Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23
24 #include "internal.h"
25
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
30 static void sum_vm_events(unsigned long *ret)
31 {
32 int cpu;
33 int i;
34
35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
37 for_each_online_cpu(cpu) {
38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 ret[i] += this->event[i];
42 }
43 }
44
45 /*
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52 get_online_cpus();
53 sum_vm_events(ret);
54 put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57
58 /*
59 * Fold the foreign cpu events into our own.
60 *
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
63 */
64 void vm_events_fold_cpu(int cpu)
65 {
66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 int i;
68
69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 count_vm_events(i, fold_state->event[i]);
71 fold_state->event[i] = 0;
72 }
73 }
74
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76
77 /*
78 * Manage combined zone based / global counters
79 *
80 * vm_stat contains the global counters
81 */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84
85 #ifdef CONFIG_SMP
86
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89 int threshold;
90 int watermark_distance;
91
92 /*
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
98 * the min watermark
99 */
100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103 /*
104 * Maximum threshold is 125
105 */
106 threshold = min(125, threshold);
107
108 return threshold;
109 }
110
111 int calculate_normal_threshold(struct zone *zone)
112 {
113 int threshold;
114 int mem; /* memory in 128 MB units */
115
116 /*
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
121 *
122 * Some sample thresholds:
123 *
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
126 * 8 1 1 0.9-1 GB 4
127 * 16 2 2 0.9-1 GB 4
128 * 20 2 2 1-2 GB 5
129 * 24 2 2 2-4 GB 6
130 * 28 2 2 4-8 GB 7
131 * 32 2 2 8-16 GB 8
132 * 4 2 2 <128M 1
133 * 30 4 3 2-4 GB 5
134 * 48 4 3 8-16 GB 8
135 * 32 8 4 1-2 GB 4
136 * 32 8 4 0.9-1GB 4
137 * 10 16 5 <128M 1
138 * 40 16 5 900M 4
139 * 70 64 7 2-4 GB 5
140 * 84 64 7 4-8 GB 6
141 * 108 512 9 4-8 GB 6
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
144 */
145
146 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147
148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150 /*
151 * Maximum threshold is 125
152 */
153 threshold = min(125, threshold);
154
155 return threshold;
156 }
157
158 /*
159 * Refresh the thresholds for each zone.
160 */
161 void refresh_zone_stat_thresholds(void)
162 {
163 struct zone *zone;
164 int cpu;
165 int threshold;
166
167 for_each_populated_zone(zone) {
168 unsigned long max_drift, tolerate_drift;
169
170 threshold = calculate_normal_threshold(zone);
171
172 for_each_online_cpu(cpu)
173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 = threshold;
175
176 /*
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
180 */
181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 max_drift = num_online_cpus() * threshold;
183 if (max_drift > tolerate_drift)
184 zone->percpu_drift_mark = high_wmark_pages(zone) +
185 max_drift;
186 }
187 }
188
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 int (*calculate_pressure)(struct zone *))
191 {
192 struct zone *zone;
193 int cpu;
194 int threshold;
195 int i;
196
197 for (i = 0; i < pgdat->nr_zones; i++) {
198 zone = &pgdat->node_zones[i];
199 if (!zone->percpu_drift_mark)
200 continue;
201
202 threshold = (*calculate_pressure)(zone);
203 for_each_online_cpu(cpu)
204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 = threshold;
206 }
207 }
208
209 /*
210 * For use when we know that interrupts are disabled,
211 * or when we know that preemption is disabled and that
212 * particular counter cannot be updated from interrupt context.
213 */
214 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
215 int delta)
216 {
217 struct per_cpu_pageset __percpu *pcp = zone->pageset;
218 s8 __percpu *p = pcp->vm_stat_diff + item;
219 long x;
220 long t;
221
222 x = delta + __this_cpu_read(*p);
223
224 t = __this_cpu_read(pcp->stat_threshold);
225
226 if (unlikely(x > t || x < -t)) {
227 zone_page_state_add(x, zone, item);
228 x = 0;
229 }
230 __this_cpu_write(*p, x);
231 }
232 EXPORT_SYMBOL(__mod_zone_page_state);
233
234 /*
235 * Optimized increment and decrement functions.
236 *
237 * These are only for a single page and therefore can take a struct page *
238 * argument instead of struct zone *. This allows the inclusion of the code
239 * generated for page_zone(page) into the optimized functions.
240 *
241 * No overflow check is necessary and therefore the differential can be
242 * incremented or decremented in place which may allow the compilers to
243 * generate better code.
244 * The increment or decrement is known and therefore one boundary check can
245 * be omitted.
246 *
247 * NOTE: These functions are very performance sensitive. Change only
248 * with care.
249 *
250 * Some processors have inc/dec instructions that are atomic vs an interrupt.
251 * However, the code must first determine the differential location in a zone
252 * based on the processor number and then inc/dec the counter. There is no
253 * guarantee without disabling preemption that the processor will not change
254 * in between and therefore the atomicity vs. interrupt cannot be exploited
255 * in a useful way here.
256 */
257 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
258 {
259 struct per_cpu_pageset __percpu *pcp = zone->pageset;
260 s8 __percpu *p = pcp->vm_stat_diff + item;
261 s8 v, t;
262
263 v = __this_cpu_inc_return(*p);
264 t = __this_cpu_read(pcp->stat_threshold);
265 if (unlikely(v > t)) {
266 s8 overstep = t >> 1;
267
268 zone_page_state_add(v + overstep, zone, item);
269 __this_cpu_write(*p, -overstep);
270 }
271 }
272
273 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275 __inc_zone_state(page_zone(page), item);
276 }
277 EXPORT_SYMBOL(__inc_zone_page_state);
278
279 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
280 {
281 struct per_cpu_pageset __percpu *pcp = zone->pageset;
282 s8 __percpu *p = pcp->vm_stat_diff + item;
283 s8 v, t;
284
285 v = __this_cpu_dec_return(*p);
286 t = __this_cpu_read(pcp->stat_threshold);
287 if (unlikely(v < - t)) {
288 s8 overstep = t >> 1;
289
290 zone_page_state_add(v - overstep, zone, item);
291 __this_cpu_write(*p, overstep);
292 }
293 }
294
295 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
296 {
297 __dec_zone_state(page_zone(page), item);
298 }
299 EXPORT_SYMBOL(__dec_zone_page_state);
300
301 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
302 /*
303 * If we have cmpxchg_local support then we do not need to incur the overhead
304 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
305 *
306 * mod_state() modifies the zone counter state through atomic per cpu
307 * operations.
308 *
309 * Overstep mode specifies how overstep should handled:
310 * 0 No overstepping
311 * 1 Overstepping half of threshold
312 * -1 Overstepping minus half of threshold
313 */
314 static inline void mod_state(struct zone *zone,
315 enum zone_stat_item item, int delta, int overstep_mode)
316 {
317 struct per_cpu_pageset __percpu *pcp = zone->pageset;
318 s8 __percpu *p = pcp->vm_stat_diff + item;
319 long o, n, t, z;
320
321 do {
322 z = 0; /* overflow to zone counters */
323
324 /*
325 * The fetching of the stat_threshold is racy. We may apply
326 * a counter threshold to the wrong the cpu if we get
327 * rescheduled while executing here. However, the next
328 * counter update will apply the threshold again and
329 * therefore bring the counter under the threshold again.
330 *
331 * Most of the time the thresholds are the same anyways
332 * for all cpus in a zone.
333 */
334 t = this_cpu_read(pcp->stat_threshold);
335
336 o = this_cpu_read(*p);
337 n = delta + o;
338
339 if (n > t || n < -t) {
340 int os = overstep_mode * (t >> 1) ;
341
342 /* Overflow must be added to zone counters */
343 z = n + os;
344 n = -os;
345 }
346 } while (this_cpu_cmpxchg(*p, o, n) != o);
347
348 if (z)
349 zone_page_state_add(z, zone, item);
350 }
351
352 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
353 int delta)
354 {
355 mod_state(zone, item, delta, 0);
356 }
357 EXPORT_SYMBOL(mod_zone_page_state);
358
359 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
360 {
361 mod_state(zone, item, 1, 1);
362 }
363
364 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366 mod_state(page_zone(page), item, 1, 1);
367 }
368 EXPORT_SYMBOL(inc_zone_page_state);
369
370 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
371 {
372 mod_state(page_zone(page), item, -1, -1);
373 }
374 EXPORT_SYMBOL(dec_zone_page_state);
375 #else
376 /*
377 * Use interrupt disable to serialize counter updates
378 */
379 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
380 int delta)
381 {
382 unsigned long flags;
383
384 local_irq_save(flags);
385 __mod_zone_page_state(zone, item, delta);
386 local_irq_restore(flags);
387 }
388 EXPORT_SYMBOL(mod_zone_page_state);
389
390 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392 unsigned long flags;
393
394 local_irq_save(flags);
395 __inc_zone_state(zone, item);
396 local_irq_restore(flags);
397 }
398
399 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
400 {
401 unsigned long flags;
402 struct zone *zone;
403
404 zone = page_zone(page);
405 local_irq_save(flags);
406 __inc_zone_state(zone, item);
407 local_irq_restore(flags);
408 }
409 EXPORT_SYMBOL(inc_zone_page_state);
410
411 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 unsigned long flags;
414
415 local_irq_save(flags);
416 __dec_zone_page_state(page, item);
417 local_irq_restore(flags);
418 }
419 EXPORT_SYMBOL(dec_zone_page_state);
420 #endif
421
422 static inline void fold_diff(int *diff)
423 {
424 int i;
425
426 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
427 if (diff[i])
428 atomic_long_add(diff[i], &vm_stat[i]);
429 }
430
431 /*
432 * Update the zone counters for the current cpu.
433 *
434 * Note that refresh_cpu_vm_stats strives to only access
435 * node local memory. The per cpu pagesets on remote zones are placed
436 * in the memory local to the processor using that pageset. So the
437 * loop over all zones will access a series of cachelines local to
438 * the processor.
439 *
440 * The call to zone_page_state_add updates the cachelines with the
441 * statistics in the remote zone struct as well as the global cachelines
442 * with the global counters. These could cause remote node cache line
443 * bouncing and will have to be only done when necessary.
444 */
445 static void refresh_cpu_vm_stats(void)
446 {
447 struct zone *zone;
448 int i;
449 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
450
451 for_each_populated_zone(zone) {
452 struct per_cpu_pageset __percpu *p = zone->pageset;
453
454 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
455 int v;
456
457 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
458 if (v) {
459
460 atomic_long_add(v, &zone->vm_stat[i]);
461 global_diff[i] += v;
462 #ifdef CONFIG_NUMA
463 /* 3 seconds idle till flush */
464 __this_cpu_write(p->expire, 3);
465 #endif
466 }
467 }
468 cond_resched();
469 #ifdef CONFIG_NUMA
470 /*
471 * Deal with draining the remote pageset of this
472 * processor
473 *
474 * Check if there are pages remaining in this pageset
475 * if not then there is nothing to expire.
476 */
477 if (!__this_cpu_read(p->expire) ||
478 !__this_cpu_read(p->pcp.count))
479 continue;
480
481 /*
482 * We never drain zones local to this processor.
483 */
484 if (zone_to_nid(zone) == numa_node_id()) {
485 __this_cpu_write(p->expire, 0);
486 continue;
487 }
488
489
490 if (__this_cpu_dec_return(p->expire))
491 continue;
492
493 if (__this_cpu_read(p->pcp.count))
494 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
495 #endif
496 }
497 fold_diff(global_diff);
498 }
499
500 /*
501 * Fold the data for an offline cpu into the global array.
502 * There cannot be any access by the offline cpu and therefore
503 * synchronization is simplified.
504 */
505 void cpu_vm_stats_fold(int cpu)
506 {
507 struct zone *zone;
508 int i;
509 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
510
511 for_each_populated_zone(zone) {
512 struct per_cpu_pageset *p;
513
514 p = per_cpu_ptr(zone->pageset, cpu);
515
516 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
517 if (p->vm_stat_diff[i]) {
518 int v;
519
520 v = p->vm_stat_diff[i];
521 p->vm_stat_diff[i] = 0;
522 atomic_long_add(v, &zone->vm_stat[i]);
523 global_diff[i] += v;
524 }
525 }
526
527 fold_diff(global_diff);
528 }
529
530 /*
531 * this is only called if !populated_zone(zone), which implies no other users of
532 * pset->vm_stat_diff[] exsist.
533 */
534 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
535 {
536 int i;
537
538 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
539 if (pset->vm_stat_diff[i]) {
540 int v = pset->vm_stat_diff[i];
541 pset->vm_stat_diff[i] = 0;
542 atomic_long_add(v, &zone->vm_stat[i]);
543 atomic_long_add(v, &vm_stat[i]);
544 }
545 }
546 #endif
547
548 #ifdef CONFIG_NUMA
549 /*
550 * zonelist = the list of zones passed to the allocator
551 * z = the zone from which the allocation occurred.
552 *
553 * Must be called with interrupts disabled.
554 *
555 * When __GFP_OTHER_NODE is set assume the node of the preferred
556 * zone is the local node. This is useful for daemons who allocate
557 * memory on behalf of other processes.
558 */
559 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
560 {
561 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
562 __inc_zone_state(z, NUMA_HIT);
563 } else {
564 __inc_zone_state(z, NUMA_MISS);
565 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
566 }
567 if (z->node == ((flags & __GFP_OTHER_NODE) ?
568 preferred_zone->node : numa_node_id()))
569 __inc_zone_state(z, NUMA_LOCAL);
570 else
571 __inc_zone_state(z, NUMA_OTHER);
572 }
573 #endif
574
575 #ifdef CONFIG_COMPACTION
576
577 struct contig_page_info {
578 unsigned long free_pages;
579 unsigned long free_blocks_total;
580 unsigned long free_blocks_suitable;
581 };
582
583 /*
584 * Calculate the number of free pages in a zone, how many contiguous
585 * pages are free and how many are large enough to satisfy an allocation of
586 * the target size. Note that this function makes no attempt to estimate
587 * how many suitable free blocks there *might* be if MOVABLE pages were
588 * migrated. Calculating that is possible, but expensive and can be
589 * figured out from userspace
590 */
591 static void fill_contig_page_info(struct zone *zone,
592 unsigned int suitable_order,
593 struct contig_page_info *info)
594 {
595 unsigned int order;
596
597 info->free_pages = 0;
598 info->free_blocks_total = 0;
599 info->free_blocks_suitable = 0;
600
601 for (order = 0; order < MAX_ORDER; order++) {
602 unsigned long blocks;
603
604 /* Count number of free blocks */
605 blocks = zone->free_area[order].nr_free;
606 info->free_blocks_total += blocks;
607
608 /* Count free base pages */
609 info->free_pages += blocks << order;
610
611 /* Count the suitable free blocks */
612 if (order >= suitable_order)
613 info->free_blocks_suitable += blocks <<
614 (order - suitable_order);
615 }
616 }
617
618 /*
619 * A fragmentation index only makes sense if an allocation of a requested
620 * size would fail. If that is true, the fragmentation index indicates
621 * whether external fragmentation or a lack of memory was the problem.
622 * The value can be used to determine if page reclaim or compaction
623 * should be used
624 */
625 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
626 {
627 unsigned long requested = 1UL << order;
628
629 if (!info->free_blocks_total)
630 return 0;
631
632 /* Fragmentation index only makes sense when a request would fail */
633 if (info->free_blocks_suitable)
634 return -1000;
635
636 /*
637 * Index is between 0 and 1 so return within 3 decimal places
638 *
639 * 0 => allocation would fail due to lack of memory
640 * 1 => allocation would fail due to fragmentation
641 */
642 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
643 }
644
645 /* Same as __fragmentation index but allocs contig_page_info on stack */
646 int fragmentation_index(struct zone *zone, unsigned int order)
647 {
648 struct contig_page_info info;
649
650 fill_contig_page_info(zone, order, &info);
651 return __fragmentation_index(order, &info);
652 }
653 #endif
654
655 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656 #include <linux/proc_fs.h>
657 #include <linux/seq_file.h>
658
659 static char * const migratetype_names[MIGRATE_TYPES] = {
660 "Unmovable",
661 "Reclaimable",
662 "Movable",
663 "Reserve",
664 #ifdef CONFIG_CMA
665 "CMA",
666 #endif
667 #ifdef CONFIG_MEMORY_ISOLATION
668 "Isolate",
669 #endif
670 };
671
672 static void *frag_start(struct seq_file *m, loff_t *pos)
673 {
674 pg_data_t *pgdat;
675 loff_t node = *pos;
676 for (pgdat = first_online_pgdat();
677 pgdat && node;
678 pgdat = next_online_pgdat(pgdat))
679 --node;
680
681 return pgdat;
682 }
683
684 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
685 {
686 pg_data_t *pgdat = (pg_data_t *)arg;
687
688 (*pos)++;
689 return next_online_pgdat(pgdat);
690 }
691
692 static void frag_stop(struct seq_file *m, void *arg)
693 {
694 }
695
696 /* Walk all the zones in a node and print using a callback */
697 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
698 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
699 {
700 struct zone *zone;
701 struct zone *node_zones = pgdat->node_zones;
702 unsigned long flags;
703
704 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
705 if (!populated_zone(zone))
706 continue;
707
708 spin_lock_irqsave(&zone->lock, flags);
709 print(m, pgdat, zone);
710 spin_unlock_irqrestore(&zone->lock, flags);
711 }
712 }
713 #endif
714
715 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 #ifdef CONFIG_ZONE_DMA
717 #define TEXT_FOR_DMA(xx) xx "_dma",
718 #else
719 #define TEXT_FOR_DMA(xx)
720 #endif
721
722 #ifdef CONFIG_ZONE_DMA32
723 #define TEXT_FOR_DMA32(xx) xx "_dma32",
724 #else
725 #define TEXT_FOR_DMA32(xx)
726 #endif
727
728 #ifdef CONFIG_HIGHMEM
729 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
730 #else
731 #define TEXT_FOR_HIGHMEM(xx)
732 #endif
733
734 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735 TEXT_FOR_HIGHMEM(xx) xx "_movable",
736
737 const char * const vmstat_text[] = {
738 /* Zoned VM counters */
739 "nr_free_pages",
740 "nr_alloc_batch",
741 "nr_inactive_anon",
742 "nr_active_anon",
743 "nr_inactive_file",
744 "nr_active_file",
745 "nr_unevictable",
746 "nr_mlock",
747 "nr_anon_pages",
748 "nr_mapped",
749 "nr_file_pages",
750 "nr_dirty",
751 "nr_writeback",
752 "nr_slab_reclaimable",
753 "nr_slab_unreclaimable",
754 "nr_page_table_pages",
755 "nr_kernel_stack",
756 "nr_unstable",
757 "nr_bounce",
758 "nr_vmscan_write",
759 "nr_vmscan_immediate_reclaim",
760 "nr_writeback_temp",
761 "nr_isolated_anon",
762 "nr_isolated_file",
763 "nr_shmem",
764 "nr_dirtied",
765 "nr_written",
766 "nr_pages_scanned",
767
768 #ifdef CONFIG_NUMA
769 "numa_hit",
770 "numa_miss",
771 "numa_foreign",
772 "numa_interleave",
773 "numa_local",
774 "numa_other",
775 #endif
776 "workingset_refault",
777 "workingset_activate",
778 "workingset_nodereclaim",
779 "nr_anon_transparent_hugepages",
780 "nr_free_cma",
781 "nr_dirty_threshold",
782 "nr_dirty_background_threshold",
783
784 #ifdef CONFIG_VM_EVENT_COUNTERS
785 "pgpgin",
786 "pgpgout",
787 "pswpin",
788 "pswpout",
789
790 TEXTS_FOR_ZONES("pgalloc")
791
792 "pgfree",
793 "pgactivate",
794 "pgdeactivate",
795
796 "pgfault",
797 "pgmajfault",
798
799 TEXTS_FOR_ZONES("pgrefill")
800 TEXTS_FOR_ZONES("pgsteal_kswapd")
801 TEXTS_FOR_ZONES("pgsteal_direct")
802 TEXTS_FOR_ZONES("pgscan_kswapd")
803 TEXTS_FOR_ZONES("pgscan_direct")
804 "pgscan_direct_throttle",
805
806 #ifdef CONFIG_NUMA
807 "zone_reclaim_failed",
808 #endif
809 "pginodesteal",
810 "slabs_scanned",
811 "kswapd_inodesteal",
812 "kswapd_low_wmark_hit_quickly",
813 "kswapd_high_wmark_hit_quickly",
814 "pageoutrun",
815 "allocstall",
816
817 "pgrotated",
818
819 "drop_pagecache",
820 "drop_slab",
821
822 #ifdef CONFIG_NUMA_BALANCING
823 "numa_pte_updates",
824 "numa_huge_pte_updates",
825 "numa_hint_faults",
826 "numa_hint_faults_local",
827 "numa_pages_migrated",
828 #endif
829 #ifdef CONFIG_MIGRATION
830 "pgmigrate_success",
831 "pgmigrate_fail",
832 #endif
833 #ifdef CONFIG_COMPACTION
834 "compact_migrate_scanned",
835 "compact_free_scanned",
836 "compact_isolated",
837 "compact_stall",
838 "compact_fail",
839 "compact_success",
840 #endif
841
842 #ifdef CONFIG_HUGETLB_PAGE
843 "htlb_buddy_alloc_success",
844 "htlb_buddy_alloc_fail",
845 #endif
846 "unevictable_pgs_culled",
847 "unevictable_pgs_scanned",
848 "unevictable_pgs_rescued",
849 "unevictable_pgs_mlocked",
850 "unevictable_pgs_munlocked",
851 "unevictable_pgs_cleared",
852 "unevictable_pgs_stranded",
853
854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
855 "thp_fault_alloc",
856 "thp_fault_fallback",
857 "thp_collapse_alloc",
858 "thp_collapse_alloc_failed",
859 "thp_split",
860 "thp_zero_page_alloc",
861 "thp_zero_page_alloc_failed",
862 #endif
863 #ifdef CONFIG_DEBUG_TLBFLUSH
864 #ifdef CONFIG_SMP
865 "nr_tlb_remote_flush",
866 "nr_tlb_remote_flush_received",
867 #endif /* CONFIG_SMP */
868 "nr_tlb_local_flush_all",
869 "nr_tlb_local_flush_one",
870 #endif /* CONFIG_DEBUG_TLBFLUSH */
871
872 #ifdef CONFIG_DEBUG_VM_VMACACHE
873 "vmacache_find_calls",
874 "vmacache_find_hits",
875 #endif
876 #endif /* CONFIG_VM_EVENTS_COUNTERS */
877 };
878 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
879
880
881 #ifdef CONFIG_PROC_FS
882 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
883 struct zone *zone)
884 {
885 int order;
886
887 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
888 for (order = 0; order < MAX_ORDER; ++order)
889 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
890 seq_putc(m, '\n');
891 }
892
893 /*
894 * This walks the free areas for each zone.
895 */
896 static int frag_show(struct seq_file *m, void *arg)
897 {
898 pg_data_t *pgdat = (pg_data_t *)arg;
899 walk_zones_in_node(m, pgdat, frag_show_print);
900 return 0;
901 }
902
903 static void pagetypeinfo_showfree_print(struct seq_file *m,
904 pg_data_t *pgdat, struct zone *zone)
905 {
906 int order, mtype;
907
908 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
909 seq_printf(m, "Node %4d, zone %8s, type %12s ",
910 pgdat->node_id,
911 zone->name,
912 migratetype_names[mtype]);
913 for (order = 0; order < MAX_ORDER; ++order) {
914 unsigned long freecount = 0;
915 struct free_area *area;
916 struct list_head *curr;
917
918 area = &(zone->free_area[order]);
919
920 list_for_each(curr, &area->free_list[mtype])
921 freecount++;
922 seq_printf(m, "%6lu ", freecount);
923 }
924 seq_putc(m, '\n');
925 }
926 }
927
928 /* Print out the free pages at each order for each migatetype */
929 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
930 {
931 int order;
932 pg_data_t *pgdat = (pg_data_t *)arg;
933
934 /* Print header */
935 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
936 for (order = 0; order < MAX_ORDER; ++order)
937 seq_printf(m, "%6d ", order);
938 seq_putc(m, '\n');
939
940 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
941
942 return 0;
943 }
944
945 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
946 pg_data_t *pgdat, struct zone *zone)
947 {
948 int mtype;
949 unsigned long pfn;
950 unsigned long start_pfn = zone->zone_start_pfn;
951 unsigned long end_pfn = zone_end_pfn(zone);
952 unsigned long count[MIGRATE_TYPES] = { 0, };
953
954 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
955 struct page *page;
956
957 if (!pfn_valid(pfn))
958 continue;
959
960 page = pfn_to_page(pfn);
961
962 /* Watch for unexpected holes punched in the memmap */
963 if (!memmap_valid_within(pfn, page, zone))
964 continue;
965
966 mtype = get_pageblock_migratetype(page);
967
968 if (mtype < MIGRATE_TYPES)
969 count[mtype]++;
970 }
971
972 /* Print counts */
973 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
974 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
975 seq_printf(m, "%12lu ", count[mtype]);
976 seq_putc(m, '\n');
977 }
978
979 /* Print out the free pages at each order for each migratetype */
980 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
981 {
982 int mtype;
983 pg_data_t *pgdat = (pg_data_t *)arg;
984
985 seq_printf(m, "\n%-23s", "Number of blocks type ");
986 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
987 seq_printf(m, "%12s ", migratetype_names[mtype]);
988 seq_putc(m, '\n');
989 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
990
991 return 0;
992 }
993
994 /*
995 * This prints out statistics in relation to grouping pages by mobility.
996 * It is expensive to collect so do not constantly read the file.
997 */
998 static int pagetypeinfo_show(struct seq_file *m, void *arg)
999 {
1000 pg_data_t *pgdat = (pg_data_t *)arg;
1001
1002 /* check memoryless node */
1003 if (!node_state(pgdat->node_id, N_MEMORY))
1004 return 0;
1005
1006 seq_printf(m, "Page block order: %d\n", pageblock_order);
1007 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1008 seq_putc(m, '\n');
1009 pagetypeinfo_showfree(m, pgdat);
1010 pagetypeinfo_showblockcount(m, pgdat);
1011
1012 return 0;
1013 }
1014
1015 static const struct seq_operations fragmentation_op = {
1016 .start = frag_start,
1017 .next = frag_next,
1018 .stop = frag_stop,
1019 .show = frag_show,
1020 };
1021
1022 static int fragmentation_open(struct inode *inode, struct file *file)
1023 {
1024 return seq_open(file, &fragmentation_op);
1025 }
1026
1027 static const struct file_operations fragmentation_file_operations = {
1028 .open = fragmentation_open,
1029 .read = seq_read,
1030 .llseek = seq_lseek,
1031 .release = seq_release,
1032 };
1033
1034 static const struct seq_operations pagetypeinfo_op = {
1035 .start = frag_start,
1036 .next = frag_next,
1037 .stop = frag_stop,
1038 .show = pagetypeinfo_show,
1039 };
1040
1041 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1042 {
1043 return seq_open(file, &pagetypeinfo_op);
1044 }
1045
1046 static const struct file_operations pagetypeinfo_file_ops = {
1047 .open = pagetypeinfo_open,
1048 .read = seq_read,
1049 .llseek = seq_lseek,
1050 .release = seq_release,
1051 };
1052
1053 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1054 struct zone *zone)
1055 {
1056 int i;
1057 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1058 seq_printf(m,
1059 "\n pages free %lu"
1060 "\n min %lu"
1061 "\n low %lu"
1062 "\n high %lu"
1063 "\n scanned %lu"
1064 "\n spanned %lu"
1065 "\n present %lu"
1066 "\n managed %lu",
1067 zone_page_state(zone, NR_FREE_PAGES),
1068 min_wmark_pages(zone),
1069 low_wmark_pages(zone),
1070 high_wmark_pages(zone),
1071 zone_page_state(zone, NR_PAGES_SCANNED),
1072 zone->spanned_pages,
1073 zone->present_pages,
1074 zone->managed_pages);
1075
1076 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1077 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1078 zone_page_state(zone, i));
1079
1080 seq_printf(m,
1081 "\n protection: (%ld",
1082 zone->lowmem_reserve[0]);
1083 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1084 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1085 seq_printf(m,
1086 ")"
1087 "\n pagesets");
1088 for_each_online_cpu(i) {
1089 struct per_cpu_pageset *pageset;
1090
1091 pageset = per_cpu_ptr(zone->pageset, i);
1092 seq_printf(m,
1093 "\n cpu: %i"
1094 "\n count: %i"
1095 "\n high: %i"
1096 "\n batch: %i",
1097 i,
1098 pageset->pcp.count,
1099 pageset->pcp.high,
1100 pageset->pcp.batch);
1101 #ifdef CONFIG_SMP
1102 seq_printf(m, "\n vm stats threshold: %d",
1103 pageset->stat_threshold);
1104 #endif
1105 }
1106 seq_printf(m,
1107 "\n all_unreclaimable: %u"
1108 "\n start_pfn: %lu"
1109 "\n inactive_ratio: %u",
1110 !zone_reclaimable(zone),
1111 zone->zone_start_pfn,
1112 zone->inactive_ratio);
1113 seq_putc(m, '\n');
1114 }
1115
1116 /*
1117 * Output information about zones in @pgdat.
1118 */
1119 static int zoneinfo_show(struct seq_file *m, void *arg)
1120 {
1121 pg_data_t *pgdat = (pg_data_t *)arg;
1122 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1123 return 0;
1124 }
1125
1126 static const struct seq_operations zoneinfo_op = {
1127 .start = frag_start, /* iterate over all zones. The same as in
1128 * fragmentation. */
1129 .next = frag_next,
1130 .stop = frag_stop,
1131 .show = zoneinfo_show,
1132 };
1133
1134 static int zoneinfo_open(struct inode *inode, struct file *file)
1135 {
1136 return seq_open(file, &zoneinfo_op);
1137 }
1138
1139 static const struct file_operations proc_zoneinfo_file_operations = {
1140 .open = zoneinfo_open,
1141 .read = seq_read,
1142 .llseek = seq_lseek,
1143 .release = seq_release,
1144 };
1145
1146 enum writeback_stat_item {
1147 NR_DIRTY_THRESHOLD,
1148 NR_DIRTY_BG_THRESHOLD,
1149 NR_VM_WRITEBACK_STAT_ITEMS,
1150 };
1151
1152 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1153 {
1154 unsigned long *v;
1155 int i, stat_items_size;
1156
1157 if (*pos >= ARRAY_SIZE(vmstat_text))
1158 return NULL;
1159 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1160 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1161
1162 #ifdef CONFIG_VM_EVENT_COUNTERS
1163 stat_items_size += sizeof(struct vm_event_state);
1164 #endif
1165
1166 v = kmalloc(stat_items_size, GFP_KERNEL);
1167 m->private = v;
1168 if (!v)
1169 return ERR_PTR(-ENOMEM);
1170 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1171 v[i] = global_page_state(i);
1172 v += NR_VM_ZONE_STAT_ITEMS;
1173
1174 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1175 v + NR_DIRTY_THRESHOLD);
1176 v += NR_VM_WRITEBACK_STAT_ITEMS;
1177
1178 #ifdef CONFIG_VM_EVENT_COUNTERS
1179 all_vm_events(v);
1180 v[PGPGIN] /= 2; /* sectors -> kbytes */
1181 v[PGPGOUT] /= 2;
1182 #endif
1183 return (unsigned long *)m->private + *pos;
1184 }
1185
1186 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1187 {
1188 (*pos)++;
1189 if (*pos >= ARRAY_SIZE(vmstat_text))
1190 return NULL;
1191 return (unsigned long *)m->private + *pos;
1192 }
1193
1194 static int vmstat_show(struct seq_file *m, void *arg)
1195 {
1196 unsigned long *l = arg;
1197 unsigned long off = l - (unsigned long *)m->private;
1198
1199 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1200 return 0;
1201 }
1202
1203 static void vmstat_stop(struct seq_file *m, void *arg)
1204 {
1205 kfree(m->private);
1206 m->private = NULL;
1207 }
1208
1209 static const struct seq_operations vmstat_op = {
1210 .start = vmstat_start,
1211 .next = vmstat_next,
1212 .stop = vmstat_stop,
1213 .show = vmstat_show,
1214 };
1215
1216 static int vmstat_open(struct inode *inode, struct file *file)
1217 {
1218 return seq_open(file, &vmstat_op);
1219 }
1220
1221 static const struct file_operations proc_vmstat_file_operations = {
1222 .open = vmstat_open,
1223 .read = seq_read,
1224 .llseek = seq_lseek,
1225 .release = seq_release,
1226 };
1227 #endif /* CONFIG_PROC_FS */
1228
1229 #ifdef CONFIG_SMP
1230 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1231 int sysctl_stat_interval __read_mostly = HZ;
1232
1233 static void vmstat_update(struct work_struct *w)
1234 {
1235 refresh_cpu_vm_stats();
1236 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1237 round_jiffies_relative(sysctl_stat_interval));
1238 }
1239
1240 static void start_cpu_timer(int cpu)
1241 {
1242 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1243
1244 INIT_DEFERRABLE_WORK(work, vmstat_update);
1245 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1246 }
1247
1248 static void vmstat_cpu_dead(int node)
1249 {
1250 int cpu;
1251
1252 get_online_cpus();
1253 for_each_online_cpu(cpu)
1254 if (cpu_to_node(cpu) == node)
1255 goto end;
1256
1257 node_clear_state(node, N_CPU);
1258 end:
1259 put_online_cpus();
1260 }
1261
1262 /*
1263 * Use the cpu notifier to insure that the thresholds are recalculated
1264 * when necessary.
1265 */
1266 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1267 unsigned long action,
1268 void *hcpu)
1269 {
1270 long cpu = (long)hcpu;
1271
1272 switch (action) {
1273 case CPU_ONLINE:
1274 case CPU_ONLINE_FROZEN:
1275 refresh_zone_stat_thresholds();
1276 start_cpu_timer(cpu);
1277 node_set_state(cpu_to_node(cpu), N_CPU);
1278 break;
1279 case CPU_DOWN_PREPARE:
1280 case CPU_DOWN_PREPARE_FROZEN:
1281 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1282 per_cpu(vmstat_work, cpu).work.func = NULL;
1283 break;
1284 case CPU_DOWN_FAILED:
1285 case CPU_DOWN_FAILED_FROZEN:
1286 start_cpu_timer(cpu);
1287 break;
1288 case CPU_DEAD:
1289 case CPU_DEAD_FROZEN:
1290 refresh_zone_stat_thresholds();
1291 vmstat_cpu_dead(cpu_to_node(cpu));
1292 break;
1293 default:
1294 break;
1295 }
1296 return NOTIFY_OK;
1297 }
1298
1299 static struct notifier_block vmstat_notifier =
1300 { &vmstat_cpuup_callback, NULL, 0 };
1301 #endif
1302
1303 static int __init setup_vmstat(void)
1304 {
1305 #ifdef CONFIG_SMP
1306 int cpu;
1307
1308 cpu_notifier_register_begin();
1309 __register_cpu_notifier(&vmstat_notifier);
1310
1311 for_each_online_cpu(cpu) {
1312 start_cpu_timer(cpu);
1313 node_set_state(cpu_to_node(cpu), N_CPU);
1314 }
1315 cpu_notifier_register_done();
1316 #endif
1317 #ifdef CONFIG_PROC_FS
1318 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1319 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1320 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1321 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1322 #endif
1323 return 0;
1324 }
1325 module_init(setup_vmstat)
1326
1327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1328 #include <linux/debugfs.h>
1329
1330
1331 /*
1332 * Return an index indicating how much of the available free memory is
1333 * unusable for an allocation of the requested size.
1334 */
1335 static int unusable_free_index(unsigned int order,
1336 struct contig_page_info *info)
1337 {
1338 /* No free memory is interpreted as all free memory is unusable */
1339 if (info->free_pages == 0)
1340 return 1000;
1341
1342 /*
1343 * Index should be a value between 0 and 1. Return a value to 3
1344 * decimal places.
1345 *
1346 * 0 => no fragmentation
1347 * 1 => high fragmentation
1348 */
1349 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1350
1351 }
1352
1353 static void unusable_show_print(struct seq_file *m,
1354 pg_data_t *pgdat, struct zone *zone)
1355 {
1356 unsigned int order;
1357 int index;
1358 struct contig_page_info info;
1359
1360 seq_printf(m, "Node %d, zone %8s ",
1361 pgdat->node_id,
1362 zone->name);
1363 for (order = 0; order < MAX_ORDER; ++order) {
1364 fill_contig_page_info(zone, order, &info);
1365 index = unusable_free_index(order, &info);
1366 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1367 }
1368
1369 seq_putc(m, '\n');
1370 }
1371
1372 /*
1373 * Display unusable free space index
1374 *
1375 * The unusable free space index measures how much of the available free
1376 * memory cannot be used to satisfy an allocation of a given size and is a
1377 * value between 0 and 1. The higher the value, the more of free memory is
1378 * unusable and by implication, the worse the external fragmentation is. This
1379 * can be expressed as a percentage by multiplying by 100.
1380 */
1381 static int unusable_show(struct seq_file *m, void *arg)
1382 {
1383 pg_data_t *pgdat = (pg_data_t *)arg;
1384
1385 /* check memoryless node */
1386 if (!node_state(pgdat->node_id, N_MEMORY))
1387 return 0;
1388
1389 walk_zones_in_node(m, pgdat, unusable_show_print);
1390
1391 return 0;
1392 }
1393
1394 static const struct seq_operations unusable_op = {
1395 .start = frag_start,
1396 .next = frag_next,
1397 .stop = frag_stop,
1398 .show = unusable_show,
1399 };
1400
1401 static int unusable_open(struct inode *inode, struct file *file)
1402 {
1403 return seq_open(file, &unusable_op);
1404 }
1405
1406 static const struct file_operations unusable_file_ops = {
1407 .open = unusable_open,
1408 .read = seq_read,
1409 .llseek = seq_lseek,
1410 .release = seq_release,
1411 };
1412
1413 static void extfrag_show_print(struct seq_file *m,
1414 pg_data_t *pgdat, struct zone *zone)
1415 {
1416 unsigned int order;
1417 int index;
1418
1419 /* Alloc on stack as interrupts are disabled for zone walk */
1420 struct contig_page_info info;
1421
1422 seq_printf(m, "Node %d, zone %8s ",
1423 pgdat->node_id,
1424 zone->name);
1425 for (order = 0; order < MAX_ORDER; ++order) {
1426 fill_contig_page_info(zone, order, &info);
1427 index = __fragmentation_index(order, &info);
1428 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1429 }
1430
1431 seq_putc(m, '\n');
1432 }
1433
1434 /*
1435 * Display fragmentation index for orders that allocations would fail for
1436 */
1437 static int extfrag_show(struct seq_file *m, void *arg)
1438 {
1439 pg_data_t *pgdat = (pg_data_t *)arg;
1440
1441 walk_zones_in_node(m, pgdat, extfrag_show_print);
1442
1443 return 0;
1444 }
1445
1446 static const struct seq_operations extfrag_op = {
1447 .start = frag_start,
1448 .next = frag_next,
1449 .stop = frag_stop,
1450 .show = extfrag_show,
1451 };
1452
1453 static int extfrag_open(struct inode *inode, struct file *file)
1454 {
1455 return seq_open(file, &extfrag_op);
1456 }
1457
1458 static const struct file_operations extfrag_file_ops = {
1459 .open = extfrag_open,
1460 .read = seq_read,
1461 .llseek = seq_lseek,
1462 .release = seq_release,
1463 };
1464
1465 static int __init extfrag_debug_init(void)
1466 {
1467 struct dentry *extfrag_debug_root;
1468
1469 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1470 if (!extfrag_debug_root)
1471 return -ENOMEM;
1472
1473 if (!debugfs_create_file("unusable_index", 0444,
1474 extfrag_debug_root, NULL, &unusable_file_ops))
1475 goto fail;
1476
1477 if (!debugfs_create_file("extfrag_index", 0444,
1478 extfrag_debug_root, NULL, &extfrag_file_ops))
1479 goto fail;
1480
1481 return 0;
1482 fail:
1483 debugfs_remove_recursive(extfrag_debug_root);
1484 return -ENOMEM;
1485 }
1486
1487 module_init(extfrag_debug_init);
1488 #endif
This page took 0.065638 seconds and 5 git commands to generate.