Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129 * From 0 .. 100. Higher means more swappy.
130 */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec, lru);
153
154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158 * Add a shrinker callback to be called from the vm
159 */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 atomic_long_set(&shrinker->nr_in_batch, 0);
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170 * Remove one
171 */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183 {
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
205 *
206 * Returns the number of slab objects which we shrunk.
207 */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 unsigned long nr_pages_scanned,
210 unsigned long lru_pages)
211 {
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
214
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 int shrink_ret = 0;
229 long nr;
230 long new_nr;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
284 while (total_scan >= batch_size) {
285 int nr_before;
286
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 batch_size);
290 if (shrink_ret == -1)
291 break;
292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
296
297 cond_resched();
298 }
299
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 }
313 up_read(&shrinker_rwsem);
314 out:
315 cond_resched();
316 return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
326 return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
331 {
332 if (current->flags & PF_SWAPWRITE)
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339 }
340
341 /*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353 static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355 {
356 lock_page(page);
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
359 unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
377 */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 struct scan_control *sc)
380 {
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
404 if (page_has_private(page)) {
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
407 printk("%s: orphaned page\n", __func__);
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
432 if (res == AOP_WRITEPAGE_ACTIVATE) {
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
436
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447 }
448
449 /*
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
452 */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
457
458 spin_lock_irq(&mapping->tree_lock);
459 /*
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
483 */
484 if (!page_freeze_refs(page, 2))
485 goto cannot_free;
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
489 goto cannot_free;
490 }
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
495 spin_unlock_irq(&mapping->tree_lock);
496 swapcache_free(swap, page);
497 } else {
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
502 __delete_from_page_cache(page);
503 spin_unlock_irq(&mapping->tree_lock);
504 mem_cgroup_uncharge_cache_page(page);
505
506 if (freepage != NULL)
507 freepage(page);
508 }
509
510 return 1;
511
512 cannot_free:
513 spin_unlock_irq(&mapping->tree_lock);
514 return 0;
515 }
516
517 /*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535 }
536
537 /**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
546 void putback_lru_page(struct page *page)
547 {
548 int lru;
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553 redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = page_lru_base_type(page);
564 lru_cache_add(page);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607 }
608
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618 {
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669 }
670
671 /* Check if a page is dirty or under writeback */
672 static void page_check_dirty_writeback(struct page *page,
673 bool *dirty, bool *writeback)
674 {
675 struct address_space *mapping;
676
677 /*
678 * Anonymous pages are not handled by flushers and must be written
679 * from reclaim context. Do not stall reclaim based on them
680 */
681 if (!page_is_file_cache(page)) {
682 *dirty = false;
683 *writeback = false;
684 return;
685 }
686
687 /* By default assume that the page flags are accurate */
688 *dirty = PageDirty(page);
689 *writeback = PageWriteback(page);
690
691 /* Verify dirty/writeback state if the filesystem supports it */
692 if (!page_has_private(page))
693 return;
694
695 mapping = page_mapping(page);
696 if (mapping && mapping->a_ops->is_dirty_writeback)
697 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
698 }
699
700 /*
701 * shrink_page_list() returns the number of reclaimed pages
702 */
703 static unsigned long shrink_page_list(struct list_head *page_list,
704 struct zone *zone,
705 struct scan_control *sc,
706 enum ttu_flags ttu_flags,
707 unsigned long *ret_nr_dirty,
708 unsigned long *ret_nr_unqueued_dirty,
709 unsigned long *ret_nr_congested,
710 unsigned long *ret_nr_writeback,
711 unsigned long *ret_nr_immediate,
712 bool force_reclaim)
713 {
714 LIST_HEAD(ret_pages);
715 LIST_HEAD(free_pages);
716 int pgactivate = 0;
717 unsigned long nr_unqueued_dirty = 0;
718 unsigned long nr_dirty = 0;
719 unsigned long nr_congested = 0;
720 unsigned long nr_reclaimed = 0;
721 unsigned long nr_writeback = 0;
722 unsigned long nr_immediate = 0;
723
724 cond_resched();
725
726 mem_cgroup_uncharge_start();
727 while (!list_empty(page_list)) {
728 struct address_space *mapping;
729 struct page *page;
730 int may_enter_fs;
731 enum page_references references = PAGEREF_RECLAIM_CLEAN;
732 bool dirty, writeback;
733
734 cond_resched();
735
736 page = lru_to_page(page_list);
737 list_del(&page->lru);
738
739 if (!trylock_page(page))
740 goto keep;
741
742 VM_BUG_ON(PageActive(page));
743 VM_BUG_ON(page_zone(page) != zone);
744
745 sc->nr_scanned++;
746
747 if (unlikely(!page_evictable(page)))
748 goto cull_mlocked;
749
750 if (!sc->may_unmap && page_mapped(page))
751 goto keep_locked;
752
753 /* Double the slab pressure for mapped and swapcache pages */
754 if (page_mapped(page) || PageSwapCache(page))
755 sc->nr_scanned++;
756
757 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
758 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
759
760 /*
761 * The number of dirty pages determines if a zone is marked
762 * reclaim_congested which affects wait_iff_congested. kswapd
763 * will stall and start writing pages if the tail of the LRU
764 * is all dirty unqueued pages.
765 */
766 page_check_dirty_writeback(page, &dirty, &writeback);
767 if (dirty || writeback)
768 nr_dirty++;
769
770 if (dirty && !writeback)
771 nr_unqueued_dirty++;
772
773 /*
774 * Treat this page as congested if the underlying BDI is or if
775 * pages are cycling through the LRU so quickly that the
776 * pages marked for immediate reclaim are making it to the
777 * end of the LRU a second time.
778 */
779 mapping = page_mapping(page);
780 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
781 (writeback && PageReclaim(page)))
782 nr_congested++;
783
784 /*
785 * If a page at the tail of the LRU is under writeback, there
786 * are three cases to consider.
787 *
788 * 1) If reclaim is encountering an excessive number of pages
789 * under writeback and this page is both under writeback and
790 * PageReclaim then it indicates that pages are being queued
791 * for IO but are being recycled through the LRU before the
792 * IO can complete. Waiting on the page itself risks an
793 * indefinite stall if it is impossible to writeback the
794 * page due to IO error or disconnected storage so instead
795 * note that the LRU is being scanned too quickly and the
796 * caller can stall after page list has been processed.
797 *
798 * 2) Global reclaim encounters a page, memcg encounters a
799 * page that is not marked for immediate reclaim or
800 * the caller does not have __GFP_IO. In this case mark
801 * the page for immediate reclaim and continue scanning.
802 *
803 * __GFP_IO is checked because a loop driver thread might
804 * enter reclaim, and deadlock if it waits on a page for
805 * which it is needed to do the write (loop masks off
806 * __GFP_IO|__GFP_FS for this reason); but more thought
807 * would probably show more reasons.
808 *
809 * Don't require __GFP_FS, since we're not going into the
810 * FS, just waiting on its writeback completion. Worryingly,
811 * ext4 gfs2 and xfs allocate pages with
812 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
813 * may_enter_fs here is liable to OOM on them.
814 *
815 * 3) memcg encounters a page that is not already marked
816 * PageReclaim. memcg does not have any dirty pages
817 * throttling so we could easily OOM just because too many
818 * pages are in writeback and there is nothing else to
819 * reclaim. Wait for the writeback to complete.
820 */
821 if (PageWriteback(page)) {
822 /* Case 1 above */
823 if (current_is_kswapd() &&
824 PageReclaim(page) &&
825 zone_is_reclaim_writeback(zone)) {
826 nr_immediate++;
827 goto keep_locked;
828
829 /* Case 2 above */
830 } else if (global_reclaim(sc) ||
831 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
832 /*
833 * This is slightly racy - end_page_writeback()
834 * might have just cleared PageReclaim, then
835 * setting PageReclaim here end up interpreted
836 * as PageReadahead - but that does not matter
837 * enough to care. What we do want is for this
838 * page to have PageReclaim set next time memcg
839 * reclaim reaches the tests above, so it will
840 * then wait_on_page_writeback() to avoid OOM;
841 * and it's also appropriate in global reclaim.
842 */
843 SetPageReclaim(page);
844 nr_writeback++;
845
846 goto keep_locked;
847
848 /* Case 3 above */
849 } else {
850 wait_on_page_writeback(page);
851 }
852 }
853
854 if (!force_reclaim)
855 references = page_check_references(page, sc);
856
857 switch (references) {
858 case PAGEREF_ACTIVATE:
859 goto activate_locked;
860 case PAGEREF_KEEP:
861 goto keep_locked;
862 case PAGEREF_RECLAIM:
863 case PAGEREF_RECLAIM_CLEAN:
864 ; /* try to reclaim the page below */
865 }
866
867 /*
868 * Anonymous process memory has backing store?
869 * Try to allocate it some swap space here.
870 */
871 if (PageAnon(page) && !PageSwapCache(page)) {
872 if (!(sc->gfp_mask & __GFP_IO))
873 goto keep_locked;
874 if (!add_to_swap(page, page_list))
875 goto activate_locked;
876 may_enter_fs = 1;
877
878 /* Adding to swap updated mapping */
879 mapping = page_mapping(page);
880 }
881
882 /*
883 * The page is mapped into the page tables of one or more
884 * processes. Try to unmap it here.
885 */
886 if (page_mapped(page) && mapping) {
887 switch (try_to_unmap(page, ttu_flags)) {
888 case SWAP_FAIL:
889 goto activate_locked;
890 case SWAP_AGAIN:
891 goto keep_locked;
892 case SWAP_MLOCK:
893 goto cull_mlocked;
894 case SWAP_SUCCESS:
895 ; /* try to free the page below */
896 }
897 }
898
899 if (PageDirty(page)) {
900 /*
901 * Only kswapd can writeback filesystem pages to
902 * avoid risk of stack overflow but only writeback
903 * if many dirty pages have been encountered.
904 */
905 if (page_is_file_cache(page) &&
906 (!current_is_kswapd() ||
907 !zone_is_reclaim_dirty(zone))) {
908 /*
909 * Immediately reclaim when written back.
910 * Similar in principal to deactivate_page()
911 * except we already have the page isolated
912 * and know it's dirty
913 */
914 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
915 SetPageReclaim(page);
916
917 goto keep_locked;
918 }
919
920 if (references == PAGEREF_RECLAIM_CLEAN)
921 goto keep_locked;
922 if (!may_enter_fs)
923 goto keep_locked;
924 if (!sc->may_writepage)
925 goto keep_locked;
926
927 /* Page is dirty, try to write it out here */
928 switch (pageout(page, mapping, sc)) {
929 case PAGE_KEEP:
930 goto keep_locked;
931 case PAGE_ACTIVATE:
932 goto activate_locked;
933 case PAGE_SUCCESS:
934 if (PageWriteback(page))
935 goto keep;
936 if (PageDirty(page))
937 goto keep;
938
939 /*
940 * A synchronous write - probably a ramdisk. Go
941 * ahead and try to reclaim the page.
942 */
943 if (!trylock_page(page))
944 goto keep;
945 if (PageDirty(page) || PageWriteback(page))
946 goto keep_locked;
947 mapping = page_mapping(page);
948 case PAGE_CLEAN:
949 ; /* try to free the page below */
950 }
951 }
952
953 /*
954 * If the page has buffers, try to free the buffer mappings
955 * associated with this page. If we succeed we try to free
956 * the page as well.
957 *
958 * We do this even if the page is PageDirty().
959 * try_to_release_page() does not perform I/O, but it is
960 * possible for a page to have PageDirty set, but it is actually
961 * clean (all its buffers are clean). This happens if the
962 * buffers were written out directly, with submit_bh(). ext3
963 * will do this, as well as the blockdev mapping.
964 * try_to_release_page() will discover that cleanness and will
965 * drop the buffers and mark the page clean - it can be freed.
966 *
967 * Rarely, pages can have buffers and no ->mapping. These are
968 * the pages which were not successfully invalidated in
969 * truncate_complete_page(). We try to drop those buffers here
970 * and if that worked, and the page is no longer mapped into
971 * process address space (page_count == 1) it can be freed.
972 * Otherwise, leave the page on the LRU so it is swappable.
973 */
974 if (page_has_private(page)) {
975 if (!try_to_release_page(page, sc->gfp_mask))
976 goto activate_locked;
977 if (!mapping && page_count(page) == 1) {
978 unlock_page(page);
979 if (put_page_testzero(page))
980 goto free_it;
981 else {
982 /*
983 * rare race with speculative reference.
984 * the speculative reference will free
985 * this page shortly, so we may
986 * increment nr_reclaimed here (and
987 * leave it off the LRU).
988 */
989 nr_reclaimed++;
990 continue;
991 }
992 }
993 }
994
995 if (!mapping || !__remove_mapping(mapping, page))
996 goto keep_locked;
997
998 /*
999 * At this point, we have no other references and there is
1000 * no way to pick any more up (removed from LRU, removed
1001 * from pagecache). Can use non-atomic bitops now (and
1002 * we obviously don't have to worry about waking up a process
1003 * waiting on the page lock, because there are no references.
1004 */
1005 __clear_page_locked(page);
1006 free_it:
1007 nr_reclaimed++;
1008
1009 /*
1010 * Is there need to periodically free_page_list? It would
1011 * appear not as the counts should be low
1012 */
1013 list_add(&page->lru, &free_pages);
1014 continue;
1015
1016 cull_mlocked:
1017 if (PageSwapCache(page))
1018 try_to_free_swap(page);
1019 unlock_page(page);
1020 putback_lru_page(page);
1021 continue;
1022
1023 activate_locked:
1024 /* Not a candidate for swapping, so reclaim swap space. */
1025 if (PageSwapCache(page) && vm_swap_full())
1026 try_to_free_swap(page);
1027 VM_BUG_ON(PageActive(page));
1028 SetPageActive(page);
1029 pgactivate++;
1030 keep_locked:
1031 unlock_page(page);
1032 keep:
1033 list_add(&page->lru, &ret_pages);
1034 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1035 }
1036
1037 free_hot_cold_page_list(&free_pages, 1);
1038
1039 list_splice(&ret_pages, page_list);
1040 count_vm_events(PGACTIVATE, pgactivate);
1041 mem_cgroup_uncharge_end();
1042 *ret_nr_dirty += nr_dirty;
1043 *ret_nr_congested += nr_congested;
1044 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1045 *ret_nr_writeback += nr_writeback;
1046 *ret_nr_immediate += nr_immediate;
1047 return nr_reclaimed;
1048 }
1049
1050 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1051 struct list_head *page_list)
1052 {
1053 struct scan_control sc = {
1054 .gfp_mask = GFP_KERNEL,
1055 .priority = DEF_PRIORITY,
1056 .may_unmap = 1,
1057 };
1058 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1059 struct page *page, *next;
1060 LIST_HEAD(clean_pages);
1061
1062 list_for_each_entry_safe(page, next, page_list, lru) {
1063 if (page_is_file_cache(page) && !PageDirty(page)) {
1064 ClearPageActive(page);
1065 list_move(&page->lru, &clean_pages);
1066 }
1067 }
1068
1069 ret = shrink_page_list(&clean_pages, zone, &sc,
1070 TTU_UNMAP|TTU_IGNORE_ACCESS,
1071 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1072 list_splice(&clean_pages, page_list);
1073 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1074 return ret;
1075 }
1076
1077 /*
1078 * Attempt to remove the specified page from its LRU. Only take this page
1079 * if it is of the appropriate PageActive status. Pages which are being
1080 * freed elsewhere are also ignored.
1081 *
1082 * page: page to consider
1083 * mode: one of the LRU isolation modes defined above
1084 *
1085 * returns 0 on success, -ve errno on failure.
1086 */
1087 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1088 {
1089 int ret = -EINVAL;
1090
1091 /* Only take pages on the LRU. */
1092 if (!PageLRU(page))
1093 return ret;
1094
1095 /* Compaction should not handle unevictable pages but CMA can do so */
1096 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1097 return ret;
1098
1099 ret = -EBUSY;
1100
1101 /*
1102 * To minimise LRU disruption, the caller can indicate that it only
1103 * wants to isolate pages it will be able to operate on without
1104 * blocking - clean pages for the most part.
1105 *
1106 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1107 * is used by reclaim when it is cannot write to backing storage
1108 *
1109 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1110 * that it is possible to migrate without blocking
1111 */
1112 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1113 /* All the caller can do on PageWriteback is block */
1114 if (PageWriteback(page))
1115 return ret;
1116
1117 if (PageDirty(page)) {
1118 struct address_space *mapping;
1119
1120 /* ISOLATE_CLEAN means only clean pages */
1121 if (mode & ISOLATE_CLEAN)
1122 return ret;
1123
1124 /*
1125 * Only pages without mappings or that have a
1126 * ->migratepage callback are possible to migrate
1127 * without blocking
1128 */
1129 mapping = page_mapping(page);
1130 if (mapping && !mapping->a_ops->migratepage)
1131 return ret;
1132 }
1133 }
1134
1135 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1136 return ret;
1137
1138 if (likely(get_page_unless_zero(page))) {
1139 /*
1140 * Be careful not to clear PageLRU until after we're
1141 * sure the page is not being freed elsewhere -- the
1142 * page release code relies on it.
1143 */
1144 ClearPageLRU(page);
1145 ret = 0;
1146 }
1147
1148 return ret;
1149 }
1150
1151 /*
1152 * zone->lru_lock is heavily contended. Some of the functions that
1153 * shrink the lists perform better by taking out a batch of pages
1154 * and working on them outside the LRU lock.
1155 *
1156 * For pagecache intensive workloads, this function is the hottest
1157 * spot in the kernel (apart from copy_*_user functions).
1158 *
1159 * Appropriate locks must be held before calling this function.
1160 *
1161 * @nr_to_scan: The number of pages to look through on the list.
1162 * @lruvec: The LRU vector to pull pages from.
1163 * @dst: The temp list to put pages on to.
1164 * @nr_scanned: The number of pages that were scanned.
1165 * @sc: The scan_control struct for this reclaim session
1166 * @mode: One of the LRU isolation modes
1167 * @lru: LRU list id for isolating
1168 *
1169 * returns how many pages were moved onto *@dst.
1170 */
1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1172 struct lruvec *lruvec, struct list_head *dst,
1173 unsigned long *nr_scanned, struct scan_control *sc,
1174 isolate_mode_t mode, enum lru_list lru)
1175 {
1176 struct list_head *src = &lruvec->lists[lru];
1177 unsigned long nr_taken = 0;
1178 unsigned long scan;
1179
1180 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1181 struct page *page;
1182 int nr_pages;
1183
1184 page = lru_to_page(src);
1185 prefetchw_prev_lru_page(page, src, flags);
1186
1187 VM_BUG_ON(!PageLRU(page));
1188
1189 switch (__isolate_lru_page(page, mode)) {
1190 case 0:
1191 nr_pages = hpage_nr_pages(page);
1192 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1193 list_move(&page->lru, dst);
1194 nr_taken += nr_pages;
1195 break;
1196
1197 case -EBUSY:
1198 /* else it is being freed elsewhere */
1199 list_move(&page->lru, src);
1200 continue;
1201
1202 default:
1203 BUG();
1204 }
1205 }
1206
1207 *nr_scanned = scan;
1208 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1209 nr_taken, mode, is_file_lru(lru));
1210 return nr_taken;
1211 }
1212
1213 /**
1214 * isolate_lru_page - tries to isolate a page from its LRU list
1215 * @page: page to isolate from its LRU list
1216 *
1217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1218 * vmstat statistic corresponding to whatever LRU list the page was on.
1219 *
1220 * Returns 0 if the page was removed from an LRU list.
1221 * Returns -EBUSY if the page was not on an LRU list.
1222 *
1223 * The returned page will have PageLRU() cleared. If it was found on
1224 * the active list, it will have PageActive set. If it was found on
1225 * the unevictable list, it will have the PageUnevictable bit set. That flag
1226 * may need to be cleared by the caller before letting the page go.
1227 *
1228 * The vmstat statistic corresponding to the list on which the page was
1229 * found will be decremented.
1230 *
1231 * Restrictions:
1232 * (1) Must be called with an elevated refcount on the page. This is a
1233 * fundamentnal difference from isolate_lru_pages (which is called
1234 * without a stable reference).
1235 * (2) the lru_lock must not be held.
1236 * (3) interrupts must be enabled.
1237 */
1238 int isolate_lru_page(struct page *page)
1239 {
1240 int ret = -EBUSY;
1241
1242 VM_BUG_ON(!page_count(page));
1243
1244 if (PageLRU(page)) {
1245 struct zone *zone = page_zone(page);
1246 struct lruvec *lruvec;
1247
1248 spin_lock_irq(&zone->lru_lock);
1249 lruvec = mem_cgroup_page_lruvec(page, zone);
1250 if (PageLRU(page)) {
1251 int lru = page_lru(page);
1252 get_page(page);
1253 ClearPageLRU(page);
1254 del_page_from_lru_list(page, lruvec, lru);
1255 ret = 0;
1256 }
1257 spin_unlock_irq(&zone->lru_lock);
1258 }
1259 return ret;
1260 }
1261
1262 /*
1263 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1264 * then get resheduled. When there are massive number of tasks doing page
1265 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1266 * the LRU list will go small and be scanned faster than necessary, leading to
1267 * unnecessary swapping, thrashing and OOM.
1268 */
1269 static int too_many_isolated(struct zone *zone, int file,
1270 struct scan_control *sc)
1271 {
1272 unsigned long inactive, isolated;
1273
1274 if (current_is_kswapd())
1275 return 0;
1276
1277 if (!global_reclaim(sc))
1278 return 0;
1279
1280 if (file) {
1281 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1282 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1283 } else {
1284 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1285 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1286 }
1287
1288 /*
1289 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1290 * won't get blocked by normal direct-reclaimers, forming a circular
1291 * deadlock.
1292 */
1293 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1294 inactive >>= 3;
1295
1296 return isolated > inactive;
1297 }
1298
1299 static noinline_for_stack void
1300 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1301 {
1302 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1303 struct zone *zone = lruvec_zone(lruvec);
1304 LIST_HEAD(pages_to_free);
1305
1306 /*
1307 * Put back any unfreeable pages.
1308 */
1309 while (!list_empty(page_list)) {
1310 struct page *page = lru_to_page(page_list);
1311 int lru;
1312
1313 VM_BUG_ON(PageLRU(page));
1314 list_del(&page->lru);
1315 if (unlikely(!page_evictable(page))) {
1316 spin_unlock_irq(&zone->lru_lock);
1317 putback_lru_page(page);
1318 spin_lock_irq(&zone->lru_lock);
1319 continue;
1320 }
1321
1322 lruvec = mem_cgroup_page_lruvec(page, zone);
1323
1324 SetPageLRU(page);
1325 lru = page_lru(page);
1326 add_page_to_lru_list(page, lruvec, lru);
1327
1328 if (is_active_lru(lru)) {
1329 int file = is_file_lru(lru);
1330 int numpages = hpage_nr_pages(page);
1331 reclaim_stat->recent_rotated[file] += numpages;
1332 }
1333 if (put_page_testzero(page)) {
1334 __ClearPageLRU(page);
1335 __ClearPageActive(page);
1336 del_page_from_lru_list(page, lruvec, lru);
1337
1338 if (unlikely(PageCompound(page))) {
1339 spin_unlock_irq(&zone->lru_lock);
1340 (*get_compound_page_dtor(page))(page);
1341 spin_lock_irq(&zone->lru_lock);
1342 } else
1343 list_add(&page->lru, &pages_to_free);
1344 }
1345 }
1346
1347 /*
1348 * To save our caller's stack, now use input list for pages to free.
1349 */
1350 list_splice(&pages_to_free, page_list);
1351 }
1352
1353 /*
1354 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1355 * of reclaimed pages
1356 */
1357 static noinline_for_stack unsigned long
1358 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1359 struct scan_control *sc, enum lru_list lru)
1360 {
1361 LIST_HEAD(page_list);
1362 unsigned long nr_scanned;
1363 unsigned long nr_reclaimed = 0;
1364 unsigned long nr_taken;
1365 unsigned long nr_dirty = 0;
1366 unsigned long nr_congested = 0;
1367 unsigned long nr_unqueued_dirty = 0;
1368 unsigned long nr_writeback = 0;
1369 unsigned long nr_immediate = 0;
1370 isolate_mode_t isolate_mode = 0;
1371 int file = is_file_lru(lru);
1372 struct zone *zone = lruvec_zone(lruvec);
1373 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1374
1375 while (unlikely(too_many_isolated(zone, file, sc))) {
1376 congestion_wait(BLK_RW_ASYNC, HZ/10);
1377
1378 /* We are about to die and free our memory. Return now. */
1379 if (fatal_signal_pending(current))
1380 return SWAP_CLUSTER_MAX;
1381 }
1382
1383 lru_add_drain();
1384
1385 if (!sc->may_unmap)
1386 isolate_mode |= ISOLATE_UNMAPPED;
1387 if (!sc->may_writepage)
1388 isolate_mode |= ISOLATE_CLEAN;
1389
1390 spin_lock_irq(&zone->lru_lock);
1391
1392 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1393 &nr_scanned, sc, isolate_mode, lru);
1394
1395 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1396 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1397
1398 if (global_reclaim(sc)) {
1399 zone->pages_scanned += nr_scanned;
1400 if (current_is_kswapd())
1401 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1402 else
1403 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1404 }
1405 spin_unlock_irq(&zone->lru_lock);
1406
1407 if (nr_taken == 0)
1408 return 0;
1409
1410 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1411 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1412 &nr_writeback, &nr_immediate,
1413 false);
1414
1415 spin_lock_irq(&zone->lru_lock);
1416
1417 reclaim_stat->recent_scanned[file] += nr_taken;
1418
1419 if (global_reclaim(sc)) {
1420 if (current_is_kswapd())
1421 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1422 nr_reclaimed);
1423 else
1424 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1425 nr_reclaimed);
1426 }
1427
1428 putback_inactive_pages(lruvec, &page_list);
1429
1430 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1431
1432 spin_unlock_irq(&zone->lru_lock);
1433
1434 free_hot_cold_page_list(&page_list, 1);
1435
1436 /*
1437 * If reclaim is isolating dirty pages under writeback, it implies
1438 * that the long-lived page allocation rate is exceeding the page
1439 * laundering rate. Either the global limits are not being effective
1440 * at throttling processes due to the page distribution throughout
1441 * zones or there is heavy usage of a slow backing device. The
1442 * only option is to throttle from reclaim context which is not ideal
1443 * as there is no guarantee the dirtying process is throttled in the
1444 * same way balance_dirty_pages() manages.
1445 *
1446 * This scales the number of dirty pages that must be under writeback
1447 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1448 * function that has the most effect in the range DEF_PRIORITY to
1449 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1450 * in trouble and reclaim is considered to be in trouble.
1451 *
1452 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1453 * DEF_PRIORITY-1 50% must be PageWriteback
1454 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1455 * ...
1456 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1457 * isolated page is PageWriteback
1458 *
1459 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1460 * of pages under pages flagged for immediate reclaim and stall if any
1461 * are encountered in the nr_immediate check below.
1462 */
1463 if (nr_writeback && nr_writeback >=
1464 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1465 zone_set_flag(zone, ZONE_WRITEBACK);
1466
1467 /*
1468 * memcg will stall in page writeback so only consider forcibly
1469 * stalling for global reclaim
1470 */
1471 if (global_reclaim(sc)) {
1472 /*
1473 * Tag a zone as congested if all the dirty pages scanned were
1474 * backed by a congested BDI and wait_iff_congested will stall.
1475 */
1476 if (nr_dirty && nr_dirty == nr_congested)
1477 zone_set_flag(zone, ZONE_CONGESTED);
1478
1479 /*
1480 * If dirty pages are scanned that are not queued for IO, it
1481 * implies that flushers are not keeping up. In this case, flag
1482 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1483 * pages from reclaim context. It will forcibly stall in the
1484 * next check.
1485 */
1486 if (nr_unqueued_dirty == nr_taken)
1487 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1488
1489 /*
1490 * In addition, if kswapd scans pages marked marked for
1491 * immediate reclaim and under writeback (nr_immediate), it
1492 * implies that pages are cycling through the LRU faster than
1493 * they are written so also forcibly stall.
1494 */
1495 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1496 congestion_wait(BLK_RW_ASYNC, HZ/10);
1497 }
1498
1499 /*
1500 * Stall direct reclaim for IO completions if underlying BDIs or zone
1501 * is congested. Allow kswapd to continue until it starts encountering
1502 * unqueued dirty pages or cycling through the LRU too quickly.
1503 */
1504 if (!sc->hibernation_mode && !current_is_kswapd())
1505 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1506
1507 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1508 zone_idx(zone),
1509 nr_scanned, nr_reclaimed,
1510 sc->priority,
1511 trace_shrink_flags(file));
1512 return nr_reclaimed;
1513 }
1514
1515 /*
1516 * This moves pages from the active list to the inactive list.
1517 *
1518 * We move them the other way if the page is referenced by one or more
1519 * processes, from rmap.
1520 *
1521 * If the pages are mostly unmapped, the processing is fast and it is
1522 * appropriate to hold zone->lru_lock across the whole operation. But if
1523 * the pages are mapped, the processing is slow (page_referenced()) so we
1524 * should drop zone->lru_lock around each page. It's impossible to balance
1525 * this, so instead we remove the pages from the LRU while processing them.
1526 * It is safe to rely on PG_active against the non-LRU pages in here because
1527 * nobody will play with that bit on a non-LRU page.
1528 *
1529 * The downside is that we have to touch page->_count against each page.
1530 * But we had to alter page->flags anyway.
1531 */
1532
1533 static void move_active_pages_to_lru(struct lruvec *lruvec,
1534 struct list_head *list,
1535 struct list_head *pages_to_free,
1536 enum lru_list lru)
1537 {
1538 struct zone *zone = lruvec_zone(lruvec);
1539 unsigned long pgmoved = 0;
1540 struct page *page;
1541 int nr_pages;
1542
1543 while (!list_empty(list)) {
1544 page = lru_to_page(list);
1545 lruvec = mem_cgroup_page_lruvec(page, zone);
1546
1547 VM_BUG_ON(PageLRU(page));
1548 SetPageLRU(page);
1549
1550 nr_pages = hpage_nr_pages(page);
1551 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1552 list_move(&page->lru, &lruvec->lists[lru]);
1553 pgmoved += nr_pages;
1554
1555 if (put_page_testzero(page)) {
1556 __ClearPageLRU(page);
1557 __ClearPageActive(page);
1558 del_page_from_lru_list(page, lruvec, lru);
1559
1560 if (unlikely(PageCompound(page))) {
1561 spin_unlock_irq(&zone->lru_lock);
1562 (*get_compound_page_dtor(page))(page);
1563 spin_lock_irq(&zone->lru_lock);
1564 } else
1565 list_add(&page->lru, pages_to_free);
1566 }
1567 }
1568 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569 if (!is_active_lru(lru))
1570 __count_vm_events(PGDEACTIVATE, pgmoved);
1571 }
1572
1573 static void shrink_active_list(unsigned long nr_to_scan,
1574 struct lruvec *lruvec,
1575 struct scan_control *sc,
1576 enum lru_list lru)
1577 {
1578 unsigned long nr_taken;
1579 unsigned long nr_scanned;
1580 unsigned long vm_flags;
1581 LIST_HEAD(l_hold); /* The pages which were snipped off */
1582 LIST_HEAD(l_active);
1583 LIST_HEAD(l_inactive);
1584 struct page *page;
1585 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1586 unsigned long nr_rotated = 0;
1587 isolate_mode_t isolate_mode = 0;
1588 int file = is_file_lru(lru);
1589 struct zone *zone = lruvec_zone(lruvec);
1590
1591 lru_add_drain();
1592
1593 if (!sc->may_unmap)
1594 isolate_mode |= ISOLATE_UNMAPPED;
1595 if (!sc->may_writepage)
1596 isolate_mode |= ISOLATE_CLEAN;
1597
1598 spin_lock_irq(&zone->lru_lock);
1599
1600 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1601 &nr_scanned, sc, isolate_mode, lru);
1602 if (global_reclaim(sc))
1603 zone->pages_scanned += nr_scanned;
1604
1605 reclaim_stat->recent_scanned[file] += nr_taken;
1606
1607 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1608 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1609 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1610 spin_unlock_irq(&zone->lru_lock);
1611
1612 while (!list_empty(&l_hold)) {
1613 cond_resched();
1614 page = lru_to_page(&l_hold);
1615 list_del(&page->lru);
1616
1617 if (unlikely(!page_evictable(page))) {
1618 putback_lru_page(page);
1619 continue;
1620 }
1621
1622 if (unlikely(buffer_heads_over_limit)) {
1623 if (page_has_private(page) && trylock_page(page)) {
1624 if (page_has_private(page))
1625 try_to_release_page(page, 0);
1626 unlock_page(page);
1627 }
1628 }
1629
1630 if (page_referenced(page, 0, sc->target_mem_cgroup,
1631 &vm_flags)) {
1632 nr_rotated += hpage_nr_pages(page);
1633 /*
1634 * Identify referenced, file-backed active pages and
1635 * give them one more trip around the active list. So
1636 * that executable code get better chances to stay in
1637 * memory under moderate memory pressure. Anon pages
1638 * are not likely to be evicted by use-once streaming
1639 * IO, plus JVM can create lots of anon VM_EXEC pages,
1640 * so we ignore them here.
1641 */
1642 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643 list_add(&page->lru, &l_active);
1644 continue;
1645 }
1646 }
1647
1648 ClearPageActive(page); /* we are de-activating */
1649 list_add(&page->lru, &l_inactive);
1650 }
1651
1652 /*
1653 * Move pages back to the lru list.
1654 */
1655 spin_lock_irq(&zone->lru_lock);
1656 /*
1657 * Count referenced pages from currently used mappings as rotated,
1658 * even though only some of them are actually re-activated. This
1659 * helps balance scan pressure between file and anonymous pages in
1660 * get_scan_ratio.
1661 */
1662 reclaim_stat->recent_rotated[file] += nr_rotated;
1663
1664 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1665 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1666 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1667 spin_unlock_irq(&zone->lru_lock);
1668
1669 free_hot_cold_page_list(&l_hold, 1);
1670 }
1671
1672 #ifdef CONFIG_SWAP
1673 static int inactive_anon_is_low_global(struct zone *zone)
1674 {
1675 unsigned long active, inactive;
1676
1677 active = zone_page_state(zone, NR_ACTIVE_ANON);
1678 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1679
1680 if (inactive * zone->inactive_ratio < active)
1681 return 1;
1682
1683 return 0;
1684 }
1685
1686 /**
1687 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1688 * @lruvec: LRU vector to check
1689 *
1690 * Returns true if the zone does not have enough inactive anon pages,
1691 * meaning some active anon pages need to be deactivated.
1692 */
1693 static int inactive_anon_is_low(struct lruvec *lruvec)
1694 {
1695 /*
1696 * If we don't have swap space, anonymous page deactivation
1697 * is pointless.
1698 */
1699 if (!total_swap_pages)
1700 return 0;
1701
1702 if (!mem_cgroup_disabled())
1703 return mem_cgroup_inactive_anon_is_low(lruvec);
1704
1705 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1706 }
1707 #else
1708 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1709 {
1710 return 0;
1711 }
1712 #endif
1713
1714 /**
1715 * inactive_file_is_low - check if file pages need to be deactivated
1716 * @lruvec: LRU vector to check
1717 *
1718 * When the system is doing streaming IO, memory pressure here
1719 * ensures that active file pages get deactivated, until more
1720 * than half of the file pages are on the inactive list.
1721 *
1722 * Once we get to that situation, protect the system's working
1723 * set from being evicted by disabling active file page aging.
1724 *
1725 * This uses a different ratio than the anonymous pages, because
1726 * the page cache uses a use-once replacement algorithm.
1727 */
1728 static int inactive_file_is_low(struct lruvec *lruvec)
1729 {
1730 unsigned long inactive;
1731 unsigned long active;
1732
1733 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1734 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1735
1736 return active > inactive;
1737 }
1738
1739 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1740 {
1741 if (is_file_lru(lru))
1742 return inactive_file_is_low(lruvec);
1743 else
1744 return inactive_anon_is_low(lruvec);
1745 }
1746
1747 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1748 struct lruvec *lruvec, struct scan_control *sc)
1749 {
1750 if (is_active_lru(lru)) {
1751 if (inactive_list_is_low(lruvec, lru))
1752 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1753 return 0;
1754 }
1755
1756 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1757 }
1758
1759 static int vmscan_swappiness(struct scan_control *sc)
1760 {
1761 if (global_reclaim(sc))
1762 return vm_swappiness;
1763 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1764 }
1765
1766 enum scan_balance {
1767 SCAN_EQUAL,
1768 SCAN_FRACT,
1769 SCAN_ANON,
1770 SCAN_FILE,
1771 };
1772
1773 /*
1774 * Determine how aggressively the anon and file LRU lists should be
1775 * scanned. The relative value of each set of LRU lists is determined
1776 * by looking at the fraction of the pages scanned we did rotate back
1777 * onto the active list instead of evict.
1778 *
1779 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1780 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1781 */
1782 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1783 unsigned long *nr)
1784 {
1785 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1786 u64 fraction[2];
1787 u64 denominator = 0; /* gcc */
1788 struct zone *zone = lruvec_zone(lruvec);
1789 unsigned long anon_prio, file_prio;
1790 enum scan_balance scan_balance;
1791 unsigned long anon, file, free;
1792 bool force_scan = false;
1793 unsigned long ap, fp;
1794 enum lru_list lru;
1795
1796 /*
1797 * If the zone or memcg is small, nr[l] can be 0. This
1798 * results in no scanning on this priority and a potential
1799 * priority drop. Global direct reclaim can go to the next
1800 * zone and tends to have no problems. Global kswapd is for
1801 * zone balancing and it needs to scan a minimum amount. When
1802 * reclaiming for a memcg, a priority drop can cause high
1803 * latencies, so it's better to scan a minimum amount there as
1804 * well.
1805 */
1806 if (current_is_kswapd() && zone->all_unreclaimable)
1807 force_scan = true;
1808 if (!global_reclaim(sc))
1809 force_scan = true;
1810
1811 /* If we have no swap space, do not bother scanning anon pages. */
1812 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1813 scan_balance = SCAN_FILE;
1814 goto out;
1815 }
1816
1817 /*
1818 * Global reclaim will swap to prevent OOM even with no
1819 * swappiness, but memcg users want to use this knob to
1820 * disable swapping for individual groups completely when
1821 * using the memory controller's swap limit feature would be
1822 * too expensive.
1823 */
1824 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1825 scan_balance = SCAN_FILE;
1826 goto out;
1827 }
1828
1829 /*
1830 * Do not apply any pressure balancing cleverness when the
1831 * system is close to OOM, scan both anon and file equally
1832 * (unless the swappiness setting disagrees with swapping).
1833 */
1834 if (!sc->priority && vmscan_swappiness(sc)) {
1835 scan_balance = SCAN_EQUAL;
1836 goto out;
1837 }
1838
1839 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1840 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1841 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1842 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1843
1844 /*
1845 * If it's foreseeable that reclaiming the file cache won't be
1846 * enough to get the zone back into a desirable shape, we have
1847 * to swap. Better start now and leave the - probably heavily
1848 * thrashing - remaining file pages alone.
1849 */
1850 if (global_reclaim(sc)) {
1851 free = zone_page_state(zone, NR_FREE_PAGES);
1852 if (unlikely(file + free <= high_wmark_pages(zone))) {
1853 scan_balance = SCAN_ANON;
1854 goto out;
1855 }
1856 }
1857
1858 /*
1859 * There is enough inactive page cache, do not reclaim
1860 * anything from the anonymous working set right now.
1861 */
1862 if (!inactive_file_is_low(lruvec)) {
1863 scan_balance = SCAN_FILE;
1864 goto out;
1865 }
1866
1867 scan_balance = SCAN_FRACT;
1868
1869 /*
1870 * With swappiness at 100, anonymous and file have the same priority.
1871 * This scanning priority is essentially the inverse of IO cost.
1872 */
1873 anon_prio = vmscan_swappiness(sc);
1874 file_prio = 200 - anon_prio;
1875
1876 /*
1877 * OK, so we have swap space and a fair amount of page cache
1878 * pages. We use the recently rotated / recently scanned
1879 * ratios to determine how valuable each cache is.
1880 *
1881 * Because workloads change over time (and to avoid overflow)
1882 * we keep these statistics as a floating average, which ends
1883 * up weighing recent references more than old ones.
1884 *
1885 * anon in [0], file in [1]
1886 */
1887 spin_lock_irq(&zone->lru_lock);
1888 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1889 reclaim_stat->recent_scanned[0] /= 2;
1890 reclaim_stat->recent_rotated[0] /= 2;
1891 }
1892
1893 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1894 reclaim_stat->recent_scanned[1] /= 2;
1895 reclaim_stat->recent_rotated[1] /= 2;
1896 }
1897
1898 /*
1899 * The amount of pressure on anon vs file pages is inversely
1900 * proportional to the fraction of recently scanned pages on
1901 * each list that were recently referenced and in active use.
1902 */
1903 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1904 ap /= reclaim_stat->recent_rotated[0] + 1;
1905
1906 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1907 fp /= reclaim_stat->recent_rotated[1] + 1;
1908 spin_unlock_irq(&zone->lru_lock);
1909
1910 fraction[0] = ap;
1911 fraction[1] = fp;
1912 denominator = ap + fp + 1;
1913 out:
1914 for_each_evictable_lru(lru) {
1915 int file = is_file_lru(lru);
1916 unsigned long size;
1917 unsigned long scan;
1918
1919 size = get_lru_size(lruvec, lru);
1920 scan = size >> sc->priority;
1921
1922 if (!scan && force_scan)
1923 scan = min(size, SWAP_CLUSTER_MAX);
1924
1925 switch (scan_balance) {
1926 case SCAN_EQUAL:
1927 /* Scan lists relative to size */
1928 break;
1929 case SCAN_FRACT:
1930 /*
1931 * Scan types proportional to swappiness and
1932 * their relative recent reclaim efficiency.
1933 */
1934 scan = div64_u64(scan * fraction[file], denominator);
1935 break;
1936 case SCAN_FILE:
1937 case SCAN_ANON:
1938 /* Scan one type exclusively */
1939 if ((scan_balance == SCAN_FILE) != file)
1940 scan = 0;
1941 break;
1942 default:
1943 /* Look ma, no brain */
1944 BUG();
1945 }
1946 nr[lru] = scan;
1947 }
1948 }
1949
1950 /*
1951 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1952 */
1953 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1954 {
1955 unsigned long nr[NR_LRU_LISTS];
1956 unsigned long targets[NR_LRU_LISTS];
1957 unsigned long nr_to_scan;
1958 enum lru_list lru;
1959 unsigned long nr_reclaimed = 0;
1960 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1961 struct blk_plug plug;
1962 bool scan_adjusted = false;
1963
1964 get_scan_count(lruvec, sc, nr);
1965
1966 /* Record the original scan target for proportional adjustments later */
1967 memcpy(targets, nr, sizeof(nr));
1968
1969 blk_start_plug(&plug);
1970 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1971 nr[LRU_INACTIVE_FILE]) {
1972 unsigned long nr_anon, nr_file, percentage;
1973 unsigned long nr_scanned;
1974
1975 for_each_evictable_lru(lru) {
1976 if (nr[lru]) {
1977 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1978 nr[lru] -= nr_to_scan;
1979
1980 nr_reclaimed += shrink_list(lru, nr_to_scan,
1981 lruvec, sc);
1982 }
1983 }
1984
1985 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1986 continue;
1987
1988 /*
1989 * For global direct reclaim, reclaim only the number of pages
1990 * requested. Less care is taken to scan proportionally as it
1991 * is more important to minimise direct reclaim stall latency
1992 * than it is to properly age the LRU lists.
1993 */
1994 if (global_reclaim(sc) && !current_is_kswapd())
1995 break;
1996
1997 /*
1998 * For kswapd and memcg, reclaim at least the number of pages
1999 * requested. Ensure that the anon and file LRUs shrink
2000 * proportionally what was requested by get_scan_count(). We
2001 * stop reclaiming one LRU and reduce the amount scanning
2002 * proportional to the original scan target.
2003 */
2004 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2005 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2006
2007 if (nr_file > nr_anon) {
2008 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2009 targets[LRU_ACTIVE_ANON] + 1;
2010 lru = LRU_BASE;
2011 percentage = nr_anon * 100 / scan_target;
2012 } else {
2013 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2014 targets[LRU_ACTIVE_FILE] + 1;
2015 lru = LRU_FILE;
2016 percentage = nr_file * 100 / scan_target;
2017 }
2018
2019 /* Stop scanning the smaller of the LRU */
2020 nr[lru] = 0;
2021 nr[lru + LRU_ACTIVE] = 0;
2022
2023 /*
2024 * Recalculate the other LRU scan count based on its original
2025 * scan target and the percentage scanning already complete
2026 */
2027 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2028 nr_scanned = targets[lru] - nr[lru];
2029 nr[lru] = targets[lru] * (100 - percentage) / 100;
2030 nr[lru] -= min(nr[lru], nr_scanned);
2031
2032 lru += LRU_ACTIVE;
2033 nr_scanned = targets[lru] - nr[lru];
2034 nr[lru] = targets[lru] * (100 - percentage) / 100;
2035 nr[lru] -= min(nr[lru], nr_scanned);
2036
2037 scan_adjusted = true;
2038 }
2039 blk_finish_plug(&plug);
2040 sc->nr_reclaimed += nr_reclaimed;
2041
2042 /*
2043 * Even if we did not try to evict anon pages at all, we want to
2044 * rebalance the anon lru active/inactive ratio.
2045 */
2046 if (inactive_anon_is_low(lruvec))
2047 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2048 sc, LRU_ACTIVE_ANON);
2049
2050 throttle_vm_writeout(sc->gfp_mask);
2051 }
2052
2053 /* Use reclaim/compaction for costly allocs or under memory pressure */
2054 static bool in_reclaim_compaction(struct scan_control *sc)
2055 {
2056 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2057 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2058 sc->priority < DEF_PRIORITY - 2))
2059 return true;
2060
2061 return false;
2062 }
2063
2064 /*
2065 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2066 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2067 * true if more pages should be reclaimed such that when the page allocator
2068 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2069 * It will give up earlier than that if there is difficulty reclaiming pages.
2070 */
2071 static inline bool should_continue_reclaim(struct zone *zone,
2072 unsigned long nr_reclaimed,
2073 unsigned long nr_scanned,
2074 struct scan_control *sc)
2075 {
2076 unsigned long pages_for_compaction;
2077 unsigned long inactive_lru_pages;
2078
2079 /* If not in reclaim/compaction mode, stop */
2080 if (!in_reclaim_compaction(sc))
2081 return false;
2082
2083 /* Consider stopping depending on scan and reclaim activity */
2084 if (sc->gfp_mask & __GFP_REPEAT) {
2085 /*
2086 * For __GFP_REPEAT allocations, stop reclaiming if the
2087 * full LRU list has been scanned and we are still failing
2088 * to reclaim pages. This full LRU scan is potentially
2089 * expensive but a __GFP_REPEAT caller really wants to succeed
2090 */
2091 if (!nr_reclaimed && !nr_scanned)
2092 return false;
2093 } else {
2094 /*
2095 * For non-__GFP_REPEAT allocations which can presumably
2096 * fail without consequence, stop if we failed to reclaim
2097 * any pages from the last SWAP_CLUSTER_MAX number of
2098 * pages that were scanned. This will return to the
2099 * caller faster at the risk reclaim/compaction and
2100 * the resulting allocation attempt fails
2101 */
2102 if (!nr_reclaimed)
2103 return false;
2104 }
2105
2106 /*
2107 * If we have not reclaimed enough pages for compaction and the
2108 * inactive lists are large enough, continue reclaiming
2109 */
2110 pages_for_compaction = (2UL << sc->order);
2111 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2112 if (get_nr_swap_pages() > 0)
2113 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2114 if (sc->nr_reclaimed < pages_for_compaction &&
2115 inactive_lru_pages > pages_for_compaction)
2116 return true;
2117
2118 /* If compaction would go ahead or the allocation would succeed, stop */
2119 switch (compaction_suitable(zone, sc->order)) {
2120 case COMPACT_PARTIAL:
2121 case COMPACT_CONTINUE:
2122 return false;
2123 default:
2124 return true;
2125 }
2126 }
2127
2128 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2129 {
2130 unsigned long nr_reclaimed, nr_scanned;
2131
2132 do {
2133 struct mem_cgroup *root = sc->target_mem_cgroup;
2134 struct mem_cgroup_reclaim_cookie reclaim = {
2135 .zone = zone,
2136 .priority = sc->priority,
2137 };
2138 struct mem_cgroup *memcg;
2139
2140 nr_reclaimed = sc->nr_reclaimed;
2141 nr_scanned = sc->nr_scanned;
2142
2143 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2144 do {
2145 struct lruvec *lruvec;
2146
2147 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2148
2149 shrink_lruvec(lruvec, sc);
2150
2151 /*
2152 * Direct reclaim and kswapd have to scan all memory
2153 * cgroups to fulfill the overall scan target for the
2154 * zone.
2155 *
2156 * Limit reclaim, on the other hand, only cares about
2157 * nr_to_reclaim pages to be reclaimed and it will
2158 * retry with decreasing priority if one round over the
2159 * whole hierarchy is not sufficient.
2160 */
2161 if (!global_reclaim(sc) &&
2162 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2163 mem_cgroup_iter_break(root, memcg);
2164 break;
2165 }
2166 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2167 } while (memcg);
2168
2169 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2170 sc->nr_scanned - nr_scanned,
2171 sc->nr_reclaimed - nr_reclaimed);
2172
2173 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2174 sc->nr_scanned - nr_scanned, sc));
2175 }
2176
2177 /* Returns true if compaction should go ahead for a high-order request */
2178 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2179 {
2180 unsigned long balance_gap, watermark;
2181 bool watermark_ok;
2182
2183 /* Do not consider compaction for orders reclaim is meant to satisfy */
2184 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2185 return false;
2186
2187 /*
2188 * Compaction takes time to run and there are potentially other
2189 * callers using the pages just freed. Continue reclaiming until
2190 * there is a buffer of free pages available to give compaction
2191 * a reasonable chance of completing and allocating the page
2192 */
2193 balance_gap = min(low_wmark_pages(zone),
2194 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2195 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2196 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2197 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2198
2199 /*
2200 * If compaction is deferred, reclaim up to a point where
2201 * compaction will have a chance of success when re-enabled
2202 */
2203 if (compaction_deferred(zone, sc->order))
2204 return watermark_ok;
2205
2206 /* If compaction is not ready to start, keep reclaiming */
2207 if (!compaction_suitable(zone, sc->order))
2208 return false;
2209
2210 return watermark_ok;
2211 }
2212
2213 /*
2214 * This is the direct reclaim path, for page-allocating processes. We only
2215 * try to reclaim pages from zones which will satisfy the caller's allocation
2216 * request.
2217 *
2218 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2219 * Because:
2220 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2221 * allocation or
2222 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2223 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2224 * zone defense algorithm.
2225 *
2226 * If a zone is deemed to be full of pinned pages then just give it a light
2227 * scan then give up on it.
2228 *
2229 * This function returns true if a zone is being reclaimed for a costly
2230 * high-order allocation and compaction is ready to begin. This indicates to
2231 * the caller that it should consider retrying the allocation instead of
2232 * further reclaim.
2233 */
2234 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2235 {
2236 struct zoneref *z;
2237 struct zone *zone;
2238 unsigned long nr_soft_reclaimed;
2239 unsigned long nr_soft_scanned;
2240 bool aborted_reclaim = false;
2241
2242 /*
2243 * If the number of buffer_heads in the machine exceeds the maximum
2244 * allowed level, force direct reclaim to scan the highmem zone as
2245 * highmem pages could be pinning lowmem pages storing buffer_heads
2246 */
2247 if (buffer_heads_over_limit)
2248 sc->gfp_mask |= __GFP_HIGHMEM;
2249
2250 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2251 gfp_zone(sc->gfp_mask), sc->nodemask) {
2252 if (!populated_zone(zone))
2253 continue;
2254 /*
2255 * Take care memory controller reclaiming has small influence
2256 * to global LRU.
2257 */
2258 if (global_reclaim(sc)) {
2259 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2260 continue;
2261 if (zone->all_unreclaimable &&
2262 sc->priority != DEF_PRIORITY)
2263 continue; /* Let kswapd poll it */
2264 if (IS_ENABLED(CONFIG_COMPACTION)) {
2265 /*
2266 * If we already have plenty of memory free for
2267 * compaction in this zone, don't free any more.
2268 * Even though compaction is invoked for any
2269 * non-zero order, only frequent costly order
2270 * reclamation is disruptive enough to become a
2271 * noticeable problem, like transparent huge
2272 * page allocations.
2273 */
2274 if (compaction_ready(zone, sc)) {
2275 aborted_reclaim = true;
2276 continue;
2277 }
2278 }
2279 /*
2280 * This steals pages from memory cgroups over softlimit
2281 * and returns the number of reclaimed pages and
2282 * scanned pages. This works for global memory pressure
2283 * and balancing, not for a memcg's limit.
2284 */
2285 nr_soft_scanned = 0;
2286 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2287 sc->order, sc->gfp_mask,
2288 &nr_soft_scanned);
2289 sc->nr_reclaimed += nr_soft_reclaimed;
2290 sc->nr_scanned += nr_soft_scanned;
2291 /* need some check for avoid more shrink_zone() */
2292 }
2293
2294 shrink_zone(zone, sc);
2295 }
2296
2297 return aborted_reclaim;
2298 }
2299
2300 static bool zone_reclaimable(struct zone *zone)
2301 {
2302 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2303 }
2304
2305 /* All zones in zonelist are unreclaimable? */
2306 static bool all_unreclaimable(struct zonelist *zonelist,
2307 struct scan_control *sc)
2308 {
2309 struct zoneref *z;
2310 struct zone *zone;
2311
2312 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2313 gfp_zone(sc->gfp_mask), sc->nodemask) {
2314 if (!populated_zone(zone))
2315 continue;
2316 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2317 continue;
2318 if (!zone->all_unreclaimable)
2319 return false;
2320 }
2321
2322 return true;
2323 }
2324
2325 /*
2326 * This is the main entry point to direct page reclaim.
2327 *
2328 * If a full scan of the inactive list fails to free enough memory then we
2329 * are "out of memory" and something needs to be killed.
2330 *
2331 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2332 * high - the zone may be full of dirty or under-writeback pages, which this
2333 * caller can't do much about. We kick the writeback threads and take explicit
2334 * naps in the hope that some of these pages can be written. But if the
2335 * allocating task holds filesystem locks which prevent writeout this might not
2336 * work, and the allocation attempt will fail.
2337 *
2338 * returns: 0, if no pages reclaimed
2339 * else, the number of pages reclaimed
2340 */
2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342 struct scan_control *sc,
2343 struct shrink_control *shrink)
2344 {
2345 unsigned long total_scanned = 0;
2346 struct reclaim_state *reclaim_state = current->reclaim_state;
2347 struct zoneref *z;
2348 struct zone *zone;
2349 unsigned long writeback_threshold;
2350 bool aborted_reclaim;
2351
2352 delayacct_freepages_start();
2353
2354 if (global_reclaim(sc))
2355 count_vm_event(ALLOCSTALL);
2356
2357 do {
2358 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2359 sc->priority);
2360 sc->nr_scanned = 0;
2361 aborted_reclaim = shrink_zones(zonelist, sc);
2362
2363 /*
2364 * Don't shrink slabs when reclaiming memory from
2365 * over limit cgroups
2366 */
2367 if (global_reclaim(sc)) {
2368 unsigned long lru_pages = 0;
2369 for_each_zone_zonelist(zone, z, zonelist,
2370 gfp_zone(sc->gfp_mask)) {
2371 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2372 continue;
2373
2374 lru_pages += zone_reclaimable_pages(zone);
2375 }
2376
2377 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2378 if (reclaim_state) {
2379 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2380 reclaim_state->reclaimed_slab = 0;
2381 }
2382 }
2383 total_scanned += sc->nr_scanned;
2384 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2385 goto out;
2386
2387 /*
2388 * If we're getting trouble reclaiming, start doing
2389 * writepage even in laptop mode.
2390 */
2391 if (sc->priority < DEF_PRIORITY - 2)
2392 sc->may_writepage = 1;
2393
2394 /*
2395 * Try to write back as many pages as we just scanned. This
2396 * tends to cause slow streaming writers to write data to the
2397 * disk smoothly, at the dirtying rate, which is nice. But
2398 * that's undesirable in laptop mode, where we *want* lumpy
2399 * writeout. So in laptop mode, write out the whole world.
2400 */
2401 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2402 if (total_scanned > writeback_threshold) {
2403 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2404 WB_REASON_TRY_TO_FREE_PAGES);
2405 sc->may_writepage = 1;
2406 }
2407 } while (--sc->priority >= 0);
2408
2409 out:
2410 delayacct_freepages_end();
2411
2412 if (sc->nr_reclaimed)
2413 return sc->nr_reclaimed;
2414
2415 /*
2416 * As hibernation is going on, kswapd is freezed so that it can't mark
2417 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2418 * check.
2419 */
2420 if (oom_killer_disabled)
2421 return 0;
2422
2423 /* Aborted reclaim to try compaction? don't OOM, then */
2424 if (aborted_reclaim)
2425 return 1;
2426
2427 /* top priority shrink_zones still had more to do? don't OOM, then */
2428 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2429 return 1;
2430
2431 return 0;
2432 }
2433
2434 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2435 {
2436 struct zone *zone;
2437 unsigned long pfmemalloc_reserve = 0;
2438 unsigned long free_pages = 0;
2439 int i;
2440 bool wmark_ok;
2441
2442 for (i = 0; i <= ZONE_NORMAL; i++) {
2443 zone = &pgdat->node_zones[i];
2444 pfmemalloc_reserve += min_wmark_pages(zone);
2445 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2446 }
2447
2448 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2449
2450 /* kswapd must be awake if processes are being throttled */
2451 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2452 pgdat->classzone_idx = min(pgdat->classzone_idx,
2453 (enum zone_type)ZONE_NORMAL);
2454 wake_up_interruptible(&pgdat->kswapd_wait);
2455 }
2456
2457 return wmark_ok;
2458 }
2459
2460 /*
2461 * Throttle direct reclaimers if backing storage is backed by the network
2462 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2463 * depleted. kswapd will continue to make progress and wake the processes
2464 * when the low watermark is reached.
2465 *
2466 * Returns true if a fatal signal was delivered during throttling. If this
2467 * happens, the page allocator should not consider triggering the OOM killer.
2468 */
2469 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2470 nodemask_t *nodemask)
2471 {
2472 struct zone *zone;
2473 int high_zoneidx = gfp_zone(gfp_mask);
2474 pg_data_t *pgdat;
2475
2476 /*
2477 * Kernel threads should not be throttled as they may be indirectly
2478 * responsible for cleaning pages necessary for reclaim to make forward
2479 * progress. kjournald for example may enter direct reclaim while
2480 * committing a transaction where throttling it could forcing other
2481 * processes to block on log_wait_commit().
2482 */
2483 if (current->flags & PF_KTHREAD)
2484 goto out;
2485
2486 /*
2487 * If a fatal signal is pending, this process should not throttle.
2488 * It should return quickly so it can exit and free its memory
2489 */
2490 if (fatal_signal_pending(current))
2491 goto out;
2492
2493 /* Check if the pfmemalloc reserves are ok */
2494 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2495 pgdat = zone->zone_pgdat;
2496 if (pfmemalloc_watermark_ok(pgdat))
2497 goto out;
2498
2499 /* Account for the throttling */
2500 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2501
2502 /*
2503 * If the caller cannot enter the filesystem, it's possible that it
2504 * is due to the caller holding an FS lock or performing a journal
2505 * transaction in the case of a filesystem like ext[3|4]. In this case,
2506 * it is not safe to block on pfmemalloc_wait as kswapd could be
2507 * blocked waiting on the same lock. Instead, throttle for up to a
2508 * second before continuing.
2509 */
2510 if (!(gfp_mask & __GFP_FS)) {
2511 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2512 pfmemalloc_watermark_ok(pgdat), HZ);
2513
2514 goto check_pending;
2515 }
2516
2517 /* Throttle until kswapd wakes the process */
2518 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2519 pfmemalloc_watermark_ok(pgdat));
2520
2521 check_pending:
2522 if (fatal_signal_pending(current))
2523 return true;
2524
2525 out:
2526 return false;
2527 }
2528
2529 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2530 gfp_t gfp_mask, nodemask_t *nodemask)
2531 {
2532 unsigned long nr_reclaimed;
2533 struct scan_control sc = {
2534 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2535 .may_writepage = !laptop_mode,
2536 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2537 .may_unmap = 1,
2538 .may_swap = 1,
2539 .order = order,
2540 .priority = DEF_PRIORITY,
2541 .target_mem_cgroup = NULL,
2542 .nodemask = nodemask,
2543 };
2544 struct shrink_control shrink = {
2545 .gfp_mask = sc.gfp_mask,
2546 };
2547
2548 /*
2549 * Do not enter reclaim if fatal signal was delivered while throttled.
2550 * 1 is returned so that the page allocator does not OOM kill at this
2551 * point.
2552 */
2553 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2554 return 1;
2555
2556 trace_mm_vmscan_direct_reclaim_begin(order,
2557 sc.may_writepage,
2558 gfp_mask);
2559
2560 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2561
2562 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2563
2564 return nr_reclaimed;
2565 }
2566
2567 #ifdef CONFIG_MEMCG
2568
2569 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2570 gfp_t gfp_mask, bool noswap,
2571 struct zone *zone,
2572 unsigned long *nr_scanned)
2573 {
2574 struct scan_control sc = {
2575 .nr_scanned = 0,
2576 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2577 .may_writepage = !laptop_mode,
2578 .may_unmap = 1,
2579 .may_swap = !noswap,
2580 .order = 0,
2581 .priority = 0,
2582 .target_mem_cgroup = memcg,
2583 };
2584 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2585
2586 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2587 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2588
2589 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2590 sc.may_writepage,
2591 sc.gfp_mask);
2592
2593 /*
2594 * NOTE: Although we can get the priority field, using it
2595 * here is not a good idea, since it limits the pages we can scan.
2596 * if we don't reclaim here, the shrink_zone from balance_pgdat
2597 * will pick up pages from other mem cgroup's as well. We hack
2598 * the priority and make it zero.
2599 */
2600 shrink_lruvec(lruvec, &sc);
2601
2602 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2603
2604 *nr_scanned = sc.nr_scanned;
2605 return sc.nr_reclaimed;
2606 }
2607
2608 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2609 gfp_t gfp_mask,
2610 bool noswap)
2611 {
2612 struct zonelist *zonelist;
2613 unsigned long nr_reclaimed;
2614 int nid;
2615 struct scan_control sc = {
2616 .may_writepage = !laptop_mode,
2617 .may_unmap = 1,
2618 .may_swap = !noswap,
2619 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2620 .order = 0,
2621 .priority = DEF_PRIORITY,
2622 .target_mem_cgroup = memcg,
2623 .nodemask = NULL, /* we don't care the placement */
2624 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2625 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2626 };
2627 struct shrink_control shrink = {
2628 .gfp_mask = sc.gfp_mask,
2629 };
2630
2631 /*
2632 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2633 * take care of from where we get pages. So the node where we start the
2634 * scan does not need to be the current node.
2635 */
2636 nid = mem_cgroup_select_victim_node(memcg);
2637
2638 zonelist = NODE_DATA(nid)->node_zonelists;
2639
2640 trace_mm_vmscan_memcg_reclaim_begin(0,
2641 sc.may_writepage,
2642 sc.gfp_mask);
2643
2644 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2645
2646 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2647
2648 return nr_reclaimed;
2649 }
2650 #endif
2651
2652 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2653 {
2654 struct mem_cgroup *memcg;
2655
2656 if (!total_swap_pages)
2657 return;
2658
2659 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2660 do {
2661 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2662
2663 if (inactive_anon_is_low(lruvec))
2664 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2665 sc, LRU_ACTIVE_ANON);
2666
2667 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2668 } while (memcg);
2669 }
2670
2671 static bool zone_balanced(struct zone *zone, int order,
2672 unsigned long balance_gap, int classzone_idx)
2673 {
2674 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2675 balance_gap, classzone_idx, 0))
2676 return false;
2677
2678 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2679 !compaction_suitable(zone, order))
2680 return false;
2681
2682 return true;
2683 }
2684
2685 /*
2686 * pgdat_balanced() is used when checking if a node is balanced.
2687 *
2688 * For order-0, all zones must be balanced!
2689 *
2690 * For high-order allocations only zones that meet watermarks and are in a
2691 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2692 * total of balanced pages must be at least 25% of the zones allowed by
2693 * classzone_idx for the node to be considered balanced. Forcing all zones to
2694 * be balanced for high orders can cause excessive reclaim when there are
2695 * imbalanced zones.
2696 * The choice of 25% is due to
2697 * o a 16M DMA zone that is balanced will not balance a zone on any
2698 * reasonable sized machine
2699 * o On all other machines, the top zone must be at least a reasonable
2700 * percentage of the middle zones. For example, on 32-bit x86, highmem
2701 * would need to be at least 256M for it to be balance a whole node.
2702 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2703 * to balance a node on its own. These seemed like reasonable ratios.
2704 */
2705 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2706 {
2707 unsigned long managed_pages = 0;
2708 unsigned long balanced_pages = 0;
2709 int i;
2710
2711 /* Check the watermark levels */
2712 for (i = 0; i <= classzone_idx; i++) {
2713 struct zone *zone = pgdat->node_zones + i;
2714
2715 if (!populated_zone(zone))
2716 continue;
2717
2718 managed_pages += zone->managed_pages;
2719
2720 /*
2721 * A special case here:
2722 *
2723 * balance_pgdat() skips over all_unreclaimable after
2724 * DEF_PRIORITY. Effectively, it considers them balanced so
2725 * they must be considered balanced here as well!
2726 */
2727 if (zone->all_unreclaimable) {
2728 balanced_pages += zone->managed_pages;
2729 continue;
2730 }
2731
2732 if (zone_balanced(zone, order, 0, i))
2733 balanced_pages += zone->managed_pages;
2734 else if (!order)
2735 return false;
2736 }
2737
2738 if (order)
2739 return balanced_pages >= (managed_pages >> 2);
2740 else
2741 return true;
2742 }
2743
2744 /*
2745 * Prepare kswapd for sleeping. This verifies that there are no processes
2746 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2747 *
2748 * Returns true if kswapd is ready to sleep
2749 */
2750 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2751 int classzone_idx)
2752 {
2753 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2754 if (remaining)
2755 return false;
2756
2757 /*
2758 * There is a potential race between when kswapd checks its watermarks
2759 * and a process gets throttled. There is also a potential race if
2760 * processes get throttled, kswapd wakes, a large process exits therby
2761 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2762 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2763 * so wake them now if necessary. If necessary, processes will wake
2764 * kswapd and get throttled again
2765 */
2766 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2767 wake_up(&pgdat->pfmemalloc_wait);
2768 return false;
2769 }
2770
2771 return pgdat_balanced(pgdat, order, classzone_idx);
2772 }
2773
2774 /*
2775 * kswapd shrinks the zone by the number of pages required to reach
2776 * the high watermark.
2777 *
2778 * Returns true if kswapd scanned at least the requested number of pages to
2779 * reclaim or if the lack of progress was due to pages under writeback.
2780 * This is used to determine if the scanning priority needs to be raised.
2781 */
2782 static bool kswapd_shrink_zone(struct zone *zone,
2783 int classzone_idx,
2784 struct scan_control *sc,
2785 unsigned long lru_pages,
2786 unsigned long *nr_attempted)
2787 {
2788 unsigned long nr_slab;
2789 int testorder = sc->order;
2790 unsigned long balance_gap;
2791 struct reclaim_state *reclaim_state = current->reclaim_state;
2792 struct shrink_control shrink = {
2793 .gfp_mask = sc->gfp_mask,
2794 };
2795 bool lowmem_pressure;
2796
2797 /* Reclaim above the high watermark. */
2798 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2799
2800 /*
2801 * Kswapd reclaims only single pages with compaction enabled. Trying
2802 * too hard to reclaim until contiguous free pages have become
2803 * available can hurt performance by evicting too much useful data
2804 * from memory. Do not reclaim more than needed for compaction.
2805 */
2806 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2807 compaction_suitable(zone, sc->order) !=
2808 COMPACT_SKIPPED)
2809 testorder = 0;
2810
2811 /*
2812 * We put equal pressure on every zone, unless one zone has way too
2813 * many pages free already. The "too many pages" is defined as the
2814 * high wmark plus a "gap" where the gap is either the low
2815 * watermark or 1% of the zone, whichever is smaller.
2816 */
2817 balance_gap = min(low_wmark_pages(zone),
2818 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2819 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2820
2821 /*
2822 * If there is no low memory pressure or the zone is balanced then no
2823 * reclaim is necessary
2824 */
2825 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2826 if (!lowmem_pressure && zone_balanced(zone, testorder,
2827 balance_gap, classzone_idx))
2828 return true;
2829
2830 shrink_zone(zone, sc);
2831
2832 reclaim_state->reclaimed_slab = 0;
2833 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2834 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2835
2836 /* Account for the number of pages attempted to reclaim */
2837 *nr_attempted += sc->nr_to_reclaim;
2838
2839 if (nr_slab == 0 && !zone_reclaimable(zone))
2840 zone->all_unreclaimable = 1;
2841
2842 zone_clear_flag(zone, ZONE_WRITEBACK);
2843
2844 /*
2845 * If a zone reaches its high watermark, consider it to be no longer
2846 * congested. It's possible there are dirty pages backed by congested
2847 * BDIs but as pressure is relieved, speculatively avoid congestion
2848 * waits.
2849 */
2850 if (!zone->all_unreclaimable &&
2851 zone_balanced(zone, testorder, 0, classzone_idx)) {
2852 zone_clear_flag(zone, ZONE_CONGESTED);
2853 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2854 }
2855
2856 return sc->nr_scanned >= sc->nr_to_reclaim;
2857 }
2858
2859 /*
2860 * For kswapd, balance_pgdat() will work across all this node's zones until
2861 * they are all at high_wmark_pages(zone).
2862 *
2863 * Returns the final order kswapd was reclaiming at
2864 *
2865 * There is special handling here for zones which are full of pinned pages.
2866 * This can happen if the pages are all mlocked, or if they are all used by
2867 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2868 * What we do is to detect the case where all pages in the zone have been
2869 * scanned twice and there has been zero successful reclaim. Mark the zone as
2870 * dead and from now on, only perform a short scan. Basically we're polling
2871 * the zone for when the problem goes away.
2872 *
2873 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2874 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2875 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2876 * lower zones regardless of the number of free pages in the lower zones. This
2877 * interoperates with the page allocator fallback scheme to ensure that aging
2878 * of pages is balanced across the zones.
2879 */
2880 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2881 int *classzone_idx)
2882 {
2883 int i;
2884 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2885 unsigned long nr_soft_reclaimed;
2886 unsigned long nr_soft_scanned;
2887 struct scan_control sc = {
2888 .gfp_mask = GFP_KERNEL,
2889 .priority = DEF_PRIORITY,
2890 .may_unmap = 1,
2891 .may_swap = 1,
2892 .may_writepage = !laptop_mode,
2893 .order = order,
2894 .target_mem_cgroup = NULL,
2895 };
2896 count_vm_event(PAGEOUTRUN);
2897
2898 do {
2899 unsigned long lru_pages = 0;
2900 unsigned long nr_attempted = 0;
2901 bool raise_priority = true;
2902 bool pgdat_needs_compaction = (order > 0);
2903
2904 sc.nr_reclaimed = 0;
2905
2906 /*
2907 * Scan in the highmem->dma direction for the highest
2908 * zone which needs scanning
2909 */
2910 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2911 struct zone *zone = pgdat->node_zones + i;
2912
2913 if (!populated_zone(zone))
2914 continue;
2915
2916 if (zone->all_unreclaimable &&
2917 sc.priority != DEF_PRIORITY)
2918 continue;
2919
2920 /*
2921 * Do some background aging of the anon list, to give
2922 * pages a chance to be referenced before reclaiming.
2923 */
2924 age_active_anon(zone, &sc);
2925
2926 /*
2927 * If the number of buffer_heads in the machine
2928 * exceeds the maximum allowed level and this node
2929 * has a highmem zone, force kswapd to reclaim from
2930 * it to relieve lowmem pressure.
2931 */
2932 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2933 end_zone = i;
2934 break;
2935 }
2936
2937 if (!zone_balanced(zone, order, 0, 0)) {
2938 end_zone = i;
2939 break;
2940 } else {
2941 /*
2942 * If balanced, clear the dirty and congested
2943 * flags
2944 */
2945 zone_clear_flag(zone, ZONE_CONGESTED);
2946 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2947 }
2948 }
2949
2950 if (i < 0)
2951 goto out;
2952
2953 for (i = 0; i <= end_zone; i++) {
2954 struct zone *zone = pgdat->node_zones + i;
2955
2956 if (!populated_zone(zone))
2957 continue;
2958
2959 lru_pages += zone_reclaimable_pages(zone);
2960
2961 /*
2962 * If any zone is currently balanced then kswapd will
2963 * not call compaction as it is expected that the
2964 * necessary pages are already available.
2965 */
2966 if (pgdat_needs_compaction &&
2967 zone_watermark_ok(zone, order,
2968 low_wmark_pages(zone),
2969 *classzone_idx, 0))
2970 pgdat_needs_compaction = false;
2971 }
2972
2973 /*
2974 * If we're getting trouble reclaiming, start doing writepage
2975 * even in laptop mode.
2976 */
2977 if (sc.priority < DEF_PRIORITY - 2)
2978 sc.may_writepage = 1;
2979
2980 /*
2981 * Now scan the zone in the dma->highmem direction, stopping
2982 * at the last zone which needs scanning.
2983 *
2984 * We do this because the page allocator works in the opposite
2985 * direction. This prevents the page allocator from allocating
2986 * pages behind kswapd's direction of progress, which would
2987 * cause too much scanning of the lower zones.
2988 */
2989 for (i = 0; i <= end_zone; i++) {
2990 struct zone *zone = pgdat->node_zones + i;
2991
2992 if (!populated_zone(zone))
2993 continue;
2994
2995 if (zone->all_unreclaimable &&
2996 sc.priority != DEF_PRIORITY)
2997 continue;
2998
2999 sc.nr_scanned = 0;
3000
3001 nr_soft_scanned = 0;
3002 /*
3003 * Call soft limit reclaim before calling shrink_zone.
3004 */
3005 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3006 order, sc.gfp_mask,
3007 &nr_soft_scanned);
3008 sc.nr_reclaimed += nr_soft_reclaimed;
3009
3010 /*
3011 * There should be no need to raise the scanning
3012 * priority if enough pages are already being scanned
3013 * that that high watermark would be met at 100%
3014 * efficiency.
3015 */
3016 if (kswapd_shrink_zone(zone, end_zone, &sc,
3017 lru_pages, &nr_attempted))
3018 raise_priority = false;
3019 }
3020
3021 /*
3022 * If the low watermark is met there is no need for processes
3023 * to be throttled on pfmemalloc_wait as they should not be
3024 * able to safely make forward progress. Wake them
3025 */
3026 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3027 pfmemalloc_watermark_ok(pgdat))
3028 wake_up(&pgdat->pfmemalloc_wait);
3029
3030 /*
3031 * Fragmentation may mean that the system cannot be rebalanced
3032 * for high-order allocations in all zones. If twice the
3033 * allocation size has been reclaimed and the zones are still
3034 * not balanced then recheck the watermarks at order-0 to
3035 * prevent kswapd reclaiming excessively. Assume that a
3036 * process requested a high-order can direct reclaim/compact.
3037 */
3038 if (order && sc.nr_reclaimed >= 2UL << order)
3039 order = sc.order = 0;
3040
3041 /* Check if kswapd should be suspending */
3042 if (try_to_freeze() || kthread_should_stop())
3043 break;
3044
3045 /*
3046 * Compact if necessary and kswapd is reclaiming at least the
3047 * high watermark number of pages as requsted
3048 */
3049 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3050 compact_pgdat(pgdat, order);
3051
3052 /*
3053 * Raise priority if scanning rate is too low or there was no
3054 * progress in reclaiming pages
3055 */
3056 if (raise_priority || !sc.nr_reclaimed)
3057 sc.priority--;
3058 } while (sc.priority >= 1 &&
3059 !pgdat_balanced(pgdat, order, *classzone_idx));
3060
3061 out:
3062 /*
3063 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3064 * makes a decision on the order we were last reclaiming at. However,
3065 * if another caller entered the allocator slow path while kswapd
3066 * was awake, order will remain at the higher level
3067 */
3068 *classzone_idx = end_zone;
3069 return order;
3070 }
3071
3072 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3073 {
3074 long remaining = 0;
3075 DEFINE_WAIT(wait);
3076
3077 if (freezing(current) || kthread_should_stop())
3078 return;
3079
3080 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3081
3082 /* Try to sleep for a short interval */
3083 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3084 remaining = schedule_timeout(HZ/10);
3085 finish_wait(&pgdat->kswapd_wait, &wait);
3086 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3087 }
3088
3089 /*
3090 * After a short sleep, check if it was a premature sleep. If not, then
3091 * go fully to sleep until explicitly woken up.
3092 */
3093 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3094 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3095
3096 /*
3097 * vmstat counters are not perfectly accurate and the estimated
3098 * value for counters such as NR_FREE_PAGES can deviate from the
3099 * true value by nr_online_cpus * threshold. To avoid the zone
3100 * watermarks being breached while under pressure, we reduce the
3101 * per-cpu vmstat threshold while kswapd is awake and restore
3102 * them before going back to sleep.
3103 */
3104 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3105
3106 /*
3107 * Compaction records what page blocks it recently failed to
3108 * isolate pages from and skips them in the future scanning.
3109 * When kswapd is going to sleep, it is reasonable to assume
3110 * that pages and compaction may succeed so reset the cache.
3111 */
3112 reset_isolation_suitable(pgdat);
3113
3114 if (!kthread_should_stop())
3115 schedule();
3116
3117 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3118 } else {
3119 if (remaining)
3120 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3121 else
3122 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3123 }
3124 finish_wait(&pgdat->kswapd_wait, &wait);
3125 }
3126
3127 /*
3128 * The background pageout daemon, started as a kernel thread
3129 * from the init process.
3130 *
3131 * This basically trickles out pages so that we have _some_
3132 * free memory available even if there is no other activity
3133 * that frees anything up. This is needed for things like routing
3134 * etc, where we otherwise might have all activity going on in
3135 * asynchronous contexts that cannot page things out.
3136 *
3137 * If there are applications that are active memory-allocators
3138 * (most normal use), this basically shouldn't matter.
3139 */
3140 static int kswapd(void *p)
3141 {
3142 unsigned long order, new_order;
3143 unsigned balanced_order;
3144 int classzone_idx, new_classzone_idx;
3145 int balanced_classzone_idx;
3146 pg_data_t *pgdat = (pg_data_t*)p;
3147 struct task_struct *tsk = current;
3148
3149 struct reclaim_state reclaim_state = {
3150 .reclaimed_slab = 0,
3151 };
3152 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3153
3154 lockdep_set_current_reclaim_state(GFP_KERNEL);
3155
3156 if (!cpumask_empty(cpumask))
3157 set_cpus_allowed_ptr(tsk, cpumask);
3158 current->reclaim_state = &reclaim_state;
3159
3160 /*
3161 * Tell the memory management that we're a "memory allocator",
3162 * and that if we need more memory we should get access to it
3163 * regardless (see "__alloc_pages()"). "kswapd" should
3164 * never get caught in the normal page freeing logic.
3165 *
3166 * (Kswapd normally doesn't need memory anyway, but sometimes
3167 * you need a small amount of memory in order to be able to
3168 * page out something else, and this flag essentially protects
3169 * us from recursively trying to free more memory as we're
3170 * trying to free the first piece of memory in the first place).
3171 */
3172 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3173 set_freezable();
3174
3175 order = new_order = 0;
3176 balanced_order = 0;
3177 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3178 balanced_classzone_idx = classzone_idx;
3179 for ( ; ; ) {
3180 bool ret;
3181
3182 /*
3183 * If the last balance_pgdat was unsuccessful it's unlikely a
3184 * new request of a similar or harder type will succeed soon
3185 * so consider going to sleep on the basis we reclaimed at
3186 */
3187 if (balanced_classzone_idx >= new_classzone_idx &&
3188 balanced_order == new_order) {
3189 new_order = pgdat->kswapd_max_order;
3190 new_classzone_idx = pgdat->classzone_idx;
3191 pgdat->kswapd_max_order = 0;
3192 pgdat->classzone_idx = pgdat->nr_zones - 1;
3193 }
3194
3195 if (order < new_order || classzone_idx > new_classzone_idx) {
3196 /*
3197 * Don't sleep if someone wants a larger 'order'
3198 * allocation or has tigher zone constraints
3199 */
3200 order = new_order;
3201 classzone_idx = new_classzone_idx;
3202 } else {
3203 kswapd_try_to_sleep(pgdat, balanced_order,
3204 balanced_classzone_idx);
3205 order = pgdat->kswapd_max_order;
3206 classzone_idx = pgdat->classzone_idx;
3207 new_order = order;
3208 new_classzone_idx = classzone_idx;
3209 pgdat->kswapd_max_order = 0;
3210 pgdat->classzone_idx = pgdat->nr_zones - 1;
3211 }
3212
3213 ret = try_to_freeze();
3214 if (kthread_should_stop())
3215 break;
3216
3217 /*
3218 * We can speed up thawing tasks if we don't call balance_pgdat
3219 * after returning from the refrigerator
3220 */
3221 if (!ret) {
3222 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3223 balanced_classzone_idx = classzone_idx;
3224 balanced_order = balance_pgdat(pgdat, order,
3225 &balanced_classzone_idx);
3226 }
3227 }
3228
3229 current->reclaim_state = NULL;
3230 return 0;
3231 }
3232
3233 /*
3234 * A zone is low on free memory, so wake its kswapd task to service it.
3235 */
3236 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3237 {
3238 pg_data_t *pgdat;
3239
3240 if (!populated_zone(zone))
3241 return;
3242
3243 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3244 return;
3245 pgdat = zone->zone_pgdat;
3246 if (pgdat->kswapd_max_order < order) {
3247 pgdat->kswapd_max_order = order;
3248 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3249 }
3250 if (!waitqueue_active(&pgdat->kswapd_wait))
3251 return;
3252 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3253 return;
3254
3255 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3256 wake_up_interruptible(&pgdat->kswapd_wait);
3257 }
3258
3259 /*
3260 * The reclaimable count would be mostly accurate.
3261 * The less reclaimable pages may be
3262 * - mlocked pages, which will be moved to unevictable list when encountered
3263 * - mapped pages, which may require several travels to be reclaimed
3264 * - dirty pages, which is not "instantly" reclaimable
3265 */
3266 unsigned long global_reclaimable_pages(void)
3267 {
3268 int nr;
3269
3270 nr = global_page_state(NR_ACTIVE_FILE) +
3271 global_page_state(NR_INACTIVE_FILE);
3272
3273 if (get_nr_swap_pages() > 0)
3274 nr += global_page_state(NR_ACTIVE_ANON) +
3275 global_page_state(NR_INACTIVE_ANON);
3276
3277 return nr;
3278 }
3279
3280 unsigned long zone_reclaimable_pages(struct zone *zone)
3281 {
3282 int nr;
3283
3284 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3285 zone_page_state(zone, NR_INACTIVE_FILE);
3286
3287 if (get_nr_swap_pages() > 0)
3288 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3289 zone_page_state(zone, NR_INACTIVE_ANON);
3290
3291 return nr;
3292 }
3293
3294 #ifdef CONFIG_HIBERNATION
3295 /*
3296 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3297 * freed pages.
3298 *
3299 * Rather than trying to age LRUs the aim is to preserve the overall
3300 * LRU order by reclaiming preferentially
3301 * inactive > active > active referenced > active mapped
3302 */
3303 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3304 {
3305 struct reclaim_state reclaim_state;
3306 struct scan_control sc = {
3307 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3308 .may_swap = 1,
3309 .may_unmap = 1,
3310 .may_writepage = 1,
3311 .nr_to_reclaim = nr_to_reclaim,
3312 .hibernation_mode = 1,
3313 .order = 0,
3314 .priority = DEF_PRIORITY,
3315 };
3316 struct shrink_control shrink = {
3317 .gfp_mask = sc.gfp_mask,
3318 };
3319 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3320 struct task_struct *p = current;
3321 unsigned long nr_reclaimed;
3322
3323 p->flags |= PF_MEMALLOC;
3324 lockdep_set_current_reclaim_state(sc.gfp_mask);
3325 reclaim_state.reclaimed_slab = 0;
3326 p->reclaim_state = &reclaim_state;
3327
3328 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3329
3330 p->reclaim_state = NULL;
3331 lockdep_clear_current_reclaim_state();
3332 p->flags &= ~PF_MEMALLOC;
3333
3334 return nr_reclaimed;
3335 }
3336 #endif /* CONFIG_HIBERNATION */
3337
3338 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3339 not required for correctness. So if the last cpu in a node goes
3340 away, we get changed to run anywhere: as the first one comes back,
3341 restore their cpu bindings. */
3342 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3343 void *hcpu)
3344 {
3345 int nid;
3346
3347 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3348 for_each_node_state(nid, N_MEMORY) {
3349 pg_data_t *pgdat = NODE_DATA(nid);
3350 const struct cpumask *mask;
3351
3352 mask = cpumask_of_node(pgdat->node_id);
3353
3354 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3355 /* One of our CPUs online: restore mask */
3356 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3357 }
3358 }
3359 return NOTIFY_OK;
3360 }
3361
3362 /*
3363 * This kswapd start function will be called by init and node-hot-add.
3364 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3365 */
3366 int kswapd_run(int nid)
3367 {
3368 pg_data_t *pgdat = NODE_DATA(nid);
3369 int ret = 0;
3370
3371 if (pgdat->kswapd)
3372 return 0;
3373
3374 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3375 if (IS_ERR(pgdat->kswapd)) {
3376 /* failure at boot is fatal */
3377 BUG_ON(system_state == SYSTEM_BOOTING);
3378 pr_err("Failed to start kswapd on node %d\n", nid);
3379 ret = PTR_ERR(pgdat->kswapd);
3380 pgdat->kswapd = NULL;
3381 }
3382 return ret;
3383 }
3384
3385 /*
3386 * Called by memory hotplug when all memory in a node is offlined. Caller must
3387 * hold lock_memory_hotplug().
3388 */
3389 void kswapd_stop(int nid)
3390 {
3391 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3392
3393 if (kswapd) {
3394 kthread_stop(kswapd);
3395 NODE_DATA(nid)->kswapd = NULL;
3396 }
3397 }
3398
3399 static int __init kswapd_init(void)
3400 {
3401 int nid;
3402
3403 swap_setup();
3404 for_each_node_state(nid, N_MEMORY)
3405 kswapd_run(nid);
3406 hotcpu_notifier(cpu_callback, 0);
3407 return 0;
3408 }
3409
3410 module_init(kswapd_init)
3411
3412 #ifdef CONFIG_NUMA
3413 /*
3414 * Zone reclaim mode
3415 *
3416 * If non-zero call zone_reclaim when the number of free pages falls below
3417 * the watermarks.
3418 */
3419 int zone_reclaim_mode __read_mostly;
3420
3421 #define RECLAIM_OFF 0
3422 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3423 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3424 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3425
3426 /*
3427 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3428 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3429 * a zone.
3430 */
3431 #define ZONE_RECLAIM_PRIORITY 4
3432
3433 /*
3434 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3435 * occur.
3436 */
3437 int sysctl_min_unmapped_ratio = 1;
3438
3439 /*
3440 * If the number of slab pages in a zone grows beyond this percentage then
3441 * slab reclaim needs to occur.
3442 */
3443 int sysctl_min_slab_ratio = 5;
3444
3445 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3446 {
3447 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3448 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3449 zone_page_state(zone, NR_ACTIVE_FILE);
3450
3451 /*
3452 * It's possible for there to be more file mapped pages than
3453 * accounted for by the pages on the file LRU lists because
3454 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3455 */
3456 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3457 }
3458
3459 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3460 static long zone_pagecache_reclaimable(struct zone *zone)
3461 {
3462 long nr_pagecache_reclaimable;
3463 long delta = 0;
3464
3465 /*
3466 * If RECLAIM_SWAP is set, then all file pages are considered
3467 * potentially reclaimable. Otherwise, we have to worry about
3468 * pages like swapcache and zone_unmapped_file_pages() provides
3469 * a better estimate
3470 */
3471 if (zone_reclaim_mode & RECLAIM_SWAP)
3472 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3473 else
3474 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3475
3476 /* If we can't clean pages, remove dirty pages from consideration */
3477 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3478 delta += zone_page_state(zone, NR_FILE_DIRTY);
3479
3480 /* Watch for any possible underflows due to delta */
3481 if (unlikely(delta > nr_pagecache_reclaimable))
3482 delta = nr_pagecache_reclaimable;
3483
3484 return nr_pagecache_reclaimable - delta;
3485 }
3486
3487 /*
3488 * Try to free up some pages from this zone through reclaim.
3489 */
3490 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3491 {
3492 /* Minimum pages needed in order to stay on node */
3493 const unsigned long nr_pages = 1 << order;
3494 struct task_struct *p = current;
3495 struct reclaim_state reclaim_state;
3496 struct scan_control sc = {
3497 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3498 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3499 .may_swap = 1,
3500 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3501 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3502 .order = order,
3503 .priority = ZONE_RECLAIM_PRIORITY,
3504 };
3505 struct shrink_control shrink = {
3506 .gfp_mask = sc.gfp_mask,
3507 };
3508 unsigned long nr_slab_pages0, nr_slab_pages1;
3509
3510 cond_resched();
3511 /*
3512 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3513 * and we also need to be able to write out pages for RECLAIM_WRITE
3514 * and RECLAIM_SWAP.
3515 */
3516 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3517 lockdep_set_current_reclaim_state(gfp_mask);
3518 reclaim_state.reclaimed_slab = 0;
3519 p->reclaim_state = &reclaim_state;
3520
3521 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3522 /*
3523 * Free memory by calling shrink zone with increasing
3524 * priorities until we have enough memory freed.
3525 */
3526 do {
3527 shrink_zone(zone, &sc);
3528 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3529 }
3530
3531 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3532 if (nr_slab_pages0 > zone->min_slab_pages) {
3533 /*
3534 * shrink_slab() does not currently allow us to determine how
3535 * many pages were freed in this zone. So we take the current
3536 * number of slab pages and shake the slab until it is reduced
3537 * by the same nr_pages that we used for reclaiming unmapped
3538 * pages.
3539 *
3540 * Note that shrink_slab will free memory on all zones and may
3541 * take a long time.
3542 */
3543 for (;;) {
3544 unsigned long lru_pages = zone_reclaimable_pages(zone);
3545
3546 /* No reclaimable slab or very low memory pressure */
3547 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3548 break;
3549
3550 /* Freed enough memory */
3551 nr_slab_pages1 = zone_page_state(zone,
3552 NR_SLAB_RECLAIMABLE);
3553 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3554 break;
3555 }
3556
3557 /*
3558 * Update nr_reclaimed by the number of slab pages we
3559 * reclaimed from this zone.
3560 */
3561 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3562 if (nr_slab_pages1 < nr_slab_pages0)
3563 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3564 }
3565
3566 p->reclaim_state = NULL;
3567 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3568 lockdep_clear_current_reclaim_state();
3569 return sc.nr_reclaimed >= nr_pages;
3570 }
3571
3572 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3573 {
3574 int node_id;
3575 int ret;
3576
3577 /*
3578 * Zone reclaim reclaims unmapped file backed pages and
3579 * slab pages if we are over the defined limits.
3580 *
3581 * A small portion of unmapped file backed pages is needed for
3582 * file I/O otherwise pages read by file I/O will be immediately
3583 * thrown out if the zone is overallocated. So we do not reclaim
3584 * if less than a specified percentage of the zone is used by
3585 * unmapped file backed pages.
3586 */
3587 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3588 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3589 return ZONE_RECLAIM_FULL;
3590
3591 if (zone->all_unreclaimable)
3592 return ZONE_RECLAIM_FULL;
3593
3594 /*
3595 * Do not scan if the allocation should not be delayed.
3596 */
3597 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3598 return ZONE_RECLAIM_NOSCAN;
3599
3600 /*
3601 * Only run zone reclaim on the local zone or on zones that do not
3602 * have associated processors. This will favor the local processor
3603 * over remote processors and spread off node memory allocations
3604 * as wide as possible.
3605 */
3606 node_id = zone_to_nid(zone);
3607 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3608 return ZONE_RECLAIM_NOSCAN;
3609
3610 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3611 return ZONE_RECLAIM_NOSCAN;
3612
3613 ret = __zone_reclaim(zone, gfp_mask, order);
3614 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3615
3616 if (!ret)
3617 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3618
3619 return ret;
3620 }
3621 #endif
3622
3623 /*
3624 * page_evictable - test whether a page is evictable
3625 * @page: the page to test
3626 *
3627 * Test whether page is evictable--i.e., should be placed on active/inactive
3628 * lists vs unevictable list.
3629 *
3630 * Reasons page might not be evictable:
3631 * (1) page's mapping marked unevictable
3632 * (2) page is part of an mlocked VMA
3633 *
3634 */
3635 int page_evictable(struct page *page)
3636 {
3637 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3638 }
3639
3640 #ifdef CONFIG_SHMEM
3641 /**
3642 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3643 * @pages: array of pages to check
3644 * @nr_pages: number of pages to check
3645 *
3646 * Checks pages for evictability and moves them to the appropriate lru list.
3647 *
3648 * This function is only used for SysV IPC SHM_UNLOCK.
3649 */
3650 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3651 {
3652 struct lruvec *lruvec;
3653 struct zone *zone = NULL;
3654 int pgscanned = 0;
3655 int pgrescued = 0;
3656 int i;
3657
3658 for (i = 0; i < nr_pages; i++) {
3659 struct page *page = pages[i];
3660 struct zone *pagezone;
3661
3662 pgscanned++;
3663 pagezone = page_zone(page);
3664 if (pagezone != zone) {
3665 if (zone)
3666 spin_unlock_irq(&zone->lru_lock);
3667 zone = pagezone;
3668 spin_lock_irq(&zone->lru_lock);
3669 }
3670 lruvec = mem_cgroup_page_lruvec(page, zone);
3671
3672 if (!PageLRU(page) || !PageUnevictable(page))
3673 continue;
3674
3675 if (page_evictable(page)) {
3676 enum lru_list lru = page_lru_base_type(page);
3677
3678 VM_BUG_ON(PageActive(page));
3679 ClearPageUnevictable(page);
3680 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3681 add_page_to_lru_list(page, lruvec, lru);
3682 pgrescued++;
3683 }
3684 }
3685
3686 if (zone) {
3687 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3688 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3689 spin_unlock_irq(&zone->lru_lock);
3690 }
3691 }
3692 #endif /* CONFIG_SHMEM */
3693
3694 static void warn_scan_unevictable_pages(void)
3695 {
3696 printk_once(KERN_WARNING
3697 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3698 "disabled for lack of a legitimate use case. If you have "
3699 "one, please send an email to linux-mm@kvack.org.\n",
3700 current->comm);
3701 }
3702
3703 /*
3704 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3705 * all nodes' unevictable lists for evictable pages
3706 */
3707 unsigned long scan_unevictable_pages;
3708
3709 int scan_unevictable_handler(struct ctl_table *table, int write,
3710 void __user *buffer,
3711 size_t *length, loff_t *ppos)
3712 {
3713 warn_scan_unevictable_pages();
3714 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3715 scan_unevictable_pages = 0;
3716 return 0;
3717 }
3718
3719 #ifdef CONFIG_NUMA
3720 /*
3721 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3722 * a specified node's per zone unevictable lists for evictable pages.
3723 */
3724
3725 static ssize_t read_scan_unevictable_node(struct device *dev,
3726 struct device_attribute *attr,
3727 char *buf)
3728 {
3729 warn_scan_unevictable_pages();
3730 return sprintf(buf, "0\n"); /* always zero; should fit... */
3731 }
3732
3733 static ssize_t write_scan_unevictable_node(struct device *dev,
3734 struct device_attribute *attr,
3735 const char *buf, size_t count)
3736 {
3737 warn_scan_unevictable_pages();
3738 return 1;
3739 }
3740
3741
3742 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3743 read_scan_unevictable_node,
3744 write_scan_unevictable_node);
3745
3746 int scan_unevictable_register_node(struct node *node)
3747 {
3748 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3749 }
3750
3751 void scan_unevictable_unregister_node(struct node *node)
3752 {
3753 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754 }
3755 #endif
This page took 0.113167 seconds and 6 git commands to generate.