mm: don't free swap slots on page deactivation
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
60
61 int may_writepage;
62
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
65
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
71
72 int swappiness;
73
74 int all_unreclaimable;
75
76 int order;
77
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
80
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 unsigned long *scanned, int order, int mode,
84 struct zone *z, struct mem_cgroup *mem_cont,
85 int active, int file);
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field) \
92 do { \
93 if ((_page)->lru.prev != _base) { \
94 struct page *prev; \
95 \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
98 } \
99 } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
112 } \
113 } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119 * From 0 .. 100. Higher means more swappy.
120 */
121 int vm_swappiness = 60;
122 long vm_total_pages; /* The total number of pages which the VM controls */
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
129 #else
130 #define scanning_global_lru(sc) (1)
131 #endif
132
133 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134 struct scan_control *sc)
135 {
136 if (!scanning_global_lru(sc))
137 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
138
139 return &zone->reclaim_stat;
140 }
141
142 static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
143 enum lru_list lru)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
147
148 return zone_page_state(zone, NR_LRU_BASE + lru);
149 }
150
151
152 /*
153 * Add a shrinker callback to be called from the vm
154 */
155 void register_shrinker(struct shrinker *shrinker)
156 {
157 shrinker->nr = 0;
158 down_write(&shrinker_rwsem);
159 list_add_tail(&shrinker->list, &shrinker_list);
160 up_write(&shrinker_rwsem);
161 }
162 EXPORT_SYMBOL(register_shrinker);
163
164 /*
165 * Remove one
166 */
167 void unregister_shrinker(struct shrinker *shrinker)
168 {
169 down_write(&shrinker_rwsem);
170 list_del(&shrinker->list);
171 up_write(&shrinker_rwsem);
172 }
173 EXPORT_SYMBOL(unregister_shrinker);
174
175 #define SHRINK_BATCH 128
176 /*
177 * Call the shrink functions to age shrinkable caches
178 *
179 * Here we assume it costs one seek to replace a lru page and that it also
180 * takes a seek to recreate a cache object. With this in mind we age equal
181 * percentages of the lru and ageable caches. This should balance the seeks
182 * generated by these structures.
183 *
184 * If the vm encountered mapped pages on the LRU it increase the pressure on
185 * slab to avoid swapping.
186 *
187 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
188 *
189 * `lru_pages' represents the number of on-LRU pages in all the zones which
190 * are eligible for the caller's allocation attempt. It is used for balancing
191 * slab reclaim versus page reclaim.
192 *
193 * Returns the number of slab objects which we shrunk.
194 */
195 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
196 unsigned long lru_pages)
197 {
198 struct shrinker *shrinker;
199 unsigned long ret = 0;
200
201 if (scanned == 0)
202 scanned = SWAP_CLUSTER_MAX;
203
204 if (!down_read_trylock(&shrinker_rwsem))
205 return 1; /* Assume we'll be able to shrink next time */
206
207 list_for_each_entry(shrinker, &shrinker_list, list) {
208 unsigned long long delta;
209 unsigned long total_scan;
210 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
211
212 delta = (4 * scanned) / shrinker->seeks;
213 delta *= max_pass;
214 do_div(delta, lru_pages + 1);
215 shrinker->nr += delta;
216 if (shrinker->nr < 0) {
217 printk(KERN_ERR "%s: nr=%ld\n",
218 __func__, shrinker->nr);
219 shrinker->nr = max_pass;
220 }
221
222 /*
223 * Avoid risking looping forever due to too large nr value:
224 * never try to free more than twice the estimate number of
225 * freeable entries.
226 */
227 if (shrinker->nr > max_pass * 2)
228 shrinker->nr = max_pass * 2;
229
230 total_scan = shrinker->nr;
231 shrinker->nr = 0;
232
233 while (total_scan >= SHRINK_BATCH) {
234 long this_scan = SHRINK_BATCH;
235 int shrink_ret;
236 int nr_before;
237
238 nr_before = (*shrinker->shrink)(0, gfp_mask);
239 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
240 if (shrink_ret == -1)
241 break;
242 if (shrink_ret < nr_before)
243 ret += nr_before - shrink_ret;
244 count_vm_events(SLABS_SCANNED, this_scan);
245 total_scan -= this_scan;
246
247 cond_resched();
248 }
249
250 shrinker->nr += total_scan;
251 }
252 up_read(&shrinker_rwsem);
253 return ret;
254 }
255
256 /* Called without lock on whether page is mapped, so answer is unstable */
257 static inline int page_mapping_inuse(struct page *page)
258 {
259 struct address_space *mapping;
260
261 /* Page is in somebody's page tables. */
262 if (page_mapped(page))
263 return 1;
264
265 /* Be more reluctant to reclaim swapcache than pagecache */
266 if (PageSwapCache(page))
267 return 1;
268
269 mapping = page_mapping(page);
270 if (!mapping)
271 return 0;
272
273 /* File is mmap'd by somebody? */
274 return mapping_mapped(mapping);
275 }
276
277 static inline int is_page_cache_freeable(struct page *page)
278 {
279 return page_count(page) - !!PagePrivate(page) == 2;
280 }
281
282 static int may_write_to_queue(struct backing_dev_info *bdi)
283 {
284 if (current->flags & PF_SWAPWRITE)
285 return 1;
286 if (!bdi_write_congested(bdi))
287 return 1;
288 if (bdi == current->backing_dev_info)
289 return 1;
290 return 0;
291 }
292
293 /*
294 * We detected a synchronous write error writing a page out. Probably
295 * -ENOSPC. We need to propagate that into the address_space for a subsequent
296 * fsync(), msync() or close().
297 *
298 * The tricky part is that after writepage we cannot touch the mapping: nothing
299 * prevents it from being freed up. But we have a ref on the page and once
300 * that page is locked, the mapping is pinned.
301 *
302 * We're allowed to run sleeping lock_page() here because we know the caller has
303 * __GFP_FS.
304 */
305 static void handle_write_error(struct address_space *mapping,
306 struct page *page, int error)
307 {
308 lock_page(page);
309 if (page_mapping(page) == mapping)
310 mapping_set_error(mapping, error);
311 unlock_page(page);
312 }
313
314 /* Request for sync pageout. */
315 enum pageout_io {
316 PAGEOUT_IO_ASYNC,
317 PAGEOUT_IO_SYNC,
318 };
319
320 /* possible outcome of pageout() */
321 typedef enum {
322 /* failed to write page out, page is locked */
323 PAGE_KEEP,
324 /* move page to the active list, page is locked */
325 PAGE_ACTIVATE,
326 /* page has been sent to the disk successfully, page is unlocked */
327 PAGE_SUCCESS,
328 /* page is clean and locked */
329 PAGE_CLEAN,
330 } pageout_t;
331
332 /*
333 * pageout is called by shrink_page_list() for each dirty page.
334 * Calls ->writepage().
335 */
336 static pageout_t pageout(struct page *page, struct address_space *mapping,
337 enum pageout_io sync_writeback)
338 {
339 /*
340 * If the page is dirty, only perform writeback if that write
341 * will be non-blocking. To prevent this allocation from being
342 * stalled by pagecache activity. But note that there may be
343 * stalls if we need to run get_block(). We could test
344 * PagePrivate for that.
345 *
346 * If this process is currently in generic_file_write() against
347 * this page's queue, we can perform writeback even if that
348 * will block.
349 *
350 * If the page is swapcache, write it back even if that would
351 * block, for some throttling. This happens by accident, because
352 * swap_backing_dev_info is bust: it doesn't reflect the
353 * congestion state of the swapdevs. Easy to fix, if needed.
354 * See swapfile.c:page_queue_congested().
355 */
356 if (!is_page_cache_freeable(page))
357 return PAGE_KEEP;
358 if (!mapping) {
359 /*
360 * Some data journaling orphaned pages can have
361 * page->mapping == NULL while being dirty with clean buffers.
362 */
363 if (PagePrivate(page)) {
364 if (try_to_free_buffers(page)) {
365 ClearPageDirty(page);
366 printk("%s: orphaned page\n", __func__);
367 return PAGE_CLEAN;
368 }
369 }
370 return PAGE_KEEP;
371 }
372 if (mapping->a_ops->writepage == NULL)
373 return PAGE_ACTIVATE;
374 if (!may_write_to_queue(mapping->backing_dev_info))
375 return PAGE_KEEP;
376
377 if (clear_page_dirty_for_io(page)) {
378 int res;
379 struct writeback_control wbc = {
380 .sync_mode = WB_SYNC_NONE,
381 .nr_to_write = SWAP_CLUSTER_MAX,
382 .range_start = 0,
383 .range_end = LLONG_MAX,
384 .nonblocking = 1,
385 .for_reclaim = 1,
386 };
387
388 SetPageReclaim(page);
389 res = mapping->a_ops->writepage(page, &wbc);
390 if (res < 0)
391 handle_write_error(mapping, page, res);
392 if (res == AOP_WRITEPAGE_ACTIVATE) {
393 ClearPageReclaim(page);
394 return PAGE_ACTIVATE;
395 }
396
397 /*
398 * Wait on writeback if requested to. This happens when
399 * direct reclaiming a large contiguous area and the
400 * first attempt to free a range of pages fails.
401 */
402 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
403 wait_on_page_writeback(page);
404
405 if (!PageWriteback(page)) {
406 /* synchronous write or broken a_ops? */
407 ClearPageReclaim(page);
408 }
409 inc_zone_page_state(page, NR_VMSCAN_WRITE);
410 return PAGE_SUCCESS;
411 }
412
413 return PAGE_CLEAN;
414 }
415
416 /*
417 * Same as remove_mapping, but if the page is removed from the mapping, it
418 * gets returned with a refcount of 0.
419 */
420 static int __remove_mapping(struct address_space *mapping, struct page *page)
421 {
422 BUG_ON(!PageLocked(page));
423 BUG_ON(mapping != page_mapping(page));
424
425 spin_lock_irq(&mapping->tree_lock);
426 /*
427 * The non racy check for a busy page.
428 *
429 * Must be careful with the order of the tests. When someone has
430 * a ref to the page, it may be possible that they dirty it then
431 * drop the reference. So if PageDirty is tested before page_count
432 * here, then the following race may occur:
433 *
434 * get_user_pages(&page);
435 * [user mapping goes away]
436 * write_to(page);
437 * !PageDirty(page) [good]
438 * SetPageDirty(page);
439 * put_page(page);
440 * !page_count(page) [good, discard it]
441 *
442 * [oops, our write_to data is lost]
443 *
444 * Reversing the order of the tests ensures such a situation cannot
445 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
446 * load is not satisfied before that of page->_count.
447 *
448 * Note that if SetPageDirty is always performed via set_page_dirty,
449 * and thus under tree_lock, then this ordering is not required.
450 */
451 if (!page_freeze_refs(page, 2))
452 goto cannot_free;
453 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
454 if (unlikely(PageDirty(page))) {
455 page_unfreeze_refs(page, 2);
456 goto cannot_free;
457 }
458
459 if (PageSwapCache(page)) {
460 swp_entry_t swap = { .val = page_private(page) };
461 __delete_from_swap_cache(page);
462 spin_unlock_irq(&mapping->tree_lock);
463 swap_free(swap);
464 } else {
465 __remove_from_page_cache(page);
466 spin_unlock_irq(&mapping->tree_lock);
467 }
468
469 return 1;
470
471 cannot_free:
472 spin_unlock_irq(&mapping->tree_lock);
473 return 0;
474 }
475
476 /*
477 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
478 * someone else has a ref on the page, abort and return 0. If it was
479 * successfully detached, return 1. Assumes the caller has a single ref on
480 * this page.
481 */
482 int remove_mapping(struct address_space *mapping, struct page *page)
483 {
484 if (__remove_mapping(mapping, page)) {
485 /*
486 * Unfreezing the refcount with 1 rather than 2 effectively
487 * drops the pagecache ref for us without requiring another
488 * atomic operation.
489 */
490 page_unfreeze_refs(page, 1);
491 return 1;
492 }
493 return 0;
494 }
495
496 /**
497 * putback_lru_page - put previously isolated page onto appropriate LRU list
498 * @page: page to be put back to appropriate lru list
499 *
500 * Add previously isolated @page to appropriate LRU list.
501 * Page may still be unevictable for other reasons.
502 *
503 * lru_lock must not be held, interrupts must be enabled.
504 */
505 #ifdef CONFIG_UNEVICTABLE_LRU
506 void putback_lru_page(struct page *page)
507 {
508 int lru;
509 int active = !!TestClearPageActive(page);
510 int was_unevictable = PageUnevictable(page);
511
512 VM_BUG_ON(PageLRU(page));
513
514 redo:
515 ClearPageUnevictable(page);
516
517 if (page_evictable(page, NULL)) {
518 /*
519 * For evictable pages, we can use the cache.
520 * In event of a race, worst case is we end up with an
521 * unevictable page on [in]active list.
522 * We know how to handle that.
523 */
524 lru = active + page_is_file_cache(page);
525 lru_cache_add_lru(page, lru);
526 } else {
527 /*
528 * Put unevictable pages directly on zone's unevictable
529 * list.
530 */
531 lru = LRU_UNEVICTABLE;
532 add_page_to_unevictable_list(page);
533 }
534
535 /*
536 * page's status can change while we move it among lru. If an evictable
537 * page is on unevictable list, it never be freed. To avoid that,
538 * check after we added it to the list, again.
539 */
540 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
541 if (!isolate_lru_page(page)) {
542 put_page(page);
543 goto redo;
544 }
545 /* This means someone else dropped this page from LRU
546 * So, it will be freed or putback to LRU again. There is
547 * nothing to do here.
548 */
549 }
550
551 if (was_unevictable && lru != LRU_UNEVICTABLE)
552 count_vm_event(UNEVICTABLE_PGRESCUED);
553 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
554 count_vm_event(UNEVICTABLE_PGCULLED);
555
556 put_page(page); /* drop ref from isolate */
557 }
558
559 #else /* CONFIG_UNEVICTABLE_LRU */
560
561 void putback_lru_page(struct page *page)
562 {
563 int lru;
564 VM_BUG_ON(PageLRU(page));
565
566 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
567 lru_cache_add_lru(page, lru);
568 put_page(page);
569 }
570 #endif /* CONFIG_UNEVICTABLE_LRU */
571
572
573 /*
574 * shrink_page_list() returns the number of reclaimed pages
575 */
576 static unsigned long shrink_page_list(struct list_head *page_list,
577 struct scan_control *sc,
578 enum pageout_io sync_writeback)
579 {
580 LIST_HEAD(ret_pages);
581 struct pagevec freed_pvec;
582 int pgactivate = 0;
583 unsigned long nr_reclaimed = 0;
584
585 cond_resched();
586
587 pagevec_init(&freed_pvec, 1);
588 while (!list_empty(page_list)) {
589 struct address_space *mapping;
590 struct page *page;
591 int may_enter_fs;
592 int referenced;
593
594 cond_resched();
595
596 page = lru_to_page(page_list);
597 list_del(&page->lru);
598
599 if (!trylock_page(page))
600 goto keep;
601
602 VM_BUG_ON(PageActive(page));
603
604 sc->nr_scanned++;
605
606 if (unlikely(!page_evictable(page, NULL)))
607 goto cull_mlocked;
608
609 if (!sc->may_unmap && page_mapped(page))
610 goto keep_locked;
611
612 /* Double the slab pressure for mapped and swapcache pages */
613 if (page_mapped(page) || PageSwapCache(page))
614 sc->nr_scanned++;
615
616 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
617 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
618
619 if (PageWriteback(page)) {
620 /*
621 * Synchronous reclaim is performed in two passes,
622 * first an asynchronous pass over the list to
623 * start parallel writeback, and a second synchronous
624 * pass to wait for the IO to complete. Wait here
625 * for any page for which writeback has already
626 * started.
627 */
628 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
629 wait_on_page_writeback(page);
630 else
631 goto keep_locked;
632 }
633
634 referenced = page_referenced(page, 1, sc->mem_cgroup);
635 /* In active use or really unfreeable? Activate it. */
636 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
637 referenced && page_mapping_inuse(page))
638 goto activate_locked;
639
640 /*
641 * Anonymous process memory has backing store?
642 * Try to allocate it some swap space here.
643 */
644 if (PageAnon(page) && !PageSwapCache(page)) {
645 if (!(sc->gfp_mask & __GFP_IO))
646 goto keep_locked;
647 if (!add_to_swap(page))
648 goto activate_locked;
649 may_enter_fs = 1;
650 }
651
652 mapping = page_mapping(page);
653
654 /*
655 * The page is mapped into the page tables of one or more
656 * processes. Try to unmap it here.
657 */
658 if (page_mapped(page) && mapping) {
659 switch (try_to_unmap(page, 0)) {
660 case SWAP_FAIL:
661 goto activate_locked;
662 case SWAP_AGAIN:
663 goto keep_locked;
664 case SWAP_MLOCK:
665 goto cull_mlocked;
666 case SWAP_SUCCESS:
667 ; /* try to free the page below */
668 }
669 }
670
671 if (PageDirty(page)) {
672 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
673 goto keep_locked;
674 if (!may_enter_fs)
675 goto keep_locked;
676 if (!sc->may_writepage)
677 goto keep_locked;
678
679 /* Page is dirty, try to write it out here */
680 switch (pageout(page, mapping, sync_writeback)) {
681 case PAGE_KEEP:
682 goto keep_locked;
683 case PAGE_ACTIVATE:
684 goto activate_locked;
685 case PAGE_SUCCESS:
686 if (PageWriteback(page) || PageDirty(page))
687 goto keep;
688 /*
689 * A synchronous write - probably a ramdisk. Go
690 * ahead and try to reclaim the page.
691 */
692 if (!trylock_page(page))
693 goto keep;
694 if (PageDirty(page) || PageWriteback(page))
695 goto keep_locked;
696 mapping = page_mapping(page);
697 case PAGE_CLEAN:
698 ; /* try to free the page below */
699 }
700 }
701
702 /*
703 * If the page has buffers, try to free the buffer mappings
704 * associated with this page. If we succeed we try to free
705 * the page as well.
706 *
707 * We do this even if the page is PageDirty().
708 * try_to_release_page() does not perform I/O, but it is
709 * possible for a page to have PageDirty set, but it is actually
710 * clean (all its buffers are clean). This happens if the
711 * buffers were written out directly, with submit_bh(). ext3
712 * will do this, as well as the blockdev mapping.
713 * try_to_release_page() will discover that cleanness and will
714 * drop the buffers and mark the page clean - it can be freed.
715 *
716 * Rarely, pages can have buffers and no ->mapping. These are
717 * the pages which were not successfully invalidated in
718 * truncate_complete_page(). We try to drop those buffers here
719 * and if that worked, and the page is no longer mapped into
720 * process address space (page_count == 1) it can be freed.
721 * Otherwise, leave the page on the LRU so it is swappable.
722 */
723 if (PagePrivate(page)) {
724 if (!try_to_release_page(page, sc->gfp_mask))
725 goto activate_locked;
726 if (!mapping && page_count(page) == 1) {
727 unlock_page(page);
728 if (put_page_testzero(page))
729 goto free_it;
730 else {
731 /*
732 * rare race with speculative reference.
733 * the speculative reference will free
734 * this page shortly, so we may
735 * increment nr_reclaimed here (and
736 * leave it off the LRU).
737 */
738 nr_reclaimed++;
739 continue;
740 }
741 }
742 }
743
744 if (!mapping || !__remove_mapping(mapping, page))
745 goto keep_locked;
746
747 /*
748 * At this point, we have no other references and there is
749 * no way to pick any more up (removed from LRU, removed
750 * from pagecache). Can use non-atomic bitops now (and
751 * we obviously don't have to worry about waking up a process
752 * waiting on the page lock, because there are no references.
753 */
754 __clear_page_locked(page);
755 free_it:
756 nr_reclaimed++;
757 if (!pagevec_add(&freed_pvec, page)) {
758 __pagevec_free(&freed_pvec);
759 pagevec_reinit(&freed_pvec);
760 }
761 continue;
762
763 cull_mlocked:
764 if (PageSwapCache(page))
765 try_to_free_swap(page);
766 unlock_page(page);
767 putback_lru_page(page);
768 continue;
769
770 activate_locked:
771 /* Not a candidate for swapping, so reclaim swap space. */
772 if (PageSwapCache(page) && vm_swap_full())
773 try_to_free_swap(page);
774 VM_BUG_ON(PageActive(page));
775 SetPageActive(page);
776 pgactivate++;
777 keep_locked:
778 unlock_page(page);
779 keep:
780 list_add(&page->lru, &ret_pages);
781 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
782 }
783 list_splice(&ret_pages, page_list);
784 if (pagevec_count(&freed_pvec))
785 __pagevec_free(&freed_pvec);
786 count_vm_events(PGACTIVATE, pgactivate);
787 return nr_reclaimed;
788 }
789
790 /* LRU Isolation modes. */
791 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
792 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
793 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
794
795 /*
796 * Attempt to remove the specified page from its LRU. Only take this page
797 * if it is of the appropriate PageActive status. Pages which are being
798 * freed elsewhere are also ignored.
799 *
800 * page: page to consider
801 * mode: one of the LRU isolation modes defined above
802 *
803 * returns 0 on success, -ve errno on failure.
804 */
805 int __isolate_lru_page(struct page *page, int mode, int file)
806 {
807 int ret = -EINVAL;
808
809 /* Only take pages on the LRU. */
810 if (!PageLRU(page))
811 return ret;
812
813 /*
814 * When checking the active state, we need to be sure we are
815 * dealing with comparible boolean values. Take the logical not
816 * of each.
817 */
818 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
819 return ret;
820
821 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
822 return ret;
823
824 /*
825 * When this function is being called for lumpy reclaim, we
826 * initially look into all LRU pages, active, inactive and
827 * unevictable; only give shrink_page_list evictable pages.
828 */
829 if (PageUnevictable(page))
830 return ret;
831
832 ret = -EBUSY;
833
834 if (likely(get_page_unless_zero(page))) {
835 /*
836 * Be careful not to clear PageLRU until after we're
837 * sure the page is not being freed elsewhere -- the
838 * page release code relies on it.
839 */
840 ClearPageLRU(page);
841 ret = 0;
842 mem_cgroup_del_lru(page);
843 }
844
845 return ret;
846 }
847
848 /*
849 * zone->lru_lock is heavily contended. Some of the functions that
850 * shrink the lists perform better by taking out a batch of pages
851 * and working on them outside the LRU lock.
852 *
853 * For pagecache intensive workloads, this function is the hottest
854 * spot in the kernel (apart from copy_*_user functions).
855 *
856 * Appropriate locks must be held before calling this function.
857 *
858 * @nr_to_scan: The number of pages to look through on the list.
859 * @src: The LRU list to pull pages off.
860 * @dst: The temp list to put pages on to.
861 * @scanned: The number of pages that were scanned.
862 * @order: The caller's attempted allocation order
863 * @mode: One of the LRU isolation modes
864 * @file: True [1] if isolating file [!anon] pages
865 *
866 * returns how many pages were moved onto *@dst.
867 */
868 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
869 struct list_head *src, struct list_head *dst,
870 unsigned long *scanned, int order, int mode, int file)
871 {
872 unsigned long nr_taken = 0;
873 unsigned long scan;
874
875 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
876 struct page *page;
877 unsigned long pfn;
878 unsigned long end_pfn;
879 unsigned long page_pfn;
880 int zone_id;
881
882 page = lru_to_page(src);
883 prefetchw_prev_lru_page(page, src, flags);
884
885 VM_BUG_ON(!PageLRU(page));
886
887 switch (__isolate_lru_page(page, mode, file)) {
888 case 0:
889 list_move(&page->lru, dst);
890 nr_taken++;
891 break;
892
893 case -EBUSY:
894 /* else it is being freed elsewhere */
895 list_move(&page->lru, src);
896 continue;
897
898 default:
899 BUG();
900 }
901
902 if (!order)
903 continue;
904
905 /*
906 * Attempt to take all pages in the order aligned region
907 * surrounding the tag page. Only take those pages of
908 * the same active state as that tag page. We may safely
909 * round the target page pfn down to the requested order
910 * as the mem_map is guarenteed valid out to MAX_ORDER,
911 * where that page is in a different zone we will detect
912 * it from its zone id and abort this block scan.
913 */
914 zone_id = page_zone_id(page);
915 page_pfn = page_to_pfn(page);
916 pfn = page_pfn & ~((1 << order) - 1);
917 end_pfn = pfn + (1 << order);
918 for (; pfn < end_pfn; pfn++) {
919 struct page *cursor_page;
920
921 /* The target page is in the block, ignore it. */
922 if (unlikely(pfn == page_pfn))
923 continue;
924
925 /* Avoid holes within the zone. */
926 if (unlikely(!pfn_valid_within(pfn)))
927 break;
928
929 cursor_page = pfn_to_page(pfn);
930
931 /* Check that we have not crossed a zone boundary. */
932 if (unlikely(page_zone_id(cursor_page) != zone_id))
933 continue;
934 switch (__isolate_lru_page(cursor_page, mode, file)) {
935 case 0:
936 list_move(&cursor_page->lru, dst);
937 nr_taken++;
938 scan++;
939 break;
940
941 case -EBUSY:
942 /* else it is being freed elsewhere */
943 list_move(&cursor_page->lru, src);
944 default:
945 break; /* ! on LRU or wrong list */
946 }
947 }
948 }
949
950 *scanned = scan;
951 return nr_taken;
952 }
953
954 static unsigned long isolate_pages_global(unsigned long nr,
955 struct list_head *dst,
956 unsigned long *scanned, int order,
957 int mode, struct zone *z,
958 struct mem_cgroup *mem_cont,
959 int active, int file)
960 {
961 int lru = LRU_BASE;
962 if (active)
963 lru += LRU_ACTIVE;
964 if (file)
965 lru += LRU_FILE;
966 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
967 mode, !!file);
968 }
969
970 /*
971 * clear_active_flags() is a helper for shrink_active_list(), clearing
972 * any active bits from the pages in the list.
973 */
974 static unsigned long clear_active_flags(struct list_head *page_list,
975 unsigned int *count)
976 {
977 int nr_active = 0;
978 int lru;
979 struct page *page;
980
981 list_for_each_entry(page, page_list, lru) {
982 lru = page_is_file_cache(page);
983 if (PageActive(page)) {
984 lru += LRU_ACTIVE;
985 ClearPageActive(page);
986 nr_active++;
987 }
988 count[lru]++;
989 }
990
991 return nr_active;
992 }
993
994 /**
995 * isolate_lru_page - tries to isolate a page from its LRU list
996 * @page: page to isolate from its LRU list
997 *
998 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
999 * vmstat statistic corresponding to whatever LRU list the page was on.
1000 *
1001 * Returns 0 if the page was removed from an LRU list.
1002 * Returns -EBUSY if the page was not on an LRU list.
1003 *
1004 * The returned page will have PageLRU() cleared. If it was found on
1005 * the active list, it will have PageActive set. If it was found on
1006 * the unevictable list, it will have the PageUnevictable bit set. That flag
1007 * may need to be cleared by the caller before letting the page go.
1008 *
1009 * The vmstat statistic corresponding to the list on which the page was
1010 * found will be decremented.
1011 *
1012 * Restrictions:
1013 * (1) Must be called with an elevated refcount on the page. This is a
1014 * fundamentnal difference from isolate_lru_pages (which is called
1015 * without a stable reference).
1016 * (2) the lru_lock must not be held.
1017 * (3) interrupts must be enabled.
1018 */
1019 int isolate_lru_page(struct page *page)
1020 {
1021 int ret = -EBUSY;
1022
1023 if (PageLRU(page)) {
1024 struct zone *zone = page_zone(page);
1025
1026 spin_lock_irq(&zone->lru_lock);
1027 if (PageLRU(page) && get_page_unless_zero(page)) {
1028 int lru = page_lru(page);
1029 ret = 0;
1030 ClearPageLRU(page);
1031
1032 del_page_from_lru_list(zone, page, lru);
1033 }
1034 spin_unlock_irq(&zone->lru_lock);
1035 }
1036 return ret;
1037 }
1038
1039 /*
1040 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1041 * of reclaimed pages
1042 */
1043 static unsigned long shrink_inactive_list(unsigned long max_scan,
1044 struct zone *zone, struct scan_control *sc,
1045 int priority, int file)
1046 {
1047 LIST_HEAD(page_list);
1048 struct pagevec pvec;
1049 unsigned long nr_scanned = 0;
1050 unsigned long nr_reclaimed = 0;
1051 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1052
1053 pagevec_init(&pvec, 1);
1054
1055 lru_add_drain();
1056 spin_lock_irq(&zone->lru_lock);
1057 do {
1058 struct page *page;
1059 unsigned long nr_taken;
1060 unsigned long nr_scan;
1061 unsigned long nr_freed;
1062 unsigned long nr_active;
1063 unsigned int count[NR_LRU_LISTS] = { 0, };
1064 int mode = ISOLATE_INACTIVE;
1065
1066 /*
1067 * If we need a large contiguous chunk of memory, or have
1068 * trouble getting a small set of contiguous pages, we
1069 * will reclaim both active and inactive pages.
1070 *
1071 * We use the same threshold as pageout congestion_wait below.
1072 */
1073 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074 mode = ISOLATE_BOTH;
1075 else if (sc->order && priority < DEF_PRIORITY - 2)
1076 mode = ISOLATE_BOTH;
1077
1078 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1079 &page_list, &nr_scan, sc->order, mode,
1080 zone, sc->mem_cgroup, 0, file);
1081 nr_active = clear_active_flags(&page_list, count);
1082 __count_vm_events(PGDEACTIVATE, nr_active);
1083
1084 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1085 -count[LRU_ACTIVE_FILE]);
1086 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1087 -count[LRU_INACTIVE_FILE]);
1088 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1089 -count[LRU_ACTIVE_ANON]);
1090 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1091 -count[LRU_INACTIVE_ANON]);
1092
1093 if (scanning_global_lru(sc))
1094 zone->pages_scanned += nr_scan;
1095
1096 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1097 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1098 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1099 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1100
1101 spin_unlock_irq(&zone->lru_lock);
1102
1103 nr_scanned += nr_scan;
1104 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1105
1106 /*
1107 * If we are direct reclaiming for contiguous pages and we do
1108 * not reclaim everything in the list, try again and wait
1109 * for IO to complete. This will stall high-order allocations
1110 * but that should be acceptable to the caller
1111 */
1112 if (nr_freed < nr_taken && !current_is_kswapd() &&
1113 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1114 congestion_wait(WRITE, HZ/10);
1115
1116 /*
1117 * The attempt at page out may have made some
1118 * of the pages active, mark them inactive again.
1119 */
1120 nr_active = clear_active_flags(&page_list, count);
1121 count_vm_events(PGDEACTIVATE, nr_active);
1122
1123 nr_freed += shrink_page_list(&page_list, sc,
1124 PAGEOUT_IO_SYNC);
1125 }
1126
1127 nr_reclaimed += nr_freed;
1128 local_irq_disable();
1129 if (current_is_kswapd()) {
1130 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1131 __count_vm_events(KSWAPD_STEAL, nr_freed);
1132 } else if (scanning_global_lru(sc))
1133 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1134
1135 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1136
1137 if (nr_taken == 0)
1138 goto done;
1139
1140 spin_lock(&zone->lru_lock);
1141 /*
1142 * Put back any unfreeable pages.
1143 */
1144 while (!list_empty(&page_list)) {
1145 int lru;
1146 page = lru_to_page(&page_list);
1147 VM_BUG_ON(PageLRU(page));
1148 list_del(&page->lru);
1149 if (unlikely(!page_evictable(page, NULL))) {
1150 spin_unlock_irq(&zone->lru_lock);
1151 putback_lru_page(page);
1152 spin_lock_irq(&zone->lru_lock);
1153 continue;
1154 }
1155 SetPageLRU(page);
1156 lru = page_lru(page);
1157 add_page_to_lru_list(zone, page, lru);
1158 if (PageActive(page)) {
1159 int file = !!page_is_file_cache(page);
1160 reclaim_stat->recent_rotated[file]++;
1161 }
1162 if (!pagevec_add(&pvec, page)) {
1163 spin_unlock_irq(&zone->lru_lock);
1164 __pagevec_release(&pvec);
1165 spin_lock_irq(&zone->lru_lock);
1166 }
1167 }
1168 } while (nr_scanned < max_scan);
1169 spin_unlock(&zone->lru_lock);
1170 done:
1171 local_irq_enable();
1172 pagevec_release(&pvec);
1173 return nr_reclaimed;
1174 }
1175
1176 /*
1177 * We are about to scan this zone at a certain priority level. If that priority
1178 * level is smaller (ie: more urgent) than the previous priority, then note
1179 * that priority level within the zone. This is done so that when the next
1180 * process comes in to scan this zone, it will immediately start out at this
1181 * priority level rather than having to build up its own scanning priority.
1182 * Here, this priority affects only the reclaim-mapped threshold.
1183 */
1184 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1185 {
1186 if (priority < zone->prev_priority)
1187 zone->prev_priority = priority;
1188 }
1189
1190 /*
1191 * This moves pages from the active list to the inactive list.
1192 *
1193 * We move them the other way if the page is referenced by one or more
1194 * processes, from rmap.
1195 *
1196 * If the pages are mostly unmapped, the processing is fast and it is
1197 * appropriate to hold zone->lru_lock across the whole operation. But if
1198 * the pages are mapped, the processing is slow (page_referenced()) so we
1199 * should drop zone->lru_lock around each page. It's impossible to balance
1200 * this, so instead we remove the pages from the LRU while processing them.
1201 * It is safe to rely on PG_active against the non-LRU pages in here because
1202 * nobody will play with that bit on a non-LRU page.
1203 *
1204 * The downside is that we have to touch page->_count against each page.
1205 * But we had to alter page->flags anyway.
1206 */
1207
1208
1209 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1210 struct scan_control *sc, int priority, int file)
1211 {
1212 unsigned long pgmoved;
1213 int pgdeactivate = 0;
1214 unsigned long pgscanned;
1215 LIST_HEAD(l_hold); /* The pages which were snipped off */
1216 LIST_HEAD(l_inactive);
1217 struct page *page;
1218 struct pagevec pvec;
1219 enum lru_list lru;
1220 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1221
1222 lru_add_drain();
1223 spin_lock_irq(&zone->lru_lock);
1224 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1225 ISOLATE_ACTIVE, zone,
1226 sc->mem_cgroup, 1, file);
1227 /*
1228 * zone->pages_scanned is used for detect zone's oom
1229 * mem_cgroup remembers nr_scan by itself.
1230 */
1231 if (scanning_global_lru(sc)) {
1232 zone->pages_scanned += pgscanned;
1233 }
1234 reclaim_stat->recent_scanned[!!file] += pgmoved;
1235
1236 if (file)
1237 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1238 else
1239 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1240 spin_unlock_irq(&zone->lru_lock);
1241
1242 pgmoved = 0;
1243 while (!list_empty(&l_hold)) {
1244 cond_resched();
1245 page = lru_to_page(&l_hold);
1246 list_del(&page->lru);
1247
1248 if (unlikely(!page_evictable(page, NULL))) {
1249 putback_lru_page(page);
1250 continue;
1251 }
1252
1253 /* page_referenced clears PageReferenced */
1254 if (page_mapping_inuse(page) &&
1255 page_referenced(page, 0, sc->mem_cgroup))
1256 pgmoved++;
1257
1258 list_add(&page->lru, &l_inactive);
1259 }
1260
1261 /*
1262 * Move the pages to the [file or anon] inactive list.
1263 */
1264 pagevec_init(&pvec, 1);
1265 lru = LRU_BASE + file * LRU_FILE;
1266
1267 spin_lock_irq(&zone->lru_lock);
1268 /*
1269 * Count referenced pages from currently used mappings as
1270 * rotated, even though they are moved to the inactive list.
1271 * This helps balance scan pressure between file and anonymous
1272 * pages in get_scan_ratio.
1273 */
1274 reclaim_stat->recent_rotated[!!file] += pgmoved;
1275
1276 pgmoved = 0;
1277 while (!list_empty(&l_inactive)) {
1278 page = lru_to_page(&l_inactive);
1279 prefetchw_prev_lru_page(page, &l_inactive, flags);
1280 VM_BUG_ON(PageLRU(page));
1281 SetPageLRU(page);
1282 VM_BUG_ON(!PageActive(page));
1283 ClearPageActive(page);
1284
1285 list_move(&page->lru, &zone->lru[lru].list);
1286 mem_cgroup_add_lru_list(page, lru);
1287 pgmoved++;
1288 if (!pagevec_add(&pvec, page)) {
1289 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1290 spin_unlock_irq(&zone->lru_lock);
1291 pgdeactivate += pgmoved;
1292 pgmoved = 0;
1293 if (buffer_heads_over_limit)
1294 pagevec_strip(&pvec);
1295 __pagevec_release(&pvec);
1296 spin_lock_irq(&zone->lru_lock);
1297 }
1298 }
1299 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1300 pgdeactivate += pgmoved;
1301 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1302 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1303 spin_unlock_irq(&zone->lru_lock);
1304 if (buffer_heads_over_limit)
1305 pagevec_strip(&pvec);
1306 pagevec_release(&pvec);
1307 }
1308
1309 static int inactive_anon_is_low_global(struct zone *zone)
1310 {
1311 unsigned long active, inactive;
1312
1313 active = zone_page_state(zone, NR_ACTIVE_ANON);
1314 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1315
1316 if (inactive * zone->inactive_ratio < active)
1317 return 1;
1318
1319 return 0;
1320 }
1321
1322 /**
1323 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1324 * @zone: zone to check
1325 * @sc: scan control of this context
1326 *
1327 * Returns true if the zone does not have enough inactive anon pages,
1328 * meaning some active anon pages need to be deactivated.
1329 */
1330 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1331 {
1332 int low;
1333
1334 if (scanning_global_lru(sc))
1335 low = inactive_anon_is_low_global(zone);
1336 else
1337 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1338 return low;
1339 }
1340
1341 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1342 struct zone *zone, struct scan_control *sc, int priority)
1343 {
1344 int file = is_file_lru(lru);
1345
1346 if (lru == LRU_ACTIVE_FILE) {
1347 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1348 return 0;
1349 }
1350
1351 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1352 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1353 return 0;
1354 }
1355 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1356 }
1357
1358 /*
1359 * Determine how aggressively the anon and file LRU lists should be
1360 * scanned. The relative value of each set of LRU lists is determined
1361 * by looking at the fraction of the pages scanned we did rotate back
1362 * onto the active list instead of evict.
1363 *
1364 * percent[0] specifies how much pressure to put on ram/swap backed
1365 * memory, while percent[1] determines pressure on the file LRUs.
1366 */
1367 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1368 unsigned long *percent)
1369 {
1370 unsigned long anon, file, free;
1371 unsigned long anon_prio, file_prio;
1372 unsigned long ap, fp;
1373 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1374
1375 /* If we have no swap space, do not bother scanning anon pages. */
1376 if (nr_swap_pages <= 0) {
1377 percent[0] = 0;
1378 percent[1] = 100;
1379 return;
1380 }
1381
1382 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1383 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1384 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1385 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1386
1387 if (scanning_global_lru(sc)) {
1388 free = zone_page_state(zone, NR_FREE_PAGES);
1389 /* If we have very few page cache pages,
1390 force-scan anon pages. */
1391 if (unlikely(file + free <= zone->pages_high)) {
1392 percent[0] = 100;
1393 percent[1] = 0;
1394 return;
1395 }
1396 }
1397
1398 /*
1399 * OK, so we have swap space and a fair amount of page cache
1400 * pages. We use the recently rotated / recently scanned
1401 * ratios to determine how valuable each cache is.
1402 *
1403 * Because workloads change over time (and to avoid overflow)
1404 * we keep these statistics as a floating average, which ends
1405 * up weighing recent references more than old ones.
1406 *
1407 * anon in [0], file in [1]
1408 */
1409 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1410 spin_lock_irq(&zone->lru_lock);
1411 reclaim_stat->recent_scanned[0] /= 2;
1412 reclaim_stat->recent_rotated[0] /= 2;
1413 spin_unlock_irq(&zone->lru_lock);
1414 }
1415
1416 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1417 spin_lock_irq(&zone->lru_lock);
1418 reclaim_stat->recent_scanned[1] /= 2;
1419 reclaim_stat->recent_rotated[1] /= 2;
1420 spin_unlock_irq(&zone->lru_lock);
1421 }
1422
1423 /*
1424 * With swappiness at 100, anonymous and file have the same priority.
1425 * This scanning priority is essentially the inverse of IO cost.
1426 */
1427 anon_prio = sc->swappiness;
1428 file_prio = 200 - sc->swappiness;
1429
1430 /*
1431 * The amount of pressure on anon vs file pages is inversely
1432 * proportional to the fraction of recently scanned pages on
1433 * each list that were recently referenced and in active use.
1434 */
1435 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1436 ap /= reclaim_stat->recent_rotated[0] + 1;
1437
1438 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1439 fp /= reclaim_stat->recent_rotated[1] + 1;
1440
1441 /* Normalize to percentages */
1442 percent[0] = 100 * ap / (ap + fp + 1);
1443 percent[1] = 100 - percent[0];
1444 }
1445
1446
1447 /*
1448 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1449 */
1450 static void shrink_zone(int priority, struct zone *zone,
1451 struct scan_control *sc)
1452 {
1453 unsigned long nr[NR_LRU_LISTS];
1454 unsigned long nr_to_scan;
1455 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1456 enum lru_list l;
1457 unsigned long nr_reclaimed = sc->nr_reclaimed;
1458 unsigned long swap_cluster_max = sc->swap_cluster_max;
1459
1460 get_scan_ratio(zone, sc, percent);
1461
1462 for_each_evictable_lru(l) {
1463 int file = is_file_lru(l);
1464 int scan;
1465
1466 scan = zone_nr_pages(zone, sc, l);
1467 if (priority) {
1468 scan >>= priority;
1469 scan = (scan * percent[file]) / 100;
1470 }
1471 if (scanning_global_lru(sc)) {
1472 zone->lru[l].nr_scan += scan;
1473 nr[l] = zone->lru[l].nr_scan;
1474 if (nr[l] >= swap_cluster_max)
1475 zone->lru[l].nr_scan = 0;
1476 else
1477 nr[l] = 0;
1478 } else
1479 nr[l] = scan;
1480 }
1481
1482 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1483 nr[LRU_INACTIVE_FILE]) {
1484 for_each_evictable_lru(l) {
1485 if (nr[l]) {
1486 nr_to_scan = min(nr[l], swap_cluster_max);
1487 nr[l] -= nr_to_scan;
1488
1489 nr_reclaimed += shrink_list(l, nr_to_scan,
1490 zone, sc, priority);
1491 }
1492 }
1493 /*
1494 * On large memory systems, scan >> priority can become
1495 * really large. This is fine for the starting priority;
1496 * we want to put equal scanning pressure on each zone.
1497 * However, if the VM has a harder time of freeing pages,
1498 * with multiple processes reclaiming pages, the total
1499 * freeing target can get unreasonably large.
1500 */
1501 if (nr_reclaimed > swap_cluster_max &&
1502 priority < DEF_PRIORITY && !current_is_kswapd())
1503 break;
1504 }
1505
1506 sc->nr_reclaimed = nr_reclaimed;
1507
1508 /*
1509 * Even if we did not try to evict anon pages at all, we want to
1510 * rebalance the anon lru active/inactive ratio.
1511 */
1512 if (inactive_anon_is_low(zone, sc))
1513 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1514
1515 throttle_vm_writeout(sc->gfp_mask);
1516 }
1517
1518 /*
1519 * This is the direct reclaim path, for page-allocating processes. We only
1520 * try to reclaim pages from zones which will satisfy the caller's allocation
1521 * request.
1522 *
1523 * We reclaim from a zone even if that zone is over pages_high. Because:
1524 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1525 * allocation or
1526 * b) The zones may be over pages_high but they must go *over* pages_high to
1527 * satisfy the `incremental min' zone defense algorithm.
1528 *
1529 * If a zone is deemed to be full of pinned pages then just give it a light
1530 * scan then give up on it.
1531 */
1532 static void shrink_zones(int priority, struct zonelist *zonelist,
1533 struct scan_control *sc)
1534 {
1535 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1536 struct zoneref *z;
1537 struct zone *zone;
1538
1539 sc->all_unreclaimable = 1;
1540 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1541 if (!populated_zone(zone))
1542 continue;
1543 /*
1544 * Take care memory controller reclaiming has small influence
1545 * to global LRU.
1546 */
1547 if (scanning_global_lru(sc)) {
1548 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1549 continue;
1550 note_zone_scanning_priority(zone, priority);
1551
1552 if (zone_is_all_unreclaimable(zone) &&
1553 priority != DEF_PRIORITY)
1554 continue; /* Let kswapd poll it */
1555 sc->all_unreclaimable = 0;
1556 } else {
1557 /*
1558 * Ignore cpuset limitation here. We just want to reduce
1559 * # of used pages by us regardless of memory shortage.
1560 */
1561 sc->all_unreclaimable = 0;
1562 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1563 priority);
1564 }
1565
1566 shrink_zone(priority, zone, sc);
1567 }
1568 }
1569
1570 /*
1571 * This is the main entry point to direct page reclaim.
1572 *
1573 * If a full scan of the inactive list fails to free enough memory then we
1574 * are "out of memory" and something needs to be killed.
1575 *
1576 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1577 * high - the zone may be full of dirty or under-writeback pages, which this
1578 * caller can't do much about. We kick pdflush and take explicit naps in the
1579 * hope that some of these pages can be written. But if the allocating task
1580 * holds filesystem locks which prevent writeout this might not work, and the
1581 * allocation attempt will fail.
1582 *
1583 * returns: 0, if no pages reclaimed
1584 * else, the number of pages reclaimed
1585 */
1586 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1587 struct scan_control *sc)
1588 {
1589 int priority;
1590 unsigned long ret = 0;
1591 unsigned long total_scanned = 0;
1592 struct reclaim_state *reclaim_state = current->reclaim_state;
1593 unsigned long lru_pages = 0;
1594 struct zoneref *z;
1595 struct zone *zone;
1596 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1597
1598 delayacct_freepages_start();
1599
1600 if (scanning_global_lru(sc))
1601 count_vm_event(ALLOCSTALL);
1602 /*
1603 * mem_cgroup will not do shrink_slab.
1604 */
1605 if (scanning_global_lru(sc)) {
1606 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1607
1608 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1609 continue;
1610
1611 lru_pages += zone_lru_pages(zone);
1612 }
1613 }
1614
1615 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1616 sc->nr_scanned = 0;
1617 if (!priority)
1618 disable_swap_token();
1619 shrink_zones(priority, zonelist, sc);
1620 /*
1621 * Don't shrink slabs when reclaiming memory from
1622 * over limit cgroups
1623 */
1624 if (scanning_global_lru(sc)) {
1625 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1626 if (reclaim_state) {
1627 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1628 reclaim_state->reclaimed_slab = 0;
1629 }
1630 }
1631 total_scanned += sc->nr_scanned;
1632 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1633 ret = sc->nr_reclaimed;
1634 goto out;
1635 }
1636
1637 /*
1638 * Try to write back as many pages as we just scanned. This
1639 * tends to cause slow streaming writers to write data to the
1640 * disk smoothly, at the dirtying rate, which is nice. But
1641 * that's undesirable in laptop mode, where we *want* lumpy
1642 * writeout. So in laptop mode, write out the whole world.
1643 */
1644 if (total_scanned > sc->swap_cluster_max +
1645 sc->swap_cluster_max / 2) {
1646 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1647 sc->may_writepage = 1;
1648 }
1649
1650 /* Take a nap, wait for some writeback to complete */
1651 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1652 congestion_wait(WRITE, HZ/10);
1653 }
1654 /* top priority shrink_zones still had more to do? don't OOM, then */
1655 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1656 ret = sc->nr_reclaimed;
1657 out:
1658 /*
1659 * Now that we've scanned all the zones at this priority level, note
1660 * that level within the zone so that the next thread which performs
1661 * scanning of this zone will immediately start out at this priority
1662 * level. This affects only the decision whether or not to bring
1663 * mapped pages onto the inactive list.
1664 */
1665 if (priority < 0)
1666 priority = 0;
1667
1668 if (scanning_global_lru(sc)) {
1669 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1670
1671 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1672 continue;
1673
1674 zone->prev_priority = priority;
1675 }
1676 } else
1677 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1678
1679 delayacct_freepages_end();
1680
1681 return ret;
1682 }
1683
1684 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1685 gfp_t gfp_mask)
1686 {
1687 struct scan_control sc = {
1688 .gfp_mask = gfp_mask,
1689 .may_writepage = !laptop_mode,
1690 .swap_cluster_max = SWAP_CLUSTER_MAX,
1691 .may_unmap = 1,
1692 .swappiness = vm_swappiness,
1693 .order = order,
1694 .mem_cgroup = NULL,
1695 .isolate_pages = isolate_pages_global,
1696 };
1697
1698 return do_try_to_free_pages(zonelist, &sc);
1699 }
1700
1701 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1702
1703 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1704 gfp_t gfp_mask,
1705 bool noswap,
1706 unsigned int swappiness)
1707 {
1708 struct scan_control sc = {
1709 .may_writepage = !laptop_mode,
1710 .may_unmap = 1,
1711 .swap_cluster_max = SWAP_CLUSTER_MAX,
1712 .swappiness = swappiness,
1713 .order = 0,
1714 .mem_cgroup = mem_cont,
1715 .isolate_pages = mem_cgroup_isolate_pages,
1716 };
1717 struct zonelist *zonelist;
1718
1719 if (noswap)
1720 sc.may_unmap = 0;
1721
1722 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1723 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1724 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1725 return do_try_to_free_pages(zonelist, &sc);
1726 }
1727 #endif
1728
1729 /*
1730 * For kswapd, balance_pgdat() will work across all this node's zones until
1731 * they are all at pages_high.
1732 *
1733 * Returns the number of pages which were actually freed.
1734 *
1735 * There is special handling here for zones which are full of pinned pages.
1736 * This can happen if the pages are all mlocked, or if they are all used by
1737 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1738 * What we do is to detect the case where all pages in the zone have been
1739 * scanned twice and there has been zero successful reclaim. Mark the zone as
1740 * dead and from now on, only perform a short scan. Basically we're polling
1741 * the zone for when the problem goes away.
1742 *
1743 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1744 * zones which have free_pages > pages_high, but once a zone is found to have
1745 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1746 * of the number of free pages in the lower zones. This interoperates with
1747 * the page allocator fallback scheme to ensure that aging of pages is balanced
1748 * across the zones.
1749 */
1750 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1751 {
1752 int all_zones_ok;
1753 int priority;
1754 int i;
1755 unsigned long total_scanned;
1756 struct reclaim_state *reclaim_state = current->reclaim_state;
1757 struct scan_control sc = {
1758 .gfp_mask = GFP_KERNEL,
1759 .may_unmap = 1,
1760 .swap_cluster_max = SWAP_CLUSTER_MAX,
1761 .swappiness = vm_swappiness,
1762 .order = order,
1763 .mem_cgroup = NULL,
1764 .isolate_pages = isolate_pages_global,
1765 };
1766 /*
1767 * temp_priority is used to remember the scanning priority at which
1768 * this zone was successfully refilled to free_pages == pages_high.
1769 */
1770 int temp_priority[MAX_NR_ZONES];
1771
1772 loop_again:
1773 total_scanned = 0;
1774 sc.nr_reclaimed = 0;
1775 sc.may_writepage = !laptop_mode;
1776 count_vm_event(PAGEOUTRUN);
1777
1778 for (i = 0; i < pgdat->nr_zones; i++)
1779 temp_priority[i] = DEF_PRIORITY;
1780
1781 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1782 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1783 unsigned long lru_pages = 0;
1784
1785 /* The swap token gets in the way of swapout... */
1786 if (!priority)
1787 disable_swap_token();
1788
1789 all_zones_ok = 1;
1790
1791 /*
1792 * Scan in the highmem->dma direction for the highest
1793 * zone which needs scanning
1794 */
1795 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1796 struct zone *zone = pgdat->node_zones + i;
1797
1798 if (!populated_zone(zone))
1799 continue;
1800
1801 if (zone_is_all_unreclaimable(zone) &&
1802 priority != DEF_PRIORITY)
1803 continue;
1804
1805 /*
1806 * Do some background aging of the anon list, to give
1807 * pages a chance to be referenced before reclaiming.
1808 */
1809 if (inactive_anon_is_low(zone, &sc))
1810 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1811 &sc, priority, 0);
1812
1813 if (!zone_watermark_ok(zone, order, zone->pages_high,
1814 0, 0)) {
1815 end_zone = i;
1816 break;
1817 }
1818 }
1819 if (i < 0)
1820 goto out;
1821
1822 for (i = 0; i <= end_zone; i++) {
1823 struct zone *zone = pgdat->node_zones + i;
1824
1825 lru_pages += zone_lru_pages(zone);
1826 }
1827
1828 /*
1829 * Now scan the zone in the dma->highmem direction, stopping
1830 * at the last zone which needs scanning.
1831 *
1832 * We do this because the page allocator works in the opposite
1833 * direction. This prevents the page allocator from allocating
1834 * pages behind kswapd's direction of progress, which would
1835 * cause too much scanning of the lower zones.
1836 */
1837 for (i = 0; i <= end_zone; i++) {
1838 struct zone *zone = pgdat->node_zones + i;
1839 int nr_slab;
1840
1841 if (!populated_zone(zone))
1842 continue;
1843
1844 if (zone_is_all_unreclaimable(zone) &&
1845 priority != DEF_PRIORITY)
1846 continue;
1847
1848 if (!zone_watermark_ok(zone, order, zone->pages_high,
1849 end_zone, 0))
1850 all_zones_ok = 0;
1851 temp_priority[i] = priority;
1852 sc.nr_scanned = 0;
1853 note_zone_scanning_priority(zone, priority);
1854 /*
1855 * We put equal pressure on every zone, unless one
1856 * zone has way too many pages free already.
1857 */
1858 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1859 end_zone, 0))
1860 shrink_zone(priority, zone, &sc);
1861 reclaim_state->reclaimed_slab = 0;
1862 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1863 lru_pages);
1864 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1865 total_scanned += sc.nr_scanned;
1866 if (zone_is_all_unreclaimable(zone))
1867 continue;
1868 if (nr_slab == 0 && zone->pages_scanned >=
1869 (zone_lru_pages(zone) * 6))
1870 zone_set_flag(zone,
1871 ZONE_ALL_UNRECLAIMABLE);
1872 /*
1873 * If we've done a decent amount of scanning and
1874 * the reclaim ratio is low, start doing writepage
1875 * even in laptop mode
1876 */
1877 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1878 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1879 sc.may_writepage = 1;
1880 }
1881 if (all_zones_ok)
1882 break; /* kswapd: all done */
1883 /*
1884 * OK, kswapd is getting into trouble. Take a nap, then take
1885 * another pass across the zones.
1886 */
1887 if (total_scanned && priority < DEF_PRIORITY - 2)
1888 congestion_wait(WRITE, HZ/10);
1889
1890 /*
1891 * We do this so kswapd doesn't build up large priorities for
1892 * example when it is freeing in parallel with allocators. It
1893 * matches the direct reclaim path behaviour in terms of impact
1894 * on zone->*_priority.
1895 */
1896 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1897 break;
1898 }
1899 out:
1900 /*
1901 * Note within each zone the priority level at which this zone was
1902 * brought into a happy state. So that the next thread which scans this
1903 * zone will start out at that priority level.
1904 */
1905 for (i = 0; i < pgdat->nr_zones; i++) {
1906 struct zone *zone = pgdat->node_zones + i;
1907
1908 zone->prev_priority = temp_priority[i];
1909 }
1910 if (!all_zones_ok) {
1911 cond_resched();
1912
1913 try_to_freeze();
1914
1915 /*
1916 * Fragmentation may mean that the system cannot be
1917 * rebalanced for high-order allocations in all zones.
1918 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1919 * it means the zones have been fully scanned and are still
1920 * not balanced. For high-order allocations, there is
1921 * little point trying all over again as kswapd may
1922 * infinite loop.
1923 *
1924 * Instead, recheck all watermarks at order-0 as they
1925 * are the most important. If watermarks are ok, kswapd will go
1926 * back to sleep. High-order users can still perform direct
1927 * reclaim if they wish.
1928 */
1929 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1930 order = sc.order = 0;
1931
1932 goto loop_again;
1933 }
1934
1935 return sc.nr_reclaimed;
1936 }
1937
1938 /*
1939 * The background pageout daemon, started as a kernel thread
1940 * from the init process.
1941 *
1942 * This basically trickles out pages so that we have _some_
1943 * free memory available even if there is no other activity
1944 * that frees anything up. This is needed for things like routing
1945 * etc, where we otherwise might have all activity going on in
1946 * asynchronous contexts that cannot page things out.
1947 *
1948 * If there are applications that are active memory-allocators
1949 * (most normal use), this basically shouldn't matter.
1950 */
1951 static int kswapd(void *p)
1952 {
1953 unsigned long order;
1954 pg_data_t *pgdat = (pg_data_t*)p;
1955 struct task_struct *tsk = current;
1956 DEFINE_WAIT(wait);
1957 struct reclaim_state reclaim_state = {
1958 .reclaimed_slab = 0,
1959 };
1960 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1961
1962 lockdep_set_current_reclaim_state(GFP_KERNEL);
1963
1964 if (!cpumask_empty(cpumask))
1965 set_cpus_allowed_ptr(tsk, cpumask);
1966 current->reclaim_state = &reclaim_state;
1967
1968 /*
1969 * Tell the memory management that we're a "memory allocator",
1970 * and that if we need more memory we should get access to it
1971 * regardless (see "__alloc_pages()"). "kswapd" should
1972 * never get caught in the normal page freeing logic.
1973 *
1974 * (Kswapd normally doesn't need memory anyway, but sometimes
1975 * you need a small amount of memory in order to be able to
1976 * page out something else, and this flag essentially protects
1977 * us from recursively trying to free more memory as we're
1978 * trying to free the first piece of memory in the first place).
1979 */
1980 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1981 set_freezable();
1982
1983 order = 0;
1984 for ( ; ; ) {
1985 unsigned long new_order;
1986
1987 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1988 new_order = pgdat->kswapd_max_order;
1989 pgdat->kswapd_max_order = 0;
1990 if (order < new_order) {
1991 /*
1992 * Don't sleep if someone wants a larger 'order'
1993 * allocation
1994 */
1995 order = new_order;
1996 } else {
1997 if (!freezing(current))
1998 schedule();
1999
2000 order = pgdat->kswapd_max_order;
2001 }
2002 finish_wait(&pgdat->kswapd_wait, &wait);
2003
2004 if (!try_to_freeze()) {
2005 /* We can speed up thawing tasks if we don't call
2006 * balance_pgdat after returning from the refrigerator
2007 */
2008 balance_pgdat(pgdat, order);
2009 }
2010 }
2011 return 0;
2012 }
2013
2014 /*
2015 * A zone is low on free memory, so wake its kswapd task to service it.
2016 */
2017 void wakeup_kswapd(struct zone *zone, int order)
2018 {
2019 pg_data_t *pgdat;
2020
2021 if (!populated_zone(zone))
2022 return;
2023
2024 pgdat = zone->zone_pgdat;
2025 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
2026 return;
2027 if (pgdat->kswapd_max_order < order)
2028 pgdat->kswapd_max_order = order;
2029 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2030 return;
2031 if (!waitqueue_active(&pgdat->kswapd_wait))
2032 return;
2033 wake_up_interruptible(&pgdat->kswapd_wait);
2034 }
2035
2036 unsigned long global_lru_pages(void)
2037 {
2038 return global_page_state(NR_ACTIVE_ANON)
2039 + global_page_state(NR_ACTIVE_FILE)
2040 + global_page_state(NR_INACTIVE_ANON)
2041 + global_page_state(NR_INACTIVE_FILE);
2042 }
2043
2044 #ifdef CONFIG_PM
2045 /*
2046 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2047 * from LRU lists system-wide, for given pass and priority.
2048 *
2049 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2050 */
2051 static void shrink_all_zones(unsigned long nr_pages, int prio,
2052 int pass, struct scan_control *sc)
2053 {
2054 struct zone *zone;
2055 unsigned long nr_reclaimed = 0;
2056
2057 for_each_populated_zone(zone) {
2058 enum lru_list l;
2059
2060 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2061 continue;
2062
2063 for_each_evictable_lru(l) {
2064 enum zone_stat_item ls = NR_LRU_BASE + l;
2065 unsigned long lru_pages = zone_page_state(zone, ls);
2066
2067 /* For pass = 0, we don't shrink the active list */
2068 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2069 l == LRU_ACTIVE_FILE))
2070 continue;
2071
2072 zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
2073 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2074 unsigned long nr_to_scan;
2075
2076 zone->lru[l].nr_scan = 0;
2077 nr_to_scan = min(nr_pages, lru_pages);
2078 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2079 sc, prio);
2080 if (nr_reclaimed >= nr_pages) {
2081 sc->nr_reclaimed = nr_reclaimed;
2082 return;
2083 }
2084 }
2085 }
2086 }
2087 sc->nr_reclaimed = nr_reclaimed;
2088 }
2089
2090 /*
2091 * Try to free `nr_pages' of memory, system-wide, and return the number of
2092 * freed pages.
2093 *
2094 * Rather than trying to age LRUs the aim is to preserve the overall
2095 * LRU order by reclaiming preferentially
2096 * inactive > active > active referenced > active mapped
2097 */
2098 unsigned long shrink_all_memory(unsigned long nr_pages)
2099 {
2100 unsigned long lru_pages, nr_slab;
2101 int pass;
2102 struct reclaim_state reclaim_state;
2103 struct scan_control sc = {
2104 .gfp_mask = GFP_KERNEL,
2105 .may_unmap = 0,
2106 .may_writepage = 1,
2107 .isolate_pages = isolate_pages_global,
2108 };
2109
2110 current->reclaim_state = &reclaim_state;
2111
2112 lru_pages = global_lru_pages();
2113 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2114 /* If slab caches are huge, it's better to hit them first */
2115 while (nr_slab >= lru_pages) {
2116 reclaim_state.reclaimed_slab = 0;
2117 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2118 if (!reclaim_state.reclaimed_slab)
2119 break;
2120
2121 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2122 if (sc.nr_reclaimed >= nr_pages)
2123 goto out;
2124
2125 nr_slab -= reclaim_state.reclaimed_slab;
2126 }
2127
2128 /*
2129 * We try to shrink LRUs in 5 passes:
2130 * 0 = Reclaim from inactive_list only
2131 * 1 = Reclaim from active list but don't reclaim mapped
2132 * 2 = 2nd pass of type 1
2133 * 3 = Reclaim mapped (normal reclaim)
2134 * 4 = 2nd pass of type 3
2135 */
2136 for (pass = 0; pass < 5; pass++) {
2137 int prio;
2138
2139 /* Force reclaiming mapped pages in the passes #3 and #4 */
2140 if (pass > 2)
2141 sc.may_unmap = 1;
2142
2143 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2144 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2145
2146 sc.nr_scanned = 0;
2147 sc.swap_cluster_max = nr_to_scan;
2148 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2149 if (sc.nr_reclaimed >= nr_pages)
2150 goto out;
2151
2152 reclaim_state.reclaimed_slab = 0;
2153 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2154 global_lru_pages());
2155 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2156 if (sc.nr_reclaimed >= nr_pages)
2157 goto out;
2158
2159 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2160 congestion_wait(WRITE, HZ / 10);
2161 }
2162 }
2163
2164 /*
2165 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2166 * something in slab caches
2167 */
2168 if (!sc.nr_reclaimed) {
2169 do {
2170 reclaim_state.reclaimed_slab = 0;
2171 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2172 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2173 } while (sc.nr_reclaimed < nr_pages &&
2174 reclaim_state.reclaimed_slab > 0);
2175 }
2176
2177
2178 out:
2179 current->reclaim_state = NULL;
2180
2181 return sc.nr_reclaimed;
2182 }
2183 #endif
2184
2185 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2186 not required for correctness. So if the last cpu in a node goes
2187 away, we get changed to run anywhere: as the first one comes back,
2188 restore their cpu bindings. */
2189 static int __devinit cpu_callback(struct notifier_block *nfb,
2190 unsigned long action, void *hcpu)
2191 {
2192 int nid;
2193
2194 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2195 for_each_node_state(nid, N_HIGH_MEMORY) {
2196 pg_data_t *pgdat = NODE_DATA(nid);
2197 node_to_cpumask_ptr(mask, pgdat->node_id);
2198
2199 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2200 /* One of our CPUs online: restore mask */
2201 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2202 }
2203 }
2204 return NOTIFY_OK;
2205 }
2206
2207 /*
2208 * This kswapd start function will be called by init and node-hot-add.
2209 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2210 */
2211 int kswapd_run(int nid)
2212 {
2213 pg_data_t *pgdat = NODE_DATA(nid);
2214 int ret = 0;
2215
2216 if (pgdat->kswapd)
2217 return 0;
2218
2219 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2220 if (IS_ERR(pgdat->kswapd)) {
2221 /* failure at boot is fatal */
2222 BUG_ON(system_state == SYSTEM_BOOTING);
2223 printk("Failed to start kswapd on node %d\n",nid);
2224 ret = -1;
2225 }
2226 return ret;
2227 }
2228
2229 static int __init kswapd_init(void)
2230 {
2231 int nid;
2232
2233 swap_setup();
2234 for_each_node_state(nid, N_HIGH_MEMORY)
2235 kswapd_run(nid);
2236 hotcpu_notifier(cpu_callback, 0);
2237 return 0;
2238 }
2239
2240 module_init(kswapd_init)
2241
2242 #ifdef CONFIG_NUMA
2243 /*
2244 * Zone reclaim mode
2245 *
2246 * If non-zero call zone_reclaim when the number of free pages falls below
2247 * the watermarks.
2248 */
2249 int zone_reclaim_mode __read_mostly;
2250
2251 #define RECLAIM_OFF 0
2252 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2253 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2254 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2255
2256 /*
2257 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2258 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2259 * a zone.
2260 */
2261 #define ZONE_RECLAIM_PRIORITY 4
2262
2263 /*
2264 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2265 * occur.
2266 */
2267 int sysctl_min_unmapped_ratio = 1;
2268
2269 /*
2270 * If the number of slab pages in a zone grows beyond this percentage then
2271 * slab reclaim needs to occur.
2272 */
2273 int sysctl_min_slab_ratio = 5;
2274
2275 /*
2276 * Try to free up some pages from this zone through reclaim.
2277 */
2278 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2279 {
2280 /* Minimum pages needed in order to stay on node */
2281 const unsigned long nr_pages = 1 << order;
2282 struct task_struct *p = current;
2283 struct reclaim_state reclaim_state;
2284 int priority;
2285 struct scan_control sc = {
2286 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2287 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2288 .swap_cluster_max = max_t(unsigned long, nr_pages,
2289 SWAP_CLUSTER_MAX),
2290 .gfp_mask = gfp_mask,
2291 .swappiness = vm_swappiness,
2292 .order = order,
2293 .isolate_pages = isolate_pages_global,
2294 };
2295 unsigned long slab_reclaimable;
2296
2297 disable_swap_token();
2298 cond_resched();
2299 /*
2300 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2301 * and we also need to be able to write out pages for RECLAIM_WRITE
2302 * and RECLAIM_SWAP.
2303 */
2304 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2305 reclaim_state.reclaimed_slab = 0;
2306 p->reclaim_state = &reclaim_state;
2307
2308 if (zone_page_state(zone, NR_FILE_PAGES) -
2309 zone_page_state(zone, NR_FILE_MAPPED) >
2310 zone->min_unmapped_pages) {
2311 /*
2312 * Free memory by calling shrink zone with increasing
2313 * priorities until we have enough memory freed.
2314 */
2315 priority = ZONE_RECLAIM_PRIORITY;
2316 do {
2317 note_zone_scanning_priority(zone, priority);
2318 shrink_zone(priority, zone, &sc);
2319 priority--;
2320 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2321 }
2322
2323 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2324 if (slab_reclaimable > zone->min_slab_pages) {
2325 /*
2326 * shrink_slab() does not currently allow us to determine how
2327 * many pages were freed in this zone. So we take the current
2328 * number of slab pages and shake the slab until it is reduced
2329 * by the same nr_pages that we used for reclaiming unmapped
2330 * pages.
2331 *
2332 * Note that shrink_slab will free memory on all zones and may
2333 * take a long time.
2334 */
2335 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2336 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2337 slab_reclaimable - nr_pages)
2338 ;
2339
2340 /*
2341 * Update nr_reclaimed by the number of slab pages we
2342 * reclaimed from this zone.
2343 */
2344 sc.nr_reclaimed += slab_reclaimable -
2345 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2346 }
2347
2348 p->reclaim_state = NULL;
2349 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2350 return sc.nr_reclaimed >= nr_pages;
2351 }
2352
2353 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2354 {
2355 int node_id;
2356 int ret;
2357
2358 /*
2359 * Zone reclaim reclaims unmapped file backed pages and
2360 * slab pages if we are over the defined limits.
2361 *
2362 * A small portion of unmapped file backed pages is needed for
2363 * file I/O otherwise pages read by file I/O will be immediately
2364 * thrown out if the zone is overallocated. So we do not reclaim
2365 * if less than a specified percentage of the zone is used by
2366 * unmapped file backed pages.
2367 */
2368 if (zone_page_state(zone, NR_FILE_PAGES) -
2369 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2370 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2371 <= zone->min_slab_pages)
2372 return 0;
2373
2374 if (zone_is_all_unreclaimable(zone))
2375 return 0;
2376
2377 /*
2378 * Do not scan if the allocation should not be delayed.
2379 */
2380 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2381 return 0;
2382
2383 /*
2384 * Only run zone reclaim on the local zone or on zones that do not
2385 * have associated processors. This will favor the local processor
2386 * over remote processors and spread off node memory allocations
2387 * as wide as possible.
2388 */
2389 node_id = zone_to_nid(zone);
2390 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2391 return 0;
2392
2393 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2394 return 0;
2395 ret = __zone_reclaim(zone, gfp_mask, order);
2396 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2397
2398 return ret;
2399 }
2400 #endif
2401
2402 #ifdef CONFIG_UNEVICTABLE_LRU
2403 /*
2404 * page_evictable - test whether a page is evictable
2405 * @page: the page to test
2406 * @vma: the VMA in which the page is or will be mapped, may be NULL
2407 *
2408 * Test whether page is evictable--i.e., should be placed on active/inactive
2409 * lists vs unevictable list. The vma argument is !NULL when called from the
2410 * fault path to determine how to instantate a new page.
2411 *
2412 * Reasons page might not be evictable:
2413 * (1) page's mapping marked unevictable
2414 * (2) page is part of an mlocked VMA
2415 *
2416 */
2417 int page_evictable(struct page *page, struct vm_area_struct *vma)
2418 {
2419
2420 if (mapping_unevictable(page_mapping(page)))
2421 return 0;
2422
2423 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2424 return 0;
2425
2426 return 1;
2427 }
2428
2429 /**
2430 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2431 * @page: page to check evictability and move to appropriate lru list
2432 * @zone: zone page is in
2433 *
2434 * Checks a page for evictability and moves the page to the appropriate
2435 * zone lru list.
2436 *
2437 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2438 * have PageUnevictable set.
2439 */
2440 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2441 {
2442 VM_BUG_ON(PageActive(page));
2443
2444 retry:
2445 ClearPageUnevictable(page);
2446 if (page_evictable(page, NULL)) {
2447 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2448
2449 __dec_zone_state(zone, NR_UNEVICTABLE);
2450 list_move(&page->lru, &zone->lru[l].list);
2451 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2452 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2453 __count_vm_event(UNEVICTABLE_PGRESCUED);
2454 } else {
2455 /*
2456 * rotate unevictable list
2457 */
2458 SetPageUnevictable(page);
2459 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2460 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2461 if (page_evictable(page, NULL))
2462 goto retry;
2463 }
2464 }
2465
2466 /**
2467 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2468 * @mapping: struct address_space to scan for evictable pages
2469 *
2470 * Scan all pages in mapping. Check unevictable pages for
2471 * evictability and move them to the appropriate zone lru list.
2472 */
2473 void scan_mapping_unevictable_pages(struct address_space *mapping)
2474 {
2475 pgoff_t next = 0;
2476 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2477 PAGE_CACHE_SHIFT;
2478 struct zone *zone;
2479 struct pagevec pvec;
2480
2481 if (mapping->nrpages == 0)
2482 return;
2483
2484 pagevec_init(&pvec, 0);
2485 while (next < end &&
2486 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2487 int i;
2488 int pg_scanned = 0;
2489
2490 zone = NULL;
2491
2492 for (i = 0; i < pagevec_count(&pvec); i++) {
2493 struct page *page = pvec.pages[i];
2494 pgoff_t page_index = page->index;
2495 struct zone *pagezone = page_zone(page);
2496
2497 pg_scanned++;
2498 if (page_index > next)
2499 next = page_index;
2500 next++;
2501
2502 if (pagezone != zone) {
2503 if (zone)
2504 spin_unlock_irq(&zone->lru_lock);
2505 zone = pagezone;
2506 spin_lock_irq(&zone->lru_lock);
2507 }
2508
2509 if (PageLRU(page) && PageUnevictable(page))
2510 check_move_unevictable_page(page, zone);
2511 }
2512 if (zone)
2513 spin_unlock_irq(&zone->lru_lock);
2514 pagevec_release(&pvec);
2515
2516 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2517 }
2518
2519 }
2520
2521 /**
2522 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2523 * @zone - zone of which to scan the unevictable list
2524 *
2525 * Scan @zone's unevictable LRU lists to check for pages that have become
2526 * evictable. Move those that have to @zone's inactive list where they
2527 * become candidates for reclaim, unless shrink_inactive_zone() decides
2528 * to reactivate them. Pages that are still unevictable are rotated
2529 * back onto @zone's unevictable list.
2530 */
2531 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2532 static void scan_zone_unevictable_pages(struct zone *zone)
2533 {
2534 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2535 unsigned long scan;
2536 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2537
2538 while (nr_to_scan > 0) {
2539 unsigned long batch_size = min(nr_to_scan,
2540 SCAN_UNEVICTABLE_BATCH_SIZE);
2541
2542 spin_lock_irq(&zone->lru_lock);
2543 for (scan = 0; scan < batch_size; scan++) {
2544 struct page *page = lru_to_page(l_unevictable);
2545
2546 if (!trylock_page(page))
2547 continue;
2548
2549 prefetchw_prev_lru_page(page, l_unevictable, flags);
2550
2551 if (likely(PageLRU(page) && PageUnevictable(page)))
2552 check_move_unevictable_page(page, zone);
2553
2554 unlock_page(page);
2555 }
2556 spin_unlock_irq(&zone->lru_lock);
2557
2558 nr_to_scan -= batch_size;
2559 }
2560 }
2561
2562
2563 /**
2564 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2565 *
2566 * A really big hammer: scan all zones' unevictable LRU lists to check for
2567 * pages that have become evictable. Move those back to the zones'
2568 * inactive list where they become candidates for reclaim.
2569 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2570 * and we add swap to the system. As such, it runs in the context of a task
2571 * that has possibly/probably made some previously unevictable pages
2572 * evictable.
2573 */
2574 static void scan_all_zones_unevictable_pages(void)
2575 {
2576 struct zone *zone;
2577
2578 for_each_zone(zone) {
2579 scan_zone_unevictable_pages(zone);
2580 }
2581 }
2582
2583 /*
2584 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2585 * all nodes' unevictable lists for evictable pages
2586 */
2587 unsigned long scan_unevictable_pages;
2588
2589 int scan_unevictable_handler(struct ctl_table *table, int write,
2590 struct file *file, void __user *buffer,
2591 size_t *length, loff_t *ppos)
2592 {
2593 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2594
2595 if (write && *(unsigned long *)table->data)
2596 scan_all_zones_unevictable_pages();
2597
2598 scan_unevictable_pages = 0;
2599 return 0;
2600 }
2601
2602 /*
2603 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2604 * a specified node's per zone unevictable lists for evictable pages.
2605 */
2606
2607 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2608 struct sysdev_attribute *attr,
2609 char *buf)
2610 {
2611 return sprintf(buf, "0\n"); /* always zero; should fit... */
2612 }
2613
2614 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2615 struct sysdev_attribute *attr,
2616 const char *buf, size_t count)
2617 {
2618 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2619 struct zone *zone;
2620 unsigned long res;
2621 unsigned long req = strict_strtoul(buf, 10, &res);
2622
2623 if (!req)
2624 return 1; /* zero is no-op */
2625
2626 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2627 if (!populated_zone(zone))
2628 continue;
2629 scan_zone_unevictable_pages(zone);
2630 }
2631 return 1;
2632 }
2633
2634
2635 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2636 read_scan_unevictable_node,
2637 write_scan_unevictable_node);
2638
2639 int scan_unevictable_register_node(struct node *node)
2640 {
2641 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2642 }
2643
2644 void scan_unevictable_unregister_node(struct node *node)
2645 {
2646 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2647 }
2648
2649 #endif
This page took 0.082433 seconds and 6 git commands to generate.