(struct zone *zone, int order,
2552 unsigned long balance_gap, int classzone_idx)
2553 {
2554 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2555 balance_gap, classzone_idx, 0))
2556 return false;
2557
2558 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2559 !compaction_suitable(zone, order))
2560 return false;
2561
2562 return true;
2563 }
2564
2565 /*
2566 * pgdat_balanced() is used when checking if a node is balanced.
2567 *
2568 * For order-0, all zones must be balanced!
2569 *
2570 * For high-order allocations only zones that meet watermarks and are in a
2571 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2572 * total of balanced pages must be at least 25% of the zones allowed by
2573 * classzone_idx for the node to be considered balanced. Forcing all zones to
2574 * be balanced for high orders can cause excessive reclaim when there are
2575 * imbalanced zones.
2576 * The choice of 25% is due to
2577 * o a 16M DMA zone that is balanced will not balance a zone on any
2578 * reasonable sized machine
2579 * o On all other machines, the top zone must be at least a reasonable
2580 * percentage of the middle zones. For example, on 32-bit x86, highmem
2581 * would need to be at least 256M for it to be balance a whole node.
2582 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2583 * to balance a node on its own. These seemed like reasonable ratios.
2584 */
2585 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2586 {
2587 unsigned long managed_pages = 0;
2588 unsigned long balanced_pages = 0;
2589 int i;
2590
2591 /* Check the watermark levels */
2592 for (i = 0; i <= classzone_idx; i++) {
2593 struct zone *zone = pgdat->node_zones + i;
2594
2595 if (!populated_zone(zone))
2596 continue;
2597
2598 managed_pages += zone->managed_pages;
2599
2600 /*
2601 * A special case here:
2602 *
2603 * balance_pgdat() skips over all_unreclaimable after
2604 * DEF_PRIORITY. Effectively, it considers them balanced so
2605 * they must be considered balanced here as well!
2606 */
2607 if (zone->all_unreclaimable) {
2608 balanced_pages += zone->managed_pages;
2609 continue;
2610 }
2611
2612 if (zone_balanced(zone, order, 0, i))
2613 balanced_pages += zone->managed_pages;
2614 else if (!order)
2615 return false;
2616 }
2617
2618 if (order)
2619 return balanced_pages >= (managed_pages >> 2);
2620 else
2621 return true;
2622 }
2623
2624 /*
2625 * Prepare kswapd for sleeping. This verifies that there are no processes
2626 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2627 *
2628 * Returns true if kswapd is ready to sleep
2629 */
2630 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2631 int classzone_idx)
2632 {
2633 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2634 if (remaining)
2635 return false;
2636
2637 /*
2638 * There is a potential race between when kswapd checks its watermarks
2639 * and a process gets throttled. There is also a potential race if
2640 * processes get throttled, kswapd wakes, a large process exits therby
2641 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2642 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2643 * so wake them now if necessary. If necessary, processes will wake
2644 * kswapd and get throttled again
2645 */
2646 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2647 wake_up(&pgdat->pfmemalloc_wait);
2648 return false;
2649 }
2650
2651 return pgdat_balanced(pgdat, order, classzone_idx);
2652 }
2653
2654 /*
2655 * kswapd shrinks the zone by the number of pages required to reach
2656 * the high watermark.
2657 *
2658 * Returns true if kswapd scanned at least the requested number of pages to
2659 * reclaim. This is used to determine if the scanning priority needs to be
2660 * raised.
2661 */
2662 static bool kswapd_shrink_zone(struct zone *zone,
2663 struct scan_control *sc,
2664 unsigned long lru_pages,
2665 unsigned long *nr_attempted)
2666 {
2667 unsigned long nr_slab;
2668 struct reclaim_state *reclaim_state = current->reclaim_state;
2669 struct shrink_control shrink = {
2670 .gfp_mask = sc->gfp_mask,
2671 };
2672
2673 /* Reclaim above the high watermark. */
2674 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2675 shrink_zone(zone, sc);
2676
2677 reclaim_state->reclaimed_slab = 0;
2678 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2679 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2680
2681 /* Account for the number of pages attempted to reclaim */
2682 *nr_attempted += sc->nr_to_reclaim;
2683
2684 if (nr_slab == 0 && !zone_reclaimable(zone))
2685 zone->all_unreclaimable = 1;
2686
2687 return sc->nr_scanned >= sc->nr_to_reclaim;
2688 }
2689
2690 /*
2691 * For kswapd, balance_pgdat() will work across all this node's zones until
2692 * they are all at high_wmark_pages(zone).
2693 *
2694 * Returns the final order kswapd was reclaiming at
2695 *
2696 * There is special handling here for zones which are full of pinned pages.
2697 * This can happen if the pages are all mlocked, or if they are all used by
2698 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2699 * What we do is to detect the case where all pages in the zone have been
2700 * scanned twice and there has been zero successful reclaim. Mark the zone as
2701 * dead and from now on, only perform a short scan. Basically we're polling
2702 * the zone for when the problem goes away.
2703 *
2704 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2705 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2706 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2707 * lower zones regardless of the number of free pages in the lower zones. This
2708 * interoperates with the page allocator fallback scheme to ensure that aging
2709 * of pages is balanced across the zones.
2710 */
2711 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2712 int *classzone_idx)
2713 {
2714 int i;
2715 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2716 unsigned long nr_soft_reclaimed;
2717 unsigned long nr_soft_scanned;
2718 struct scan_control sc = {
2719 .gfp_mask = GFP_KERNEL,
2720 .priority = DEF_PRIORITY,
2721 .may_unmap = 1,
2722 .may_swap = 1,
2723 .may_writepage = !laptop_mode,
2724 .order = order,
2725 .target_mem_cgroup = NULL,
2726 };
2727 count_vm_event(PAGEOUTRUN);
2728
2729 do {
2730 unsigned long lru_pages = 0;
2731 unsigned long nr_attempted = 0;
2732 bool raise_priority = true;
2733 bool pgdat_needs_compaction = (order > 0);
2734
2735 sc.nr_reclaimed = 0;
2736
2737 /*
2738 * Scan in the highmem->dma direction for the highest
2739 * zone which needs scanning
2740 */
2741 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2742 struct zone *zone = pgdat->node_zones + i;
2743
2744 if (!populated_zone(zone))
2745 continue;
2746
2747 if (zone->all_unreclaimable &&
2748 sc.priority != DEF_PRIORITY)
2749 continue;
2750
2751 /*
2752 * Do some background aging of the anon list, to give
2753 * pages a chance to be referenced before reclaiming.
2754 */
2755 age_active_anon(zone, &sc);
2756
2757 /*
2758 * If the number of buffer_heads in the machine
2759 * exceeds the maximum allowed level and this node
2760 * has a highmem zone, force kswapd to reclaim from
2761 * it to relieve lowmem pressure.
2762 */
2763 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2764 end_zone = i;
2765 break;
2766 }
2767
2768 if (!zone_balanced(zone, order, 0, 0)) {
2769 end_zone = i;
2770 break;
2771 } else {
2772 /* If balanced, clear the congested flag */
2773 zone_clear_flag(zone, ZONE_CONGESTED);
2774 }
2775 }
2776
2777 if (i < 0)
2778 goto out;
2779
2780 for (i = 0; i <= end_zone; i++) {
2781 struct zone *zone = pgdat->node_zones + i;
2782
2783 if (!populated_zone(zone))
2784 continue;
2785
2786 lru_pages += zone_reclaimable_pages(zone);
2787
2788 /*
2789 * If any zone is currently balanced then kswapd will
2790 * not call compaction as it is expected that the
2791 * necessary pages are already available.
2792 */
2793 if (pgdat_needs_compaction &&
2794 zone_watermark_ok(zone, order,
2795 low_wmark_pages(zone),
2796 *classzone_idx, 0))
2797 pgdat_needs_compaction = false;
2798 }
2799
2800 /*
2801 * Now scan the zone in the dma->highmem direction, stopping
2802 * at the last zone which needs scanning.
2803 *
2804 * We do this because the page allocator works in the opposite
2805 * direction. This prevents the page allocator from allocating
2806 * pages behind kswapd's direction of progress, which would
2807 * cause too much scanning of the lower zones.
2808 */
2809 for (i = 0; i <= end_zone; i++) {
2810 struct zone *zone = pgdat->node_zones + i;
2811 int testorder;
2812 unsigned long balance_gap;
2813
2814 if (!populated_zone(zone))
2815 continue;
2816
2817 if (zone->all_unreclaimable &&
2818 sc.priority != DEF_PRIORITY)
2819 continue;
2820
2821 sc.nr_scanned = 0;
2822
2823 nr_soft_scanned = 0;
2824 /*
2825 * Call soft limit reclaim before calling shrink_zone.
2826 */
2827 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2828 order, sc.gfp_mask,
2829 &nr_soft_scanned);
2830 sc.nr_reclaimed += nr_soft_reclaimed;
2831
2832 /*
2833 * We put equal pressure on every zone, unless
2834 * one zone has way too many pages free
2835 * already. The "too many pages" is defined
2836 * as the high wmark plus a "gap" where the
2837 * gap is either the low watermark or 1%
2838 * of the zone, whichever is smaller.
2839 */
2840 balance_gap = min(low_wmark_pages(zone),
2841 (zone->managed_pages +
2842 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2843 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2844 /*
2845 * Kswapd reclaims only single pages with compaction
2846 * enabled. Trying too hard to reclaim until contiguous
2847 * free pages have become available can hurt performance
2848 * by evicting too much useful data from memory.
2849 * Do not reclaim more than needed for compaction.
2850 */
2851 testorder = order;
2852 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2853 compaction_suitable(zone, order) !=
2854 COMPACT_SKIPPED)
2855 testorder = 0;
2856
2857 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2858 !zone_balanced(zone, testorder,
2859 balance_gap, end_zone)) {
2860 /*
2861 * There should be no need to raise the
2862 * scanning priority if enough pages are
2863 * already being scanned that high
2864 * watermark would be met at 100% efficiency.
2865 */
2866 if (kswapd_shrink_zone(zone, &sc, lru_pages,
2867 &nr_attempted))
2868 raise_priority = false;
2869 }
2870
2871 /*
2872 * If we're getting trouble reclaiming, start doing
2873 * writepage even in laptop mode.
2874 */
2875 if (sc.priority < DEF_PRIORITY - 2)
2876 sc.may_writepage = 1;
2877
2878 if (zone->all_unreclaimable) {
2879 if (end_zone && end_zone == i)
2880 end_zone--;
2881 continue;
2882 }
2883
2884 if (zone_balanced(zone, testorder, 0, end_zone))
2885 /*
2886 * If a zone reaches its high watermark,
2887 * consider it to be no longer congested. It's
2888 * possible there are dirty pages backed by
2889 * congested BDIs but as pressure is relieved,
2890 * speculatively avoid congestion waits
2891 */
2892 zone_clear_flag(zone, ZONE_CONGESTED);
2893 }
2894
2895 /*
2896 * If the low watermark is met there is no need for processes
2897 * to be throttled on pfmemalloc_wait as they should not be
2898 * able to safely make forward progress. Wake them
2899 */
2900 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2901 pfmemalloc_watermark_ok(pgdat))
2902 wake_up(&pgdat->pfmemalloc_wait);
2903
2904 /*
2905 * Fragmentation may mean that the system cannot be rebalanced
2906 * for high-order allocations in all zones. If twice the
2907 * allocation size has been reclaimed and the zones are still
2908 * not balanced then recheck the watermarks at order-0 to
2909 * prevent kswapd reclaiming excessively. Assume that a
2910 * process requested a high-order can direct reclaim/compact.
2911 */
2912 if (order && sc.nr_reclaimed >= 2UL << order)
2913 order = sc.order = 0;
2914
2915 /* Check if kswapd should be suspending */
2916 if (try_to_freeze() || kthread_should_stop())
2917 break;
2918
2919 /*
2920 * Compact if necessary and kswapd is reclaiming at least the
2921 * high watermark number of pages as requsted
2922 */
2923 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
2924 compact_pgdat(pgdat, order);
2925
2926 /*
2927 * Raise priority if scanning rate is too low or there was no
2928 * progress in reclaiming pages
2929 */
2930 if (raise_priority || !sc.nr_reclaimed)
2931 sc.priority--;
2932 } while (sc.priority >= 1 &&
2933 !pgdat_balanced(pgdat, order, *classzone_idx));
2934
2935 out:
2936 /*
2937 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2938 * makes a decision on the order we were last reclaiming at. However,
2939 * if another caller entered the allocator slow path while kswapd
2940 * was awake, order will remain at the higher level
2941 */
2942 *classzone_idx = end_zone;
2943 return order;
2944 }
2945
2946 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2947 {
2948 long remaining = 0;
2949 DEFINE_WAIT(wait);
2950
2951 if (freezing(current) || kthread_should_stop())
2952 return;
2953
2954 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2955
2956 /* Try to sleep for a short interval */
2957 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2958 remaining = schedule_timeout(HZ/10);
2959 finish_wait(&pgdat->kswapd_wait, &wait);
2960 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2961 }
2962
2963 /*
2964 * After a short sleep, check if it was a premature sleep. If not, then
2965 * go fully to sleep until explicitly woken up.
2966 */
2967 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2968 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2969
2970 /*
2971 * vmstat counters are not perfectly accurate and the estimated
2972 * value for counters such as NR_FREE_PAGES can deviate from the
2973 * true value by nr_online_cpus * threshold. To avoid the zone
2974 * watermarks being breached while under pressure, we reduce the
2975 * per-cpu vmstat threshold while kswapd is awake and restore
2976 * them before going back to sleep.
2977 */
2978 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2979
2980 /*
2981 * Compaction records what page blocks it recently failed to
2982 * isolate pages from and skips them in the future scanning.
2983 * When kswapd is going to sleep, it is reasonable to assume
2984 * that pages and compaction may succeed so reset the cache.
2985 */
2986 reset_isolation_suitable(pgdat);
2987
2988 if (!kthread_should_stop())
2989 schedule();
2990
2991 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2992 } else {
2993 if (remaining)
2994 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2995 else
2996 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2997 }
2998 finish_wait(&pgdat->kswapd_wait, &wait);
2999 }
3000
3001 /*
3002 * The background pageout daemon, started as a kernel thread
3003 * from the init process.
3004 *
3005 * This basically trickles out pages so that we have _some_
3006 * free memory available even if there is no other activity
3007 * that frees anything up. This is needed for things like routing
3008 * etc, where we otherwise might have all activity going on in
3009 * asynchronous contexts that cannot page things out.
3010 *
3011 * If there are applications that are active memory-allocators
3012 * (most normal use), this basically shouldn't matter.
3013 */
3014 static int kswapd(void *p)
3015 {
3016 unsigned long order, new_order;
3017 unsigned balanced_order;
3018 int classzone_idx, new_classzone_idx;
3019 int balanced_classzone_idx;
3020 pg_data_t *pgdat = (pg_data_t*)p;
3021 struct task_struct *tsk = current;
3022
3023 struct reclaim_state reclaim_state = {
3024 .reclaimed_slab = 0,
3025 };
3026 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3027
3028 lockdep_set_current_reclaim_state(GFP_KERNEL);
3029
3030 if (!cpumask_empty(cpumask))
3031 set_cpus_allowed_ptr(tsk, cpumask);
3032 current->reclaim_state = &reclaim_state;
3033
3034 /*
3035 * Tell the memory management that we're a "memory allocator",
3036 * and that if we need more memory we should get access to it
3037 * regardless (see "__alloc_pages()"). "kswapd" should
3038 * never get caught in the normal page freeing logic.
3039 *
3040 * (Kswapd normally doesn't need memory anyway, but sometimes
3041 * you need a small amount of memory in order to be able to
3042 * page out something else, and this flag essentially protects
3043 * us from recursively trying to free more memory as we're
3044 * trying to free the first piece of memory in the first place).
3045 */
3046 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3047 set_freezable();
3048
3049 order = new_order = 0;
3050 balanced_order = 0;
3051 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3052 balanced_classzone_idx = classzone_idx;
3053 for ( ; ; ) {
3054 bool ret;
3055
3056 /*
3057 * If the last balance_pgdat was unsuccessful it's unlikely a
3058 * new request of a similar or harder type will succeed soon
3059 * so consider going to sleep on the basis we reclaimed at
3060 */
3061 if (balanced_classzone_idx >= new_classzone_idx &&
3062 balanced_order == new_order) {
3063 new_order = pgdat->kswapd_max_order;
3064 new_classzone_idx = pgdat->classzone_idx;
3065 pgdat->kswapd_max_order = 0;
3066 pgdat->classzone_idx = pgdat->nr_zones - 1;
3067 }
3068
3069 if (order < new_order || classzone_idx > new_classzone_idx) {
3070 /*
3071 * Don't sleep if someone wants a larger 'order'
3072 * allocation or has tigher zone constraints
3073 */
3074 order = new_order;
3075 classzone_idx = new_classzone_idx;
3076 } else {
3077 kswapd_try_to_sleep(pgdat, balanced_order,
3078 balanced_classzone_idx);
3079 order = pgdat->kswapd_max_order;
3080 classzone_idx = pgdat->classzone_idx;
3081 new_order = order;
3082 new_classzone_idx = classzone_idx;
3083 pgdat->kswapd_max_order = 0;
3084 pgdat->classzone_idx = pgdat->nr_zones - 1;
3085 }
3086
3087 ret = try_to_freeze();
3088 if (kthread_should_stop())
3089 break;
3090
3091 /*
3092 * We can speed up thawing tasks if we don't call balance_pgdat
3093 * after returning from the refrigerator
3094 */
3095 if (!ret) {
3096 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3097 balanced_classzone_idx = classzone_idx;
3098 balanced_order = balance_pgdat(pgdat, order,
3099 &balanced_classzone_idx);
3100 }
3101 }
3102
3103 current->reclaim_state = NULL;
3104 return 0;
3105 }
3106
3107 /*
3108 * A zone is low on free memory, so wake its kswapd task to service it.
3109 */
3110 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3111 {
3112 pg_data_t *pgdat;
3113
3114 if (!populated_zone(zone))
3115 return;
3116
3117 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3118 return;
3119 pgdat = zone->zone_pgdat;
3120 if (pgdat->kswapd_max_order < order) {
3121 pgdat->kswapd_max_order = order;
3122 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3123 }
3124 if (!waitqueue_active(&pgdat->kswapd_wait))
3125 return;
3126 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3127 return;
3128
3129 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3130 wake_up_interruptible(&pgdat->kswapd_wait);
3131 }
3132
3133 /*
3134 * The reclaimable count would be mostly accurate.
3135 * The less reclaimable pages may be
3136 * - mlocked pages, which will be moved to unevictable list when encountered
3137 * - mapped pages, which may require several travels to be reclaimed
3138 * - dirty pages, which is not "instantly" reclaimable
3139 */
3140 unsigned long global_reclaimable_pages(void)
3141 {
3142 int nr;
3143
3144 nr = global_page_state(NR_ACTIVE_FILE) +
3145 global_page_state(NR_INACTIVE_FILE);
3146
3147 if (get_nr_swap_pages() > 0)
3148 nr += global_page_state(NR_ACTIVE_ANON) +
3149 global_page_state(NR_INACTIVE_ANON);
3150
3151 return nr;
3152 }
3153
3154 unsigned long zone_reclaimable_pages(struct zone *zone)
3155 {
3156 int nr;
3157
3158 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3159 zone_page_state(zone, NR_INACTIVE_FILE);
3160
3161 if (get_nr_swap_pages() > 0)
3162 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3163 zone_page_state(zone, NR_INACTIVE_ANON);
3164
3165 return nr;
3166 }
3167
3168 #ifdef CONFIG_HIBERNATION
3169 /*
3170 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3171 * freed pages.
3172 *
3173 * Rather than trying to age LRUs the aim is to preserve the overall
3174 * LRU order by reclaiming preferentially
3175 * inactive > active > active referenced > active mapped
3176 */
3177 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3178 {
3179 struct reclaim_state reclaim_state;
3180 struct scan_control sc = {
3181 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3182 .may_swap = 1,
3183 .may_unmap = 1,
3184 .may_writepage = 1,
3185 .nr_to_reclaim = nr_to_reclaim,
3186 .hibernation_mode = 1,
3187 .order = 0,
3188 .priority = DEF_PRIORITY,
3189 };
3190 struct shrink_control shrink = {
3191 .gfp_mask = sc.gfp_mask,
3192 };
3193 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3194 struct task_struct *p = current;
3195 unsigned long nr_reclaimed;
3196
3197 p->flags |= PF_MEMALLOC;
3198 lockdep_set_current_reclaim_state(sc.gfp_mask);
3199 reclaim_state.reclaimed_slab = 0;
3200 p->reclaim_state = &reclaim_state;
3201
3202 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3203
3204 p->reclaim_state = NULL;
3205 lockdep_clear_current_reclaim_state();
3206 p->flags &= ~PF_MEMALLOC;
3207
3208 return nr_reclaimed;
3209 }
3210 #endif /* CONFIG_HIBERNATION */
3211
3212 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3213 not required for correctness. So if the last cpu in a node goes
3214 away, we get changed to run anywhere: as the first one comes back,
3215 restore their cpu bindings. */
3216 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3217 void *hcpu)
3218 {
3219 int nid;
3220
3221 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3222 for_each_node_state(nid, N_MEMORY) {
3223 pg_data_t *pgdat = NODE_DATA(nid);
3224 const struct cpumask *mask;
3225
3226 mask = cpumask_of_node(pgdat->node_id);
3227
3228 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3229 /* One of our CPUs online: restore mask */
3230 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3231 }
3232 }
3233 return NOTIFY_OK;
3234 }
3235
3236 /*
3237 * This kswapd start function will be called by init and node-hot-add.
3238 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3239 */
3240 int kswapd_run(int nid)
3241 {
3242 pg_data_t *pgdat = NODE_DATA(nid);
3243 int ret = 0;
3244
3245 if (pgdat->kswapd)
3246 return 0;
3247
3248 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3249 if (IS_ERR(pgdat->kswapd)) {
3250 /* failure at boot is fatal */
3251 BUG_ON(system_state == SYSTEM_BOOTING);
3252 pr_err("Failed to start kswapd on node %d\n", nid);
3253 ret = PTR_ERR(pgdat->kswapd);
3254 pgdat->kswapd = NULL;
3255 }
3256 return ret;
3257 }
3258
3259 /*
3260 * Called by memory hotplug when all memory in a node is offlined. Caller must
3261 * hold lock_memory_hotplug().
3262 */
3263 void kswapd_stop(int nid)
3264 {
3265 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3266
3267 if (kswapd) {
3268 kthread_stop(kswapd);
3269 NODE_DATA(nid)->kswapd = NULL;
3270 }
3271 }
3272
3273 static int __init kswapd_init(void)
3274 {
3275 int nid;
3276
3277 swap_setup();
3278 for_each_node_state(nid, N_MEMORY)
3279 kswapd_run(nid);
3280 hotcpu_notifier(cpu_callback, 0);
3281 return 0;
3282 }
3283
3284 module_init(kswapd_init)
3285
3286 #ifdef CONFIG_NUMA
3287 /*
3288 * Zone reclaim mode
3289 *
3290 * If non-zero call zone_reclaim when the number of free pages falls below
3291 * the watermarks.
3292 */
3293 int zone_reclaim_mode __read_mostly;
3294
3295 #define RECLAIM_OFF 0
3296 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3297 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3298 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3299
3300 /*
3301 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3302 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3303 * a zone.
3304 */
3305 #define ZONE_RECLAIM_PRIORITY 4
3306
3307 /*
3308 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3309 * occur.
3310 */
3311 int sysctl_min_unmapped_ratio = 1;
3312
3313 /*
3314 * If the number of slab pages in a zone grows beyond this percentage then
3315 * slab reclaim needs to occur.
3316 */
3317 int sysctl_min_slab_ratio = 5;
3318
3319 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3320 {
3321 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3322 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3323 zone_page_state(zone, NR_ACTIVE_FILE);
3324
3325 /*
3326 * It's possible for there to be more file mapped pages than
3327 * accounted for by the pages on the file LRU lists because
3328 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3329 */
3330 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3331 }
3332
3333 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3334 static long zone_pagecache_reclaimable(struct zone *zone)
3335 {
3336 long nr_pagecache_reclaimable;
3337 long delta = 0;
3338
3339 /*
3340 * If RECLAIM_SWAP is set, then all file pages are considered
3341 * potentially reclaimable. Otherwise, we have to worry about
3342 * pages like swapcache and zone_unmapped_file_pages() provides
3343 * a better estimate
3344 */
3345 if (zone_reclaim_mode & RECLAIM_SWAP)
3346 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3347 else
3348 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3349
3350 /* If we can't clean pages, remove dirty pages from consideration */
3351 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3352 delta += zone_page_state(zone, NR_FILE_DIRTY);
3353
3354 /* Watch for any possible underflows due to delta */
3355 if (unlikely(delta > nr_pagecache_reclaimable))
3356 delta = nr_pagecache_reclaimable;
3357
3358 return nr_pagecache_reclaimable - delta;
3359 }
3360
3361 /*
3362 * Try to free up some pages from this zone through reclaim.
3363 */
3364 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3365 {
3366 /* Minimum pages needed in order to stay on node */
3367 const unsigned long nr_pages = 1 << order;
3368 struct task_struct *p = current;
3369 struct reclaim_state reclaim_state;
3370 struct scan_control sc = {
3371 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3372 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3373 .may_swap = 1,
3374 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3375 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3376 .order = order,
3377 .priority = ZONE_RECLAIM_PRIORITY,
3378 };
3379 struct shrink_control shrink = {
3380 .gfp_mask = sc.gfp_mask,
3381 };
3382 unsigned long nr_slab_pages0, nr_slab_pages1;
3383
3384 cond_resched();
3385 /*
3386 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3387 * and we also need to be able to write out pages for RECLAIM_WRITE
3388 * and RECLAIM_SWAP.
3389 */
3390 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3391 lockdep_set_current_reclaim_state(gfp_mask);
3392 reclaim_state.reclaimed_slab = 0;
3393 p->reclaim_state = &reclaim_state;
3394
3395 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3396 /*
3397 * Free memory by calling shrink zone with increasing
3398 * priorities until we have enough memory freed.
3399 */
3400 do {
3401 shrink_zone(zone, &sc);
3402 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3403 }
3404
3405 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3406 if (nr_slab_pages0 > zone->min_slab_pages) {
3407 /*
3408 * shrink_slab() does not currently allow us to determine how
3409 * many pages were freed in this zone. So we take the current
3410 * number of slab pages and shake the slab until it is reduced
3411 * by the same nr_pages that we used for reclaiming unmapped
3412 * pages.
3413 *
3414 * Note that shrink_slab will free memory on all zones and may
3415 * take a long time.
3416 */
3417 for (;;) {
3418 unsigned long lru_pages = zone_reclaimable_pages(zone);
3419
3420 /* No reclaimable slab or very low memory pressure */
3421 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3422 break;
3423
3424 /* Freed enough memory */
3425 nr_slab_pages1 = zone_page_state(zone,
3426 NR_SLAB_RECLAIMABLE);
3427 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3428 break;
3429 }
3430
3431 /*
3432 * Update nr_reclaimed by the number of slab pages we
3433 * reclaimed from this zone.
3434 */
3435 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3436 if (nr_slab_pages1 < nr_slab_pages0)
3437 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3438 }
3439
3440 p->reclaim_state = NULL;
3441 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3442 lockdep_clear_current_reclaim_state();
3443 return sc.nr_reclaimed >= nr_pages;
3444 }
3445
3446 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3447 {
3448 int node_id;
3449 int ret;
3450
3451 /*
3452 * Zone reclaim reclaims unmapped file backed pages and
3453 * slab pages if we are over the defined limits.
3454 *
3455 * A small portion of unmapped file backed pages is needed for
3456 * file I/O otherwise pages read by file I/O will be immediately
3457 * thrown out if the zone is overallocated. So we do not reclaim
3458 * if less than a specified percentage of the zone is used by
3459 * unmapped file backed pages.
3460 */
3461 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3462 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3463 return ZONE_RECLAIM_FULL;
3464
3465 if (zone->all_unreclaimable)
3466 return ZONE_RECLAIM_FULL;
3467
3468 /*
3469 * Do not scan if the allocation should not be delayed.
3470 */
3471 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3472 return ZONE_RECLAIM_NOSCAN;
3473
3474 /*
3475 * Only run zone reclaim on the local zone or on zones that do not
3476 * have associated processors. This will favor the local processor
3477 * over remote processors and spread off node memory allocations
3478 * as wide as possible.
3479 */
3480 node_id = zone_to_nid(zone);
3481 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3482 return ZONE_RECLAIM_NOSCAN;
3483
3484 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3485 return ZONE_RECLAIM_NOSCAN;
3486
3487 ret = __zone_reclaim(zone, gfp_mask, order);
3488 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3489
3490 if (!ret)
3491 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3492
3493 return ret;
3494 }
3495 #endif
3496
3497 /*
3498 * page_evictable - test whether a page is evictable
3499 * @page: the page to test
3500 *
3501 * Test whether page is evictable--i.e., should be placed on active/inactive
3502 * lists vs unevictable list.
3503 *
3504 * Reasons page might not be evictable:
3505 * (1) page's mapping marked unevictable
3506 * (2) page is part of an mlocked VMA
3507 *
3508 */
3509 int page_evictable(struct page *page)
3510 {
3511 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3512 }
3513
3514 #ifdef CONFIG_SHMEM
3515 /**
3516 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3517 * @pages: array of pages to check
3518 * @nr_pages: number of pages to check
3519 *
3520 * Checks pages for evictability and moves them to the appropriate lru list.
3521 *
3522 * This function is only used for SysV IPC SHM_UNLOCK.
3523 */
3524 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3525 {
3526 struct lruvec *lruvec;
3527 struct zone *zone = NULL;
3528 int pgscanned = 0;
3529 int pgrescued = 0;
3530 int i;
3531
3532 for (i = 0; i < nr_pages; i++) {
3533 struct page *page = pages[i];
3534 struct zone *pagezone;
3535
3536 pgscanned++;
3537 pagezone = page_zone(page);
3538 if (pagezone != zone) {
3539 if (zone)
3540 spin_unlock_irq(&zone->lru_lock);
3541 zone = pagezone;
3542 spin_lock_irq(&zone->lru_lock);
3543 }
3544 lruvec = mem_cgroup_page_lruvec(page, zone);
3545
3546 if (!PageLRU(page) || !PageUnevictable(page))
3547 continue;
3548
3549 if (page_evictable(page)) {
3550 enum lru_list lru = page_lru_base_type(page);
3551
3552 VM_BUG_ON(PageActive(page));
3553 ClearPageUnevictable(page);
3554 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3555 add_page_to_lru_list(page, lruvec, lru);
3556 pgrescued++;
3557 }
3558 }
3559
3560 if (zone) {
3561 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3562 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3563 spin_unlock_irq(&zone->lru_lock);
3564 }
3565 }
3566 #endif /* CONFIG_SHMEM */
3567
3568 static void warn_scan_unevictable_pages(void)
3569 {
3570 printk_once(KERN_WARNING
3571 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3572 "disabled for lack of a legitimate use case. If you have "
3573 "one, please send an email to linux-mm@kvack.org.\n",
3574 current->comm);
3575 }
3576
3577 /*
3578 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3579 * all nodes' unevictable lists for evictable pages
3580 */
3581 unsigned long scan_unevictable_pages;
3582
3583 int scan_unevictable_handler(struct ctl_table *table, int write,
3584 void __user *buffer,
3585 size_t *length, loff_t *ppos)
3586 {
3587 warn_scan_unevictable_pages();
3588 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3589 scan_unevictable_pages = 0;
3590 return 0;
3591 }
3592
3593 #ifdef CONFIG_NUMA
3594 /*
3595 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3596 * a specified node's per zone unevictable lists for evictable pages.
3597 */
3598
3599 static ssize_t read_scan_unevictable_node(struct device *dev,
3600 struct device_attribute *attr,
3601 char *buf)
3602 {
3603 warn_scan_unevictable_pages();
3604 return sprintf(buf, "0\n"); /* always zero; should fit... */
3605 }
3606
3607 static ssize_t write_scan_unevictable_node(struct device *dev,
3608 struct device_attribute *attr,
3609 const char *buf, size_t count)
3610 {
3611 warn_scan_unevictable_pages();
3612 return 1;
3613 }
3614
3615
3616 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3617 read_scan_unevictable_node,
3618 write_scan_unevictable_node);
3619
3620 int scan_unevictable_register_node(struct node *node)
3621 {
3622 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3623 }
3624
3625 void scan_unevictable_unregister_node(struct node *node)
3626 {
3627 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3628 }
3629 #endif
This page took 0.098261 seconds and 6 git commands to generate.