Merge tag 'wireless-drivers-next-for-davem-2016-07-13' of git://git.kernel.org/pub...
[deliverable/linux.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64 {
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76 {
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124 {
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136 {
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167 done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_PRIMARY:
264 bredr_init(req);
265 break;
266 case HCI_AMP:
267 amp_init1(req);
268 break;
269 default:
270 BT_ERR("Unknown device type %d", hdev->dev_type);
271 break;
272 }
273
274 return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279 __le16 param;
280 __u8 flt_type;
281
282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285 /* Read Class of Device */
286 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288 /* Read Local Name */
289 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291 /* Read Voice Setting */
292 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294 /* Read Number of Supported IAC */
295 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297 /* Read Current IAC LAP */
298 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300 /* Clear Event Filters */
301 flt_type = HCI_FLT_CLEAR_ALL;
302 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304 /* Connection accept timeout ~20 secs */
305 param = cpu_to_le16(0x7d00);
306 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311 struct hci_dev *hdev = req->hdev;
312
313 /* Read LE Buffer Size */
314 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316 /* Read LE Local Supported Features */
317 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319 /* Read LE Supported States */
320 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322 /* LE-only controllers have LE implicitly enabled */
323 if (!lmp_bredr_capable(hdev))
324 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329 struct hci_dev *hdev = req->hdev;
330
331 /* The second byte is 0xff instead of 0x9f (two reserved bits
332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 * command otherwise.
334 */
335 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 * any event mask for pre 1.2 devices.
339 */
340 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 return;
342
343 if (lmp_bredr_capable(hdev)) {
344 events[4] |= 0x01; /* Flow Specification Complete */
345 } else {
346 /* Use a different default for LE-only devices */
347 memset(events, 0, sizeof(events));
348 events[1] |= 0x20; /* Command Complete */
349 events[1] |= 0x40; /* Command Status */
350 events[1] |= 0x80; /* Hardware Error */
351
352 /* If the controller supports the Disconnect command, enable
353 * the corresponding event. In addition enable packet flow
354 * control related events.
355 */
356 if (hdev->commands[0] & 0x20) {
357 events[0] |= 0x10; /* Disconnection Complete */
358 events[2] |= 0x04; /* Number of Completed Packets */
359 events[3] |= 0x02; /* Data Buffer Overflow */
360 }
361
362 /* If the controller supports the Read Remote Version
363 * Information command, enable the corresponding event.
364 */
365 if (hdev->commands[2] & 0x80)
366 events[1] |= 0x08; /* Read Remote Version Information
367 * Complete
368 */
369
370 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 events[0] |= 0x80; /* Encryption Change */
372 events[5] |= 0x80; /* Encryption Key Refresh Complete */
373 }
374 }
375
376 if (lmp_inq_rssi_capable(hdev) ||
377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380 if (lmp_ext_feat_capable(hdev))
381 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383 if (lmp_esco_capable(hdev)) {
384 events[5] |= 0x08; /* Synchronous Connection Complete */
385 events[5] |= 0x10; /* Synchronous Connection Changed */
386 }
387
388 if (lmp_sniffsubr_capable(hdev))
389 events[5] |= 0x20; /* Sniff Subrating */
390
391 if (lmp_pause_enc_capable(hdev))
392 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394 if (lmp_ext_inq_capable(hdev))
395 events[5] |= 0x40; /* Extended Inquiry Result */
396
397 if (lmp_no_flush_capable(hdev))
398 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400 if (lmp_lsto_capable(hdev))
401 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403 if (lmp_ssp_capable(hdev)) {
404 events[6] |= 0x01; /* IO Capability Request */
405 events[6] |= 0x02; /* IO Capability Response */
406 events[6] |= 0x04; /* User Confirmation Request */
407 events[6] |= 0x08; /* User Passkey Request */
408 events[6] |= 0x10; /* Remote OOB Data Request */
409 events[6] |= 0x20; /* Simple Pairing Complete */
410 events[7] |= 0x04; /* User Passkey Notification */
411 events[7] |= 0x08; /* Keypress Notification */
412 events[7] |= 0x10; /* Remote Host Supported
413 * Features Notification
414 */
415 }
416
417 if (lmp_le_capable(hdev))
418 events[7] |= 0x20; /* LE Meta-Event */
419
420 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425 struct hci_dev *hdev = req->hdev;
426
427 if (hdev->dev_type == HCI_AMP)
428 return amp_init2(req);
429
430 if (lmp_bredr_capable(hdev))
431 bredr_setup(req);
432 else
433 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435 if (lmp_le_capable(hdev))
436 le_setup(req);
437
438 /* All Bluetooth 1.2 and later controllers should support the
439 * HCI command for reading the local supported commands.
440 *
441 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 * but do not have support for this command. If that is the case,
443 * the driver can quirk the behavior and skip reading the local
444 * supported commands.
445 */
446 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450 if (lmp_ssp_capable(hdev)) {
451 /* When SSP is available, then the host features page
452 * should also be available as well. However some
453 * controllers list the max_page as 0 as long as SSP
454 * has not been enabled. To achieve proper debugging
455 * output, force the minimum max_page to 1 at least.
456 */
457 hdev->max_page = 0x01;
458
459 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 u8 mode = 0x01;
461
462 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 sizeof(mode), &mode);
464 } else {
465 struct hci_cp_write_eir cp;
466
467 memset(hdev->eir, 0, sizeof(hdev->eir));
468 memset(&cp, 0, sizeof(cp));
469
470 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471 }
472 }
473
474 if (lmp_inq_rssi_capable(hdev) ||
475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 u8 mode;
477
478 /* If Extended Inquiry Result events are supported, then
479 * they are clearly preferred over Inquiry Result with RSSI
480 * events.
481 */
482 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485 }
486
487 if (lmp_inq_tx_pwr_capable(hdev))
488 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490 if (lmp_ext_feat_capable(hdev)) {
491 struct hci_cp_read_local_ext_features cp;
492
493 cp.page = 0x01;
494 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 sizeof(cp), &cp);
496 }
497
498 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 u8 enable = 1;
500 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 &enable);
502 }
503
504 return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509 struct hci_dev *hdev = req->hdev;
510 struct hci_cp_write_def_link_policy cp;
511 u16 link_policy = 0;
512
513 if (lmp_rswitch_capable(hdev))
514 link_policy |= HCI_LP_RSWITCH;
515 if (lmp_hold_capable(hdev))
516 link_policy |= HCI_LP_HOLD;
517 if (lmp_sniff_capable(hdev))
518 link_policy |= HCI_LP_SNIFF;
519 if (lmp_park_capable(hdev))
520 link_policy |= HCI_LP_PARK;
521
522 cp.policy = cpu_to_le16(link_policy);
523 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528 struct hci_dev *hdev = req->hdev;
529 struct hci_cp_write_le_host_supported cp;
530
531 /* LE-only devices do not support explicit enablement */
532 if (!lmp_bredr_capable(hdev))
533 return;
534
535 memset(&cp, 0, sizeof(cp));
536
537 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 cp.le = 0x01;
539 cp.simul = 0x00;
540 }
541
542 if (cp.le != lmp_host_le_capable(hdev))
543 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549 struct hci_dev *hdev = req->hdev;
550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551
552 /* If Connectionless Slave Broadcast master role is supported
553 * enable all necessary events for it.
554 */
555 if (lmp_csb_master_capable(hdev)) {
556 events[1] |= 0x40; /* Triggered Clock Capture */
557 events[1] |= 0x80; /* Synchronization Train Complete */
558 events[2] |= 0x10; /* Slave Page Response Timeout */
559 events[2] |= 0x20; /* CSB Channel Map Change */
560 }
561
562 /* If Connectionless Slave Broadcast slave role is supported
563 * enable all necessary events for it.
564 */
565 if (lmp_csb_slave_capable(hdev)) {
566 events[2] |= 0x01; /* Synchronization Train Received */
567 events[2] |= 0x02; /* CSB Receive */
568 events[2] |= 0x04; /* CSB Timeout */
569 events[2] |= 0x08; /* Truncated Page Complete */
570 }
571
572 /* Enable Authenticated Payload Timeout Expired event if supported */
573 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574 events[2] |= 0x80;
575
576 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
577 }
578
579 static int hci_init3_req(struct hci_request *req, unsigned long opt)
580 {
581 struct hci_dev *hdev = req->hdev;
582 u8 p;
583
584 hci_setup_event_mask(req);
585
586 if (hdev->commands[6] & 0x20 &&
587 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588 struct hci_cp_read_stored_link_key cp;
589
590 bacpy(&cp.bdaddr, BDADDR_ANY);
591 cp.read_all = 0x01;
592 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
593 }
594
595 if (hdev->commands[5] & 0x10)
596 hci_setup_link_policy(req);
597
598 if (hdev->commands[8] & 0x01)
599 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
600
601 /* Some older Broadcom based Bluetooth 1.2 controllers do not
602 * support the Read Page Scan Type command. Check support for
603 * this command in the bit mask of supported commands.
604 */
605 if (hdev->commands[13] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
607
608 if (lmp_le_capable(hdev)) {
609 u8 events[8];
610
611 memset(events, 0, sizeof(events));
612
613 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614 events[0] |= 0x10; /* LE Long Term Key Request */
615
616 /* If controller supports the Connection Parameters Request
617 * Link Layer Procedure, enable the corresponding event.
618 */
619 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620 events[0] |= 0x20; /* LE Remote Connection
621 * Parameter Request
622 */
623
624 /* If the controller supports the Data Length Extension
625 * feature, enable the corresponding event.
626 */
627 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628 events[0] |= 0x40; /* LE Data Length Change */
629
630 /* If the controller supports Extended Scanner Filter
631 * Policies, enable the correspondig event.
632 */
633 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634 events[1] |= 0x04; /* LE Direct Advertising
635 * Report
636 */
637
638 /* If the controller supports the LE Set Scan Enable command,
639 * enable the corresponding advertising report event.
640 */
641 if (hdev->commands[26] & 0x08)
642 events[0] |= 0x02; /* LE Advertising Report */
643
644 /* If the controller supports the LE Create Connection
645 * command, enable the corresponding event.
646 */
647 if (hdev->commands[26] & 0x10)
648 events[0] |= 0x01; /* LE Connection Complete */
649
650 /* If the controller supports the LE Connection Update
651 * command, enable the corresponding event.
652 */
653 if (hdev->commands[27] & 0x04)
654 events[0] |= 0x04; /* LE Connection Update
655 * Complete
656 */
657
658 /* If the controller supports the LE Read Remote Used Features
659 * command, enable the corresponding event.
660 */
661 if (hdev->commands[27] & 0x20)
662 events[0] |= 0x08; /* LE Read Remote Used
663 * Features Complete
664 */
665
666 /* If the controller supports the LE Read Local P-256
667 * Public Key command, enable the corresponding event.
668 */
669 if (hdev->commands[34] & 0x02)
670 events[0] |= 0x80; /* LE Read Local P-256
671 * Public Key Complete
672 */
673
674 /* If the controller supports the LE Generate DHKey
675 * command, enable the corresponding event.
676 */
677 if (hdev->commands[34] & 0x04)
678 events[1] |= 0x01; /* LE Generate DHKey Complete */
679
680 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
681 events);
682
683 if (hdev->commands[25] & 0x40) {
684 /* Read LE Advertising Channel TX Power */
685 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
686 }
687
688 if (hdev->commands[26] & 0x40) {
689 /* Read LE White List Size */
690 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
691 0, NULL);
692 }
693
694 if (hdev->commands[26] & 0x80) {
695 /* Clear LE White List */
696 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
697 }
698
699 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
700 /* Read LE Maximum Data Length */
701 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
702
703 /* Read LE Suggested Default Data Length */
704 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
705 }
706
707 hci_set_le_support(req);
708 }
709
710 /* Read features beyond page 1 if available */
711 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
712 struct hci_cp_read_local_ext_features cp;
713
714 cp.page = p;
715 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
716 sizeof(cp), &cp);
717 }
718
719 return 0;
720 }
721
722 static int hci_init4_req(struct hci_request *req, unsigned long opt)
723 {
724 struct hci_dev *hdev = req->hdev;
725
726 /* Some Broadcom based Bluetooth controllers do not support the
727 * Delete Stored Link Key command. They are clearly indicating its
728 * absence in the bit mask of supported commands.
729 *
730 * Check the supported commands and only if the the command is marked
731 * as supported send it. If not supported assume that the controller
732 * does not have actual support for stored link keys which makes this
733 * command redundant anyway.
734 *
735 * Some controllers indicate that they support handling deleting
736 * stored link keys, but they don't. The quirk lets a driver
737 * just disable this command.
738 */
739 if (hdev->commands[6] & 0x80 &&
740 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
741 struct hci_cp_delete_stored_link_key cp;
742
743 bacpy(&cp.bdaddr, BDADDR_ANY);
744 cp.delete_all = 0x01;
745 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
746 sizeof(cp), &cp);
747 }
748
749 /* Set event mask page 2 if the HCI command for it is supported */
750 if (hdev->commands[22] & 0x04)
751 hci_set_event_mask_page_2(req);
752
753 /* Read local codec list if the HCI command is supported */
754 if (hdev->commands[29] & 0x20)
755 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
756
757 /* Get MWS transport configuration if the HCI command is supported */
758 if (hdev->commands[30] & 0x08)
759 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
760
761 /* Check for Synchronization Train support */
762 if (lmp_sync_train_capable(hdev))
763 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
764
765 /* Enable Secure Connections if supported and configured */
766 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
767 bredr_sc_enabled(hdev)) {
768 u8 support = 0x01;
769
770 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
771 sizeof(support), &support);
772 }
773
774 return 0;
775 }
776
777 static int __hci_init(struct hci_dev *hdev)
778 {
779 int err;
780
781 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
782 if (err < 0)
783 return err;
784
785 if (hci_dev_test_flag(hdev, HCI_SETUP))
786 hci_debugfs_create_basic(hdev);
787
788 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
789 if (err < 0)
790 return err;
791
792 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
793 * BR/EDR/LE type controllers. AMP controllers only need the
794 * first two stages of init.
795 */
796 if (hdev->dev_type != HCI_PRIMARY)
797 return 0;
798
799 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
800 if (err < 0)
801 return err;
802
803 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
804 if (err < 0)
805 return err;
806
807 /* This function is only called when the controller is actually in
808 * configured state. When the controller is marked as unconfigured,
809 * this initialization procedure is not run.
810 *
811 * It means that it is possible that a controller runs through its
812 * setup phase and then discovers missing settings. If that is the
813 * case, then this function will not be called. It then will only
814 * be called during the config phase.
815 *
816 * So only when in setup phase or config phase, create the debugfs
817 * entries and register the SMP channels.
818 */
819 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
820 !hci_dev_test_flag(hdev, HCI_CONFIG))
821 return 0;
822
823 hci_debugfs_create_common(hdev);
824
825 if (lmp_bredr_capable(hdev))
826 hci_debugfs_create_bredr(hdev);
827
828 if (lmp_le_capable(hdev))
829 hci_debugfs_create_le(hdev);
830
831 return 0;
832 }
833
834 static int hci_init0_req(struct hci_request *req, unsigned long opt)
835 {
836 struct hci_dev *hdev = req->hdev;
837
838 BT_DBG("%s %ld", hdev->name, opt);
839
840 /* Reset */
841 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
842 hci_reset_req(req, 0);
843
844 /* Read Local Version */
845 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
846
847 /* Read BD Address */
848 if (hdev->set_bdaddr)
849 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
850
851 return 0;
852 }
853
854 static int __hci_unconf_init(struct hci_dev *hdev)
855 {
856 int err;
857
858 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
859 return 0;
860
861 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
862 if (err < 0)
863 return err;
864
865 if (hci_dev_test_flag(hdev, HCI_SETUP))
866 hci_debugfs_create_basic(hdev);
867
868 return 0;
869 }
870
871 static int hci_scan_req(struct hci_request *req, unsigned long opt)
872 {
873 __u8 scan = opt;
874
875 BT_DBG("%s %x", req->hdev->name, scan);
876
877 /* Inquiry and Page scans */
878 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
879 return 0;
880 }
881
882 static int hci_auth_req(struct hci_request *req, unsigned long opt)
883 {
884 __u8 auth = opt;
885
886 BT_DBG("%s %x", req->hdev->name, auth);
887
888 /* Authentication */
889 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
890 return 0;
891 }
892
893 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
894 {
895 __u8 encrypt = opt;
896
897 BT_DBG("%s %x", req->hdev->name, encrypt);
898
899 /* Encryption */
900 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
901 return 0;
902 }
903
904 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
905 {
906 __le16 policy = cpu_to_le16(opt);
907
908 BT_DBG("%s %x", req->hdev->name, policy);
909
910 /* Default link policy */
911 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
912 return 0;
913 }
914
915 /* Get HCI device by index.
916 * Device is held on return. */
917 struct hci_dev *hci_dev_get(int index)
918 {
919 struct hci_dev *hdev = NULL, *d;
920
921 BT_DBG("%d", index);
922
923 if (index < 0)
924 return NULL;
925
926 read_lock(&hci_dev_list_lock);
927 list_for_each_entry(d, &hci_dev_list, list) {
928 if (d->id == index) {
929 hdev = hci_dev_hold(d);
930 break;
931 }
932 }
933 read_unlock(&hci_dev_list_lock);
934 return hdev;
935 }
936
937 /* ---- Inquiry support ---- */
938
939 bool hci_discovery_active(struct hci_dev *hdev)
940 {
941 struct discovery_state *discov = &hdev->discovery;
942
943 switch (discov->state) {
944 case DISCOVERY_FINDING:
945 case DISCOVERY_RESOLVING:
946 return true;
947
948 default:
949 return false;
950 }
951 }
952
953 void hci_discovery_set_state(struct hci_dev *hdev, int state)
954 {
955 int old_state = hdev->discovery.state;
956
957 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
958
959 if (old_state == state)
960 return;
961
962 hdev->discovery.state = state;
963
964 switch (state) {
965 case DISCOVERY_STOPPED:
966 hci_update_background_scan(hdev);
967
968 if (old_state != DISCOVERY_STARTING)
969 mgmt_discovering(hdev, 0);
970 break;
971 case DISCOVERY_STARTING:
972 break;
973 case DISCOVERY_FINDING:
974 mgmt_discovering(hdev, 1);
975 break;
976 case DISCOVERY_RESOLVING:
977 break;
978 case DISCOVERY_STOPPING:
979 break;
980 }
981 }
982
983 void hci_inquiry_cache_flush(struct hci_dev *hdev)
984 {
985 struct discovery_state *cache = &hdev->discovery;
986 struct inquiry_entry *p, *n;
987
988 list_for_each_entry_safe(p, n, &cache->all, all) {
989 list_del(&p->all);
990 kfree(p);
991 }
992
993 INIT_LIST_HEAD(&cache->unknown);
994 INIT_LIST_HEAD(&cache->resolve);
995 }
996
997 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
998 bdaddr_t *bdaddr)
999 {
1000 struct discovery_state *cache = &hdev->discovery;
1001 struct inquiry_entry *e;
1002
1003 BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005 list_for_each_entry(e, &cache->all, all) {
1006 if (!bacmp(&e->data.bdaddr, bdaddr))
1007 return e;
1008 }
1009
1010 return NULL;
1011 }
1012
1013 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014 bdaddr_t *bdaddr)
1015 {
1016 struct discovery_state *cache = &hdev->discovery;
1017 struct inquiry_entry *e;
1018
1019 BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021 list_for_each_entry(e, &cache->unknown, list) {
1022 if (!bacmp(&e->data.bdaddr, bdaddr))
1023 return e;
1024 }
1025
1026 return NULL;
1027 }
1028
1029 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030 bdaddr_t *bdaddr,
1031 int state)
1032 {
1033 struct discovery_state *cache = &hdev->discovery;
1034 struct inquiry_entry *e;
1035
1036 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038 list_for_each_entry(e, &cache->resolve, list) {
1039 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040 return e;
1041 if (!bacmp(&e->data.bdaddr, bdaddr))
1042 return e;
1043 }
1044
1045 return NULL;
1046 }
1047
1048 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049 struct inquiry_entry *ie)
1050 {
1051 struct discovery_state *cache = &hdev->discovery;
1052 struct list_head *pos = &cache->resolve;
1053 struct inquiry_entry *p;
1054
1055 list_del(&ie->list);
1056
1057 list_for_each_entry(p, &cache->resolve, list) {
1058 if (p->name_state != NAME_PENDING &&
1059 abs(p->data.rssi) >= abs(ie->data.rssi))
1060 break;
1061 pos = &p->list;
1062 }
1063
1064 list_add(&ie->list, pos);
1065 }
1066
1067 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068 bool name_known)
1069 {
1070 struct discovery_state *cache = &hdev->discovery;
1071 struct inquiry_entry *ie;
1072 u32 flags = 0;
1073
1074 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078 if (!data->ssp_mode)
1079 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082 if (ie) {
1083 if (!ie->data.ssp_mode)
1084 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086 if (ie->name_state == NAME_NEEDED &&
1087 data->rssi != ie->data.rssi) {
1088 ie->data.rssi = data->rssi;
1089 hci_inquiry_cache_update_resolve(hdev, ie);
1090 }
1091
1092 goto update;
1093 }
1094
1095 /* Entry not in the cache. Add new one. */
1096 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097 if (!ie) {
1098 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099 goto done;
1100 }
1101
1102 list_add(&ie->all, &cache->all);
1103
1104 if (name_known) {
1105 ie->name_state = NAME_KNOWN;
1106 } else {
1107 ie->name_state = NAME_NOT_KNOWN;
1108 list_add(&ie->list, &cache->unknown);
1109 }
1110
1111 update:
1112 if (name_known && ie->name_state != NAME_KNOWN &&
1113 ie->name_state != NAME_PENDING) {
1114 ie->name_state = NAME_KNOWN;
1115 list_del(&ie->list);
1116 }
1117
1118 memcpy(&ie->data, data, sizeof(*data));
1119 ie->timestamp = jiffies;
1120 cache->timestamp = jiffies;
1121
1122 if (ie->name_state == NAME_NOT_KNOWN)
1123 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125 done:
1126 return flags;
1127 }
1128
1129 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130 {
1131 struct discovery_state *cache = &hdev->discovery;
1132 struct inquiry_info *info = (struct inquiry_info *) buf;
1133 struct inquiry_entry *e;
1134 int copied = 0;
1135
1136 list_for_each_entry(e, &cache->all, all) {
1137 struct inquiry_data *data = &e->data;
1138
1139 if (copied >= num)
1140 break;
1141
1142 bacpy(&info->bdaddr, &data->bdaddr);
1143 info->pscan_rep_mode = data->pscan_rep_mode;
1144 info->pscan_period_mode = data->pscan_period_mode;
1145 info->pscan_mode = data->pscan_mode;
1146 memcpy(info->dev_class, data->dev_class, 3);
1147 info->clock_offset = data->clock_offset;
1148
1149 info++;
1150 copied++;
1151 }
1152
1153 BT_DBG("cache %p, copied %d", cache, copied);
1154 return copied;
1155 }
1156
1157 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158 {
1159 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160 struct hci_dev *hdev = req->hdev;
1161 struct hci_cp_inquiry cp;
1162
1163 BT_DBG("%s", hdev->name);
1164
1165 if (test_bit(HCI_INQUIRY, &hdev->flags))
1166 return 0;
1167
1168 /* Start Inquiry */
1169 memcpy(&cp.lap, &ir->lap, 3);
1170 cp.length = ir->length;
1171 cp.num_rsp = ir->num_rsp;
1172 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174 return 0;
1175 }
1176
1177 int hci_inquiry(void __user *arg)
1178 {
1179 __u8 __user *ptr = arg;
1180 struct hci_inquiry_req ir;
1181 struct hci_dev *hdev;
1182 int err = 0, do_inquiry = 0, max_rsp;
1183 long timeo;
1184 __u8 *buf;
1185
1186 if (copy_from_user(&ir, ptr, sizeof(ir)))
1187 return -EFAULT;
1188
1189 hdev = hci_dev_get(ir.dev_id);
1190 if (!hdev)
1191 return -ENODEV;
1192
1193 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194 err = -EBUSY;
1195 goto done;
1196 }
1197
1198 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199 err = -EOPNOTSUPP;
1200 goto done;
1201 }
1202
1203 if (hdev->dev_type != HCI_PRIMARY) {
1204 err = -EOPNOTSUPP;
1205 goto done;
1206 }
1207
1208 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209 err = -EOPNOTSUPP;
1210 goto done;
1211 }
1212
1213 hci_dev_lock(hdev);
1214 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216 hci_inquiry_cache_flush(hdev);
1217 do_inquiry = 1;
1218 }
1219 hci_dev_unlock(hdev);
1220
1221 timeo = ir.length * msecs_to_jiffies(2000);
1222
1223 if (do_inquiry) {
1224 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225 timeo, NULL);
1226 if (err < 0)
1227 goto done;
1228
1229 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230 * cleared). If it is interrupted by a signal, return -EINTR.
1231 */
1232 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233 TASK_INTERRUPTIBLE))
1234 return -EINTR;
1235 }
1236
1237 /* for unlimited number of responses we will use buffer with
1238 * 255 entries
1239 */
1240 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243 * copy it to the user space.
1244 */
1245 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246 if (!buf) {
1247 err = -ENOMEM;
1248 goto done;
1249 }
1250
1251 hci_dev_lock(hdev);
1252 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253 hci_dev_unlock(hdev);
1254
1255 BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258 ptr += sizeof(ir);
1259 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260 ir.num_rsp))
1261 err = -EFAULT;
1262 } else
1263 err = -EFAULT;
1264
1265 kfree(buf);
1266
1267 done:
1268 hci_dev_put(hdev);
1269 return err;
1270 }
1271
1272 static int hci_dev_do_open(struct hci_dev *hdev)
1273 {
1274 int ret = 0;
1275
1276 BT_DBG("%s %p", hdev->name, hdev);
1277
1278 hci_req_sync_lock(hdev);
1279
1280 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281 ret = -ENODEV;
1282 goto done;
1283 }
1284
1285 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287 /* Check for rfkill but allow the HCI setup stage to
1288 * proceed (which in itself doesn't cause any RF activity).
1289 */
1290 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291 ret = -ERFKILL;
1292 goto done;
1293 }
1294
1295 /* Check for valid public address or a configured static
1296 * random adddress, but let the HCI setup proceed to
1297 * be able to determine if there is a public address
1298 * or not.
1299 *
1300 * In case of user channel usage, it is not important
1301 * if a public address or static random address is
1302 * available.
1303 *
1304 * This check is only valid for BR/EDR controllers
1305 * since AMP controllers do not have an address.
1306 */
1307 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308 hdev->dev_type == HCI_PRIMARY &&
1309 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311 ret = -EADDRNOTAVAIL;
1312 goto done;
1313 }
1314 }
1315
1316 if (test_bit(HCI_UP, &hdev->flags)) {
1317 ret = -EALREADY;
1318 goto done;
1319 }
1320
1321 if (hdev->open(hdev)) {
1322 ret = -EIO;
1323 goto done;
1324 }
1325
1326 set_bit(HCI_RUNNING, &hdev->flags);
1327 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329 atomic_set(&hdev->cmd_cnt, 1);
1330 set_bit(HCI_INIT, &hdev->flags);
1331
1332 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335 if (hdev->setup)
1336 ret = hdev->setup(hdev);
1337
1338 /* The transport driver can set these quirks before
1339 * creating the HCI device or in its setup callback.
1340 *
1341 * In case any of them is set, the controller has to
1342 * start up as unconfigured.
1343 */
1344 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348 /* For an unconfigured controller it is required to
1349 * read at least the version information provided by
1350 * the Read Local Version Information command.
1351 *
1352 * If the set_bdaddr driver callback is provided, then
1353 * also the original Bluetooth public device address
1354 * will be read using the Read BD Address command.
1355 */
1356 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357 ret = __hci_unconf_init(hdev);
1358 }
1359
1360 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361 /* If public address change is configured, ensure that
1362 * the address gets programmed. If the driver does not
1363 * support changing the public address, fail the power
1364 * on procedure.
1365 */
1366 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367 hdev->set_bdaddr)
1368 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369 else
1370 ret = -EADDRNOTAVAIL;
1371 }
1372
1373 if (!ret) {
1374 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376 ret = __hci_init(hdev);
1377 if (!ret && hdev->post_init)
1378 ret = hdev->post_init(hdev);
1379 }
1380 }
1381
1382 /* If the HCI Reset command is clearing all diagnostic settings,
1383 * then they need to be reprogrammed after the init procedure
1384 * completed.
1385 */
1386 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388 ret = hdev->set_diag(hdev, true);
1389
1390 clear_bit(HCI_INIT, &hdev->flags);
1391
1392 if (!ret) {
1393 hci_dev_hold(hdev);
1394 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395 set_bit(HCI_UP, &hdev->flags);
1396 hci_sock_dev_event(hdev, HCI_DEV_UP);
1397 hci_leds_update_powered(hdev, true);
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402 hci_dev_test_flag(hdev, HCI_MGMT) &&
1403 hdev->dev_type == HCI_PRIMARY) {
1404 ret = __hci_req_hci_power_on(hdev);
1405 mgmt_power_on(hdev, ret);
1406 }
1407 } else {
1408 /* Init failed, cleanup */
1409 flush_work(&hdev->tx_work);
1410 flush_work(&hdev->cmd_work);
1411 flush_work(&hdev->rx_work);
1412
1413 skb_queue_purge(&hdev->cmd_q);
1414 skb_queue_purge(&hdev->rx_q);
1415
1416 if (hdev->flush)
1417 hdev->flush(hdev);
1418
1419 if (hdev->sent_cmd) {
1420 kfree_skb(hdev->sent_cmd);
1421 hdev->sent_cmd = NULL;
1422 }
1423
1424 clear_bit(HCI_RUNNING, &hdev->flags);
1425 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427 hdev->close(hdev);
1428 hdev->flags &= BIT(HCI_RAW);
1429 }
1430
1431 done:
1432 hci_req_sync_unlock(hdev);
1433 return ret;
1434 }
1435
1436 /* ---- HCI ioctl helpers ---- */
1437
1438 int hci_dev_open(__u16 dev)
1439 {
1440 struct hci_dev *hdev;
1441 int err;
1442
1443 hdev = hci_dev_get(dev);
1444 if (!hdev)
1445 return -ENODEV;
1446
1447 /* Devices that are marked as unconfigured can only be powered
1448 * up as user channel. Trying to bring them up as normal devices
1449 * will result into a failure. Only user channel operation is
1450 * possible.
1451 *
1452 * When this function is called for a user channel, the flag
1453 * HCI_USER_CHANNEL will be set first before attempting to
1454 * open the device.
1455 */
1456 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458 err = -EOPNOTSUPP;
1459 goto done;
1460 }
1461
1462 /* We need to ensure that no other power on/off work is pending
1463 * before proceeding to call hci_dev_do_open. This is
1464 * particularly important if the setup procedure has not yet
1465 * completed.
1466 */
1467 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468 cancel_delayed_work(&hdev->power_off);
1469
1470 /* After this call it is guaranteed that the setup procedure
1471 * has finished. This means that error conditions like RFKILL
1472 * or no valid public or static random address apply.
1473 */
1474 flush_workqueue(hdev->req_workqueue);
1475
1476 /* For controllers not using the management interface and that
1477 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478 * so that pairing works for them. Once the management interface
1479 * is in use this bit will be cleared again and userspace has
1480 * to explicitly enable it.
1481 */
1482 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483 !hci_dev_test_flag(hdev, HCI_MGMT))
1484 hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486 err = hci_dev_do_open(hdev);
1487
1488 done:
1489 hci_dev_put(hdev);
1490 return err;
1491 }
1492
1493 /* This function requires the caller holds hdev->lock */
1494 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495 {
1496 struct hci_conn_params *p;
1497
1498 list_for_each_entry(p, &hdev->le_conn_params, list) {
1499 if (p->conn) {
1500 hci_conn_drop(p->conn);
1501 hci_conn_put(p->conn);
1502 p->conn = NULL;
1503 }
1504 list_del_init(&p->action);
1505 }
1506
1507 BT_DBG("All LE pending actions cleared");
1508 }
1509
1510 int hci_dev_do_close(struct hci_dev *hdev)
1511 {
1512 bool auto_off;
1513
1514 BT_DBG("%s %p", hdev->name, hdev);
1515
1516 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518 test_bit(HCI_UP, &hdev->flags)) {
1519 /* Execute vendor specific shutdown routine */
1520 if (hdev->shutdown)
1521 hdev->shutdown(hdev);
1522 }
1523
1524 cancel_delayed_work(&hdev->power_off);
1525
1526 hci_request_cancel_all(hdev);
1527 hci_req_sync_lock(hdev);
1528
1529 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530 cancel_delayed_work_sync(&hdev->cmd_timer);
1531 hci_req_sync_unlock(hdev);
1532 return 0;
1533 }
1534
1535 hci_leds_update_powered(hdev, false);
1536
1537 /* Flush RX and TX works */
1538 flush_work(&hdev->tx_work);
1539 flush_work(&hdev->rx_work);
1540
1541 if (hdev->discov_timeout > 0) {
1542 hdev->discov_timeout = 0;
1543 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545 }
1546
1547 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548 cancel_delayed_work(&hdev->service_cache);
1549
1550 if (hci_dev_test_flag(hdev, HCI_MGMT))
1551 cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553 /* Avoid potential lockdep warnings from the *_flush() calls by
1554 * ensuring the workqueue is empty up front.
1555 */
1556 drain_workqueue(hdev->workqueue);
1557
1558 hci_dev_lock(hdev);
1559
1560 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565 hci_dev_test_flag(hdev, HCI_MGMT))
1566 __mgmt_power_off(hdev);
1567
1568 hci_inquiry_cache_flush(hdev);
1569 hci_pend_le_actions_clear(hdev);
1570 hci_conn_hash_flush(hdev);
1571 hci_dev_unlock(hdev);
1572
1573 smp_unregister(hdev);
1574
1575 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1576
1577 if (hdev->flush)
1578 hdev->flush(hdev);
1579
1580 /* Reset device */
1581 skb_queue_purge(&hdev->cmd_q);
1582 atomic_set(&hdev->cmd_cnt, 1);
1583 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1584 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1585 set_bit(HCI_INIT, &hdev->flags);
1586 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1587 clear_bit(HCI_INIT, &hdev->flags);
1588 }
1589
1590 /* flush cmd work */
1591 flush_work(&hdev->cmd_work);
1592
1593 /* Drop queues */
1594 skb_queue_purge(&hdev->rx_q);
1595 skb_queue_purge(&hdev->cmd_q);
1596 skb_queue_purge(&hdev->raw_q);
1597
1598 /* Drop last sent command */
1599 if (hdev->sent_cmd) {
1600 cancel_delayed_work_sync(&hdev->cmd_timer);
1601 kfree_skb(hdev->sent_cmd);
1602 hdev->sent_cmd = NULL;
1603 }
1604
1605 clear_bit(HCI_RUNNING, &hdev->flags);
1606 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1607
1608 /* After this point our queues are empty
1609 * and no tasks are scheduled. */
1610 hdev->close(hdev);
1611
1612 /* Clear flags */
1613 hdev->flags &= BIT(HCI_RAW);
1614 hci_dev_clear_volatile_flags(hdev);
1615
1616 /* Controller radio is available but is currently powered down */
1617 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1618
1619 memset(hdev->eir, 0, sizeof(hdev->eir));
1620 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1621 bacpy(&hdev->random_addr, BDADDR_ANY);
1622
1623 hci_req_sync_unlock(hdev);
1624
1625 hci_dev_put(hdev);
1626 return 0;
1627 }
1628
1629 int hci_dev_close(__u16 dev)
1630 {
1631 struct hci_dev *hdev;
1632 int err;
1633
1634 hdev = hci_dev_get(dev);
1635 if (!hdev)
1636 return -ENODEV;
1637
1638 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1639 err = -EBUSY;
1640 goto done;
1641 }
1642
1643 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1644 cancel_delayed_work(&hdev->power_off);
1645
1646 err = hci_dev_do_close(hdev);
1647
1648 done:
1649 hci_dev_put(hdev);
1650 return err;
1651 }
1652
1653 static int hci_dev_do_reset(struct hci_dev *hdev)
1654 {
1655 int ret;
1656
1657 BT_DBG("%s %p", hdev->name, hdev);
1658
1659 hci_req_sync_lock(hdev);
1660
1661 /* Drop queues */
1662 skb_queue_purge(&hdev->rx_q);
1663 skb_queue_purge(&hdev->cmd_q);
1664
1665 /* Avoid potential lockdep warnings from the *_flush() calls by
1666 * ensuring the workqueue is empty up front.
1667 */
1668 drain_workqueue(hdev->workqueue);
1669
1670 hci_dev_lock(hdev);
1671 hci_inquiry_cache_flush(hdev);
1672 hci_conn_hash_flush(hdev);
1673 hci_dev_unlock(hdev);
1674
1675 if (hdev->flush)
1676 hdev->flush(hdev);
1677
1678 atomic_set(&hdev->cmd_cnt, 1);
1679 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1680
1681 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1682
1683 hci_req_sync_unlock(hdev);
1684 return ret;
1685 }
1686
1687 int hci_dev_reset(__u16 dev)
1688 {
1689 struct hci_dev *hdev;
1690 int err;
1691
1692 hdev = hci_dev_get(dev);
1693 if (!hdev)
1694 return -ENODEV;
1695
1696 if (!test_bit(HCI_UP, &hdev->flags)) {
1697 err = -ENETDOWN;
1698 goto done;
1699 }
1700
1701 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1702 err = -EBUSY;
1703 goto done;
1704 }
1705
1706 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1707 err = -EOPNOTSUPP;
1708 goto done;
1709 }
1710
1711 err = hci_dev_do_reset(hdev);
1712
1713 done:
1714 hci_dev_put(hdev);
1715 return err;
1716 }
1717
1718 int hci_dev_reset_stat(__u16 dev)
1719 {
1720 struct hci_dev *hdev;
1721 int ret = 0;
1722
1723 hdev = hci_dev_get(dev);
1724 if (!hdev)
1725 return -ENODEV;
1726
1727 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1728 ret = -EBUSY;
1729 goto done;
1730 }
1731
1732 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1733 ret = -EOPNOTSUPP;
1734 goto done;
1735 }
1736
1737 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1738
1739 done:
1740 hci_dev_put(hdev);
1741 return ret;
1742 }
1743
1744 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1745 {
1746 bool conn_changed, discov_changed;
1747
1748 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1749
1750 if ((scan & SCAN_PAGE))
1751 conn_changed = !hci_dev_test_and_set_flag(hdev,
1752 HCI_CONNECTABLE);
1753 else
1754 conn_changed = hci_dev_test_and_clear_flag(hdev,
1755 HCI_CONNECTABLE);
1756
1757 if ((scan & SCAN_INQUIRY)) {
1758 discov_changed = !hci_dev_test_and_set_flag(hdev,
1759 HCI_DISCOVERABLE);
1760 } else {
1761 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1762 discov_changed = hci_dev_test_and_clear_flag(hdev,
1763 HCI_DISCOVERABLE);
1764 }
1765
1766 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1767 return;
1768
1769 if (conn_changed || discov_changed) {
1770 /* In case this was disabled through mgmt */
1771 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1772
1773 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1774 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1775
1776 mgmt_new_settings(hdev);
1777 }
1778 }
1779
1780 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1781 {
1782 struct hci_dev *hdev;
1783 struct hci_dev_req dr;
1784 int err = 0;
1785
1786 if (copy_from_user(&dr, arg, sizeof(dr)))
1787 return -EFAULT;
1788
1789 hdev = hci_dev_get(dr.dev_id);
1790 if (!hdev)
1791 return -ENODEV;
1792
1793 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1794 err = -EBUSY;
1795 goto done;
1796 }
1797
1798 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1799 err = -EOPNOTSUPP;
1800 goto done;
1801 }
1802
1803 if (hdev->dev_type != HCI_PRIMARY) {
1804 err = -EOPNOTSUPP;
1805 goto done;
1806 }
1807
1808 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1809 err = -EOPNOTSUPP;
1810 goto done;
1811 }
1812
1813 switch (cmd) {
1814 case HCISETAUTH:
1815 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1816 HCI_INIT_TIMEOUT, NULL);
1817 break;
1818
1819 case HCISETENCRYPT:
1820 if (!lmp_encrypt_capable(hdev)) {
1821 err = -EOPNOTSUPP;
1822 break;
1823 }
1824
1825 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1826 /* Auth must be enabled first */
1827 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1828 HCI_INIT_TIMEOUT, NULL);
1829 if (err)
1830 break;
1831 }
1832
1833 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1834 HCI_INIT_TIMEOUT, NULL);
1835 break;
1836
1837 case HCISETSCAN:
1838 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1839 HCI_INIT_TIMEOUT, NULL);
1840
1841 /* Ensure that the connectable and discoverable states
1842 * get correctly modified as this was a non-mgmt change.
1843 */
1844 if (!err)
1845 hci_update_scan_state(hdev, dr.dev_opt);
1846 break;
1847
1848 case HCISETLINKPOL:
1849 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1850 HCI_INIT_TIMEOUT, NULL);
1851 break;
1852
1853 case HCISETLINKMODE:
1854 hdev->link_mode = ((__u16) dr.dev_opt) &
1855 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1856 break;
1857
1858 case HCISETPTYPE:
1859 hdev->pkt_type = (__u16) dr.dev_opt;
1860 break;
1861
1862 case HCISETACLMTU:
1863 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1864 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1865 break;
1866
1867 case HCISETSCOMTU:
1868 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1869 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1870 break;
1871
1872 default:
1873 err = -EINVAL;
1874 break;
1875 }
1876
1877 done:
1878 hci_dev_put(hdev);
1879 return err;
1880 }
1881
1882 int hci_get_dev_list(void __user *arg)
1883 {
1884 struct hci_dev *hdev;
1885 struct hci_dev_list_req *dl;
1886 struct hci_dev_req *dr;
1887 int n = 0, size, err;
1888 __u16 dev_num;
1889
1890 if (get_user(dev_num, (__u16 __user *) arg))
1891 return -EFAULT;
1892
1893 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1894 return -EINVAL;
1895
1896 size = sizeof(*dl) + dev_num * sizeof(*dr);
1897
1898 dl = kzalloc(size, GFP_KERNEL);
1899 if (!dl)
1900 return -ENOMEM;
1901
1902 dr = dl->dev_req;
1903
1904 read_lock(&hci_dev_list_lock);
1905 list_for_each_entry(hdev, &hci_dev_list, list) {
1906 unsigned long flags = hdev->flags;
1907
1908 /* When the auto-off is configured it means the transport
1909 * is running, but in that case still indicate that the
1910 * device is actually down.
1911 */
1912 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1913 flags &= ~BIT(HCI_UP);
1914
1915 (dr + n)->dev_id = hdev->id;
1916 (dr + n)->dev_opt = flags;
1917
1918 if (++n >= dev_num)
1919 break;
1920 }
1921 read_unlock(&hci_dev_list_lock);
1922
1923 dl->dev_num = n;
1924 size = sizeof(*dl) + n * sizeof(*dr);
1925
1926 err = copy_to_user(arg, dl, size);
1927 kfree(dl);
1928
1929 return err ? -EFAULT : 0;
1930 }
1931
1932 int hci_get_dev_info(void __user *arg)
1933 {
1934 struct hci_dev *hdev;
1935 struct hci_dev_info di;
1936 unsigned long flags;
1937 int err = 0;
1938
1939 if (copy_from_user(&di, arg, sizeof(di)))
1940 return -EFAULT;
1941
1942 hdev = hci_dev_get(di.dev_id);
1943 if (!hdev)
1944 return -ENODEV;
1945
1946 /* When the auto-off is configured it means the transport
1947 * is running, but in that case still indicate that the
1948 * device is actually down.
1949 */
1950 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1951 flags = hdev->flags & ~BIT(HCI_UP);
1952 else
1953 flags = hdev->flags;
1954
1955 strcpy(di.name, hdev->name);
1956 di.bdaddr = hdev->bdaddr;
1957 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1958 di.flags = flags;
1959 di.pkt_type = hdev->pkt_type;
1960 if (lmp_bredr_capable(hdev)) {
1961 di.acl_mtu = hdev->acl_mtu;
1962 di.acl_pkts = hdev->acl_pkts;
1963 di.sco_mtu = hdev->sco_mtu;
1964 di.sco_pkts = hdev->sco_pkts;
1965 } else {
1966 di.acl_mtu = hdev->le_mtu;
1967 di.acl_pkts = hdev->le_pkts;
1968 di.sco_mtu = 0;
1969 di.sco_pkts = 0;
1970 }
1971 di.link_policy = hdev->link_policy;
1972 di.link_mode = hdev->link_mode;
1973
1974 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1975 memcpy(&di.features, &hdev->features, sizeof(di.features));
1976
1977 if (copy_to_user(arg, &di, sizeof(di)))
1978 err = -EFAULT;
1979
1980 hci_dev_put(hdev);
1981
1982 return err;
1983 }
1984
1985 /* ---- Interface to HCI drivers ---- */
1986
1987 static int hci_rfkill_set_block(void *data, bool blocked)
1988 {
1989 struct hci_dev *hdev = data;
1990
1991 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1992
1993 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1994 return -EBUSY;
1995
1996 if (blocked) {
1997 hci_dev_set_flag(hdev, HCI_RFKILLED);
1998 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1999 !hci_dev_test_flag(hdev, HCI_CONFIG))
2000 hci_dev_do_close(hdev);
2001 } else {
2002 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2003 }
2004
2005 return 0;
2006 }
2007
2008 static const struct rfkill_ops hci_rfkill_ops = {
2009 .set_block = hci_rfkill_set_block,
2010 };
2011
2012 static void hci_power_on(struct work_struct *work)
2013 {
2014 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2015 int err;
2016
2017 BT_DBG("%s", hdev->name);
2018
2019 if (test_bit(HCI_UP, &hdev->flags) &&
2020 hci_dev_test_flag(hdev, HCI_MGMT) &&
2021 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2022 cancel_delayed_work(&hdev->power_off);
2023 hci_req_sync_lock(hdev);
2024 err = __hci_req_hci_power_on(hdev);
2025 hci_req_sync_unlock(hdev);
2026 mgmt_power_on(hdev, err);
2027 return;
2028 }
2029
2030 err = hci_dev_do_open(hdev);
2031 if (err < 0) {
2032 hci_dev_lock(hdev);
2033 mgmt_set_powered_failed(hdev, err);
2034 hci_dev_unlock(hdev);
2035 return;
2036 }
2037
2038 /* During the HCI setup phase, a few error conditions are
2039 * ignored and they need to be checked now. If they are still
2040 * valid, it is important to turn the device back off.
2041 */
2042 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2043 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2044 (hdev->dev_type == HCI_PRIMARY &&
2045 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2046 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2047 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2048 hci_dev_do_close(hdev);
2049 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2050 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2051 HCI_AUTO_OFF_TIMEOUT);
2052 }
2053
2054 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2055 /* For unconfigured devices, set the HCI_RAW flag
2056 * so that userspace can easily identify them.
2057 */
2058 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2059 set_bit(HCI_RAW, &hdev->flags);
2060
2061 /* For fully configured devices, this will send
2062 * the Index Added event. For unconfigured devices,
2063 * it will send Unconfigued Index Added event.
2064 *
2065 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2066 * and no event will be send.
2067 */
2068 mgmt_index_added(hdev);
2069 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2070 /* When the controller is now configured, then it
2071 * is important to clear the HCI_RAW flag.
2072 */
2073 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2074 clear_bit(HCI_RAW, &hdev->flags);
2075
2076 /* Powering on the controller with HCI_CONFIG set only
2077 * happens with the transition from unconfigured to
2078 * configured. This will send the Index Added event.
2079 */
2080 mgmt_index_added(hdev);
2081 }
2082 }
2083
2084 static void hci_power_off(struct work_struct *work)
2085 {
2086 struct hci_dev *hdev = container_of(work, struct hci_dev,
2087 power_off.work);
2088
2089 BT_DBG("%s", hdev->name);
2090
2091 hci_dev_do_close(hdev);
2092 }
2093
2094 static void hci_error_reset(struct work_struct *work)
2095 {
2096 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2097
2098 BT_DBG("%s", hdev->name);
2099
2100 if (hdev->hw_error)
2101 hdev->hw_error(hdev, hdev->hw_error_code);
2102 else
2103 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2104 hdev->hw_error_code);
2105
2106 if (hci_dev_do_close(hdev))
2107 return;
2108
2109 hci_dev_do_open(hdev);
2110 }
2111
2112 void hci_uuids_clear(struct hci_dev *hdev)
2113 {
2114 struct bt_uuid *uuid, *tmp;
2115
2116 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2117 list_del(&uuid->list);
2118 kfree(uuid);
2119 }
2120 }
2121
2122 void hci_link_keys_clear(struct hci_dev *hdev)
2123 {
2124 struct link_key *key;
2125
2126 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2127 list_del_rcu(&key->list);
2128 kfree_rcu(key, rcu);
2129 }
2130 }
2131
2132 void hci_smp_ltks_clear(struct hci_dev *hdev)
2133 {
2134 struct smp_ltk *k;
2135
2136 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2137 list_del_rcu(&k->list);
2138 kfree_rcu(k, rcu);
2139 }
2140 }
2141
2142 void hci_smp_irks_clear(struct hci_dev *hdev)
2143 {
2144 struct smp_irk *k;
2145
2146 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2147 list_del_rcu(&k->list);
2148 kfree_rcu(k, rcu);
2149 }
2150 }
2151
2152 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2153 {
2154 struct link_key *k;
2155
2156 rcu_read_lock();
2157 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2158 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2159 rcu_read_unlock();
2160 return k;
2161 }
2162 }
2163 rcu_read_unlock();
2164
2165 return NULL;
2166 }
2167
2168 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2169 u8 key_type, u8 old_key_type)
2170 {
2171 /* Legacy key */
2172 if (key_type < 0x03)
2173 return true;
2174
2175 /* Debug keys are insecure so don't store them persistently */
2176 if (key_type == HCI_LK_DEBUG_COMBINATION)
2177 return false;
2178
2179 /* Changed combination key and there's no previous one */
2180 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2181 return false;
2182
2183 /* Security mode 3 case */
2184 if (!conn)
2185 return true;
2186
2187 /* BR/EDR key derived using SC from an LE link */
2188 if (conn->type == LE_LINK)
2189 return true;
2190
2191 /* Neither local nor remote side had no-bonding as requirement */
2192 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2193 return true;
2194
2195 /* Local side had dedicated bonding as requirement */
2196 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2197 return true;
2198
2199 /* Remote side had dedicated bonding as requirement */
2200 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2201 return true;
2202
2203 /* If none of the above criteria match, then don't store the key
2204 * persistently */
2205 return false;
2206 }
2207
2208 static u8 ltk_role(u8 type)
2209 {
2210 if (type == SMP_LTK)
2211 return HCI_ROLE_MASTER;
2212
2213 return HCI_ROLE_SLAVE;
2214 }
2215
2216 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2217 u8 addr_type, u8 role)
2218 {
2219 struct smp_ltk *k;
2220
2221 rcu_read_lock();
2222 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2223 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2224 continue;
2225
2226 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2227 rcu_read_unlock();
2228 return k;
2229 }
2230 }
2231 rcu_read_unlock();
2232
2233 return NULL;
2234 }
2235
2236 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2237 {
2238 struct smp_irk *irk;
2239
2240 rcu_read_lock();
2241 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2242 if (!bacmp(&irk->rpa, rpa)) {
2243 rcu_read_unlock();
2244 return irk;
2245 }
2246 }
2247
2248 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2249 if (smp_irk_matches(hdev, irk->val, rpa)) {
2250 bacpy(&irk->rpa, rpa);
2251 rcu_read_unlock();
2252 return irk;
2253 }
2254 }
2255 rcu_read_unlock();
2256
2257 return NULL;
2258 }
2259
2260 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2261 u8 addr_type)
2262 {
2263 struct smp_irk *irk;
2264
2265 /* Identity Address must be public or static random */
2266 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2267 return NULL;
2268
2269 rcu_read_lock();
2270 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2271 if (addr_type == irk->addr_type &&
2272 bacmp(bdaddr, &irk->bdaddr) == 0) {
2273 rcu_read_unlock();
2274 return irk;
2275 }
2276 }
2277 rcu_read_unlock();
2278
2279 return NULL;
2280 }
2281
2282 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2283 bdaddr_t *bdaddr, u8 *val, u8 type,
2284 u8 pin_len, bool *persistent)
2285 {
2286 struct link_key *key, *old_key;
2287 u8 old_key_type;
2288
2289 old_key = hci_find_link_key(hdev, bdaddr);
2290 if (old_key) {
2291 old_key_type = old_key->type;
2292 key = old_key;
2293 } else {
2294 old_key_type = conn ? conn->key_type : 0xff;
2295 key = kzalloc(sizeof(*key), GFP_KERNEL);
2296 if (!key)
2297 return NULL;
2298 list_add_rcu(&key->list, &hdev->link_keys);
2299 }
2300
2301 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2302
2303 /* Some buggy controller combinations generate a changed
2304 * combination key for legacy pairing even when there's no
2305 * previous key */
2306 if (type == HCI_LK_CHANGED_COMBINATION &&
2307 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2308 type = HCI_LK_COMBINATION;
2309 if (conn)
2310 conn->key_type = type;
2311 }
2312
2313 bacpy(&key->bdaddr, bdaddr);
2314 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2315 key->pin_len = pin_len;
2316
2317 if (type == HCI_LK_CHANGED_COMBINATION)
2318 key->type = old_key_type;
2319 else
2320 key->type = type;
2321
2322 if (persistent)
2323 *persistent = hci_persistent_key(hdev, conn, type,
2324 old_key_type);
2325
2326 return key;
2327 }
2328
2329 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2330 u8 addr_type, u8 type, u8 authenticated,
2331 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2332 {
2333 struct smp_ltk *key, *old_key;
2334 u8 role = ltk_role(type);
2335
2336 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2337 if (old_key)
2338 key = old_key;
2339 else {
2340 key = kzalloc(sizeof(*key), GFP_KERNEL);
2341 if (!key)
2342 return NULL;
2343 list_add_rcu(&key->list, &hdev->long_term_keys);
2344 }
2345
2346 bacpy(&key->bdaddr, bdaddr);
2347 key->bdaddr_type = addr_type;
2348 memcpy(key->val, tk, sizeof(key->val));
2349 key->authenticated = authenticated;
2350 key->ediv = ediv;
2351 key->rand = rand;
2352 key->enc_size = enc_size;
2353 key->type = type;
2354
2355 return key;
2356 }
2357
2358 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2359 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2360 {
2361 struct smp_irk *irk;
2362
2363 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2364 if (!irk) {
2365 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2366 if (!irk)
2367 return NULL;
2368
2369 bacpy(&irk->bdaddr, bdaddr);
2370 irk->addr_type = addr_type;
2371
2372 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2373 }
2374
2375 memcpy(irk->val, val, 16);
2376 bacpy(&irk->rpa, rpa);
2377
2378 return irk;
2379 }
2380
2381 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2382 {
2383 struct link_key *key;
2384
2385 key = hci_find_link_key(hdev, bdaddr);
2386 if (!key)
2387 return -ENOENT;
2388
2389 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2390
2391 list_del_rcu(&key->list);
2392 kfree_rcu(key, rcu);
2393
2394 return 0;
2395 }
2396
2397 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2398 {
2399 struct smp_ltk *k;
2400 int removed = 0;
2401
2402 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2403 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2404 continue;
2405
2406 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2407
2408 list_del_rcu(&k->list);
2409 kfree_rcu(k, rcu);
2410 removed++;
2411 }
2412
2413 return removed ? 0 : -ENOENT;
2414 }
2415
2416 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2417 {
2418 struct smp_irk *k;
2419
2420 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2421 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2422 continue;
2423
2424 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2425
2426 list_del_rcu(&k->list);
2427 kfree_rcu(k, rcu);
2428 }
2429 }
2430
2431 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2432 {
2433 struct smp_ltk *k;
2434 struct smp_irk *irk;
2435 u8 addr_type;
2436
2437 if (type == BDADDR_BREDR) {
2438 if (hci_find_link_key(hdev, bdaddr))
2439 return true;
2440 return false;
2441 }
2442
2443 /* Convert to HCI addr type which struct smp_ltk uses */
2444 if (type == BDADDR_LE_PUBLIC)
2445 addr_type = ADDR_LE_DEV_PUBLIC;
2446 else
2447 addr_type = ADDR_LE_DEV_RANDOM;
2448
2449 irk = hci_get_irk(hdev, bdaddr, addr_type);
2450 if (irk) {
2451 bdaddr = &irk->bdaddr;
2452 addr_type = irk->addr_type;
2453 }
2454
2455 rcu_read_lock();
2456 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2457 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2458 rcu_read_unlock();
2459 return true;
2460 }
2461 }
2462 rcu_read_unlock();
2463
2464 return false;
2465 }
2466
2467 /* HCI command timer function */
2468 static void hci_cmd_timeout(struct work_struct *work)
2469 {
2470 struct hci_dev *hdev = container_of(work, struct hci_dev,
2471 cmd_timer.work);
2472
2473 if (hdev->sent_cmd) {
2474 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2475 u16 opcode = __le16_to_cpu(sent->opcode);
2476
2477 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2478 } else {
2479 BT_ERR("%s command tx timeout", hdev->name);
2480 }
2481
2482 atomic_set(&hdev->cmd_cnt, 1);
2483 queue_work(hdev->workqueue, &hdev->cmd_work);
2484 }
2485
2486 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2487 bdaddr_t *bdaddr, u8 bdaddr_type)
2488 {
2489 struct oob_data *data;
2490
2491 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2492 if (bacmp(bdaddr, &data->bdaddr) != 0)
2493 continue;
2494 if (data->bdaddr_type != bdaddr_type)
2495 continue;
2496 return data;
2497 }
2498
2499 return NULL;
2500 }
2501
2502 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2503 u8 bdaddr_type)
2504 {
2505 struct oob_data *data;
2506
2507 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2508 if (!data)
2509 return -ENOENT;
2510
2511 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2512
2513 list_del(&data->list);
2514 kfree(data);
2515
2516 return 0;
2517 }
2518
2519 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2520 {
2521 struct oob_data *data, *n;
2522
2523 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2524 list_del(&data->list);
2525 kfree(data);
2526 }
2527 }
2528
2529 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2530 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2531 u8 *hash256, u8 *rand256)
2532 {
2533 struct oob_data *data;
2534
2535 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2536 if (!data) {
2537 data = kmalloc(sizeof(*data), GFP_KERNEL);
2538 if (!data)
2539 return -ENOMEM;
2540
2541 bacpy(&data->bdaddr, bdaddr);
2542 data->bdaddr_type = bdaddr_type;
2543 list_add(&data->list, &hdev->remote_oob_data);
2544 }
2545
2546 if (hash192 && rand192) {
2547 memcpy(data->hash192, hash192, sizeof(data->hash192));
2548 memcpy(data->rand192, rand192, sizeof(data->rand192));
2549 if (hash256 && rand256)
2550 data->present = 0x03;
2551 } else {
2552 memset(data->hash192, 0, sizeof(data->hash192));
2553 memset(data->rand192, 0, sizeof(data->rand192));
2554 if (hash256 && rand256)
2555 data->present = 0x02;
2556 else
2557 data->present = 0x00;
2558 }
2559
2560 if (hash256 && rand256) {
2561 memcpy(data->hash256, hash256, sizeof(data->hash256));
2562 memcpy(data->rand256, rand256, sizeof(data->rand256));
2563 } else {
2564 memset(data->hash256, 0, sizeof(data->hash256));
2565 memset(data->rand256, 0, sizeof(data->rand256));
2566 if (hash192 && rand192)
2567 data->present = 0x01;
2568 }
2569
2570 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2571
2572 return 0;
2573 }
2574
2575 /* This function requires the caller holds hdev->lock */
2576 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2577 {
2578 struct adv_info *adv_instance;
2579
2580 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2581 if (adv_instance->instance == instance)
2582 return adv_instance;
2583 }
2584
2585 return NULL;
2586 }
2587
2588 /* This function requires the caller holds hdev->lock */
2589 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2590 {
2591 struct adv_info *cur_instance;
2592
2593 cur_instance = hci_find_adv_instance(hdev, instance);
2594 if (!cur_instance)
2595 return NULL;
2596
2597 if (cur_instance == list_last_entry(&hdev->adv_instances,
2598 struct adv_info, list))
2599 return list_first_entry(&hdev->adv_instances,
2600 struct adv_info, list);
2601 else
2602 return list_next_entry(cur_instance, list);
2603 }
2604
2605 /* This function requires the caller holds hdev->lock */
2606 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2607 {
2608 struct adv_info *adv_instance;
2609
2610 adv_instance = hci_find_adv_instance(hdev, instance);
2611 if (!adv_instance)
2612 return -ENOENT;
2613
2614 BT_DBG("%s removing %dMR", hdev->name, instance);
2615
2616 if (hdev->cur_adv_instance == instance) {
2617 if (hdev->adv_instance_timeout) {
2618 cancel_delayed_work(&hdev->adv_instance_expire);
2619 hdev->adv_instance_timeout = 0;
2620 }
2621 hdev->cur_adv_instance = 0x00;
2622 }
2623
2624 list_del(&adv_instance->list);
2625 kfree(adv_instance);
2626
2627 hdev->adv_instance_cnt--;
2628
2629 return 0;
2630 }
2631
2632 /* This function requires the caller holds hdev->lock */
2633 void hci_adv_instances_clear(struct hci_dev *hdev)
2634 {
2635 struct adv_info *adv_instance, *n;
2636
2637 if (hdev->adv_instance_timeout) {
2638 cancel_delayed_work(&hdev->adv_instance_expire);
2639 hdev->adv_instance_timeout = 0;
2640 }
2641
2642 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2643 list_del(&adv_instance->list);
2644 kfree(adv_instance);
2645 }
2646
2647 hdev->adv_instance_cnt = 0;
2648 hdev->cur_adv_instance = 0x00;
2649 }
2650
2651 /* This function requires the caller holds hdev->lock */
2652 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2653 u16 adv_data_len, u8 *adv_data,
2654 u16 scan_rsp_len, u8 *scan_rsp_data,
2655 u16 timeout, u16 duration)
2656 {
2657 struct adv_info *adv_instance;
2658
2659 adv_instance = hci_find_adv_instance(hdev, instance);
2660 if (adv_instance) {
2661 memset(adv_instance->adv_data, 0,
2662 sizeof(adv_instance->adv_data));
2663 memset(adv_instance->scan_rsp_data, 0,
2664 sizeof(adv_instance->scan_rsp_data));
2665 } else {
2666 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2667 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2668 return -EOVERFLOW;
2669
2670 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2671 if (!adv_instance)
2672 return -ENOMEM;
2673
2674 adv_instance->pending = true;
2675 adv_instance->instance = instance;
2676 list_add(&adv_instance->list, &hdev->adv_instances);
2677 hdev->adv_instance_cnt++;
2678 }
2679
2680 adv_instance->flags = flags;
2681 adv_instance->adv_data_len = adv_data_len;
2682 adv_instance->scan_rsp_len = scan_rsp_len;
2683
2684 if (adv_data_len)
2685 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2686
2687 if (scan_rsp_len)
2688 memcpy(adv_instance->scan_rsp_data,
2689 scan_rsp_data, scan_rsp_len);
2690
2691 adv_instance->timeout = timeout;
2692 adv_instance->remaining_time = timeout;
2693
2694 if (duration == 0)
2695 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2696 else
2697 adv_instance->duration = duration;
2698
2699 BT_DBG("%s for %dMR", hdev->name, instance);
2700
2701 return 0;
2702 }
2703
2704 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2705 bdaddr_t *bdaddr, u8 type)
2706 {
2707 struct bdaddr_list *b;
2708
2709 list_for_each_entry(b, bdaddr_list, list) {
2710 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2711 return b;
2712 }
2713
2714 return NULL;
2715 }
2716
2717 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2718 {
2719 struct bdaddr_list *b, *n;
2720
2721 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2722 list_del(&b->list);
2723 kfree(b);
2724 }
2725 }
2726
2727 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2728 {
2729 struct bdaddr_list *entry;
2730
2731 if (!bacmp(bdaddr, BDADDR_ANY))
2732 return -EBADF;
2733
2734 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2735 return -EEXIST;
2736
2737 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2738 if (!entry)
2739 return -ENOMEM;
2740
2741 bacpy(&entry->bdaddr, bdaddr);
2742 entry->bdaddr_type = type;
2743
2744 list_add(&entry->list, list);
2745
2746 return 0;
2747 }
2748
2749 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2750 {
2751 struct bdaddr_list *entry;
2752
2753 if (!bacmp(bdaddr, BDADDR_ANY)) {
2754 hci_bdaddr_list_clear(list);
2755 return 0;
2756 }
2757
2758 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2759 if (!entry)
2760 return -ENOENT;
2761
2762 list_del(&entry->list);
2763 kfree(entry);
2764
2765 return 0;
2766 }
2767
2768 /* This function requires the caller holds hdev->lock */
2769 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2770 bdaddr_t *addr, u8 addr_type)
2771 {
2772 struct hci_conn_params *params;
2773
2774 list_for_each_entry(params, &hdev->le_conn_params, list) {
2775 if (bacmp(&params->addr, addr) == 0 &&
2776 params->addr_type == addr_type) {
2777 return params;
2778 }
2779 }
2780
2781 return NULL;
2782 }
2783
2784 /* This function requires the caller holds hdev->lock */
2785 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2786 bdaddr_t *addr, u8 addr_type)
2787 {
2788 struct hci_conn_params *param;
2789
2790 list_for_each_entry(param, list, action) {
2791 if (bacmp(&param->addr, addr) == 0 &&
2792 param->addr_type == addr_type)
2793 return param;
2794 }
2795
2796 return NULL;
2797 }
2798
2799 /* This function requires the caller holds hdev->lock */
2800 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2801 bdaddr_t *addr, u8 addr_type)
2802 {
2803 struct hci_conn_params *params;
2804
2805 params = hci_conn_params_lookup(hdev, addr, addr_type);
2806 if (params)
2807 return params;
2808
2809 params = kzalloc(sizeof(*params), GFP_KERNEL);
2810 if (!params) {
2811 BT_ERR("Out of memory");
2812 return NULL;
2813 }
2814
2815 bacpy(&params->addr, addr);
2816 params->addr_type = addr_type;
2817
2818 list_add(&params->list, &hdev->le_conn_params);
2819 INIT_LIST_HEAD(&params->action);
2820
2821 params->conn_min_interval = hdev->le_conn_min_interval;
2822 params->conn_max_interval = hdev->le_conn_max_interval;
2823 params->conn_latency = hdev->le_conn_latency;
2824 params->supervision_timeout = hdev->le_supv_timeout;
2825 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2826
2827 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2828
2829 return params;
2830 }
2831
2832 static void hci_conn_params_free(struct hci_conn_params *params)
2833 {
2834 if (params->conn) {
2835 hci_conn_drop(params->conn);
2836 hci_conn_put(params->conn);
2837 }
2838
2839 list_del(&params->action);
2840 list_del(&params->list);
2841 kfree(params);
2842 }
2843
2844 /* This function requires the caller holds hdev->lock */
2845 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2846 {
2847 struct hci_conn_params *params;
2848
2849 params = hci_conn_params_lookup(hdev, addr, addr_type);
2850 if (!params)
2851 return;
2852
2853 hci_conn_params_free(params);
2854
2855 hci_update_background_scan(hdev);
2856
2857 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2858 }
2859
2860 /* This function requires the caller holds hdev->lock */
2861 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2862 {
2863 struct hci_conn_params *params, *tmp;
2864
2865 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2866 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2867 continue;
2868
2869 /* If trying to estabilish one time connection to disabled
2870 * device, leave the params, but mark them as just once.
2871 */
2872 if (params->explicit_connect) {
2873 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2874 continue;
2875 }
2876
2877 list_del(&params->list);
2878 kfree(params);
2879 }
2880
2881 BT_DBG("All LE disabled connection parameters were removed");
2882 }
2883
2884 /* This function requires the caller holds hdev->lock */
2885 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2886 {
2887 struct hci_conn_params *params, *tmp;
2888
2889 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2890 hci_conn_params_free(params);
2891
2892 BT_DBG("All LE connection parameters were removed");
2893 }
2894
2895 /* Copy the Identity Address of the controller.
2896 *
2897 * If the controller has a public BD_ADDR, then by default use that one.
2898 * If this is a LE only controller without a public address, default to
2899 * the static random address.
2900 *
2901 * For debugging purposes it is possible to force controllers with a
2902 * public address to use the static random address instead.
2903 *
2904 * In case BR/EDR has been disabled on a dual-mode controller and
2905 * userspace has configured a static address, then that address
2906 * becomes the identity address instead of the public BR/EDR address.
2907 */
2908 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2909 u8 *bdaddr_type)
2910 {
2911 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2912 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2913 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2914 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2915 bacpy(bdaddr, &hdev->static_addr);
2916 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2917 } else {
2918 bacpy(bdaddr, &hdev->bdaddr);
2919 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2920 }
2921 }
2922
2923 /* Alloc HCI device */
2924 struct hci_dev *hci_alloc_dev(void)
2925 {
2926 struct hci_dev *hdev;
2927
2928 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2929 if (!hdev)
2930 return NULL;
2931
2932 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2933 hdev->esco_type = (ESCO_HV1);
2934 hdev->link_mode = (HCI_LM_ACCEPT);
2935 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2936 hdev->io_capability = 0x03; /* No Input No Output */
2937 hdev->manufacturer = 0xffff; /* Default to internal use */
2938 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2939 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2940 hdev->adv_instance_cnt = 0;
2941 hdev->cur_adv_instance = 0x00;
2942 hdev->adv_instance_timeout = 0;
2943
2944 hdev->sniff_max_interval = 800;
2945 hdev->sniff_min_interval = 80;
2946
2947 hdev->le_adv_channel_map = 0x07;
2948 hdev->le_adv_min_interval = 0x0800;
2949 hdev->le_adv_max_interval = 0x0800;
2950 hdev->le_scan_interval = 0x0060;
2951 hdev->le_scan_window = 0x0030;
2952 hdev->le_conn_min_interval = 0x0028;
2953 hdev->le_conn_max_interval = 0x0038;
2954 hdev->le_conn_latency = 0x0000;
2955 hdev->le_supv_timeout = 0x002a;
2956 hdev->le_def_tx_len = 0x001b;
2957 hdev->le_def_tx_time = 0x0148;
2958 hdev->le_max_tx_len = 0x001b;
2959 hdev->le_max_tx_time = 0x0148;
2960 hdev->le_max_rx_len = 0x001b;
2961 hdev->le_max_rx_time = 0x0148;
2962
2963 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2964 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2965 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2966 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2967
2968 mutex_init(&hdev->lock);
2969 mutex_init(&hdev->req_lock);
2970
2971 INIT_LIST_HEAD(&hdev->mgmt_pending);
2972 INIT_LIST_HEAD(&hdev->blacklist);
2973 INIT_LIST_HEAD(&hdev->whitelist);
2974 INIT_LIST_HEAD(&hdev->uuids);
2975 INIT_LIST_HEAD(&hdev->link_keys);
2976 INIT_LIST_HEAD(&hdev->long_term_keys);
2977 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2978 INIT_LIST_HEAD(&hdev->remote_oob_data);
2979 INIT_LIST_HEAD(&hdev->le_white_list);
2980 INIT_LIST_HEAD(&hdev->le_conn_params);
2981 INIT_LIST_HEAD(&hdev->pend_le_conns);
2982 INIT_LIST_HEAD(&hdev->pend_le_reports);
2983 INIT_LIST_HEAD(&hdev->conn_hash.list);
2984 INIT_LIST_HEAD(&hdev->adv_instances);
2985
2986 INIT_WORK(&hdev->rx_work, hci_rx_work);
2987 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2988 INIT_WORK(&hdev->tx_work, hci_tx_work);
2989 INIT_WORK(&hdev->power_on, hci_power_on);
2990 INIT_WORK(&hdev->error_reset, hci_error_reset);
2991
2992 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2993
2994 skb_queue_head_init(&hdev->rx_q);
2995 skb_queue_head_init(&hdev->cmd_q);
2996 skb_queue_head_init(&hdev->raw_q);
2997
2998 init_waitqueue_head(&hdev->req_wait_q);
2999
3000 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3001
3002 hci_request_setup(hdev);
3003
3004 hci_init_sysfs(hdev);
3005 discovery_init(hdev);
3006
3007 return hdev;
3008 }
3009 EXPORT_SYMBOL(hci_alloc_dev);
3010
3011 /* Free HCI device */
3012 void hci_free_dev(struct hci_dev *hdev)
3013 {
3014 /* will free via device release */
3015 put_device(&hdev->dev);
3016 }
3017 EXPORT_SYMBOL(hci_free_dev);
3018
3019 /* Register HCI device */
3020 int hci_register_dev(struct hci_dev *hdev)
3021 {
3022 int id, error;
3023
3024 if (!hdev->open || !hdev->close || !hdev->send)
3025 return -EINVAL;
3026
3027 /* Do not allow HCI_AMP devices to register at index 0,
3028 * so the index can be used as the AMP controller ID.
3029 */
3030 switch (hdev->dev_type) {
3031 case HCI_PRIMARY:
3032 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3033 break;
3034 case HCI_AMP:
3035 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3036 break;
3037 default:
3038 return -EINVAL;
3039 }
3040
3041 if (id < 0)
3042 return id;
3043
3044 sprintf(hdev->name, "hci%d", id);
3045 hdev->id = id;
3046
3047 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3048
3049 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3050 WQ_MEM_RECLAIM, 1, hdev->name);
3051 if (!hdev->workqueue) {
3052 error = -ENOMEM;
3053 goto err;
3054 }
3055
3056 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3057 WQ_MEM_RECLAIM, 1, hdev->name);
3058 if (!hdev->req_workqueue) {
3059 destroy_workqueue(hdev->workqueue);
3060 error = -ENOMEM;
3061 goto err;
3062 }
3063
3064 if (!IS_ERR_OR_NULL(bt_debugfs))
3065 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3066
3067 dev_set_name(&hdev->dev, "%s", hdev->name);
3068
3069 error = device_add(&hdev->dev);
3070 if (error < 0)
3071 goto err_wqueue;
3072
3073 hci_leds_init(hdev);
3074
3075 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3076 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3077 hdev);
3078 if (hdev->rfkill) {
3079 if (rfkill_register(hdev->rfkill) < 0) {
3080 rfkill_destroy(hdev->rfkill);
3081 hdev->rfkill = NULL;
3082 }
3083 }
3084
3085 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3086 hci_dev_set_flag(hdev, HCI_RFKILLED);
3087
3088 hci_dev_set_flag(hdev, HCI_SETUP);
3089 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3090
3091 if (hdev->dev_type == HCI_PRIMARY) {
3092 /* Assume BR/EDR support until proven otherwise (such as
3093 * through reading supported features during init.
3094 */
3095 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3096 }
3097
3098 write_lock(&hci_dev_list_lock);
3099 list_add(&hdev->list, &hci_dev_list);
3100 write_unlock(&hci_dev_list_lock);
3101
3102 /* Devices that are marked for raw-only usage are unconfigured
3103 * and should not be included in normal operation.
3104 */
3105 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3106 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3107
3108 hci_sock_dev_event(hdev, HCI_DEV_REG);
3109 hci_dev_hold(hdev);
3110
3111 queue_work(hdev->req_workqueue, &hdev->power_on);
3112
3113 return id;
3114
3115 err_wqueue:
3116 destroy_workqueue(hdev->workqueue);
3117 destroy_workqueue(hdev->req_workqueue);
3118 err:
3119 ida_simple_remove(&hci_index_ida, hdev->id);
3120
3121 return error;
3122 }
3123 EXPORT_SYMBOL(hci_register_dev);
3124
3125 /* Unregister HCI device */
3126 void hci_unregister_dev(struct hci_dev *hdev)
3127 {
3128 int id;
3129
3130 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3131
3132 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3133
3134 id = hdev->id;
3135
3136 write_lock(&hci_dev_list_lock);
3137 list_del(&hdev->list);
3138 write_unlock(&hci_dev_list_lock);
3139
3140 cancel_work_sync(&hdev->power_on);
3141
3142 hci_dev_do_close(hdev);
3143
3144 if (!test_bit(HCI_INIT, &hdev->flags) &&
3145 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3146 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3147 hci_dev_lock(hdev);
3148 mgmt_index_removed(hdev);
3149 hci_dev_unlock(hdev);
3150 }
3151
3152 /* mgmt_index_removed should take care of emptying the
3153 * pending list */
3154 BUG_ON(!list_empty(&hdev->mgmt_pending));
3155
3156 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3157
3158 if (hdev->rfkill) {
3159 rfkill_unregister(hdev->rfkill);
3160 rfkill_destroy(hdev->rfkill);
3161 }
3162
3163 device_del(&hdev->dev);
3164
3165 debugfs_remove_recursive(hdev->debugfs);
3166
3167 destroy_workqueue(hdev->workqueue);
3168 destroy_workqueue(hdev->req_workqueue);
3169
3170 hci_dev_lock(hdev);
3171 hci_bdaddr_list_clear(&hdev->blacklist);
3172 hci_bdaddr_list_clear(&hdev->whitelist);
3173 hci_uuids_clear(hdev);
3174 hci_link_keys_clear(hdev);
3175 hci_smp_ltks_clear(hdev);
3176 hci_smp_irks_clear(hdev);
3177 hci_remote_oob_data_clear(hdev);
3178 hci_adv_instances_clear(hdev);
3179 hci_bdaddr_list_clear(&hdev->le_white_list);
3180 hci_conn_params_clear_all(hdev);
3181 hci_discovery_filter_clear(hdev);
3182 hci_dev_unlock(hdev);
3183
3184 hci_dev_put(hdev);
3185
3186 ida_simple_remove(&hci_index_ida, id);
3187 }
3188 EXPORT_SYMBOL(hci_unregister_dev);
3189
3190 /* Suspend HCI device */
3191 int hci_suspend_dev(struct hci_dev *hdev)
3192 {
3193 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3194 return 0;
3195 }
3196 EXPORT_SYMBOL(hci_suspend_dev);
3197
3198 /* Resume HCI device */
3199 int hci_resume_dev(struct hci_dev *hdev)
3200 {
3201 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3202 return 0;
3203 }
3204 EXPORT_SYMBOL(hci_resume_dev);
3205
3206 /* Reset HCI device */
3207 int hci_reset_dev(struct hci_dev *hdev)
3208 {
3209 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3210 struct sk_buff *skb;
3211
3212 skb = bt_skb_alloc(3, GFP_ATOMIC);
3213 if (!skb)
3214 return -ENOMEM;
3215
3216 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3217 memcpy(skb_put(skb, 3), hw_err, 3);
3218
3219 /* Send Hardware Error to upper stack */
3220 return hci_recv_frame(hdev, skb);
3221 }
3222 EXPORT_SYMBOL(hci_reset_dev);
3223
3224 /* Receive frame from HCI drivers */
3225 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3226 {
3227 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3228 && !test_bit(HCI_INIT, &hdev->flags))) {
3229 kfree_skb(skb);
3230 return -ENXIO;
3231 }
3232
3233 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3234 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3235 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3236 kfree_skb(skb);
3237 return -EINVAL;
3238 }
3239
3240 /* Incoming skb */
3241 bt_cb(skb)->incoming = 1;
3242
3243 /* Time stamp */
3244 __net_timestamp(skb);
3245
3246 skb_queue_tail(&hdev->rx_q, skb);
3247 queue_work(hdev->workqueue, &hdev->rx_work);
3248
3249 return 0;
3250 }
3251 EXPORT_SYMBOL(hci_recv_frame);
3252
3253 /* Receive diagnostic message from HCI drivers */
3254 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3255 {
3256 /* Mark as diagnostic packet */
3257 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3258
3259 /* Time stamp */
3260 __net_timestamp(skb);
3261
3262 skb_queue_tail(&hdev->rx_q, skb);
3263 queue_work(hdev->workqueue, &hdev->rx_work);
3264
3265 return 0;
3266 }
3267 EXPORT_SYMBOL(hci_recv_diag);
3268
3269 /* ---- Interface to upper protocols ---- */
3270
3271 int hci_register_cb(struct hci_cb *cb)
3272 {
3273 BT_DBG("%p name %s", cb, cb->name);
3274
3275 mutex_lock(&hci_cb_list_lock);
3276 list_add_tail(&cb->list, &hci_cb_list);
3277 mutex_unlock(&hci_cb_list_lock);
3278
3279 return 0;
3280 }
3281 EXPORT_SYMBOL(hci_register_cb);
3282
3283 int hci_unregister_cb(struct hci_cb *cb)
3284 {
3285 BT_DBG("%p name %s", cb, cb->name);
3286
3287 mutex_lock(&hci_cb_list_lock);
3288 list_del(&cb->list);
3289 mutex_unlock(&hci_cb_list_lock);
3290
3291 return 0;
3292 }
3293 EXPORT_SYMBOL(hci_unregister_cb);
3294
3295 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3296 {
3297 int err;
3298
3299 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3300 skb->len);
3301
3302 /* Time stamp */
3303 __net_timestamp(skb);
3304
3305 /* Send copy to monitor */
3306 hci_send_to_monitor(hdev, skb);
3307
3308 if (atomic_read(&hdev->promisc)) {
3309 /* Send copy to the sockets */
3310 hci_send_to_sock(hdev, skb);
3311 }
3312
3313 /* Get rid of skb owner, prior to sending to the driver. */
3314 skb_orphan(skb);
3315
3316 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3317 kfree_skb(skb);
3318 return;
3319 }
3320
3321 err = hdev->send(hdev, skb);
3322 if (err < 0) {
3323 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3324 kfree_skb(skb);
3325 }
3326 }
3327
3328 /* Send HCI command */
3329 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3330 const void *param)
3331 {
3332 struct sk_buff *skb;
3333
3334 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3335
3336 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3337 if (!skb) {
3338 BT_ERR("%s no memory for command", hdev->name);
3339 return -ENOMEM;
3340 }
3341
3342 /* Stand-alone HCI commands must be flagged as
3343 * single-command requests.
3344 */
3345 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3346
3347 skb_queue_tail(&hdev->cmd_q, skb);
3348 queue_work(hdev->workqueue, &hdev->cmd_work);
3349
3350 return 0;
3351 }
3352
3353 /* Get data from the previously sent command */
3354 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3355 {
3356 struct hci_command_hdr *hdr;
3357
3358 if (!hdev->sent_cmd)
3359 return NULL;
3360
3361 hdr = (void *) hdev->sent_cmd->data;
3362
3363 if (hdr->opcode != cpu_to_le16(opcode))
3364 return NULL;
3365
3366 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3367
3368 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3369 }
3370
3371 /* Send HCI command and wait for command commplete event */
3372 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3373 const void *param, u32 timeout)
3374 {
3375 struct sk_buff *skb;
3376
3377 if (!test_bit(HCI_UP, &hdev->flags))
3378 return ERR_PTR(-ENETDOWN);
3379
3380 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3381
3382 hci_req_sync_lock(hdev);
3383 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3384 hci_req_sync_unlock(hdev);
3385
3386 return skb;
3387 }
3388 EXPORT_SYMBOL(hci_cmd_sync);
3389
3390 /* Send ACL data */
3391 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3392 {
3393 struct hci_acl_hdr *hdr;
3394 int len = skb->len;
3395
3396 skb_push(skb, HCI_ACL_HDR_SIZE);
3397 skb_reset_transport_header(skb);
3398 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3399 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3400 hdr->dlen = cpu_to_le16(len);
3401 }
3402
3403 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3404 struct sk_buff *skb, __u16 flags)
3405 {
3406 struct hci_conn *conn = chan->conn;
3407 struct hci_dev *hdev = conn->hdev;
3408 struct sk_buff *list;
3409
3410 skb->len = skb_headlen(skb);
3411 skb->data_len = 0;
3412
3413 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3414
3415 switch (hdev->dev_type) {
3416 case HCI_PRIMARY:
3417 hci_add_acl_hdr(skb, conn->handle, flags);
3418 break;
3419 case HCI_AMP:
3420 hci_add_acl_hdr(skb, chan->handle, flags);
3421 break;
3422 default:
3423 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3424 return;
3425 }
3426
3427 list = skb_shinfo(skb)->frag_list;
3428 if (!list) {
3429 /* Non fragmented */
3430 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3431
3432 skb_queue_tail(queue, skb);
3433 } else {
3434 /* Fragmented */
3435 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3436
3437 skb_shinfo(skb)->frag_list = NULL;
3438
3439 /* Queue all fragments atomically. We need to use spin_lock_bh
3440 * here because of 6LoWPAN links, as there this function is
3441 * called from softirq and using normal spin lock could cause
3442 * deadlocks.
3443 */
3444 spin_lock_bh(&queue->lock);
3445
3446 __skb_queue_tail(queue, skb);
3447
3448 flags &= ~ACL_START;
3449 flags |= ACL_CONT;
3450 do {
3451 skb = list; list = list->next;
3452
3453 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3454 hci_add_acl_hdr(skb, conn->handle, flags);
3455
3456 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3457
3458 __skb_queue_tail(queue, skb);
3459 } while (list);
3460
3461 spin_unlock_bh(&queue->lock);
3462 }
3463 }
3464
3465 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3466 {
3467 struct hci_dev *hdev = chan->conn->hdev;
3468
3469 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3470
3471 hci_queue_acl(chan, &chan->data_q, skb, flags);
3472
3473 queue_work(hdev->workqueue, &hdev->tx_work);
3474 }
3475
3476 /* Send SCO data */
3477 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3478 {
3479 struct hci_dev *hdev = conn->hdev;
3480 struct hci_sco_hdr hdr;
3481
3482 BT_DBG("%s len %d", hdev->name, skb->len);
3483
3484 hdr.handle = cpu_to_le16(conn->handle);
3485 hdr.dlen = skb->len;
3486
3487 skb_push(skb, HCI_SCO_HDR_SIZE);
3488 skb_reset_transport_header(skb);
3489 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3490
3491 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3492
3493 skb_queue_tail(&conn->data_q, skb);
3494 queue_work(hdev->workqueue, &hdev->tx_work);
3495 }
3496
3497 /* ---- HCI TX task (outgoing data) ---- */
3498
3499 /* HCI Connection scheduler */
3500 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3501 int *quote)
3502 {
3503 struct hci_conn_hash *h = &hdev->conn_hash;
3504 struct hci_conn *conn = NULL, *c;
3505 unsigned int num = 0, min = ~0;
3506
3507 /* We don't have to lock device here. Connections are always
3508 * added and removed with TX task disabled. */
3509
3510 rcu_read_lock();
3511
3512 list_for_each_entry_rcu(c, &h->list, list) {
3513 if (c->type != type || skb_queue_empty(&c->data_q))
3514 continue;
3515
3516 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3517 continue;
3518
3519 num++;
3520
3521 if (c->sent < min) {
3522 min = c->sent;
3523 conn = c;
3524 }
3525
3526 if (hci_conn_num(hdev, type) == num)
3527 break;
3528 }
3529
3530 rcu_read_unlock();
3531
3532 if (conn) {
3533 int cnt, q;
3534
3535 switch (conn->type) {
3536 case ACL_LINK:
3537 cnt = hdev->acl_cnt;
3538 break;
3539 case SCO_LINK:
3540 case ESCO_LINK:
3541 cnt = hdev->sco_cnt;
3542 break;
3543 case LE_LINK:
3544 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3545 break;
3546 default:
3547 cnt = 0;
3548 BT_ERR("Unknown link type");
3549 }
3550
3551 q = cnt / num;
3552 *quote = q ? q : 1;
3553 } else
3554 *quote = 0;
3555
3556 BT_DBG("conn %p quote %d", conn, *quote);
3557 return conn;
3558 }
3559
3560 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3561 {
3562 struct hci_conn_hash *h = &hdev->conn_hash;
3563 struct hci_conn *c;
3564
3565 BT_ERR("%s link tx timeout", hdev->name);
3566
3567 rcu_read_lock();
3568
3569 /* Kill stalled connections */
3570 list_for_each_entry_rcu(c, &h->list, list) {
3571 if (c->type == type && c->sent) {
3572 BT_ERR("%s killing stalled connection %pMR",
3573 hdev->name, &c->dst);
3574 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3575 }
3576 }
3577
3578 rcu_read_unlock();
3579 }
3580
3581 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3582 int *quote)
3583 {
3584 struct hci_conn_hash *h = &hdev->conn_hash;
3585 struct hci_chan *chan = NULL;
3586 unsigned int num = 0, min = ~0, cur_prio = 0;
3587 struct hci_conn *conn;
3588 int cnt, q, conn_num = 0;
3589
3590 BT_DBG("%s", hdev->name);
3591
3592 rcu_read_lock();
3593
3594 list_for_each_entry_rcu(conn, &h->list, list) {
3595 struct hci_chan *tmp;
3596
3597 if (conn->type != type)
3598 continue;
3599
3600 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3601 continue;
3602
3603 conn_num++;
3604
3605 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3606 struct sk_buff *skb;
3607
3608 if (skb_queue_empty(&tmp->data_q))
3609 continue;
3610
3611 skb = skb_peek(&tmp->data_q);
3612 if (skb->priority < cur_prio)
3613 continue;
3614
3615 if (skb->priority > cur_prio) {
3616 num = 0;
3617 min = ~0;
3618 cur_prio = skb->priority;
3619 }
3620
3621 num++;
3622
3623 if (conn->sent < min) {
3624 min = conn->sent;
3625 chan = tmp;
3626 }
3627 }
3628
3629 if (hci_conn_num(hdev, type) == conn_num)
3630 break;
3631 }
3632
3633 rcu_read_unlock();
3634
3635 if (!chan)
3636 return NULL;
3637
3638 switch (chan->conn->type) {
3639 case ACL_LINK:
3640 cnt = hdev->acl_cnt;
3641 break;
3642 case AMP_LINK:
3643 cnt = hdev->block_cnt;
3644 break;
3645 case SCO_LINK:
3646 case ESCO_LINK:
3647 cnt = hdev->sco_cnt;
3648 break;
3649 case LE_LINK:
3650 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3651 break;
3652 default:
3653 cnt = 0;
3654 BT_ERR("Unknown link type");
3655 }
3656
3657 q = cnt / num;
3658 *quote = q ? q : 1;
3659 BT_DBG("chan %p quote %d", chan, *quote);
3660 return chan;
3661 }
3662
3663 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3664 {
3665 struct hci_conn_hash *h = &hdev->conn_hash;
3666 struct hci_conn *conn;
3667 int num = 0;
3668
3669 BT_DBG("%s", hdev->name);
3670
3671 rcu_read_lock();
3672
3673 list_for_each_entry_rcu(conn, &h->list, list) {
3674 struct hci_chan *chan;
3675
3676 if (conn->type != type)
3677 continue;
3678
3679 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3680 continue;
3681
3682 num++;
3683
3684 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3685 struct sk_buff *skb;
3686
3687 if (chan->sent) {
3688 chan->sent = 0;
3689 continue;
3690 }
3691
3692 if (skb_queue_empty(&chan->data_q))
3693 continue;
3694
3695 skb = skb_peek(&chan->data_q);
3696 if (skb->priority >= HCI_PRIO_MAX - 1)
3697 continue;
3698
3699 skb->priority = HCI_PRIO_MAX - 1;
3700
3701 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3702 skb->priority);
3703 }
3704
3705 if (hci_conn_num(hdev, type) == num)
3706 break;
3707 }
3708
3709 rcu_read_unlock();
3710
3711 }
3712
3713 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3714 {
3715 /* Calculate count of blocks used by this packet */
3716 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3717 }
3718
3719 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3720 {
3721 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3722 /* ACL tx timeout must be longer than maximum
3723 * link supervision timeout (40.9 seconds) */
3724 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3725 HCI_ACL_TX_TIMEOUT))
3726 hci_link_tx_to(hdev, ACL_LINK);
3727 }
3728 }
3729
3730 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3731 {
3732 unsigned int cnt = hdev->acl_cnt;
3733 struct hci_chan *chan;
3734 struct sk_buff *skb;
3735 int quote;
3736
3737 __check_timeout(hdev, cnt);
3738
3739 while (hdev->acl_cnt &&
3740 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3741 u32 priority = (skb_peek(&chan->data_q))->priority;
3742 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3743 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3744 skb->len, skb->priority);
3745
3746 /* Stop if priority has changed */
3747 if (skb->priority < priority)
3748 break;
3749
3750 skb = skb_dequeue(&chan->data_q);
3751
3752 hci_conn_enter_active_mode(chan->conn,
3753 bt_cb(skb)->force_active);
3754
3755 hci_send_frame(hdev, skb);
3756 hdev->acl_last_tx = jiffies;
3757
3758 hdev->acl_cnt--;
3759 chan->sent++;
3760 chan->conn->sent++;
3761 }
3762 }
3763
3764 if (cnt != hdev->acl_cnt)
3765 hci_prio_recalculate(hdev, ACL_LINK);
3766 }
3767
3768 static void hci_sched_acl_blk(struct hci_dev *hdev)
3769 {
3770 unsigned int cnt = hdev->block_cnt;
3771 struct hci_chan *chan;
3772 struct sk_buff *skb;
3773 int quote;
3774 u8 type;
3775
3776 __check_timeout(hdev, cnt);
3777
3778 BT_DBG("%s", hdev->name);
3779
3780 if (hdev->dev_type == HCI_AMP)
3781 type = AMP_LINK;
3782 else
3783 type = ACL_LINK;
3784
3785 while (hdev->block_cnt > 0 &&
3786 (chan = hci_chan_sent(hdev, type, &quote))) {
3787 u32 priority = (skb_peek(&chan->data_q))->priority;
3788 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3789 int blocks;
3790
3791 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3792 skb->len, skb->priority);
3793
3794 /* Stop if priority has changed */
3795 if (skb->priority < priority)
3796 break;
3797
3798 skb = skb_dequeue(&chan->data_q);
3799
3800 blocks = __get_blocks(hdev, skb);
3801 if (blocks > hdev->block_cnt)
3802 return;
3803
3804 hci_conn_enter_active_mode(chan->conn,
3805 bt_cb(skb)->force_active);
3806
3807 hci_send_frame(hdev, skb);
3808 hdev->acl_last_tx = jiffies;
3809
3810 hdev->block_cnt -= blocks;
3811 quote -= blocks;
3812
3813 chan->sent += blocks;
3814 chan->conn->sent += blocks;
3815 }
3816 }
3817
3818 if (cnt != hdev->block_cnt)
3819 hci_prio_recalculate(hdev, type);
3820 }
3821
3822 static void hci_sched_acl(struct hci_dev *hdev)
3823 {
3824 BT_DBG("%s", hdev->name);
3825
3826 /* No ACL link over BR/EDR controller */
3827 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3828 return;
3829
3830 /* No AMP link over AMP controller */
3831 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3832 return;
3833
3834 switch (hdev->flow_ctl_mode) {
3835 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3836 hci_sched_acl_pkt(hdev);
3837 break;
3838
3839 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3840 hci_sched_acl_blk(hdev);
3841 break;
3842 }
3843 }
3844
3845 /* Schedule SCO */
3846 static void hci_sched_sco(struct hci_dev *hdev)
3847 {
3848 struct hci_conn *conn;
3849 struct sk_buff *skb;
3850 int quote;
3851
3852 BT_DBG("%s", hdev->name);
3853
3854 if (!hci_conn_num(hdev, SCO_LINK))
3855 return;
3856
3857 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3858 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3859 BT_DBG("skb %p len %d", skb, skb->len);
3860 hci_send_frame(hdev, skb);
3861
3862 conn->sent++;
3863 if (conn->sent == ~0)
3864 conn->sent = 0;
3865 }
3866 }
3867 }
3868
3869 static void hci_sched_esco(struct hci_dev *hdev)
3870 {
3871 struct hci_conn *conn;
3872 struct sk_buff *skb;
3873 int quote;
3874
3875 BT_DBG("%s", hdev->name);
3876
3877 if (!hci_conn_num(hdev, ESCO_LINK))
3878 return;
3879
3880 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3881 &quote))) {
3882 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3883 BT_DBG("skb %p len %d", skb, skb->len);
3884 hci_send_frame(hdev, skb);
3885
3886 conn->sent++;
3887 if (conn->sent == ~0)
3888 conn->sent = 0;
3889 }
3890 }
3891 }
3892
3893 static void hci_sched_le(struct hci_dev *hdev)
3894 {
3895 struct hci_chan *chan;
3896 struct sk_buff *skb;
3897 int quote, cnt, tmp;
3898
3899 BT_DBG("%s", hdev->name);
3900
3901 if (!hci_conn_num(hdev, LE_LINK))
3902 return;
3903
3904 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3905 /* LE tx timeout must be longer than maximum
3906 * link supervision timeout (40.9 seconds) */
3907 if (!hdev->le_cnt && hdev->le_pkts &&
3908 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3909 hci_link_tx_to(hdev, LE_LINK);
3910 }
3911
3912 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3913 tmp = cnt;
3914 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3915 u32 priority = (skb_peek(&chan->data_q))->priority;
3916 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3917 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3918 skb->len, skb->priority);
3919
3920 /* Stop if priority has changed */
3921 if (skb->priority < priority)
3922 break;
3923
3924 skb = skb_dequeue(&chan->data_q);
3925
3926 hci_send_frame(hdev, skb);
3927 hdev->le_last_tx = jiffies;
3928
3929 cnt--;
3930 chan->sent++;
3931 chan->conn->sent++;
3932 }
3933 }
3934
3935 if (hdev->le_pkts)
3936 hdev->le_cnt = cnt;
3937 else
3938 hdev->acl_cnt = cnt;
3939
3940 if (cnt != tmp)
3941 hci_prio_recalculate(hdev, LE_LINK);
3942 }
3943
3944 static void hci_tx_work(struct work_struct *work)
3945 {
3946 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3947 struct sk_buff *skb;
3948
3949 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3950 hdev->sco_cnt, hdev->le_cnt);
3951
3952 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3953 /* Schedule queues and send stuff to HCI driver */
3954 hci_sched_acl(hdev);
3955 hci_sched_sco(hdev);
3956 hci_sched_esco(hdev);
3957 hci_sched_le(hdev);
3958 }
3959
3960 /* Send next queued raw (unknown type) packet */
3961 while ((skb = skb_dequeue(&hdev->raw_q)))
3962 hci_send_frame(hdev, skb);
3963 }
3964
3965 /* ----- HCI RX task (incoming data processing) ----- */
3966
3967 /* ACL data packet */
3968 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3969 {
3970 struct hci_acl_hdr *hdr = (void *) skb->data;
3971 struct hci_conn *conn;
3972 __u16 handle, flags;
3973
3974 skb_pull(skb, HCI_ACL_HDR_SIZE);
3975
3976 handle = __le16_to_cpu(hdr->handle);
3977 flags = hci_flags(handle);
3978 handle = hci_handle(handle);
3979
3980 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3981 handle, flags);
3982
3983 hdev->stat.acl_rx++;
3984
3985 hci_dev_lock(hdev);
3986 conn = hci_conn_hash_lookup_handle(hdev, handle);
3987 hci_dev_unlock(hdev);
3988
3989 if (conn) {
3990 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3991
3992 /* Send to upper protocol */
3993 l2cap_recv_acldata(conn, skb, flags);
3994 return;
3995 } else {
3996 BT_ERR("%s ACL packet for unknown connection handle %d",
3997 hdev->name, handle);
3998 }
3999
4000 kfree_skb(skb);
4001 }
4002
4003 /* SCO data packet */
4004 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4005 {
4006 struct hci_sco_hdr *hdr = (void *) skb->data;
4007 struct hci_conn *conn;
4008 __u16 handle;
4009
4010 skb_pull(skb, HCI_SCO_HDR_SIZE);
4011
4012 handle = __le16_to_cpu(hdr->handle);
4013
4014 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4015
4016 hdev->stat.sco_rx++;
4017
4018 hci_dev_lock(hdev);
4019 conn = hci_conn_hash_lookup_handle(hdev, handle);
4020 hci_dev_unlock(hdev);
4021
4022 if (conn) {
4023 /* Send to upper protocol */
4024 sco_recv_scodata(conn, skb);
4025 return;
4026 } else {
4027 BT_ERR("%s SCO packet for unknown connection handle %d",
4028 hdev->name, handle);
4029 }
4030
4031 kfree_skb(skb);
4032 }
4033
4034 static bool hci_req_is_complete(struct hci_dev *hdev)
4035 {
4036 struct sk_buff *skb;
4037
4038 skb = skb_peek(&hdev->cmd_q);
4039 if (!skb)
4040 return true;
4041
4042 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4043 }
4044
4045 static void hci_resend_last(struct hci_dev *hdev)
4046 {
4047 struct hci_command_hdr *sent;
4048 struct sk_buff *skb;
4049 u16 opcode;
4050
4051 if (!hdev->sent_cmd)
4052 return;
4053
4054 sent = (void *) hdev->sent_cmd->data;
4055 opcode = __le16_to_cpu(sent->opcode);
4056 if (opcode == HCI_OP_RESET)
4057 return;
4058
4059 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4060 if (!skb)
4061 return;
4062
4063 skb_queue_head(&hdev->cmd_q, skb);
4064 queue_work(hdev->workqueue, &hdev->cmd_work);
4065 }
4066
4067 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4068 hci_req_complete_t *req_complete,
4069 hci_req_complete_skb_t *req_complete_skb)
4070 {
4071 struct sk_buff *skb;
4072 unsigned long flags;
4073
4074 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4075
4076 /* If the completed command doesn't match the last one that was
4077 * sent we need to do special handling of it.
4078 */
4079 if (!hci_sent_cmd_data(hdev, opcode)) {
4080 /* Some CSR based controllers generate a spontaneous
4081 * reset complete event during init and any pending
4082 * command will never be completed. In such a case we
4083 * need to resend whatever was the last sent
4084 * command.
4085 */
4086 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4087 hci_resend_last(hdev);
4088
4089 return;
4090 }
4091
4092 /* If the command succeeded and there's still more commands in
4093 * this request the request is not yet complete.
4094 */
4095 if (!status && !hci_req_is_complete(hdev))
4096 return;
4097
4098 /* If this was the last command in a request the complete
4099 * callback would be found in hdev->sent_cmd instead of the
4100 * command queue (hdev->cmd_q).
4101 */
4102 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4103 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4104 return;
4105 }
4106
4107 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4108 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4109 return;
4110 }
4111
4112 /* Remove all pending commands belonging to this request */
4113 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4114 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4115 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4116 __skb_queue_head(&hdev->cmd_q, skb);
4117 break;
4118 }
4119
4120 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4121 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4122 else
4123 *req_complete = bt_cb(skb)->hci.req_complete;
4124 kfree_skb(skb);
4125 }
4126 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4127 }
4128
4129 static void hci_rx_work(struct work_struct *work)
4130 {
4131 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4132 struct sk_buff *skb;
4133
4134 BT_DBG("%s", hdev->name);
4135
4136 while ((skb = skb_dequeue(&hdev->rx_q))) {
4137 /* Send copy to monitor */
4138 hci_send_to_monitor(hdev, skb);
4139
4140 if (atomic_read(&hdev->promisc)) {
4141 /* Send copy to the sockets */
4142 hci_send_to_sock(hdev, skb);
4143 }
4144
4145 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4146 kfree_skb(skb);
4147 continue;
4148 }
4149
4150 if (test_bit(HCI_INIT, &hdev->flags)) {
4151 /* Don't process data packets in this states. */
4152 switch (hci_skb_pkt_type(skb)) {
4153 case HCI_ACLDATA_PKT:
4154 case HCI_SCODATA_PKT:
4155 kfree_skb(skb);
4156 continue;
4157 }
4158 }
4159
4160 /* Process frame */
4161 switch (hci_skb_pkt_type(skb)) {
4162 case HCI_EVENT_PKT:
4163 BT_DBG("%s Event packet", hdev->name);
4164 hci_event_packet(hdev, skb);
4165 break;
4166
4167 case HCI_ACLDATA_PKT:
4168 BT_DBG("%s ACL data packet", hdev->name);
4169 hci_acldata_packet(hdev, skb);
4170 break;
4171
4172 case HCI_SCODATA_PKT:
4173 BT_DBG("%s SCO data packet", hdev->name);
4174 hci_scodata_packet(hdev, skb);
4175 break;
4176
4177 default:
4178 kfree_skb(skb);
4179 break;
4180 }
4181 }
4182 }
4183
4184 static void hci_cmd_work(struct work_struct *work)
4185 {
4186 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4187 struct sk_buff *skb;
4188
4189 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4190 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4191
4192 /* Send queued commands */
4193 if (atomic_read(&hdev->cmd_cnt)) {
4194 skb = skb_dequeue(&hdev->cmd_q);
4195 if (!skb)
4196 return;
4197
4198 kfree_skb(hdev->sent_cmd);
4199
4200 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4201 if (hdev->sent_cmd) {
4202 atomic_dec(&hdev->cmd_cnt);
4203 hci_send_frame(hdev, skb);
4204 if (test_bit(HCI_RESET, &hdev->flags))
4205 cancel_delayed_work(&hdev->cmd_timer);
4206 else
4207 schedule_delayed_work(&hdev->cmd_timer,
4208 HCI_CMD_TIMEOUT);
4209 } else {
4210 skb_queue_head(&hdev->cmd_q, skb);
4211 queue_work(hdev->workqueue, &hdev->cmd_work);
4212 }
4213 }
4214 }
This page took 0.140117 seconds and 6 git commands to generate.