Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29 int cpu;
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40 }
41
42 /*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 #ifdef CONFIG_HOTPLUG
56 /*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62 void vm_events_fold_cpu(int cpu)
63 {
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
66
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
70 }
71 }
72 #endif /* CONFIG_HOTPLUG */
73
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75
76 /*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
83
84 #ifdef CONFIG_SMP
85
86 static int calculate_threshold(struct zone *zone)
87 {
88 int threshold;
89 int mem; /* memory in 128 MB units */
90
91 /*
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
96 *
97 * Some sample thresholds:
98 *
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
101 * 8 1 1 0.9-1 GB 4
102 * 16 2 2 0.9-1 GB 4
103 * 20 2 2 1-2 GB 5
104 * 24 2 2 2-4 GB 6
105 * 28 2 2 4-8 GB 7
106 * 32 2 2 8-16 GB 8
107 * 4 2 2 <128M 1
108 * 30 4 3 2-4 GB 5
109 * 48 4 3 8-16 GB 8
110 * 32 8 4 1-2 GB 4
111 * 32 8 4 0.9-1GB 4
112 * 10 16 5 <128M 1
113 * 40 16 5 900M 4
114 * 70 64 7 2-4 GB 5
115 * 84 64 7 4-8 GB 6
116 * 108 512 9 4-8 GB 6
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
119 */
120
121 mem = zone->present_pages >> (27 - PAGE_SHIFT);
122
123 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
124
125 /*
126 * Maximum threshold is 125
127 */
128 threshold = min(125, threshold);
129
130 return threshold;
131 }
132
133 /*
134 * Refresh the thresholds for each zone.
135 */
136 static void refresh_zone_stat_thresholds(void)
137 {
138 struct zone *zone;
139 int cpu;
140 int threshold;
141
142 for_each_populated_zone(zone) {
143 unsigned long max_drift, tolerate_drift;
144
145 threshold = calculate_threshold(zone);
146
147 for_each_online_cpu(cpu)
148 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
149 = threshold;
150
151 /*
152 * Only set percpu_drift_mark if there is a danger that
153 * NR_FREE_PAGES reports the low watermark is ok when in fact
154 * the min watermark could be breached by an allocation
155 */
156 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
157 max_drift = num_online_cpus() * threshold;
158 if (max_drift > tolerate_drift)
159 zone->percpu_drift_mark = high_wmark_pages(zone) +
160 max_drift;
161 }
162 }
163
164 /*
165 * For use when we know that interrupts are disabled.
166 */
167 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
168 int delta)
169 {
170 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
171
172 s8 *p = pcp->vm_stat_diff + item;
173 long x;
174
175 x = delta + *p;
176
177 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
178 zone_page_state_add(x, zone, item);
179 x = 0;
180 }
181 *p = x;
182 }
183 EXPORT_SYMBOL(__mod_zone_page_state);
184
185 /*
186 * For an unknown interrupt state
187 */
188 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
189 int delta)
190 {
191 unsigned long flags;
192
193 local_irq_save(flags);
194 __mod_zone_page_state(zone, item, delta);
195 local_irq_restore(flags);
196 }
197 EXPORT_SYMBOL(mod_zone_page_state);
198
199 /*
200 * Optimized increment and decrement functions.
201 *
202 * These are only for a single page and therefore can take a struct page *
203 * argument instead of struct zone *. This allows the inclusion of the code
204 * generated for page_zone(page) into the optimized functions.
205 *
206 * No overflow check is necessary and therefore the differential can be
207 * incremented or decremented in place which may allow the compilers to
208 * generate better code.
209 * The increment or decrement is known and therefore one boundary check can
210 * be omitted.
211 *
212 * NOTE: These functions are very performance sensitive. Change only
213 * with care.
214 *
215 * Some processors have inc/dec instructions that are atomic vs an interrupt.
216 * However, the code must first determine the differential location in a zone
217 * based on the processor number and then inc/dec the counter. There is no
218 * guarantee without disabling preemption that the processor will not change
219 * in between and therefore the atomicity vs. interrupt cannot be exploited
220 * in a useful way here.
221 */
222 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
223 {
224 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
225 s8 *p = pcp->vm_stat_diff + item;
226
227 (*p)++;
228
229 if (unlikely(*p > pcp->stat_threshold)) {
230 int overstep = pcp->stat_threshold / 2;
231
232 zone_page_state_add(*p + overstep, zone, item);
233 *p = -overstep;
234 }
235 }
236
237 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
238 {
239 __inc_zone_state(page_zone(page), item);
240 }
241 EXPORT_SYMBOL(__inc_zone_page_state);
242
243 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
244 {
245 struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
246 s8 *p = pcp->vm_stat_diff + item;
247
248 (*p)--;
249
250 if (unlikely(*p < - pcp->stat_threshold)) {
251 int overstep = pcp->stat_threshold / 2;
252
253 zone_page_state_add(*p - overstep, zone, item);
254 *p = overstep;
255 }
256 }
257
258 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
259 {
260 __dec_zone_state(page_zone(page), item);
261 }
262 EXPORT_SYMBOL(__dec_zone_page_state);
263
264 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 unsigned long flags;
267
268 local_irq_save(flags);
269 __inc_zone_state(zone, item);
270 local_irq_restore(flags);
271 }
272
273 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275 unsigned long flags;
276 struct zone *zone;
277
278 zone = page_zone(page);
279 local_irq_save(flags);
280 __inc_zone_state(zone, item);
281 local_irq_restore(flags);
282 }
283 EXPORT_SYMBOL(inc_zone_page_state);
284
285 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
286 {
287 unsigned long flags;
288
289 local_irq_save(flags);
290 __dec_zone_page_state(page, item);
291 local_irq_restore(flags);
292 }
293 EXPORT_SYMBOL(dec_zone_page_state);
294
295 /*
296 * Update the zone counters for one cpu.
297 *
298 * The cpu specified must be either the current cpu or a processor that
299 * is not online. If it is the current cpu then the execution thread must
300 * be pinned to the current cpu.
301 *
302 * Note that refresh_cpu_vm_stats strives to only access
303 * node local memory. The per cpu pagesets on remote zones are placed
304 * in the memory local to the processor using that pageset. So the
305 * loop over all zones will access a series of cachelines local to
306 * the processor.
307 *
308 * The call to zone_page_state_add updates the cachelines with the
309 * statistics in the remote zone struct as well as the global cachelines
310 * with the global counters. These could cause remote node cache line
311 * bouncing and will have to be only done when necessary.
312 */
313 void refresh_cpu_vm_stats(int cpu)
314 {
315 struct zone *zone;
316 int i;
317 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
318
319 for_each_populated_zone(zone) {
320 struct per_cpu_pageset *p;
321
322 p = per_cpu_ptr(zone->pageset, cpu);
323
324 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
325 if (p->vm_stat_diff[i]) {
326 unsigned long flags;
327 int v;
328
329 local_irq_save(flags);
330 v = p->vm_stat_diff[i];
331 p->vm_stat_diff[i] = 0;
332 local_irq_restore(flags);
333 atomic_long_add(v, &zone->vm_stat[i]);
334 global_diff[i] += v;
335 #ifdef CONFIG_NUMA
336 /* 3 seconds idle till flush */
337 p->expire = 3;
338 #endif
339 }
340 cond_resched();
341 #ifdef CONFIG_NUMA
342 /*
343 * Deal with draining the remote pageset of this
344 * processor
345 *
346 * Check if there are pages remaining in this pageset
347 * if not then there is nothing to expire.
348 */
349 if (!p->expire || !p->pcp.count)
350 continue;
351
352 /*
353 * We never drain zones local to this processor.
354 */
355 if (zone_to_nid(zone) == numa_node_id()) {
356 p->expire = 0;
357 continue;
358 }
359
360 p->expire--;
361 if (p->expire)
362 continue;
363
364 if (p->pcp.count)
365 drain_zone_pages(zone, &p->pcp);
366 #endif
367 }
368
369 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
370 if (global_diff[i])
371 atomic_long_add(global_diff[i], &vm_stat[i]);
372 }
373
374 #endif
375
376 #ifdef CONFIG_NUMA
377 /*
378 * zonelist = the list of zones passed to the allocator
379 * z = the zone from which the allocation occurred.
380 *
381 * Must be called with interrupts disabled.
382 */
383 void zone_statistics(struct zone *preferred_zone, struct zone *z)
384 {
385 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
386 __inc_zone_state(z, NUMA_HIT);
387 } else {
388 __inc_zone_state(z, NUMA_MISS);
389 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
390 }
391 if (z->node == numa_node_id())
392 __inc_zone_state(z, NUMA_LOCAL);
393 else
394 __inc_zone_state(z, NUMA_OTHER);
395 }
396 #endif
397
398 #ifdef CONFIG_COMPACTION
399
400 struct contig_page_info {
401 unsigned long free_pages;
402 unsigned long free_blocks_total;
403 unsigned long free_blocks_suitable;
404 };
405
406 /*
407 * Calculate the number of free pages in a zone, how many contiguous
408 * pages are free and how many are large enough to satisfy an allocation of
409 * the target size. Note that this function makes no attempt to estimate
410 * how many suitable free blocks there *might* be if MOVABLE pages were
411 * migrated. Calculating that is possible, but expensive and can be
412 * figured out from userspace
413 */
414 static void fill_contig_page_info(struct zone *zone,
415 unsigned int suitable_order,
416 struct contig_page_info *info)
417 {
418 unsigned int order;
419
420 info->free_pages = 0;
421 info->free_blocks_total = 0;
422 info->free_blocks_suitable = 0;
423
424 for (order = 0; order < MAX_ORDER; order++) {
425 unsigned long blocks;
426
427 /* Count number of free blocks */
428 blocks = zone->free_area[order].nr_free;
429 info->free_blocks_total += blocks;
430
431 /* Count free base pages */
432 info->free_pages += blocks << order;
433
434 /* Count the suitable free blocks */
435 if (order >= suitable_order)
436 info->free_blocks_suitable += blocks <<
437 (order - suitable_order);
438 }
439 }
440
441 /*
442 * A fragmentation index only makes sense if an allocation of a requested
443 * size would fail. If that is true, the fragmentation index indicates
444 * whether external fragmentation or a lack of memory was the problem.
445 * The value can be used to determine if page reclaim or compaction
446 * should be used
447 */
448 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
449 {
450 unsigned long requested = 1UL << order;
451
452 if (!info->free_blocks_total)
453 return 0;
454
455 /* Fragmentation index only makes sense when a request would fail */
456 if (info->free_blocks_suitable)
457 return -1000;
458
459 /*
460 * Index is between 0 and 1 so return within 3 decimal places
461 *
462 * 0 => allocation would fail due to lack of memory
463 * 1 => allocation would fail due to fragmentation
464 */
465 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
466 }
467
468 /* Same as __fragmentation index but allocs contig_page_info on stack */
469 int fragmentation_index(struct zone *zone, unsigned int order)
470 {
471 struct contig_page_info info;
472
473 fill_contig_page_info(zone, order, &info);
474 return __fragmentation_index(order, &info);
475 }
476 #endif
477
478 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
479 #include <linux/proc_fs.h>
480 #include <linux/seq_file.h>
481
482 static char * const migratetype_names[MIGRATE_TYPES] = {
483 "Unmovable",
484 "Reclaimable",
485 "Movable",
486 "Reserve",
487 "Isolate",
488 };
489
490 static void *frag_start(struct seq_file *m, loff_t *pos)
491 {
492 pg_data_t *pgdat;
493 loff_t node = *pos;
494 for (pgdat = first_online_pgdat();
495 pgdat && node;
496 pgdat = next_online_pgdat(pgdat))
497 --node;
498
499 return pgdat;
500 }
501
502 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
503 {
504 pg_data_t *pgdat = (pg_data_t *)arg;
505
506 (*pos)++;
507 return next_online_pgdat(pgdat);
508 }
509
510 static void frag_stop(struct seq_file *m, void *arg)
511 {
512 }
513
514 /* Walk all the zones in a node and print using a callback */
515 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
516 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
517 {
518 struct zone *zone;
519 struct zone *node_zones = pgdat->node_zones;
520 unsigned long flags;
521
522 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
523 if (!populated_zone(zone))
524 continue;
525
526 spin_lock_irqsave(&zone->lock, flags);
527 print(m, pgdat, zone);
528 spin_unlock_irqrestore(&zone->lock, flags);
529 }
530 }
531 #endif
532
533 #ifdef CONFIG_PROC_FS
534 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
535 struct zone *zone)
536 {
537 int order;
538
539 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
540 for (order = 0; order < MAX_ORDER; ++order)
541 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
542 seq_putc(m, '\n');
543 }
544
545 /*
546 * This walks the free areas for each zone.
547 */
548 static int frag_show(struct seq_file *m, void *arg)
549 {
550 pg_data_t *pgdat = (pg_data_t *)arg;
551 walk_zones_in_node(m, pgdat, frag_show_print);
552 return 0;
553 }
554
555 static void pagetypeinfo_showfree_print(struct seq_file *m,
556 pg_data_t *pgdat, struct zone *zone)
557 {
558 int order, mtype;
559
560 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
561 seq_printf(m, "Node %4d, zone %8s, type %12s ",
562 pgdat->node_id,
563 zone->name,
564 migratetype_names[mtype]);
565 for (order = 0; order < MAX_ORDER; ++order) {
566 unsigned long freecount = 0;
567 struct free_area *area;
568 struct list_head *curr;
569
570 area = &(zone->free_area[order]);
571
572 list_for_each(curr, &area->free_list[mtype])
573 freecount++;
574 seq_printf(m, "%6lu ", freecount);
575 }
576 seq_putc(m, '\n');
577 }
578 }
579
580 /* Print out the free pages at each order for each migatetype */
581 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
582 {
583 int order;
584 pg_data_t *pgdat = (pg_data_t *)arg;
585
586 /* Print header */
587 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
588 for (order = 0; order < MAX_ORDER; ++order)
589 seq_printf(m, "%6d ", order);
590 seq_putc(m, '\n');
591
592 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
593
594 return 0;
595 }
596
597 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
598 pg_data_t *pgdat, struct zone *zone)
599 {
600 int mtype;
601 unsigned long pfn;
602 unsigned long start_pfn = zone->zone_start_pfn;
603 unsigned long end_pfn = start_pfn + zone->spanned_pages;
604 unsigned long count[MIGRATE_TYPES] = { 0, };
605
606 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
607 struct page *page;
608
609 if (!pfn_valid(pfn))
610 continue;
611
612 page = pfn_to_page(pfn);
613
614 /* Watch for unexpected holes punched in the memmap */
615 if (!memmap_valid_within(pfn, page, zone))
616 continue;
617
618 mtype = get_pageblock_migratetype(page);
619
620 if (mtype < MIGRATE_TYPES)
621 count[mtype]++;
622 }
623
624 /* Print counts */
625 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
626 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
627 seq_printf(m, "%12lu ", count[mtype]);
628 seq_putc(m, '\n');
629 }
630
631 /* Print out the free pages at each order for each migratetype */
632 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
633 {
634 int mtype;
635 pg_data_t *pgdat = (pg_data_t *)arg;
636
637 seq_printf(m, "\n%-23s", "Number of blocks type ");
638 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
639 seq_printf(m, "%12s ", migratetype_names[mtype]);
640 seq_putc(m, '\n');
641 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
642
643 return 0;
644 }
645
646 /*
647 * This prints out statistics in relation to grouping pages by mobility.
648 * It is expensive to collect so do not constantly read the file.
649 */
650 static int pagetypeinfo_show(struct seq_file *m, void *arg)
651 {
652 pg_data_t *pgdat = (pg_data_t *)arg;
653
654 /* check memoryless node */
655 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
656 return 0;
657
658 seq_printf(m, "Page block order: %d\n", pageblock_order);
659 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
660 seq_putc(m, '\n');
661 pagetypeinfo_showfree(m, pgdat);
662 pagetypeinfo_showblockcount(m, pgdat);
663
664 return 0;
665 }
666
667 static const struct seq_operations fragmentation_op = {
668 .start = frag_start,
669 .next = frag_next,
670 .stop = frag_stop,
671 .show = frag_show,
672 };
673
674 static int fragmentation_open(struct inode *inode, struct file *file)
675 {
676 return seq_open(file, &fragmentation_op);
677 }
678
679 static const struct file_operations fragmentation_file_operations = {
680 .open = fragmentation_open,
681 .read = seq_read,
682 .llseek = seq_lseek,
683 .release = seq_release,
684 };
685
686 static const struct seq_operations pagetypeinfo_op = {
687 .start = frag_start,
688 .next = frag_next,
689 .stop = frag_stop,
690 .show = pagetypeinfo_show,
691 };
692
693 static int pagetypeinfo_open(struct inode *inode, struct file *file)
694 {
695 return seq_open(file, &pagetypeinfo_op);
696 }
697
698 static const struct file_operations pagetypeinfo_file_ops = {
699 .open = pagetypeinfo_open,
700 .read = seq_read,
701 .llseek = seq_lseek,
702 .release = seq_release,
703 };
704
705 #ifdef CONFIG_ZONE_DMA
706 #define TEXT_FOR_DMA(xx) xx "_dma",
707 #else
708 #define TEXT_FOR_DMA(xx)
709 #endif
710
711 #ifdef CONFIG_ZONE_DMA32
712 #define TEXT_FOR_DMA32(xx) xx "_dma32",
713 #else
714 #define TEXT_FOR_DMA32(xx)
715 #endif
716
717 #ifdef CONFIG_HIGHMEM
718 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
719 #else
720 #define TEXT_FOR_HIGHMEM(xx)
721 #endif
722
723 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
724 TEXT_FOR_HIGHMEM(xx) xx "_movable",
725
726 static const char * const vmstat_text[] = {
727 /* Zoned VM counters */
728 "nr_free_pages",
729 "nr_inactive_anon",
730 "nr_active_anon",
731 "nr_inactive_file",
732 "nr_active_file",
733 "nr_unevictable",
734 "nr_mlock",
735 "nr_anon_pages",
736 "nr_mapped",
737 "nr_file_pages",
738 "nr_dirty",
739 "nr_writeback",
740 "nr_slab_reclaimable",
741 "nr_slab_unreclaimable",
742 "nr_page_table_pages",
743 "nr_kernel_stack",
744 "nr_unstable",
745 "nr_bounce",
746 "nr_vmscan_write",
747 "nr_writeback_temp",
748 "nr_isolated_anon",
749 "nr_isolated_file",
750 "nr_shmem",
751 "nr_dirtied",
752 "nr_written",
753
754 #ifdef CONFIG_NUMA
755 "numa_hit",
756 "numa_miss",
757 "numa_foreign",
758 "numa_interleave",
759 "numa_local",
760 "numa_other",
761 #endif
762 "nr_dirty_threshold",
763 "nr_dirty_background_threshold",
764
765 #ifdef CONFIG_VM_EVENT_COUNTERS
766 "pgpgin",
767 "pgpgout",
768 "pswpin",
769 "pswpout",
770
771 TEXTS_FOR_ZONES("pgalloc")
772
773 "pgfree",
774 "pgactivate",
775 "pgdeactivate",
776
777 "pgfault",
778 "pgmajfault",
779
780 TEXTS_FOR_ZONES("pgrefill")
781 TEXTS_FOR_ZONES("pgsteal")
782 TEXTS_FOR_ZONES("pgscan_kswapd")
783 TEXTS_FOR_ZONES("pgscan_direct")
784
785 #ifdef CONFIG_NUMA
786 "zone_reclaim_failed",
787 #endif
788 "pginodesteal",
789 "slabs_scanned",
790 "kswapd_steal",
791 "kswapd_inodesteal",
792 "kswapd_low_wmark_hit_quickly",
793 "kswapd_high_wmark_hit_quickly",
794 "kswapd_skip_congestion_wait",
795 "pageoutrun",
796 "allocstall",
797
798 "pgrotated",
799
800 #ifdef CONFIG_COMPACTION
801 "compact_blocks_moved",
802 "compact_pages_moved",
803 "compact_pagemigrate_failed",
804 "compact_stall",
805 "compact_fail",
806 "compact_success",
807 #endif
808
809 #ifdef CONFIG_HUGETLB_PAGE
810 "htlb_buddy_alloc_success",
811 "htlb_buddy_alloc_fail",
812 #endif
813 "unevictable_pgs_culled",
814 "unevictable_pgs_scanned",
815 "unevictable_pgs_rescued",
816 "unevictable_pgs_mlocked",
817 "unevictable_pgs_munlocked",
818 "unevictable_pgs_cleared",
819 "unevictable_pgs_stranded",
820 "unevictable_pgs_mlockfreed",
821 #endif
822 };
823
824 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
825 struct zone *zone)
826 {
827 int i;
828 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
829 seq_printf(m,
830 "\n pages free %lu"
831 "\n min %lu"
832 "\n low %lu"
833 "\n high %lu"
834 "\n scanned %lu"
835 "\n spanned %lu"
836 "\n present %lu",
837 zone_nr_free_pages(zone),
838 min_wmark_pages(zone),
839 low_wmark_pages(zone),
840 high_wmark_pages(zone),
841 zone->pages_scanned,
842 zone->spanned_pages,
843 zone->present_pages);
844
845 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
846 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
847 zone_page_state(zone, i));
848
849 seq_printf(m,
850 "\n protection: (%lu",
851 zone->lowmem_reserve[0]);
852 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
853 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
854 seq_printf(m,
855 ")"
856 "\n pagesets");
857 for_each_online_cpu(i) {
858 struct per_cpu_pageset *pageset;
859
860 pageset = per_cpu_ptr(zone->pageset, i);
861 seq_printf(m,
862 "\n cpu: %i"
863 "\n count: %i"
864 "\n high: %i"
865 "\n batch: %i",
866 i,
867 pageset->pcp.count,
868 pageset->pcp.high,
869 pageset->pcp.batch);
870 #ifdef CONFIG_SMP
871 seq_printf(m, "\n vm stats threshold: %d",
872 pageset->stat_threshold);
873 #endif
874 }
875 seq_printf(m,
876 "\n all_unreclaimable: %u"
877 "\n start_pfn: %lu"
878 "\n inactive_ratio: %u",
879 zone->all_unreclaimable,
880 zone->zone_start_pfn,
881 zone->inactive_ratio);
882 seq_putc(m, '\n');
883 }
884
885 /*
886 * Output information about zones in @pgdat.
887 */
888 static int zoneinfo_show(struct seq_file *m, void *arg)
889 {
890 pg_data_t *pgdat = (pg_data_t *)arg;
891 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
892 return 0;
893 }
894
895 static const struct seq_operations zoneinfo_op = {
896 .start = frag_start, /* iterate over all zones. The same as in
897 * fragmentation. */
898 .next = frag_next,
899 .stop = frag_stop,
900 .show = zoneinfo_show,
901 };
902
903 static int zoneinfo_open(struct inode *inode, struct file *file)
904 {
905 return seq_open(file, &zoneinfo_op);
906 }
907
908 static const struct file_operations proc_zoneinfo_file_operations = {
909 .open = zoneinfo_open,
910 .read = seq_read,
911 .llseek = seq_lseek,
912 .release = seq_release,
913 };
914
915 enum writeback_stat_item {
916 NR_DIRTY_THRESHOLD,
917 NR_DIRTY_BG_THRESHOLD,
918 NR_VM_WRITEBACK_STAT_ITEMS,
919 };
920
921 static void *vmstat_start(struct seq_file *m, loff_t *pos)
922 {
923 unsigned long *v;
924 int i, stat_items_size;
925
926 if (*pos >= ARRAY_SIZE(vmstat_text))
927 return NULL;
928 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
929 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
930
931 #ifdef CONFIG_VM_EVENT_COUNTERS
932 stat_items_size += sizeof(struct vm_event_state);
933 #endif
934
935 v = kmalloc(stat_items_size, GFP_KERNEL);
936 m->private = v;
937 if (!v)
938 return ERR_PTR(-ENOMEM);
939 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
940 v[i] = global_page_state(i);
941 v += NR_VM_ZONE_STAT_ITEMS;
942
943 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
944 v + NR_DIRTY_THRESHOLD);
945 v += NR_VM_WRITEBACK_STAT_ITEMS;
946
947 #ifdef CONFIG_VM_EVENT_COUNTERS
948 all_vm_events(v);
949 v[PGPGIN] /= 2; /* sectors -> kbytes */
950 v[PGPGOUT] /= 2;
951 #endif
952 return (unsigned long *)m->private + *pos;
953 }
954
955 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
956 {
957 (*pos)++;
958 if (*pos >= ARRAY_SIZE(vmstat_text))
959 return NULL;
960 return (unsigned long *)m->private + *pos;
961 }
962
963 static int vmstat_show(struct seq_file *m, void *arg)
964 {
965 unsigned long *l = arg;
966 unsigned long off = l - (unsigned long *)m->private;
967
968 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
969 return 0;
970 }
971
972 static void vmstat_stop(struct seq_file *m, void *arg)
973 {
974 kfree(m->private);
975 m->private = NULL;
976 }
977
978 static const struct seq_operations vmstat_op = {
979 .start = vmstat_start,
980 .next = vmstat_next,
981 .stop = vmstat_stop,
982 .show = vmstat_show,
983 };
984
985 static int vmstat_open(struct inode *inode, struct file *file)
986 {
987 return seq_open(file, &vmstat_op);
988 }
989
990 static const struct file_operations proc_vmstat_file_operations = {
991 .open = vmstat_open,
992 .read = seq_read,
993 .llseek = seq_lseek,
994 .release = seq_release,
995 };
996 #endif /* CONFIG_PROC_FS */
997
998 #ifdef CONFIG_SMP
999 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1000 int sysctl_stat_interval __read_mostly = HZ;
1001
1002 static void vmstat_update(struct work_struct *w)
1003 {
1004 refresh_cpu_vm_stats(smp_processor_id());
1005 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1006 round_jiffies_relative(sysctl_stat_interval));
1007 }
1008
1009 static void __cpuinit start_cpu_timer(int cpu)
1010 {
1011 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1012
1013 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1014 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1015 }
1016
1017 /*
1018 * Use the cpu notifier to insure that the thresholds are recalculated
1019 * when necessary.
1020 */
1021 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1022 unsigned long action,
1023 void *hcpu)
1024 {
1025 long cpu = (long)hcpu;
1026
1027 switch (action) {
1028 case CPU_ONLINE:
1029 case CPU_ONLINE_FROZEN:
1030 refresh_zone_stat_thresholds();
1031 start_cpu_timer(cpu);
1032 node_set_state(cpu_to_node(cpu), N_CPU);
1033 break;
1034 case CPU_DOWN_PREPARE:
1035 case CPU_DOWN_PREPARE_FROZEN:
1036 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1037 per_cpu(vmstat_work, cpu).work.func = NULL;
1038 break;
1039 case CPU_DOWN_FAILED:
1040 case CPU_DOWN_FAILED_FROZEN:
1041 start_cpu_timer(cpu);
1042 break;
1043 case CPU_DEAD:
1044 case CPU_DEAD_FROZEN:
1045 refresh_zone_stat_thresholds();
1046 break;
1047 default:
1048 break;
1049 }
1050 return NOTIFY_OK;
1051 }
1052
1053 static struct notifier_block __cpuinitdata vmstat_notifier =
1054 { &vmstat_cpuup_callback, NULL, 0 };
1055 #endif
1056
1057 static int __init setup_vmstat(void)
1058 {
1059 #ifdef CONFIG_SMP
1060 int cpu;
1061
1062 refresh_zone_stat_thresholds();
1063 register_cpu_notifier(&vmstat_notifier);
1064
1065 for_each_online_cpu(cpu)
1066 start_cpu_timer(cpu);
1067 #endif
1068 #ifdef CONFIG_PROC_FS
1069 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1070 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1071 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1072 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1073 #endif
1074 return 0;
1075 }
1076 module_init(setup_vmstat)
1077
1078 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1079 #include <linux/debugfs.h>
1080
1081 static struct dentry *extfrag_debug_root;
1082
1083 /*
1084 * Return an index indicating how much of the available free memory is
1085 * unusable for an allocation of the requested size.
1086 */
1087 static int unusable_free_index(unsigned int order,
1088 struct contig_page_info *info)
1089 {
1090 /* No free memory is interpreted as all free memory is unusable */
1091 if (info->free_pages == 0)
1092 return 1000;
1093
1094 /*
1095 * Index should be a value between 0 and 1. Return a value to 3
1096 * decimal places.
1097 *
1098 * 0 => no fragmentation
1099 * 1 => high fragmentation
1100 */
1101 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1102
1103 }
1104
1105 static void unusable_show_print(struct seq_file *m,
1106 pg_data_t *pgdat, struct zone *zone)
1107 {
1108 unsigned int order;
1109 int index;
1110 struct contig_page_info info;
1111
1112 seq_printf(m, "Node %d, zone %8s ",
1113 pgdat->node_id,
1114 zone->name);
1115 for (order = 0; order < MAX_ORDER; ++order) {
1116 fill_contig_page_info(zone, order, &info);
1117 index = unusable_free_index(order, &info);
1118 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1119 }
1120
1121 seq_putc(m, '\n');
1122 }
1123
1124 /*
1125 * Display unusable free space index
1126 *
1127 * The unusable free space index measures how much of the available free
1128 * memory cannot be used to satisfy an allocation of a given size and is a
1129 * value between 0 and 1. The higher the value, the more of free memory is
1130 * unusable and by implication, the worse the external fragmentation is. This
1131 * can be expressed as a percentage by multiplying by 100.
1132 */
1133 static int unusable_show(struct seq_file *m, void *arg)
1134 {
1135 pg_data_t *pgdat = (pg_data_t *)arg;
1136
1137 /* check memoryless node */
1138 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1139 return 0;
1140
1141 walk_zones_in_node(m, pgdat, unusable_show_print);
1142
1143 return 0;
1144 }
1145
1146 static const struct seq_operations unusable_op = {
1147 .start = frag_start,
1148 .next = frag_next,
1149 .stop = frag_stop,
1150 .show = unusable_show,
1151 };
1152
1153 static int unusable_open(struct inode *inode, struct file *file)
1154 {
1155 return seq_open(file, &unusable_op);
1156 }
1157
1158 static const struct file_operations unusable_file_ops = {
1159 .open = unusable_open,
1160 .read = seq_read,
1161 .llseek = seq_lseek,
1162 .release = seq_release,
1163 };
1164
1165 static void extfrag_show_print(struct seq_file *m,
1166 pg_data_t *pgdat, struct zone *zone)
1167 {
1168 unsigned int order;
1169 int index;
1170
1171 /* Alloc on stack as interrupts are disabled for zone walk */
1172 struct contig_page_info info;
1173
1174 seq_printf(m, "Node %d, zone %8s ",
1175 pgdat->node_id,
1176 zone->name);
1177 for (order = 0; order < MAX_ORDER; ++order) {
1178 fill_contig_page_info(zone, order, &info);
1179 index = __fragmentation_index(order, &info);
1180 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1181 }
1182
1183 seq_putc(m, '\n');
1184 }
1185
1186 /*
1187 * Display fragmentation index for orders that allocations would fail for
1188 */
1189 static int extfrag_show(struct seq_file *m, void *arg)
1190 {
1191 pg_data_t *pgdat = (pg_data_t *)arg;
1192
1193 walk_zones_in_node(m, pgdat, extfrag_show_print);
1194
1195 return 0;
1196 }
1197
1198 static const struct seq_operations extfrag_op = {
1199 .start = frag_start,
1200 .next = frag_next,
1201 .stop = frag_stop,
1202 .show = extfrag_show,
1203 };
1204
1205 static int extfrag_open(struct inode *inode, struct file *file)
1206 {
1207 return seq_open(file, &extfrag_op);
1208 }
1209
1210 static const struct file_operations extfrag_file_ops = {
1211 .open = extfrag_open,
1212 .read = seq_read,
1213 .llseek = seq_lseek,
1214 .release = seq_release,
1215 };
1216
1217 static int __init extfrag_debug_init(void)
1218 {
1219 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1220 if (!extfrag_debug_root)
1221 return -ENOMEM;
1222
1223 if (!debugfs_create_file("unusable_index", 0444,
1224 extfrag_debug_root, NULL, &unusable_file_ops))
1225 return -ENOMEM;
1226
1227 if (!debugfs_create_file("extfrag_index", 0444,
1228 extfrag_debug_root, NULL, &extfrag_file_ops))
1229 return -ENOMEM;
1230
1231 return 0;
1232 }
1233
1234 module_init(extfrag_debug_init);
1235 #endif
This page took 0.089573 seconds and 6 git commands to generate.