Merge tag 'md-3.9-fixes' of git://neil.brown.name/md
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25 * Ceph uses the messenger to exchange ceph_msg messages with other
26 * hosts in the system. The messenger provides ordered and reliable
27 * delivery. We tolerate TCP disconnects by reconnecting (with
28 * exponential backoff) in the case of a fault (disconnection, bad
29 * crc, protocol error). Acks allow sent messages to be discarded by
30 * the sender.
31 */
32
33 /*
34 * We track the state of the socket on a given connection using
35 * values defined below. The transition to a new socket state is
36 * handled by a function which verifies we aren't coming from an
37 * unexpected state.
38 *
39 * --------
40 * | NEW* | transient initial state
41 * --------
42 * | con_sock_state_init()
43 * v
44 * ----------
45 * | CLOSED | initialized, but no socket (and no
46 * ---------- TCP connection)
47 * ^ \
48 * | \ con_sock_state_connecting()
49 * | ----------------------
50 * | \
51 * + con_sock_state_closed() \
52 * |+--------------------------- \
53 * | \ \ \
54 * | ----------- \ \
55 * | | CLOSING | socket event; \ \
56 * | ----------- await close \ \
57 * | ^ \ |
58 * | | \ |
59 * | + con_sock_state_closing() \ |
60 * | / \ | |
61 * | / --------------- | |
62 * | / \ v v
63 * | / --------------
64 * | / -----------------| CONNECTING | socket created, TCP
65 * | | / -------------- connect initiated
66 * | | | con_sock_state_connected()
67 * | | v
68 * -------------
69 * | CONNECTED | TCP connection established
70 * -------------
71 *
72 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73 */
74
75 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
80
81 /*
82 * connection states
83 */
84 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
85 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
90
91 /*
92 * ceph_connection flag bits
93 */
94 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
95 * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103 switch (con_flag) {
104 case CON_FLAG_LOSSYTX:
105 case CON_FLAG_KEEPALIVE_PENDING:
106 case CON_FLAG_WRITE_PENDING:
107 case CON_FLAG_SOCK_CLOSED:
108 case CON_FLAG_BACKOFF:
109 return true;
110 default:
111 return false;
112 }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117 BUG_ON(!con_flag_valid(con_flag));
118
119 clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124 BUG_ON(!con_flag_valid(con_flag));
125
126 set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137 unsigned long con_flag)
138 {
139 BUG_ON(!con_flag_valid(con_flag));
140
141 return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145 unsigned long con_flag)
146 {
147 BUG_ON(!con_flag_valid(con_flag));
148
149 return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162 * When skipping (ignoring) a block of input we read it into a "skip
163 * buffer," which is this many bytes in size.
164 */
165 #define SKIP_BUF_SIZE 1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172 * Nicely render a sockaddr as a string. An array of formatted
173 * strings is used, to approximate reentrancy.
174 */
175 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page; /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187 int i;
188 char *s;
189 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193 s = addr_str[i];
194
195 switch (ss->ss_family) {
196 case AF_INET:
197 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198 ntohs(in4->sin_port));
199 break;
200
201 case AF_INET6:
202 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203 ntohs(in6->sin6_port));
204 break;
205
206 default:
207 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208 ss->ss_family);
209 }
210
211 return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218 ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222 * work queue for all reading and writing to/from the socket.
223 */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228 if (ceph_msgr_wq) {
229 destroy_workqueue(ceph_msgr_wq);
230 ceph_msgr_wq = NULL;
231 }
232
233 BUG_ON(zero_page == NULL);
234 kunmap(zero_page);
235 page_cache_release(zero_page);
236 zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241 BUG_ON(zero_page != NULL);
242 zero_page = ZERO_PAGE(0);
243 page_cache_get(zero_page);
244
245 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246 if (ceph_msgr_wq)
247 return 0;
248
249 pr_err("msgr_init failed to create workqueue\n");
250 _ceph_msgr_exit();
251
252 return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258 BUG_ON(ceph_msgr_wq == NULL);
259
260 _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266 flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274 int old_state;
275
276 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278 printk("%s: unexpected old state %d\n", __func__, old_state);
279 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280 CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285 int old_state;
286
287 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289 printk("%s: unexpected old state %d\n", __func__, old_state);
290 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291 CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296 int old_state;
297
298 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300 printk("%s: unexpected old state %d\n", __func__, old_state);
301 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302 CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307 int old_state;
308
309 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311 old_state != CON_SOCK_STATE_CONNECTED &&
312 old_state != CON_SOCK_STATE_CLOSING))
313 printk("%s: unexpected old state %d\n", __func__, old_state);
314 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315 CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324 old_state != CON_SOCK_STATE_CLOSING &&
325 old_state != CON_SOCK_STATE_CONNECTING &&
326 old_state != CON_SOCK_STATE_CLOSED))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333 * socket callback functions
334 */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339 struct ceph_connection *con = sk->sk_user_data;
340 if (atomic_read(&con->msgr->stopping)) {
341 return;
342 }
343
344 if (sk->sk_state != TCP_CLOSE_WAIT) {
345 dout("%s on %p state = %lu, queueing work\n", __func__,
346 con, con->state);
347 queue_con(con);
348 }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354 struct ceph_connection *con = sk->sk_user_data;
355
356 /* only queue to workqueue if there is data we want to write,
357 * and there is sufficient space in the socket buffer to accept
358 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
359 * doesn't get called again until try_write() fills the socket
360 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361 * and net/core/stream.c:sk_stream_write_space().
362 */
363 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365 dout("%s %p queueing write work\n", __func__, con);
366 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367 queue_con(con);
368 }
369 } else {
370 dout("%s %p nothing to write\n", __func__, con);
371 }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377 struct ceph_connection *con = sk->sk_user_data;
378
379 dout("%s %p state = %lu sk_state = %u\n", __func__,
380 con, con->state, sk->sk_state);
381
382 switch (sk->sk_state) {
383 case TCP_CLOSE:
384 dout("%s TCP_CLOSE\n", __func__);
385 case TCP_CLOSE_WAIT:
386 dout("%s TCP_CLOSE_WAIT\n", __func__);
387 con_sock_state_closing(con);
388 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389 queue_con(con);
390 break;
391 case TCP_ESTABLISHED:
392 dout("%s TCP_ESTABLISHED\n", __func__);
393 con_sock_state_connected(con);
394 queue_con(con);
395 break;
396 default: /* Everything else is uninteresting */
397 break;
398 }
399 }
400
401 /*
402 * set up socket callbacks
403 */
404 static void set_sock_callbacks(struct socket *sock,
405 struct ceph_connection *con)
406 {
407 struct sock *sk = sock->sk;
408 sk->sk_user_data = con;
409 sk->sk_data_ready = ceph_sock_data_ready;
410 sk->sk_write_space = ceph_sock_write_space;
411 sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416 * socket helpers
417 */
418
419 /*
420 * initiate connection to a remote socket.
421 */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425 struct socket *sock;
426 int ret;
427
428 BUG_ON(con->sock);
429 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430 IPPROTO_TCP, &sock);
431 if (ret)
432 return ret;
433 sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439 set_sock_callbacks(sock, con);
440
441 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443 con_sock_state_connecting(con);
444 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445 O_NONBLOCK);
446 if (ret == -EINPROGRESS) {
447 dout("connect %s EINPROGRESS sk_state = %u\n",
448 ceph_pr_addr(&con->peer_addr.in_addr),
449 sock->sk->sk_state);
450 } else if (ret < 0) {
451 pr_err("connect %s error %d\n",
452 ceph_pr_addr(&con->peer_addr.in_addr), ret);
453 sock_release(sock);
454 con->error_msg = "connect error";
455
456 return ret;
457 }
458 con->sock = sock;
459 return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464 struct kvec iov = {buf, len};
465 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466 int r;
467
468 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469 if (r == -EAGAIN)
470 r = 0;
471 return r;
472 }
473
474 /*
475 * write something. @more is true if caller will be sending more data
476 * shortly.
477 */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479 size_t kvlen, size_t len, int more)
480 {
481 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482 int r;
483
484 if (more)
485 msg.msg_flags |= MSG_MORE;
486 else
487 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
488
489 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490 if (r == -EAGAIN)
491 r = 0;
492 return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496 int offset, size_t size, int more)
497 {
498 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499 int ret;
500
501 ret = kernel_sendpage(sock, page, offset, size, flags);
502 if (ret == -EAGAIN)
503 ret = 0;
504
505 return ret;
506 }
507
508
509 /*
510 * Shutdown/close the socket for the given connection.
511 */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514 int rc = 0;
515
516 dout("con_close_socket on %p sock %p\n", con, con->sock);
517 if (con->sock) {
518 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519 sock_release(con->sock);
520 con->sock = NULL;
521 }
522
523 /*
524 * Forcibly clear the SOCK_CLOSED flag. It gets set
525 * independent of the connection mutex, and we could have
526 * received a socket close event before we had the chance to
527 * shut the socket down.
528 */
529 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531 con_sock_state_closed(con);
532 return rc;
533 }
534
535 /*
536 * Reset a connection. Discard all incoming and outgoing messages
537 * and clear *_seq state.
538 */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541 list_del_init(&msg->list_head);
542 BUG_ON(msg->con == NULL);
543 msg->con->ops->put(msg->con);
544 msg->con = NULL;
545
546 ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550 while (!list_empty(head)) {
551 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552 list_head);
553 ceph_msg_remove(msg);
554 }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559 /* reset connection, out_queue, msg_ and connect_seq */
560 /* discard existing out_queue and msg_seq */
561 dout("reset_connection %p\n", con);
562 ceph_msg_remove_list(&con->out_queue);
563 ceph_msg_remove_list(&con->out_sent);
564
565 if (con->in_msg) {
566 BUG_ON(con->in_msg->con != con);
567 con->in_msg->con = NULL;
568 ceph_msg_put(con->in_msg);
569 con->in_msg = NULL;
570 con->ops->put(con);
571 }
572
573 con->connect_seq = 0;
574 con->out_seq = 0;
575 if (con->out_msg) {
576 ceph_msg_put(con->out_msg);
577 con->out_msg = NULL;
578 }
579 con->in_seq = 0;
580 con->in_seq_acked = 0;
581 }
582
583 /*
584 * mark a peer down. drop any open connections.
585 */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588 mutex_lock(&con->mutex);
589 dout("con_close %p peer %s\n", con,
590 ceph_pr_addr(&con->peer_addr.in_addr));
591 con->state = CON_STATE_CLOSED;
592
593 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
594 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596 con_flag_clear(con, CON_FLAG_BACKOFF);
597
598 reset_connection(con);
599 con->peer_global_seq = 0;
600 cancel_delayed_work(&con->work);
601 con_close_socket(con);
602 mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607 * Reopen a closed connection, with a new peer address.
608 */
609 void ceph_con_open(struct ceph_connection *con,
610 __u8 entity_type, __u64 entity_num,
611 struct ceph_entity_addr *addr)
612 {
613 mutex_lock(&con->mutex);
614 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616 WARN_ON(con->state != CON_STATE_CLOSED);
617 con->state = CON_STATE_PREOPEN;
618
619 con->peer_name.type = (__u8) entity_type;
620 con->peer_name.num = cpu_to_le64(entity_num);
621
622 memcpy(&con->peer_addr, addr, sizeof(*addr));
623 con->delay = 0; /* reset backoff memory */
624 mutex_unlock(&con->mutex);
625 queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630 * return true if this connection ever successfully opened
631 */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634 return con->connect_seq > 0;
635 }
636
637 /*
638 * initialize a new connection.
639 */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641 const struct ceph_connection_operations *ops,
642 struct ceph_messenger *msgr)
643 {
644 dout("con_init %p\n", con);
645 memset(con, 0, sizeof(*con));
646 con->private = private;
647 con->ops = ops;
648 con->msgr = msgr;
649
650 con_sock_state_init(con);
651
652 mutex_init(&con->mutex);
653 INIT_LIST_HEAD(&con->out_queue);
654 INIT_LIST_HEAD(&con->out_sent);
655 INIT_DELAYED_WORK(&con->work, con_work);
656
657 con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663 * We maintain a global counter to order connection attempts. Get
664 * a unique seq greater than @gt.
665 */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668 u32 ret;
669
670 spin_lock(&msgr->global_seq_lock);
671 if (msgr->global_seq < gt)
672 msgr->global_seq = gt;
673 ret = ++msgr->global_seq;
674 spin_unlock(&msgr->global_seq_lock);
675 return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680 con->out_kvec_left = 0;
681 con->out_kvec_bytes = 0;
682 con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686 size_t size, void *data)
687 {
688 int index;
689
690 index = con->out_kvec_left;
691 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693 con->out_kvec[index].iov_len = size;
694 con->out_kvec[index].iov_base = data;
695 con->out_kvec_left++;
696 con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
701 {
702 if (!bio) {
703 *iter = NULL;
704 *seg = 0;
705 return;
706 }
707 *iter = bio;
708 *seg = bio->bi_idx;
709 }
710
711 static void iter_bio_next(struct bio **bio_iter, int *seg)
712 {
713 if (*bio_iter == NULL)
714 return;
715
716 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
717
718 (*seg)++;
719 if (*seg == (*bio_iter)->bi_vcnt)
720 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
721 }
722 #endif
723
724 static void prepare_write_message_data(struct ceph_connection *con)
725 {
726 struct ceph_msg *msg = con->out_msg;
727
728 BUG_ON(!msg);
729 BUG_ON(!msg->hdr.data_len);
730
731 /* initialize page iterator */
732 con->out_msg_pos.page = 0;
733 if (msg->pages)
734 con->out_msg_pos.page_pos = msg->page_alignment;
735 else
736 con->out_msg_pos.page_pos = 0;
737 #ifdef CONFIG_BLOCK
738 if (msg->bio)
739 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
740 #endif
741 con->out_msg_pos.data_pos = 0;
742 con->out_msg_pos.did_page_crc = false;
743 con->out_more = 1; /* data + footer will follow */
744 }
745
746 /*
747 * Prepare footer for currently outgoing message, and finish things
748 * off. Assumes out_kvec* are already valid.. we just add on to the end.
749 */
750 static void prepare_write_message_footer(struct ceph_connection *con)
751 {
752 struct ceph_msg *m = con->out_msg;
753 int v = con->out_kvec_left;
754
755 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
756
757 dout("prepare_write_message_footer %p\n", con);
758 con->out_kvec_is_msg = true;
759 con->out_kvec[v].iov_base = &m->footer;
760 con->out_kvec[v].iov_len = sizeof(m->footer);
761 con->out_kvec_bytes += sizeof(m->footer);
762 con->out_kvec_left++;
763 con->out_more = m->more_to_follow;
764 con->out_msg_done = true;
765 }
766
767 /*
768 * Prepare headers for the next outgoing message.
769 */
770 static void prepare_write_message(struct ceph_connection *con)
771 {
772 struct ceph_msg *m;
773 u32 crc;
774
775 con_out_kvec_reset(con);
776 con->out_kvec_is_msg = true;
777 con->out_msg_done = false;
778
779 /* Sneak an ack in there first? If we can get it into the same
780 * TCP packet that's a good thing. */
781 if (con->in_seq > con->in_seq_acked) {
782 con->in_seq_acked = con->in_seq;
783 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
784 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
785 con_out_kvec_add(con, sizeof (con->out_temp_ack),
786 &con->out_temp_ack);
787 }
788
789 BUG_ON(list_empty(&con->out_queue));
790 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
791 con->out_msg = m;
792 BUG_ON(m->con != con);
793
794 /* put message on sent list */
795 ceph_msg_get(m);
796 list_move_tail(&m->list_head, &con->out_sent);
797
798 /*
799 * only assign outgoing seq # if we haven't sent this message
800 * yet. if it is requeued, resend with it's original seq.
801 */
802 if (m->needs_out_seq) {
803 m->hdr.seq = cpu_to_le64(++con->out_seq);
804 m->needs_out_seq = false;
805 }
806 #ifdef CONFIG_BLOCK
807 else
808 m->bio_iter = NULL;
809 #endif
810
811 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
812 m, con->out_seq, le16_to_cpu(m->hdr.type),
813 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
814 le32_to_cpu(m->hdr.data_len),
815 m->nr_pages);
816 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
817
818 /* tag + hdr + front + middle */
819 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
820 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
821 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
822
823 if (m->middle)
824 con_out_kvec_add(con, m->middle->vec.iov_len,
825 m->middle->vec.iov_base);
826
827 /* fill in crc (except data pages), footer */
828 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
829 con->out_msg->hdr.crc = cpu_to_le32(crc);
830 con->out_msg->footer.flags = 0;
831
832 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
833 con->out_msg->footer.front_crc = cpu_to_le32(crc);
834 if (m->middle) {
835 crc = crc32c(0, m->middle->vec.iov_base,
836 m->middle->vec.iov_len);
837 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
838 } else
839 con->out_msg->footer.middle_crc = 0;
840 dout("%s front_crc %u middle_crc %u\n", __func__,
841 le32_to_cpu(con->out_msg->footer.front_crc),
842 le32_to_cpu(con->out_msg->footer.middle_crc));
843
844 /* is there a data payload? */
845 con->out_msg->footer.data_crc = 0;
846 if (m->hdr.data_len)
847 prepare_write_message_data(con);
848 else
849 /* no, queue up footer too and be done */
850 prepare_write_message_footer(con);
851
852 con_flag_set(con, CON_FLAG_WRITE_PENDING);
853 }
854
855 /*
856 * Prepare an ack.
857 */
858 static void prepare_write_ack(struct ceph_connection *con)
859 {
860 dout("prepare_write_ack %p %llu -> %llu\n", con,
861 con->in_seq_acked, con->in_seq);
862 con->in_seq_acked = con->in_seq;
863
864 con_out_kvec_reset(con);
865
866 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
867
868 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
869 con_out_kvec_add(con, sizeof (con->out_temp_ack),
870 &con->out_temp_ack);
871
872 con->out_more = 1; /* more will follow.. eventually.. */
873 con_flag_set(con, CON_FLAG_WRITE_PENDING);
874 }
875
876 /*
877 * Prepare to write keepalive byte.
878 */
879 static void prepare_write_keepalive(struct ceph_connection *con)
880 {
881 dout("prepare_write_keepalive %p\n", con);
882 con_out_kvec_reset(con);
883 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
884 con_flag_set(con, CON_FLAG_WRITE_PENDING);
885 }
886
887 /*
888 * Connection negotiation.
889 */
890
891 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
892 int *auth_proto)
893 {
894 struct ceph_auth_handshake *auth;
895
896 if (!con->ops->get_authorizer) {
897 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
898 con->out_connect.authorizer_len = 0;
899 return NULL;
900 }
901
902 /* Can't hold the mutex while getting authorizer */
903 mutex_unlock(&con->mutex);
904 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
905 mutex_lock(&con->mutex);
906
907 if (IS_ERR(auth))
908 return auth;
909 if (con->state != CON_STATE_NEGOTIATING)
910 return ERR_PTR(-EAGAIN);
911
912 con->auth_reply_buf = auth->authorizer_reply_buf;
913 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
914 return auth;
915 }
916
917 /*
918 * We connected to a peer and are saying hello.
919 */
920 static void prepare_write_banner(struct ceph_connection *con)
921 {
922 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
923 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
924 &con->msgr->my_enc_addr);
925
926 con->out_more = 0;
927 con_flag_set(con, CON_FLAG_WRITE_PENDING);
928 }
929
930 static int prepare_write_connect(struct ceph_connection *con)
931 {
932 unsigned int global_seq = get_global_seq(con->msgr, 0);
933 int proto;
934 int auth_proto;
935 struct ceph_auth_handshake *auth;
936
937 switch (con->peer_name.type) {
938 case CEPH_ENTITY_TYPE_MON:
939 proto = CEPH_MONC_PROTOCOL;
940 break;
941 case CEPH_ENTITY_TYPE_OSD:
942 proto = CEPH_OSDC_PROTOCOL;
943 break;
944 case CEPH_ENTITY_TYPE_MDS:
945 proto = CEPH_MDSC_PROTOCOL;
946 break;
947 default:
948 BUG();
949 }
950
951 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
952 con->connect_seq, global_seq, proto);
953
954 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
955 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
956 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
957 con->out_connect.global_seq = cpu_to_le32(global_seq);
958 con->out_connect.protocol_version = cpu_to_le32(proto);
959 con->out_connect.flags = 0;
960
961 auth_proto = CEPH_AUTH_UNKNOWN;
962 auth = get_connect_authorizer(con, &auth_proto);
963 if (IS_ERR(auth))
964 return PTR_ERR(auth);
965
966 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
967 con->out_connect.authorizer_len = auth ?
968 cpu_to_le32(auth->authorizer_buf_len) : 0;
969
970 con_out_kvec_add(con, sizeof (con->out_connect),
971 &con->out_connect);
972 if (auth && auth->authorizer_buf_len)
973 con_out_kvec_add(con, auth->authorizer_buf_len,
974 auth->authorizer_buf);
975
976 con->out_more = 0;
977 con_flag_set(con, CON_FLAG_WRITE_PENDING);
978
979 return 0;
980 }
981
982 /*
983 * write as much of pending kvecs to the socket as we can.
984 * 1 -> done
985 * 0 -> socket full, but more to do
986 * <0 -> error
987 */
988 static int write_partial_kvec(struct ceph_connection *con)
989 {
990 int ret;
991
992 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
993 while (con->out_kvec_bytes > 0) {
994 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
995 con->out_kvec_left, con->out_kvec_bytes,
996 con->out_more);
997 if (ret <= 0)
998 goto out;
999 con->out_kvec_bytes -= ret;
1000 if (con->out_kvec_bytes == 0)
1001 break; /* done */
1002
1003 /* account for full iov entries consumed */
1004 while (ret >= con->out_kvec_cur->iov_len) {
1005 BUG_ON(!con->out_kvec_left);
1006 ret -= con->out_kvec_cur->iov_len;
1007 con->out_kvec_cur++;
1008 con->out_kvec_left--;
1009 }
1010 /* and for a partially-consumed entry */
1011 if (ret) {
1012 con->out_kvec_cur->iov_len -= ret;
1013 con->out_kvec_cur->iov_base += ret;
1014 }
1015 }
1016 con->out_kvec_left = 0;
1017 con->out_kvec_is_msg = false;
1018 ret = 1;
1019 out:
1020 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1021 con->out_kvec_bytes, con->out_kvec_left, ret);
1022 return ret; /* done! */
1023 }
1024
1025 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1026 size_t len, size_t sent, bool in_trail)
1027 {
1028 struct ceph_msg *msg = con->out_msg;
1029
1030 BUG_ON(!msg);
1031 BUG_ON(!sent);
1032
1033 con->out_msg_pos.data_pos += sent;
1034 con->out_msg_pos.page_pos += sent;
1035 if (sent < len)
1036 return;
1037
1038 BUG_ON(sent != len);
1039 con->out_msg_pos.page_pos = 0;
1040 con->out_msg_pos.page++;
1041 con->out_msg_pos.did_page_crc = false;
1042 if (in_trail)
1043 list_move_tail(&page->lru,
1044 &msg->trail->head);
1045 else if (msg->pagelist)
1046 list_move_tail(&page->lru,
1047 &msg->pagelist->head);
1048 #ifdef CONFIG_BLOCK
1049 else if (msg->bio)
1050 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1051 #endif
1052 }
1053
1054 /*
1055 * Write as much message data payload as we can. If we finish, queue
1056 * up the footer.
1057 * 1 -> done, footer is now queued in out_kvec[].
1058 * 0 -> socket full, but more to do
1059 * <0 -> error
1060 */
1061 static int write_partial_msg_pages(struct ceph_connection *con)
1062 {
1063 struct ceph_msg *msg = con->out_msg;
1064 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1065 size_t len;
1066 bool do_datacrc = !con->msgr->nocrc;
1067 int ret;
1068 int total_max_write;
1069 bool in_trail = false;
1070 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1071 const size_t trail_off = data_len - trail_len;
1072
1073 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1074 con, msg, con->out_msg_pos.page, msg->nr_pages,
1075 con->out_msg_pos.page_pos);
1076
1077 /*
1078 * Iterate through each page that contains data to be
1079 * written, and send as much as possible for each.
1080 *
1081 * If we are calculating the data crc (the default), we will
1082 * need to map the page. If we have no pages, they have
1083 * been revoked, so use the zero page.
1084 */
1085 while (data_len > con->out_msg_pos.data_pos) {
1086 struct page *page = NULL;
1087 int max_write = PAGE_SIZE;
1088 int bio_offset = 0;
1089
1090 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1091 if (!in_trail)
1092 total_max_write = trail_off - con->out_msg_pos.data_pos;
1093
1094 if (in_trail) {
1095 total_max_write = data_len - con->out_msg_pos.data_pos;
1096
1097 page = list_first_entry(&msg->trail->head,
1098 struct page, lru);
1099 } else if (msg->pages) {
1100 page = msg->pages[con->out_msg_pos.page];
1101 } else if (msg->pagelist) {
1102 page = list_first_entry(&msg->pagelist->head,
1103 struct page, lru);
1104 #ifdef CONFIG_BLOCK
1105 } else if (msg->bio) {
1106 struct bio_vec *bv;
1107
1108 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1109 page = bv->bv_page;
1110 bio_offset = bv->bv_offset;
1111 max_write = bv->bv_len;
1112 #endif
1113 } else {
1114 page = zero_page;
1115 }
1116 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1117 total_max_write);
1118
1119 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1120 void *base;
1121 u32 crc = le32_to_cpu(msg->footer.data_crc);
1122 char *kaddr;
1123
1124 kaddr = kmap(page);
1125 BUG_ON(kaddr == NULL);
1126 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1127 crc = crc32c(crc, base, len);
1128 kunmap(page);
1129 msg->footer.data_crc = cpu_to_le32(crc);
1130 con->out_msg_pos.did_page_crc = true;
1131 }
1132 ret = ceph_tcp_sendpage(con->sock, page,
1133 con->out_msg_pos.page_pos + bio_offset,
1134 len, 1);
1135 if (ret <= 0)
1136 goto out;
1137
1138 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1139 }
1140
1141 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1142
1143 /* prepare and queue up footer, too */
1144 if (!do_datacrc)
1145 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1146 con_out_kvec_reset(con);
1147 prepare_write_message_footer(con);
1148 ret = 1;
1149 out:
1150 return ret;
1151 }
1152
1153 /*
1154 * write some zeros
1155 */
1156 static int write_partial_skip(struct ceph_connection *con)
1157 {
1158 int ret;
1159
1160 while (con->out_skip > 0) {
1161 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1162
1163 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1164 if (ret <= 0)
1165 goto out;
1166 con->out_skip -= ret;
1167 }
1168 ret = 1;
1169 out:
1170 return ret;
1171 }
1172
1173 /*
1174 * Prepare to read connection handshake, or an ack.
1175 */
1176 static void prepare_read_banner(struct ceph_connection *con)
1177 {
1178 dout("prepare_read_banner %p\n", con);
1179 con->in_base_pos = 0;
1180 }
1181
1182 static void prepare_read_connect(struct ceph_connection *con)
1183 {
1184 dout("prepare_read_connect %p\n", con);
1185 con->in_base_pos = 0;
1186 }
1187
1188 static void prepare_read_ack(struct ceph_connection *con)
1189 {
1190 dout("prepare_read_ack %p\n", con);
1191 con->in_base_pos = 0;
1192 }
1193
1194 static void prepare_read_tag(struct ceph_connection *con)
1195 {
1196 dout("prepare_read_tag %p\n", con);
1197 con->in_base_pos = 0;
1198 con->in_tag = CEPH_MSGR_TAG_READY;
1199 }
1200
1201 /*
1202 * Prepare to read a message.
1203 */
1204 static int prepare_read_message(struct ceph_connection *con)
1205 {
1206 dout("prepare_read_message %p\n", con);
1207 BUG_ON(con->in_msg != NULL);
1208 con->in_base_pos = 0;
1209 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1210 return 0;
1211 }
1212
1213
1214 static int read_partial(struct ceph_connection *con,
1215 int end, int size, void *object)
1216 {
1217 while (con->in_base_pos < end) {
1218 int left = end - con->in_base_pos;
1219 int have = size - left;
1220 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1221 if (ret <= 0)
1222 return ret;
1223 con->in_base_pos += ret;
1224 }
1225 return 1;
1226 }
1227
1228
1229 /*
1230 * Read all or part of the connect-side handshake on a new connection
1231 */
1232 static int read_partial_banner(struct ceph_connection *con)
1233 {
1234 int size;
1235 int end;
1236 int ret;
1237
1238 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1239
1240 /* peer's banner */
1241 size = strlen(CEPH_BANNER);
1242 end = size;
1243 ret = read_partial(con, end, size, con->in_banner);
1244 if (ret <= 0)
1245 goto out;
1246
1247 size = sizeof (con->actual_peer_addr);
1248 end += size;
1249 ret = read_partial(con, end, size, &con->actual_peer_addr);
1250 if (ret <= 0)
1251 goto out;
1252
1253 size = sizeof (con->peer_addr_for_me);
1254 end += size;
1255 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1256 if (ret <= 0)
1257 goto out;
1258
1259 out:
1260 return ret;
1261 }
1262
1263 static int read_partial_connect(struct ceph_connection *con)
1264 {
1265 int size;
1266 int end;
1267 int ret;
1268
1269 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1270
1271 size = sizeof (con->in_reply);
1272 end = size;
1273 ret = read_partial(con, end, size, &con->in_reply);
1274 if (ret <= 0)
1275 goto out;
1276
1277 size = le32_to_cpu(con->in_reply.authorizer_len);
1278 end += size;
1279 ret = read_partial(con, end, size, con->auth_reply_buf);
1280 if (ret <= 0)
1281 goto out;
1282
1283 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1284 con, (int)con->in_reply.tag,
1285 le32_to_cpu(con->in_reply.connect_seq),
1286 le32_to_cpu(con->in_reply.global_seq));
1287 out:
1288 return ret;
1289
1290 }
1291
1292 /*
1293 * Verify the hello banner looks okay.
1294 */
1295 static int verify_hello(struct ceph_connection *con)
1296 {
1297 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1298 pr_err("connect to %s got bad banner\n",
1299 ceph_pr_addr(&con->peer_addr.in_addr));
1300 con->error_msg = "protocol error, bad banner";
1301 return -1;
1302 }
1303 return 0;
1304 }
1305
1306 static bool addr_is_blank(struct sockaddr_storage *ss)
1307 {
1308 switch (ss->ss_family) {
1309 case AF_INET:
1310 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1311 case AF_INET6:
1312 return
1313 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1314 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1315 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1316 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1317 }
1318 return false;
1319 }
1320
1321 static int addr_port(struct sockaddr_storage *ss)
1322 {
1323 switch (ss->ss_family) {
1324 case AF_INET:
1325 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1326 case AF_INET6:
1327 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1328 }
1329 return 0;
1330 }
1331
1332 static void addr_set_port(struct sockaddr_storage *ss, int p)
1333 {
1334 switch (ss->ss_family) {
1335 case AF_INET:
1336 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1337 break;
1338 case AF_INET6:
1339 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1340 break;
1341 }
1342 }
1343
1344 /*
1345 * Unlike other *_pton function semantics, zero indicates success.
1346 */
1347 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1348 char delim, const char **ipend)
1349 {
1350 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1351 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1352
1353 memset(ss, 0, sizeof(*ss));
1354
1355 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1356 ss->ss_family = AF_INET;
1357 return 0;
1358 }
1359
1360 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1361 ss->ss_family = AF_INET6;
1362 return 0;
1363 }
1364
1365 return -EINVAL;
1366 }
1367
1368 /*
1369 * Extract hostname string and resolve using kernel DNS facility.
1370 */
1371 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1372 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1373 struct sockaddr_storage *ss, char delim, const char **ipend)
1374 {
1375 const char *end, *delim_p;
1376 char *colon_p, *ip_addr = NULL;
1377 int ip_len, ret;
1378
1379 /*
1380 * The end of the hostname occurs immediately preceding the delimiter or
1381 * the port marker (':') where the delimiter takes precedence.
1382 */
1383 delim_p = memchr(name, delim, namelen);
1384 colon_p = memchr(name, ':', namelen);
1385
1386 if (delim_p && colon_p)
1387 end = delim_p < colon_p ? delim_p : colon_p;
1388 else if (!delim_p && colon_p)
1389 end = colon_p;
1390 else {
1391 end = delim_p;
1392 if (!end) /* case: hostname:/ */
1393 end = name + namelen;
1394 }
1395
1396 if (end <= name)
1397 return -EINVAL;
1398
1399 /* do dns_resolve upcall */
1400 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1401 if (ip_len > 0)
1402 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1403 else
1404 ret = -ESRCH;
1405
1406 kfree(ip_addr);
1407
1408 *ipend = end;
1409
1410 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1411 ret, ret ? "failed" : ceph_pr_addr(ss));
1412
1413 return ret;
1414 }
1415 #else
1416 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1417 struct sockaddr_storage *ss, char delim, const char **ipend)
1418 {
1419 return -EINVAL;
1420 }
1421 #endif
1422
1423 /*
1424 * Parse a server name (IP or hostname). If a valid IP address is not found
1425 * then try to extract a hostname to resolve using userspace DNS upcall.
1426 */
1427 static int ceph_parse_server_name(const char *name, size_t namelen,
1428 struct sockaddr_storage *ss, char delim, const char **ipend)
1429 {
1430 int ret;
1431
1432 ret = ceph_pton(name, namelen, ss, delim, ipend);
1433 if (ret)
1434 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1435
1436 return ret;
1437 }
1438
1439 /*
1440 * Parse an ip[:port] list into an addr array. Use the default
1441 * monitor port if a port isn't specified.
1442 */
1443 int ceph_parse_ips(const char *c, const char *end,
1444 struct ceph_entity_addr *addr,
1445 int max_count, int *count)
1446 {
1447 int i, ret = -EINVAL;
1448 const char *p = c;
1449
1450 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1451 for (i = 0; i < max_count; i++) {
1452 const char *ipend;
1453 struct sockaddr_storage *ss = &addr[i].in_addr;
1454 int port;
1455 char delim = ',';
1456
1457 if (*p == '[') {
1458 delim = ']';
1459 p++;
1460 }
1461
1462 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1463 if (ret)
1464 goto bad;
1465 ret = -EINVAL;
1466
1467 p = ipend;
1468
1469 if (delim == ']') {
1470 if (*p != ']') {
1471 dout("missing matching ']'\n");
1472 goto bad;
1473 }
1474 p++;
1475 }
1476
1477 /* port? */
1478 if (p < end && *p == ':') {
1479 port = 0;
1480 p++;
1481 while (p < end && *p >= '0' && *p <= '9') {
1482 port = (port * 10) + (*p - '0');
1483 p++;
1484 }
1485 if (port > 65535 || port == 0)
1486 goto bad;
1487 } else {
1488 port = CEPH_MON_PORT;
1489 }
1490
1491 addr_set_port(ss, port);
1492
1493 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1494
1495 if (p == end)
1496 break;
1497 if (*p != ',')
1498 goto bad;
1499 p++;
1500 }
1501
1502 if (p != end)
1503 goto bad;
1504
1505 if (count)
1506 *count = i + 1;
1507 return 0;
1508
1509 bad:
1510 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1511 return ret;
1512 }
1513 EXPORT_SYMBOL(ceph_parse_ips);
1514
1515 static int process_banner(struct ceph_connection *con)
1516 {
1517 dout("process_banner on %p\n", con);
1518
1519 if (verify_hello(con) < 0)
1520 return -1;
1521
1522 ceph_decode_addr(&con->actual_peer_addr);
1523 ceph_decode_addr(&con->peer_addr_for_me);
1524
1525 /*
1526 * Make sure the other end is who we wanted. note that the other
1527 * end may not yet know their ip address, so if it's 0.0.0.0, give
1528 * them the benefit of the doubt.
1529 */
1530 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1531 sizeof(con->peer_addr)) != 0 &&
1532 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1533 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1534 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1535 ceph_pr_addr(&con->peer_addr.in_addr),
1536 (int)le32_to_cpu(con->peer_addr.nonce),
1537 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1538 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1539 con->error_msg = "wrong peer at address";
1540 return -1;
1541 }
1542
1543 /*
1544 * did we learn our address?
1545 */
1546 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1547 int port = addr_port(&con->msgr->inst.addr.in_addr);
1548
1549 memcpy(&con->msgr->inst.addr.in_addr,
1550 &con->peer_addr_for_me.in_addr,
1551 sizeof(con->peer_addr_for_me.in_addr));
1552 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1553 encode_my_addr(con->msgr);
1554 dout("process_banner learned my addr is %s\n",
1555 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1556 }
1557
1558 return 0;
1559 }
1560
1561 static int process_connect(struct ceph_connection *con)
1562 {
1563 u64 sup_feat = con->msgr->supported_features;
1564 u64 req_feat = con->msgr->required_features;
1565 u64 server_feat = le64_to_cpu(con->in_reply.features);
1566 int ret;
1567
1568 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1569
1570 switch (con->in_reply.tag) {
1571 case CEPH_MSGR_TAG_FEATURES:
1572 pr_err("%s%lld %s feature set mismatch,"
1573 " my %llx < server's %llx, missing %llx\n",
1574 ENTITY_NAME(con->peer_name),
1575 ceph_pr_addr(&con->peer_addr.in_addr),
1576 sup_feat, server_feat, server_feat & ~sup_feat);
1577 con->error_msg = "missing required protocol features";
1578 reset_connection(con);
1579 return -1;
1580
1581 case CEPH_MSGR_TAG_BADPROTOVER:
1582 pr_err("%s%lld %s protocol version mismatch,"
1583 " my %d != server's %d\n",
1584 ENTITY_NAME(con->peer_name),
1585 ceph_pr_addr(&con->peer_addr.in_addr),
1586 le32_to_cpu(con->out_connect.protocol_version),
1587 le32_to_cpu(con->in_reply.protocol_version));
1588 con->error_msg = "protocol version mismatch";
1589 reset_connection(con);
1590 return -1;
1591
1592 case CEPH_MSGR_TAG_BADAUTHORIZER:
1593 con->auth_retry++;
1594 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1595 con->auth_retry);
1596 if (con->auth_retry == 2) {
1597 con->error_msg = "connect authorization failure";
1598 return -1;
1599 }
1600 con->auth_retry = 1;
1601 con_out_kvec_reset(con);
1602 ret = prepare_write_connect(con);
1603 if (ret < 0)
1604 return ret;
1605 prepare_read_connect(con);
1606 break;
1607
1608 case CEPH_MSGR_TAG_RESETSESSION:
1609 /*
1610 * If we connected with a large connect_seq but the peer
1611 * has no record of a session with us (no connection, or
1612 * connect_seq == 0), they will send RESETSESION to indicate
1613 * that they must have reset their session, and may have
1614 * dropped messages.
1615 */
1616 dout("process_connect got RESET peer seq %u\n",
1617 le32_to_cpu(con->in_reply.connect_seq));
1618 pr_err("%s%lld %s connection reset\n",
1619 ENTITY_NAME(con->peer_name),
1620 ceph_pr_addr(&con->peer_addr.in_addr));
1621 reset_connection(con);
1622 con_out_kvec_reset(con);
1623 ret = prepare_write_connect(con);
1624 if (ret < 0)
1625 return ret;
1626 prepare_read_connect(con);
1627
1628 /* Tell ceph about it. */
1629 mutex_unlock(&con->mutex);
1630 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1631 if (con->ops->peer_reset)
1632 con->ops->peer_reset(con);
1633 mutex_lock(&con->mutex);
1634 if (con->state != CON_STATE_NEGOTIATING)
1635 return -EAGAIN;
1636 break;
1637
1638 case CEPH_MSGR_TAG_RETRY_SESSION:
1639 /*
1640 * If we sent a smaller connect_seq than the peer has, try
1641 * again with a larger value.
1642 */
1643 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1644 le32_to_cpu(con->out_connect.connect_seq),
1645 le32_to_cpu(con->in_reply.connect_seq));
1646 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1647 con_out_kvec_reset(con);
1648 ret = prepare_write_connect(con);
1649 if (ret < 0)
1650 return ret;
1651 prepare_read_connect(con);
1652 break;
1653
1654 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1655 /*
1656 * If we sent a smaller global_seq than the peer has, try
1657 * again with a larger value.
1658 */
1659 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1660 con->peer_global_seq,
1661 le32_to_cpu(con->in_reply.global_seq));
1662 get_global_seq(con->msgr,
1663 le32_to_cpu(con->in_reply.global_seq));
1664 con_out_kvec_reset(con);
1665 ret = prepare_write_connect(con);
1666 if (ret < 0)
1667 return ret;
1668 prepare_read_connect(con);
1669 break;
1670
1671 case CEPH_MSGR_TAG_READY:
1672 if (req_feat & ~server_feat) {
1673 pr_err("%s%lld %s protocol feature mismatch,"
1674 " my required %llx > server's %llx, need %llx\n",
1675 ENTITY_NAME(con->peer_name),
1676 ceph_pr_addr(&con->peer_addr.in_addr),
1677 req_feat, server_feat, req_feat & ~server_feat);
1678 con->error_msg = "missing required protocol features";
1679 reset_connection(con);
1680 return -1;
1681 }
1682
1683 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1684 con->state = CON_STATE_OPEN;
1685
1686 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1687 con->connect_seq++;
1688 con->peer_features = server_feat;
1689 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1690 con->peer_global_seq,
1691 le32_to_cpu(con->in_reply.connect_seq),
1692 con->connect_seq);
1693 WARN_ON(con->connect_seq !=
1694 le32_to_cpu(con->in_reply.connect_seq));
1695
1696 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1697 con_flag_set(con, CON_FLAG_LOSSYTX);
1698
1699 con->delay = 0; /* reset backoff memory */
1700
1701 prepare_read_tag(con);
1702 break;
1703
1704 case CEPH_MSGR_TAG_WAIT:
1705 /*
1706 * If there is a connection race (we are opening
1707 * connections to each other), one of us may just have
1708 * to WAIT. This shouldn't happen if we are the
1709 * client.
1710 */
1711 pr_err("process_connect got WAIT as client\n");
1712 con->error_msg = "protocol error, got WAIT as client";
1713 return -1;
1714
1715 default:
1716 pr_err("connect protocol error, will retry\n");
1717 con->error_msg = "protocol error, garbage tag during connect";
1718 return -1;
1719 }
1720 return 0;
1721 }
1722
1723
1724 /*
1725 * read (part of) an ack
1726 */
1727 static int read_partial_ack(struct ceph_connection *con)
1728 {
1729 int size = sizeof (con->in_temp_ack);
1730 int end = size;
1731
1732 return read_partial(con, end, size, &con->in_temp_ack);
1733 }
1734
1735
1736 /*
1737 * We can finally discard anything that's been acked.
1738 */
1739 static void process_ack(struct ceph_connection *con)
1740 {
1741 struct ceph_msg *m;
1742 u64 ack = le64_to_cpu(con->in_temp_ack);
1743 u64 seq;
1744
1745 while (!list_empty(&con->out_sent)) {
1746 m = list_first_entry(&con->out_sent, struct ceph_msg,
1747 list_head);
1748 seq = le64_to_cpu(m->hdr.seq);
1749 if (seq > ack)
1750 break;
1751 dout("got ack for seq %llu type %d at %p\n", seq,
1752 le16_to_cpu(m->hdr.type), m);
1753 m->ack_stamp = jiffies;
1754 ceph_msg_remove(m);
1755 }
1756 prepare_read_tag(con);
1757 }
1758
1759
1760
1761
1762 static int read_partial_message_section(struct ceph_connection *con,
1763 struct kvec *section,
1764 unsigned int sec_len, u32 *crc)
1765 {
1766 int ret, left;
1767
1768 BUG_ON(!section);
1769
1770 while (section->iov_len < sec_len) {
1771 BUG_ON(section->iov_base == NULL);
1772 left = sec_len - section->iov_len;
1773 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1774 section->iov_len, left);
1775 if (ret <= 0)
1776 return ret;
1777 section->iov_len += ret;
1778 }
1779 if (section->iov_len == sec_len)
1780 *crc = crc32c(0, section->iov_base, section->iov_len);
1781
1782 return 1;
1783 }
1784
1785 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1786
1787 static int read_partial_message_pages(struct ceph_connection *con,
1788 struct page **pages,
1789 unsigned int data_len, bool do_datacrc)
1790 {
1791 void *p;
1792 int ret;
1793 int left;
1794
1795 left = min((int)(data_len - con->in_msg_pos.data_pos),
1796 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1797 /* (page) data */
1798 BUG_ON(pages == NULL);
1799 p = kmap(pages[con->in_msg_pos.page]);
1800 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1801 left);
1802 if (ret > 0 && do_datacrc)
1803 con->in_data_crc =
1804 crc32c(con->in_data_crc,
1805 p + con->in_msg_pos.page_pos, ret);
1806 kunmap(pages[con->in_msg_pos.page]);
1807 if (ret <= 0)
1808 return ret;
1809 con->in_msg_pos.data_pos += ret;
1810 con->in_msg_pos.page_pos += ret;
1811 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1812 con->in_msg_pos.page_pos = 0;
1813 con->in_msg_pos.page++;
1814 }
1815
1816 return ret;
1817 }
1818
1819 #ifdef CONFIG_BLOCK
1820 static int read_partial_message_bio(struct ceph_connection *con,
1821 struct bio **bio_iter, int *bio_seg,
1822 unsigned int data_len, bool do_datacrc)
1823 {
1824 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1825 void *p;
1826 int ret, left;
1827
1828 left = min((int)(data_len - con->in_msg_pos.data_pos),
1829 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1830
1831 p = kmap(bv->bv_page) + bv->bv_offset;
1832
1833 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1834 left);
1835 if (ret > 0 && do_datacrc)
1836 con->in_data_crc =
1837 crc32c(con->in_data_crc,
1838 p + con->in_msg_pos.page_pos, ret);
1839 kunmap(bv->bv_page);
1840 if (ret <= 0)
1841 return ret;
1842 con->in_msg_pos.data_pos += ret;
1843 con->in_msg_pos.page_pos += ret;
1844 if (con->in_msg_pos.page_pos == bv->bv_len) {
1845 con->in_msg_pos.page_pos = 0;
1846 iter_bio_next(bio_iter, bio_seg);
1847 }
1848
1849 return ret;
1850 }
1851 #endif
1852
1853 /*
1854 * read (part of) a message.
1855 */
1856 static int read_partial_message(struct ceph_connection *con)
1857 {
1858 struct ceph_msg *m = con->in_msg;
1859 int size;
1860 int end;
1861 int ret;
1862 unsigned int front_len, middle_len, data_len;
1863 bool do_datacrc = !con->msgr->nocrc;
1864 u64 seq;
1865 u32 crc;
1866
1867 dout("read_partial_message con %p msg %p\n", con, m);
1868
1869 /* header */
1870 size = sizeof (con->in_hdr);
1871 end = size;
1872 ret = read_partial(con, end, size, &con->in_hdr);
1873 if (ret <= 0)
1874 return ret;
1875
1876 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1877 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1878 pr_err("read_partial_message bad hdr "
1879 " crc %u != expected %u\n",
1880 crc, con->in_hdr.crc);
1881 return -EBADMSG;
1882 }
1883
1884 front_len = le32_to_cpu(con->in_hdr.front_len);
1885 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1886 return -EIO;
1887 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1888 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1889 return -EIO;
1890 data_len = le32_to_cpu(con->in_hdr.data_len);
1891 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1892 return -EIO;
1893
1894 /* verify seq# */
1895 seq = le64_to_cpu(con->in_hdr.seq);
1896 if ((s64)seq - (s64)con->in_seq < 1) {
1897 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1898 ENTITY_NAME(con->peer_name),
1899 ceph_pr_addr(&con->peer_addr.in_addr),
1900 seq, con->in_seq + 1);
1901 con->in_base_pos = -front_len - middle_len - data_len -
1902 sizeof(m->footer);
1903 con->in_tag = CEPH_MSGR_TAG_READY;
1904 return 0;
1905 } else if ((s64)seq - (s64)con->in_seq > 1) {
1906 pr_err("read_partial_message bad seq %lld expected %lld\n",
1907 seq, con->in_seq + 1);
1908 con->error_msg = "bad message sequence # for incoming message";
1909 return -EBADMSG;
1910 }
1911
1912 /* allocate message? */
1913 if (!con->in_msg) {
1914 int skip = 0;
1915
1916 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1917 con->in_hdr.front_len, con->in_hdr.data_len);
1918 ret = ceph_con_in_msg_alloc(con, &skip);
1919 if (ret < 0)
1920 return ret;
1921 if (skip) {
1922 /* skip this message */
1923 dout("alloc_msg said skip message\n");
1924 BUG_ON(con->in_msg);
1925 con->in_base_pos = -front_len - middle_len - data_len -
1926 sizeof(m->footer);
1927 con->in_tag = CEPH_MSGR_TAG_READY;
1928 con->in_seq++;
1929 return 0;
1930 }
1931
1932 BUG_ON(!con->in_msg);
1933 BUG_ON(con->in_msg->con != con);
1934 m = con->in_msg;
1935 m->front.iov_len = 0; /* haven't read it yet */
1936 if (m->middle)
1937 m->middle->vec.iov_len = 0;
1938
1939 con->in_msg_pos.page = 0;
1940 if (m->pages)
1941 con->in_msg_pos.page_pos = m->page_alignment;
1942 else
1943 con->in_msg_pos.page_pos = 0;
1944 con->in_msg_pos.data_pos = 0;
1945
1946 #ifdef CONFIG_BLOCK
1947 if (m->bio)
1948 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1949 #endif
1950 }
1951
1952 /* front */
1953 ret = read_partial_message_section(con, &m->front, front_len,
1954 &con->in_front_crc);
1955 if (ret <= 0)
1956 return ret;
1957
1958 /* middle */
1959 if (m->middle) {
1960 ret = read_partial_message_section(con, &m->middle->vec,
1961 middle_len,
1962 &con->in_middle_crc);
1963 if (ret <= 0)
1964 return ret;
1965 }
1966
1967 /* (page) data */
1968 while (con->in_msg_pos.data_pos < data_len) {
1969 if (m->pages) {
1970 ret = read_partial_message_pages(con, m->pages,
1971 data_len, do_datacrc);
1972 if (ret <= 0)
1973 return ret;
1974 #ifdef CONFIG_BLOCK
1975 } else if (m->bio) {
1976 BUG_ON(!m->bio_iter);
1977 ret = read_partial_message_bio(con,
1978 &m->bio_iter, &m->bio_seg,
1979 data_len, do_datacrc);
1980 if (ret <= 0)
1981 return ret;
1982 #endif
1983 } else {
1984 BUG_ON(1);
1985 }
1986 }
1987
1988 /* footer */
1989 size = sizeof (m->footer);
1990 end += size;
1991 ret = read_partial(con, end, size, &m->footer);
1992 if (ret <= 0)
1993 return ret;
1994
1995 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1996 m, front_len, m->footer.front_crc, middle_len,
1997 m->footer.middle_crc, data_len, m->footer.data_crc);
1998
1999 /* crc ok? */
2000 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2001 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2002 m, con->in_front_crc, m->footer.front_crc);
2003 return -EBADMSG;
2004 }
2005 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2006 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2007 m, con->in_middle_crc, m->footer.middle_crc);
2008 return -EBADMSG;
2009 }
2010 if (do_datacrc &&
2011 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2012 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2013 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2014 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2015 return -EBADMSG;
2016 }
2017
2018 return 1; /* done! */
2019 }
2020
2021 /*
2022 * Process message. This happens in the worker thread. The callback should
2023 * be careful not to do anything that waits on other incoming messages or it
2024 * may deadlock.
2025 */
2026 static void process_message(struct ceph_connection *con)
2027 {
2028 struct ceph_msg *msg;
2029
2030 BUG_ON(con->in_msg->con != con);
2031 con->in_msg->con = NULL;
2032 msg = con->in_msg;
2033 con->in_msg = NULL;
2034 con->ops->put(con);
2035
2036 /* if first message, set peer_name */
2037 if (con->peer_name.type == 0)
2038 con->peer_name = msg->hdr.src;
2039
2040 con->in_seq++;
2041 mutex_unlock(&con->mutex);
2042
2043 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2044 msg, le64_to_cpu(msg->hdr.seq),
2045 ENTITY_NAME(msg->hdr.src),
2046 le16_to_cpu(msg->hdr.type),
2047 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2048 le32_to_cpu(msg->hdr.front_len),
2049 le32_to_cpu(msg->hdr.data_len),
2050 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2051 con->ops->dispatch(con, msg);
2052
2053 mutex_lock(&con->mutex);
2054 }
2055
2056
2057 /*
2058 * Write something to the socket. Called in a worker thread when the
2059 * socket appears to be writeable and we have something ready to send.
2060 */
2061 static int try_write(struct ceph_connection *con)
2062 {
2063 int ret = 1;
2064
2065 dout("try_write start %p state %lu\n", con, con->state);
2066
2067 more:
2068 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2069
2070 /* open the socket first? */
2071 if (con->state == CON_STATE_PREOPEN) {
2072 BUG_ON(con->sock);
2073 con->state = CON_STATE_CONNECTING;
2074
2075 con_out_kvec_reset(con);
2076 prepare_write_banner(con);
2077 prepare_read_banner(con);
2078
2079 BUG_ON(con->in_msg);
2080 con->in_tag = CEPH_MSGR_TAG_READY;
2081 dout("try_write initiating connect on %p new state %lu\n",
2082 con, con->state);
2083 ret = ceph_tcp_connect(con);
2084 if (ret < 0) {
2085 con->error_msg = "connect error";
2086 goto out;
2087 }
2088 }
2089
2090 more_kvec:
2091 /* kvec data queued? */
2092 if (con->out_skip) {
2093 ret = write_partial_skip(con);
2094 if (ret <= 0)
2095 goto out;
2096 }
2097 if (con->out_kvec_left) {
2098 ret = write_partial_kvec(con);
2099 if (ret <= 0)
2100 goto out;
2101 }
2102
2103 /* msg pages? */
2104 if (con->out_msg) {
2105 if (con->out_msg_done) {
2106 ceph_msg_put(con->out_msg);
2107 con->out_msg = NULL; /* we're done with this one */
2108 goto do_next;
2109 }
2110
2111 ret = write_partial_msg_pages(con);
2112 if (ret == 1)
2113 goto more_kvec; /* we need to send the footer, too! */
2114 if (ret == 0)
2115 goto out;
2116 if (ret < 0) {
2117 dout("try_write write_partial_msg_pages err %d\n",
2118 ret);
2119 goto out;
2120 }
2121 }
2122
2123 do_next:
2124 if (con->state == CON_STATE_OPEN) {
2125 /* is anything else pending? */
2126 if (!list_empty(&con->out_queue)) {
2127 prepare_write_message(con);
2128 goto more;
2129 }
2130 if (con->in_seq > con->in_seq_acked) {
2131 prepare_write_ack(con);
2132 goto more;
2133 }
2134 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2135 prepare_write_keepalive(con);
2136 goto more;
2137 }
2138 }
2139
2140 /* Nothing to do! */
2141 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2142 dout("try_write nothing else to write.\n");
2143 ret = 0;
2144 out:
2145 dout("try_write done on %p ret %d\n", con, ret);
2146 return ret;
2147 }
2148
2149
2150
2151 /*
2152 * Read what we can from the socket.
2153 */
2154 static int try_read(struct ceph_connection *con)
2155 {
2156 int ret = -1;
2157
2158 more:
2159 dout("try_read start on %p state %lu\n", con, con->state);
2160 if (con->state != CON_STATE_CONNECTING &&
2161 con->state != CON_STATE_NEGOTIATING &&
2162 con->state != CON_STATE_OPEN)
2163 return 0;
2164
2165 BUG_ON(!con->sock);
2166
2167 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2168 con->in_base_pos);
2169
2170 if (con->state == CON_STATE_CONNECTING) {
2171 dout("try_read connecting\n");
2172 ret = read_partial_banner(con);
2173 if (ret <= 0)
2174 goto out;
2175 ret = process_banner(con);
2176 if (ret < 0)
2177 goto out;
2178
2179 con->state = CON_STATE_NEGOTIATING;
2180
2181 /*
2182 * Received banner is good, exchange connection info.
2183 * Do not reset out_kvec, as sending our banner raced
2184 * with receiving peer banner after connect completed.
2185 */
2186 ret = prepare_write_connect(con);
2187 if (ret < 0)
2188 goto out;
2189 prepare_read_connect(con);
2190
2191 /* Send connection info before awaiting response */
2192 goto out;
2193 }
2194
2195 if (con->state == CON_STATE_NEGOTIATING) {
2196 dout("try_read negotiating\n");
2197 ret = read_partial_connect(con);
2198 if (ret <= 0)
2199 goto out;
2200 ret = process_connect(con);
2201 if (ret < 0)
2202 goto out;
2203 goto more;
2204 }
2205
2206 WARN_ON(con->state != CON_STATE_OPEN);
2207
2208 if (con->in_base_pos < 0) {
2209 /*
2210 * skipping + discarding content.
2211 *
2212 * FIXME: there must be a better way to do this!
2213 */
2214 static char buf[SKIP_BUF_SIZE];
2215 int skip = min((int) sizeof (buf), -con->in_base_pos);
2216
2217 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2218 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2219 if (ret <= 0)
2220 goto out;
2221 con->in_base_pos += ret;
2222 if (con->in_base_pos)
2223 goto more;
2224 }
2225 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2226 /*
2227 * what's next?
2228 */
2229 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2230 if (ret <= 0)
2231 goto out;
2232 dout("try_read got tag %d\n", (int)con->in_tag);
2233 switch (con->in_tag) {
2234 case CEPH_MSGR_TAG_MSG:
2235 prepare_read_message(con);
2236 break;
2237 case CEPH_MSGR_TAG_ACK:
2238 prepare_read_ack(con);
2239 break;
2240 case CEPH_MSGR_TAG_CLOSE:
2241 con_close_socket(con);
2242 con->state = CON_STATE_CLOSED;
2243 goto out;
2244 default:
2245 goto bad_tag;
2246 }
2247 }
2248 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2249 ret = read_partial_message(con);
2250 if (ret <= 0) {
2251 switch (ret) {
2252 case -EBADMSG:
2253 con->error_msg = "bad crc";
2254 ret = -EIO;
2255 break;
2256 case -EIO:
2257 con->error_msg = "io error";
2258 break;
2259 }
2260 goto out;
2261 }
2262 if (con->in_tag == CEPH_MSGR_TAG_READY)
2263 goto more;
2264 process_message(con);
2265 if (con->state == CON_STATE_OPEN)
2266 prepare_read_tag(con);
2267 goto more;
2268 }
2269 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2270 ret = read_partial_ack(con);
2271 if (ret <= 0)
2272 goto out;
2273 process_ack(con);
2274 goto more;
2275 }
2276
2277 out:
2278 dout("try_read done on %p ret %d\n", con, ret);
2279 return ret;
2280
2281 bad_tag:
2282 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2283 con->error_msg = "protocol error, garbage tag";
2284 ret = -1;
2285 goto out;
2286 }
2287
2288
2289 /*
2290 * Atomically queue work on a connection after the specified delay.
2291 * Bump @con reference to avoid races with connection teardown.
2292 * Returns 0 if work was queued, or an error code otherwise.
2293 */
2294 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2295 {
2296 if (!con->ops->get(con)) {
2297 dout("%s %p ref count 0\n", __func__, con);
2298
2299 return -ENOENT;
2300 }
2301
2302 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2303 dout("%s %p - already queued\n", __func__, con);
2304 con->ops->put(con);
2305
2306 return -EBUSY;
2307 }
2308
2309 dout("%s %p %lu\n", __func__, con, delay);
2310
2311 return 0;
2312 }
2313
2314 static void queue_con(struct ceph_connection *con)
2315 {
2316 (void) queue_con_delay(con, 0);
2317 }
2318
2319 static bool con_sock_closed(struct ceph_connection *con)
2320 {
2321 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2322 return false;
2323
2324 #define CASE(x) \
2325 case CON_STATE_ ## x: \
2326 con->error_msg = "socket closed (con state " #x ")"; \
2327 break;
2328
2329 switch (con->state) {
2330 CASE(CLOSED);
2331 CASE(PREOPEN);
2332 CASE(CONNECTING);
2333 CASE(NEGOTIATING);
2334 CASE(OPEN);
2335 CASE(STANDBY);
2336 default:
2337 pr_warning("%s con %p unrecognized state %lu\n",
2338 __func__, con, con->state);
2339 con->error_msg = "unrecognized con state";
2340 BUG();
2341 break;
2342 }
2343 #undef CASE
2344
2345 return true;
2346 }
2347
2348 static bool con_backoff(struct ceph_connection *con)
2349 {
2350 int ret;
2351
2352 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2353 return false;
2354
2355 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2356 if (ret) {
2357 dout("%s: con %p FAILED to back off %lu\n", __func__,
2358 con, con->delay);
2359 BUG_ON(ret == -ENOENT);
2360 con_flag_set(con, CON_FLAG_BACKOFF);
2361 }
2362
2363 return true;
2364 }
2365
2366 /* Finish fault handling; con->mutex must *not* be held here */
2367
2368 static void con_fault_finish(struct ceph_connection *con)
2369 {
2370 /*
2371 * in case we faulted due to authentication, invalidate our
2372 * current tickets so that we can get new ones.
2373 */
2374 if (con->auth_retry && con->ops->invalidate_authorizer) {
2375 dout("calling invalidate_authorizer()\n");
2376 con->ops->invalidate_authorizer(con);
2377 }
2378
2379 if (con->ops->fault)
2380 con->ops->fault(con);
2381 }
2382
2383 /*
2384 * Do some work on a connection. Drop a connection ref when we're done.
2385 */
2386 static void con_work(struct work_struct *work)
2387 {
2388 struct ceph_connection *con = container_of(work, struct ceph_connection,
2389 work.work);
2390 bool fault;
2391
2392 mutex_lock(&con->mutex);
2393 while (true) {
2394 int ret;
2395
2396 if ((fault = con_sock_closed(con))) {
2397 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2398 break;
2399 }
2400 if (con_backoff(con)) {
2401 dout("%s: con %p BACKOFF\n", __func__, con);
2402 break;
2403 }
2404 if (con->state == CON_STATE_STANDBY) {
2405 dout("%s: con %p STANDBY\n", __func__, con);
2406 break;
2407 }
2408 if (con->state == CON_STATE_CLOSED) {
2409 dout("%s: con %p CLOSED\n", __func__, con);
2410 BUG_ON(con->sock);
2411 break;
2412 }
2413 if (con->state == CON_STATE_PREOPEN) {
2414 dout("%s: con %p PREOPEN\n", __func__, con);
2415 BUG_ON(con->sock);
2416 }
2417
2418 ret = try_read(con);
2419 if (ret < 0) {
2420 if (ret == -EAGAIN)
2421 continue;
2422 con->error_msg = "socket error on read";
2423 fault = true;
2424 break;
2425 }
2426
2427 ret = try_write(con);
2428 if (ret < 0) {
2429 if (ret == -EAGAIN)
2430 continue;
2431 con->error_msg = "socket error on write";
2432 fault = true;
2433 }
2434
2435 break; /* If we make it to here, we're done */
2436 }
2437 if (fault)
2438 con_fault(con);
2439 mutex_unlock(&con->mutex);
2440
2441 if (fault)
2442 con_fault_finish(con);
2443
2444 con->ops->put(con);
2445 }
2446
2447 /*
2448 * Generic error/fault handler. A retry mechanism is used with
2449 * exponential backoff
2450 */
2451 static void con_fault(struct ceph_connection *con)
2452 {
2453 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2454 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2455 dout("fault %p state %lu to peer %s\n",
2456 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2457
2458 WARN_ON(con->state != CON_STATE_CONNECTING &&
2459 con->state != CON_STATE_NEGOTIATING &&
2460 con->state != CON_STATE_OPEN);
2461
2462 con_close_socket(con);
2463
2464 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2465 dout("fault on LOSSYTX channel, marking CLOSED\n");
2466 con->state = CON_STATE_CLOSED;
2467 return;
2468 }
2469
2470 if (con->in_msg) {
2471 BUG_ON(con->in_msg->con != con);
2472 con->in_msg->con = NULL;
2473 ceph_msg_put(con->in_msg);
2474 con->in_msg = NULL;
2475 con->ops->put(con);
2476 }
2477
2478 /* Requeue anything that hasn't been acked */
2479 list_splice_init(&con->out_sent, &con->out_queue);
2480
2481 /* If there are no messages queued or keepalive pending, place
2482 * the connection in a STANDBY state */
2483 if (list_empty(&con->out_queue) &&
2484 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2485 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2486 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2487 con->state = CON_STATE_STANDBY;
2488 } else {
2489 /* retry after a delay. */
2490 con->state = CON_STATE_PREOPEN;
2491 if (con->delay == 0)
2492 con->delay = BASE_DELAY_INTERVAL;
2493 else if (con->delay < MAX_DELAY_INTERVAL)
2494 con->delay *= 2;
2495 con_flag_set(con, CON_FLAG_BACKOFF);
2496 queue_con(con);
2497 }
2498 }
2499
2500
2501
2502 /*
2503 * initialize a new messenger instance
2504 */
2505 void ceph_messenger_init(struct ceph_messenger *msgr,
2506 struct ceph_entity_addr *myaddr,
2507 u32 supported_features,
2508 u32 required_features,
2509 bool nocrc)
2510 {
2511 msgr->supported_features = supported_features;
2512 msgr->required_features = required_features;
2513
2514 spin_lock_init(&msgr->global_seq_lock);
2515
2516 if (myaddr)
2517 msgr->inst.addr = *myaddr;
2518
2519 /* select a random nonce */
2520 msgr->inst.addr.type = 0;
2521 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2522 encode_my_addr(msgr);
2523 msgr->nocrc = nocrc;
2524
2525 atomic_set(&msgr->stopping, 0);
2526
2527 dout("%s %p\n", __func__, msgr);
2528 }
2529 EXPORT_SYMBOL(ceph_messenger_init);
2530
2531 static void clear_standby(struct ceph_connection *con)
2532 {
2533 /* come back from STANDBY? */
2534 if (con->state == CON_STATE_STANDBY) {
2535 dout("clear_standby %p and ++connect_seq\n", con);
2536 con->state = CON_STATE_PREOPEN;
2537 con->connect_seq++;
2538 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2539 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2540 }
2541 }
2542
2543 /*
2544 * Queue up an outgoing message on the given connection.
2545 */
2546 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2547 {
2548 /* set src+dst */
2549 msg->hdr.src = con->msgr->inst.name;
2550 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2551 msg->needs_out_seq = true;
2552
2553 mutex_lock(&con->mutex);
2554
2555 if (con->state == CON_STATE_CLOSED) {
2556 dout("con_send %p closed, dropping %p\n", con, msg);
2557 ceph_msg_put(msg);
2558 mutex_unlock(&con->mutex);
2559 return;
2560 }
2561
2562 BUG_ON(msg->con != NULL);
2563 msg->con = con->ops->get(con);
2564 BUG_ON(msg->con == NULL);
2565
2566 BUG_ON(!list_empty(&msg->list_head));
2567 list_add_tail(&msg->list_head, &con->out_queue);
2568 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2569 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2570 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2571 le32_to_cpu(msg->hdr.front_len),
2572 le32_to_cpu(msg->hdr.middle_len),
2573 le32_to_cpu(msg->hdr.data_len));
2574
2575 clear_standby(con);
2576 mutex_unlock(&con->mutex);
2577
2578 /* if there wasn't anything waiting to send before, queue
2579 * new work */
2580 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2581 queue_con(con);
2582 }
2583 EXPORT_SYMBOL(ceph_con_send);
2584
2585 /*
2586 * Revoke a message that was previously queued for send
2587 */
2588 void ceph_msg_revoke(struct ceph_msg *msg)
2589 {
2590 struct ceph_connection *con = msg->con;
2591
2592 if (!con)
2593 return; /* Message not in our possession */
2594
2595 mutex_lock(&con->mutex);
2596 if (!list_empty(&msg->list_head)) {
2597 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2598 list_del_init(&msg->list_head);
2599 BUG_ON(msg->con == NULL);
2600 msg->con->ops->put(msg->con);
2601 msg->con = NULL;
2602 msg->hdr.seq = 0;
2603
2604 ceph_msg_put(msg);
2605 }
2606 if (con->out_msg == msg) {
2607 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2608 con->out_msg = NULL;
2609 if (con->out_kvec_is_msg) {
2610 con->out_skip = con->out_kvec_bytes;
2611 con->out_kvec_is_msg = false;
2612 }
2613 msg->hdr.seq = 0;
2614
2615 ceph_msg_put(msg);
2616 }
2617 mutex_unlock(&con->mutex);
2618 }
2619
2620 /*
2621 * Revoke a message that we may be reading data into
2622 */
2623 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2624 {
2625 struct ceph_connection *con;
2626
2627 BUG_ON(msg == NULL);
2628 if (!msg->con) {
2629 dout("%s msg %p null con\n", __func__, msg);
2630
2631 return; /* Message not in our possession */
2632 }
2633
2634 con = msg->con;
2635 mutex_lock(&con->mutex);
2636 if (con->in_msg == msg) {
2637 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2638 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2639 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2640
2641 /* skip rest of message */
2642 dout("%s %p msg %p revoked\n", __func__, con, msg);
2643 con->in_base_pos = con->in_base_pos -
2644 sizeof(struct ceph_msg_header) -
2645 front_len -
2646 middle_len -
2647 data_len -
2648 sizeof(struct ceph_msg_footer);
2649 ceph_msg_put(con->in_msg);
2650 con->in_msg = NULL;
2651 con->in_tag = CEPH_MSGR_TAG_READY;
2652 con->in_seq++;
2653 } else {
2654 dout("%s %p in_msg %p msg %p no-op\n",
2655 __func__, con, con->in_msg, msg);
2656 }
2657 mutex_unlock(&con->mutex);
2658 }
2659
2660 /*
2661 * Queue a keepalive byte to ensure the tcp connection is alive.
2662 */
2663 void ceph_con_keepalive(struct ceph_connection *con)
2664 {
2665 dout("con_keepalive %p\n", con);
2666 mutex_lock(&con->mutex);
2667 clear_standby(con);
2668 mutex_unlock(&con->mutex);
2669 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2670 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2671 queue_con(con);
2672 }
2673 EXPORT_SYMBOL(ceph_con_keepalive);
2674
2675
2676 /*
2677 * construct a new message with given type, size
2678 * the new msg has a ref count of 1.
2679 */
2680 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2681 bool can_fail)
2682 {
2683 struct ceph_msg *m;
2684
2685 m = kmalloc(sizeof(*m), flags);
2686 if (m == NULL)
2687 goto out;
2688 kref_init(&m->kref);
2689
2690 m->con = NULL;
2691 INIT_LIST_HEAD(&m->list_head);
2692
2693 m->hdr.tid = 0;
2694 m->hdr.type = cpu_to_le16(type);
2695 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2696 m->hdr.version = 0;
2697 m->hdr.front_len = cpu_to_le32(front_len);
2698 m->hdr.middle_len = 0;
2699 m->hdr.data_len = 0;
2700 m->hdr.data_off = 0;
2701 m->hdr.reserved = 0;
2702 m->footer.front_crc = 0;
2703 m->footer.middle_crc = 0;
2704 m->footer.data_crc = 0;
2705 m->footer.flags = 0;
2706 m->front_max = front_len;
2707 m->front_is_vmalloc = false;
2708 m->more_to_follow = false;
2709 m->ack_stamp = 0;
2710 m->pool = NULL;
2711
2712 /* middle */
2713 m->middle = NULL;
2714
2715 /* data */
2716 m->nr_pages = 0;
2717 m->page_alignment = 0;
2718 m->pages = NULL;
2719 m->pagelist = NULL;
2720 #ifdef CONFIG_BLOCK
2721 m->bio = NULL;
2722 m->bio_iter = NULL;
2723 m->bio_seg = 0;
2724 #endif /* CONFIG_BLOCK */
2725 m->trail = NULL;
2726
2727 /* front */
2728 if (front_len) {
2729 if (front_len > PAGE_CACHE_SIZE) {
2730 m->front.iov_base = __vmalloc(front_len, flags,
2731 PAGE_KERNEL);
2732 m->front_is_vmalloc = true;
2733 } else {
2734 m->front.iov_base = kmalloc(front_len, flags);
2735 }
2736 if (m->front.iov_base == NULL) {
2737 dout("ceph_msg_new can't allocate %d bytes\n",
2738 front_len);
2739 goto out2;
2740 }
2741 } else {
2742 m->front.iov_base = NULL;
2743 }
2744 m->front.iov_len = front_len;
2745
2746 dout("ceph_msg_new %p front %d\n", m, front_len);
2747 return m;
2748
2749 out2:
2750 ceph_msg_put(m);
2751 out:
2752 if (!can_fail) {
2753 pr_err("msg_new can't create type %d front %d\n", type,
2754 front_len);
2755 WARN_ON(1);
2756 } else {
2757 dout("msg_new can't create type %d front %d\n", type,
2758 front_len);
2759 }
2760 return NULL;
2761 }
2762 EXPORT_SYMBOL(ceph_msg_new);
2763
2764 /*
2765 * Allocate "middle" portion of a message, if it is needed and wasn't
2766 * allocated by alloc_msg. This allows us to read a small fixed-size
2767 * per-type header in the front and then gracefully fail (i.e.,
2768 * propagate the error to the caller based on info in the front) when
2769 * the middle is too large.
2770 */
2771 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2772 {
2773 int type = le16_to_cpu(msg->hdr.type);
2774 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2775
2776 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2777 ceph_msg_type_name(type), middle_len);
2778 BUG_ON(!middle_len);
2779 BUG_ON(msg->middle);
2780
2781 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2782 if (!msg->middle)
2783 return -ENOMEM;
2784 return 0;
2785 }
2786
2787 /*
2788 * Allocate a message for receiving an incoming message on a
2789 * connection, and save the result in con->in_msg. Uses the
2790 * connection's private alloc_msg op if available.
2791 *
2792 * Returns 0 on success, or a negative error code.
2793 *
2794 * On success, if we set *skip = 1:
2795 * - the next message should be skipped and ignored.
2796 * - con->in_msg == NULL
2797 * or if we set *skip = 0:
2798 * - con->in_msg is non-null.
2799 * On error (ENOMEM, EAGAIN, ...),
2800 * - con->in_msg == NULL
2801 */
2802 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2803 {
2804 struct ceph_msg_header *hdr = &con->in_hdr;
2805 int type = le16_to_cpu(hdr->type);
2806 int front_len = le32_to_cpu(hdr->front_len);
2807 int middle_len = le32_to_cpu(hdr->middle_len);
2808 int ret = 0;
2809
2810 BUG_ON(con->in_msg != NULL);
2811
2812 if (con->ops->alloc_msg) {
2813 struct ceph_msg *msg;
2814
2815 mutex_unlock(&con->mutex);
2816 msg = con->ops->alloc_msg(con, hdr, skip);
2817 mutex_lock(&con->mutex);
2818 if (con->state != CON_STATE_OPEN) {
2819 if (msg)
2820 ceph_msg_put(msg);
2821 return -EAGAIN;
2822 }
2823 con->in_msg = msg;
2824 if (con->in_msg) {
2825 con->in_msg->con = con->ops->get(con);
2826 BUG_ON(con->in_msg->con == NULL);
2827 }
2828 if (*skip) {
2829 con->in_msg = NULL;
2830 return 0;
2831 }
2832 if (!con->in_msg) {
2833 con->error_msg =
2834 "error allocating memory for incoming message";
2835 return -ENOMEM;
2836 }
2837 }
2838 if (!con->in_msg) {
2839 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2840 if (!con->in_msg) {
2841 pr_err("unable to allocate msg type %d len %d\n",
2842 type, front_len);
2843 return -ENOMEM;
2844 }
2845 con->in_msg->con = con->ops->get(con);
2846 BUG_ON(con->in_msg->con == NULL);
2847 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2848 }
2849 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2850
2851 if (middle_len && !con->in_msg->middle) {
2852 ret = ceph_alloc_middle(con, con->in_msg);
2853 if (ret < 0) {
2854 ceph_msg_put(con->in_msg);
2855 con->in_msg = NULL;
2856 }
2857 }
2858
2859 return ret;
2860 }
2861
2862
2863 /*
2864 * Free a generically kmalloc'd message.
2865 */
2866 void ceph_msg_kfree(struct ceph_msg *m)
2867 {
2868 dout("msg_kfree %p\n", m);
2869 if (m->front_is_vmalloc)
2870 vfree(m->front.iov_base);
2871 else
2872 kfree(m->front.iov_base);
2873 kfree(m);
2874 }
2875
2876 /*
2877 * Drop a msg ref. Destroy as needed.
2878 */
2879 void ceph_msg_last_put(struct kref *kref)
2880 {
2881 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2882
2883 dout("ceph_msg_put last one on %p\n", m);
2884 WARN_ON(!list_empty(&m->list_head));
2885
2886 /* drop middle, data, if any */
2887 if (m->middle) {
2888 ceph_buffer_put(m->middle);
2889 m->middle = NULL;
2890 }
2891 m->nr_pages = 0;
2892 m->pages = NULL;
2893
2894 if (m->pagelist) {
2895 ceph_pagelist_release(m->pagelist);
2896 kfree(m->pagelist);
2897 m->pagelist = NULL;
2898 }
2899
2900 m->trail = NULL;
2901
2902 if (m->pool)
2903 ceph_msgpool_put(m->pool, m);
2904 else
2905 ceph_msg_kfree(m);
2906 }
2907 EXPORT_SYMBOL(ceph_msg_last_put);
2908
2909 void ceph_msg_dump(struct ceph_msg *msg)
2910 {
2911 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2912 msg->front_max, msg->nr_pages);
2913 print_hex_dump(KERN_DEBUG, "header: ",
2914 DUMP_PREFIX_OFFSET, 16, 1,
2915 &msg->hdr, sizeof(msg->hdr), true);
2916 print_hex_dump(KERN_DEBUG, " front: ",
2917 DUMP_PREFIX_OFFSET, 16, 1,
2918 msg->front.iov_base, msg->front.iov_len, true);
2919 if (msg->middle)
2920 print_hex_dump(KERN_DEBUG, "middle: ",
2921 DUMP_PREFIX_OFFSET, 16, 1,
2922 msg->middle->vec.iov_base,
2923 msg->middle->vec.iov_len, true);
2924 print_hex_dump(KERN_DEBUG, "footer: ",
2925 DUMP_PREFIX_OFFSET, 16, 1,
2926 &msg->footer, sizeof(msg->footer), true);
2927 }
2928 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.14376 seconds and 6 git commands to generate.