Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "smp.h"
41
42 static void hci_rx_work(struct work_struct *work);
43 static void hci_cmd_work(struct work_struct *work);
44 static void hci_tx_work(struct work_struct *work);
45
46 /* HCI device list */
47 LIST_HEAD(hci_dev_list);
48 DEFINE_RWLOCK(hci_dev_list_lock);
49
50 /* HCI callback list */
51 LIST_HEAD(hci_cb_list);
52 DEFINE_RWLOCK(hci_cb_list_lock);
53
54 /* HCI ID Numbering */
55 static DEFINE_IDA(hci_index_ida);
56
57 /* ----- HCI requests ----- */
58
59 #define HCI_REQ_DONE 0
60 #define HCI_REQ_PEND 1
61 #define HCI_REQ_CANCELED 2
62
63 #define hci_req_lock(d) mutex_lock(&d->req_lock)
64 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
65
66 /* ---- HCI notifications ---- */
67
68 static void hci_notify(struct hci_dev *hdev, int event)
69 {
70 hci_sock_dev_event(hdev, event);
71 }
72
73 /* ---- HCI debugfs entries ---- */
74
75 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
76 size_t count, loff_t *ppos)
77 {
78 struct hci_dev *hdev = file->private_data;
79 char buf[3];
80
81 buf[0] = test_bit(HCI_DUT_MODE, &hdev->dbg_flags) ? 'Y': 'N';
82 buf[1] = '\n';
83 buf[2] = '\0';
84 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
85 }
86
87 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
88 size_t count, loff_t *ppos)
89 {
90 struct hci_dev *hdev = file->private_data;
91 struct sk_buff *skb;
92 char buf[32];
93 size_t buf_size = min(count, (sizeof(buf)-1));
94 bool enable;
95 int err;
96
97 if (!test_bit(HCI_UP, &hdev->flags))
98 return -ENETDOWN;
99
100 if (copy_from_user(buf, user_buf, buf_size))
101 return -EFAULT;
102
103 buf[buf_size] = '\0';
104 if (strtobool(buf, &enable))
105 return -EINVAL;
106
107 if (enable == test_bit(HCI_DUT_MODE, &hdev->dbg_flags))
108 return -EALREADY;
109
110 hci_req_lock(hdev);
111 if (enable)
112 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
113 HCI_CMD_TIMEOUT);
114 else
115 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
116 HCI_CMD_TIMEOUT);
117 hci_req_unlock(hdev);
118
119 if (IS_ERR(skb))
120 return PTR_ERR(skb);
121
122 err = -bt_to_errno(skb->data[0]);
123 kfree_skb(skb);
124
125 if (err < 0)
126 return err;
127
128 change_bit(HCI_DUT_MODE, &hdev->dbg_flags);
129
130 return count;
131 }
132
133 static const struct file_operations dut_mode_fops = {
134 .open = simple_open,
135 .read = dut_mode_read,
136 .write = dut_mode_write,
137 .llseek = default_llseek,
138 };
139
140 static int features_show(struct seq_file *f, void *ptr)
141 {
142 struct hci_dev *hdev = f->private;
143 u8 p;
144
145 hci_dev_lock(hdev);
146 for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
147 seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
148 "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p,
149 hdev->features[p][0], hdev->features[p][1],
150 hdev->features[p][2], hdev->features[p][3],
151 hdev->features[p][4], hdev->features[p][5],
152 hdev->features[p][6], hdev->features[p][7]);
153 }
154 if (lmp_le_capable(hdev))
155 seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
156 "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n",
157 hdev->le_features[0], hdev->le_features[1],
158 hdev->le_features[2], hdev->le_features[3],
159 hdev->le_features[4], hdev->le_features[5],
160 hdev->le_features[6], hdev->le_features[7]);
161 hci_dev_unlock(hdev);
162
163 return 0;
164 }
165
166 static int features_open(struct inode *inode, struct file *file)
167 {
168 return single_open(file, features_show, inode->i_private);
169 }
170
171 static const struct file_operations features_fops = {
172 .open = features_open,
173 .read = seq_read,
174 .llseek = seq_lseek,
175 .release = single_release,
176 };
177
178 static int blacklist_show(struct seq_file *f, void *p)
179 {
180 struct hci_dev *hdev = f->private;
181 struct bdaddr_list *b;
182
183 hci_dev_lock(hdev);
184 list_for_each_entry(b, &hdev->blacklist, list)
185 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
186 hci_dev_unlock(hdev);
187
188 return 0;
189 }
190
191 static int blacklist_open(struct inode *inode, struct file *file)
192 {
193 return single_open(file, blacklist_show, inode->i_private);
194 }
195
196 static const struct file_operations blacklist_fops = {
197 .open = blacklist_open,
198 .read = seq_read,
199 .llseek = seq_lseek,
200 .release = single_release,
201 };
202
203 static int whitelist_show(struct seq_file *f, void *p)
204 {
205 struct hci_dev *hdev = f->private;
206 struct bdaddr_list *b;
207
208 hci_dev_lock(hdev);
209 list_for_each_entry(b, &hdev->whitelist, list)
210 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
211 hci_dev_unlock(hdev);
212
213 return 0;
214 }
215
216 static int whitelist_open(struct inode *inode, struct file *file)
217 {
218 return single_open(file, whitelist_show, inode->i_private);
219 }
220
221 static const struct file_operations whitelist_fops = {
222 .open = whitelist_open,
223 .read = seq_read,
224 .llseek = seq_lseek,
225 .release = single_release,
226 };
227
228 static int uuids_show(struct seq_file *f, void *p)
229 {
230 struct hci_dev *hdev = f->private;
231 struct bt_uuid *uuid;
232
233 hci_dev_lock(hdev);
234 list_for_each_entry(uuid, &hdev->uuids, list) {
235 u8 i, val[16];
236
237 /* The Bluetooth UUID values are stored in big endian,
238 * but with reversed byte order. So convert them into
239 * the right order for the %pUb modifier.
240 */
241 for (i = 0; i < 16; i++)
242 val[i] = uuid->uuid[15 - i];
243
244 seq_printf(f, "%pUb\n", val);
245 }
246 hci_dev_unlock(hdev);
247
248 return 0;
249 }
250
251 static int uuids_open(struct inode *inode, struct file *file)
252 {
253 return single_open(file, uuids_show, inode->i_private);
254 }
255
256 static const struct file_operations uuids_fops = {
257 .open = uuids_open,
258 .read = seq_read,
259 .llseek = seq_lseek,
260 .release = single_release,
261 };
262
263 static int inquiry_cache_show(struct seq_file *f, void *p)
264 {
265 struct hci_dev *hdev = f->private;
266 struct discovery_state *cache = &hdev->discovery;
267 struct inquiry_entry *e;
268
269 hci_dev_lock(hdev);
270
271 list_for_each_entry(e, &cache->all, all) {
272 struct inquiry_data *data = &e->data;
273 seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n",
274 &data->bdaddr,
275 data->pscan_rep_mode, data->pscan_period_mode,
276 data->pscan_mode, data->dev_class[2],
277 data->dev_class[1], data->dev_class[0],
278 __le16_to_cpu(data->clock_offset),
279 data->rssi, data->ssp_mode, e->timestamp);
280 }
281
282 hci_dev_unlock(hdev);
283
284 return 0;
285 }
286
287 static int inquiry_cache_open(struct inode *inode, struct file *file)
288 {
289 return single_open(file, inquiry_cache_show, inode->i_private);
290 }
291
292 static const struct file_operations inquiry_cache_fops = {
293 .open = inquiry_cache_open,
294 .read = seq_read,
295 .llseek = seq_lseek,
296 .release = single_release,
297 };
298
299 static int link_keys_show(struct seq_file *f, void *ptr)
300 {
301 struct hci_dev *hdev = f->private;
302 struct list_head *p, *n;
303
304 hci_dev_lock(hdev);
305 list_for_each_safe(p, n, &hdev->link_keys) {
306 struct link_key *key = list_entry(p, struct link_key, list);
307 seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type,
308 HCI_LINK_KEY_SIZE, key->val, key->pin_len);
309 }
310 hci_dev_unlock(hdev);
311
312 return 0;
313 }
314
315 static int link_keys_open(struct inode *inode, struct file *file)
316 {
317 return single_open(file, link_keys_show, inode->i_private);
318 }
319
320 static const struct file_operations link_keys_fops = {
321 .open = link_keys_open,
322 .read = seq_read,
323 .llseek = seq_lseek,
324 .release = single_release,
325 };
326
327 static int dev_class_show(struct seq_file *f, void *ptr)
328 {
329 struct hci_dev *hdev = f->private;
330
331 hci_dev_lock(hdev);
332 seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2],
333 hdev->dev_class[1], hdev->dev_class[0]);
334 hci_dev_unlock(hdev);
335
336 return 0;
337 }
338
339 static int dev_class_open(struct inode *inode, struct file *file)
340 {
341 return single_open(file, dev_class_show, inode->i_private);
342 }
343
344 static const struct file_operations dev_class_fops = {
345 .open = dev_class_open,
346 .read = seq_read,
347 .llseek = seq_lseek,
348 .release = single_release,
349 };
350
351 static int voice_setting_get(void *data, u64 *val)
352 {
353 struct hci_dev *hdev = data;
354
355 hci_dev_lock(hdev);
356 *val = hdev->voice_setting;
357 hci_dev_unlock(hdev);
358
359 return 0;
360 }
361
362 DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get,
363 NULL, "0x%4.4llx\n");
364
365 static int auto_accept_delay_set(void *data, u64 val)
366 {
367 struct hci_dev *hdev = data;
368
369 hci_dev_lock(hdev);
370 hdev->auto_accept_delay = val;
371 hci_dev_unlock(hdev);
372
373 return 0;
374 }
375
376 static int auto_accept_delay_get(void *data, u64 *val)
377 {
378 struct hci_dev *hdev = data;
379
380 hci_dev_lock(hdev);
381 *val = hdev->auto_accept_delay;
382 hci_dev_unlock(hdev);
383
384 return 0;
385 }
386
387 DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get,
388 auto_accept_delay_set, "%llu\n");
389
390 static ssize_t force_sc_support_read(struct file *file, char __user *user_buf,
391 size_t count, loff_t *ppos)
392 {
393 struct hci_dev *hdev = file->private_data;
394 char buf[3];
395
396 buf[0] = test_bit(HCI_FORCE_SC, &hdev->dbg_flags) ? 'Y': 'N';
397 buf[1] = '\n';
398 buf[2] = '\0';
399 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
400 }
401
402 static ssize_t force_sc_support_write(struct file *file,
403 const char __user *user_buf,
404 size_t count, loff_t *ppos)
405 {
406 struct hci_dev *hdev = file->private_data;
407 char buf[32];
408 size_t buf_size = min(count, (sizeof(buf)-1));
409 bool enable;
410
411 if (test_bit(HCI_UP, &hdev->flags))
412 return -EBUSY;
413
414 if (copy_from_user(buf, user_buf, buf_size))
415 return -EFAULT;
416
417 buf[buf_size] = '\0';
418 if (strtobool(buf, &enable))
419 return -EINVAL;
420
421 if (enable == test_bit(HCI_FORCE_SC, &hdev->dbg_flags))
422 return -EALREADY;
423
424 change_bit(HCI_FORCE_SC, &hdev->dbg_flags);
425
426 return count;
427 }
428
429 static const struct file_operations force_sc_support_fops = {
430 .open = simple_open,
431 .read = force_sc_support_read,
432 .write = force_sc_support_write,
433 .llseek = default_llseek,
434 };
435
436 static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf,
437 size_t count, loff_t *ppos)
438 {
439 struct hci_dev *hdev = file->private_data;
440 char buf[3];
441
442 buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N';
443 buf[1] = '\n';
444 buf[2] = '\0';
445 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
446 }
447
448 static const struct file_operations sc_only_mode_fops = {
449 .open = simple_open,
450 .read = sc_only_mode_read,
451 .llseek = default_llseek,
452 };
453
454 static int idle_timeout_set(void *data, u64 val)
455 {
456 struct hci_dev *hdev = data;
457
458 if (val != 0 && (val < 500 || val > 3600000))
459 return -EINVAL;
460
461 hci_dev_lock(hdev);
462 hdev->idle_timeout = val;
463 hci_dev_unlock(hdev);
464
465 return 0;
466 }
467
468 static int idle_timeout_get(void *data, u64 *val)
469 {
470 struct hci_dev *hdev = data;
471
472 hci_dev_lock(hdev);
473 *val = hdev->idle_timeout;
474 hci_dev_unlock(hdev);
475
476 return 0;
477 }
478
479 DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get,
480 idle_timeout_set, "%llu\n");
481
482 static int rpa_timeout_set(void *data, u64 val)
483 {
484 struct hci_dev *hdev = data;
485
486 /* Require the RPA timeout to be at least 30 seconds and at most
487 * 24 hours.
488 */
489 if (val < 30 || val > (60 * 60 * 24))
490 return -EINVAL;
491
492 hci_dev_lock(hdev);
493 hdev->rpa_timeout = val;
494 hci_dev_unlock(hdev);
495
496 return 0;
497 }
498
499 static int rpa_timeout_get(void *data, u64 *val)
500 {
501 struct hci_dev *hdev = data;
502
503 hci_dev_lock(hdev);
504 *val = hdev->rpa_timeout;
505 hci_dev_unlock(hdev);
506
507 return 0;
508 }
509
510 DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get,
511 rpa_timeout_set, "%llu\n");
512
513 static int sniff_min_interval_set(void *data, u64 val)
514 {
515 struct hci_dev *hdev = data;
516
517 if (val == 0 || val % 2 || val > hdev->sniff_max_interval)
518 return -EINVAL;
519
520 hci_dev_lock(hdev);
521 hdev->sniff_min_interval = val;
522 hci_dev_unlock(hdev);
523
524 return 0;
525 }
526
527 static int sniff_min_interval_get(void *data, u64 *val)
528 {
529 struct hci_dev *hdev = data;
530
531 hci_dev_lock(hdev);
532 *val = hdev->sniff_min_interval;
533 hci_dev_unlock(hdev);
534
535 return 0;
536 }
537
538 DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get,
539 sniff_min_interval_set, "%llu\n");
540
541 static int sniff_max_interval_set(void *data, u64 val)
542 {
543 struct hci_dev *hdev = data;
544
545 if (val == 0 || val % 2 || val < hdev->sniff_min_interval)
546 return -EINVAL;
547
548 hci_dev_lock(hdev);
549 hdev->sniff_max_interval = val;
550 hci_dev_unlock(hdev);
551
552 return 0;
553 }
554
555 static int sniff_max_interval_get(void *data, u64 *val)
556 {
557 struct hci_dev *hdev = data;
558
559 hci_dev_lock(hdev);
560 *val = hdev->sniff_max_interval;
561 hci_dev_unlock(hdev);
562
563 return 0;
564 }
565
566 DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get,
567 sniff_max_interval_set, "%llu\n");
568
569 static int conn_info_min_age_set(void *data, u64 val)
570 {
571 struct hci_dev *hdev = data;
572
573 if (val == 0 || val > hdev->conn_info_max_age)
574 return -EINVAL;
575
576 hci_dev_lock(hdev);
577 hdev->conn_info_min_age = val;
578 hci_dev_unlock(hdev);
579
580 return 0;
581 }
582
583 static int conn_info_min_age_get(void *data, u64 *val)
584 {
585 struct hci_dev *hdev = data;
586
587 hci_dev_lock(hdev);
588 *val = hdev->conn_info_min_age;
589 hci_dev_unlock(hdev);
590
591 return 0;
592 }
593
594 DEFINE_SIMPLE_ATTRIBUTE(conn_info_min_age_fops, conn_info_min_age_get,
595 conn_info_min_age_set, "%llu\n");
596
597 static int conn_info_max_age_set(void *data, u64 val)
598 {
599 struct hci_dev *hdev = data;
600
601 if (val == 0 || val < hdev->conn_info_min_age)
602 return -EINVAL;
603
604 hci_dev_lock(hdev);
605 hdev->conn_info_max_age = val;
606 hci_dev_unlock(hdev);
607
608 return 0;
609 }
610
611 static int conn_info_max_age_get(void *data, u64 *val)
612 {
613 struct hci_dev *hdev = data;
614
615 hci_dev_lock(hdev);
616 *val = hdev->conn_info_max_age;
617 hci_dev_unlock(hdev);
618
619 return 0;
620 }
621
622 DEFINE_SIMPLE_ATTRIBUTE(conn_info_max_age_fops, conn_info_max_age_get,
623 conn_info_max_age_set, "%llu\n");
624
625 static int identity_show(struct seq_file *f, void *p)
626 {
627 struct hci_dev *hdev = f->private;
628 bdaddr_t addr;
629 u8 addr_type;
630
631 hci_dev_lock(hdev);
632
633 hci_copy_identity_address(hdev, &addr, &addr_type);
634
635 seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type,
636 16, hdev->irk, &hdev->rpa);
637
638 hci_dev_unlock(hdev);
639
640 return 0;
641 }
642
643 static int identity_open(struct inode *inode, struct file *file)
644 {
645 return single_open(file, identity_show, inode->i_private);
646 }
647
648 static const struct file_operations identity_fops = {
649 .open = identity_open,
650 .read = seq_read,
651 .llseek = seq_lseek,
652 .release = single_release,
653 };
654
655 static int random_address_show(struct seq_file *f, void *p)
656 {
657 struct hci_dev *hdev = f->private;
658
659 hci_dev_lock(hdev);
660 seq_printf(f, "%pMR\n", &hdev->random_addr);
661 hci_dev_unlock(hdev);
662
663 return 0;
664 }
665
666 static int random_address_open(struct inode *inode, struct file *file)
667 {
668 return single_open(file, random_address_show, inode->i_private);
669 }
670
671 static const struct file_operations random_address_fops = {
672 .open = random_address_open,
673 .read = seq_read,
674 .llseek = seq_lseek,
675 .release = single_release,
676 };
677
678 static int static_address_show(struct seq_file *f, void *p)
679 {
680 struct hci_dev *hdev = f->private;
681
682 hci_dev_lock(hdev);
683 seq_printf(f, "%pMR\n", &hdev->static_addr);
684 hci_dev_unlock(hdev);
685
686 return 0;
687 }
688
689 static int static_address_open(struct inode *inode, struct file *file)
690 {
691 return single_open(file, static_address_show, inode->i_private);
692 }
693
694 static const struct file_operations static_address_fops = {
695 .open = static_address_open,
696 .read = seq_read,
697 .llseek = seq_lseek,
698 .release = single_release,
699 };
700
701 static ssize_t force_static_address_read(struct file *file,
702 char __user *user_buf,
703 size_t count, loff_t *ppos)
704 {
705 struct hci_dev *hdev = file->private_data;
706 char buf[3];
707
708 buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ? 'Y': 'N';
709 buf[1] = '\n';
710 buf[2] = '\0';
711 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
712 }
713
714 static ssize_t force_static_address_write(struct file *file,
715 const char __user *user_buf,
716 size_t count, loff_t *ppos)
717 {
718 struct hci_dev *hdev = file->private_data;
719 char buf[32];
720 size_t buf_size = min(count, (sizeof(buf)-1));
721 bool enable;
722
723 if (test_bit(HCI_UP, &hdev->flags))
724 return -EBUSY;
725
726 if (copy_from_user(buf, user_buf, buf_size))
727 return -EFAULT;
728
729 buf[buf_size] = '\0';
730 if (strtobool(buf, &enable))
731 return -EINVAL;
732
733 if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags))
734 return -EALREADY;
735
736 change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags);
737
738 return count;
739 }
740
741 static const struct file_operations force_static_address_fops = {
742 .open = simple_open,
743 .read = force_static_address_read,
744 .write = force_static_address_write,
745 .llseek = default_llseek,
746 };
747
748 static int white_list_show(struct seq_file *f, void *ptr)
749 {
750 struct hci_dev *hdev = f->private;
751 struct bdaddr_list *b;
752
753 hci_dev_lock(hdev);
754 list_for_each_entry(b, &hdev->le_white_list, list)
755 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
756 hci_dev_unlock(hdev);
757
758 return 0;
759 }
760
761 static int white_list_open(struct inode *inode, struct file *file)
762 {
763 return single_open(file, white_list_show, inode->i_private);
764 }
765
766 static const struct file_operations white_list_fops = {
767 .open = white_list_open,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773 static int identity_resolving_keys_show(struct seq_file *f, void *ptr)
774 {
775 struct hci_dev *hdev = f->private;
776 struct list_head *p, *n;
777
778 hci_dev_lock(hdev);
779 list_for_each_safe(p, n, &hdev->identity_resolving_keys) {
780 struct smp_irk *irk = list_entry(p, struct smp_irk, list);
781 seq_printf(f, "%pMR (type %u) %*phN %pMR\n",
782 &irk->bdaddr, irk->addr_type,
783 16, irk->val, &irk->rpa);
784 }
785 hci_dev_unlock(hdev);
786
787 return 0;
788 }
789
790 static int identity_resolving_keys_open(struct inode *inode, struct file *file)
791 {
792 return single_open(file, identity_resolving_keys_show,
793 inode->i_private);
794 }
795
796 static const struct file_operations identity_resolving_keys_fops = {
797 .open = identity_resolving_keys_open,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
801 };
802
803 static int long_term_keys_show(struct seq_file *f, void *ptr)
804 {
805 struct hci_dev *hdev = f->private;
806 struct list_head *p, *n;
807
808 hci_dev_lock(hdev);
809 list_for_each_safe(p, n, &hdev->long_term_keys) {
810 struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list);
811 seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n",
812 &ltk->bdaddr, ltk->bdaddr_type, ltk->authenticated,
813 ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv),
814 __le64_to_cpu(ltk->rand), 16, ltk->val);
815 }
816 hci_dev_unlock(hdev);
817
818 return 0;
819 }
820
821 static int long_term_keys_open(struct inode *inode, struct file *file)
822 {
823 return single_open(file, long_term_keys_show, inode->i_private);
824 }
825
826 static const struct file_operations long_term_keys_fops = {
827 .open = long_term_keys_open,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
831 };
832
833 static int conn_min_interval_set(void *data, u64 val)
834 {
835 struct hci_dev *hdev = data;
836
837 if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval)
838 return -EINVAL;
839
840 hci_dev_lock(hdev);
841 hdev->le_conn_min_interval = val;
842 hci_dev_unlock(hdev);
843
844 return 0;
845 }
846
847 static int conn_min_interval_get(void *data, u64 *val)
848 {
849 struct hci_dev *hdev = data;
850
851 hci_dev_lock(hdev);
852 *val = hdev->le_conn_min_interval;
853 hci_dev_unlock(hdev);
854
855 return 0;
856 }
857
858 DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get,
859 conn_min_interval_set, "%llu\n");
860
861 static int conn_max_interval_set(void *data, u64 val)
862 {
863 struct hci_dev *hdev = data;
864
865 if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval)
866 return -EINVAL;
867
868 hci_dev_lock(hdev);
869 hdev->le_conn_max_interval = val;
870 hci_dev_unlock(hdev);
871
872 return 0;
873 }
874
875 static int conn_max_interval_get(void *data, u64 *val)
876 {
877 struct hci_dev *hdev = data;
878
879 hci_dev_lock(hdev);
880 *val = hdev->le_conn_max_interval;
881 hci_dev_unlock(hdev);
882
883 return 0;
884 }
885
886 DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get,
887 conn_max_interval_set, "%llu\n");
888
889 static int conn_latency_set(void *data, u64 val)
890 {
891 struct hci_dev *hdev = data;
892
893 if (val > 0x01f3)
894 return -EINVAL;
895
896 hci_dev_lock(hdev);
897 hdev->le_conn_latency = val;
898 hci_dev_unlock(hdev);
899
900 return 0;
901 }
902
903 static int conn_latency_get(void *data, u64 *val)
904 {
905 struct hci_dev *hdev = data;
906
907 hci_dev_lock(hdev);
908 *val = hdev->le_conn_latency;
909 hci_dev_unlock(hdev);
910
911 return 0;
912 }
913
914 DEFINE_SIMPLE_ATTRIBUTE(conn_latency_fops, conn_latency_get,
915 conn_latency_set, "%llu\n");
916
917 static int supervision_timeout_set(void *data, u64 val)
918 {
919 struct hci_dev *hdev = data;
920
921 if (val < 0x000a || val > 0x0c80)
922 return -EINVAL;
923
924 hci_dev_lock(hdev);
925 hdev->le_supv_timeout = val;
926 hci_dev_unlock(hdev);
927
928 return 0;
929 }
930
931 static int supervision_timeout_get(void *data, u64 *val)
932 {
933 struct hci_dev *hdev = data;
934
935 hci_dev_lock(hdev);
936 *val = hdev->le_supv_timeout;
937 hci_dev_unlock(hdev);
938
939 return 0;
940 }
941
942 DEFINE_SIMPLE_ATTRIBUTE(supervision_timeout_fops, supervision_timeout_get,
943 supervision_timeout_set, "%llu\n");
944
945 static int adv_channel_map_set(void *data, u64 val)
946 {
947 struct hci_dev *hdev = data;
948
949 if (val < 0x01 || val > 0x07)
950 return -EINVAL;
951
952 hci_dev_lock(hdev);
953 hdev->le_adv_channel_map = val;
954 hci_dev_unlock(hdev);
955
956 return 0;
957 }
958
959 static int adv_channel_map_get(void *data, u64 *val)
960 {
961 struct hci_dev *hdev = data;
962
963 hci_dev_lock(hdev);
964 *val = hdev->le_adv_channel_map;
965 hci_dev_unlock(hdev);
966
967 return 0;
968 }
969
970 DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get,
971 adv_channel_map_set, "%llu\n");
972
973 static int adv_min_interval_set(void *data, u64 val)
974 {
975 struct hci_dev *hdev = data;
976
977 if (val < 0x0020 || val > 0x4000 || val > hdev->le_adv_max_interval)
978 return -EINVAL;
979
980 hci_dev_lock(hdev);
981 hdev->le_adv_min_interval = val;
982 hci_dev_unlock(hdev);
983
984 return 0;
985 }
986
987 static int adv_min_interval_get(void *data, u64 *val)
988 {
989 struct hci_dev *hdev = data;
990
991 hci_dev_lock(hdev);
992 *val = hdev->le_adv_min_interval;
993 hci_dev_unlock(hdev);
994
995 return 0;
996 }
997
998 DEFINE_SIMPLE_ATTRIBUTE(adv_min_interval_fops, adv_min_interval_get,
999 adv_min_interval_set, "%llu\n");
1000
1001 static int adv_max_interval_set(void *data, u64 val)
1002 {
1003 struct hci_dev *hdev = data;
1004
1005 if (val < 0x0020 || val > 0x4000 || val < hdev->le_adv_min_interval)
1006 return -EINVAL;
1007
1008 hci_dev_lock(hdev);
1009 hdev->le_adv_max_interval = val;
1010 hci_dev_unlock(hdev);
1011
1012 return 0;
1013 }
1014
1015 static int adv_max_interval_get(void *data, u64 *val)
1016 {
1017 struct hci_dev *hdev = data;
1018
1019 hci_dev_lock(hdev);
1020 *val = hdev->le_adv_max_interval;
1021 hci_dev_unlock(hdev);
1022
1023 return 0;
1024 }
1025
1026 DEFINE_SIMPLE_ATTRIBUTE(adv_max_interval_fops, adv_max_interval_get,
1027 adv_max_interval_set, "%llu\n");
1028
1029 static int device_list_show(struct seq_file *f, void *ptr)
1030 {
1031 struct hci_dev *hdev = f->private;
1032 struct hci_conn_params *p;
1033
1034 hci_dev_lock(hdev);
1035 list_for_each_entry(p, &hdev->le_conn_params, list) {
1036 seq_printf(f, "%pMR %u %u\n", &p->addr, p->addr_type,
1037 p->auto_connect);
1038 }
1039 hci_dev_unlock(hdev);
1040
1041 return 0;
1042 }
1043
1044 static int device_list_open(struct inode *inode, struct file *file)
1045 {
1046 return single_open(file, device_list_show, inode->i_private);
1047 }
1048
1049 static const struct file_operations device_list_fops = {
1050 .open = device_list_open,
1051 .read = seq_read,
1052 .llseek = seq_lseek,
1053 .release = single_release,
1054 };
1055
1056 /* ---- HCI requests ---- */
1057
1058 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
1059 {
1060 BT_DBG("%s result 0x%2.2x", hdev->name, result);
1061
1062 if (hdev->req_status == HCI_REQ_PEND) {
1063 hdev->req_result = result;
1064 hdev->req_status = HCI_REQ_DONE;
1065 wake_up_interruptible(&hdev->req_wait_q);
1066 }
1067 }
1068
1069 static void hci_req_cancel(struct hci_dev *hdev, int err)
1070 {
1071 BT_DBG("%s err 0x%2.2x", hdev->name, err);
1072
1073 if (hdev->req_status == HCI_REQ_PEND) {
1074 hdev->req_result = err;
1075 hdev->req_status = HCI_REQ_CANCELED;
1076 wake_up_interruptible(&hdev->req_wait_q);
1077 }
1078 }
1079
1080 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
1081 u8 event)
1082 {
1083 struct hci_ev_cmd_complete *ev;
1084 struct hci_event_hdr *hdr;
1085 struct sk_buff *skb;
1086
1087 hci_dev_lock(hdev);
1088
1089 skb = hdev->recv_evt;
1090 hdev->recv_evt = NULL;
1091
1092 hci_dev_unlock(hdev);
1093
1094 if (!skb)
1095 return ERR_PTR(-ENODATA);
1096
1097 if (skb->len < sizeof(*hdr)) {
1098 BT_ERR("Too short HCI event");
1099 goto failed;
1100 }
1101
1102 hdr = (void *) skb->data;
1103 skb_pull(skb, HCI_EVENT_HDR_SIZE);
1104
1105 if (event) {
1106 if (hdr->evt != event)
1107 goto failed;
1108 return skb;
1109 }
1110
1111 if (hdr->evt != HCI_EV_CMD_COMPLETE) {
1112 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
1113 goto failed;
1114 }
1115
1116 if (skb->len < sizeof(*ev)) {
1117 BT_ERR("Too short cmd_complete event");
1118 goto failed;
1119 }
1120
1121 ev = (void *) skb->data;
1122 skb_pull(skb, sizeof(*ev));
1123
1124 if (opcode == __le16_to_cpu(ev->opcode))
1125 return skb;
1126
1127 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
1128 __le16_to_cpu(ev->opcode));
1129
1130 failed:
1131 kfree_skb(skb);
1132 return ERR_PTR(-ENODATA);
1133 }
1134
1135 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1136 const void *param, u8 event, u32 timeout)
1137 {
1138 DECLARE_WAITQUEUE(wait, current);
1139 struct hci_request req;
1140 int err = 0;
1141
1142 BT_DBG("%s", hdev->name);
1143
1144 hci_req_init(&req, hdev);
1145
1146 hci_req_add_ev(&req, opcode, plen, param, event);
1147
1148 hdev->req_status = HCI_REQ_PEND;
1149
1150 err = hci_req_run(&req, hci_req_sync_complete);
1151 if (err < 0)
1152 return ERR_PTR(err);
1153
1154 add_wait_queue(&hdev->req_wait_q, &wait);
1155 set_current_state(TASK_INTERRUPTIBLE);
1156
1157 schedule_timeout(timeout);
1158
1159 remove_wait_queue(&hdev->req_wait_q, &wait);
1160
1161 if (signal_pending(current))
1162 return ERR_PTR(-EINTR);
1163
1164 switch (hdev->req_status) {
1165 case HCI_REQ_DONE:
1166 err = -bt_to_errno(hdev->req_result);
1167 break;
1168
1169 case HCI_REQ_CANCELED:
1170 err = -hdev->req_result;
1171 break;
1172
1173 default:
1174 err = -ETIMEDOUT;
1175 break;
1176 }
1177
1178 hdev->req_status = hdev->req_result = 0;
1179
1180 BT_DBG("%s end: err %d", hdev->name, err);
1181
1182 if (err < 0)
1183 return ERR_PTR(err);
1184
1185 return hci_get_cmd_complete(hdev, opcode, event);
1186 }
1187 EXPORT_SYMBOL(__hci_cmd_sync_ev);
1188
1189 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1190 const void *param, u32 timeout)
1191 {
1192 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
1193 }
1194 EXPORT_SYMBOL(__hci_cmd_sync);
1195
1196 /* Execute request and wait for completion. */
1197 static int __hci_req_sync(struct hci_dev *hdev,
1198 void (*func)(struct hci_request *req,
1199 unsigned long opt),
1200 unsigned long opt, __u32 timeout)
1201 {
1202 struct hci_request req;
1203 DECLARE_WAITQUEUE(wait, current);
1204 int err = 0;
1205
1206 BT_DBG("%s start", hdev->name);
1207
1208 hci_req_init(&req, hdev);
1209
1210 hdev->req_status = HCI_REQ_PEND;
1211
1212 func(&req, opt);
1213
1214 err = hci_req_run(&req, hci_req_sync_complete);
1215 if (err < 0) {
1216 hdev->req_status = 0;
1217
1218 /* ENODATA means the HCI request command queue is empty.
1219 * This can happen when a request with conditionals doesn't
1220 * trigger any commands to be sent. This is normal behavior
1221 * and should not trigger an error return.
1222 */
1223 if (err == -ENODATA)
1224 return 0;
1225
1226 return err;
1227 }
1228
1229 add_wait_queue(&hdev->req_wait_q, &wait);
1230 set_current_state(TASK_INTERRUPTIBLE);
1231
1232 schedule_timeout(timeout);
1233
1234 remove_wait_queue(&hdev->req_wait_q, &wait);
1235
1236 if (signal_pending(current))
1237 return -EINTR;
1238
1239 switch (hdev->req_status) {
1240 case HCI_REQ_DONE:
1241 err = -bt_to_errno(hdev->req_result);
1242 break;
1243
1244 case HCI_REQ_CANCELED:
1245 err = -hdev->req_result;
1246 break;
1247
1248 default:
1249 err = -ETIMEDOUT;
1250 break;
1251 }
1252
1253 hdev->req_status = hdev->req_result = 0;
1254
1255 BT_DBG("%s end: err %d", hdev->name, err);
1256
1257 return err;
1258 }
1259
1260 static int hci_req_sync(struct hci_dev *hdev,
1261 void (*req)(struct hci_request *req,
1262 unsigned long opt),
1263 unsigned long opt, __u32 timeout)
1264 {
1265 int ret;
1266
1267 if (!test_bit(HCI_UP, &hdev->flags))
1268 return -ENETDOWN;
1269
1270 /* Serialize all requests */
1271 hci_req_lock(hdev);
1272 ret = __hci_req_sync(hdev, req, opt, timeout);
1273 hci_req_unlock(hdev);
1274
1275 return ret;
1276 }
1277
1278 static void hci_reset_req(struct hci_request *req, unsigned long opt)
1279 {
1280 BT_DBG("%s %ld", req->hdev->name, opt);
1281
1282 /* Reset device */
1283 set_bit(HCI_RESET, &req->hdev->flags);
1284 hci_req_add(req, HCI_OP_RESET, 0, NULL);
1285 }
1286
1287 static void bredr_init(struct hci_request *req)
1288 {
1289 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
1290
1291 /* Read Local Supported Features */
1292 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1293
1294 /* Read Local Version */
1295 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1296
1297 /* Read BD Address */
1298 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1299 }
1300
1301 static void amp_init(struct hci_request *req)
1302 {
1303 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
1304
1305 /* Read Local Version */
1306 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1307
1308 /* Read Local Supported Commands */
1309 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1310
1311 /* Read Local Supported Features */
1312 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1313
1314 /* Read Local AMP Info */
1315 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
1316
1317 /* Read Data Blk size */
1318 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
1319
1320 /* Read Flow Control Mode */
1321 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
1322
1323 /* Read Location Data */
1324 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
1325 }
1326
1327 static void hci_init1_req(struct hci_request *req, unsigned long opt)
1328 {
1329 struct hci_dev *hdev = req->hdev;
1330
1331 BT_DBG("%s %ld", hdev->name, opt);
1332
1333 /* Reset */
1334 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1335 hci_reset_req(req, 0);
1336
1337 switch (hdev->dev_type) {
1338 case HCI_BREDR:
1339 bredr_init(req);
1340 break;
1341
1342 case HCI_AMP:
1343 amp_init(req);
1344 break;
1345
1346 default:
1347 BT_ERR("Unknown device type %d", hdev->dev_type);
1348 break;
1349 }
1350 }
1351
1352 static void bredr_setup(struct hci_request *req)
1353 {
1354 struct hci_dev *hdev = req->hdev;
1355
1356 __le16 param;
1357 __u8 flt_type;
1358
1359 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
1360 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
1361
1362 /* Read Class of Device */
1363 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
1364
1365 /* Read Local Name */
1366 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
1367
1368 /* Read Voice Setting */
1369 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
1370
1371 /* Read Number of Supported IAC */
1372 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
1373
1374 /* Read Current IAC LAP */
1375 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
1376
1377 /* Clear Event Filters */
1378 flt_type = HCI_FLT_CLEAR_ALL;
1379 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
1380
1381 /* Connection accept timeout ~20 secs */
1382 param = cpu_to_le16(0x7d00);
1383 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
1384
1385 /* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2,
1386 * but it does not support page scan related HCI commands.
1387 */
1388 if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) {
1389 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
1390 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
1391 }
1392 }
1393
1394 static void le_setup(struct hci_request *req)
1395 {
1396 struct hci_dev *hdev = req->hdev;
1397
1398 /* Read LE Buffer Size */
1399 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
1400
1401 /* Read LE Local Supported Features */
1402 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
1403
1404 /* Read LE Supported States */
1405 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
1406
1407 /* Read LE White List Size */
1408 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
1409
1410 /* Clear LE White List */
1411 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
1412
1413 /* LE-only controllers have LE implicitly enabled */
1414 if (!lmp_bredr_capable(hdev))
1415 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1416 }
1417
1418 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
1419 {
1420 if (lmp_ext_inq_capable(hdev))
1421 return 0x02;
1422
1423 if (lmp_inq_rssi_capable(hdev))
1424 return 0x01;
1425
1426 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
1427 hdev->lmp_subver == 0x0757)
1428 return 0x01;
1429
1430 if (hdev->manufacturer == 15) {
1431 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
1432 return 0x01;
1433 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
1434 return 0x01;
1435 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
1436 return 0x01;
1437 }
1438
1439 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
1440 hdev->lmp_subver == 0x1805)
1441 return 0x01;
1442
1443 return 0x00;
1444 }
1445
1446 static void hci_setup_inquiry_mode(struct hci_request *req)
1447 {
1448 u8 mode;
1449
1450 mode = hci_get_inquiry_mode(req->hdev);
1451
1452 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
1453 }
1454
1455 static void hci_setup_event_mask(struct hci_request *req)
1456 {
1457 struct hci_dev *hdev = req->hdev;
1458
1459 /* The second byte is 0xff instead of 0x9f (two reserved bits
1460 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
1461 * command otherwise.
1462 */
1463 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
1464
1465 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
1466 * any event mask for pre 1.2 devices.
1467 */
1468 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
1469 return;
1470
1471 if (lmp_bredr_capable(hdev)) {
1472 events[4] |= 0x01; /* Flow Specification Complete */
1473 events[4] |= 0x02; /* Inquiry Result with RSSI */
1474 events[4] |= 0x04; /* Read Remote Extended Features Complete */
1475 events[5] |= 0x08; /* Synchronous Connection Complete */
1476 events[5] |= 0x10; /* Synchronous Connection Changed */
1477 } else {
1478 /* Use a different default for LE-only devices */
1479 memset(events, 0, sizeof(events));
1480 events[0] |= 0x10; /* Disconnection Complete */
1481 events[1] |= 0x08; /* Read Remote Version Information Complete */
1482 events[1] |= 0x20; /* Command Complete */
1483 events[1] |= 0x40; /* Command Status */
1484 events[1] |= 0x80; /* Hardware Error */
1485 events[2] |= 0x04; /* Number of Completed Packets */
1486 events[3] |= 0x02; /* Data Buffer Overflow */
1487
1488 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
1489 events[0] |= 0x80; /* Encryption Change */
1490 events[5] |= 0x80; /* Encryption Key Refresh Complete */
1491 }
1492 }
1493
1494 if (lmp_inq_rssi_capable(hdev))
1495 events[4] |= 0x02; /* Inquiry Result with RSSI */
1496
1497 if (lmp_sniffsubr_capable(hdev))
1498 events[5] |= 0x20; /* Sniff Subrating */
1499
1500 if (lmp_pause_enc_capable(hdev))
1501 events[5] |= 0x80; /* Encryption Key Refresh Complete */
1502
1503 if (lmp_ext_inq_capable(hdev))
1504 events[5] |= 0x40; /* Extended Inquiry Result */
1505
1506 if (lmp_no_flush_capable(hdev))
1507 events[7] |= 0x01; /* Enhanced Flush Complete */
1508
1509 if (lmp_lsto_capable(hdev))
1510 events[6] |= 0x80; /* Link Supervision Timeout Changed */
1511
1512 if (lmp_ssp_capable(hdev)) {
1513 events[6] |= 0x01; /* IO Capability Request */
1514 events[6] |= 0x02; /* IO Capability Response */
1515 events[6] |= 0x04; /* User Confirmation Request */
1516 events[6] |= 0x08; /* User Passkey Request */
1517 events[6] |= 0x10; /* Remote OOB Data Request */
1518 events[6] |= 0x20; /* Simple Pairing Complete */
1519 events[7] |= 0x04; /* User Passkey Notification */
1520 events[7] |= 0x08; /* Keypress Notification */
1521 events[7] |= 0x10; /* Remote Host Supported
1522 * Features Notification
1523 */
1524 }
1525
1526 if (lmp_le_capable(hdev))
1527 events[7] |= 0x20; /* LE Meta-Event */
1528
1529 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
1530 }
1531
1532 static void hci_init2_req(struct hci_request *req, unsigned long opt)
1533 {
1534 struct hci_dev *hdev = req->hdev;
1535
1536 if (lmp_bredr_capable(hdev))
1537 bredr_setup(req);
1538 else
1539 clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
1540
1541 if (lmp_le_capable(hdev))
1542 le_setup(req);
1543
1544 /* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read
1545 * local supported commands HCI command.
1546 */
1547 if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1)
1548 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1549
1550 if (lmp_ssp_capable(hdev)) {
1551 /* When SSP is available, then the host features page
1552 * should also be available as well. However some
1553 * controllers list the max_page as 0 as long as SSP
1554 * has not been enabled. To achieve proper debugging
1555 * output, force the minimum max_page to 1 at least.
1556 */
1557 hdev->max_page = 0x01;
1558
1559 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
1560 u8 mode = 0x01;
1561 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
1562 sizeof(mode), &mode);
1563 } else {
1564 struct hci_cp_write_eir cp;
1565
1566 memset(hdev->eir, 0, sizeof(hdev->eir));
1567 memset(&cp, 0, sizeof(cp));
1568
1569 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
1570 }
1571 }
1572
1573 if (lmp_inq_rssi_capable(hdev))
1574 hci_setup_inquiry_mode(req);
1575
1576 if (lmp_inq_tx_pwr_capable(hdev))
1577 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
1578
1579 if (lmp_ext_feat_capable(hdev)) {
1580 struct hci_cp_read_local_ext_features cp;
1581
1582 cp.page = 0x01;
1583 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1584 sizeof(cp), &cp);
1585 }
1586
1587 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
1588 u8 enable = 1;
1589 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
1590 &enable);
1591 }
1592 }
1593
1594 static void hci_setup_link_policy(struct hci_request *req)
1595 {
1596 struct hci_dev *hdev = req->hdev;
1597 struct hci_cp_write_def_link_policy cp;
1598 u16 link_policy = 0;
1599
1600 if (lmp_rswitch_capable(hdev))
1601 link_policy |= HCI_LP_RSWITCH;
1602 if (lmp_hold_capable(hdev))
1603 link_policy |= HCI_LP_HOLD;
1604 if (lmp_sniff_capable(hdev))
1605 link_policy |= HCI_LP_SNIFF;
1606 if (lmp_park_capable(hdev))
1607 link_policy |= HCI_LP_PARK;
1608
1609 cp.policy = cpu_to_le16(link_policy);
1610 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
1611 }
1612
1613 static void hci_set_le_support(struct hci_request *req)
1614 {
1615 struct hci_dev *hdev = req->hdev;
1616 struct hci_cp_write_le_host_supported cp;
1617
1618 /* LE-only devices do not support explicit enablement */
1619 if (!lmp_bredr_capable(hdev))
1620 return;
1621
1622 memset(&cp, 0, sizeof(cp));
1623
1624 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
1625 cp.le = 0x01;
1626 cp.simul = 0x00;
1627 }
1628
1629 if (cp.le != lmp_host_le_capable(hdev))
1630 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
1631 &cp);
1632 }
1633
1634 static void hci_set_event_mask_page_2(struct hci_request *req)
1635 {
1636 struct hci_dev *hdev = req->hdev;
1637 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1638
1639 /* If Connectionless Slave Broadcast master role is supported
1640 * enable all necessary events for it.
1641 */
1642 if (lmp_csb_master_capable(hdev)) {
1643 events[1] |= 0x40; /* Triggered Clock Capture */
1644 events[1] |= 0x80; /* Synchronization Train Complete */
1645 events[2] |= 0x10; /* Slave Page Response Timeout */
1646 events[2] |= 0x20; /* CSB Channel Map Change */
1647 }
1648
1649 /* If Connectionless Slave Broadcast slave role is supported
1650 * enable all necessary events for it.
1651 */
1652 if (lmp_csb_slave_capable(hdev)) {
1653 events[2] |= 0x01; /* Synchronization Train Received */
1654 events[2] |= 0x02; /* CSB Receive */
1655 events[2] |= 0x04; /* CSB Timeout */
1656 events[2] |= 0x08; /* Truncated Page Complete */
1657 }
1658
1659 /* Enable Authenticated Payload Timeout Expired event if supported */
1660 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
1661 events[2] |= 0x80;
1662
1663 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
1664 }
1665
1666 static void hci_init3_req(struct hci_request *req, unsigned long opt)
1667 {
1668 struct hci_dev *hdev = req->hdev;
1669 u8 p;
1670
1671 hci_setup_event_mask(req);
1672
1673 /* Some Broadcom based Bluetooth controllers do not support the
1674 * Delete Stored Link Key command. They are clearly indicating its
1675 * absence in the bit mask of supported commands.
1676 *
1677 * Check the supported commands and only if the the command is marked
1678 * as supported send it. If not supported assume that the controller
1679 * does not have actual support for stored link keys which makes this
1680 * command redundant anyway.
1681 *
1682 * Some controllers indicate that they support handling deleting
1683 * stored link keys, but they don't. The quirk lets a driver
1684 * just disable this command.
1685 */
1686 if (hdev->commands[6] & 0x80 &&
1687 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
1688 struct hci_cp_delete_stored_link_key cp;
1689
1690 bacpy(&cp.bdaddr, BDADDR_ANY);
1691 cp.delete_all = 0x01;
1692 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
1693 sizeof(cp), &cp);
1694 }
1695
1696 if (hdev->commands[5] & 0x10)
1697 hci_setup_link_policy(req);
1698
1699 if (lmp_le_capable(hdev)) {
1700 u8 events[8];
1701
1702 memset(events, 0, sizeof(events));
1703 events[0] = 0x0f;
1704
1705 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
1706 events[0] |= 0x10; /* LE Long Term Key Request */
1707
1708 /* If controller supports the Connection Parameters Request
1709 * Link Layer Procedure, enable the corresponding event.
1710 */
1711 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
1712 events[0] |= 0x20; /* LE Remote Connection
1713 * Parameter Request
1714 */
1715
1716 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
1717 events);
1718
1719 if (hdev->commands[25] & 0x40) {
1720 /* Read LE Advertising Channel TX Power */
1721 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
1722 }
1723
1724 hci_set_le_support(req);
1725 }
1726
1727 /* Read features beyond page 1 if available */
1728 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
1729 struct hci_cp_read_local_ext_features cp;
1730
1731 cp.page = p;
1732 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1733 sizeof(cp), &cp);
1734 }
1735 }
1736
1737 static void hci_init4_req(struct hci_request *req, unsigned long opt)
1738 {
1739 struct hci_dev *hdev = req->hdev;
1740
1741 /* Set event mask page 2 if the HCI command for it is supported */
1742 if (hdev->commands[22] & 0x04)
1743 hci_set_event_mask_page_2(req);
1744
1745 /* Read local codec list if the HCI command is supported */
1746 if (hdev->commands[29] & 0x20)
1747 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
1748
1749 /* Get MWS transport configuration if the HCI command is supported */
1750 if (hdev->commands[30] & 0x08)
1751 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
1752
1753 /* Check for Synchronization Train support */
1754 if (lmp_sync_train_capable(hdev))
1755 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
1756
1757 /* Enable Secure Connections if supported and configured */
1758 if ((lmp_sc_capable(hdev) ||
1759 test_bit(HCI_FORCE_SC, &hdev->dbg_flags)) &&
1760 test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) {
1761 u8 support = 0x01;
1762 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
1763 sizeof(support), &support);
1764 }
1765 }
1766
1767 static int __hci_init(struct hci_dev *hdev)
1768 {
1769 int err;
1770
1771 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
1772 if (err < 0)
1773 return err;
1774
1775 /* The Device Under Test (DUT) mode is special and available for
1776 * all controller types. So just create it early on.
1777 */
1778 if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
1779 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
1780 &dut_mode_fops);
1781 }
1782
1783 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
1784 * BR/EDR/LE type controllers. AMP controllers only need the
1785 * first stage init.
1786 */
1787 if (hdev->dev_type != HCI_BREDR)
1788 return 0;
1789
1790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
1791 if (err < 0)
1792 return err;
1793
1794 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
1795 if (err < 0)
1796 return err;
1797
1798 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
1799 if (err < 0)
1800 return err;
1801
1802 /* Only create debugfs entries during the initial setup
1803 * phase and not every time the controller gets powered on.
1804 */
1805 if (!test_bit(HCI_SETUP, &hdev->dev_flags))
1806 return 0;
1807
1808 debugfs_create_file("features", 0444, hdev->debugfs, hdev,
1809 &features_fops);
1810 debugfs_create_u16("manufacturer", 0444, hdev->debugfs,
1811 &hdev->manufacturer);
1812 debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver);
1813 debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev);
1814 debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev,
1815 &blacklist_fops);
1816 debugfs_create_file("whitelist", 0444, hdev->debugfs, hdev,
1817 &whitelist_fops);
1818 debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops);
1819
1820 debugfs_create_file("conn_info_min_age", 0644, hdev->debugfs, hdev,
1821 &conn_info_min_age_fops);
1822 debugfs_create_file("conn_info_max_age", 0644, hdev->debugfs, hdev,
1823 &conn_info_max_age_fops);
1824
1825 if (lmp_bredr_capable(hdev)) {
1826 debugfs_create_file("inquiry_cache", 0444, hdev->debugfs,
1827 hdev, &inquiry_cache_fops);
1828 debugfs_create_file("link_keys", 0400, hdev->debugfs,
1829 hdev, &link_keys_fops);
1830 debugfs_create_file("dev_class", 0444, hdev->debugfs,
1831 hdev, &dev_class_fops);
1832 debugfs_create_file("voice_setting", 0444, hdev->debugfs,
1833 hdev, &voice_setting_fops);
1834 }
1835
1836 if (lmp_ssp_capable(hdev)) {
1837 debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs,
1838 hdev, &auto_accept_delay_fops);
1839 debugfs_create_file("force_sc_support", 0644, hdev->debugfs,
1840 hdev, &force_sc_support_fops);
1841 debugfs_create_file("sc_only_mode", 0444, hdev->debugfs,
1842 hdev, &sc_only_mode_fops);
1843 }
1844
1845 if (lmp_sniff_capable(hdev)) {
1846 debugfs_create_file("idle_timeout", 0644, hdev->debugfs,
1847 hdev, &idle_timeout_fops);
1848 debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs,
1849 hdev, &sniff_min_interval_fops);
1850 debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs,
1851 hdev, &sniff_max_interval_fops);
1852 }
1853
1854 if (lmp_le_capable(hdev)) {
1855 debugfs_create_file("identity", 0400, hdev->debugfs,
1856 hdev, &identity_fops);
1857 debugfs_create_file("rpa_timeout", 0644, hdev->debugfs,
1858 hdev, &rpa_timeout_fops);
1859 debugfs_create_file("random_address", 0444, hdev->debugfs,
1860 hdev, &random_address_fops);
1861 debugfs_create_file("static_address", 0444, hdev->debugfs,
1862 hdev, &static_address_fops);
1863
1864 /* For controllers with a public address, provide a debug
1865 * option to force the usage of the configured static
1866 * address. By default the public address is used.
1867 */
1868 if (bacmp(&hdev->bdaddr, BDADDR_ANY))
1869 debugfs_create_file("force_static_address", 0644,
1870 hdev->debugfs, hdev,
1871 &force_static_address_fops);
1872
1873 debugfs_create_u8("white_list_size", 0444, hdev->debugfs,
1874 &hdev->le_white_list_size);
1875 debugfs_create_file("white_list", 0444, hdev->debugfs, hdev,
1876 &white_list_fops);
1877 debugfs_create_file("identity_resolving_keys", 0400,
1878 hdev->debugfs, hdev,
1879 &identity_resolving_keys_fops);
1880 debugfs_create_file("long_term_keys", 0400, hdev->debugfs,
1881 hdev, &long_term_keys_fops);
1882 debugfs_create_file("conn_min_interval", 0644, hdev->debugfs,
1883 hdev, &conn_min_interval_fops);
1884 debugfs_create_file("conn_max_interval", 0644, hdev->debugfs,
1885 hdev, &conn_max_interval_fops);
1886 debugfs_create_file("conn_latency", 0644, hdev->debugfs,
1887 hdev, &conn_latency_fops);
1888 debugfs_create_file("supervision_timeout", 0644, hdev->debugfs,
1889 hdev, &supervision_timeout_fops);
1890 debugfs_create_file("adv_channel_map", 0644, hdev->debugfs,
1891 hdev, &adv_channel_map_fops);
1892 debugfs_create_file("adv_min_interval", 0644, hdev->debugfs,
1893 hdev, &adv_min_interval_fops);
1894 debugfs_create_file("adv_max_interval", 0644, hdev->debugfs,
1895 hdev, &adv_max_interval_fops);
1896 debugfs_create_file("device_list", 0444, hdev->debugfs, hdev,
1897 &device_list_fops);
1898 debugfs_create_u16("discov_interleaved_timeout", 0644,
1899 hdev->debugfs,
1900 &hdev->discov_interleaved_timeout);
1901 }
1902
1903 return 0;
1904 }
1905
1906 static void hci_init0_req(struct hci_request *req, unsigned long opt)
1907 {
1908 struct hci_dev *hdev = req->hdev;
1909
1910 BT_DBG("%s %ld", hdev->name, opt);
1911
1912 /* Reset */
1913 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1914 hci_reset_req(req, 0);
1915
1916 /* Read Local Version */
1917 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1918
1919 /* Read BD Address */
1920 if (hdev->set_bdaddr)
1921 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1922 }
1923
1924 static int __hci_unconf_init(struct hci_dev *hdev)
1925 {
1926 int err;
1927
1928 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1929 return 0;
1930
1931 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
1932 if (err < 0)
1933 return err;
1934
1935 return 0;
1936 }
1937
1938 static void hci_scan_req(struct hci_request *req, unsigned long opt)
1939 {
1940 __u8 scan = opt;
1941
1942 BT_DBG("%s %x", req->hdev->name, scan);
1943
1944 /* Inquiry and Page scans */
1945 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1946 }
1947
1948 static void hci_auth_req(struct hci_request *req, unsigned long opt)
1949 {
1950 __u8 auth = opt;
1951
1952 BT_DBG("%s %x", req->hdev->name, auth);
1953
1954 /* Authentication */
1955 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1956 }
1957
1958 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1959 {
1960 __u8 encrypt = opt;
1961
1962 BT_DBG("%s %x", req->hdev->name, encrypt);
1963
1964 /* Encryption */
1965 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1966 }
1967
1968 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1969 {
1970 __le16 policy = cpu_to_le16(opt);
1971
1972 BT_DBG("%s %x", req->hdev->name, policy);
1973
1974 /* Default link policy */
1975 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1976 }
1977
1978 /* Get HCI device by index.
1979 * Device is held on return. */
1980 struct hci_dev *hci_dev_get(int index)
1981 {
1982 struct hci_dev *hdev = NULL, *d;
1983
1984 BT_DBG("%d", index);
1985
1986 if (index < 0)
1987 return NULL;
1988
1989 read_lock(&hci_dev_list_lock);
1990 list_for_each_entry(d, &hci_dev_list, list) {
1991 if (d->id == index) {
1992 hdev = hci_dev_hold(d);
1993 break;
1994 }
1995 }
1996 read_unlock(&hci_dev_list_lock);
1997 return hdev;
1998 }
1999
2000 /* ---- Inquiry support ---- */
2001
2002 bool hci_discovery_active(struct hci_dev *hdev)
2003 {
2004 struct discovery_state *discov = &hdev->discovery;
2005
2006 switch (discov->state) {
2007 case DISCOVERY_FINDING:
2008 case DISCOVERY_RESOLVING:
2009 return true;
2010
2011 default:
2012 return false;
2013 }
2014 }
2015
2016 void hci_discovery_set_state(struct hci_dev *hdev, int state)
2017 {
2018 int old_state = hdev->discovery.state;
2019
2020 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
2021
2022 if (old_state == state)
2023 return;
2024
2025 hdev->discovery.state = state;
2026
2027 switch (state) {
2028 case DISCOVERY_STOPPED:
2029 hci_update_background_scan(hdev);
2030
2031 if (old_state != DISCOVERY_STARTING)
2032 mgmt_discovering(hdev, 0);
2033 break;
2034 case DISCOVERY_STARTING:
2035 break;
2036 case DISCOVERY_FINDING:
2037 mgmt_discovering(hdev, 1);
2038 break;
2039 case DISCOVERY_RESOLVING:
2040 break;
2041 case DISCOVERY_STOPPING:
2042 break;
2043 }
2044 }
2045
2046 void hci_inquiry_cache_flush(struct hci_dev *hdev)
2047 {
2048 struct discovery_state *cache = &hdev->discovery;
2049 struct inquiry_entry *p, *n;
2050
2051 list_for_each_entry_safe(p, n, &cache->all, all) {
2052 list_del(&p->all);
2053 kfree(p);
2054 }
2055
2056 INIT_LIST_HEAD(&cache->unknown);
2057 INIT_LIST_HEAD(&cache->resolve);
2058 }
2059
2060 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
2061 bdaddr_t *bdaddr)
2062 {
2063 struct discovery_state *cache = &hdev->discovery;
2064 struct inquiry_entry *e;
2065
2066 BT_DBG("cache %p, %pMR", cache, bdaddr);
2067
2068 list_for_each_entry(e, &cache->all, all) {
2069 if (!bacmp(&e->data.bdaddr, bdaddr))
2070 return e;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
2077 bdaddr_t *bdaddr)
2078 {
2079 struct discovery_state *cache = &hdev->discovery;
2080 struct inquiry_entry *e;
2081
2082 BT_DBG("cache %p, %pMR", cache, bdaddr);
2083
2084 list_for_each_entry(e, &cache->unknown, list) {
2085 if (!bacmp(&e->data.bdaddr, bdaddr))
2086 return e;
2087 }
2088
2089 return NULL;
2090 }
2091
2092 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
2093 bdaddr_t *bdaddr,
2094 int state)
2095 {
2096 struct discovery_state *cache = &hdev->discovery;
2097 struct inquiry_entry *e;
2098
2099 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
2100
2101 list_for_each_entry(e, &cache->resolve, list) {
2102 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
2103 return e;
2104 if (!bacmp(&e->data.bdaddr, bdaddr))
2105 return e;
2106 }
2107
2108 return NULL;
2109 }
2110
2111 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
2112 struct inquiry_entry *ie)
2113 {
2114 struct discovery_state *cache = &hdev->discovery;
2115 struct list_head *pos = &cache->resolve;
2116 struct inquiry_entry *p;
2117
2118 list_del(&ie->list);
2119
2120 list_for_each_entry(p, &cache->resolve, list) {
2121 if (p->name_state != NAME_PENDING &&
2122 abs(p->data.rssi) >= abs(ie->data.rssi))
2123 break;
2124 pos = &p->list;
2125 }
2126
2127 list_add(&ie->list, pos);
2128 }
2129
2130 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
2131 bool name_known)
2132 {
2133 struct discovery_state *cache = &hdev->discovery;
2134 struct inquiry_entry *ie;
2135 u32 flags = 0;
2136
2137 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
2138
2139 hci_remove_remote_oob_data(hdev, &data->bdaddr);
2140
2141 if (!data->ssp_mode)
2142 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
2143
2144 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
2145 if (ie) {
2146 if (!ie->data.ssp_mode)
2147 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
2148
2149 if (ie->name_state == NAME_NEEDED &&
2150 data->rssi != ie->data.rssi) {
2151 ie->data.rssi = data->rssi;
2152 hci_inquiry_cache_update_resolve(hdev, ie);
2153 }
2154
2155 goto update;
2156 }
2157
2158 /* Entry not in the cache. Add new one. */
2159 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
2160 if (!ie) {
2161 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
2162 goto done;
2163 }
2164
2165 list_add(&ie->all, &cache->all);
2166
2167 if (name_known) {
2168 ie->name_state = NAME_KNOWN;
2169 } else {
2170 ie->name_state = NAME_NOT_KNOWN;
2171 list_add(&ie->list, &cache->unknown);
2172 }
2173
2174 update:
2175 if (name_known && ie->name_state != NAME_KNOWN &&
2176 ie->name_state != NAME_PENDING) {
2177 ie->name_state = NAME_KNOWN;
2178 list_del(&ie->list);
2179 }
2180
2181 memcpy(&ie->data, data, sizeof(*data));
2182 ie->timestamp = jiffies;
2183 cache->timestamp = jiffies;
2184
2185 if (ie->name_state == NAME_NOT_KNOWN)
2186 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
2187
2188 done:
2189 return flags;
2190 }
2191
2192 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
2193 {
2194 struct discovery_state *cache = &hdev->discovery;
2195 struct inquiry_info *info = (struct inquiry_info *) buf;
2196 struct inquiry_entry *e;
2197 int copied = 0;
2198
2199 list_for_each_entry(e, &cache->all, all) {
2200 struct inquiry_data *data = &e->data;
2201
2202 if (copied >= num)
2203 break;
2204
2205 bacpy(&info->bdaddr, &data->bdaddr);
2206 info->pscan_rep_mode = data->pscan_rep_mode;
2207 info->pscan_period_mode = data->pscan_period_mode;
2208 info->pscan_mode = data->pscan_mode;
2209 memcpy(info->dev_class, data->dev_class, 3);
2210 info->clock_offset = data->clock_offset;
2211
2212 info++;
2213 copied++;
2214 }
2215
2216 BT_DBG("cache %p, copied %d", cache, copied);
2217 return copied;
2218 }
2219
2220 static void hci_inq_req(struct hci_request *req, unsigned long opt)
2221 {
2222 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
2223 struct hci_dev *hdev = req->hdev;
2224 struct hci_cp_inquiry cp;
2225
2226 BT_DBG("%s", hdev->name);
2227
2228 if (test_bit(HCI_INQUIRY, &hdev->flags))
2229 return;
2230
2231 /* Start Inquiry */
2232 memcpy(&cp.lap, &ir->lap, 3);
2233 cp.length = ir->length;
2234 cp.num_rsp = ir->num_rsp;
2235 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2236 }
2237
2238 int hci_inquiry(void __user *arg)
2239 {
2240 __u8 __user *ptr = arg;
2241 struct hci_inquiry_req ir;
2242 struct hci_dev *hdev;
2243 int err = 0, do_inquiry = 0, max_rsp;
2244 long timeo;
2245 __u8 *buf;
2246
2247 if (copy_from_user(&ir, ptr, sizeof(ir)))
2248 return -EFAULT;
2249
2250 hdev = hci_dev_get(ir.dev_id);
2251 if (!hdev)
2252 return -ENODEV;
2253
2254 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2255 err = -EBUSY;
2256 goto done;
2257 }
2258
2259 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2260 err = -EOPNOTSUPP;
2261 goto done;
2262 }
2263
2264 if (hdev->dev_type != HCI_BREDR) {
2265 err = -EOPNOTSUPP;
2266 goto done;
2267 }
2268
2269 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2270 err = -EOPNOTSUPP;
2271 goto done;
2272 }
2273
2274 hci_dev_lock(hdev);
2275 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
2276 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
2277 hci_inquiry_cache_flush(hdev);
2278 do_inquiry = 1;
2279 }
2280 hci_dev_unlock(hdev);
2281
2282 timeo = ir.length * msecs_to_jiffies(2000);
2283
2284 if (do_inquiry) {
2285 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
2286 timeo);
2287 if (err < 0)
2288 goto done;
2289
2290 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
2291 * cleared). If it is interrupted by a signal, return -EINTR.
2292 */
2293 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
2294 TASK_INTERRUPTIBLE))
2295 return -EINTR;
2296 }
2297
2298 /* for unlimited number of responses we will use buffer with
2299 * 255 entries
2300 */
2301 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
2302
2303 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
2304 * copy it to the user space.
2305 */
2306 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
2307 if (!buf) {
2308 err = -ENOMEM;
2309 goto done;
2310 }
2311
2312 hci_dev_lock(hdev);
2313 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
2314 hci_dev_unlock(hdev);
2315
2316 BT_DBG("num_rsp %d", ir.num_rsp);
2317
2318 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
2319 ptr += sizeof(ir);
2320 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
2321 ir.num_rsp))
2322 err = -EFAULT;
2323 } else
2324 err = -EFAULT;
2325
2326 kfree(buf);
2327
2328 done:
2329 hci_dev_put(hdev);
2330 return err;
2331 }
2332
2333 static int hci_dev_do_open(struct hci_dev *hdev)
2334 {
2335 int ret = 0;
2336
2337 BT_DBG("%s %p", hdev->name, hdev);
2338
2339 hci_req_lock(hdev);
2340
2341 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
2342 ret = -ENODEV;
2343 goto done;
2344 }
2345
2346 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2347 !test_bit(HCI_CONFIG, &hdev->dev_flags)) {
2348 /* Check for rfkill but allow the HCI setup stage to
2349 * proceed (which in itself doesn't cause any RF activity).
2350 */
2351 if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) {
2352 ret = -ERFKILL;
2353 goto done;
2354 }
2355
2356 /* Check for valid public address or a configured static
2357 * random adddress, but let the HCI setup proceed to
2358 * be able to determine if there is a public address
2359 * or not.
2360 *
2361 * In case of user channel usage, it is not important
2362 * if a public address or static random address is
2363 * available.
2364 *
2365 * This check is only valid for BR/EDR controllers
2366 * since AMP controllers do not have an address.
2367 */
2368 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2369 hdev->dev_type == HCI_BREDR &&
2370 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2371 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
2372 ret = -EADDRNOTAVAIL;
2373 goto done;
2374 }
2375 }
2376
2377 if (test_bit(HCI_UP, &hdev->flags)) {
2378 ret = -EALREADY;
2379 goto done;
2380 }
2381
2382 if (hdev->open(hdev)) {
2383 ret = -EIO;
2384 goto done;
2385 }
2386
2387 atomic_set(&hdev->cmd_cnt, 1);
2388 set_bit(HCI_INIT, &hdev->flags);
2389
2390 if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
2391 if (hdev->setup)
2392 ret = hdev->setup(hdev);
2393
2394 /* The transport driver can set these quirks before
2395 * creating the HCI device or in its setup callback.
2396 *
2397 * In case any of them is set, the controller has to
2398 * start up as unconfigured.
2399 */
2400 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
2401 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
2402 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags);
2403
2404 /* For an unconfigured controller it is required to
2405 * read at least the version information provided by
2406 * the Read Local Version Information command.
2407 *
2408 * If the set_bdaddr driver callback is provided, then
2409 * also the original Bluetooth public device address
2410 * will be read using the Read BD Address command.
2411 */
2412 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
2413 ret = __hci_unconf_init(hdev);
2414 }
2415
2416 if (test_bit(HCI_CONFIG, &hdev->dev_flags)) {
2417 /* If public address change is configured, ensure that
2418 * the address gets programmed. If the driver does not
2419 * support changing the public address, fail the power
2420 * on procedure.
2421 */
2422 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
2423 hdev->set_bdaddr)
2424 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
2425 else
2426 ret = -EADDRNOTAVAIL;
2427 }
2428
2429 if (!ret) {
2430 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2431 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2432 ret = __hci_init(hdev);
2433 }
2434
2435 clear_bit(HCI_INIT, &hdev->flags);
2436
2437 if (!ret) {
2438 hci_dev_hold(hdev);
2439 set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
2440 set_bit(HCI_UP, &hdev->flags);
2441 hci_notify(hdev, HCI_DEV_UP);
2442 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2443 !test_bit(HCI_CONFIG, &hdev->dev_flags) &&
2444 !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2445 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2446 hdev->dev_type == HCI_BREDR) {
2447 hci_dev_lock(hdev);
2448 mgmt_powered(hdev, 1);
2449 hci_dev_unlock(hdev);
2450 }
2451 } else {
2452 /* Init failed, cleanup */
2453 flush_work(&hdev->tx_work);
2454 flush_work(&hdev->cmd_work);
2455 flush_work(&hdev->rx_work);
2456
2457 skb_queue_purge(&hdev->cmd_q);
2458 skb_queue_purge(&hdev->rx_q);
2459
2460 if (hdev->flush)
2461 hdev->flush(hdev);
2462
2463 if (hdev->sent_cmd) {
2464 kfree_skb(hdev->sent_cmd);
2465 hdev->sent_cmd = NULL;
2466 }
2467
2468 hdev->close(hdev);
2469 hdev->flags &= BIT(HCI_RAW);
2470 }
2471
2472 done:
2473 hci_req_unlock(hdev);
2474 return ret;
2475 }
2476
2477 /* ---- HCI ioctl helpers ---- */
2478
2479 int hci_dev_open(__u16 dev)
2480 {
2481 struct hci_dev *hdev;
2482 int err;
2483
2484 hdev = hci_dev_get(dev);
2485 if (!hdev)
2486 return -ENODEV;
2487
2488 /* Devices that are marked as unconfigured can only be powered
2489 * up as user channel. Trying to bring them up as normal devices
2490 * will result into a failure. Only user channel operation is
2491 * possible.
2492 *
2493 * When this function is called for a user channel, the flag
2494 * HCI_USER_CHANNEL will be set first before attempting to
2495 * open the device.
2496 */
2497 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2498 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2499 err = -EOPNOTSUPP;
2500 goto done;
2501 }
2502
2503 /* We need to ensure that no other power on/off work is pending
2504 * before proceeding to call hci_dev_do_open. This is
2505 * particularly important if the setup procedure has not yet
2506 * completed.
2507 */
2508 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2509 cancel_delayed_work(&hdev->power_off);
2510
2511 /* After this call it is guaranteed that the setup procedure
2512 * has finished. This means that error conditions like RFKILL
2513 * or no valid public or static random address apply.
2514 */
2515 flush_workqueue(hdev->req_workqueue);
2516
2517 /* For controllers not using the management interface and that
2518 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
2519 * so that pairing works for them. Once the management interface
2520 * is in use this bit will be cleared again and userspace has
2521 * to explicitly enable it.
2522 */
2523 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2524 !test_bit(HCI_MGMT, &hdev->dev_flags))
2525 set_bit(HCI_BONDABLE, &hdev->dev_flags);
2526
2527 err = hci_dev_do_open(hdev);
2528
2529 done:
2530 hci_dev_put(hdev);
2531 return err;
2532 }
2533
2534 /* This function requires the caller holds hdev->lock */
2535 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
2536 {
2537 struct hci_conn_params *p;
2538
2539 list_for_each_entry(p, &hdev->le_conn_params, list)
2540 list_del_init(&p->action);
2541
2542 BT_DBG("All LE pending actions cleared");
2543 }
2544
2545 static int hci_dev_do_close(struct hci_dev *hdev)
2546 {
2547 BT_DBG("%s %p", hdev->name, hdev);
2548
2549 cancel_delayed_work(&hdev->power_off);
2550
2551 hci_req_cancel(hdev, ENODEV);
2552 hci_req_lock(hdev);
2553
2554 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
2555 cancel_delayed_work_sync(&hdev->cmd_timer);
2556 hci_req_unlock(hdev);
2557 return 0;
2558 }
2559
2560 /* Flush RX and TX works */
2561 flush_work(&hdev->tx_work);
2562 flush_work(&hdev->rx_work);
2563
2564 if (hdev->discov_timeout > 0) {
2565 cancel_delayed_work(&hdev->discov_off);
2566 hdev->discov_timeout = 0;
2567 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
2568 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2569 }
2570
2571 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
2572 cancel_delayed_work(&hdev->service_cache);
2573
2574 cancel_delayed_work_sync(&hdev->le_scan_disable);
2575
2576 if (test_bit(HCI_MGMT, &hdev->dev_flags))
2577 cancel_delayed_work_sync(&hdev->rpa_expired);
2578
2579 hci_dev_lock(hdev);
2580 hci_inquiry_cache_flush(hdev);
2581 hci_conn_hash_flush(hdev);
2582 hci_pend_le_actions_clear(hdev);
2583 hci_dev_unlock(hdev);
2584
2585 hci_notify(hdev, HCI_DEV_DOWN);
2586
2587 if (hdev->flush)
2588 hdev->flush(hdev);
2589
2590 /* Reset device */
2591 skb_queue_purge(&hdev->cmd_q);
2592 atomic_set(&hdev->cmd_cnt, 1);
2593 if (!test_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
2594 !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) &&
2595 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2596 set_bit(HCI_INIT, &hdev->flags);
2597 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
2598 clear_bit(HCI_INIT, &hdev->flags);
2599 }
2600
2601 /* flush cmd work */
2602 flush_work(&hdev->cmd_work);
2603
2604 /* Drop queues */
2605 skb_queue_purge(&hdev->rx_q);
2606 skb_queue_purge(&hdev->cmd_q);
2607 skb_queue_purge(&hdev->raw_q);
2608
2609 /* Drop last sent command */
2610 if (hdev->sent_cmd) {
2611 cancel_delayed_work_sync(&hdev->cmd_timer);
2612 kfree_skb(hdev->sent_cmd);
2613 hdev->sent_cmd = NULL;
2614 }
2615
2616 kfree_skb(hdev->recv_evt);
2617 hdev->recv_evt = NULL;
2618
2619 /* After this point our queues are empty
2620 * and no tasks are scheduled. */
2621 hdev->close(hdev);
2622
2623 /* Clear flags */
2624 hdev->flags &= BIT(HCI_RAW);
2625 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
2626
2627 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2628 if (hdev->dev_type == HCI_BREDR) {
2629 hci_dev_lock(hdev);
2630 mgmt_powered(hdev, 0);
2631 hci_dev_unlock(hdev);
2632 }
2633 }
2634
2635 /* Controller radio is available but is currently powered down */
2636 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
2637
2638 memset(hdev->eir, 0, sizeof(hdev->eir));
2639 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
2640 bacpy(&hdev->random_addr, BDADDR_ANY);
2641
2642 hci_req_unlock(hdev);
2643
2644 hci_dev_put(hdev);
2645 return 0;
2646 }
2647
2648 int hci_dev_close(__u16 dev)
2649 {
2650 struct hci_dev *hdev;
2651 int err;
2652
2653 hdev = hci_dev_get(dev);
2654 if (!hdev)
2655 return -ENODEV;
2656
2657 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2658 err = -EBUSY;
2659 goto done;
2660 }
2661
2662 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2663 cancel_delayed_work(&hdev->power_off);
2664
2665 err = hci_dev_do_close(hdev);
2666
2667 done:
2668 hci_dev_put(hdev);
2669 return err;
2670 }
2671
2672 int hci_dev_reset(__u16 dev)
2673 {
2674 struct hci_dev *hdev;
2675 int ret = 0;
2676
2677 hdev = hci_dev_get(dev);
2678 if (!hdev)
2679 return -ENODEV;
2680
2681 hci_req_lock(hdev);
2682
2683 if (!test_bit(HCI_UP, &hdev->flags)) {
2684 ret = -ENETDOWN;
2685 goto done;
2686 }
2687
2688 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2689 ret = -EBUSY;
2690 goto done;
2691 }
2692
2693 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2694 ret = -EOPNOTSUPP;
2695 goto done;
2696 }
2697
2698 /* Drop queues */
2699 skb_queue_purge(&hdev->rx_q);
2700 skb_queue_purge(&hdev->cmd_q);
2701
2702 hci_dev_lock(hdev);
2703 hci_inquiry_cache_flush(hdev);
2704 hci_conn_hash_flush(hdev);
2705 hci_dev_unlock(hdev);
2706
2707 if (hdev->flush)
2708 hdev->flush(hdev);
2709
2710 atomic_set(&hdev->cmd_cnt, 1);
2711 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
2712
2713 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
2714
2715 done:
2716 hci_req_unlock(hdev);
2717 hci_dev_put(hdev);
2718 return ret;
2719 }
2720
2721 int hci_dev_reset_stat(__u16 dev)
2722 {
2723 struct hci_dev *hdev;
2724 int ret = 0;
2725
2726 hdev = hci_dev_get(dev);
2727 if (!hdev)
2728 return -ENODEV;
2729
2730 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2731 ret = -EBUSY;
2732 goto done;
2733 }
2734
2735 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2736 ret = -EOPNOTSUPP;
2737 goto done;
2738 }
2739
2740 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
2741
2742 done:
2743 hci_dev_put(hdev);
2744 return ret;
2745 }
2746
2747 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
2748 {
2749 bool conn_changed, discov_changed;
2750
2751 BT_DBG("%s scan 0x%02x", hdev->name, scan);
2752
2753 if ((scan & SCAN_PAGE))
2754 conn_changed = !test_and_set_bit(HCI_CONNECTABLE,
2755 &hdev->dev_flags);
2756 else
2757 conn_changed = test_and_clear_bit(HCI_CONNECTABLE,
2758 &hdev->dev_flags);
2759
2760 if ((scan & SCAN_INQUIRY)) {
2761 discov_changed = !test_and_set_bit(HCI_DISCOVERABLE,
2762 &hdev->dev_flags);
2763 } else {
2764 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2765 discov_changed = test_and_clear_bit(HCI_DISCOVERABLE,
2766 &hdev->dev_flags);
2767 }
2768
2769 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2770 return;
2771
2772 if (conn_changed || discov_changed) {
2773 /* In case this was disabled through mgmt */
2774 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
2775
2776 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags))
2777 mgmt_update_adv_data(hdev);
2778
2779 mgmt_new_settings(hdev);
2780 }
2781 }
2782
2783 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2784 {
2785 struct hci_dev *hdev;
2786 struct hci_dev_req dr;
2787 int err = 0;
2788
2789 if (copy_from_user(&dr, arg, sizeof(dr)))
2790 return -EFAULT;
2791
2792 hdev = hci_dev_get(dr.dev_id);
2793 if (!hdev)
2794 return -ENODEV;
2795
2796 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2797 err = -EBUSY;
2798 goto done;
2799 }
2800
2801 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
2802 err = -EOPNOTSUPP;
2803 goto done;
2804 }
2805
2806 if (hdev->dev_type != HCI_BREDR) {
2807 err = -EOPNOTSUPP;
2808 goto done;
2809 }
2810
2811 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2812 err = -EOPNOTSUPP;
2813 goto done;
2814 }
2815
2816 switch (cmd) {
2817 case HCISETAUTH:
2818 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2819 HCI_INIT_TIMEOUT);
2820 break;
2821
2822 case HCISETENCRYPT:
2823 if (!lmp_encrypt_capable(hdev)) {
2824 err = -EOPNOTSUPP;
2825 break;
2826 }
2827
2828 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2829 /* Auth must be enabled first */
2830 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2831 HCI_INIT_TIMEOUT);
2832 if (err)
2833 break;
2834 }
2835
2836 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2837 HCI_INIT_TIMEOUT);
2838 break;
2839
2840 case HCISETSCAN:
2841 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2842 HCI_INIT_TIMEOUT);
2843
2844 /* Ensure that the connectable and discoverable states
2845 * get correctly modified as this was a non-mgmt change.
2846 */
2847 if (!err)
2848 hci_update_scan_state(hdev, dr.dev_opt);
2849 break;
2850
2851 case HCISETLINKPOL:
2852 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2853 HCI_INIT_TIMEOUT);
2854 break;
2855
2856 case HCISETLINKMODE:
2857 hdev->link_mode = ((__u16) dr.dev_opt) &
2858 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2859 break;
2860
2861 case HCISETPTYPE:
2862 hdev->pkt_type = (__u16) dr.dev_opt;
2863 break;
2864
2865 case HCISETACLMTU:
2866 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2867 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2868 break;
2869
2870 case HCISETSCOMTU:
2871 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2872 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2873 break;
2874
2875 default:
2876 err = -EINVAL;
2877 break;
2878 }
2879
2880 done:
2881 hci_dev_put(hdev);
2882 return err;
2883 }
2884
2885 int hci_get_dev_list(void __user *arg)
2886 {
2887 struct hci_dev *hdev;
2888 struct hci_dev_list_req *dl;
2889 struct hci_dev_req *dr;
2890 int n = 0, size, err;
2891 __u16 dev_num;
2892
2893 if (get_user(dev_num, (__u16 __user *) arg))
2894 return -EFAULT;
2895
2896 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2897 return -EINVAL;
2898
2899 size = sizeof(*dl) + dev_num * sizeof(*dr);
2900
2901 dl = kzalloc(size, GFP_KERNEL);
2902 if (!dl)
2903 return -ENOMEM;
2904
2905 dr = dl->dev_req;
2906
2907 read_lock(&hci_dev_list_lock);
2908 list_for_each_entry(hdev, &hci_dev_list, list) {
2909 unsigned long flags = hdev->flags;
2910
2911 /* When the auto-off is configured it means the transport
2912 * is running, but in that case still indicate that the
2913 * device is actually down.
2914 */
2915 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2916 flags &= ~BIT(HCI_UP);
2917
2918 (dr + n)->dev_id = hdev->id;
2919 (dr + n)->dev_opt = flags;
2920
2921 if (++n >= dev_num)
2922 break;
2923 }
2924 read_unlock(&hci_dev_list_lock);
2925
2926 dl->dev_num = n;
2927 size = sizeof(*dl) + n * sizeof(*dr);
2928
2929 err = copy_to_user(arg, dl, size);
2930 kfree(dl);
2931
2932 return err ? -EFAULT : 0;
2933 }
2934
2935 int hci_get_dev_info(void __user *arg)
2936 {
2937 struct hci_dev *hdev;
2938 struct hci_dev_info di;
2939 unsigned long flags;
2940 int err = 0;
2941
2942 if (copy_from_user(&di, arg, sizeof(di)))
2943 return -EFAULT;
2944
2945 hdev = hci_dev_get(di.dev_id);
2946 if (!hdev)
2947 return -ENODEV;
2948
2949 /* When the auto-off is configured it means the transport
2950 * is running, but in that case still indicate that the
2951 * device is actually down.
2952 */
2953 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2954 flags = hdev->flags & ~BIT(HCI_UP);
2955 else
2956 flags = hdev->flags;
2957
2958 strcpy(di.name, hdev->name);
2959 di.bdaddr = hdev->bdaddr;
2960 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2961 di.flags = flags;
2962 di.pkt_type = hdev->pkt_type;
2963 if (lmp_bredr_capable(hdev)) {
2964 di.acl_mtu = hdev->acl_mtu;
2965 di.acl_pkts = hdev->acl_pkts;
2966 di.sco_mtu = hdev->sco_mtu;
2967 di.sco_pkts = hdev->sco_pkts;
2968 } else {
2969 di.acl_mtu = hdev->le_mtu;
2970 di.acl_pkts = hdev->le_pkts;
2971 di.sco_mtu = 0;
2972 di.sco_pkts = 0;
2973 }
2974 di.link_policy = hdev->link_policy;
2975 di.link_mode = hdev->link_mode;
2976
2977 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2978 memcpy(&di.features, &hdev->features, sizeof(di.features));
2979
2980 if (copy_to_user(arg, &di, sizeof(di)))
2981 err = -EFAULT;
2982
2983 hci_dev_put(hdev);
2984
2985 return err;
2986 }
2987
2988 /* ---- Interface to HCI drivers ---- */
2989
2990 static int hci_rfkill_set_block(void *data, bool blocked)
2991 {
2992 struct hci_dev *hdev = data;
2993
2994 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2995
2996 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2997 return -EBUSY;
2998
2999 if (blocked) {
3000 set_bit(HCI_RFKILLED, &hdev->dev_flags);
3001 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
3002 !test_bit(HCI_CONFIG, &hdev->dev_flags))
3003 hci_dev_do_close(hdev);
3004 } else {
3005 clear_bit(HCI_RFKILLED, &hdev->dev_flags);
3006 }
3007
3008 return 0;
3009 }
3010
3011 static const struct rfkill_ops hci_rfkill_ops = {
3012 .set_block = hci_rfkill_set_block,
3013 };
3014
3015 static void hci_power_on(struct work_struct *work)
3016 {
3017 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
3018 int err;
3019
3020 BT_DBG("%s", hdev->name);
3021
3022 err = hci_dev_do_open(hdev);
3023 if (err < 0) {
3024 mgmt_set_powered_failed(hdev, err);
3025 return;
3026 }
3027
3028 /* During the HCI setup phase, a few error conditions are
3029 * ignored and they need to be checked now. If they are still
3030 * valid, it is important to turn the device back off.
3031 */
3032 if (test_bit(HCI_RFKILLED, &hdev->dev_flags) ||
3033 test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) ||
3034 (hdev->dev_type == HCI_BREDR &&
3035 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3036 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
3037 clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
3038 hci_dev_do_close(hdev);
3039 } else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
3040 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
3041 HCI_AUTO_OFF_TIMEOUT);
3042 }
3043
3044 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags)) {
3045 /* For unconfigured devices, set the HCI_RAW flag
3046 * so that userspace can easily identify them.
3047 */
3048 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
3049 set_bit(HCI_RAW, &hdev->flags);
3050
3051 /* For fully configured devices, this will send
3052 * the Index Added event. For unconfigured devices,
3053 * it will send Unconfigued Index Added event.
3054 *
3055 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
3056 * and no event will be send.
3057 */
3058 mgmt_index_added(hdev);
3059 } else if (test_and_clear_bit(HCI_CONFIG, &hdev->dev_flags)) {
3060 /* When the controller is now configured, then it
3061 * is important to clear the HCI_RAW flag.
3062 */
3063 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags))
3064 clear_bit(HCI_RAW, &hdev->flags);
3065
3066 /* Powering on the controller with HCI_CONFIG set only
3067 * happens with the transition from unconfigured to
3068 * configured. This will send the Index Added event.
3069 */
3070 mgmt_index_added(hdev);
3071 }
3072 }
3073
3074 static void hci_power_off(struct work_struct *work)
3075 {
3076 struct hci_dev *hdev = container_of(work, struct hci_dev,
3077 power_off.work);
3078
3079 BT_DBG("%s", hdev->name);
3080
3081 hci_dev_do_close(hdev);
3082 }
3083
3084 static void hci_discov_off(struct work_struct *work)
3085 {
3086 struct hci_dev *hdev;
3087
3088 hdev = container_of(work, struct hci_dev, discov_off.work);
3089
3090 BT_DBG("%s", hdev->name);
3091
3092 mgmt_discoverable_timeout(hdev);
3093 }
3094
3095 void hci_uuids_clear(struct hci_dev *hdev)
3096 {
3097 struct bt_uuid *uuid, *tmp;
3098
3099 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
3100 list_del(&uuid->list);
3101 kfree(uuid);
3102 }
3103 }
3104
3105 void hci_link_keys_clear(struct hci_dev *hdev)
3106 {
3107 struct list_head *p, *n;
3108
3109 list_for_each_safe(p, n, &hdev->link_keys) {
3110 struct link_key *key;
3111
3112 key = list_entry(p, struct link_key, list);
3113
3114 list_del(p);
3115 kfree(key);
3116 }
3117 }
3118
3119 void hci_smp_ltks_clear(struct hci_dev *hdev)
3120 {
3121 struct smp_ltk *k, *tmp;
3122
3123 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3124 list_del(&k->list);
3125 kfree(k);
3126 }
3127 }
3128
3129 void hci_smp_irks_clear(struct hci_dev *hdev)
3130 {
3131 struct smp_irk *k, *tmp;
3132
3133 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3134 list_del(&k->list);
3135 kfree(k);
3136 }
3137 }
3138
3139 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3140 {
3141 struct link_key *k;
3142
3143 list_for_each_entry(k, &hdev->link_keys, list)
3144 if (bacmp(bdaddr, &k->bdaddr) == 0)
3145 return k;
3146
3147 return NULL;
3148 }
3149
3150 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
3151 u8 key_type, u8 old_key_type)
3152 {
3153 /* Legacy key */
3154 if (key_type < 0x03)
3155 return true;
3156
3157 /* Debug keys are insecure so don't store them persistently */
3158 if (key_type == HCI_LK_DEBUG_COMBINATION)
3159 return false;
3160
3161 /* Changed combination key and there's no previous one */
3162 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
3163 return false;
3164
3165 /* Security mode 3 case */
3166 if (!conn)
3167 return true;
3168
3169 /* Neither local nor remote side had no-bonding as requirement */
3170 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
3171 return true;
3172
3173 /* Local side had dedicated bonding as requirement */
3174 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
3175 return true;
3176
3177 /* Remote side had dedicated bonding as requirement */
3178 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
3179 return true;
3180
3181 /* If none of the above criteria match, then don't store the key
3182 * persistently */
3183 return false;
3184 }
3185
3186 static u8 ltk_role(u8 type)
3187 {
3188 if (type == SMP_LTK)
3189 return HCI_ROLE_MASTER;
3190
3191 return HCI_ROLE_SLAVE;
3192 }
3193
3194 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
3195 u8 role)
3196 {
3197 struct smp_ltk *k;
3198
3199 list_for_each_entry(k, &hdev->long_term_keys, list) {
3200 if (k->ediv != ediv || k->rand != rand)
3201 continue;
3202
3203 if (ltk_role(k->type) != role)
3204 continue;
3205
3206 return k;
3207 }
3208
3209 return NULL;
3210 }
3211
3212 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
3213 u8 addr_type, u8 role)
3214 {
3215 struct smp_ltk *k;
3216
3217 list_for_each_entry(k, &hdev->long_term_keys, list)
3218 if (addr_type == k->bdaddr_type &&
3219 bacmp(bdaddr, &k->bdaddr) == 0 &&
3220 ltk_role(k->type) == role)
3221 return k;
3222
3223 return NULL;
3224 }
3225
3226 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
3227 {
3228 struct smp_irk *irk;
3229
3230 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
3231 if (!bacmp(&irk->rpa, rpa))
3232 return irk;
3233 }
3234
3235 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
3236 if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) {
3237 bacpy(&irk->rpa, rpa);
3238 return irk;
3239 }
3240 }
3241
3242 return NULL;
3243 }
3244
3245 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
3246 u8 addr_type)
3247 {
3248 struct smp_irk *irk;
3249
3250 /* Identity Address must be public or static random */
3251 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
3252 return NULL;
3253
3254 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
3255 if (addr_type == irk->addr_type &&
3256 bacmp(bdaddr, &irk->bdaddr) == 0)
3257 return irk;
3258 }
3259
3260 return NULL;
3261 }
3262
3263 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
3264 bdaddr_t *bdaddr, u8 *val, u8 type,
3265 u8 pin_len, bool *persistent)
3266 {
3267 struct link_key *key, *old_key;
3268 u8 old_key_type;
3269
3270 old_key = hci_find_link_key(hdev, bdaddr);
3271 if (old_key) {
3272 old_key_type = old_key->type;
3273 key = old_key;
3274 } else {
3275 old_key_type = conn ? conn->key_type : 0xff;
3276 key = kzalloc(sizeof(*key), GFP_KERNEL);
3277 if (!key)
3278 return NULL;
3279 list_add(&key->list, &hdev->link_keys);
3280 }
3281
3282 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
3283
3284 /* Some buggy controller combinations generate a changed
3285 * combination key for legacy pairing even when there's no
3286 * previous key */
3287 if (type == HCI_LK_CHANGED_COMBINATION &&
3288 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
3289 type = HCI_LK_COMBINATION;
3290 if (conn)
3291 conn->key_type = type;
3292 }
3293
3294 bacpy(&key->bdaddr, bdaddr);
3295 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
3296 key->pin_len = pin_len;
3297
3298 if (type == HCI_LK_CHANGED_COMBINATION)
3299 key->type = old_key_type;
3300 else
3301 key->type = type;
3302
3303 if (persistent)
3304 *persistent = hci_persistent_key(hdev, conn, type,
3305 old_key_type);
3306
3307 return key;
3308 }
3309
3310 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3311 u8 addr_type, u8 type, u8 authenticated,
3312 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
3313 {
3314 struct smp_ltk *key, *old_key;
3315 u8 role = ltk_role(type);
3316
3317 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, role);
3318 if (old_key)
3319 key = old_key;
3320 else {
3321 key = kzalloc(sizeof(*key), GFP_KERNEL);
3322 if (!key)
3323 return NULL;
3324 list_add(&key->list, &hdev->long_term_keys);
3325 }
3326
3327 bacpy(&key->bdaddr, bdaddr);
3328 key->bdaddr_type = addr_type;
3329 memcpy(key->val, tk, sizeof(key->val));
3330 key->authenticated = authenticated;
3331 key->ediv = ediv;
3332 key->rand = rand;
3333 key->enc_size = enc_size;
3334 key->type = type;
3335
3336 return key;
3337 }
3338
3339 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3340 u8 addr_type, u8 val[16], bdaddr_t *rpa)
3341 {
3342 struct smp_irk *irk;
3343
3344 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
3345 if (!irk) {
3346 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
3347 if (!irk)
3348 return NULL;
3349
3350 bacpy(&irk->bdaddr, bdaddr);
3351 irk->addr_type = addr_type;
3352
3353 list_add(&irk->list, &hdev->identity_resolving_keys);
3354 }
3355
3356 memcpy(irk->val, val, 16);
3357 bacpy(&irk->rpa, rpa);
3358
3359 return irk;
3360 }
3361
3362 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3363 {
3364 struct link_key *key;
3365
3366 key = hci_find_link_key(hdev, bdaddr);
3367 if (!key)
3368 return -ENOENT;
3369
3370 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3371
3372 list_del(&key->list);
3373 kfree(key);
3374
3375 return 0;
3376 }
3377
3378 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
3379 {
3380 struct smp_ltk *k, *tmp;
3381 int removed = 0;
3382
3383 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3384 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
3385 continue;
3386
3387 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3388
3389 list_del(&k->list);
3390 kfree(k);
3391 removed++;
3392 }
3393
3394 return removed ? 0 : -ENOENT;
3395 }
3396
3397 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
3398 {
3399 struct smp_irk *k, *tmp;
3400
3401 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3402 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
3403 continue;
3404
3405 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3406
3407 list_del(&k->list);
3408 kfree(k);
3409 }
3410 }
3411
3412 /* HCI command timer function */
3413 static void hci_cmd_timeout(struct work_struct *work)
3414 {
3415 struct hci_dev *hdev = container_of(work, struct hci_dev,
3416 cmd_timer.work);
3417
3418 if (hdev->sent_cmd) {
3419 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
3420 u16 opcode = __le16_to_cpu(sent->opcode);
3421
3422 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
3423 } else {
3424 BT_ERR("%s command tx timeout", hdev->name);
3425 }
3426
3427 atomic_set(&hdev->cmd_cnt, 1);
3428 queue_work(hdev->workqueue, &hdev->cmd_work);
3429 }
3430
3431 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
3432 bdaddr_t *bdaddr)
3433 {
3434 struct oob_data *data;
3435
3436 list_for_each_entry(data, &hdev->remote_oob_data, list)
3437 if (bacmp(bdaddr, &data->bdaddr) == 0)
3438 return data;
3439
3440 return NULL;
3441 }
3442
3443 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
3444 {
3445 struct oob_data *data;
3446
3447 data = hci_find_remote_oob_data(hdev, bdaddr);
3448 if (!data)
3449 return -ENOENT;
3450
3451 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3452
3453 list_del(&data->list);
3454 kfree(data);
3455
3456 return 0;
3457 }
3458
3459 void hci_remote_oob_data_clear(struct hci_dev *hdev)
3460 {
3461 struct oob_data *data, *n;
3462
3463 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
3464 list_del(&data->list);
3465 kfree(data);
3466 }
3467 }
3468
3469 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3470 u8 *hash, u8 *randomizer)
3471 {
3472 struct oob_data *data;
3473
3474 data = hci_find_remote_oob_data(hdev, bdaddr);
3475 if (!data) {
3476 data = kmalloc(sizeof(*data), GFP_KERNEL);
3477 if (!data)
3478 return -ENOMEM;
3479
3480 bacpy(&data->bdaddr, bdaddr);
3481 list_add(&data->list, &hdev->remote_oob_data);
3482 }
3483
3484 memcpy(data->hash192, hash, sizeof(data->hash192));
3485 memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192));
3486
3487 memset(data->hash256, 0, sizeof(data->hash256));
3488 memset(data->randomizer256, 0, sizeof(data->randomizer256));
3489
3490 BT_DBG("%s for %pMR", hdev->name, bdaddr);
3491
3492 return 0;
3493 }
3494
3495 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3496 u8 *hash192, u8 *randomizer192,
3497 u8 *hash256, u8 *randomizer256)
3498 {
3499 struct oob_data *data;
3500
3501 data = hci_find_remote_oob_data(hdev, bdaddr);
3502 if (!data) {
3503 data = kmalloc(sizeof(*data), GFP_KERNEL);
3504 if (!data)
3505 return -ENOMEM;
3506
3507 bacpy(&data->bdaddr, bdaddr);
3508 list_add(&data->list, &hdev->remote_oob_data);
3509 }
3510
3511 memcpy(data->hash192, hash192, sizeof(data->hash192));
3512 memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192));
3513
3514 memcpy(data->hash256, hash256, sizeof(data->hash256));
3515 memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256));
3516
3517 BT_DBG("%s for %pMR", hdev->name, bdaddr);
3518
3519 return 0;
3520 }
3521
3522 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3523 bdaddr_t *bdaddr, u8 type)
3524 {
3525 struct bdaddr_list *b;
3526
3527 list_for_each_entry(b, bdaddr_list, list) {
3528 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3529 return b;
3530 }
3531
3532 return NULL;
3533 }
3534
3535 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3536 {
3537 struct list_head *p, *n;
3538
3539 list_for_each_safe(p, n, bdaddr_list) {
3540 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
3541
3542 list_del(p);
3543 kfree(b);
3544 }
3545 }
3546
3547 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3548 {
3549 struct bdaddr_list *entry;
3550
3551 if (!bacmp(bdaddr, BDADDR_ANY))
3552 return -EBADF;
3553
3554 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3555 return -EEXIST;
3556
3557 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3558 if (!entry)
3559 return -ENOMEM;
3560
3561 bacpy(&entry->bdaddr, bdaddr);
3562 entry->bdaddr_type = type;
3563
3564 list_add(&entry->list, list);
3565
3566 return 0;
3567 }
3568
3569 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3570 {
3571 struct bdaddr_list *entry;
3572
3573 if (!bacmp(bdaddr, BDADDR_ANY)) {
3574 hci_bdaddr_list_clear(list);
3575 return 0;
3576 }
3577
3578 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3579 if (!entry)
3580 return -ENOENT;
3581
3582 list_del(&entry->list);
3583 kfree(entry);
3584
3585 return 0;
3586 }
3587
3588 /* This function requires the caller holds hdev->lock */
3589 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3590 bdaddr_t *addr, u8 addr_type)
3591 {
3592 struct hci_conn_params *params;
3593
3594 /* The conn params list only contains identity addresses */
3595 if (!hci_is_identity_address(addr, addr_type))
3596 return NULL;
3597
3598 list_for_each_entry(params, &hdev->le_conn_params, list) {
3599 if (bacmp(&params->addr, addr) == 0 &&
3600 params->addr_type == addr_type) {
3601 return params;
3602 }
3603 }
3604
3605 return NULL;
3606 }
3607
3608 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
3609 {
3610 struct hci_conn *conn;
3611
3612 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr);
3613 if (!conn)
3614 return false;
3615
3616 if (conn->dst_type != type)
3617 return false;
3618
3619 if (conn->state != BT_CONNECTED)
3620 return false;
3621
3622 return true;
3623 }
3624
3625 /* This function requires the caller holds hdev->lock */
3626 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3627 bdaddr_t *addr, u8 addr_type)
3628 {
3629 struct hci_conn_params *param;
3630
3631 /* The list only contains identity addresses */
3632 if (!hci_is_identity_address(addr, addr_type))
3633 return NULL;
3634
3635 list_for_each_entry(param, list, action) {
3636 if (bacmp(&param->addr, addr) == 0 &&
3637 param->addr_type == addr_type)
3638 return param;
3639 }
3640
3641 return NULL;
3642 }
3643
3644 /* This function requires the caller holds hdev->lock */
3645 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3646 bdaddr_t *addr, u8 addr_type)
3647 {
3648 struct hci_conn_params *params;
3649
3650 if (!hci_is_identity_address(addr, addr_type))
3651 return NULL;
3652
3653 params = hci_conn_params_lookup(hdev, addr, addr_type);
3654 if (params)
3655 return params;
3656
3657 params = kzalloc(sizeof(*params), GFP_KERNEL);
3658 if (!params) {
3659 BT_ERR("Out of memory");
3660 return NULL;
3661 }
3662
3663 bacpy(&params->addr, addr);
3664 params->addr_type = addr_type;
3665
3666 list_add(&params->list, &hdev->le_conn_params);
3667 INIT_LIST_HEAD(&params->action);
3668
3669 params->conn_min_interval = hdev->le_conn_min_interval;
3670 params->conn_max_interval = hdev->le_conn_max_interval;
3671 params->conn_latency = hdev->le_conn_latency;
3672 params->supervision_timeout = hdev->le_supv_timeout;
3673 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3674
3675 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3676
3677 return params;
3678 }
3679
3680 /* This function requires the caller holds hdev->lock */
3681 int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
3682 u8 auto_connect)
3683 {
3684 struct hci_conn_params *params;
3685
3686 params = hci_conn_params_add(hdev, addr, addr_type);
3687 if (!params)
3688 return -EIO;
3689
3690 if (params->auto_connect == auto_connect)
3691 return 0;
3692
3693 list_del_init(&params->action);
3694
3695 switch (auto_connect) {
3696 case HCI_AUTO_CONN_DISABLED:
3697 case HCI_AUTO_CONN_LINK_LOSS:
3698 hci_update_background_scan(hdev);
3699 break;
3700 case HCI_AUTO_CONN_REPORT:
3701 list_add(&params->action, &hdev->pend_le_reports);
3702 hci_update_background_scan(hdev);
3703 break;
3704 case HCI_AUTO_CONN_DIRECT:
3705 case HCI_AUTO_CONN_ALWAYS:
3706 if (!is_connected(hdev, addr, addr_type)) {
3707 list_add(&params->action, &hdev->pend_le_conns);
3708 hci_update_background_scan(hdev);
3709 }
3710 break;
3711 }
3712
3713 params->auto_connect = auto_connect;
3714
3715 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
3716 auto_connect);
3717
3718 return 0;
3719 }
3720
3721 /* This function requires the caller holds hdev->lock */
3722 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3723 {
3724 struct hci_conn_params *params;
3725
3726 params = hci_conn_params_lookup(hdev, addr, addr_type);
3727 if (!params)
3728 return;
3729
3730 list_del(&params->action);
3731 list_del(&params->list);
3732 kfree(params);
3733
3734 hci_update_background_scan(hdev);
3735
3736 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3737 }
3738
3739 /* This function requires the caller holds hdev->lock */
3740 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3741 {
3742 struct hci_conn_params *params, *tmp;
3743
3744 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3745 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3746 continue;
3747 list_del(&params->list);
3748 kfree(params);
3749 }
3750
3751 BT_DBG("All LE disabled connection parameters were removed");
3752 }
3753
3754 /* This function requires the caller holds hdev->lock */
3755 void hci_conn_params_clear_all(struct hci_dev *hdev)
3756 {
3757 struct hci_conn_params *params, *tmp;
3758
3759 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3760 list_del(&params->action);
3761 list_del(&params->list);
3762 kfree(params);
3763 }
3764
3765 hci_update_background_scan(hdev);
3766
3767 BT_DBG("All LE connection parameters were removed");
3768 }
3769
3770 static void inquiry_complete(struct hci_dev *hdev, u8 status)
3771 {
3772 if (status) {
3773 BT_ERR("Failed to start inquiry: status %d", status);
3774
3775 hci_dev_lock(hdev);
3776 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3777 hci_dev_unlock(hdev);
3778 return;
3779 }
3780 }
3781
3782 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status)
3783 {
3784 /* General inquiry access code (GIAC) */
3785 u8 lap[3] = { 0x33, 0x8b, 0x9e };
3786 struct hci_request req;
3787 struct hci_cp_inquiry cp;
3788 int err;
3789
3790 if (status) {
3791 BT_ERR("Failed to disable LE scanning: status %d", status);
3792 return;
3793 }
3794
3795 switch (hdev->discovery.type) {
3796 case DISCOV_TYPE_LE:
3797 hci_dev_lock(hdev);
3798 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3799 hci_dev_unlock(hdev);
3800 break;
3801
3802 case DISCOV_TYPE_INTERLEAVED:
3803 hci_req_init(&req, hdev);
3804
3805 memset(&cp, 0, sizeof(cp));
3806 memcpy(&cp.lap, lap, sizeof(cp.lap));
3807 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3808 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3809
3810 hci_dev_lock(hdev);
3811
3812 hci_inquiry_cache_flush(hdev);
3813
3814 err = hci_req_run(&req, inquiry_complete);
3815 if (err) {
3816 BT_ERR("Inquiry request failed: err %d", err);
3817 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3818 }
3819
3820 hci_dev_unlock(hdev);
3821 break;
3822 }
3823 }
3824
3825 static void le_scan_disable_work(struct work_struct *work)
3826 {
3827 struct hci_dev *hdev = container_of(work, struct hci_dev,
3828 le_scan_disable.work);
3829 struct hci_request req;
3830 int err;
3831
3832 BT_DBG("%s", hdev->name);
3833
3834 hci_req_init(&req, hdev);
3835
3836 hci_req_add_le_scan_disable(&req);
3837
3838 err = hci_req_run(&req, le_scan_disable_work_complete);
3839 if (err)
3840 BT_ERR("Disable LE scanning request failed: err %d", err);
3841 }
3842
3843 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
3844 {
3845 struct hci_dev *hdev = req->hdev;
3846
3847 /* If we're advertising or initiating an LE connection we can't
3848 * go ahead and change the random address at this time. This is
3849 * because the eventual initiator address used for the
3850 * subsequently created connection will be undefined (some
3851 * controllers use the new address and others the one we had
3852 * when the operation started).
3853 *
3854 * In this kind of scenario skip the update and let the random
3855 * address be updated at the next cycle.
3856 */
3857 if (test_bit(HCI_LE_ADV, &hdev->dev_flags) ||
3858 hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) {
3859 BT_DBG("Deferring random address update");
3860 return;
3861 }
3862
3863 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
3864 }
3865
3866 int hci_update_random_address(struct hci_request *req, bool require_privacy,
3867 u8 *own_addr_type)
3868 {
3869 struct hci_dev *hdev = req->hdev;
3870 int err;
3871
3872 /* If privacy is enabled use a resolvable private address. If
3873 * current RPA has expired or there is something else than
3874 * the current RPA in use, then generate a new one.
3875 */
3876 if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) {
3877 int to;
3878
3879 *own_addr_type = ADDR_LE_DEV_RANDOM;
3880
3881 if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) &&
3882 !bacmp(&hdev->random_addr, &hdev->rpa))
3883 return 0;
3884
3885 err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa);
3886 if (err < 0) {
3887 BT_ERR("%s failed to generate new RPA", hdev->name);
3888 return err;
3889 }
3890
3891 set_random_addr(req, &hdev->rpa);
3892
3893 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
3894 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
3895
3896 return 0;
3897 }
3898
3899 /* In case of required privacy without resolvable private address,
3900 * use an unresolvable private address. This is useful for active
3901 * scanning and non-connectable advertising.
3902 */
3903 if (require_privacy) {
3904 bdaddr_t urpa;
3905
3906 get_random_bytes(&urpa, 6);
3907 urpa.b[5] &= 0x3f; /* Clear two most significant bits */
3908
3909 *own_addr_type = ADDR_LE_DEV_RANDOM;
3910 set_random_addr(req, &urpa);
3911 return 0;
3912 }
3913
3914 /* If forcing static address is in use or there is no public
3915 * address use the static address as random address (but skip
3916 * the HCI command if the current random address is already the
3917 * static one.
3918 */
3919 if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ||
3920 !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3921 *own_addr_type = ADDR_LE_DEV_RANDOM;
3922 if (bacmp(&hdev->static_addr, &hdev->random_addr))
3923 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
3924 &hdev->static_addr);
3925 return 0;
3926 }
3927
3928 /* Neither privacy nor static address is being used so use a
3929 * public address.
3930 */
3931 *own_addr_type = ADDR_LE_DEV_PUBLIC;
3932
3933 return 0;
3934 }
3935
3936 /* Copy the Identity Address of the controller.
3937 *
3938 * If the controller has a public BD_ADDR, then by default use that one.
3939 * If this is a LE only controller without a public address, default to
3940 * the static random address.
3941 *
3942 * For debugging purposes it is possible to force controllers with a
3943 * public address to use the static random address instead.
3944 */
3945 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3946 u8 *bdaddr_type)
3947 {
3948 if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ||
3949 !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3950 bacpy(bdaddr, &hdev->static_addr);
3951 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3952 } else {
3953 bacpy(bdaddr, &hdev->bdaddr);
3954 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3955 }
3956 }
3957
3958 /* Alloc HCI device */
3959 struct hci_dev *hci_alloc_dev(void)
3960 {
3961 struct hci_dev *hdev;
3962
3963 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3964 if (!hdev)
3965 return NULL;
3966
3967 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3968 hdev->esco_type = (ESCO_HV1);
3969 hdev->link_mode = (HCI_LM_ACCEPT);
3970 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3971 hdev->io_capability = 0x03; /* No Input No Output */
3972 hdev->manufacturer = 0xffff; /* Default to internal use */
3973 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3974 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3975
3976 hdev->sniff_max_interval = 800;
3977 hdev->sniff_min_interval = 80;
3978
3979 hdev->le_adv_channel_map = 0x07;
3980 hdev->le_adv_min_interval = 0x0800;
3981 hdev->le_adv_max_interval = 0x0800;
3982 hdev->le_scan_interval = 0x0060;
3983 hdev->le_scan_window = 0x0030;
3984 hdev->le_conn_min_interval = 0x0028;
3985 hdev->le_conn_max_interval = 0x0038;
3986 hdev->le_conn_latency = 0x0000;
3987 hdev->le_supv_timeout = 0x002a;
3988
3989 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3990 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3991 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3992 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3993
3994 mutex_init(&hdev->lock);
3995 mutex_init(&hdev->req_lock);
3996
3997 INIT_LIST_HEAD(&hdev->mgmt_pending);
3998 INIT_LIST_HEAD(&hdev->blacklist);
3999 INIT_LIST_HEAD(&hdev->whitelist);
4000 INIT_LIST_HEAD(&hdev->uuids);
4001 INIT_LIST_HEAD(&hdev->link_keys);
4002 INIT_LIST_HEAD(&hdev->long_term_keys);
4003 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
4004 INIT_LIST_HEAD(&hdev->remote_oob_data);
4005 INIT_LIST_HEAD(&hdev->le_white_list);
4006 INIT_LIST_HEAD(&hdev->le_conn_params);
4007 INIT_LIST_HEAD(&hdev->pend_le_conns);
4008 INIT_LIST_HEAD(&hdev->pend_le_reports);
4009 INIT_LIST_HEAD(&hdev->conn_hash.list);
4010
4011 INIT_WORK(&hdev->rx_work, hci_rx_work);
4012 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
4013 INIT_WORK(&hdev->tx_work, hci_tx_work);
4014 INIT_WORK(&hdev->power_on, hci_power_on);
4015
4016 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
4017 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
4018 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
4019
4020 skb_queue_head_init(&hdev->rx_q);
4021 skb_queue_head_init(&hdev->cmd_q);
4022 skb_queue_head_init(&hdev->raw_q);
4023
4024 init_waitqueue_head(&hdev->req_wait_q);
4025
4026 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
4027
4028 hci_init_sysfs(hdev);
4029 discovery_init(hdev);
4030
4031 return hdev;
4032 }
4033 EXPORT_SYMBOL(hci_alloc_dev);
4034
4035 /* Free HCI device */
4036 void hci_free_dev(struct hci_dev *hdev)
4037 {
4038 /* will free via device release */
4039 put_device(&hdev->dev);
4040 }
4041 EXPORT_SYMBOL(hci_free_dev);
4042
4043 /* Register HCI device */
4044 int hci_register_dev(struct hci_dev *hdev)
4045 {
4046 int id, error;
4047
4048 if (!hdev->open || !hdev->close || !hdev->send)
4049 return -EINVAL;
4050
4051 /* Do not allow HCI_AMP devices to register at index 0,
4052 * so the index can be used as the AMP controller ID.
4053 */
4054 switch (hdev->dev_type) {
4055 case HCI_BREDR:
4056 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
4057 break;
4058 case HCI_AMP:
4059 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
4060 break;
4061 default:
4062 return -EINVAL;
4063 }
4064
4065 if (id < 0)
4066 return id;
4067
4068 sprintf(hdev->name, "hci%d", id);
4069 hdev->id = id;
4070
4071 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4072
4073 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
4074 WQ_MEM_RECLAIM, 1, hdev->name);
4075 if (!hdev->workqueue) {
4076 error = -ENOMEM;
4077 goto err;
4078 }
4079
4080 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
4081 WQ_MEM_RECLAIM, 1, hdev->name);
4082 if (!hdev->req_workqueue) {
4083 destroy_workqueue(hdev->workqueue);
4084 error = -ENOMEM;
4085 goto err;
4086 }
4087
4088 if (!IS_ERR_OR_NULL(bt_debugfs))
4089 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
4090
4091 dev_set_name(&hdev->dev, "%s", hdev->name);
4092
4093 hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0,
4094 CRYPTO_ALG_ASYNC);
4095 if (IS_ERR(hdev->tfm_aes)) {
4096 BT_ERR("Unable to create crypto context");
4097 error = PTR_ERR(hdev->tfm_aes);
4098 hdev->tfm_aes = NULL;
4099 goto err_wqueue;
4100 }
4101
4102 error = device_add(&hdev->dev);
4103 if (error < 0)
4104 goto err_tfm;
4105
4106 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
4107 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
4108 hdev);
4109 if (hdev->rfkill) {
4110 if (rfkill_register(hdev->rfkill) < 0) {
4111 rfkill_destroy(hdev->rfkill);
4112 hdev->rfkill = NULL;
4113 }
4114 }
4115
4116 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
4117 set_bit(HCI_RFKILLED, &hdev->dev_flags);
4118
4119 set_bit(HCI_SETUP, &hdev->dev_flags);
4120 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
4121
4122 if (hdev->dev_type == HCI_BREDR) {
4123 /* Assume BR/EDR support until proven otherwise (such as
4124 * through reading supported features during init.
4125 */
4126 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
4127 }
4128
4129 write_lock(&hci_dev_list_lock);
4130 list_add(&hdev->list, &hci_dev_list);
4131 write_unlock(&hci_dev_list_lock);
4132
4133 /* Devices that are marked for raw-only usage are unconfigured
4134 * and should not be included in normal operation.
4135 */
4136 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
4137 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags);
4138
4139 hci_notify(hdev, HCI_DEV_REG);
4140 hci_dev_hold(hdev);
4141
4142 queue_work(hdev->req_workqueue, &hdev->power_on);
4143
4144 return id;
4145
4146 err_tfm:
4147 crypto_free_blkcipher(hdev->tfm_aes);
4148 err_wqueue:
4149 destroy_workqueue(hdev->workqueue);
4150 destroy_workqueue(hdev->req_workqueue);
4151 err:
4152 ida_simple_remove(&hci_index_ida, hdev->id);
4153
4154 return error;
4155 }
4156 EXPORT_SYMBOL(hci_register_dev);
4157
4158 /* Unregister HCI device */
4159 void hci_unregister_dev(struct hci_dev *hdev)
4160 {
4161 int i, id;
4162
4163 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4164
4165 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
4166
4167 id = hdev->id;
4168
4169 write_lock(&hci_dev_list_lock);
4170 list_del(&hdev->list);
4171 write_unlock(&hci_dev_list_lock);
4172
4173 hci_dev_do_close(hdev);
4174
4175 for (i = 0; i < NUM_REASSEMBLY; i++)
4176 kfree_skb(hdev->reassembly[i]);
4177
4178 cancel_work_sync(&hdev->power_on);
4179
4180 if (!test_bit(HCI_INIT, &hdev->flags) &&
4181 !test_bit(HCI_SETUP, &hdev->dev_flags) &&
4182 !test_bit(HCI_CONFIG, &hdev->dev_flags)) {
4183 hci_dev_lock(hdev);
4184 mgmt_index_removed(hdev);
4185 hci_dev_unlock(hdev);
4186 }
4187
4188 /* mgmt_index_removed should take care of emptying the
4189 * pending list */
4190 BUG_ON(!list_empty(&hdev->mgmt_pending));
4191
4192 hci_notify(hdev, HCI_DEV_UNREG);
4193
4194 if (hdev->rfkill) {
4195 rfkill_unregister(hdev->rfkill);
4196 rfkill_destroy(hdev->rfkill);
4197 }
4198
4199 if (hdev->tfm_aes)
4200 crypto_free_blkcipher(hdev->tfm_aes);
4201
4202 device_del(&hdev->dev);
4203
4204 debugfs_remove_recursive(hdev->debugfs);
4205
4206 destroy_workqueue(hdev->workqueue);
4207 destroy_workqueue(hdev->req_workqueue);
4208
4209 hci_dev_lock(hdev);
4210 hci_bdaddr_list_clear(&hdev->blacklist);
4211 hci_bdaddr_list_clear(&hdev->whitelist);
4212 hci_uuids_clear(hdev);
4213 hci_link_keys_clear(hdev);
4214 hci_smp_ltks_clear(hdev);
4215 hci_smp_irks_clear(hdev);
4216 hci_remote_oob_data_clear(hdev);
4217 hci_bdaddr_list_clear(&hdev->le_white_list);
4218 hci_conn_params_clear_all(hdev);
4219 hci_dev_unlock(hdev);
4220
4221 hci_dev_put(hdev);
4222
4223 ida_simple_remove(&hci_index_ida, id);
4224 }
4225 EXPORT_SYMBOL(hci_unregister_dev);
4226
4227 /* Suspend HCI device */
4228 int hci_suspend_dev(struct hci_dev *hdev)
4229 {
4230 hci_notify(hdev, HCI_DEV_SUSPEND);
4231 return 0;
4232 }
4233 EXPORT_SYMBOL(hci_suspend_dev);
4234
4235 /* Resume HCI device */
4236 int hci_resume_dev(struct hci_dev *hdev)
4237 {
4238 hci_notify(hdev, HCI_DEV_RESUME);
4239 return 0;
4240 }
4241 EXPORT_SYMBOL(hci_resume_dev);
4242
4243 /* Receive frame from HCI drivers */
4244 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4245 {
4246 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4247 && !test_bit(HCI_INIT, &hdev->flags))) {
4248 kfree_skb(skb);
4249 return -ENXIO;
4250 }
4251
4252 /* Incoming skb */
4253 bt_cb(skb)->incoming = 1;
4254
4255 /* Time stamp */
4256 __net_timestamp(skb);
4257
4258 skb_queue_tail(&hdev->rx_q, skb);
4259 queue_work(hdev->workqueue, &hdev->rx_work);
4260
4261 return 0;
4262 }
4263 EXPORT_SYMBOL(hci_recv_frame);
4264
4265 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
4266 int count, __u8 index)
4267 {
4268 int len = 0;
4269 int hlen = 0;
4270 int remain = count;
4271 struct sk_buff *skb;
4272 struct bt_skb_cb *scb;
4273
4274 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
4275 index >= NUM_REASSEMBLY)
4276 return -EILSEQ;
4277
4278 skb = hdev->reassembly[index];
4279
4280 if (!skb) {
4281 switch (type) {
4282 case HCI_ACLDATA_PKT:
4283 len = HCI_MAX_FRAME_SIZE;
4284 hlen = HCI_ACL_HDR_SIZE;
4285 break;
4286 case HCI_EVENT_PKT:
4287 len = HCI_MAX_EVENT_SIZE;
4288 hlen = HCI_EVENT_HDR_SIZE;
4289 break;
4290 case HCI_SCODATA_PKT:
4291 len = HCI_MAX_SCO_SIZE;
4292 hlen = HCI_SCO_HDR_SIZE;
4293 break;
4294 }
4295
4296 skb = bt_skb_alloc(len, GFP_ATOMIC);
4297 if (!skb)
4298 return -ENOMEM;
4299
4300 scb = (void *) skb->cb;
4301 scb->expect = hlen;
4302 scb->pkt_type = type;
4303
4304 hdev->reassembly[index] = skb;
4305 }
4306
4307 while (count) {
4308 scb = (void *) skb->cb;
4309 len = min_t(uint, scb->expect, count);
4310
4311 memcpy(skb_put(skb, len), data, len);
4312
4313 count -= len;
4314 data += len;
4315 scb->expect -= len;
4316 remain = count;
4317
4318 switch (type) {
4319 case HCI_EVENT_PKT:
4320 if (skb->len == HCI_EVENT_HDR_SIZE) {
4321 struct hci_event_hdr *h = hci_event_hdr(skb);
4322 scb->expect = h->plen;
4323
4324 if (skb_tailroom(skb) < scb->expect) {
4325 kfree_skb(skb);
4326 hdev->reassembly[index] = NULL;
4327 return -ENOMEM;
4328 }
4329 }
4330 break;
4331
4332 case HCI_ACLDATA_PKT:
4333 if (skb->len == HCI_ACL_HDR_SIZE) {
4334 struct hci_acl_hdr *h = hci_acl_hdr(skb);
4335 scb->expect = __le16_to_cpu(h->dlen);
4336
4337 if (skb_tailroom(skb) < scb->expect) {
4338 kfree_skb(skb);
4339 hdev->reassembly[index] = NULL;
4340 return -ENOMEM;
4341 }
4342 }
4343 break;
4344
4345 case HCI_SCODATA_PKT:
4346 if (skb->len == HCI_SCO_HDR_SIZE) {
4347 struct hci_sco_hdr *h = hci_sco_hdr(skb);
4348 scb->expect = h->dlen;
4349
4350 if (skb_tailroom(skb) < scb->expect) {
4351 kfree_skb(skb);
4352 hdev->reassembly[index] = NULL;
4353 return -ENOMEM;
4354 }
4355 }
4356 break;
4357 }
4358
4359 if (scb->expect == 0) {
4360 /* Complete frame */
4361
4362 bt_cb(skb)->pkt_type = type;
4363 hci_recv_frame(hdev, skb);
4364
4365 hdev->reassembly[index] = NULL;
4366 return remain;
4367 }
4368 }
4369
4370 return remain;
4371 }
4372
4373 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
4374 {
4375 int rem = 0;
4376
4377 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
4378 return -EILSEQ;
4379
4380 while (count) {
4381 rem = hci_reassembly(hdev, type, data, count, type - 1);
4382 if (rem < 0)
4383 return rem;
4384
4385 data += (count - rem);
4386 count = rem;
4387 }
4388
4389 return rem;
4390 }
4391 EXPORT_SYMBOL(hci_recv_fragment);
4392
4393 #define STREAM_REASSEMBLY 0
4394
4395 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
4396 {
4397 int type;
4398 int rem = 0;
4399
4400 while (count) {
4401 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
4402
4403 if (!skb) {
4404 struct { char type; } *pkt;
4405
4406 /* Start of the frame */
4407 pkt = data;
4408 type = pkt->type;
4409
4410 data++;
4411 count--;
4412 } else
4413 type = bt_cb(skb)->pkt_type;
4414
4415 rem = hci_reassembly(hdev, type, data, count,
4416 STREAM_REASSEMBLY);
4417 if (rem < 0)
4418 return rem;
4419
4420 data += (count - rem);
4421 count = rem;
4422 }
4423
4424 return rem;
4425 }
4426 EXPORT_SYMBOL(hci_recv_stream_fragment);
4427
4428 /* ---- Interface to upper protocols ---- */
4429
4430 int hci_register_cb(struct hci_cb *cb)
4431 {
4432 BT_DBG("%p name %s", cb, cb->name);
4433
4434 write_lock(&hci_cb_list_lock);
4435 list_add(&cb->list, &hci_cb_list);
4436 write_unlock(&hci_cb_list_lock);
4437
4438 return 0;
4439 }
4440 EXPORT_SYMBOL(hci_register_cb);
4441
4442 int hci_unregister_cb(struct hci_cb *cb)
4443 {
4444 BT_DBG("%p name %s", cb, cb->name);
4445
4446 write_lock(&hci_cb_list_lock);
4447 list_del(&cb->list);
4448 write_unlock(&hci_cb_list_lock);
4449
4450 return 0;
4451 }
4452 EXPORT_SYMBOL(hci_unregister_cb);
4453
4454 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4455 {
4456 int err;
4457
4458 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
4459
4460 /* Time stamp */
4461 __net_timestamp(skb);
4462
4463 /* Send copy to monitor */
4464 hci_send_to_monitor(hdev, skb);
4465
4466 if (atomic_read(&hdev->promisc)) {
4467 /* Send copy to the sockets */
4468 hci_send_to_sock(hdev, skb);
4469 }
4470
4471 /* Get rid of skb owner, prior to sending to the driver. */
4472 skb_orphan(skb);
4473
4474 err = hdev->send(hdev, skb);
4475 if (err < 0) {
4476 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
4477 kfree_skb(skb);
4478 }
4479 }
4480
4481 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
4482 {
4483 skb_queue_head_init(&req->cmd_q);
4484 req->hdev = hdev;
4485 req->err = 0;
4486 }
4487
4488 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
4489 {
4490 struct hci_dev *hdev = req->hdev;
4491 struct sk_buff *skb;
4492 unsigned long flags;
4493
4494 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
4495
4496 /* If an error occured during request building, remove all HCI
4497 * commands queued on the HCI request queue.
4498 */
4499 if (req->err) {
4500 skb_queue_purge(&req->cmd_q);
4501 return req->err;
4502 }
4503
4504 /* Do not allow empty requests */
4505 if (skb_queue_empty(&req->cmd_q))
4506 return -ENODATA;
4507
4508 skb = skb_peek_tail(&req->cmd_q);
4509 bt_cb(skb)->req.complete = complete;
4510
4511 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4512 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
4513 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4514
4515 queue_work(hdev->workqueue, &hdev->cmd_work);
4516
4517 return 0;
4518 }
4519
4520 bool hci_req_pending(struct hci_dev *hdev)
4521 {
4522 return (hdev->req_status == HCI_REQ_PEND);
4523 }
4524
4525 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
4526 u32 plen, const void *param)
4527 {
4528 int len = HCI_COMMAND_HDR_SIZE + plen;
4529 struct hci_command_hdr *hdr;
4530 struct sk_buff *skb;
4531
4532 skb = bt_skb_alloc(len, GFP_ATOMIC);
4533 if (!skb)
4534 return NULL;
4535
4536 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
4537 hdr->opcode = cpu_to_le16(opcode);
4538 hdr->plen = plen;
4539
4540 if (plen)
4541 memcpy(skb_put(skb, plen), param, plen);
4542
4543 BT_DBG("skb len %d", skb->len);
4544
4545 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
4546
4547 return skb;
4548 }
4549
4550 /* Send HCI command */
4551 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4552 const void *param)
4553 {
4554 struct sk_buff *skb;
4555
4556 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4557
4558 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4559 if (!skb) {
4560 BT_ERR("%s no memory for command", hdev->name);
4561 return -ENOMEM;
4562 }
4563
4564 /* Stand-alone HCI commands must be flaged as
4565 * single-command requests.
4566 */
4567 bt_cb(skb)->req.start = true;
4568
4569 skb_queue_tail(&hdev->cmd_q, skb);
4570 queue_work(hdev->workqueue, &hdev->cmd_work);
4571
4572 return 0;
4573 }
4574
4575 /* Queue a command to an asynchronous HCI request */
4576 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
4577 const void *param, u8 event)
4578 {
4579 struct hci_dev *hdev = req->hdev;
4580 struct sk_buff *skb;
4581
4582 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4583
4584 /* If an error occured during request building, there is no point in
4585 * queueing the HCI command. We can simply return.
4586 */
4587 if (req->err)
4588 return;
4589
4590 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4591 if (!skb) {
4592 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
4593 hdev->name, opcode);
4594 req->err = -ENOMEM;
4595 return;
4596 }
4597
4598 if (skb_queue_empty(&req->cmd_q))
4599 bt_cb(skb)->req.start = true;
4600
4601 bt_cb(skb)->req.event = event;
4602
4603 skb_queue_tail(&req->cmd_q, skb);
4604 }
4605
4606 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
4607 const void *param)
4608 {
4609 hci_req_add_ev(req, opcode, plen, param, 0);
4610 }
4611
4612 /* Get data from the previously sent command */
4613 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4614 {
4615 struct hci_command_hdr *hdr;
4616
4617 if (!hdev->sent_cmd)
4618 return NULL;
4619
4620 hdr = (void *) hdev->sent_cmd->data;
4621
4622 if (hdr->opcode != cpu_to_le16(opcode))
4623 return NULL;
4624
4625 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4626
4627 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4628 }
4629
4630 /* Send ACL data */
4631 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4632 {
4633 struct hci_acl_hdr *hdr;
4634 int len = skb->len;
4635
4636 skb_push(skb, HCI_ACL_HDR_SIZE);
4637 skb_reset_transport_header(skb);
4638 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4639 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4640 hdr->dlen = cpu_to_le16(len);
4641 }
4642
4643 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4644 struct sk_buff *skb, __u16 flags)
4645 {
4646 struct hci_conn *conn = chan->conn;
4647 struct hci_dev *hdev = conn->hdev;
4648 struct sk_buff *list;
4649
4650 skb->len = skb_headlen(skb);
4651 skb->data_len = 0;
4652
4653 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4654
4655 switch (hdev->dev_type) {
4656 case HCI_BREDR:
4657 hci_add_acl_hdr(skb, conn->handle, flags);
4658 break;
4659 case HCI_AMP:
4660 hci_add_acl_hdr(skb, chan->handle, flags);
4661 break;
4662 default:
4663 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
4664 return;
4665 }
4666
4667 list = skb_shinfo(skb)->frag_list;
4668 if (!list) {
4669 /* Non fragmented */
4670 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4671
4672 skb_queue_tail(queue, skb);
4673 } else {
4674 /* Fragmented */
4675 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4676
4677 skb_shinfo(skb)->frag_list = NULL;
4678
4679 /* Queue all fragments atomically */
4680 spin_lock(&queue->lock);
4681
4682 __skb_queue_tail(queue, skb);
4683
4684 flags &= ~ACL_START;
4685 flags |= ACL_CONT;
4686 do {
4687 skb = list; list = list->next;
4688
4689 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4690 hci_add_acl_hdr(skb, conn->handle, flags);
4691
4692 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4693
4694 __skb_queue_tail(queue, skb);
4695 } while (list);
4696
4697 spin_unlock(&queue->lock);
4698 }
4699 }
4700
4701 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4702 {
4703 struct hci_dev *hdev = chan->conn->hdev;
4704
4705 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4706
4707 hci_queue_acl(chan, &chan->data_q, skb, flags);
4708
4709 queue_work(hdev->workqueue, &hdev->tx_work);
4710 }
4711
4712 /* Send SCO data */
4713 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4714 {
4715 struct hci_dev *hdev = conn->hdev;
4716 struct hci_sco_hdr hdr;
4717
4718 BT_DBG("%s len %d", hdev->name, skb->len);
4719
4720 hdr.handle = cpu_to_le16(conn->handle);
4721 hdr.dlen = skb->len;
4722
4723 skb_push(skb, HCI_SCO_HDR_SIZE);
4724 skb_reset_transport_header(skb);
4725 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4726
4727 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
4728
4729 skb_queue_tail(&conn->data_q, skb);
4730 queue_work(hdev->workqueue, &hdev->tx_work);
4731 }
4732
4733 /* ---- HCI TX task (outgoing data) ---- */
4734
4735 /* HCI Connection scheduler */
4736 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4737 int *quote)
4738 {
4739 struct hci_conn_hash *h = &hdev->conn_hash;
4740 struct hci_conn *conn = NULL, *c;
4741 unsigned int num = 0, min = ~0;
4742
4743 /* We don't have to lock device here. Connections are always
4744 * added and removed with TX task disabled. */
4745
4746 rcu_read_lock();
4747
4748 list_for_each_entry_rcu(c, &h->list, list) {
4749 if (c->type != type || skb_queue_empty(&c->data_q))
4750 continue;
4751
4752 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4753 continue;
4754
4755 num++;
4756
4757 if (c->sent < min) {
4758 min = c->sent;
4759 conn = c;
4760 }
4761
4762 if (hci_conn_num(hdev, type) == num)
4763 break;
4764 }
4765
4766 rcu_read_unlock();
4767
4768 if (conn) {
4769 int cnt, q;
4770
4771 switch (conn->type) {
4772 case ACL_LINK:
4773 cnt = hdev->acl_cnt;
4774 break;
4775 case SCO_LINK:
4776 case ESCO_LINK:
4777 cnt = hdev->sco_cnt;
4778 break;
4779 case LE_LINK:
4780 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4781 break;
4782 default:
4783 cnt = 0;
4784 BT_ERR("Unknown link type");
4785 }
4786
4787 q = cnt / num;
4788 *quote = q ? q : 1;
4789 } else
4790 *quote = 0;
4791
4792 BT_DBG("conn %p quote %d", conn, *quote);
4793 return conn;
4794 }
4795
4796 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4797 {
4798 struct hci_conn_hash *h = &hdev->conn_hash;
4799 struct hci_conn *c;
4800
4801 BT_ERR("%s link tx timeout", hdev->name);
4802
4803 rcu_read_lock();
4804
4805 /* Kill stalled connections */
4806 list_for_each_entry_rcu(c, &h->list, list) {
4807 if (c->type == type && c->sent) {
4808 BT_ERR("%s killing stalled connection %pMR",
4809 hdev->name, &c->dst);
4810 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4811 }
4812 }
4813
4814 rcu_read_unlock();
4815 }
4816
4817 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4818 int *quote)
4819 {
4820 struct hci_conn_hash *h = &hdev->conn_hash;
4821 struct hci_chan *chan = NULL;
4822 unsigned int num = 0, min = ~0, cur_prio = 0;
4823 struct hci_conn *conn;
4824 int cnt, q, conn_num = 0;
4825
4826 BT_DBG("%s", hdev->name);
4827
4828 rcu_read_lock();
4829
4830 list_for_each_entry_rcu(conn, &h->list, list) {
4831 struct hci_chan *tmp;
4832
4833 if (conn->type != type)
4834 continue;
4835
4836 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4837 continue;
4838
4839 conn_num++;
4840
4841 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4842 struct sk_buff *skb;
4843
4844 if (skb_queue_empty(&tmp->data_q))
4845 continue;
4846
4847 skb = skb_peek(&tmp->data_q);
4848 if (skb->priority < cur_prio)
4849 continue;
4850
4851 if (skb->priority > cur_prio) {
4852 num = 0;
4853 min = ~0;
4854 cur_prio = skb->priority;
4855 }
4856
4857 num++;
4858
4859 if (conn->sent < min) {
4860 min = conn->sent;
4861 chan = tmp;
4862 }
4863 }
4864
4865 if (hci_conn_num(hdev, type) == conn_num)
4866 break;
4867 }
4868
4869 rcu_read_unlock();
4870
4871 if (!chan)
4872 return NULL;
4873
4874 switch (chan->conn->type) {
4875 case ACL_LINK:
4876 cnt = hdev->acl_cnt;
4877 break;
4878 case AMP_LINK:
4879 cnt = hdev->block_cnt;
4880 break;
4881 case SCO_LINK:
4882 case ESCO_LINK:
4883 cnt = hdev->sco_cnt;
4884 break;
4885 case LE_LINK:
4886 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4887 break;
4888 default:
4889 cnt = 0;
4890 BT_ERR("Unknown link type");
4891 }
4892
4893 q = cnt / num;
4894 *quote = q ? q : 1;
4895 BT_DBG("chan %p quote %d", chan, *quote);
4896 return chan;
4897 }
4898
4899 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4900 {
4901 struct hci_conn_hash *h = &hdev->conn_hash;
4902 struct hci_conn *conn;
4903 int num = 0;
4904
4905 BT_DBG("%s", hdev->name);
4906
4907 rcu_read_lock();
4908
4909 list_for_each_entry_rcu(conn, &h->list, list) {
4910 struct hci_chan *chan;
4911
4912 if (conn->type != type)
4913 continue;
4914
4915 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4916 continue;
4917
4918 num++;
4919
4920 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4921 struct sk_buff *skb;
4922
4923 if (chan->sent) {
4924 chan->sent = 0;
4925 continue;
4926 }
4927
4928 if (skb_queue_empty(&chan->data_q))
4929 continue;
4930
4931 skb = skb_peek(&chan->data_q);
4932 if (skb->priority >= HCI_PRIO_MAX - 1)
4933 continue;
4934
4935 skb->priority = HCI_PRIO_MAX - 1;
4936
4937 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4938 skb->priority);
4939 }
4940
4941 if (hci_conn_num(hdev, type) == num)
4942 break;
4943 }
4944
4945 rcu_read_unlock();
4946
4947 }
4948
4949 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4950 {
4951 /* Calculate count of blocks used by this packet */
4952 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4953 }
4954
4955 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4956 {
4957 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
4958 /* ACL tx timeout must be longer than maximum
4959 * link supervision timeout (40.9 seconds) */
4960 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4961 HCI_ACL_TX_TIMEOUT))
4962 hci_link_tx_to(hdev, ACL_LINK);
4963 }
4964 }
4965
4966 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4967 {
4968 unsigned int cnt = hdev->acl_cnt;
4969 struct hci_chan *chan;
4970 struct sk_buff *skb;
4971 int quote;
4972
4973 __check_timeout(hdev, cnt);
4974
4975 while (hdev->acl_cnt &&
4976 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4977 u32 priority = (skb_peek(&chan->data_q))->priority;
4978 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4979 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4980 skb->len, skb->priority);
4981
4982 /* Stop if priority has changed */
4983 if (skb->priority < priority)
4984 break;
4985
4986 skb = skb_dequeue(&chan->data_q);
4987
4988 hci_conn_enter_active_mode(chan->conn,
4989 bt_cb(skb)->force_active);
4990
4991 hci_send_frame(hdev, skb);
4992 hdev->acl_last_tx = jiffies;
4993
4994 hdev->acl_cnt--;
4995 chan->sent++;
4996 chan->conn->sent++;
4997 }
4998 }
4999
5000 if (cnt != hdev->acl_cnt)
5001 hci_prio_recalculate(hdev, ACL_LINK);
5002 }
5003
5004 static void hci_sched_acl_blk(struct hci_dev *hdev)
5005 {
5006 unsigned int cnt = hdev->block_cnt;
5007 struct hci_chan *chan;
5008 struct sk_buff *skb;
5009 int quote;
5010 u8 type;
5011
5012 __check_timeout(hdev, cnt);
5013
5014 BT_DBG("%s", hdev->name);
5015
5016 if (hdev->dev_type == HCI_AMP)
5017 type = AMP_LINK;
5018 else
5019 type = ACL_LINK;
5020
5021 while (hdev->block_cnt > 0 &&
5022 (chan = hci_chan_sent(hdev, type, &quote))) {
5023 u32 priority = (skb_peek(&chan->data_q))->priority;
5024 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
5025 int blocks;
5026
5027 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
5028 skb->len, skb->priority);
5029
5030 /* Stop if priority has changed */
5031 if (skb->priority < priority)
5032 break;
5033
5034 skb = skb_dequeue(&chan->data_q);
5035
5036 blocks = __get_blocks(hdev, skb);
5037 if (blocks > hdev->block_cnt)
5038 return;
5039
5040 hci_conn_enter_active_mode(chan->conn,
5041 bt_cb(skb)->force_active);
5042
5043 hci_send_frame(hdev, skb);
5044 hdev->acl_last_tx = jiffies;
5045
5046 hdev->block_cnt -= blocks;
5047 quote -= blocks;
5048
5049 chan->sent += blocks;
5050 chan->conn->sent += blocks;
5051 }
5052 }
5053
5054 if (cnt != hdev->block_cnt)
5055 hci_prio_recalculate(hdev, type);
5056 }
5057
5058 static void hci_sched_acl(struct hci_dev *hdev)
5059 {
5060 BT_DBG("%s", hdev->name);
5061
5062 /* No ACL link over BR/EDR controller */
5063 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
5064 return;
5065
5066 /* No AMP link over AMP controller */
5067 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
5068 return;
5069
5070 switch (hdev->flow_ctl_mode) {
5071 case HCI_FLOW_CTL_MODE_PACKET_BASED:
5072 hci_sched_acl_pkt(hdev);
5073 break;
5074
5075 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
5076 hci_sched_acl_blk(hdev);
5077 break;
5078 }
5079 }
5080
5081 /* Schedule SCO */
5082 static void hci_sched_sco(struct hci_dev *hdev)
5083 {
5084 struct hci_conn *conn;
5085 struct sk_buff *skb;
5086 int quote;
5087
5088 BT_DBG("%s", hdev->name);
5089
5090 if (!hci_conn_num(hdev, SCO_LINK))
5091 return;
5092
5093 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
5094 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
5095 BT_DBG("skb %p len %d", skb, skb->len);
5096 hci_send_frame(hdev, skb);
5097
5098 conn->sent++;
5099 if (conn->sent == ~0)
5100 conn->sent = 0;
5101 }
5102 }
5103 }
5104
5105 static void hci_sched_esco(struct hci_dev *hdev)
5106 {
5107 struct hci_conn *conn;
5108 struct sk_buff *skb;
5109 int quote;
5110
5111 BT_DBG("%s", hdev->name);
5112
5113 if (!hci_conn_num(hdev, ESCO_LINK))
5114 return;
5115
5116 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
5117 &quote))) {
5118 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
5119 BT_DBG("skb %p len %d", skb, skb->len);
5120 hci_send_frame(hdev, skb);
5121
5122 conn->sent++;
5123 if (conn->sent == ~0)
5124 conn->sent = 0;
5125 }
5126 }
5127 }
5128
5129 static void hci_sched_le(struct hci_dev *hdev)
5130 {
5131 struct hci_chan *chan;
5132 struct sk_buff *skb;
5133 int quote, cnt, tmp;
5134
5135 BT_DBG("%s", hdev->name);
5136
5137 if (!hci_conn_num(hdev, LE_LINK))
5138 return;
5139
5140 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) {
5141 /* LE tx timeout must be longer than maximum
5142 * link supervision timeout (40.9 seconds) */
5143 if (!hdev->le_cnt && hdev->le_pkts &&
5144 time_after(jiffies, hdev->le_last_tx + HZ * 45))
5145 hci_link_tx_to(hdev, LE_LINK);
5146 }
5147
5148 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
5149 tmp = cnt;
5150 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
5151 u32 priority = (skb_peek(&chan->data_q))->priority;
5152 while (quote-- && (skb = skb_peek(&chan->data_q))) {
5153 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
5154 skb->len, skb->priority);
5155
5156 /* Stop if priority has changed */
5157 if (skb->priority < priority)
5158 break;
5159
5160 skb = skb_dequeue(&chan->data_q);
5161
5162 hci_send_frame(hdev, skb);
5163 hdev->le_last_tx = jiffies;
5164
5165 cnt--;
5166 chan->sent++;
5167 chan->conn->sent++;
5168 }
5169 }
5170
5171 if (hdev->le_pkts)
5172 hdev->le_cnt = cnt;
5173 else
5174 hdev->acl_cnt = cnt;
5175
5176 if (cnt != tmp)
5177 hci_prio_recalculate(hdev, LE_LINK);
5178 }
5179
5180 static void hci_tx_work(struct work_struct *work)
5181 {
5182 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
5183 struct sk_buff *skb;
5184
5185 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
5186 hdev->sco_cnt, hdev->le_cnt);
5187
5188 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
5189 /* Schedule queues and send stuff to HCI driver */
5190 hci_sched_acl(hdev);
5191 hci_sched_sco(hdev);
5192 hci_sched_esco(hdev);
5193 hci_sched_le(hdev);
5194 }
5195
5196 /* Send next queued raw (unknown type) packet */
5197 while ((skb = skb_dequeue(&hdev->raw_q)))
5198 hci_send_frame(hdev, skb);
5199 }
5200
5201 /* ----- HCI RX task (incoming data processing) ----- */
5202
5203 /* ACL data packet */
5204 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5205 {
5206 struct hci_acl_hdr *hdr = (void *) skb->data;
5207 struct hci_conn *conn;
5208 __u16 handle, flags;
5209
5210 skb_pull(skb, HCI_ACL_HDR_SIZE);
5211
5212 handle = __le16_to_cpu(hdr->handle);
5213 flags = hci_flags(handle);
5214 handle = hci_handle(handle);
5215
5216 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
5217 handle, flags);
5218
5219 hdev->stat.acl_rx++;
5220
5221 hci_dev_lock(hdev);
5222 conn = hci_conn_hash_lookup_handle(hdev, handle);
5223 hci_dev_unlock(hdev);
5224
5225 if (conn) {
5226 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
5227
5228 /* Send to upper protocol */
5229 l2cap_recv_acldata(conn, skb, flags);
5230 return;
5231 } else {
5232 BT_ERR("%s ACL packet for unknown connection handle %d",
5233 hdev->name, handle);
5234 }
5235
5236 kfree_skb(skb);
5237 }
5238
5239 /* SCO data packet */
5240 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5241 {
5242 struct hci_sco_hdr *hdr = (void *) skb->data;
5243 struct hci_conn *conn;
5244 __u16 handle;
5245
5246 skb_pull(skb, HCI_SCO_HDR_SIZE);
5247
5248 handle = __le16_to_cpu(hdr->handle);
5249
5250 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
5251
5252 hdev->stat.sco_rx++;
5253
5254 hci_dev_lock(hdev);
5255 conn = hci_conn_hash_lookup_handle(hdev, handle);
5256 hci_dev_unlock(hdev);
5257
5258 if (conn) {
5259 /* Send to upper protocol */
5260 sco_recv_scodata(conn, skb);
5261 return;
5262 } else {
5263 BT_ERR("%s SCO packet for unknown connection handle %d",
5264 hdev->name, handle);
5265 }
5266
5267 kfree_skb(skb);
5268 }
5269
5270 static bool hci_req_is_complete(struct hci_dev *hdev)
5271 {
5272 struct sk_buff *skb;
5273
5274 skb = skb_peek(&hdev->cmd_q);
5275 if (!skb)
5276 return true;
5277
5278 return bt_cb(skb)->req.start;
5279 }
5280
5281 static void hci_resend_last(struct hci_dev *hdev)
5282 {
5283 struct hci_command_hdr *sent;
5284 struct sk_buff *skb;
5285 u16 opcode;
5286
5287 if (!hdev->sent_cmd)
5288 return;
5289
5290 sent = (void *) hdev->sent_cmd->data;
5291 opcode = __le16_to_cpu(sent->opcode);
5292 if (opcode == HCI_OP_RESET)
5293 return;
5294
5295 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5296 if (!skb)
5297 return;
5298
5299 skb_queue_head(&hdev->cmd_q, skb);
5300 queue_work(hdev->workqueue, &hdev->cmd_work);
5301 }
5302
5303 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
5304 {
5305 hci_req_complete_t req_complete = NULL;
5306 struct sk_buff *skb;
5307 unsigned long flags;
5308
5309 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5310
5311 /* If the completed command doesn't match the last one that was
5312 * sent we need to do special handling of it.
5313 */
5314 if (!hci_sent_cmd_data(hdev, opcode)) {
5315 /* Some CSR based controllers generate a spontaneous
5316 * reset complete event during init and any pending
5317 * command will never be completed. In such a case we
5318 * need to resend whatever was the last sent
5319 * command.
5320 */
5321 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5322 hci_resend_last(hdev);
5323
5324 return;
5325 }
5326
5327 /* If the command succeeded and there's still more commands in
5328 * this request the request is not yet complete.
5329 */
5330 if (!status && !hci_req_is_complete(hdev))
5331 return;
5332
5333 /* If this was the last command in a request the complete
5334 * callback would be found in hdev->sent_cmd instead of the
5335 * command queue (hdev->cmd_q).
5336 */
5337 if (hdev->sent_cmd) {
5338 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
5339
5340 if (req_complete) {
5341 /* We must set the complete callback to NULL to
5342 * avoid calling the callback more than once if
5343 * this function gets called again.
5344 */
5345 bt_cb(hdev->sent_cmd)->req.complete = NULL;
5346
5347 goto call_complete;
5348 }
5349 }
5350
5351 /* Remove all pending commands belonging to this request */
5352 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5353 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5354 if (bt_cb(skb)->req.start) {
5355 __skb_queue_head(&hdev->cmd_q, skb);
5356 break;
5357 }
5358
5359 req_complete = bt_cb(skb)->req.complete;
5360 kfree_skb(skb);
5361 }
5362 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5363
5364 call_complete:
5365 if (req_complete)
5366 req_complete(hdev, status);
5367 }
5368
5369 static void hci_rx_work(struct work_struct *work)
5370 {
5371 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5372 struct sk_buff *skb;
5373
5374 BT_DBG("%s", hdev->name);
5375
5376 while ((skb = skb_dequeue(&hdev->rx_q))) {
5377 /* Send copy to monitor */
5378 hci_send_to_monitor(hdev, skb);
5379
5380 if (atomic_read(&hdev->promisc)) {
5381 /* Send copy to the sockets */
5382 hci_send_to_sock(hdev, skb);
5383 }
5384
5385 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
5386 kfree_skb(skb);
5387 continue;
5388 }
5389
5390 if (test_bit(HCI_INIT, &hdev->flags)) {
5391 /* Don't process data packets in this states. */
5392 switch (bt_cb(skb)->pkt_type) {
5393 case HCI_ACLDATA_PKT:
5394 case HCI_SCODATA_PKT:
5395 kfree_skb(skb);
5396 continue;
5397 }
5398 }
5399
5400 /* Process frame */
5401 switch (bt_cb(skb)->pkt_type) {
5402 case HCI_EVENT_PKT:
5403 BT_DBG("%s Event packet", hdev->name);
5404 hci_event_packet(hdev, skb);
5405 break;
5406
5407 case HCI_ACLDATA_PKT:
5408 BT_DBG("%s ACL data packet", hdev->name);
5409 hci_acldata_packet(hdev, skb);
5410 break;
5411
5412 case HCI_SCODATA_PKT:
5413 BT_DBG("%s SCO data packet", hdev->name);
5414 hci_scodata_packet(hdev, skb);
5415 break;
5416
5417 default:
5418 kfree_skb(skb);
5419 break;
5420 }
5421 }
5422 }
5423
5424 static void hci_cmd_work(struct work_struct *work)
5425 {
5426 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5427 struct sk_buff *skb;
5428
5429 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5430 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5431
5432 /* Send queued commands */
5433 if (atomic_read(&hdev->cmd_cnt)) {
5434 skb = skb_dequeue(&hdev->cmd_q);
5435 if (!skb)
5436 return;
5437
5438 kfree_skb(hdev->sent_cmd);
5439
5440 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5441 if (hdev->sent_cmd) {
5442 atomic_dec(&hdev->cmd_cnt);
5443 hci_send_frame(hdev, skb);
5444 if (test_bit(HCI_RESET, &hdev->flags))
5445 cancel_delayed_work(&hdev->cmd_timer);
5446 else
5447 schedule_delayed_work(&hdev->cmd_timer,
5448 HCI_CMD_TIMEOUT);
5449 } else {
5450 skb_queue_head(&hdev->cmd_q, skb);
5451 queue_work(hdev->workqueue, &hdev->cmd_work);
5452 }
5453 }
5454 }
5455
5456 void hci_req_add_le_scan_disable(struct hci_request *req)
5457 {
5458 struct hci_cp_le_set_scan_enable cp;
5459
5460 memset(&cp, 0, sizeof(cp));
5461 cp.enable = LE_SCAN_DISABLE;
5462 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
5463 }
5464
5465 static void add_to_white_list(struct hci_request *req,
5466 struct hci_conn_params *params)
5467 {
5468 struct hci_cp_le_add_to_white_list cp;
5469
5470 cp.bdaddr_type = params->addr_type;
5471 bacpy(&cp.bdaddr, &params->addr);
5472
5473 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
5474 }
5475
5476 static u8 update_white_list(struct hci_request *req)
5477 {
5478 struct hci_dev *hdev = req->hdev;
5479 struct hci_conn_params *params;
5480 struct bdaddr_list *b;
5481 uint8_t white_list_entries = 0;
5482
5483 /* Go through the current white list programmed into the
5484 * controller one by one and check if that address is still
5485 * in the list of pending connections or list of devices to
5486 * report. If not present in either list, then queue the
5487 * command to remove it from the controller.
5488 */
5489 list_for_each_entry(b, &hdev->le_white_list, list) {
5490 struct hci_cp_le_del_from_white_list cp;
5491
5492 if (hci_pend_le_action_lookup(&hdev->pend_le_conns,
5493 &b->bdaddr, b->bdaddr_type) ||
5494 hci_pend_le_action_lookup(&hdev->pend_le_reports,
5495 &b->bdaddr, b->bdaddr_type)) {
5496 white_list_entries++;
5497 continue;
5498 }
5499
5500 cp.bdaddr_type = b->bdaddr_type;
5501 bacpy(&cp.bdaddr, &b->bdaddr);
5502
5503 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
5504 sizeof(cp), &cp);
5505 }
5506
5507 /* Since all no longer valid white list entries have been
5508 * removed, walk through the list of pending connections
5509 * and ensure that any new device gets programmed into
5510 * the controller.
5511 *
5512 * If the list of the devices is larger than the list of
5513 * available white list entries in the controller, then
5514 * just abort and return filer policy value to not use the
5515 * white list.
5516 */
5517 list_for_each_entry(params, &hdev->pend_le_conns, action) {
5518 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
5519 &params->addr, params->addr_type))
5520 continue;
5521
5522 if (white_list_entries >= hdev->le_white_list_size) {
5523 /* Select filter policy to accept all advertising */
5524 return 0x00;
5525 }
5526
5527 if (hci_find_irk_by_addr(hdev, &params->addr,
5528 params->addr_type)) {
5529 /* White list can not be used with RPAs */
5530 return 0x00;
5531 }
5532
5533 white_list_entries++;
5534 add_to_white_list(req, params);
5535 }
5536
5537 /* After adding all new pending connections, walk through
5538 * the list of pending reports and also add these to the
5539 * white list if there is still space.
5540 */
5541 list_for_each_entry(params, &hdev->pend_le_reports, action) {
5542 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
5543 &params->addr, params->addr_type))
5544 continue;
5545
5546 if (white_list_entries >= hdev->le_white_list_size) {
5547 /* Select filter policy to accept all advertising */
5548 return 0x00;
5549 }
5550
5551 if (hci_find_irk_by_addr(hdev, &params->addr,
5552 params->addr_type)) {
5553 /* White list can not be used with RPAs */
5554 return 0x00;
5555 }
5556
5557 white_list_entries++;
5558 add_to_white_list(req, params);
5559 }
5560
5561 /* Select filter policy to use white list */
5562 return 0x01;
5563 }
5564
5565 void hci_req_add_le_passive_scan(struct hci_request *req)
5566 {
5567 struct hci_cp_le_set_scan_param param_cp;
5568 struct hci_cp_le_set_scan_enable enable_cp;
5569 struct hci_dev *hdev = req->hdev;
5570 u8 own_addr_type;
5571 u8 filter_policy;
5572
5573 /* Set require_privacy to false since no SCAN_REQ are send
5574 * during passive scanning. Not using an unresolvable address
5575 * here is important so that peer devices using direct
5576 * advertising with our address will be correctly reported
5577 * by the controller.
5578 */
5579 if (hci_update_random_address(req, false, &own_addr_type))
5580 return;
5581
5582 /* Adding or removing entries from the white list must
5583 * happen before enabling scanning. The controller does
5584 * not allow white list modification while scanning.
5585 */
5586 filter_policy = update_white_list(req);
5587
5588 memset(&param_cp, 0, sizeof(param_cp));
5589 param_cp.type = LE_SCAN_PASSIVE;
5590 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
5591 param_cp.window = cpu_to_le16(hdev->le_scan_window);
5592 param_cp.own_address_type = own_addr_type;
5593 param_cp.filter_policy = filter_policy;
5594 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
5595 &param_cp);
5596
5597 memset(&enable_cp, 0, sizeof(enable_cp));
5598 enable_cp.enable = LE_SCAN_ENABLE;
5599 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5600 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
5601 &enable_cp);
5602 }
5603
5604 static void update_background_scan_complete(struct hci_dev *hdev, u8 status)
5605 {
5606 if (status)
5607 BT_DBG("HCI request failed to update background scanning: "
5608 "status 0x%2.2x", status);
5609 }
5610
5611 /* This function controls the background scanning based on hdev->pend_le_conns
5612 * list. If there are pending LE connection we start the background scanning,
5613 * otherwise we stop it.
5614 *
5615 * This function requires the caller holds hdev->lock.
5616 */
5617 void hci_update_background_scan(struct hci_dev *hdev)
5618 {
5619 struct hci_request req;
5620 struct hci_conn *conn;
5621 int err;
5622
5623 if (!test_bit(HCI_UP, &hdev->flags) ||
5624 test_bit(HCI_INIT, &hdev->flags) ||
5625 test_bit(HCI_SETUP, &hdev->dev_flags) ||
5626 test_bit(HCI_CONFIG, &hdev->dev_flags) ||
5627 test_bit(HCI_AUTO_OFF, &hdev->dev_flags) ||
5628 test_bit(HCI_UNREGISTER, &hdev->dev_flags))
5629 return;
5630
5631 /* No point in doing scanning if LE support hasn't been enabled */
5632 if (!test_bit(HCI_LE_ENABLED, &hdev->dev_flags))
5633 return;
5634
5635 /* If discovery is active don't interfere with it */
5636 if (hdev->discovery.state != DISCOVERY_STOPPED)
5637 return;
5638
5639 hci_req_init(&req, hdev);
5640
5641 if (list_empty(&hdev->pend_le_conns) &&
5642 list_empty(&hdev->pend_le_reports)) {
5643 /* If there is no pending LE connections or devices
5644 * to be scanned for, we should stop the background
5645 * scanning.
5646 */
5647
5648 /* If controller is not scanning we are done. */
5649 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5650 return;
5651
5652 hci_req_add_le_scan_disable(&req);
5653
5654 BT_DBG("%s stopping background scanning", hdev->name);
5655 } else {
5656 /* If there is at least one pending LE connection, we should
5657 * keep the background scan running.
5658 */
5659
5660 /* If controller is connecting, we should not start scanning
5661 * since some controllers are not able to scan and connect at
5662 * the same time.
5663 */
5664 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
5665 if (conn)
5666 return;
5667
5668 /* If controller is currently scanning, we stop it to ensure we
5669 * don't miss any advertising (due to duplicates filter).
5670 */
5671 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5672 hci_req_add_le_scan_disable(&req);
5673
5674 hci_req_add_le_passive_scan(&req);
5675
5676 BT_DBG("%s starting background scanning", hdev->name);
5677 }
5678
5679 err = hci_req_run(&req, update_background_scan_complete);
5680 if (err)
5681 BT_ERR("Failed to run HCI request: err %d", err);
5682 }
This page took 0.413385 seconds and 6 git commands to generate.