define page_file_cache() function
[deliverable/linux.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/vmstat.h>
17 #include <linux/sched.h>
18
19 #ifdef CONFIG_VM_EVENT_COUNTERS
20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
21 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22
23 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
24 {
25 int cpu;
26 int i;
27
28 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29
30 for_each_cpu_mask_nr(cpu, *cpumask) {
31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32
33 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
34 ret[i] += this->event[i];
35 }
36 }
37
38 /*
39 * Accumulate the vm event counters across all CPUs.
40 * The result is unavoidably approximate - it can change
41 * during and after execution of this function.
42 */
43 void all_vm_events(unsigned long *ret)
44 {
45 get_online_cpus();
46 sum_vm_events(ret, &cpu_online_map);
47 put_online_cpus();
48 }
49 EXPORT_SYMBOL_GPL(all_vm_events);
50
51 #ifdef CONFIG_HOTPLUG
52 /*
53 * Fold the foreign cpu events into our own.
54 *
55 * This is adding to the events on one processor
56 * but keeps the global counts constant.
57 */
58 void vm_events_fold_cpu(int cpu)
59 {
60 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
61 int i;
62
63 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
64 count_vm_events(i, fold_state->event[i]);
65 fold_state->event[i] = 0;
66 }
67 }
68 #endif /* CONFIG_HOTPLUG */
69
70 #endif /* CONFIG_VM_EVENT_COUNTERS */
71
72 /*
73 * Manage combined zone based / global counters
74 *
75 * vm_stat contains the global counters
76 */
77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
78 EXPORT_SYMBOL(vm_stat);
79
80 #ifdef CONFIG_SMP
81
82 static int calculate_threshold(struct zone *zone)
83 {
84 int threshold;
85 int mem; /* memory in 128 MB units */
86
87 /*
88 * The threshold scales with the number of processors and the amount
89 * of memory per zone. More memory means that we can defer updates for
90 * longer, more processors could lead to more contention.
91 * fls() is used to have a cheap way of logarithmic scaling.
92 *
93 * Some sample thresholds:
94 *
95 * Threshold Processors (fls) Zonesize fls(mem+1)
96 * ------------------------------------------------------------------
97 * 8 1 1 0.9-1 GB 4
98 * 16 2 2 0.9-1 GB 4
99 * 20 2 2 1-2 GB 5
100 * 24 2 2 2-4 GB 6
101 * 28 2 2 4-8 GB 7
102 * 32 2 2 8-16 GB 8
103 * 4 2 2 <128M 1
104 * 30 4 3 2-4 GB 5
105 * 48 4 3 8-16 GB 8
106 * 32 8 4 1-2 GB 4
107 * 32 8 4 0.9-1GB 4
108 * 10 16 5 <128M 1
109 * 40 16 5 900M 4
110 * 70 64 7 2-4 GB 5
111 * 84 64 7 4-8 GB 6
112 * 108 512 9 4-8 GB 6
113 * 125 1024 10 8-16 GB 8
114 * 125 1024 10 16-32 GB 9
115 */
116
117 mem = zone->present_pages >> (27 - PAGE_SHIFT);
118
119 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
120
121 /*
122 * Maximum threshold is 125
123 */
124 threshold = min(125, threshold);
125
126 return threshold;
127 }
128
129 /*
130 * Refresh the thresholds for each zone.
131 */
132 static void refresh_zone_stat_thresholds(void)
133 {
134 struct zone *zone;
135 int cpu;
136 int threshold;
137
138 for_each_zone(zone) {
139
140 if (!zone->present_pages)
141 continue;
142
143 threshold = calculate_threshold(zone);
144
145 for_each_online_cpu(cpu)
146 zone_pcp(zone, cpu)->stat_threshold = threshold;
147 }
148 }
149
150 /*
151 * For use when we know that interrupts are disabled.
152 */
153 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
154 int delta)
155 {
156 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
157 s8 *p = pcp->vm_stat_diff + item;
158 long x;
159
160 x = delta + *p;
161
162 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
163 zone_page_state_add(x, zone, item);
164 x = 0;
165 }
166 *p = x;
167 }
168 EXPORT_SYMBOL(__mod_zone_page_state);
169
170 /*
171 * For an unknown interrupt state
172 */
173 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
174 int delta)
175 {
176 unsigned long flags;
177
178 local_irq_save(flags);
179 __mod_zone_page_state(zone, item, delta);
180 local_irq_restore(flags);
181 }
182 EXPORT_SYMBOL(mod_zone_page_state);
183
184 /*
185 * Optimized increment and decrement functions.
186 *
187 * These are only for a single page and therefore can take a struct page *
188 * argument instead of struct zone *. This allows the inclusion of the code
189 * generated for page_zone(page) into the optimized functions.
190 *
191 * No overflow check is necessary and therefore the differential can be
192 * incremented or decremented in place which may allow the compilers to
193 * generate better code.
194 * The increment or decrement is known and therefore one boundary check can
195 * be omitted.
196 *
197 * NOTE: These functions are very performance sensitive. Change only
198 * with care.
199 *
200 * Some processors have inc/dec instructions that are atomic vs an interrupt.
201 * However, the code must first determine the differential location in a zone
202 * based on the processor number and then inc/dec the counter. There is no
203 * guarantee without disabling preemption that the processor will not change
204 * in between and therefore the atomicity vs. interrupt cannot be exploited
205 * in a useful way here.
206 */
207 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208 {
209 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
210 s8 *p = pcp->vm_stat_diff + item;
211
212 (*p)++;
213
214 if (unlikely(*p > pcp->stat_threshold)) {
215 int overstep = pcp->stat_threshold / 2;
216
217 zone_page_state_add(*p + overstep, zone, item);
218 *p = -overstep;
219 }
220 }
221
222 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
223 {
224 __inc_zone_state(page_zone(page), item);
225 }
226 EXPORT_SYMBOL(__inc_zone_page_state);
227
228 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229 {
230 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
231 s8 *p = pcp->vm_stat_diff + item;
232
233 (*p)--;
234
235 if (unlikely(*p < - pcp->stat_threshold)) {
236 int overstep = pcp->stat_threshold / 2;
237
238 zone_page_state_add(*p - overstep, zone, item);
239 *p = overstep;
240 }
241 }
242
243 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
244 {
245 __dec_zone_state(page_zone(page), item);
246 }
247 EXPORT_SYMBOL(__dec_zone_page_state);
248
249 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
250 {
251 unsigned long flags;
252
253 local_irq_save(flags);
254 __inc_zone_state(zone, item);
255 local_irq_restore(flags);
256 }
257
258 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
259 {
260 unsigned long flags;
261 struct zone *zone;
262
263 zone = page_zone(page);
264 local_irq_save(flags);
265 __inc_zone_state(zone, item);
266 local_irq_restore(flags);
267 }
268 EXPORT_SYMBOL(inc_zone_page_state);
269
270 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 unsigned long flags;
273
274 local_irq_save(flags);
275 __dec_zone_page_state(page, item);
276 local_irq_restore(flags);
277 }
278 EXPORT_SYMBOL(dec_zone_page_state);
279
280 /*
281 * Update the zone counters for one cpu.
282 *
283 * The cpu specified must be either the current cpu or a processor that
284 * is not online. If it is the current cpu then the execution thread must
285 * be pinned to the current cpu.
286 *
287 * Note that refresh_cpu_vm_stats strives to only access
288 * node local memory. The per cpu pagesets on remote zones are placed
289 * in the memory local to the processor using that pageset. So the
290 * loop over all zones will access a series of cachelines local to
291 * the processor.
292 *
293 * The call to zone_page_state_add updates the cachelines with the
294 * statistics in the remote zone struct as well as the global cachelines
295 * with the global counters. These could cause remote node cache line
296 * bouncing and will have to be only done when necessary.
297 */
298 void refresh_cpu_vm_stats(int cpu)
299 {
300 struct zone *zone;
301 int i;
302 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303
304 for_each_zone(zone) {
305 struct per_cpu_pageset *p;
306
307 if (!populated_zone(zone))
308 continue;
309
310 p = zone_pcp(zone, cpu);
311
312 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
313 if (p->vm_stat_diff[i]) {
314 unsigned long flags;
315 int v;
316
317 local_irq_save(flags);
318 v = p->vm_stat_diff[i];
319 p->vm_stat_diff[i] = 0;
320 local_irq_restore(flags);
321 atomic_long_add(v, &zone->vm_stat[i]);
322 global_diff[i] += v;
323 #ifdef CONFIG_NUMA
324 /* 3 seconds idle till flush */
325 p->expire = 3;
326 #endif
327 }
328 cond_resched();
329 #ifdef CONFIG_NUMA
330 /*
331 * Deal with draining the remote pageset of this
332 * processor
333 *
334 * Check if there are pages remaining in this pageset
335 * if not then there is nothing to expire.
336 */
337 if (!p->expire || !p->pcp.count)
338 continue;
339
340 /*
341 * We never drain zones local to this processor.
342 */
343 if (zone_to_nid(zone) == numa_node_id()) {
344 p->expire = 0;
345 continue;
346 }
347
348 p->expire--;
349 if (p->expire)
350 continue;
351
352 if (p->pcp.count)
353 drain_zone_pages(zone, &p->pcp);
354 #endif
355 }
356
357 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
358 if (global_diff[i])
359 atomic_long_add(global_diff[i], &vm_stat[i]);
360 }
361
362 #endif
363
364 #ifdef CONFIG_NUMA
365 /*
366 * zonelist = the list of zones passed to the allocator
367 * z = the zone from which the allocation occurred.
368 *
369 * Must be called with interrupts disabled.
370 */
371 void zone_statistics(struct zone *preferred_zone, struct zone *z)
372 {
373 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
374 __inc_zone_state(z, NUMA_HIT);
375 } else {
376 __inc_zone_state(z, NUMA_MISS);
377 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
378 }
379 if (z->node == numa_node_id())
380 __inc_zone_state(z, NUMA_LOCAL);
381 else
382 __inc_zone_state(z, NUMA_OTHER);
383 }
384 #endif
385
386 #ifdef CONFIG_PROC_FS
387
388 #include <linux/seq_file.h>
389
390 static char * const migratetype_names[MIGRATE_TYPES] = {
391 "Unmovable",
392 "Reclaimable",
393 "Movable",
394 "Reserve",
395 "Isolate",
396 };
397
398 static void *frag_start(struct seq_file *m, loff_t *pos)
399 {
400 pg_data_t *pgdat;
401 loff_t node = *pos;
402 for (pgdat = first_online_pgdat();
403 pgdat && node;
404 pgdat = next_online_pgdat(pgdat))
405 --node;
406
407 return pgdat;
408 }
409
410 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
411 {
412 pg_data_t *pgdat = (pg_data_t *)arg;
413
414 (*pos)++;
415 return next_online_pgdat(pgdat);
416 }
417
418 static void frag_stop(struct seq_file *m, void *arg)
419 {
420 }
421
422 /* Walk all the zones in a node and print using a callback */
423 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
424 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
425 {
426 struct zone *zone;
427 struct zone *node_zones = pgdat->node_zones;
428 unsigned long flags;
429
430 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
431 if (!populated_zone(zone))
432 continue;
433
434 spin_lock_irqsave(&zone->lock, flags);
435 print(m, pgdat, zone);
436 spin_unlock_irqrestore(&zone->lock, flags);
437 }
438 }
439
440 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
441 struct zone *zone)
442 {
443 int order;
444
445 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
446 for (order = 0; order < MAX_ORDER; ++order)
447 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
448 seq_putc(m, '\n');
449 }
450
451 /*
452 * This walks the free areas for each zone.
453 */
454 static int frag_show(struct seq_file *m, void *arg)
455 {
456 pg_data_t *pgdat = (pg_data_t *)arg;
457 walk_zones_in_node(m, pgdat, frag_show_print);
458 return 0;
459 }
460
461 static void pagetypeinfo_showfree_print(struct seq_file *m,
462 pg_data_t *pgdat, struct zone *zone)
463 {
464 int order, mtype;
465
466 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
467 seq_printf(m, "Node %4d, zone %8s, type %12s ",
468 pgdat->node_id,
469 zone->name,
470 migratetype_names[mtype]);
471 for (order = 0; order < MAX_ORDER; ++order) {
472 unsigned long freecount = 0;
473 struct free_area *area;
474 struct list_head *curr;
475
476 area = &(zone->free_area[order]);
477
478 list_for_each(curr, &area->free_list[mtype])
479 freecount++;
480 seq_printf(m, "%6lu ", freecount);
481 }
482 seq_putc(m, '\n');
483 }
484 }
485
486 /* Print out the free pages at each order for each migatetype */
487 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
488 {
489 int order;
490 pg_data_t *pgdat = (pg_data_t *)arg;
491
492 /* Print header */
493 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
494 for (order = 0; order < MAX_ORDER; ++order)
495 seq_printf(m, "%6d ", order);
496 seq_putc(m, '\n');
497
498 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
499
500 return 0;
501 }
502
503 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
504 pg_data_t *pgdat, struct zone *zone)
505 {
506 int mtype;
507 unsigned long pfn;
508 unsigned long start_pfn = zone->zone_start_pfn;
509 unsigned long end_pfn = start_pfn + zone->spanned_pages;
510 unsigned long count[MIGRATE_TYPES] = { 0, };
511
512 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
513 struct page *page;
514
515 if (!pfn_valid(pfn))
516 continue;
517
518 page = pfn_to_page(pfn);
519 #ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES
520 /*
521 * Ordinarily, memory holes in flatmem still have a valid
522 * memmap for the PFN range. However, an architecture for
523 * embedded systems (e.g. ARM) can free up the memmap backing
524 * holes to save memory on the assumption the memmap is
525 * never used. The page_zone linkages are then broken even
526 * though pfn_valid() returns true. Skip the page if the
527 * linkages are broken. Even if this test passed, the impact
528 * is that the counters for the movable type are off but
529 * fragmentation monitoring is likely meaningless on small
530 * systems.
531 */
532 if (page_zone(page) != zone)
533 continue;
534 #endif
535 mtype = get_pageblock_migratetype(page);
536
537 if (mtype < MIGRATE_TYPES)
538 count[mtype]++;
539 }
540
541 /* Print counts */
542 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
543 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
544 seq_printf(m, "%12lu ", count[mtype]);
545 seq_putc(m, '\n');
546 }
547
548 /* Print out the free pages at each order for each migratetype */
549 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
550 {
551 int mtype;
552 pg_data_t *pgdat = (pg_data_t *)arg;
553
554 seq_printf(m, "\n%-23s", "Number of blocks type ");
555 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
556 seq_printf(m, "%12s ", migratetype_names[mtype]);
557 seq_putc(m, '\n');
558 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
559
560 return 0;
561 }
562
563 /*
564 * This prints out statistics in relation to grouping pages by mobility.
565 * It is expensive to collect so do not constantly read the file.
566 */
567 static int pagetypeinfo_show(struct seq_file *m, void *arg)
568 {
569 pg_data_t *pgdat = (pg_data_t *)arg;
570
571 /* check memoryless node */
572 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
573 return 0;
574
575 seq_printf(m, "Page block order: %d\n", pageblock_order);
576 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
577 seq_putc(m, '\n');
578 pagetypeinfo_showfree(m, pgdat);
579 pagetypeinfo_showblockcount(m, pgdat);
580
581 return 0;
582 }
583
584 const struct seq_operations fragmentation_op = {
585 .start = frag_start,
586 .next = frag_next,
587 .stop = frag_stop,
588 .show = frag_show,
589 };
590
591 const struct seq_operations pagetypeinfo_op = {
592 .start = frag_start,
593 .next = frag_next,
594 .stop = frag_stop,
595 .show = pagetypeinfo_show,
596 };
597
598 #ifdef CONFIG_ZONE_DMA
599 #define TEXT_FOR_DMA(xx) xx "_dma",
600 #else
601 #define TEXT_FOR_DMA(xx)
602 #endif
603
604 #ifdef CONFIG_ZONE_DMA32
605 #define TEXT_FOR_DMA32(xx) xx "_dma32",
606 #else
607 #define TEXT_FOR_DMA32(xx)
608 #endif
609
610 #ifdef CONFIG_HIGHMEM
611 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
612 #else
613 #define TEXT_FOR_HIGHMEM(xx)
614 #endif
615
616 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
617 TEXT_FOR_HIGHMEM(xx) xx "_movable",
618
619 static const char * const vmstat_text[] = {
620 /* Zoned VM counters */
621 "nr_free_pages",
622 "nr_inactive",
623 "nr_active",
624 "nr_anon_pages",
625 "nr_mapped",
626 "nr_file_pages",
627 "nr_dirty",
628 "nr_writeback",
629 "nr_slab_reclaimable",
630 "nr_slab_unreclaimable",
631 "nr_page_table_pages",
632 "nr_unstable",
633 "nr_bounce",
634 "nr_vmscan_write",
635 "nr_writeback_temp",
636
637 #ifdef CONFIG_NUMA
638 "numa_hit",
639 "numa_miss",
640 "numa_foreign",
641 "numa_interleave",
642 "numa_local",
643 "numa_other",
644 #endif
645
646 #ifdef CONFIG_VM_EVENT_COUNTERS
647 "pgpgin",
648 "pgpgout",
649 "pswpin",
650 "pswpout",
651
652 TEXTS_FOR_ZONES("pgalloc")
653
654 "pgfree",
655 "pgactivate",
656 "pgdeactivate",
657
658 "pgfault",
659 "pgmajfault",
660
661 TEXTS_FOR_ZONES("pgrefill")
662 TEXTS_FOR_ZONES("pgsteal")
663 TEXTS_FOR_ZONES("pgscan_kswapd")
664 TEXTS_FOR_ZONES("pgscan_direct")
665
666 "pginodesteal",
667 "slabs_scanned",
668 "kswapd_steal",
669 "kswapd_inodesteal",
670 "pageoutrun",
671 "allocstall",
672
673 "pgrotated",
674 #ifdef CONFIG_HUGETLB_PAGE
675 "htlb_buddy_alloc_success",
676 "htlb_buddy_alloc_fail",
677 #endif
678 #endif
679 };
680
681 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
682 struct zone *zone)
683 {
684 int i;
685 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
686 seq_printf(m,
687 "\n pages free %lu"
688 "\n min %lu"
689 "\n low %lu"
690 "\n high %lu"
691 "\n scanned %lu (a: %lu i: %lu)"
692 "\n spanned %lu"
693 "\n present %lu",
694 zone_page_state(zone, NR_FREE_PAGES),
695 zone->pages_min,
696 zone->pages_low,
697 zone->pages_high,
698 zone->pages_scanned,
699 zone->lru[LRU_ACTIVE].nr_scan,
700 zone->lru[LRU_INACTIVE].nr_scan,
701 zone->spanned_pages,
702 zone->present_pages);
703
704 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
705 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
706 zone_page_state(zone, i));
707
708 seq_printf(m,
709 "\n protection: (%lu",
710 zone->lowmem_reserve[0]);
711 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
712 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
713 seq_printf(m,
714 ")"
715 "\n pagesets");
716 for_each_online_cpu(i) {
717 struct per_cpu_pageset *pageset;
718
719 pageset = zone_pcp(zone, i);
720 seq_printf(m,
721 "\n cpu: %i"
722 "\n count: %i"
723 "\n high: %i"
724 "\n batch: %i",
725 i,
726 pageset->pcp.count,
727 pageset->pcp.high,
728 pageset->pcp.batch);
729 #ifdef CONFIG_SMP
730 seq_printf(m, "\n vm stats threshold: %d",
731 pageset->stat_threshold);
732 #endif
733 }
734 seq_printf(m,
735 "\n all_unreclaimable: %u"
736 "\n prev_priority: %i"
737 "\n start_pfn: %lu",
738 zone_is_all_unreclaimable(zone),
739 zone->prev_priority,
740 zone->zone_start_pfn);
741 seq_putc(m, '\n');
742 }
743
744 /*
745 * Output information about zones in @pgdat.
746 */
747 static int zoneinfo_show(struct seq_file *m, void *arg)
748 {
749 pg_data_t *pgdat = (pg_data_t *)arg;
750 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
751 return 0;
752 }
753
754 const struct seq_operations zoneinfo_op = {
755 .start = frag_start, /* iterate over all zones. The same as in
756 * fragmentation. */
757 .next = frag_next,
758 .stop = frag_stop,
759 .show = zoneinfo_show,
760 };
761
762 static void *vmstat_start(struct seq_file *m, loff_t *pos)
763 {
764 unsigned long *v;
765 #ifdef CONFIG_VM_EVENT_COUNTERS
766 unsigned long *e;
767 #endif
768 int i;
769
770 if (*pos >= ARRAY_SIZE(vmstat_text))
771 return NULL;
772
773 #ifdef CONFIG_VM_EVENT_COUNTERS
774 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
775 + sizeof(struct vm_event_state), GFP_KERNEL);
776 #else
777 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
778 GFP_KERNEL);
779 #endif
780 m->private = v;
781 if (!v)
782 return ERR_PTR(-ENOMEM);
783 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
784 v[i] = global_page_state(i);
785 #ifdef CONFIG_VM_EVENT_COUNTERS
786 e = v + NR_VM_ZONE_STAT_ITEMS;
787 all_vm_events(e);
788 e[PGPGIN] /= 2; /* sectors -> kbytes */
789 e[PGPGOUT] /= 2;
790 #endif
791 return v + *pos;
792 }
793
794 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
795 {
796 (*pos)++;
797 if (*pos >= ARRAY_SIZE(vmstat_text))
798 return NULL;
799 return (unsigned long *)m->private + *pos;
800 }
801
802 static int vmstat_show(struct seq_file *m, void *arg)
803 {
804 unsigned long *l = arg;
805 unsigned long off = l - (unsigned long *)m->private;
806
807 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
808 return 0;
809 }
810
811 static void vmstat_stop(struct seq_file *m, void *arg)
812 {
813 kfree(m->private);
814 m->private = NULL;
815 }
816
817 const struct seq_operations vmstat_op = {
818 .start = vmstat_start,
819 .next = vmstat_next,
820 .stop = vmstat_stop,
821 .show = vmstat_show,
822 };
823
824 #endif /* CONFIG_PROC_FS */
825
826 #ifdef CONFIG_SMP
827 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
828 int sysctl_stat_interval __read_mostly = HZ;
829
830 static void vmstat_update(struct work_struct *w)
831 {
832 refresh_cpu_vm_stats(smp_processor_id());
833 schedule_delayed_work(&__get_cpu_var(vmstat_work),
834 sysctl_stat_interval);
835 }
836
837 static void __cpuinit start_cpu_timer(int cpu)
838 {
839 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
840
841 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
842 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
843 }
844
845 /*
846 * Use the cpu notifier to insure that the thresholds are recalculated
847 * when necessary.
848 */
849 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
850 unsigned long action,
851 void *hcpu)
852 {
853 long cpu = (long)hcpu;
854
855 switch (action) {
856 case CPU_ONLINE:
857 case CPU_ONLINE_FROZEN:
858 start_cpu_timer(cpu);
859 break;
860 case CPU_DOWN_PREPARE:
861 case CPU_DOWN_PREPARE_FROZEN:
862 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
863 per_cpu(vmstat_work, cpu).work.func = NULL;
864 break;
865 case CPU_DOWN_FAILED:
866 case CPU_DOWN_FAILED_FROZEN:
867 start_cpu_timer(cpu);
868 break;
869 case CPU_DEAD:
870 case CPU_DEAD_FROZEN:
871 refresh_zone_stat_thresholds();
872 break;
873 default:
874 break;
875 }
876 return NOTIFY_OK;
877 }
878
879 static struct notifier_block __cpuinitdata vmstat_notifier =
880 { &vmstat_cpuup_callback, NULL, 0 };
881
882 static int __init setup_vmstat(void)
883 {
884 int cpu;
885
886 refresh_zone_stat_thresholds();
887 register_cpu_notifier(&vmstat_notifier);
888
889 for_each_online_cpu(cpu)
890 start_cpu_timer(cpu);
891 return 0;
892 }
893 module_init(setup_vmstat)
894 #endif
This page took 0.048311 seconds and 5 git commands to generate.