Bluetooth: Fix specifying role for LE connections
[deliverable/linux.git] / net / bluetooth / hci_conn.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI connection handling. */
26
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
42 };
43
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
50 };
51
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
55 };
56
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
60 };
61
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
70
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
73
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
79 }
80
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
85
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
90 */
91 params->explicit_connect = false;
92
93 list_del_init(&params->action);
94
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(&params->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(&params->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
109 }
110
111 hci_update_background_scan(hdev);
112 }
113
114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 struct hci_dev *hdev = conn->hdev;
117
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120
121 hci_chan_list_flush(conn);
122
123 hci_conn_hash_del(hdev, conn);
124
125 if (hdev->notify)
126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
127
128 hci_conn_del_sysfs(conn);
129
130 debugfs_remove_recursive(conn->debugfs);
131
132 hci_dev_put(hdev);
133
134 hci_conn_put(conn);
135 }
136
137 static void le_scan_cleanup(struct work_struct *work)
138 {
139 struct hci_conn *conn = container_of(work, struct hci_conn,
140 le_scan_cleanup);
141 struct hci_dev *hdev = conn->hdev;
142 struct hci_conn *c = NULL;
143
144 BT_DBG("%s hcon %p", hdev->name, conn);
145
146 hci_dev_lock(hdev);
147
148 /* Check that the hci_conn is still around */
149 rcu_read_lock();
150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
151 if (c == conn)
152 break;
153 }
154 rcu_read_unlock();
155
156 if (c == conn) {
157 hci_connect_le_scan_cleanup(conn);
158 hci_conn_cleanup(conn);
159 }
160
161 hci_dev_unlock(hdev);
162 hci_dev_put(hdev);
163 hci_conn_put(conn);
164 }
165
166 static void hci_connect_le_scan_remove(struct hci_conn *conn)
167 {
168 BT_DBG("%s hcon %p", conn->hdev->name, conn);
169
170 /* We can't call hci_conn_del/hci_conn_cleanup here since that
171 * could deadlock with another hci_conn_del() call that's holding
172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
173 * Instead, grab temporary extra references to the hci_dev and
174 * hci_conn and perform the necessary cleanup in a separate work
175 * callback.
176 */
177
178 hci_dev_hold(conn->hdev);
179 hci_conn_get(conn);
180
181 /* Even though we hold a reference to the hdev, many other
182 * things might get cleaned up meanwhile, including the hdev's
183 * own workqueue, so we can't use that for scheduling.
184 */
185 schedule_work(&conn->le_scan_cleanup);
186 }
187
188 static void hci_acl_create_connection(struct hci_conn *conn)
189 {
190 struct hci_dev *hdev = conn->hdev;
191 struct inquiry_entry *ie;
192 struct hci_cp_create_conn cp;
193
194 BT_DBG("hcon %p", conn);
195
196 conn->state = BT_CONNECT;
197 conn->out = true;
198 conn->role = HCI_ROLE_MASTER;
199
200 conn->attempt++;
201
202 conn->link_policy = hdev->link_policy;
203
204 memset(&cp, 0, sizeof(cp));
205 bacpy(&cp.bdaddr, &conn->dst);
206 cp.pscan_rep_mode = 0x02;
207
208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
209 if (ie) {
210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
211 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
212 cp.pscan_mode = ie->data.pscan_mode;
213 cp.clock_offset = ie->data.clock_offset |
214 cpu_to_le16(0x8000);
215 }
216
217 memcpy(conn->dev_class, ie->data.dev_class, 3);
218 if (ie->data.ssp_mode > 0)
219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
220 }
221
222 cp.pkt_type = cpu_to_le16(conn->pkt_type);
223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
224 cp.role_switch = 0x01;
225 else
226 cp.role_switch = 0x00;
227
228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
229 }
230
231 int hci_disconnect(struct hci_conn *conn, __u8 reason)
232 {
233 BT_DBG("hcon %p", conn);
234
235 /* When we are master of an established connection and it enters
236 * the disconnect timeout, then go ahead and try to read the
237 * current clock offset. Processing of the result is done
238 * within the event handling and hci_clock_offset_evt function.
239 */
240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
242 struct hci_dev *hdev = conn->hdev;
243 struct hci_cp_read_clock_offset clkoff_cp;
244
245 clkoff_cp.handle = cpu_to_le16(conn->handle);
246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
247 &clkoff_cp);
248 }
249
250 return hci_abort_conn(conn, reason);
251 }
252
253 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
254 {
255 struct hci_dev *hdev = conn->hdev;
256 struct hci_cp_add_sco cp;
257
258 BT_DBG("hcon %p", conn);
259
260 conn->state = BT_CONNECT;
261 conn->out = true;
262
263 conn->attempt++;
264
265 cp.handle = cpu_to_le16(handle);
266 cp.pkt_type = cpu_to_le16(conn->pkt_type);
267
268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
269 }
270
271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
272 {
273 struct hci_dev *hdev = conn->hdev;
274 struct hci_cp_setup_sync_conn cp;
275 const struct sco_param *param;
276
277 BT_DBG("hcon %p", conn);
278
279 conn->state = BT_CONNECT;
280 conn->out = true;
281
282 conn->attempt++;
283
284 cp.handle = cpu_to_le16(handle);
285
286 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
287 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
288 cp.voice_setting = cpu_to_le16(conn->setting);
289
290 switch (conn->setting & SCO_AIRMODE_MASK) {
291 case SCO_AIRMODE_TRANSP:
292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
293 return false;
294 param = &esco_param_msbc[conn->attempt - 1];
295 break;
296 case SCO_AIRMODE_CVSD:
297 if (lmp_esco_capable(conn->link)) {
298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
299 return false;
300 param = &esco_param_cvsd[conn->attempt - 1];
301 } else {
302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
303 return false;
304 param = &sco_param_cvsd[conn->attempt - 1];
305 }
306 break;
307 default:
308 return false;
309 }
310
311 cp.retrans_effort = param->retrans_effort;
312 cp.pkt_type = __cpu_to_le16(param->pkt_type);
313 cp.max_latency = __cpu_to_le16(param->max_latency);
314
315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
316 return false;
317
318 return true;
319 }
320
321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
322 u16 to_multiplier)
323 {
324 struct hci_dev *hdev = conn->hdev;
325 struct hci_conn_params *params;
326 struct hci_cp_le_conn_update cp;
327
328 hci_dev_lock(hdev);
329
330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
331 if (params) {
332 params->conn_min_interval = min;
333 params->conn_max_interval = max;
334 params->conn_latency = latency;
335 params->supervision_timeout = to_multiplier;
336 }
337
338 hci_dev_unlock(hdev);
339
340 memset(&cp, 0, sizeof(cp));
341 cp.handle = cpu_to_le16(conn->handle);
342 cp.conn_interval_min = cpu_to_le16(min);
343 cp.conn_interval_max = cpu_to_le16(max);
344 cp.conn_latency = cpu_to_le16(latency);
345 cp.supervision_timeout = cpu_to_le16(to_multiplier);
346 cp.min_ce_len = cpu_to_le16(0x0000);
347 cp.max_ce_len = cpu_to_le16(0x0000);
348
349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
350
351 if (params)
352 return 0x01;
353
354 return 0x00;
355 }
356
357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
358 __u8 ltk[16], __u8 key_size)
359 {
360 struct hci_dev *hdev = conn->hdev;
361 struct hci_cp_le_start_enc cp;
362
363 BT_DBG("hcon %p", conn);
364
365 memset(&cp, 0, sizeof(cp));
366
367 cp.handle = cpu_to_le16(conn->handle);
368 cp.rand = rand;
369 cp.ediv = ediv;
370 memcpy(cp.ltk, ltk, key_size);
371
372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
373 }
374
375 /* Device _must_ be locked */
376 void hci_sco_setup(struct hci_conn *conn, __u8 status)
377 {
378 struct hci_conn *sco = conn->link;
379
380 if (!sco)
381 return;
382
383 BT_DBG("hcon %p", conn);
384
385 if (!status) {
386 if (lmp_esco_capable(conn->hdev))
387 hci_setup_sync(sco, conn->handle);
388 else
389 hci_add_sco(sco, conn->handle);
390 } else {
391 hci_connect_cfm(sco, status);
392 hci_conn_del(sco);
393 }
394 }
395
396 static void hci_conn_timeout(struct work_struct *work)
397 {
398 struct hci_conn *conn = container_of(work, struct hci_conn,
399 disc_work.work);
400 int refcnt = atomic_read(&conn->refcnt);
401
402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
403
404 WARN_ON(refcnt < 0);
405
406 /* FIXME: It was observed that in pairing failed scenario, refcnt
407 * drops below 0. Probably this is because l2cap_conn_del calls
408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
409 * dropped. After that loop hci_chan_del is called which also drops
410 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
411 * otherwise drop it.
412 */
413 if (refcnt > 0)
414 return;
415
416 /* LE connections in scanning state need special handling */
417 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
418 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
419 hci_connect_le_scan_remove(conn);
420 return;
421 }
422
423 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
424 }
425
426 /* Enter sniff mode */
427 static void hci_conn_idle(struct work_struct *work)
428 {
429 struct hci_conn *conn = container_of(work, struct hci_conn,
430 idle_work.work);
431 struct hci_dev *hdev = conn->hdev;
432
433 BT_DBG("hcon %p mode %d", conn, conn->mode);
434
435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
436 return;
437
438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
439 return;
440
441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
442 struct hci_cp_sniff_subrate cp;
443 cp.handle = cpu_to_le16(conn->handle);
444 cp.max_latency = cpu_to_le16(0);
445 cp.min_remote_timeout = cpu_to_le16(0);
446 cp.min_local_timeout = cpu_to_le16(0);
447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
448 }
449
450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
451 struct hci_cp_sniff_mode cp;
452 cp.handle = cpu_to_le16(conn->handle);
453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
455 cp.attempt = cpu_to_le16(4);
456 cp.timeout = cpu_to_le16(1);
457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
458 }
459 }
460
461 static void hci_conn_auto_accept(struct work_struct *work)
462 {
463 struct hci_conn *conn = container_of(work, struct hci_conn,
464 auto_accept_work.work);
465
466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
467 &conn->dst);
468 }
469
470 static void le_conn_timeout(struct work_struct *work)
471 {
472 struct hci_conn *conn = container_of(work, struct hci_conn,
473 le_conn_timeout.work);
474 struct hci_dev *hdev = conn->hdev;
475
476 BT_DBG("");
477
478 /* We could end up here due to having done directed advertising,
479 * so clean up the state if necessary. This should however only
480 * happen with broken hardware or if low duty cycle was used
481 * (which doesn't have a timeout of its own).
482 */
483 if (conn->role == HCI_ROLE_SLAVE) {
484 u8 enable = 0x00;
485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
486 &enable);
487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
488 return;
489 }
490
491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
492 }
493
494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
495 u8 role)
496 {
497 struct hci_conn *conn;
498
499 BT_DBG("%s dst %pMR", hdev->name, dst);
500
501 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
502 if (!conn)
503 return NULL;
504
505 bacpy(&conn->dst, dst);
506 bacpy(&conn->src, &hdev->bdaddr);
507 conn->hdev = hdev;
508 conn->type = type;
509 conn->role = role;
510 conn->mode = HCI_CM_ACTIVE;
511 conn->state = BT_OPEN;
512 conn->auth_type = HCI_AT_GENERAL_BONDING;
513 conn->io_capability = hdev->io_capability;
514 conn->remote_auth = 0xff;
515 conn->key_type = 0xff;
516 conn->rssi = HCI_RSSI_INVALID;
517 conn->tx_power = HCI_TX_POWER_INVALID;
518 conn->max_tx_power = HCI_TX_POWER_INVALID;
519
520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
521 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
522
523 if (conn->role == HCI_ROLE_MASTER)
524 conn->out = true;
525
526 switch (type) {
527 case ACL_LINK:
528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
529 break;
530 case LE_LINK:
531 /* conn->src should reflect the local identity address */
532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
533 break;
534 case SCO_LINK:
535 if (lmp_esco_capable(hdev))
536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
537 (hdev->esco_type & EDR_ESCO_MASK);
538 else
539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
540 break;
541 case ESCO_LINK:
542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
543 break;
544 }
545
546 skb_queue_head_init(&conn->data_q);
547
548 INIT_LIST_HEAD(&conn->chan_list);
549
550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
555
556 atomic_set(&conn->refcnt, 0);
557
558 hci_dev_hold(hdev);
559
560 hci_conn_hash_add(hdev, conn);
561 if (hdev->notify)
562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
563
564 hci_conn_init_sysfs(conn);
565
566 return conn;
567 }
568
569 int hci_conn_del(struct hci_conn *conn)
570 {
571 struct hci_dev *hdev = conn->hdev;
572
573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
574
575 cancel_delayed_work_sync(&conn->disc_work);
576 cancel_delayed_work_sync(&conn->auto_accept_work);
577 cancel_delayed_work_sync(&conn->idle_work);
578
579 if (conn->type == ACL_LINK) {
580 struct hci_conn *sco = conn->link;
581 if (sco)
582 sco->link = NULL;
583
584 /* Unacked frames */
585 hdev->acl_cnt += conn->sent;
586 } else if (conn->type == LE_LINK) {
587 cancel_delayed_work(&conn->le_conn_timeout);
588
589 if (hdev->le_pkts)
590 hdev->le_cnt += conn->sent;
591 else
592 hdev->acl_cnt += conn->sent;
593 } else {
594 struct hci_conn *acl = conn->link;
595 if (acl) {
596 acl->link = NULL;
597 hci_conn_drop(acl);
598 }
599 }
600
601 if (conn->amp_mgr)
602 amp_mgr_put(conn->amp_mgr);
603
604 skb_queue_purge(&conn->data_q);
605
606 /* Remove the connection from the list and cleanup its remaining
607 * state. This is a separate function since for some cases like
608 * BT_CONNECT_SCAN we *only* want the cleanup part without the
609 * rest of hci_conn_del.
610 */
611 hci_conn_cleanup(conn);
612
613 return 0;
614 }
615
616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src)
617 {
618 int use_src = bacmp(src, BDADDR_ANY);
619 struct hci_dev *hdev = NULL, *d;
620
621 BT_DBG("%pMR -> %pMR", src, dst);
622
623 read_lock(&hci_dev_list_lock);
624
625 list_for_each_entry(d, &hci_dev_list, list) {
626 if (!test_bit(HCI_UP, &d->flags) ||
627 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
628 d->dev_type != HCI_BREDR)
629 continue;
630
631 /* Simple routing:
632 * No source address - find interface with bdaddr != dst
633 * Source address - find interface with bdaddr == src
634 */
635
636 if (use_src) {
637 if (!bacmp(&d->bdaddr, src)) {
638 hdev = d; break;
639 }
640 } else {
641 if (bacmp(&d->bdaddr, dst)) {
642 hdev = d; break;
643 }
644 }
645 }
646
647 if (hdev)
648 hdev = hci_dev_hold(hdev);
649
650 read_unlock(&hci_dev_list_lock);
651 return hdev;
652 }
653 EXPORT_SYMBOL(hci_get_route);
654
655 /* This function requires the caller holds hdev->lock */
656 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
657 {
658 struct hci_dev *hdev = conn->hdev;
659 struct hci_conn_params *params;
660
661 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
662 conn->dst_type);
663 if (params && params->conn) {
664 hci_conn_drop(params->conn);
665 hci_conn_put(params->conn);
666 params->conn = NULL;
667 }
668
669 conn->state = BT_CLOSED;
670
671 mgmt_connect_failed(hdev, &conn->dst, conn->type, conn->dst_type,
672 status);
673
674 hci_connect_cfm(conn, status);
675
676 hci_conn_del(conn);
677
678 /* Since we may have temporarily stopped the background scanning in
679 * favor of connection establishment, we should restart it.
680 */
681 hci_update_background_scan(hdev);
682
683 /* Re-enable advertising in case this was a failed connection
684 * attempt as a peripheral.
685 */
686 mgmt_reenable_advertising(hdev);
687 }
688
689 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
690 {
691 struct hci_conn *conn;
692
693 hci_dev_lock(hdev);
694
695 conn = hci_lookup_le_connect(hdev);
696
697 if (!status) {
698 hci_connect_le_scan_cleanup(conn);
699 goto done;
700 }
701
702 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x",
703 status);
704
705 if (!conn)
706 goto done;
707
708 hci_le_conn_failed(conn, status);
709
710 done:
711 hci_dev_unlock(hdev);
712 }
713
714 static void hci_req_add_le_create_conn(struct hci_request *req,
715 struct hci_conn *conn)
716 {
717 struct hci_cp_le_create_conn cp;
718 struct hci_dev *hdev = conn->hdev;
719 u8 own_addr_type;
720
721 memset(&cp, 0, sizeof(cp));
722
723 /* Update random address, but set require_privacy to false so
724 * that we never connect with an non-resolvable address.
725 */
726 if (hci_update_random_address(req, false, &own_addr_type))
727 return;
728
729 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
730 cp.scan_window = cpu_to_le16(hdev->le_scan_window);
731 bacpy(&cp.peer_addr, &conn->dst);
732 cp.peer_addr_type = conn->dst_type;
733 cp.own_address_type = own_addr_type;
734 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
735 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
736 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
737 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
738 cp.min_ce_len = cpu_to_le16(0x0000);
739 cp.max_ce_len = cpu_to_le16(0x0000);
740
741 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
742
743 conn->state = BT_CONNECT;
744 clear_bit(HCI_CONN_SCANNING, &conn->flags);
745 }
746
747 static void hci_req_directed_advertising(struct hci_request *req,
748 struct hci_conn *conn)
749 {
750 struct hci_dev *hdev = req->hdev;
751 struct hci_cp_le_set_adv_param cp;
752 u8 own_addr_type;
753 u8 enable;
754
755 /* Clear the HCI_LE_ADV bit temporarily so that the
756 * hci_update_random_address knows that it's safe to go ahead
757 * and write a new random address. The flag will be set back on
758 * as soon as the SET_ADV_ENABLE HCI command completes.
759 */
760 hci_dev_clear_flag(hdev, HCI_LE_ADV);
761
762 /* Set require_privacy to false so that the remote device has a
763 * chance of identifying us.
764 */
765 if (hci_update_random_address(req, false, &own_addr_type) < 0)
766 return;
767
768 memset(&cp, 0, sizeof(cp));
769 cp.type = LE_ADV_DIRECT_IND;
770 cp.own_address_type = own_addr_type;
771 cp.direct_addr_type = conn->dst_type;
772 bacpy(&cp.direct_addr, &conn->dst);
773 cp.channel_map = hdev->le_adv_channel_map;
774
775 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
776
777 enable = 0x01;
778 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
779
780 conn->state = BT_CONNECT;
781 }
782
783 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
784 u8 dst_type, u8 sec_level, u16 conn_timeout,
785 u8 role)
786 {
787 struct hci_conn_params *params;
788 struct hci_conn *conn, *conn_unfinished;
789 struct smp_irk *irk;
790 struct hci_request req;
791 int err;
792
793 /* Let's make sure that le is enabled.*/
794 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
795 if (lmp_le_capable(hdev))
796 return ERR_PTR(-ECONNREFUSED);
797
798 return ERR_PTR(-EOPNOTSUPP);
799 }
800
801 /* Some devices send ATT messages as soon as the physical link is
802 * established. To be able to handle these ATT messages, the user-
803 * space first establishes the connection and then starts the pairing
804 * process.
805 *
806 * So if a hci_conn object already exists for the following connection
807 * attempt, we simply update pending_sec_level and auth_type fields
808 * and return the object found.
809 */
810 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
811 conn_unfinished = NULL;
812 if (conn) {
813 if (conn->state == BT_CONNECT &&
814 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
815 BT_DBG("will continue unfinished conn %pMR", dst);
816 conn_unfinished = conn;
817 } else {
818 if (conn->pending_sec_level < sec_level)
819 conn->pending_sec_level = sec_level;
820 goto done;
821 }
822 }
823
824 /* Since the controller supports only one LE connection attempt at a
825 * time, we return -EBUSY if there is any connection attempt running.
826 */
827 if (hci_lookup_le_connect(hdev))
828 return ERR_PTR(-EBUSY);
829
830 /* When given an identity address with existing identity
831 * resolving key, the connection needs to be established
832 * to a resolvable random address.
833 *
834 * Storing the resolvable random address is required here
835 * to handle connection failures. The address will later
836 * be resolved back into the original identity address
837 * from the connect request.
838 */
839 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
840 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
841 dst = &irk->rpa;
842 dst_type = ADDR_LE_DEV_RANDOM;
843 }
844
845 if (conn_unfinished) {
846 conn = conn_unfinished;
847 bacpy(&conn->dst, dst);
848 } else {
849 conn = hci_conn_add(hdev, LE_LINK, dst, role);
850 }
851
852 if (!conn)
853 return ERR_PTR(-ENOMEM);
854
855 conn->dst_type = dst_type;
856 conn->sec_level = BT_SECURITY_LOW;
857 conn->conn_timeout = conn_timeout;
858
859 if (!conn_unfinished)
860 conn->pending_sec_level = sec_level;
861
862 hci_req_init(&req, hdev);
863
864 /* Disable advertising if we're active. For master role
865 * connections most controllers will refuse to connect if
866 * advertising is enabled, and for slave role connections we
867 * anyway have to disable it in order to start directed
868 * advertising.
869 */
870 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
871 u8 enable = 0x00;
872 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
873 &enable);
874 }
875
876 /* If requested to connect as slave use directed advertising */
877 if (conn->role == HCI_ROLE_SLAVE) {
878 /* If we're active scanning most controllers are unable
879 * to initiate advertising. Simply reject the attempt.
880 */
881 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
882 hdev->le_scan_type == LE_SCAN_ACTIVE) {
883 skb_queue_purge(&req.cmd_q);
884 hci_conn_del(conn);
885 return ERR_PTR(-EBUSY);
886 }
887
888 hci_req_directed_advertising(&req, conn);
889 goto create_conn;
890 }
891
892 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
893 if (params) {
894 conn->le_conn_min_interval = params->conn_min_interval;
895 conn->le_conn_max_interval = params->conn_max_interval;
896 conn->le_conn_latency = params->conn_latency;
897 conn->le_supv_timeout = params->supervision_timeout;
898 } else {
899 conn->le_conn_min_interval = hdev->le_conn_min_interval;
900 conn->le_conn_max_interval = hdev->le_conn_max_interval;
901 conn->le_conn_latency = hdev->le_conn_latency;
902 conn->le_supv_timeout = hdev->le_supv_timeout;
903 }
904
905 /* If controller is scanning, we stop it since some controllers are
906 * not able to scan and connect at the same time. Also set the
907 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
908 * handler for scan disabling knows to set the correct discovery
909 * state.
910 */
911 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
912 hci_req_add_le_scan_disable(&req);
913 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
914 }
915
916 hci_req_add_le_create_conn(&req, conn);
917
918 create_conn:
919 err = hci_req_run(&req, create_le_conn_complete);
920 if (err) {
921 hci_conn_del(conn);
922 return ERR_PTR(err);
923 }
924
925 done:
926 /* If this is continuation of connect started by hci_connect_le_scan,
927 * it already called hci_conn_hold and calling it again would mess the
928 * counter.
929 */
930 if (!conn_unfinished)
931 hci_conn_hold(conn);
932
933 return conn;
934 }
935
936 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
937 {
938 struct hci_conn *conn;
939
940 conn = hci_conn_hash_lookup_le(hdev, addr, type);
941 if (!conn)
942 return false;
943
944 if (conn->state != BT_CONNECTED)
945 return false;
946
947 return true;
948 }
949
950 /* This function requires the caller holds hdev->lock */
951 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
952 bdaddr_t *addr, u8 addr_type)
953 {
954 struct hci_conn_params *params;
955
956 if (is_connected(hdev, addr, addr_type))
957 return -EISCONN;
958
959 params = hci_conn_params_lookup(hdev, addr, addr_type);
960 if (!params) {
961 params = hci_conn_params_add(hdev, addr, addr_type);
962 if (!params)
963 return -ENOMEM;
964
965 /* If we created new params, mark them to be deleted in
966 * hci_connect_le_scan_cleanup. It's different case than
967 * existing disabled params, those will stay after cleanup.
968 */
969 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
970 }
971
972 /* We're trying to connect, so make sure params are at pend_le_conns */
973 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
974 params->auto_connect == HCI_AUTO_CONN_REPORT ||
975 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
976 list_del_init(&params->action);
977 list_add(&params->action, &hdev->pend_le_conns);
978 }
979
980 params->explicit_connect = true;
981
982 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
983 params->auto_connect);
984
985 return 0;
986 }
987
988 /* This function requires the caller holds hdev->lock */
989 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
990 u8 dst_type, u8 sec_level,
991 u16 conn_timeout)
992 {
993 struct hci_conn *conn;
994
995 /* Let's make sure that le is enabled.*/
996 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
997 if (lmp_le_capable(hdev))
998 return ERR_PTR(-ECONNREFUSED);
999
1000 return ERR_PTR(-EOPNOTSUPP);
1001 }
1002
1003 /* Some devices send ATT messages as soon as the physical link is
1004 * established. To be able to handle these ATT messages, the user-
1005 * space first establishes the connection and then starts the pairing
1006 * process.
1007 *
1008 * So if a hci_conn object already exists for the following connection
1009 * attempt, we simply update pending_sec_level and auth_type fields
1010 * and return the object found.
1011 */
1012 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1013 if (conn) {
1014 if (conn->pending_sec_level < sec_level)
1015 conn->pending_sec_level = sec_level;
1016 goto done;
1017 }
1018
1019 BT_DBG("requesting refresh of dst_addr");
1020
1021 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1022 if (!conn)
1023 return ERR_PTR(-ENOMEM);
1024
1025 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0)
1026 return ERR_PTR(-EBUSY);
1027
1028 conn->state = BT_CONNECT;
1029 set_bit(HCI_CONN_SCANNING, &conn->flags);
1030 conn->dst_type = dst_type;
1031 conn->sec_level = BT_SECURITY_LOW;
1032 conn->pending_sec_level = sec_level;
1033 conn->conn_timeout = conn_timeout;
1034
1035 hci_update_background_scan(hdev);
1036
1037 done:
1038 hci_conn_hold(conn);
1039 return conn;
1040 }
1041
1042 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1043 u8 sec_level, u8 auth_type)
1044 {
1045 struct hci_conn *acl;
1046
1047 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1048 if (lmp_bredr_capable(hdev))
1049 return ERR_PTR(-ECONNREFUSED);
1050
1051 return ERR_PTR(-EOPNOTSUPP);
1052 }
1053
1054 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1055 if (!acl) {
1056 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1057 if (!acl)
1058 return ERR_PTR(-ENOMEM);
1059 }
1060
1061 hci_conn_hold(acl);
1062
1063 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1064 acl->sec_level = BT_SECURITY_LOW;
1065 acl->pending_sec_level = sec_level;
1066 acl->auth_type = auth_type;
1067 hci_acl_create_connection(acl);
1068 }
1069
1070 return acl;
1071 }
1072
1073 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1074 __u16 setting)
1075 {
1076 struct hci_conn *acl;
1077 struct hci_conn *sco;
1078
1079 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
1080 if (IS_ERR(acl))
1081 return acl;
1082
1083 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1084 if (!sco) {
1085 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1086 if (!sco) {
1087 hci_conn_drop(acl);
1088 return ERR_PTR(-ENOMEM);
1089 }
1090 }
1091
1092 acl->link = sco;
1093 sco->link = acl;
1094
1095 hci_conn_hold(sco);
1096
1097 sco->setting = setting;
1098
1099 if (acl->state == BT_CONNECTED &&
1100 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1101 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1102 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1103
1104 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1105 /* defer SCO setup until mode change completed */
1106 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1107 return sco;
1108 }
1109
1110 hci_sco_setup(acl, 0x00);
1111 }
1112
1113 return sco;
1114 }
1115
1116 /* Check link security requirement */
1117 int hci_conn_check_link_mode(struct hci_conn *conn)
1118 {
1119 BT_DBG("hcon %p", conn);
1120
1121 /* In Secure Connections Only mode, it is required that Secure
1122 * Connections is used and the link is encrypted with AES-CCM
1123 * using a P-256 authenticated combination key.
1124 */
1125 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1126 if (!hci_conn_sc_enabled(conn) ||
1127 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1128 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1129 return 0;
1130 }
1131
1132 if (hci_conn_ssp_enabled(conn) &&
1133 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1134 return 0;
1135
1136 return 1;
1137 }
1138
1139 /* Authenticate remote device */
1140 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1141 {
1142 BT_DBG("hcon %p", conn);
1143
1144 if (conn->pending_sec_level > sec_level)
1145 sec_level = conn->pending_sec_level;
1146
1147 if (sec_level > conn->sec_level)
1148 conn->pending_sec_level = sec_level;
1149 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1150 return 1;
1151
1152 /* Make sure we preserve an existing MITM requirement*/
1153 auth_type |= (conn->auth_type & 0x01);
1154
1155 conn->auth_type = auth_type;
1156
1157 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1158 struct hci_cp_auth_requested cp;
1159
1160 cp.handle = cpu_to_le16(conn->handle);
1161 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1162 sizeof(cp), &cp);
1163
1164 /* If we're already encrypted set the REAUTH_PEND flag,
1165 * otherwise set the ENCRYPT_PEND.
1166 */
1167 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1168 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1169 else
1170 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1171 }
1172
1173 return 0;
1174 }
1175
1176 /* Encrypt the the link */
1177 static void hci_conn_encrypt(struct hci_conn *conn)
1178 {
1179 BT_DBG("hcon %p", conn);
1180
1181 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1182 struct hci_cp_set_conn_encrypt cp;
1183 cp.handle = cpu_to_le16(conn->handle);
1184 cp.encrypt = 0x01;
1185 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1186 &cp);
1187 }
1188 }
1189
1190 /* Enable security */
1191 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1192 bool initiator)
1193 {
1194 BT_DBG("hcon %p", conn);
1195
1196 if (conn->type == LE_LINK)
1197 return smp_conn_security(conn, sec_level);
1198
1199 /* For sdp we don't need the link key. */
1200 if (sec_level == BT_SECURITY_SDP)
1201 return 1;
1202
1203 /* For non 2.1 devices and low security level we don't need the link
1204 key. */
1205 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1206 return 1;
1207
1208 /* For other security levels we need the link key. */
1209 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1210 goto auth;
1211
1212 /* An authenticated FIPS approved combination key has sufficient
1213 * security for security level 4. */
1214 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1215 sec_level == BT_SECURITY_FIPS)
1216 goto encrypt;
1217
1218 /* An authenticated combination key has sufficient security for
1219 security level 3. */
1220 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1221 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1222 sec_level == BT_SECURITY_HIGH)
1223 goto encrypt;
1224
1225 /* An unauthenticated combination key has sufficient security for
1226 security level 1 and 2. */
1227 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1228 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1229 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1230 goto encrypt;
1231
1232 /* A combination key has always sufficient security for the security
1233 levels 1 or 2. High security level requires the combination key
1234 is generated using maximum PIN code length (16).
1235 For pre 2.1 units. */
1236 if (conn->key_type == HCI_LK_COMBINATION &&
1237 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1238 conn->pin_length == 16))
1239 goto encrypt;
1240
1241 auth:
1242 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1243 return 0;
1244
1245 if (initiator)
1246 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1247
1248 if (!hci_conn_auth(conn, sec_level, auth_type))
1249 return 0;
1250
1251 encrypt:
1252 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1253 return 1;
1254
1255 hci_conn_encrypt(conn);
1256 return 0;
1257 }
1258 EXPORT_SYMBOL(hci_conn_security);
1259
1260 /* Check secure link requirement */
1261 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1262 {
1263 BT_DBG("hcon %p", conn);
1264
1265 /* Accept if non-secure or higher security level is required */
1266 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1267 return 1;
1268
1269 /* Accept if secure or higher security level is already present */
1270 if (conn->sec_level == BT_SECURITY_HIGH ||
1271 conn->sec_level == BT_SECURITY_FIPS)
1272 return 1;
1273
1274 /* Reject not secure link */
1275 return 0;
1276 }
1277 EXPORT_SYMBOL(hci_conn_check_secure);
1278
1279 /* Switch role */
1280 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1281 {
1282 BT_DBG("hcon %p", conn);
1283
1284 if (role == conn->role)
1285 return 1;
1286
1287 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1288 struct hci_cp_switch_role cp;
1289 bacpy(&cp.bdaddr, &conn->dst);
1290 cp.role = role;
1291 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1292 }
1293
1294 return 0;
1295 }
1296 EXPORT_SYMBOL(hci_conn_switch_role);
1297
1298 /* Enter active mode */
1299 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1300 {
1301 struct hci_dev *hdev = conn->hdev;
1302
1303 BT_DBG("hcon %p mode %d", conn, conn->mode);
1304
1305 if (conn->mode != HCI_CM_SNIFF)
1306 goto timer;
1307
1308 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1309 goto timer;
1310
1311 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1312 struct hci_cp_exit_sniff_mode cp;
1313 cp.handle = cpu_to_le16(conn->handle);
1314 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1315 }
1316
1317 timer:
1318 if (hdev->idle_timeout > 0)
1319 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1320 msecs_to_jiffies(hdev->idle_timeout));
1321 }
1322
1323 /* Drop all connection on the device */
1324 void hci_conn_hash_flush(struct hci_dev *hdev)
1325 {
1326 struct hci_conn_hash *h = &hdev->conn_hash;
1327 struct hci_conn *c, *n;
1328
1329 BT_DBG("hdev %s", hdev->name);
1330
1331 list_for_each_entry_safe(c, n, &h->list, list) {
1332 c->state = BT_CLOSED;
1333
1334 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1335 hci_conn_del(c);
1336 }
1337 }
1338
1339 /* Check pending connect attempts */
1340 void hci_conn_check_pending(struct hci_dev *hdev)
1341 {
1342 struct hci_conn *conn;
1343
1344 BT_DBG("hdev %s", hdev->name);
1345
1346 hci_dev_lock(hdev);
1347
1348 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1349 if (conn)
1350 hci_acl_create_connection(conn);
1351
1352 hci_dev_unlock(hdev);
1353 }
1354
1355 static u32 get_link_mode(struct hci_conn *conn)
1356 {
1357 u32 link_mode = 0;
1358
1359 if (conn->role == HCI_ROLE_MASTER)
1360 link_mode |= HCI_LM_MASTER;
1361
1362 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1363 link_mode |= HCI_LM_ENCRYPT;
1364
1365 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1366 link_mode |= HCI_LM_AUTH;
1367
1368 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1369 link_mode |= HCI_LM_SECURE;
1370
1371 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1372 link_mode |= HCI_LM_FIPS;
1373
1374 return link_mode;
1375 }
1376
1377 int hci_get_conn_list(void __user *arg)
1378 {
1379 struct hci_conn *c;
1380 struct hci_conn_list_req req, *cl;
1381 struct hci_conn_info *ci;
1382 struct hci_dev *hdev;
1383 int n = 0, size, err;
1384
1385 if (copy_from_user(&req, arg, sizeof(req)))
1386 return -EFAULT;
1387
1388 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1389 return -EINVAL;
1390
1391 size = sizeof(req) + req.conn_num * sizeof(*ci);
1392
1393 cl = kmalloc(size, GFP_KERNEL);
1394 if (!cl)
1395 return -ENOMEM;
1396
1397 hdev = hci_dev_get(req.dev_id);
1398 if (!hdev) {
1399 kfree(cl);
1400 return -ENODEV;
1401 }
1402
1403 ci = cl->conn_info;
1404
1405 hci_dev_lock(hdev);
1406 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1407 bacpy(&(ci + n)->bdaddr, &c->dst);
1408 (ci + n)->handle = c->handle;
1409 (ci + n)->type = c->type;
1410 (ci + n)->out = c->out;
1411 (ci + n)->state = c->state;
1412 (ci + n)->link_mode = get_link_mode(c);
1413 if (++n >= req.conn_num)
1414 break;
1415 }
1416 hci_dev_unlock(hdev);
1417
1418 cl->dev_id = hdev->id;
1419 cl->conn_num = n;
1420 size = sizeof(req) + n * sizeof(*ci);
1421
1422 hci_dev_put(hdev);
1423
1424 err = copy_to_user(arg, cl, size);
1425 kfree(cl);
1426
1427 return err ? -EFAULT : 0;
1428 }
1429
1430 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1431 {
1432 struct hci_conn_info_req req;
1433 struct hci_conn_info ci;
1434 struct hci_conn *conn;
1435 char __user *ptr = arg + sizeof(req);
1436
1437 if (copy_from_user(&req, arg, sizeof(req)))
1438 return -EFAULT;
1439
1440 hci_dev_lock(hdev);
1441 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1442 if (conn) {
1443 bacpy(&ci.bdaddr, &conn->dst);
1444 ci.handle = conn->handle;
1445 ci.type = conn->type;
1446 ci.out = conn->out;
1447 ci.state = conn->state;
1448 ci.link_mode = get_link_mode(conn);
1449 }
1450 hci_dev_unlock(hdev);
1451
1452 if (!conn)
1453 return -ENOENT;
1454
1455 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1456 }
1457
1458 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1459 {
1460 struct hci_auth_info_req req;
1461 struct hci_conn *conn;
1462
1463 if (copy_from_user(&req, arg, sizeof(req)))
1464 return -EFAULT;
1465
1466 hci_dev_lock(hdev);
1467 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1468 if (conn)
1469 req.type = conn->auth_type;
1470 hci_dev_unlock(hdev);
1471
1472 if (!conn)
1473 return -ENOENT;
1474
1475 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1476 }
1477
1478 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1479 {
1480 struct hci_dev *hdev = conn->hdev;
1481 struct hci_chan *chan;
1482
1483 BT_DBG("%s hcon %p", hdev->name, conn);
1484
1485 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1486 BT_DBG("Refusing to create new hci_chan");
1487 return NULL;
1488 }
1489
1490 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1491 if (!chan)
1492 return NULL;
1493
1494 chan->conn = hci_conn_get(conn);
1495 skb_queue_head_init(&chan->data_q);
1496 chan->state = BT_CONNECTED;
1497
1498 list_add_rcu(&chan->list, &conn->chan_list);
1499
1500 return chan;
1501 }
1502
1503 void hci_chan_del(struct hci_chan *chan)
1504 {
1505 struct hci_conn *conn = chan->conn;
1506 struct hci_dev *hdev = conn->hdev;
1507
1508 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1509
1510 list_del_rcu(&chan->list);
1511
1512 synchronize_rcu();
1513
1514 /* Prevent new hci_chan's to be created for this hci_conn */
1515 set_bit(HCI_CONN_DROP, &conn->flags);
1516
1517 hci_conn_put(conn);
1518
1519 skb_queue_purge(&chan->data_q);
1520 kfree(chan);
1521 }
1522
1523 void hci_chan_list_flush(struct hci_conn *conn)
1524 {
1525 struct hci_chan *chan, *n;
1526
1527 BT_DBG("hcon %p", conn);
1528
1529 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1530 hci_chan_del(chan);
1531 }
1532
1533 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1534 __u16 handle)
1535 {
1536 struct hci_chan *hchan;
1537
1538 list_for_each_entry(hchan, &hcon->chan_list, list) {
1539 if (hchan->handle == handle)
1540 return hchan;
1541 }
1542
1543 return NULL;
1544 }
1545
1546 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1547 {
1548 struct hci_conn_hash *h = &hdev->conn_hash;
1549 struct hci_conn *hcon;
1550 struct hci_chan *hchan = NULL;
1551
1552 rcu_read_lock();
1553
1554 list_for_each_entry_rcu(hcon, &h->list, list) {
1555 hchan = __hci_chan_lookup_handle(hcon, handle);
1556 if (hchan)
1557 break;
1558 }
1559
1560 rcu_read_unlock();
1561
1562 return hchan;
1563 }
This page took 0.07044 seconds and 5 git commands to generate.