Merge tag 'nfsd-4.7' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
40 * page->inuse: the number of objects that are used in this zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/preempt.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67
68 /*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74 #define ZS_ALIGN 8
75
76 /*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85 /*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
108
109 /*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116 #define HANDLE_PIN_BIT 0
117
118 /*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137 /*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
151
152 /*
153 * We do not maintain any list for completely empty or full pages
154 */
155 enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162 };
163
164 enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169 };
170
171 #ifdef CONFIG_ZSMALLOC_STAT
172 #define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173 #else
174 #define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175 #endif
176
177 struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179 };
180
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184
185 /*
186 * number of size_classes
187 */
188 static int zs_size_classes;
189
190 /*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
195 * f = fullness_threshold_frac
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204 static const int fullness_threshold_frac = 4;
205
206 struct size_class {
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
216 struct zs_size_stat stats;
217
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
222 };
223
224 /*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230 struct link_free {
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
242 };
243
244 struct zs_pool {
245 const char *name;
246
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249
250 atomic_long_t pages_allocated;
251
252 struct zs_pool_stats stats;
253
254 /* Compact classes */
255 struct shrinker shrinker;
256 /*
257 * To signify that register_shrinker() was successful
258 * and unregister_shrinker() will not Oops.
259 */
260 bool shrinker_enabled;
261 #ifdef CONFIG_ZSMALLOC_STAT
262 struct dentry *stat_dentry;
263 #endif
264 };
265
266 /*
267 * A zspage's class index and fullness group
268 * are encoded in its (first)page->mapping
269 */
270 #define CLASS_IDX_BITS 28
271 #define FULLNESS_BITS 4
272 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
273 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
274
275 struct mapping_area {
276 #ifdef CONFIG_PGTABLE_MAPPING
277 struct vm_struct *vm; /* vm area for mapping object that span pages */
278 #else
279 char *vm_buf; /* copy buffer for objects that span pages */
280 #endif
281 char *vm_addr; /* address of kmap_atomic()'ed pages */
282 enum zs_mapmode vm_mm; /* mapping mode */
283 };
284
285 static int create_handle_cache(struct zs_pool *pool)
286 {
287 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
288 0, 0, NULL);
289 return pool->handle_cachep ? 0 : 1;
290 }
291
292 static void destroy_handle_cache(struct zs_pool *pool)
293 {
294 kmem_cache_destroy(pool->handle_cachep);
295 }
296
297 static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
298 {
299 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
300 gfp & ~__GFP_HIGHMEM);
301 }
302
303 static void free_handle(struct zs_pool *pool, unsigned long handle)
304 {
305 kmem_cache_free(pool->handle_cachep, (void *)handle);
306 }
307
308 static void record_obj(unsigned long handle, unsigned long obj)
309 {
310 /*
311 * lsb of @obj represents handle lock while other bits
312 * represent object value the handle is pointing so
313 * updating shouldn't do store tearing.
314 */
315 WRITE_ONCE(*(unsigned long *)handle, obj);
316 }
317
318 /* zpool driver */
319
320 #ifdef CONFIG_ZPOOL
321
322 static void *zs_zpool_create(const char *name, gfp_t gfp,
323 const struct zpool_ops *zpool_ops,
324 struct zpool *zpool)
325 {
326 /*
327 * Ignore global gfp flags: zs_malloc() may be invoked from
328 * different contexts and its caller must provide a valid
329 * gfp mask.
330 */
331 return zs_create_pool(name);
332 }
333
334 static void zs_zpool_destroy(void *pool)
335 {
336 zs_destroy_pool(pool);
337 }
338
339 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
340 unsigned long *handle)
341 {
342 *handle = zs_malloc(pool, size, gfp);
343 return *handle ? 0 : -1;
344 }
345 static void zs_zpool_free(void *pool, unsigned long handle)
346 {
347 zs_free(pool, handle);
348 }
349
350 static int zs_zpool_shrink(void *pool, unsigned int pages,
351 unsigned int *reclaimed)
352 {
353 return -EINVAL;
354 }
355
356 static void *zs_zpool_map(void *pool, unsigned long handle,
357 enum zpool_mapmode mm)
358 {
359 enum zs_mapmode zs_mm;
360
361 switch (mm) {
362 case ZPOOL_MM_RO:
363 zs_mm = ZS_MM_RO;
364 break;
365 case ZPOOL_MM_WO:
366 zs_mm = ZS_MM_WO;
367 break;
368 case ZPOOL_MM_RW: /* fallthru */
369 default:
370 zs_mm = ZS_MM_RW;
371 break;
372 }
373
374 return zs_map_object(pool, handle, zs_mm);
375 }
376 static void zs_zpool_unmap(void *pool, unsigned long handle)
377 {
378 zs_unmap_object(pool, handle);
379 }
380
381 static u64 zs_zpool_total_size(void *pool)
382 {
383 return zs_get_total_pages(pool) << PAGE_SHIFT;
384 }
385
386 static struct zpool_driver zs_zpool_driver = {
387 .type = "zsmalloc",
388 .owner = THIS_MODULE,
389 .create = zs_zpool_create,
390 .destroy = zs_zpool_destroy,
391 .malloc = zs_zpool_malloc,
392 .free = zs_zpool_free,
393 .shrink = zs_zpool_shrink,
394 .map = zs_zpool_map,
395 .unmap = zs_zpool_unmap,
396 .total_size = zs_zpool_total_size,
397 };
398
399 MODULE_ALIAS("zpool-zsmalloc");
400 #endif /* CONFIG_ZPOOL */
401
402 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
403 {
404 return pages_per_zspage * PAGE_SIZE / size;
405 }
406
407 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
408 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
409
410 static int is_first_page(struct page *page)
411 {
412 return PagePrivate(page);
413 }
414
415 static int is_last_page(struct page *page)
416 {
417 return PagePrivate2(page);
418 }
419
420 static void get_zspage_mapping(struct page *first_page,
421 unsigned int *class_idx,
422 enum fullness_group *fullness)
423 {
424 unsigned long m;
425 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
426
427 m = (unsigned long)first_page->mapping;
428 *fullness = m & FULLNESS_MASK;
429 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
430 }
431
432 static void set_zspage_mapping(struct page *first_page,
433 unsigned int class_idx,
434 enum fullness_group fullness)
435 {
436 unsigned long m;
437 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
438
439 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
440 (fullness & FULLNESS_MASK);
441 first_page->mapping = (struct address_space *)m;
442 }
443
444 /*
445 * zsmalloc divides the pool into various size classes where each
446 * class maintains a list of zspages where each zspage is divided
447 * into equal sized chunks. Each allocation falls into one of these
448 * classes depending on its size. This function returns index of the
449 * size class which has chunk size big enough to hold the give size.
450 */
451 static int get_size_class_index(int size)
452 {
453 int idx = 0;
454
455 if (likely(size > ZS_MIN_ALLOC_SIZE))
456 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
457 ZS_SIZE_CLASS_DELTA);
458
459 return min(zs_size_classes - 1, idx);
460 }
461
462 static inline void zs_stat_inc(struct size_class *class,
463 enum zs_stat_type type, unsigned long cnt)
464 {
465 if (type < NR_ZS_STAT_TYPE)
466 class->stats.objs[type] += cnt;
467 }
468
469 static inline void zs_stat_dec(struct size_class *class,
470 enum zs_stat_type type, unsigned long cnt)
471 {
472 if (type < NR_ZS_STAT_TYPE)
473 class->stats.objs[type] -= cnt;
474 }
475
476 static inline unsigned long zs_stat_get(struct size_class *class,
477 enum zs_stat_type type)
478 {
479 if (type < NR_ZS_STAT_TYPE)
480 return class->stats.objs[type];
481 return 0;
482 }
483
484 #ifdef CONFIG_ZSMALLOC_STAT
485
486 static int __init zs_stat_init(void)
487 {
488 if (!debugfs_initialized())
489 return -ENODEV;
490
491 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
492 if (!zs_stat_root)
493 return -ENOMEM;
494
495 return 0;
496 }
497
498 static void __exit zs_stat_exit(void)
499 {
500 debugfs_remove_recursive(zs_stat_root);
501 }
502
503 static unsigned long zs_can_compact(struct size_class *class);
504
505 static int zs_stats_size_show(struct seq_file *s, void *v)
506 {
507 int i;
508 struct zs_pool *pool = s->private;
509 struct size_class *class;
510 int objs_per_zspage;
511 unsigned long class_almost_full, class_almost_empty;
512 unsigned long obj_allocated, obj_used, pages_used, freeable;
513 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
514 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
515 unsigned long total_freeable = 0;
516
517 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
518 "class", "size", "almost_full", "almost_empty",
519 "obj_allocated", "obj_used", "pages_used",
520 "pages_per_zspage", "freeable");
521
522 for (i = 0; i < zs_size_classes; i++) {
523 class = pool->size_class[i];
524
525 if (class->index != i)
526 continue;
527
528 spin_lock(&class->lock);
529 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
530 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
531 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
532 obj_used = zs_stat_get(class, OBJ_USED);
533 freeable = zs_can_compact(class);
534 spin_unlock(&class->lock);
535
536 objs_per_zspage = get_maxobj_per_zspage(class->size,
537 class->pages_per_zspage);
538 pages_used = obj_allocated / objs_per_zspage *
539 class->pages_per_zspage;
540
541 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
542 " %10lu %10lu %16d %8lu\n",
543 i, class->size, class_almost_full, class_almost_empty,
544 obj_allocated, obj_used, pages_used,
545 class->pages_per_zspage, freeable);
546
547 total_class_almost_full += class_almost_full;
548 total_class_almost_empty += class_almost_empty;
549 total_objs += obj_allocated;
550 total_used_objs += obj_used;
551 total_pages += pages_used;
552 total_freeable += freeable;
553 }
554
555 seq_puts(s, "\n");
556 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
557 "Total", "", total_class_almost_full,
558 total_class_almost_empty, total_objs,
559 total_used_objs, total_pages, "", total_freeable);
560
561 return 0;
562 }
563
564 static int zs_stats_size_open(struct inode *inode, struct file *file)
565 {
566 return single_open(file, zs_stats_size_show, inode->i_private);
567 }
568
569 static const struct file_operations zs_stat_size_ops = {
570 .open = zs_stats_size_open,
571 .read = seq_read,
572 .llseek = seq_lseek,
573 .release = single_release,
574 };
575
576 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
577 {
578 struct dentry *entry;
579
580 if (!zs_stat_root)
581 return;
582
583 entry = debugfs_create_dir(name, zs_stat_root);
584 if (!entry) {
585 pr_warn("debugfs dir <%s> creation failed\n", name);
586 return;
587 }
588 pool->stat_dentry = entry;
589
590 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
591 pool->stat_dentry, pool, &zs_stat_size_ops);
592 if (!entry) {
593 pr_warn("%s: debugfs file entry <%s> creation failed\n",
594 name, "classes");
595 return;
596 }
597 }
598
599 static void zs_pool_stat_destroy(struct zs_pool *pool)
600 {
601 debugfs_remove_recursive(pool->stat_dentry);
602 }
603
604 #else /* CONFIG_ZSMALLOC_STAT */
605 static int __init zs_stat_init(void)
606 {
607 return 0;
608 }
609
610 static void __exit zs_stat_exit(void)
611 {
612 }
613
614 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
615 {
616 }
617
618 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
619 {
620 }
621 #endif
622
623 /*
624 * For each size class, zspages are divided into different groups
625 * depending on how "full" they are. This was done so that we could
626 * easily find empty or nearly empty zspages when we try to shrink
627 * the pool (not yet implemented). This function returns fullness
628 * status of the given page.
629 */
630 static enum fullness_group get_fullness_group(struct page *first_page)
631 {
632 int inuse, max_objects;
633 enum fullness_group fg;
634
635 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
636
637 inuse = first_page->inuse;
638 max_objects = first_page->objects;
639
640 if (inuse == 0)
641 fg = ZS_EMPTY;
642 else if (inuse == max_objects)
643 fg = ZS_FULL;
644 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
645 fg = ZS_ALMOST_EMPTY;
646 else
647 fg = ZS_ALMOST_FULL;
648
649 return fg;
650 }
651
652 /*
653 * Each size class maintains various freelists and zspages are assigned
654 * to one of these freelists based on the number of live objects they
655 * have. This functions inserts the given zspage into the freelist
656 * identified by <class, fullness_group>.
657 */
658 static void insert_zspage(struct size_class *class,
659 enum fullness_group fullness,
660 struct page *first_page)
661 {
662 struct page **head;
663
664 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
665
666 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
667 return;
668
669 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
670 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
671
672 head = &class->fullness_list[fullness];
673 if (!*head) {
674 *head = first_page;
675 return;
676 }
677
678 /*
679 * We want to see more ZS_FULL pages and less almost
680 * empty/full. Put pages with higher ->inuse first.
681 */
682 list_add_tail(&first_page->lru, &(*head)->lru);
683 if (first_page->inuse >= (*head)->inuse)
684 *head = first_page;
685 }
686
687 /*
688 * This function removes the given zspage from the freelist identified
689 * by <class, fullness_group>.
690 */
691 static void remove_zspage(struct size_class *class,
692 enum fullness_group fullness,
693 struct page *first_page)
694 {
695 struct page **head;
696
697 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
698
699 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
700 return;
701
702 head = &class->fullness_list[fullness];
703 VM_BUG_ON_PAGE(!*head, first_page);
704 if (list_empty(&(*head)->lru))
705 *head = NULL;
706 else if (*head == first_page)
707 *head = (struct page *)list_entry((*head)->lru.next,
708 struct page, lru);
709
710 list_del_init(&first_page->lru);
711 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
712 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
713 }
714
715 /*
716 * Each size class maintains zspages in different fullness groups depending
717 * on the number of live objects they contain. When allocating or freeing
718 * objects, the fullness status of the page can change, say, from ALMOST_FULL
719 * to ALMOST_EMPTY when freeing an object. This function checks if such
720 * a status change has occurred for the given page and accordingly moves the
721 * page from the freelist of the old fullness group to that of the new
722 * fullness group.
723 */
724 static enum fullness_group fix_fullness_group(struct size_class *class,
725 struct page *first_page)
726 {
727 int class_idx;
728 enum fullness_group currfg, newfg;
729
730 get_zspage_mapping(first_page, &class_idx, &currfg);
731 newfg = get_fullness_group(first_page);
732 if (newfg == currfg)
733 goto out;
734
735 remove_zspage(class, currfg, first_page);
736 insert_zspage(class, newfg, first_page);
737 set_zspage_mapping(first_page, class_idx, newfg);
738
739 out:
740 return newfg;
741 }
742
743 /*
744 * We have to decide on how many pages to link together
745 * to form a zspage for each size class. This is important
746 * to reduce wastage due to unusable space left at end of
747 * each zspage which is given as:
748 * wastage = Zp % class_size
749 * usage = Zp - wastage
750 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
751 *
752 * For example, for size class of 3/8 * PAGE_SIZE, we should
753 * link together 3 PAGE_SIZE sized pages to form a zspage
754 * since then we can perfectly fit in 8 such objects.
755 */
756 static int get_pages_per_zspage(int class_size)
757 {
758 int i, max_usedpc = 0;
759 /* zspage order which gives maximum used size per KB */
760 int max_usedpc_order = 1;
761
762 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
763 int zspage_size;
764 int waste, usedpc;
765
766 zspage_size = i * PAGE_SIZE;
767 waste = zspage_size % class_size;
768 usedpc = (zspage_size - waste) * 100 / zspage_size;
769
770 if (usedpc > max_usedpc) {
771 max_usedpc = usedpc;
772 max_usedpc_order = i;
773 }
774 }
775
776 return max_usedpc_order;
777 }
778
779 /*
780 * A single 'zspage' is composed of many system pages which are
781 * linked together using fields in struct page. This function finds
782 * the first/head page, given any component page of a zspage.
783 */
784 static struct page *get_first_page(struct page *page)
785 {
786 if (is_first_page(page))
787 return page;
788 else
789 return (struct page *)page_private(page);
790 }
791
792 static struct page *get_next_page(struct page *page)
793 {
794 struct page *next;
795
796 if (is_last_page(page))
797 next = NULL;
798 else if (is_first_page(page))
799 next = (struct page *)page_private(page);
800 else
801 next = list_entry(page->lru.next, struct page, lru);
802
803 return next;
804 }
805
806 /*
807 * Encode <page, obj_idx> as a single handle value.
808 * We use the least bit of handle for tagging.
809 */
810 static void *location_to_obj(struct page *page, unsigned long obj_idx)
811 {
812 unsigned long obj;
813
814 if (!page) {
815 VM_BUG_ON(obj_idx);
816 return NULL;
817 }
818
819 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
820 obj |= ((obj_idx) & OBJ_INDEX_MASK);
821 obj <<= OBJ_TAG_BITS;
822
823 return (void *)obj;
824 }
825
826 /*
827 * Decode <page, obj_idx> pair from the given object handle. We adjust the
828 * decoded obj_idx back to its original value since it was adjusted in
829 * location_to_obj().
830 */
831 static void obj_to_location(unsigned long obj, struct page **page,
832 unsigned long *obj_idx)
833 {
834 obj >>= OBJ_TAG_BITS;
835 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
836 *obj_idx = (obj & OBJ_INDEX_MASK);
837 }
838
839 static unsigned long handle_to_obj(unsigned long handle)
840 {
841 return *(unsigned long *)handle;
842 }
843
844 static unsigned long obj_to_head(struct size_class *class, struct page *page,
845 void *obj)
846 {
847 if (class->huge) {
848 VM_BUG_ON_PAGE(!is_first_page(page), page);
849 return page_private(page);
850 } else
851 return *(unsigned long *)obj;
852 }
853
854 static unsigned long obj_idx_to_offset(struct page *page,
855 unsigned long obj_idx, int class_size)
856 {
857 unsigned long off = 0;
858
859 if (!is_first_page(page))
860 off = page->index;
861
862 return off + obj_idx * class_size;
863 }
864
865 static inline int trypin_tag(unsigned long handle)
866 {
867 unsigned long *ptr = (unsigned long *)handle;
868
869 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
870 }
871
872 static void pin_tag(unsigned long handle)
873 {
874 while (!trypin_tag(handle));
875 }
876
877 static void unpin_tag(unsigned long handle)
878 {
879 unsigned long *ptr = (unsigned long *)handle;
880
881 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
882 }
883
884 static void reset_page(struct page *page)
885 {
886 clear_bit(PG_private, &page->flags);
887 clear_bit(PG_private_2, &page->flags);
888 set_page_private(page, 0);
889 page->mapping = NULL;
890 page->freelist = NULL;
891 page_mapcount_reset(page);
892 }
893
894 static void free_zspage(struct page *first_page)
895 {
896 struct page *nextp, *tmp, *head_extra;
897
898 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
899 VM_BUG_ON_PAGE(first_page->inuse, first_page);
900
901 head_extra = (struct page *)page_private(first_page);
902
903 reset_page(first_page);
904 __free_page(first_page);
905
906 /* zspage with only 1 system page */
907 if (!head_extra)
908 return;
909
910 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
911 list_del(&nextp->lru);
912 reset_page(nextp);
913 __free_page(nextp);
914 }
915 reset_page(head_extra);
916 __free_page(head_extra);
917 }
918
919 /* Initialize a newly allocated zspage */
920 static void init_zspage(struct size_class *class, struct page *first_page)
921 {
922 unsigned long off = 0;
923 struct page *page = first_page;
924
925 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
926
927 while (page) {
928 struct page *next_page;
929 struct link_free *link;
930 unsigned int i = 1;
931 void *vaddr;
932
933 /*
934 * page->index stores offset of first object starting
935 * in the page. For the first page, this is always 0,
936 * so we use first_page->index (aka ->freelist) to store
937 * head of corresponding zspage's freelist.
938 */
939 if (page != first_page)
940 page->index = off;
941
942 vaddr = kmap_atomic(page);
943 link = (struct link_free *)vaddr + off / sizeof(*link);
944
945 while ((off += class->size) < PAGE_SIZE) {
946 link->next = location_to_obj(page, i++);
947 link += class->size / sizeof(*link);
948 }
949
950 /*
951 * We now come to the last (full or partial) object on this
952 * page, which must point to the first object on the next
953 * page (if present)
954 */
955 next_page = get_next_page(page);
956 link->next = location_to_obj(next_page, 0);
957 kunmap_atomic(vaddr);
958 page = next_page;
959 off %= PAGE_SIZE;
960 }
961 }
962
963 /*
964 * Allocate a zspage for the given size class
965 */
966 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
967 {
968 int i, error;
969 struct page *first_page = NULL, *uninitialized_var(prev_page);
970
971 /*
972 * Allocate individual pages and link them together as:
973 * 1. first page->private = first sub-page
974 * 2. all sub-pages are linked together using page->lru
975 * 3. each sub-page is linked to the first page using page->private
976 *
977 * For each size class, First/Head pages are linked together using
978 * page->lru. Also, we set PG_private to identify the first page
979 * (i.e. no other sub-page has this flag set) and PG_private_2 to
980 * identify the last page.
981 */
982 error = -ENOMEM;
983 for (i = 0; i < class->pages_per_zspage; i++) {
984 struct page *page;
985
986 page = alloc_page(flags);
987 if (!page)
988 goto cleanup;
989
990 INIT_LIST_HEAD(&page->lru);
991 if (i == 0) { /* first page */
992 SetPagePrivate(page);
993 set_page_private(page, 0);
994 first_page = page;
995 first_page->inuse = 0;
996 }
997 if (i == 1)
998 set_page_private(first_page, (unsigned long)page);
999 if (i >= 1)
1000 set_page_private(page, (unsigned long)first_page);
1001 if (i >= 2)
1002 list_add(&page->lru, &prev_page->lru);
1003 if (i == class->pages_per_zspage - 1) /* last page */
1004 SetPagePrivate2(page);
1005 prev_page = page;
1006 }
1007
1008 init_zspage(class, first_page);
1009
1010 first_page->freelist = location_to_obj(first_page, 0);
1011 /* Maximum number of objects we can store in this zspage */
1012 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1013
1014 error = 0; /* Success */
1015
1016 cleanup:
1017 if (unlikely(error) && first_page) {
1018 free_zspage(first_page);
1019 first_page = NULL;
1020 }
1021
1022 return first_page;
1023 }
1024
1025 static struct page *find_get_zspage(struct size_class *class)
1026 {
1027 int i;
1028 struct page *page;
1029
1030 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1031 page = class->fullness_list[i];
1032 if (page)
1033 break;
1034 }
1035
1036 return page;
1037 }
1038
1039 #ifdef CONFIG_PGTABLE_MAPPING
1040 static inline int __zs_cpu_up(struct mapping_area *area)
1041 {
1042 /*
1043 * Make sure we don't leak memory if a cpu UP notification
1044 * and zs_init() race and both call zs_cpu_up() on the same cpu
1045 */
1046 if (area->vm)
1047 return 0;
1048 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1049 if (!area->vm)
1050 return -ENOMEM;
1051 return 0;
1052 }
1053
1054 static inline void __zs_cpu_down(struct mapping_area *area)
1055 {
1056 if (area->vm)
1057 free_vm_area(area->vm);
1058 area->vm = NULL;
1059 }
1060
1061 static inline void *__zs_map_object(struct mapping_area *area,
1062 struct page *pages[2], int off, int size)
1063 {
1064 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1065 area->vm_addr = area->vm->addr;
1066 return area->vm_addr + off;
1067 }
1068
1069 static inline void __zs_unmap_object(struct mapping_area *area,
1070 struct page *pages[2], int off, int size)
1071 {
1072 unsigned long addr = (unsigned long)area->vm_addr;
1073
1074 unmap_kernel_range(addr, PAGE_SIZE * 2);
1075 }
1076
1077 #else /* CONFIG_PGTABLE_MAPPING */
1078
1079 static inline int __zs_cpu_up(struct mapping_area *area)
1080 {
1081 /*
1082 * Make sure we don't leak memory if a cpu UP notification
1083 * and zs_init() race and both call zs_cpu_up() on the same cpu
1084 */
1085 if (area->vm_buf)
1086 return 0;
1087 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1088 if (!area->vm_buf)
1089 return -ENOMEM;
1090 return 0;
1091 }
1092
1093 static inline void __zs_cpu_down(struct mapping_area *area)
1094 {
1095 kfree(area->vm_buf);
1096 area->vm_buf = NULL;
1097 }
1098
1099 static void *__zs_map_object(struct mapping_area *area,
1100 struct page *pages[2], int off, int size)
1101 {
1102 int sizes[2];
1103 void *addr;
1104 char *buf = area->vm_buf;
1105
1106 /* disable page faults to match kmap_atomic() return conditions */
1107 pagefault_disable();
1108
1109 /* no read fastpath */
1110 if (area->vm_mm == ZS_MM_WO)
1111 goto out;
1112
1113 sizes[0] = PAGE_SIZE - off;
1114 sizes[1] = size - sizes[0];
1115
1116 /* copy object to per-cpu buffer */
1117 addr = kmap_atomic(pages[0]);
1118 memcpy(buf, addr + off, sizes[0]);
1119 kunmap_atomic(addr);
1120 addr = kmap_atomic(pages[1]);
1121 memcpy(buf + sizes[0], addr, sizes[1]);
1122 kunmap_atomic(addr);
1123 out:
1124 return area->vm_buf;
1125 }
1126
1127 static void __zs_unmap_object(struct mapping_area *area,
1128 struct page *pages[2], int off, int size)
1129 {
1130 int sizes[2];
1131 void *addr;
1132 char *buf;
1133
1134 /* no write fastpath */
1135 if (area->vm_mm == ZS_MM_RO)
1136 goto out;
1137
1138 buf = area->vm_buf;
1139 buf = buf + ZS_HANDLE_SIZE;
1140 size -= ZS_HANDLE_SIZE;
1141 off += ZS_HANDLE_SIZE;
1142
1143 sizes[0] = PAGE_SIZE - off;
1144 sizes[1] = size - sizes[0];
1145
1146 /* copy per-cpu buffer to object */
1147 addr = kmap_atomic(pages[0]);
1148 memcpy(addr + off, buf, sizes[0]);
1149 kunmap_atomic(addr);
1150 addr = kmap_atomic(pages[1]);
1151 memcpy(addr, buf + sizes[0], sizes[1]);
1152 kunmap_atomic(addr);
1153
1154 out:
1155 /* enable page faults to match kunmap_atomic() return conditions */
1156 pagefault_enable();
1157 }
1158
1159 #endif /* CONFIG_PGTABLE_MAPPING */
1160
1161 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1162 void *pcpu)
1163 {
1164 int ret, cpu = (long)pcpu;
1165 struct mapping_area *area;
1166
1167 switch (action) {
1168 case CPU_UP_PREPARE:
1169 area = &per_cpu(zs_map_area, cpu);
1170 ret = __zs_cpu_up(area);
1171 if (ret)
1172 return notifier_from_errno(ret);
1173 break;
1174 case CPU_DEAD:
1175 case CPU_UP_CANCELED:
1176 area = &per_cpu(zs_map_area, cpu);
1177 __zs_cpu_down(area);
1178 break;
1179 }
1180
1181 return NOTIFY_OK;
1182 }
1183
1184 static struct notifier_block zs_cpu_nb = {
1185 .notifier_call = zs_cpu_notifier
1186 };
1187
1188 static int zs_register_cpu_notifier(void)
1189 {
1190 int cpu, uninitialized_var(ret);
1191
1192 cpu_notifier_register_begin();
1193
1194 __register_cpu_notifier(&zs_cpu_nb);
1195 for_each_online_cpu(cpu) {
1196 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1197 if (notifier_to_errno(ret))
1198 break;
1199 }
1200
1201 cpu_notifier_register_done();
1202 return notifier_to_errno(ret);
1203 }
1204
1205 static void zs_unregister_cpu_notifier(void)
1206 {
1207 int cpu;
1208
1209 cpu_notifier_register_begin();
1210
1211 for_each_online_cpu(cpu)
1212 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1213 __unregister_cpu_notifier(&zs_cpu_nb);
1214
1215 cpu_notifier_register_done();
1216 }
1217
1218 static void init_zs_size_classes(void)
1219 {
1220 int nr;
1221
1222 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1223 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1224 nr += 1;
1225
1226 zs_size_classes = nr;
1227 }
1228
1229 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1230 {
1231 if (prev->pages_per_zspage != pages_per_zspage)
1232 return false;
1233
1234 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1235 != get_maxobj_per_zspage(size, pages_per_zspage))
1236 return false;
1237
1238 return true;
1239 }
1240
1241 static bool zspage_full(struct page *first_page)
1242 {
1243 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
1244
1245 return first_page->inuse == first_page->objects;
1246 }
1247
1248 unsigned long zs_get_total_pages(struct zs_pool *pool)
1249 {
1250 return atomic_long_read(&pool->pages_allocated);
1251 }
1252 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1253
1254 /**
1255 * zs_map_object - get address of allocated object from handle.
1256 * @pool: pool from which the object was allocated
1257 * @handle: handle returned from zs_malloc
1258 *
1259 * Before using an object allocated from zs_malloc, it must be mapped using
1260 * this function. When done with the object, it must be unmapped using
1261 * zs_unmap_object.
1262 *
1263 * Only one object can be mapped per cpu at a time. There is no protection
1264 * against nested mappings.
1265 *
1266 * This function returns with preemption and page faults disabled.
1267 */
1268 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1269 enum zs_mapmode mm)
1270 {
1271 struct page *page;
1272 unsigned long obj, obj_idx, off;
1273
1274 unsigned int class_idx;
1275 enum fullness_group fg;
1276 struct size_class *class;
1277 struct mapping_area *area;
1278 struct page *pages[2];
1279 void *ret;
1280
1281 /*
1282 * Because we use per-cpu mapping areas shared among the
1283 * pools/users, we can't allow mapping in interrupt context
1284 * because it can corrupt another users mappings.
1285 */
1286 WARN_ON_ONCE(in_interrupt());
1287
1288 /* From now on, migration cannot move the object */
1289 pin_tag(handle);
1290
1291 obj = handle_to_obj(handle);
1292 obj_to_location(obj, &page, &obj_idx);
1293 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1294 class = pool->size_class[class_idx];
1295 off = obj_idx_to_offset(page, obj_idx, class->size);
1296
1297 area = &get_cpu_var(zs_map_area);
1298 area->vm_mm = mm;
1299 if (off + class->size <= PAGE_SIZE) {
1300 /* this object is contained entirely within a page */
1301 area->vm_addr = kmap_atomic(page);
1302 ret = area->vm_addr + off;
1303 goto out;
1304 }
1305
1306 /* this object spans two pages */
1307 pages[0] = page;
1308 pages[1] = get_next_page(page);
1309 BUG_ON(!pages[1]);
1310
1311 ret = __zs_map_object(area, pages, off, class->size);
1312 out:
1313 if (!class->huge)
1314 ret += ZS_HANDLE_SIZE;
1315
1316 return ret;
1317 }
1318 EXPORT_SYMBOL_GPL(zs_map_object);
1319
1320 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1321 {
1322 struct page *page;
1323 unsigned long obj, obj_idx, off;
1324
1325 unsigned int class_idx;
1326 enum fullness_group fg;
1327 struct size_class *class;
1328 struct mapping_area *area;
1329
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
1332 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 class = pool->size_class[class_idx];
1334 off = obj_idx_to_offset(page, obj_idx, class->size);
1335
1336 area = this_cpu_ptr(&zs_map_area);
1337 if (off + class->size <= PAGE_SIZE)
1338 kunmap_atomic(area->vm_addr);
1339 else {
1340 struct page *pages[2];
1341
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
1345
1346 __zs_unmap_object(area, pages, off, class->size);
1347 }
1348 put_cpu_var(zs_map_area);
1349 unpin_tag(handle);
1350 }
1351 EXPORT_SYMBOL_GPL(zs_unmap_object);
1352
1353 static unsigned long obj_malloc(struct size_class *class,
1354 struct page *first_page, unsigned long handle)
1355 {
1356 unsigned long obj;
1357 struct link_free *link;
1358
1359 struct page *m_page;
1360 unsigned long m_objidx, m_offset;
1361 void *vaddr;
1362
1363 handle |= OBJ_ALLOCATED_TAG;
1364 obj = (unsigned long)first_page->freelist;
1365 obj_to_location(obj, &m_page, &m_objidx);
1366 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 first_page->freelist = link->next;
1371 if (!class->huge)
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
1375 /* record handle in first_page->private */
1376 set_page_private(first_page, handle);
1377 kunmap_atomic(vaddr);
1378 first_page->inuse++;
1379 zs_stat_inc(class, OBJ_USED, 1);
1380
1381 return obj;
1382 }
1383
1384
1385 /**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
1389 *
1390 * On success, handle to the allocated object is returned,
1391 * otherwise 0.
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
1394 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1395 {
1396 unsigned long handle, obj;
1397 struct size_class *class;
1398 struct page *first_page;
1399
1400 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 return 0;
1402
1403 handle = alloc_handle(pool, gfp);
1404 if (!handle)
1405 return 0;
1406
1407 /* extra space in chunk to keep the handle */
1408 size += ZS_HANDLE_SIZE;
1409 class = pool->size_class[get_size_class_index(size)];
1410
1411 spin_lock(&class->lock);
1412 first_page = find_get_zspage(class);
1413
1414 if (!first_page) {
1415 spin_unlock(&class->lock);
1416 first_page = alloc_zspage(class, gfp);
1417 if (unlikely(!first_page)) {
1418 free_handle(pool, handle);
1419 return 0;
1420 }
1421
1422 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1423 atomic_long_add(class->pages_per_zspage,
1424 &pool->pages_allocated);
1425
1426 spin_lock(&class->lock);
1427 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 class->size, class->pages_per_zspage));
1429 }
1430
1431 obj = obj_malloc(class, first_page, handle);
1432 /* Now move the zspage to another fullness group, if required */
1433 fix_fullness_group(class, first_page);
1434 record_obj(handle, obj);
1435 spin_unlock(&class->lock);
1436
1437 return handle;
1438 }
1439 EXPORT_SYMBOL_GPL(zs_malloc);
1440
1441 static void obj_free(struct size_class *class, unsigned long obj)
1442 {
1443 struct link_free *link;
1444 struct page *first_page, *f_page;
1445 unsigned long f_objidx, f_offset;
1446 void *vaddr;
1447
1448 obj &= ~OBJ_ALLOCATED_TAG;
1449 obj_to_location(obj, &f_page, &f_objidx);
1450 first_page = get_first_page(f_page);
1451
1452 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1453
1454 vaddr = kmap_atomic(f_page);
1455
1456 /* Insert this object in containing zspage's freelist */
1457 link = (struct link_free *)(vaddr + f_offset);
1458 link->next = first_page->freelist;
1459 if (class->huge)
1460 set_page_private(first_page, 0);
1461 kunmap_atomic(vaddr);
1462 first_page->freelist = (void *)obj;
1463 first_page->inuse--;
1464 zs_stat_dec(class, OBJ_USED, 1);
1465 }
1466
1467 void zs_free(struct zs_pool *pool, unsigned long handle)
1468 {
1469 struct page *first_page, *f_page;
1470 unsigned long obj, f_objidx;
1471 int class_idx;
1472 struct size_class *class;
1473 enum fullness_group fullness;
1474
1475 if (unlikely(!handle))
1476 return;
1477
1478 pin_tag(handle);
1479 obj = handle_to_obj(handle);
1480 obj_to_location(obj, &f_page, &f_objidx);
1481 first_page = get_first_page(f_page);
1482
1483 get_zspage_mapping(first_page, &class_idx, &fullness);
1484 class = pool->size_class[class_idx];
1485
1486 spin_lock(&class->lock);
1487 obj_free(class, obj);
1488 fullness = fix_fullness_group(class, first_page);
1489 if (fullness == ZS_EMPTY) {
1490 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1491 class->size, class->pages_per_zspage));
1492 atomic_long_sub(class->pages_per_zspage,
1493 &pool->pages_allocated);
1494 free_zspage(first_page);
1495 }
1496 spin_unlock(&class->lock);
1497 unpin_tag(handle);
1498
1499 free_handle(pool, handle);
1500 }
1501 EXPORT_SYMBOL_GPL(zs_free);
1502
1503 static void zs_object_copy(struct size_class *class, unsigned long dst,
1504 unsigned long src)
1505 {
1506 struct page *s_page, *d_page;
1507 unsigned long s_objidx, d_objidx;
1508 unsigned long s_off, d_off;
1509 void *s_addr, *d_addr;
1510 int s_size, d_size, size;
1511 int written = 0;
1512
1513 s_size = d_size = class->size;
1514
1515 obj_to_location(src, &s_page, &s_objidx);
1516 obj_to_location(dst, &d_page, &d_objidx);
1517
1518 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1519 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1520
1521 if (s_off + class->size > PAGE_SIZE)
1522 s_size = PAGE_SIZE - s_off;
1523
1524 if (d_off + class->size > PAGE_SIZE)
1525 d_size = PAGE_SIZE - d_off;
1526
1527 s_addr = kmap_atomic(s_page);
1528 d_addr = kmap_atomic(d_page);
1529
1530 while (1) {
1531 size = min(s_size, d_size);
1532 memcpy(d_addr + d_off, s_addr + s_off, size);
1533 written += size;
1534
1535 if (written == class->size)
1536 break;
1537
1538 s_off += size;
1539 s_size -= size;
1540 d_off += size;
1541 d_size -= size;
1542
1543 if (s_off >= PAGE_SIZE) {
1544 kunmap_atomic(d_addr);
1545 kunmap_atomic(s_addr);
1546 s_page = get_next_page(s_page);
1547 s_addr = kmap_atomic(s_page);
1548 d_addr = kmap_atomic(d_page);
1549 s_size = class->size - written;
1550 s_off = 0;
1551 }
1552
1553 if (d_off >= PAGE_SIZE) {
1554 kunmap_atomic(d_addr);
1555 d_page = get_next_page(d_page);
1556 d_addr = kmap_atomic(d_page);
1557 d_size = class->size - written;
1558 d_off = 0;
1559 }
1560 }
1561
1562 kunmap_atomic(d_addr);
1563 kunmap_atomic(s_addr);
1564 }
1565
1566 /*
1567 * Find alloced object in zspage from index object and
1568 * return handle.
1569 */
1570 static unsigned long find_alloced_obj(struct size_class *class,
1571 struct page *page, int index)
1572 {
1573 unsigned long head;
1574 int offset = 0;
1575 unsigned long handle = 0;
1576 void *addr = kmap_atomic(page);
1577
1578 if (!is_first_page(page))
1579 offset = page->index;
1580 offset += class->size * index;
1581
1582 while (offset < PAGE_SIZE) {
1583 head = obj_to_head(class, page, addr + offset);
1584 if (head & OBJ_ALLOCATED_TAG) {
1585 handle = head & ~OBJ_ALLOCATED_TAG;
1586 if (trypin_tag(handle))
1587 break;
1588 handle = 0;
1589 }
1590
1591 offset += class->size;
1592 index++;
1593 }
1594
1595 kunmap_atomic(addr);
1596 return handle;
1597 }
1598
1599 struct zs_compact_control {
1600 /* Source page for migration which could be a subpage of zspage. */
1601 struct page *s_page;
1602 /* Destination page for migration which should be a first page
1603 * of zspage. */
1604 struct page *d_page;
1605 /* Starting object index within @s_page which used for live object
1606 * in the subpage. */
1607 int index;
1608 };
1609
1610 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1611 struct zs_compact_control *cc)
1612 {
1613 unsigned long used_obj, free_obj;
1614 unsigned long handle;
1615 struct page *s_page = cc->s_page;
1616 struct page *d_page = cc->d_page;
1617 unsigned long index = cc->index;
1618 int ret = 0;
1619
1620 while (1) {
1621 handle = find_alloced_obj(class, s_page, index);
1622 if (!handle) {
1623 s_page = get_next_page(s_page);
1624 if (!s_page)
1625 break;
1626 index = 0;
1627 continue;
1628 }
1629
1630 /* Stop if there is no more space */
1631 if (zspage_full(d_page)) {
1632 unpin_tag(handle);
1633 ret = -ENOMEM;
1634 break;
1635 }
1636
1637 used_obj = handle_to_obj(handle);
1638 free_obj = obj_malloc(class, d_page, handle);
1639 zs_object_copy(class, free_obj, used_obj);
1640 index++;
1641 /*
1642 * record_obj updates handle's value to free_obj and it will
1643 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1644 * breaks synchronization using pin_tag(e,g, zs_free) so
1645 * let's keep the lock bit.
1646 */
1647 free_obj |= BIT(HANDLE_PIN_BIT);
1648 record_obj(handle, free_obj);
1649 unpin_tag(handle);
1650 obj_free(class, used_obj);
1651 }
1652
1653 /* Remember last position in this iteration */
1654 cc->s_page = s_page;
1655 cc->index = index;
1656
1657 return ret;
1658 }
1659
1660 static struct page *isolate_target_page(struct size_class *class)
1661 {
1662 int i;
1663 struct page *page;
1664
1665 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1666 page = class->fullness_list[i];
1667 if (page) {
1668 remove_zspage(class, i, page);
1669 break;
1670 }
1671 }
1672
1673 return page;
1674 }
1675
1676 /*
1677 * putback_zspage - add @first_page into right class's fullness list
1678 * @pool: target pool
1679 * @class: destination class
1680 * @first_page: target page
1681 *
1682 * Return @fist_page's fullness_group
1683 */
1684 static enum fullness_group putback_zspage(struct zs_pool *pool,
1685 struct size_class *class,
1686 struct page *first_page)
1687 {
1688 enum fullness_group fullness;
1689
1690 fullness = get_fullness_group(first_page);
1691 insert_zspage(class, fullness, first_page);
1692 set_zspage_mapping(first_page, class->index, fullness);
1693
1694 if (fullness == ZS_EMPTY) {
1695 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1696 class->size, class->pages_per_zspage));
1697 atomic_long_sub(class->pages_per_zspage,
1698 &pool->pages_allocated);
1699
1700 free_zspage(first_page);
1701 }
1702
1703 return fullness;
1704 }
1705
1706 static struct page *isolate_source_page(struct size_class *class)
1707 {
1708 int i;
1709 struct page *page = NULL;
1710
1711 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1712 page = class->fullness_list[i];
1713 if (!page)
1714 continue;
1715
1716 remove_zspage(class, i, page);
1717 break;
1718 }
1719
1720 return page;
1721 }
1722
1723 /*
1724 *
1725 * Based on the number of unused allocated objects calculate
1726 * and return the number of pages that we can free.
1727 */
1728 static unsigned long zs_can_compact(struct size_class *class)
1729 {
1730 unsigned long obj_wasted;
1731 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1732 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1733
1734 if (obj_allocated <= obj_used)
1735 return 0;
1736
1737 obj_wasted = obj_allocated - obj_used;
1738 obj_wasted /= get_maxobj_per_zspage(class->size,
1739 class->pages_per_zspage);
1740
1741 return obj_wasted * class->pages_per_zspage;
1742 }
1743
1744 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1745 {
1746 struct zs_compact_control cc;
1747 struct page *src_page;
1748 struct page *dst_page = NULL;
1749
1750 spin_lock(&class->lock);
1751 while ((src_page = isolate_source_page(class))) {
1752
1753 if (!zs_can_compact(class))
1754 break;
1755
1756 cc.index = 0;
1757 cc.s_page = src_page;
1758
1759 while ((dst_page = isolate_target_page(class))) {
1760 cc.d_page = dst_page;
1761 /*
1762 * If there is no more space in dst_page, resched
1763 * and see if anyone had allocated another zspage.
1764 */
1765 if (!migrate_zspage(pool, class, &cc))
1766 break;
1767
1768 putback_zspage(pool, class, dst_page);
1769 }
1770
1771 /* Stop if we couldn't find slot */
1772 if (dst_page == NULL)
1773 break;
1774
1775 putback_zspage(pool, class, dst_page);
1776 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1777 pool->stats.pages_compacted += class->pages_per_zspage;
1778 spin_unlock(&class->lock);
1779 cond_resched();
1780 spin_lock(&class->lock);
1781 }
1782
1783 if (src_page)
1784 putback_zspage(pool, class, src_page);
1785
1786 spin_unlock(&class->lock);
1787 }
1788
1789 unsigned long zs_compact(struct zs_pool *pool)
1790 {
1791 int i;
1792 struct size_class *class;
1793
1794 for (i = zs_size_classes - 1; i >= 0; i--) {
1795 class = pool->size_class[i];
1796 if (!class)
1797 continue;
1798 if (class->index != i)
1799 continue;
1800 __zs_compact(pool, class);
1801 }
1802
1803 return pool->stats.pages_compacted;
1804 }
1805 EXPORT_SYMBOL_GPL(zs_compact);
1806
1807 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1808 {
1809 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1810 }
1811 EXPORT_SYMBOL_GPL(zs_pool_stats);
1812
1813 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1814 struct shrink_control *sc)
1815 {
1816 unsigned long pages_freed;
1817 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1818 shrinker);
1819
1820 pages_freed = pool->stats.pages_compacted;
1821 /*
1822 * Compact classes and calculate compaction delta.
1823 * Can run concurrently with a manually triggered
1824 * (by user) compaction.
1825 */
1826 pages_freed = zs_compact(pool) - pages_freed;
1827
1828 return pages_freed ? pages_freed : SHRINK_STOP;
1829 }
1830
1831 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1832 struct shrink_control *sc)
1833 {
1834 int i;
1835 struct size_class *class;
1836 unsigned long pages_to_free = 0;
1837 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1838 shrinker);
1839
1840 for (i = zs_size_classes - 1; i >= 0; i--) {
1841 class = pool->size_class[i];
1842 if (!class)
1843 continue;
1844 if (class->index != i)
1845 continue;
1846
1847 pages_to_free += zs_can_compact(class);
1848 }
1849
1850 return pages_to_free;
1851 }
1852
1853 static void zs_unregister_shrinker(struct zs_pool *pool)
1854 {
1855 if (pool->shrinker_enabled) {
1856 unregister_shrinker(&pool->shrinker);
1857 pool->shrinker_enabled = false;
1858 }
1859 }
1860
1861 static int zs_register_shrinker(struct zs_pool *pool)
1862 {
1863 pool->shrinker.scan_objects = zs_shrinker_scan;
1864 pool->shrinker.count_objects = zs_shrinker_count;
1865 pool->shrinker.batch = 0;
1866 pool->shrinker.seeks = DEFAULT_SEEKS;
1867
1868 return register_shrinker(&pool->shrinker);
1869 }
1870
1871 /**
1872 * zs_create_pool - Creates an allocation pool to work from.
1873 * @flags: allocation flags used to allocate pool metadata
1874 *
1875 * This function must be called before anything when using
1876 * the zsmalloc allocator.
1877 *
1878 * On success, a pointer to the newly created pool is returned,
1879 * otherwise NULL.
1880 */
1881 struct zs_pool *zs_create_pool(const char *name)
1882 {
1883 int i;
1884 struct zs_pool *pool;
1885 struct size_class *prev_class = NULL;
1886
1887 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1888 if (!pool)
1889 return NULL;
1890
1891 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1892 GFP_KERNEL);
1893 if (!pool->size_class) {
1894 kfree(pool);
1895 return NULL;
1896 }
1897
1898 pool->name = kstrdup(name, GFP_KERNEL);
1899 if (!pool->name)
1900 goto err;
1901
1902 if (create_handle_cache(pool))
1903 goto err;
1904
1905 /*
1906 * Iterate reversly, because, size of size_class that we want to use
1907 * for merging should be larger or equal to current size.
1908 */
1909 for (i = zs_size_classes - 1; i >= 0; i--) {
1910 int size;
1911 int pages_per_zspage;
1912 struct size_class *class;
1913
1914 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1915 if (size > ZS_MAX_ALLOC_SIZE)
1916 size = ZS_MAX_ALLOC_SIZE;
1917 pages_per_zspage = get_pages_per_zspage(size);
1918
1919 /*
1920 * size_class is used for normal zsmalloc operation such
1921 * as alloc/free for that size. Although it is natural that we
1922 * have one size_class for each size, there is a chance that we
1923 * can get more memory utilization if we use one size_class for
1924 * many different sizes whose size_class have same
1925 * characteristics. So, we makes size_class point to
1926 * previous size_class if possible.
1927 */
1928 if (prev_class) {
1929 if (can_merge(prev_class, size, pages_per_zspage)) {
1930 pool->size_class[i] = prev_class;
1931 continue;
1932 }
1933 }
1934
1935 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1936 if (!class)
1937 goto err;
1938
1939 class->size = size;
1940 class->index = i;
1941 class->pages_per_zspage = pages_per_zspage;
1942 if (pages_per_zspage == 1 &&
1943 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1944 class->huge = true;
1945 spin_lock_init(&class->lock);
1946 pool->size_class[i] = class;
1947
1948 prev_class = class;
1949 }
1950
1951 /* debug only, don't abort if it fails */
1952 zs_pool_stat_create(pool, name);
1953
1954 /*
1955 * Not critical, we still can use the pool
1956 * and user can trigger compaction manually.
1957 */
1958 if (zs_register_shrinker(pool) == 0)
1959 pool->shrinker_enabled = true;
1960 return pool;
1961
1962 err:
1963 zs_destroy_pool(pool);
1964 return NULL;
1965 }
1966 EXPORT_SYMBOL_GPL(zs_create_pool);
1967
1968 void zs_destroy_pool(struct zs_pool *pool)
1969 {
1970 int i;
1971
1972 zs_unregister_shrinker(pool);
1973 zs_pool_stat_destroy(pool);
1974
1975 for (i = 0; i < zs_size_classes; i++) {
1976 int fg;
1977 struct size_class *class = pool->size_class[i];
1978
1979 if (!class)
1980 continue;
1981
1982 if (class->index != i)
1983 continue;
1984
1985 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1986 if (class->fullness_list[fg]) {
1987 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1988 class->size, fg);
1989 }
1990 }
1991 kfree(class);
1992 }
1993
1994 destroy_handle_cache(pool);
1995 kfree(pool->size_class);
1996 kfree(pool->name);
1997 kfree(pool);
1998 }
1999 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2000
2001 static int __init zs_init(void)
2002 {
2003 int ret = zs_register_cpu_notifier();
2004
2005 if (ret)
2006 goto notifier_fail;
2007
2008 init_zs_size_classes();
2009
2010 #ifdef CONFIG_ZPOOL
2011 zpool_register_driver(&zs_zpool_driver);
2012 #endif
2013
2014 ret = zs_stat_init();
2015 if (ret) {
2016 pr_err("zs stat initialization failed\n");
2017 goto stat_fail;
2018 }
2019 return 0;
2020
2021 stat_fail:
2022 #ifdef CONFIG_ZPOOL
2023 zpool_unregister_driver(&zs_zpool_driver);
2024 #endif
2025 notifier_fail:
2026 zs_unregister_cpu_notifier();
2027
2028 return ret;
2029 }
2030
2031 static void __exit zs_exit(void)
2032 {
2033 #ifdef CONFIG_ZPOOL
2034 zpool_unregister_driver(&zs_zpool_driver);
2035 #endif
2036 zs_unregister_cpu_notifier();
2037
2038 zs_stat_exit();
2039 }
2040
2041 module_init(zs_init);
2042 module_exit(zs_exit);
2043
2044 MODULE_LICENSE("Dual BSD/GPL");
2045 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.103805 seconds and 6 git commands to generate.