libceph: encapsulate reading message data
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25 * Ceph uses the messenger to exchange ceph_msg messages with other
26 * hosts in the system. The messenger provides ordered and reliable
27 * delivery. We tolerate TCP disconnects by reconnecting (with
28 * exponential backoff) in the case of a fault (disconnection, bad
29 * crc, protocol error). Acks allow sent messages to be discarded by
30 * the sender.
31 */
32
33 /*
34 * We track the state of the socket on a given connection using
35 * values defined below. The transition to a new socket state is
36 * handled by a function which verifies we aren't coming from an
37 * unexpected state.
38 *
39 * --------
40 * | NEW* | transient initial state
41 * --------
42 * | con_sock_state_init()
43 * v
44 * ----------
45 * | CLOSED | initialized, but no socket (and no
46 * ---------- TCP connection)
47 * ^ \
48 * | \ con_sock_state_connecting()
49 * | ----------------------
50 * | \
51 * + con_sock_state_closed() \
52 * |+--------------------------- \
53 * | \ \ \
54 * | ----------- \ \
55 * | | CLOSING | socket event; \ \
56 * | ----------- await close \ \
57 * | ^ \ |
58 * | | \ |
59 * | + con_sock_state_closing() \ |
60 * | / \ | |
61 * | / --------------- | |
62 * | / \ v v
63 * | / --------------
64 * | / -----------------| CONNECTING | socket created, TCP
65 * | | / -------------- connect initiated
66 * | | | con_sock_state_connected()
67 * | | v
68 * -------------
69 * | CONNECTED | TCP connection established
70 * -------------
71 *
72 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73 */
74
75 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
80
81 /*
82 * connection states
83 */
84 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
85 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
90
91 /*
92 * ceph_connection flag bits
93 */
94 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
95 * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103 switch (con_flag) {
104 case CON_FLAG_LOSSYTX:
105 case CON_FLAG_KEEPALIVE_PENDING:
106 case CON_FLAG_WRITE_PENDING:
107 case CON_FLAG_SOCK_CLOSED:
108 case CON_FLAG_BACKOFF:
109 return true;
110 default:
111 return false;
112 }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117 BUG_ON(!con_flag_valid(con_flag));
118
119 clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124 BUG_ON(!con_flag_valid(con_flag));
125
126 set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137 unsigned long con_flag)
138 {
139 BUG_ON(!con_flag_valid(con_flag));
140
141 return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145 unsigned long con_flag)
146 {
147 BUG_ON(!con_flag_valid(con_flag));
148
149 return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162 * When skipping (ignoring) a block of input we read it into a "skip
163 * buffer," which is this many bytes in size.
164 */
165 #define SKIP_BUF_SIZE 1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172 * Nicely render a sockaddr as a string. An array of formatted
173 * strings is used, to approximate reentrancy.
174 */
175 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page; /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187 int i;
188 char *s;
189 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193 s = addr_str[i];
194
195 switch (ss->ss_family) {
196 case AF_INET:
197 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198 ntohs(in4->sin_port));
199 break;
200
201 case AF_INET6:
202 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203 ntohs(in6->sin6_port));
204 break;
205
206 default:
207 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208 ss->ss_family);
209 }
210
211 return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218 ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222 * work queue for all reading and writing to/from the socket.
223 */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228 if (ceph_msgr_wq) {
229 destroy_workqueue(ceph_msgr_wq);
230 ceph_msgr_wq = NULL;
231 }
232
233 BUG_ON(zero_page == NULL);
234 kunmap(zero_page);
235 page_cache_release(zero_page);
236 zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241 BUG_ON(zero_page != NULL);
242 zero_page = ZERO_PAGE(0);
243 page_cache_get(zero_page);
244
245 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246 if (ceph_msgr_wq)
247 return 0;
248
249 pr_err("msgr_init failed to create workqueue\n");
250 _ceph_msgr_exit();
251
252 return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258 BUG_ON(ceph_msgr_wq == NULL);
259
260 _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266 flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274 int old_state;
275
276 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278 printk("%s: unexpected old state %d\n", __func__, old_state);
279 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280 CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285 int old_state;
286
287 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289 printk("%s: unexpected old state %d\n", __func__, old_state);
290 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291 CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296 int old_state;
297
298 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300 printk("%s: unexpected old state %d\n", __func__, old_state);
301 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302 CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307 int old_state;
308
309 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311 old_state != CON_SOCK_STATE_CONNECTED &&
312 old_state != CON_SOCK_STATE_CLOSING))
313 printk("%s: unexpected old state %d\n", __func__, old_state);
314 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315 CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324 old_state != CON_SOCK_STATE_CLOSING &&
325 old_state != CON_SOCK_STATE_CONNECTING &&
326 old_state != CON_SOCK_STATE_CLOSED))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333 * socket callback functions
334 */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339 struct ceph_connection *con = sk->sk_user_data;
340 if (atomic_read(&con->msgr->stopping)) {
341 return;
342 }
343
344 if (sk->sk_state != TCP_CLOSE_WAIT) {
345 dout("%s on %p state = %lu, queueing work\n", __func__,
346 con, con->state);
347 queue_con(con);
348 }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354 struct ceph_connection *con = sk->sk_user_data;
355
356 /* only queue to workqueue if there is data we want to write,
357 * and there is sufficient space in the socket buffer to accept
358 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
359 * doesn't get called again until try_write() fills the socket
360 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361 * and net/core/stream.c:sk_stream_write_space().
362 */
363 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365 dout("%s %p queueing write work\n", __func__, con);
366 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367 queue_con(con);
368 }
369 } else {
370 dout("%s %p nothing to write\n", __func__, con);
371 }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377 struct ceph_connection *con = sk->sk_user_data;
378
379 dout("%s %p state = %lu sk_state = %u\n", __func__,
380 con, con->state, sk->sk_state);
381
382 switch (sk->sk_state) {
383 case TCP_CLOSE:
384 dout("%s TCP_CLOSE\n", __func__);
385 case TCP_CLOSE_WAIT:
386 dout("%s TCP_CLOSE_WAIT\n", __func__);
387 con_sock_state_closing(con);
388 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389 queue_con(con);
390 break;
391 case TCP_ESTABLISHED:
392 dout("%s TCP_ESTABLISHED\n", __func__);
393 con_sock_state_connected(con);
394 queue_con(con);
395 break;
396 default: /* Everything else is uninteresting */
397 break;
398 }
399 }
400
401 /*
402 * set up socket callbacks
403 */
404 static void set_sock_callbacks(struct socket *sock,
405 struct ceph_connection *con)
406 {
407 struct sock *sk = sock->sk;
408 sk->sk_user_data = con;
409 sk->sk_data_ready = ceph_sock_data_ready;
410 sk->sk_write_space = ceph_sock_write_space;
411 sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416 * socket helpers
417 */
418
419 /*
420 * initiate connection to a remote socket.
421 */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425 struct socket *sock;
426 int ret;
427
428 BUG_ON(con->sock);
429 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430 IPPROTO_TCP, &sock);
431 if (ret)
432 return ret;
433 sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439 set_sock_callbacks(sock, con);
440
441 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443 con_sock_state_connecting(con);
444 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445 O_NONBLOCK);
446 if (ret == -EINPROGRESS) {
447 dout("connect %s EINPROGRESS sk_state = %u\n",
448 ceph_pr_addr(&con->peer_addr.in_addr),
449 sock->sk->sk_state);
450 } else if (ret < 0) {
451 pr_err("connect %s error %d\n",
452 ceph_pr_addr(&con->peer_addr.in_addr), ret);
453 sock_release(sock);
454 con->error_msg = "connect error";
455
456 return ret;
457 }
458 con->sock = sock;
459 return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464 struct kvec iov = {buf, len};
465 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466 int r;
467
468 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469 if (r == -EAGAIN)
470 r = 0;
471 return r;
472 }
473
474 /*
475 * write something. @more is true if caller will be sending more data
476 * shortly.
477 */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479 size_t kvlen, size_t len, int more)
480 {
481 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482 int r;
483
484 if (more)
485 msg.msg_flags |= MSG_MORE;
486 else
487 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
488
489 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490 if (r == -EAGAIN)
491 r = 0;
492 return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496 int offset, size_t size, bool more)
497 {
498 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499 int ret;
500
501 ret = kernel_sendpage(sock, page, offset, size, flags);
502 if (ret == -EAGAIN)
503 ret = 0;
504
505 return ret;
506 }
507
508
509 /*
510 * Shutdown/close the socket for the given connection.
511 */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514 int rc = 0;
515
516 dout("con_close_socket on %p sock %p\n", con, con->sock);
517 if (con->sock) {
518 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519 sock_release(con->sock);
520 con->sock = NULL;
521 }
522
523 /*
524 * Forcibly clear the SOCK_CLOSED flag. It gets set
525 * independent of the connection mutex, and we could have
526 * received a socket close event before we had the chance to
527 * shut the socket down.
528 */
529 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531 con_sock_state_closed(con);
532 return rc;
533 }
534
535 /*
536 * Reset a connection. Discard all incoming and outgoing messages
537 * and clear *_seq state.
538 */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541 list_del_init(&msg->list_head);
542 BUG_ON(msg->con == NULL);
543 msg->con->ops->put(msg->con);
544 msg->con = NULL;
545
546 ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550 while (!list_empty(head)) {
551 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552 list_head);
553 ceph_msg_remove(msg);
554 }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559 /* reset connection, out_queue, msg_ and connect_seq */
560 /* discard existing out_queue and msg_seq */
561 dout("reset_connection %p\n", con);
562 ceph_msg_remove_list(&con->out_queue);
563 ceph_msg_remove_list(&con->out_sent);
564
565 if (con->in_msg) {
566 BUG_ON(con->in_msg->con != con);
567 con->in_msg->con = NULL;
568 ceph_msg_put(con->in_msg);
569 con->in_msg = NULL;
570 con->ops->put(con);
571 }
572
573 con->connect_seq = 0;
574 con->out_seq = 0;
575 if (con->out_msg) {
576 ceph_msg_put(con->out_msg);
577 con->out_msg = NULL;
578 }
579 con->in_seq = 0;
580 con->in_seq_acked = 0;
581 }
582
583 /*
584 * mark a peer down. drop any open connections.
585 */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588 mutex_lock(&con->mutex);
589 dout("con_close %p peer %s\n", con,
590 ceph_pr_addr(&con->peer_addr.in_addr));
591 con->state = CON_STATE_CLOSED;
592
593 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
594 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596 con_flag_clear(con, CON_FLAG_BACKOFF);
597
598 reset_connection(con);
599 con->peer_global_seq = 0;
600 cancel_delayed_work(&con->work);
601 con_close_socket(con);
602 mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607 * Reopen a closed connection, with a new peer address.
608 */
609 void ceph_con_open(struct ceph_connection *con,
610 __u8 entity_type, __u64 entity_num,
611 struct ceph_entity_addr *addr)
612 {
613 mutex_lock(&con->mutex);
614 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616 WARN_ON(con->state != CON_STATE_CLOSED);
617 con->state = CON_STATE_PREOPEN;
618
619 con->peer_name.type = (__u8) entity_type;
620 con->peer_name.num = cpu_to_le64(entity_num);
621
622 memcpy(&con->peer_addr, addr, sizeof(*addr));
623 con->delay = 0; /* reset backoff memory */
624 mutex_unlock(&con->mutex);
625 queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630 * return true if this connection ever successfully opened
631 */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634 return con->connect_seq > 0;
635 }
636
637 /*
638 * initialize a new connection.
639 */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641 const struct ceph_connection_operations *ops,
642 struct ceph_messenger *msgr)
643 {
644 dout("con_init %p\n", con);
645 memset(con, 0, sizeof(*con));
646 con->private = private;
647 con->ops = ops;
648 con->msgr = msgr;
649
650 con_sock_state_init(con);
651
652 mutex_init(&con->mutex);
653 INIT_LIST_HEAD(&con->out_queue);
654 INIT_LIST_HEAD(&con->out_sent);
655 INIT_DELAYED_WORK(&con->work, con_work);
656
657 con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663 * We maintain a global counter to order connection attempts. Get
664 * a unique seq greater than @gt.
665 */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668 u32 ret;
669
670 spin_lock(&msgr->global_seq_lock);
671 if (msgr->global_seq < gt)
672 msgr->global_seq = gt;
673 ret = ++msgr->global_seq;
674 spin_unlock(&msgr->global_seq_lock);
675 return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680 con->out_kvec_left = 0;
681 con->out_kvec_bytes = 0;
682 con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686 size_t size, void *data)
687 {
688 int index;
689
690 index = con->out_kvec_left;
691 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693 con->out_kvec[index].iov_len = size;
694 con->out_kvec[index].iov_base = data;
695 con->out_kvec_left++;
696 con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
701 unsigned int *bio_seg)
702 {
703 if (!bio) {
704 *bio_iter = NULL;
705 *bio_seg = 0;
706 return;
707 }
708 *bio_iter = bio;
709 *bio_seg = (unsigned int) bio->bi_idx;
710 }
711
712 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
713 {
714 if (*bio_iter == NULL)
715 return;
716
717 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
718
719 (*seg)++;
720 if (*seg == (*bio_iter)->bi_vcnt)
721 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
722 }
723 #endif
724
725 static void prepare_message_data(struct ceph_msg *msg,
726 struct ceph_msg_pos *msg_pos)
727 {
728 BUG_ON(!msg);
729 BUG_ON(!msg->hdr.data_len);
730
731 /* initialize page iterator */
732 msg_pos->page = 0;
733 if (msg->pages)
734 msg_pos->page_pos = msg->page_alignment;
735 else
736 msg_pos->page_pos = 0;
737 #ifdef CONFIG_BLOCK
738 if (msg->bio)
739 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
740 #endif
741 msg_pos->data_pos = 0;
742 msg_pos->did_page_crc = false;
743 }
744
745 /*
746 * Prepare footer for currently outgoing message, and finish things
747 * off. Assumes out_kvec* are already valid.. we just add on to the end.
748 */
749 static void prepare_write_message_footer(struct ceph_connection *con)
750 {
751 struct ceph_msg *m = con->out_msg;
752 int v = con->out_kvec_left;
753
754 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
755
756 dout("prepare_write_message_footer %p\n", con);
757 con->out_kvec_is_msg = true;
758 con->out_kvec[v].iov_base = &m->footer;
759 con->out_kvec[v].iov_len = sizeof(m->footer);
760 con->out_kvec_bytes += sizeof(m->footer);
761 con->out_kvec_left++;
762 con->out_more = m->more_to_follow;
763 con->out_msg_done = true;
764 }
765
766 /*
767 * Prepare headers for the next outgoing message.
768 */
769 static void prepare_write_message(struct ceph_connection *con)
770 {
771 struct ceph_msg *m;
772 u32 crc;
773
774 con_out_kvec_reset(con);
775 con->out_kvec_is_msg = true;
776 con->out_msg_done = false;
777
778 /* Sneak an ack in there first? If we can get it into the same
779 * TCP packet that's a good thing. */
780 if (con->in_seq > con->in_seq_acked) {
781 con->in_seq_acked = con->in_seq;
782 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
783 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
784 con_out_kvec_add(con, sizeof (con->out_temp_ack),
785 &con->out_temp_ack);
786 }
787
788 BUG_ON(list_empty(&con->out_queue));
789 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
790 con->out_msg = m;
791 BUG_ON(m->con != con);
792
793 /* put message on sent list */
794 ceph_msg_get(m);
795 list_move_tail(&m->list_head, &con->out_sent);
796
797 /*
798 * only assign outgoing seq # if we haven't sent this message
799 * yet. if it is requeued, resend with it's original seq.
800 */
801 if (m->needs_out_seq) {
802 m->hdr.seq = cpu_to_le64(++con->out_seq);
803 m->needs_out_seq = false;
804 }
805
806 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
807 m, con->out_seq, le16_to_cpu(m->hdr.type),
808 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
809 le32_to_cpu(m->hdr.data_len), m->length);
810 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
811
812 /* tag + hdr + front + middle */
813 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
814 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
815 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
816
817 if (m->middle)
818 con_out_kvec_add(con, m->middle->vec.iov_len,
819 m->middle->vec.iov_base);
820
821 /* fill in crc (except data pages), footer */
822 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
823 con->out_msg->hdr.crc = cpu_to_le32(crc);
824 con->out_msg->footer.flags = 0;
825
826 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
827 con->out_msg->footer.front_crc = cpu_to_le32(crc);
828 if (m->middle) {
829 crc = crc32c(0, m->middle->vec.iov_base,
830 m->middle->vec.iov_len);
831 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
832 } else
833 con->out_msg->footer.middle_crc = 0;
834 dout("%s front_crc %u middle_crc %u\n", __func__,
835 le32_to_cpu(con->out_msg->footer.front_crc),
836 le32_to_cpu(con->out_msg->footer.middle_crc));
837
838 /* is there a data payload? */
839 con->out_msg->footer.data_crc = 0;
840 if (m->hdr.data_len) {
841 prepare_message_data(con->out_msg, &con->out_msg_pos);
842 con->out_more = 1; /* data + footer will follow */
843 } else {
844 /* no, queue up footer too and be done */
845 prepare_write_message_footer(con);
846 }
847
848 con_flag_set(con, CON_FLAG_WRITE_PENDING);
849 }
850
851 /*
852 * Prepare an ack.
853 */
854 static void prepare_write_ack(struct ceph_connection *con)
855 {
856 dout("prepare_write_ack %p %llu -> %llu\n", con,
857 con->in_seq_acked, con->in_seq);
858 con->in_seq_acked = con->in_seq;
859
860 con_out_kvec_reset(con);
861
862 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
863
864 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
865 con_out_kvec_add(con, sizeof (con->out_temp_ack),
866 &con->out_temp_ack);
867
868 con->out_more = 1; /* more will follow.. eventually.. */
869 con_flag_set(con, CON_FLAG_WRITE_PENDING);
870 }
871
872 /*
873 * Prepare to write keepalive byte.
874 */
875 static void prepare_write_keepalive(struct ceph_connection *con)
876 {
877 dout("prepare_write_keepalive %p\n", con);
878 con_out_kvec_reset(con);
879 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
880 con_flag_set(con, CON_FLAG_WRITE_PENDING);
881 }
882
883 /*
884 * Connection negotiation.
885 */
886
887 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
888 int *auth_proto)
889 {
890 struct ceph_auth_handshake *auth;
891
892 if (!con->ops->get_authorizer) {
893 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
894 con->out_connect.authorizer_len = 0;
895 return NULL;
896 }
897
898 /* Can't hold the mutex while getting authorizer */
899 mutex_unlock(&con->mutex);
900 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
901 mutex_lock(&con->mutex);
902
903 if (IS_ERR(auth))
904 return auth;
905 if (con->state != CON_STATE_NEGOTIATING)
906 return ERR_PTR(-EAGAIN);
907
908 con->auth_reply_buf = auth->authorizer_reply_buf;
909 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
910 return auth;
911 }
912
913 /*
914 * We connected to a peer and are saying hello.
915 */
916 static void prepare_write_banner(struct ceph_connection *con)
917 {
918 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
919 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
920 &con->msgr->my_enc_addr);
921
922 con->out_more = 0;
923 con_flag_set(con, CON_FLAG_WRITE_PENDING);
924 }
925
926 static int prepare_write_connect(struct ceph_connection *con)
927 {
928 unsigned int global_seq = get_global_seq(con->msgr, 0);
929 int proto;
930 int auth_proto;
931 struct ceph_auth_handshake *auth;
932
933 switch (con->peer_name.type) {
934 case CEPH_ENTITY_TYPE_MON:
935 proto = CEPH_MONC_PROTOCOL;
936 break;
937 case CEPH_ENTITY_TYPE_OSD:
938 proto = CEPH_OSDC_PROTOCOL;
939 break;
940 case CEPH_ENTITY_TYPE_MDS:
941 proto = CEPH_MDSC_PROTOCOL;
942 break;
943 default:
944 BUG();
945 }
946
947 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
948 con->connect_seq, global_seq, proto);
949
950 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
951 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
952 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
953 con->out_connect.global_seq = cpu_to_le32(global_seq);
954 con->out_connect.protocol_version = cpu_to_le32(proto);
955 con->out_connect.flags = 0;
956
957 auth_proto = CEPH_AUTH_UNKNOWN;
958 auth = get_connect_authorizer(con, &auth_proto);
959 if (IS_ERR(auth))
960 return PTR_ERR(auth);
961
962 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
963 con->out_connect.authorizer_len = auth ?
964 cpu_to_le32(auth->authorizer_buf_len) : 0;
965
966 con_out_kvec_add(con, sizeof (con->out_connect),
967 &con->out_connect);
968 if (auth && auth->authorizer_buf_len)
969 con_out_kvec_add(con, auth->authorizer_buf_len,
970 auth->authorizer_buf);
971
972 con->out_more = 0;
973 con_flag_set(con, CON_FLAG_WRITE_PENDING);
974
975 return 0;
976 }
977
978 /*
979 * write as much of pending kvecs to the socket as we can.
980 * 1 -> done
981 * 0 -> socket full, but more to do
982 * <0 -> error
983 */
984 static int write_partial_kvec(struct ceph_connection *con)
985 {
986 int ret;
987
988 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
989 while (con->out_kvec_bytes > 0) {
990 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
991 con->out_kvec_left, con->out_kvec_bytes,
992 con->out_more);
993 if (ret <= 0)
994 goto out;
995 con->out_kvec_bytes -= ret;
996 if (con->out_kvec_bytes == 0)
997 break; /* done */
998
999 /* account for full iov entries consumed */
1000 while (ret >= con->out_kvec_cur->iov_len) {
1001 BUG_ON(!con->out_kvec_left);
1002 ret -= con->out_kvec_cur->iov_len;
1003 con->out_kvec_cur++;
1004 con->out_kvec_left--;
1005 }
1006 /* and for a partially-consumed entry */
1007 if (ret) {
1008 con->out_kvec_cur->iov_len -= ret;
1009 con->out_kvec_cur->iov_base += ret;
1010 }
1011 }
1012 con->out_kvec_left = 0;
1013 con->out_kvec_is_msg = false;
1014 ret = 1;
1015 out:
1016 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1017 con->out_kvec_bytes, con->out_kvec_left, ret);
1018 return ret; /* done! */
1019 }
1020
1021 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1022 size_t len, size_t sent, bool in_trail)
1023 {
1024 struct ceph_msg *msg = con->out_msg;
1025 struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1026
1027 BUG_ON(!msg);
1028 BUG_ON(!sent);
1029
1030 msg_pos->data_pos += sent;
1031 msg_pos->page_pos += sent;
1032 if (sent < len)
1033 return;
1034
1035 BUG_ON(sent != len);
1036 msg_pos->page_pos = 0;
1037 msg_pos->page++;
1038 msg_pos->did_page_crc = false;
1039 if (in_trail)
1040 list_rotate_left(&msg->trail->head);
1041 else if (msg->pagelist)
1042 list_rotate_left(&msg->pagelist->head);
1043 #ifdef CONFIG_BLOCK
1044 else if (msg->bio)
1045 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1046 #endif
1047 }
1048
1049 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1050 size_t received)
1051 {
1052 struct ceph_msg *msg = con->in_msg;
1053 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1054
1055 BUG_ON(!msg);
1056 BUG_ON(!received);
1057
1058 msg_pos->data_pos += received;
1059 msg_pos->page_pos += received;
1060 if (received < len)
1061 return;
1062
1063 BUG_ON(received != len);
1064 msg_pos->page_pos = 0;
1065 msg_pos->page++;
1066 #ifdef CONFIG_BLOCK
1067 if (msg->bio)
1068 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1069 #endif /* CONFIG_BLOCK */
1070 }
1071
1072 /*
1073 * Write as much message data payload as we can. If we finish, queue
1074 * up the footer.
1075 * 1 -> done, footer is now queued in out_kvec[].
1076 * 0 -> socket full, but more to do
1077 * <0 -> error
1078 */
1079 static int write_partial_message_data(struct ceph_connection *con)
1080 {
1081 struct ceph_msg *msg = con->out_msg;
1082 struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1083 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1084 bool do_datacrc = !con->msgr->nocrc;
1085 int ret;
1086 int total_max_write;
1087 bool in_trail = false;
1088 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1089 const size_t trail_off = data_len - trail_len;
1090
1091 dout("%s %p msg %p page %d offset %d\n", __func__,
1092 con, msg, msg_pos->page, msg_pos->page_pos);
1093
1094 /*
1095 * Iterate through each page that contains data to be
1096 * written, and send as much as possible for each.
1097 *
1098 * If we are calculating the data crc (the default), we will
1099 * need to map the page. If we have no pages, they have
1100 * been revoked, so use the zero page.
1101 */
1102 while (data_len > msg_pos->data_pos) {
1103 struct page *page = NULL;
1104 size_t page_offset;
1105 size_t length;
1106 int max_write = PAGE_SIZE;
1107 int bio_offset = 0;
1108
1109 in_trail = in_trail || msg_pos->data_pos >= trail_off;
1110 if (!in_trail)
1111 total_max_write = trail_off - msg_pos->data_pos;
1112
1113 if (in_trail) {
1114 total_max_write = data_len - msg_pos->data_pos;
1115
1116 page = list_first_entry(&msg->trail->head,
1117 struct page, lru);
1118 } else if (msg->pages) {
1119 page = msg->pages[msg_pos->page];
1120 } else if (msg->pagelist) {
1121 page = list_first_entry(&msg->pagelist->head,
1122 struct page, lru);
1123 #ifdef CONFIG_BLOCK
1124 } else if (msg->bio) {
1125 struct bio_vec *bv;
1126
1127 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1128 page = bv->bv_page;
1129 bio_offset = bv->bv_offset;
1130 max_write = bv->bv_len;
1131 #endif
1132 } else {
1133 page = zero_page;
1134 }
1135 length = min_t(int, max_write - msg_pos->page_pos,
1136 total_max_write);
1137
1138 page_offset = msg_pos->page_pos + bio_offset;
1139 if (do_datacrc && !msg_pos->did_page_crc) {
1140 void *base;
1141 u32 crc = le32_to_cpu(msg->footer.data_crc);
1142 char *kaddr;
1143
1144 kaddr = kmap(page);
1145 BUG_ON(kaddr == NULL);
1146 base = kaddr + page_offset;
1147 crc = crc32c(crc, base, length);
1148 kunmap(page);
1149 msg->footer.data_crc = cpu_to_le32(crc);
1150 msg_pos->did_page_crc = true;
1151 }
1152 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1153 length, true);
1154 if (ret <= 0)
1155 goto out;
1156
1157 out_msg_pos_next(con, page, length, (size_t) ret, in_trail);
1158 }
1159
1160 dout("%s %p msg %p done\n", __func__, con, msg);
1161
1162 /* prepare and queue up footer, too */
1163 if (!do_datacrc)
1164 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1165 con_out_kvec_reset(con);
1166 prepare_write_message_footer(con);
1167 ret = 1;
1168 out:
1169 return ret;
1170 }
1171
1172 /*
1173 * write some zeros
1174 */
1175 static int write_partial_skip(struct ceph_connection *con)
1176 {
1177 int ret;
1178
1179 while (con->out_skip > 0) {
1180 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1181
1182 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1183 if (ret <= 0)
1184 goto out;
1185 con->out_skip -= ret;
1186 }
1187 ret = 1;
1188 out:
1189 return ret;
1190 }
1191
1192 /*
1193 * Prepare to read connection handshake, or an ack.
1194 */
1195 static void prepare_read_banner(struct ceph_connection *con)
1196 {
1197 dout("prepare_read_banner %p\n", con);
1198 con->in_base_pos = 0;
1199 }
1200
1201 static void prepare_read_connect(struct ceph_connection *con)
1202 {
1203 dout("prepare_read_connect %p\n", con);
1204 con->in_base_pos = 0;
1205 }
1206
1207 static void prepare_read_ack(struct ceph_connection *con)
1208 {
1209 dout("prepare_read_ack %p\n", con);
1210 con->in_base_pos = 0;
1211 }
1212
1213 static void prepare_read_tag(struct ceph_connection *con)
1214 {
1215 dout("prepare_read_tag %p\n", con);
1216 con->in_base_pos = 0;
1217 con->in_tag = CEPH_MSGR_TAG_READY;
1218 }
1219
1220 /*
1221 * Prepare to read a message.
1222 */
1223 static int prepare_read_message(struct ceph_connection *con)
1224 {
1225 dout("prepare_read_message %p\n", con);
1226 BUG_ON(con->in_msg != NULL);
1227 con->in_base_pos = 0;
1228 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1229 return 0;
1230 }
1231
1232
1233 static int read_partial(struct ceph_connection *con,
1234 int end, int size, void *object)
1235 {
1236 while (con->in_base_pos < end) {
1237 int left = end - con->in_base_pos;
1238 int have = size - left;
1239 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1240 if (ret <= 0)
1241 return ret;
1242 con->in_base_pos += ret;
1243 }
1244 return 1;
1245 }
1246
1247
1248 /*
1249 * Read all or part of the connect-side handshake on a new connection
1250 */
1251 static int read_partial_banner(struct ceph_connection *con)
1252 {
1253 int size;
1254 int end;
1255 int ret;
1256
1257 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1258
1259 /* peer's banner */
1260 size = strlen(CEPH_BANNER);
1261 end = size;
1262 ret = read_partial(con, end, size, con->in_banner);
1263 if (ret <= 0)
1264 goto out;
1265
1266 size = sizeof (con->actual_peer_addr);
1267 end += size;
1268 ret = read_partial(con, end, size, &con->actual_peer_addr);
1269 if (ret <= 0)
1270 goto out;
1271
1272 size = sizeof (con->peer_addr_for_me);
1273 end += size;
1274 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1275 if (ret <= 0)
1276 goto out;
1277
1278 out:
1279 return ret;
1280 }
1281
1282 static int read_partial_connect(struct ceph_connection *con)
1283 {
1284 int size;
1285 int end;
1286 int ret;
1287
1288 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1289
1290 size = sizeof (con->in_reply);
1291 end = size;
1292 ret = read_partial(con, end, size, &con->in_reply);
1293 if (ret <= 0)
1294 goto out;
1295
1296 size = le32_to_cpu(con->in_reply.authorizer_len);
1297 end += size;
1298 ret = read_partial(con, end, size, con->auth_reply_buf);
1299 if (ret <= 0)
1300 goto out;
1301
1302 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1303 con, (int)con->in_reply.tag,
1304 le32_to_cpu(con->in_reply.connect_seq),
1305 le32_to_cpu(con->in_reply.global_seq));
1306 out:
1307 return ret;
1308
1309 }
1310
1311 /*
1312 * Verify the hello banner looks okay.
1313 */
1314 static int verify_hello(struct ceph_connection *con)
1315 {
1316 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1317 pr_err("connect to %s got bad banner\n",
1318 ceph_pr_addr(&con->peer_addr.in_addr));
1319 con->error_msg = "protocol error, bad banner";
1320 return -1;
1321 }
1322 return 0;
1323 }
1324
1325 static bool addr_is_blank(struct sockaddr_storage *ss)
1326 {
1327 switch (ss->ss_family) {
1328 case AF_INET:
1329 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1330 case AF_INET6:
1331 return
1332 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1333 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1334 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1335 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1336 }
1337 return false;
1338 }
1339
1340 static int addr_port(struct sockaddr_storage *ss)
1341 {
1342 switch (ss->ss_family) {
1343 case AF_INET:
1344 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1345 case AF_INET6:
1346 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1347 }
1348 return 0;
1349 }
1350
1351 static void addr_set_port(struct sockaddr_storage *ss, int p)
1352 {
1353 switch (ss->ss_family) {
1354 case AF_INET:
1355 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1356 break;
1357 case AF_INET6:
1358 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1359 break;
1360 }
1361 }
1362
1363 /*
1364 * Unlike other *_pton function semantics, zero indicates success.
1365 */
1366 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1367 char delim, const char **ipend)
1368 {
1369 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1370 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1371
1372 memset(ss, 0, sizeof(*ss));
1373
1374 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1375 ss->ss_family = AF_INET;
1376 return 0;
1377 }
1378
1379 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1380 ss->ss_family = AF_INET6;
1381 return 0;
1382 }
1383
1384 return -EINVAL;
1385 }
1386
1387 /*
1388 * Extract hostname string and resolve using kernel DNS facility.
1389 */
1390 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1391 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1392 struct sockaddr_storage *ss, char delim, const char **ipend)
1393 {
1394 const char *end, *delim_p;
1395 char *colon_p, *ip_addr = NULL;
1396 int ip_len, ret;
1397
1398 /*
1399 * The end of the hostname occurs immediately preceding the delimiter or
1400 * the port marker (':') where the delimiter takes precedence.
1401 */
1402 delim_p = memchr(name, delim, namelen);
1403 colon_p = memchr(name, ':', namelen);
1404
1405 if (delim_p && colon_p)
1406 end = delim_p < colon_p ? delim_p : colon_p;
1407 else if (!delim_p && colon_p)
1408 end = colon_p;
1409 else {
1410 end = delim_p;
1411 if (!end) /* case: hostname:/ */
1412 end = name + namelen;
1413 }
1414
1415 if (end <= name)
1416 return -EINVAL;
1417
1418 /* do dns_resolve upcall */
1419 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1420 if (ip_len > 0)
1421 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1422 else
1423 ret = -ESRCH;
1424
1425 kfree(ip_addr);
1426
1427 *ipend = end;
1428
1429 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1430 ret, ret ? "failed" : ceph_pr_addr(ss));
1431
1432 return ret;
1433 }
1434 #else
1435 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1436 struct sockaddr_storage *ss, char delim, const char **ipend)
1437 {
1438 return -EINVAL;
1439 }
1440 #endif
1441
1442 /*
1443 * Parse a server name (IP or hostname). If a valid IP address is not found
1444 * then try to extract a hostname to resolve using userspace DNS upcall.
1445 */
1446 static int ceph_parse_server_name(const char *name, size_t namelen,
1447 struct sockaddr_storage *ss, char delim, const char **ipend)
1448 {
1449 int ret;
1450
1451 ret = ceph_pton(name, namelen, ss, delim, ipend);
1452 if (ret)
1453 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1454
1455 return ret;
1456 }
1457
1458 /*
1459 * Parse an ip[:port] list into an addr array. Use the default
1460 * monitor port if a port isn't specified.
1461 */
1462 int ceph_parse_ips(const char *c, const char *end,
1463 struct ceph_entity_addr *addr,
1464 int max_count, int *count)
1465 {
1466 int i, ret = -EINVAL;
1467 const char *p = c;
1468
1469 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1470 for (i = 0; i < max_count; i++) {
1471 const char *ipend;
1472 struct sockaddr_storage *ss = &addr[i].in_addr;
1473 int port;
1474 char delim = ',';
1475
1476 if (*p == '[') {
1477 delim = ']';
1478 p++;
1479 }
1480
1481 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1482 if (ret)
1483 goto bad;
1484 ret = -EINVAL;
1485
1486 p = ipend;
1487
1488 if (delim == ']') {
1489 if (*p != ']') {
1490 dout("missing matching ']'\n");
1491 goto bad;
1492 }
1493 p++;
1494 }
1495
1496 /* port? */
1497 if (p < end && *p == ':') {
1498 port = 0;
1499 p++;
1500 while (p < end && *p >= '0' && *p <= '9') {
1501 port = (port * 10) + (*p - '0');
1502 p++;
1503 }
1504 if (port > 65535 || port == 0)
1505 goto bad;
1506 } else {
1507 port = CEPH_MON_PORT;
1508 }
1509
1510 addr_set_port(ss, port);
1511
1512 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1513
1514 if (p == end)
1515 break;
1516 if (*p != ',')
1517 goto bad;
1518 p++;
1519 }
1520
1521 if (p != end)
1522 goto bad;
1523
1524 if (count)
1525 *count = i + 1;
1526 return 0;
1527
1528 bad:
1529 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1530 return ret;
1531 }
1532 EXPORT_SYMBOL(ceph_parse_ips);
1533
1534 static int process_banner(struct ceph_connection *con)
1535 {
1536 dout("process_banner on %p\n", con);
1537
1538 if (verify_hello(con) < 0)
1539 return -1;
1540
1541 ceph_decode_addr(&con->actual_peer_addr);
1542 ceph_decode_addr(&con->peer_addr_for_me);
1543
1544 /*
1545 * Make sure the other end is who we wanted. note that the other
1546 * end may not yet know their ip address, so if it's 0.0.0.0, give
1547 * them the benefit of the doubt.
1548 */
1549 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1550 sizeof(con->peer_addr)) != 0 &&
1551 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1552 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1553 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1554 ceph_pr_addr(&con->peer_addr.in_addr),
1555 (int)le32_to_cpu(con->peer_addr.nonce),
1556 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1557 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1558 con->error_msg = "wrong peer at address";
1559 return -1;
1560 }
1561
1562 /*
1563 * did we learn our address?
1564 */
1565 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1566 int port = addr_port(&con->msgr->inst.addr.in_addr);
1567
1568 memcpy(&con->msgr->inst.addr.in_addr,
1569 &con->peer_addr_for_me.in_addr,
1570 sizeof(con->peer_addr_for_me.in_addr));
1571 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1572 encode_my_addr(con->msgr);
1573 dout("process_banner learned my addr is %s\n",
1574 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1575 }
1576
1577 return 0;
1578 }
1579
1580 static int process_connect(struct ceph_connection *con)
1581 {
1582 u64 sup_feat = con->msgr->supported_features;
1583 u64 req_feat = con->msgr->required_features;
1584 u64 server_feat = le64_to_cpu(con->in_reply.features);
1585 int ret;
1586
1587 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1588
1589 switch (con->in_reply.tag) {
1590 case CEPH_MSGR_TAG_FEATURES:
1591 pr_err("%s%lld %s feature set mismatch,"
1592 " my %llx < server's %llx, missing %llx\n",
1593 ENTITY_NAME(con->peer_name),
1594 ceph_pr_addr(&con->peer_addr.in_addr),
1595 sup_feat, server_feat, server_feat & ~sup_feat);
1596 con->error_msg = "missing required protocol features";
1597 reset_connection(con);
1598 return -1;
1599
1600 case CEPH_MSGR_TAG_BADPROTOVER:
1601 pr_err("%s%lld %s protocol version mismatch,"
1602 " my %d != server's %d\n",
1603 ENTITY_NAME(con->peer_name),
1604 ceph_pr_addr(&con->peer_addr.in_addr),
1605 le32_to_cpu(con->out_connect.protocol_version),
1606 le32_to_cpu(con->in_reply.protocol_version));
1607 con->error_msg = "protocol version mismatch";
1608 reset_connection(con);
1609 return -1;
1610
1611 case CEPH_MSGR_TAG_BADAUTHORIZER:
1612 con->auth_retry++;
1613 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1614 con->auth_retry);
1615 if (con->auth_retry == 2) {
1616 con->error_msg = "connect authorization failure";
1617 return -1;
1618 }
1619 con->auth_retry = 1;
1620 con_out_kvec_reset(con);
1621 ret = prepare_write_connect(con);
1622 if (ret < 0)
1623 return ret;
1624 prepare_read_connect(con);
1625 break;
1626
1627 case CEPH_MSGR_TAG_RESETSESSION:
1628 /*
1629 * If we connected with a large connect_seq but the peer
1630 * has no record of a session with us (no connection, or
1631 * connect_seq == 0), they will send RESETSESION to indicate
1632 * that they must have reset their session, and may have
1633 * dropped messages.
1634 */
1635 dout("process_connect got RESET peer seq %u\n",
1636 le32_to_cpu(con->in_reply.connect_seq));
1637 pr_err("%s%lld %s connection reset\n",
1638 ENTITY_NAME(con->peer_name),
1639 ceph_pr_addr(&con->peer_addr.in_addr));
1640 reset_connection(con);
1641 con_out_kvec_reset(con);
1642 ret = prepare_write_connect(con);
1643 if (ret < 0)
1644 return ret;
1645 prepare_read_connect(con);
1646
1647 /* Tell ceph about it. */
1648 mutex_unlock(&con->mutex);
1649 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1650 if (con->ops->peer_reset)
1651 con->ops->peer_reset(con);
1652 mutex_lock(&con->mutex);
1653 if (con->state != CON_STATE_NEGOTIATING)
1654 return -EAGAIN;
1655 break;
1656
1657 case CEPH_MSGR_TAG_RETRY_SESSION:
1658 /*
1659 * If we sent a smaller connect_seq than the peer has, try
1660 * again with a larger value.
1661 */
1662 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1663 le32_to_cpu(con->out_connect.connect_seq),
1664 le32_to_cpu(con->in_reply.connect_seq));
1665 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1666 con_out_kvec_reset(con);
1667 ret = prepare_write_connect(con);
1668 if (ret < 0)
1669 return ret;
1670 prepare_read_connect(con);
1671 break;
1672
1673 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1674 /*
1675 * If we sent a smaller global_seq than the peer has, try
1676 * again with a larger value.
1677 */
1678 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1679 con->peer_global_seq,
1680 le32_to_cpu(con->in_reply.global_seq));
1681 get_global_seq(con->msgr,
1682 le32_to_cpu(con->in_reply.global_seq));
1683 con_out_kvec_reset(con);
1684 ret = prepare_write_connect(con);
1685 if (ret < 0)
1686 return ret;
1687 prepare_read_connect(con);
1688 break;
1689
1690 case CEPH_MSGR_TAG_READY:
1691 if (req_feat & ~server_feat) {
1692 pr_err("%s%lld %s protocol feature mismatch,"
1693 " my required %llx > server's %llx, need %llx\n",
1694 ENTITY_NAME(con->peer_name),
1695 ceph_pr_addr(&con->peer_addr.in_addr),
1696 req_feat, server_feat, req_feat & ~server_feat);
1697 con->error_msg = "missing required protocol features";
1698 reset_connection(con);
1699 return -1;
1700 }
1701
1702 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1703 con->state = CON_STATE_OPEN;
1704
1705 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1706 con->connect_seq++;
1707 con->peer_features = server_feat;
1708 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1709 con->peer_global_seq,
1710 le32_to_cpu(con->in_reply.connect_seq),
1711 con->connect_seq);
1712 WARN_ON(con->connect_seq !=
1713 le32_to_cpu(con->in_reply.connect_seq));
1714
1715 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1716 con_flag_set(con, CON_FLAG_LOSSYTX);
1717
1718 con->delay = 0; /* reset backoff memory */
1719
1720 prepare_read_tag(con);
1721 break;
1722
1723 case CEPH_MSGR_TAG_WAIT:
1724 /*
1725 * If there is a connection race (we are opening
1726 * connections to each other), one of us may just have
1727 * to WAIT. This shouldn't happen if we are the
1728 * client.
1729 */
1730 pr_err("process_connect got WAIT as client\n");
1731 con->error_msg = "protocol error, got WAIT as client";
1732 return -1;
1733
1734 default:
1735 pr_err("connect protocol error, will retry\n");
1736 con->error_msg = "protocol error, garbage tag during connect";
1737 return -1;
1738 }
1739 return 0;
1740 }
1741
1742
1743 /*
1744 * read (part of) an ack
1745 */
1746 static int read_partial_ack(struct ceph_connection *con)
1747 {
1748 int size = sizeof (con->in_temp_ack);
1749 int end = size;
1750
1751 return read_partial(con, end, size, &con->in_temp_ack);
1752 }
1753
1754
1755 /*
1756 * We can finally discard anything that's been acked.
1757 */
1758 static void process_ack(struct ceph_connection *con)
1759 {
1760 struct ceph_msg *m;
1761 u64 ack = le64_to_cpu(con->in_temp_ack);
1762 u64 seq;
1763
1764 while (!list_empty(&con->out_sent)) {
1765 m = list_first_entry(&con->out_sent, struct ceph_msg,
1766 list_head);
1767 seq = le64_to_cpu(m->hdr.seq);
1768 if (seq > ack)
1769 break;
1770 dout("got ack for seq %llu type %d at %p\n", seq,
1771 le16_to_cpu(m->hdr.type), m);
1772 m->ack_stamp = jiffies;
1773 ceph_msg_remove(m);
1774 }
1775 prepare_read_tag(con);
1776 }
1777
1778
1779
1780
1781 static int read_partial_message_section(struct ceph_connection *con,
1782 struct kvec *section,
1783 unsigned int sec_len, u32 *crc)
1784 {
1785 int ret, left;
1786
1787 BUG_ON(!section);
1788
1789 while (section->iov_len < sec_len) {
1790 BUG_ON(section->iov_base == NULL);
1791 left = sec_len - section->iov_len;
1792 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1793 section->iov_len, left);
1794 if (ret <= 0)
1795 return ret;
1796 section->iov_len += ret;
1797 }
1798 if (section->iov_len == sec_len)
1799 *crc = crc32c(0, section->iov_base, section->iov_len);
1800
1801 return 1;
1802 }
1803
1804 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1805
1806 static int read_partial_message_pages(struct ceph_connection *con,
1807 struct page **pages,
1808 unsigned int data_len, bool do_datacrc)
1809 {
1810 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1811 struct page *page;
1812 void *p;
1813 int ret;
1814 int left;
1815
1816 left = min((int)(data_len - msg_pos->data_pos),
1817 (int)(PAGE_SIZE - msg_pos->page_pos));
1818 /* (page) data */
1819 BUG_ON(pages == NULL);
1820 page = pages[msg_pos->page];
1821 p = kmap(page);
1822 ret = ceph_tcp_recvmsg(con->sock, p + msg_pos->page_pos, left);
1823 if (ret > 0 && do_datacrc)
1824 con->in_data_crc =
1825 crc32c(con->in_data_crc,
1826 p + msg_pos->page_pos, ret);
1827 kunmap(page);
1828 if (ret <= 0)
1829 return ret;
1830
1831 in_msg_pos_next(con, left, ret);
1832
1833 return ret;
1834 }
1835
1836 #ifdef CONFIG_BLOCK
1837 static int read_partial_message_bio(struct ceph_connection *con,
1838 unsigned int data_len, bool do_datacrc)
1839 {
1840 struct ceph_msg *msg = con->in_msg;
1841 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1842 struct bio_vec *bv;
1843 struct page *page;
1844 void *p;
1845 int ret, left;
1846
1847 BUG_ON(!msg);
1848 BUG_ON(!msg->bio_iter);
1849 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1850
1851 left = min((int)(data_len - msg_pos->data_pos),
1852 (int)(bv->bv_len - msg_pos->page_pos));
1853
1854 page = bv->bv_page;
1855 p = kmap(page) + bv->bv_offset;
1856
1857 ret = ceph_tcp_recvmsg(con->sock, p + msg_pos->page_pos, left);
1858 if (ret > 0 && do_datacrc)
1859 con->in_data_crc =
1860 crc32c(con->in_data_crc,
1861 p + msg_pos->page_pos, ret);
1862 kunmap(page);
1863 if (ret <= 0)
1864 return ret;
1865
1866 in_msg_pos_next(con, left, ret);
1867
1868 return ret;
1869 }
1870 #endif
1871
1872 static int read_partial_msg_data(struct ceph_connection *con)
1873 {
1874 struct ceph_msg *msg = con->in_msg;
1875 struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1876 const bool do_datacrc = !con->msgr->nocrc;
1877 unsigned int data_len;
1878 int ret;
1879
1880 BUG_ON(!msg);
1881
1882 data_len = le32_to_cpu(con->in_hdr.data_len);
1883 while (msg_pos->data_pos < data_len) {
1884 if (msg->pages) {
1885 ret = read_partial_message_pages(con, msg->pages,
1886 data_len, do_datacrc);
1887 if (ret <= 0)
1888 return ret;
1889 #ifdef CONFIG_BLOCK
1890 } else if (msg->bio) {
1891 ret = read_partial_message_bio(con,
1892 data_len, do_datacrc);
1893 if (ret <= 0)
1894 return ret;
1895 #endif
1896 } else {
1897 BUG_ON(1);
1898 }
1899 }
1900
1901 return 1; /* must return > 0 to indicate success */
1902 }
1903
1904 /*
1905 * read (part of) a message.
1906 */
1907 static int read_partial_message(struct ceph_connection *con)
1908 {
1909 struct ceph_msg *m = con->in_msg;
1910 int size;
1911 int end;
1912 int ret;
1913 unsigned int front_len, middle_len, data_len;
1914 bool do_datacrc = !con->msgr->nocrc;
1915 u64 seq;
1916 u32 crc;
1917
1918 dout("read_partial_message con %p msg %p\n", con, m);
1919
1920 /* header */
1921 size = sizeof (con->in_hdr);
1922 end = size;
1923 ret = read_partial(con, end, size, &con->in_hdr);
1924 if (ret <= 0)
1925 return ret;
1926
1927 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1928 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1929 pr_err("read_partial_message bad hdr "
1930 " crc %u != expected %u\n",
1931 crc, con->in_hdr.crc);
1932 return -EBADMSG;
1933 }
1934
1935 front_len = le32_to_cpu(con->in_hdr.front_len);
1936 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1937 return -EIO;
1938 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1939 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
1940 return -EIO;
1941 data_len = le32_to_cpu(con->in_hdr.data_len);
1942 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1943 return -EIO;
1944
1945 /* verify seq# */
1946 seq = le64_to_cpu(con->in_hdr.seq);
1947 if ((s64)seq - (s64)con->in_seq < 1) {
1948 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1949 ENTITY_NAME(con->peer_name),
1950 ceph_pr_addr(&con->peer_addr.in_addr),
1951 seq, con->in_seq + 1);
1952 con->in_base_pos = -front_len - middle_len - data_len -
1953 sizeof(m->footer);
1954 con->in_tag = CEPH_MSGR_TAG_READY;
1955 return 0;
1956 } else if ((s64)seq - (s64)con->in_seq > 1) {
1957 pr_err("read_partial_message bad seq %lld expected %lld\n",
1958 seq, con->in_seq + 1);
1959 con->error_msg = "bad message sequence # for incoming message";
1960 return -EBADMSG;
1961 }
1962
1963 /* allocate message? */
1964 if (!con->in_msg) {
1965 int skip = 0;
1966
1967 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1968 front_len, data_len);
1969 ret = ceph_con_in_msg_alloc(con, &skip);
1970 if (ret < 0)
1971 return ret;
1972 if (skip) {
1973 /* skip this message */
1974 dout("alloc_msg said skip message\n");
1975 BUG_ON(con->in_msg);
1976 con->in_base_pos = -front_len - middle_len - data_len -
1977 sizeof(m->footer);
1978 con->in_tag = CEPH_MSGR_TAG_READY;
1979 con->in_seq++;
1980 return 0;
1981 }
1982
1983 BUG_ON(!con->in_msg);
1984 BUG_ON(con->in_msg->con != con);
1985 m = con->in_msg;
1986 m->front.iov_len = 0; /* haven't read it yet */
1987 if (m->middle)
1988 m->middle->vec.iov_len = 0;
1989
1990 /* prepare for data payload, if any */
1991
1992 if (data_len)
1993 prepare_message_data(con->in_msg, &con->in_msg_pos);
1994 }
1995
1996 /* front */
1997 ret = read_partial_message_section(con, &m->front, front_len,
1998 &con->in_front_crc);
1999 if (ret <= 0)
2000 return ret;
2001
2002 /* middle */
2003 if (m->middle) {
2004 ret = read_partial_message_section(con, &m->middle->vec,
2005 middle_len,
2006 &con->in_middle_crc);
2007 if (ret <= 0)
2008 return ret;
2009 }
2010
2011 /* (page) data */
2012 if (data_len) {
2013 ret = read_partial_msg_data(con);
2014 if (ret <= 0)
2015 return ret;
2016 }
2017
2018 /* footer */
2019 size = sizeof (m->footer);
2020 end += size;
2021 ret = read_partial(con, end, size, &m->footer);
2022 if (ret <= 0)
2023 return ret;
2024
2025 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2026 m, front_len, m->footer.front_crc, middle_len,
2027 m->footer.middle_crc, data_len, m->footer.data_crc);
2028
2029 /* crc ok? */
2030 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2031 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2032 m, con->in_front_crc, m->footer.front_crc);
2033 return -EBADMSG;
2034 }
2035 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2036 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2037 m, con->in_middle_crc, m->footer.middle_crc);
2038 return -EBADMSG;
2039 }
2040 if (do_datacrc &&
2041 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2042 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2043 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2044 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2045 return -EBADMSG;
2046 }
2047
2048 return 1; /* done! */
2049 }
2050
2051 /*
2052 * Process message. This happens in the worker thread. The callback should
2053 * be careful not to do anything that waits on other incoming messages or it
2054 * may deadlock.
2055 */
2056 static void process_message(struct ceph_connection *con)
2057 {
2058 struct ceph_msg *msg;
2059
2060 BUG_ON(con->in_msg->con != con);
2061 con->in_msg->con = NULL;
2062 msg = con->in_msg;
2063 con->in_msg = NULL;
2064 con->ops->put(con);
2065
2066 /* if first message, set peer_name */
2067 if (con->peer_name.type == 0)
2068 con->peer_name = msg->hdr.src;
2069
2070 con->in_seq++;
2071 mutex_unlock(&con->mutex);
2072
2073 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2074 msg, le64_to_cpu(msg->hdr.seq),
2075 ENTITY_NAME(msg->hdr.src),
2076 le16_to_cpu(msg->hdr.type),
2077 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2078 le32_to_cpu(msg->hdr.front_len),
2079 le32_to_cpu(msg->hdr.data_len),
2080 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2081 con->ops->dispatch(con, msg);
2082
2083 mutex_lock(&con->mutex);
2084 }
2085
2086
2087 /*
2088 * Write something to the socket. Called in a worker thread when the
2089 * socket appears to be writeable and we have something ready to send.
2090 */
2091 static int try_write(struct ceph_connection *con)
2092 {
2093 int ret = 1;
2094
2095 dout("try_write start %p state %lu\n", con, con->state);
2096
2097 more:
2098 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2099
2100 /* open the socket first? */
2101 if (con->state == CON_STATE_PREOPEN) {
2102 BUG_ON(con->sock);
2103 con->state = CON_STATE_CONNECTING;
2104
2105 con_out_kvec_reset(con);
2106 prepare_write_banner(con);
2107 prepare_read_banner(con);
2108
2109 BUG_ON(con->in_msg);
2110 con->in_tag = CEPH_MSGR_TAG_READY;
2111 dout("try_write initiating connect on %p new state %lu\n",
2112 con, con->state);
2113 ret = ceph_tcp_connect(con);
2114 if (ret < 0) {
2115 con->error_msg = "connect error";
2116 goto out;
2117 }
2118 }
2119
2120 more_kvec:
2121 /* kvec data queued? */
2122 if (con->out_skip) {
2123 ret = write_partial_skip(con);
2124 if (ret <= 0)
2125 goto out;
2126 }
2127 if (con->out_kvec_left) {
2128 ret = write_partial_kvec(con);
2129 if (ret <= 0)
2130 goto out;
2131 }
2132
2133 /* msg pages? */
2134 if (con->out_msg) {
2135 if (con->out_msg_done) {
2136 ceph_msg_put(con->out_msg);
2137 con->out_msg = NULL; /* we're done with this one */
2138 goto do_next;
2139 }
2140
2141 ret = write_partial_message_data(con);
2142 if (ret == 1)
2143 goto more_kvec; /* we need to send the footer, too! */
2144 if (ret == 0)
2145 goto out;
2146 if (ret < 0) {
2147 dout("try_write write_partial_message_data err %d\n",
2148 ret);
2149 goto out;
2150 }
2151 }
2152
2153 do_next:
2154 if (con->state == CON_STATE_OPEN) {
2155 /* is anything else pending? */
2156 if (!list_empty(&con->out_queue)) {
2157 prepare_write_message(con);
2158 goto more;
2159 }
2160 if (con->in_seq > con->in_seq_acked) {
2161 prepare_write_ack(con);
2162 goto more;
2163 }
2164 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2165 prepare_write_keepalive(con);
2166 goto more;
2167 }
2168 }
2169
2170 /* Nothing to do! */
2171 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2172 dout("try_write nothing else to write.\n");
2173 ret = 0;
2174 out:
2175 dout("try_write done on %p ret %d\n", con, ret);
2176 return ret;
2177 }
2178
2179
2180
2181 /*
2182 * Read what we can from the socket.
2183 */
2184 static int try_read(struct ceph_connection *con)
2185 {
2186 int ret = -1;
2187
2188 more:
2189 dout("try_read start on %p state %lu\n", con, con->state);
2190 if (con->state != CON_STATE_CONNECTING &&
2191 con->state != CON_STATE_NEGOTIATING &&
2192 con->state != CON_STATE_OPEN)
2193 return 0;
2194
2195 BUG_ON(!con->sock);
2196
2197 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2198 con->in_base_pos);
2199
2200 if (con->state == CON_STATE_CONNECTING) {
2201 dout("try_read connecting\n");
2202 ret = read_partial_banner(con);
2203 if (ret <= 0)
2204 goto out;
2205 ret = process_banner(con);
2206 if (ret < 0)
2207 goto out;
2208
2209 con->state = CON_STATE_NEGOTIATING;
2210
2211 /*
2212 * Received banner is good, exchange connection info.
2213 * Do not reset out_kvec, as sending our banner raced
2214 * with receiving peer banner after connect completed.
2215 */
2216 ret = prepare_write_connect(con);
2217 if (ret < 0)
2218 goto out;
2219 prepare_read_connect(con);
2220
2221 /* Send connection info before awaiting response */
2222 goto out;
2223 }
2224
2225 if (con->state == CON_STATE_NEGOTIATING) {
2226 dout("try_read negotiating\n");
2227 ret = read_partial_connect(con);
2228 if (ret <= 0)
2229 goto out;
2230 ret = process_connect(con);
2231 if (ret < 0)
2232 goto out;
2233 goto more;
2234 }
2235
2236 WARN_ON(con->state != CON_STATE_OPEN);
2237
2238 if (con->in_base_pos < 0) {
2239 /*
2240 * skipping + discarding content.
2241 *
2242 * FIXME: there must be a better way to do this!
2243 */
2244 static char buf[SKIP_BUF_SIZE];
2245 int skip = min((int) sizeof (buf), -con->in_base_pos);
2246
2247 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2248 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2249 if (ret <= 0)
2250 goto out;
2251 con->in_base_pos += ret;
2252 if (con->in_base_pos)
2253 goto more;
2254 }
2255 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2256 /*
2257 * what's next?
2258 */
2259 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2260 if (ret <= 0)
2261 goto out;
2262 dout("try_read got tag %d\n", (int)con->in_tag);
2263 switch (con->in_tag) {
2264 case CEPH_MSGR_TAG_MSG:
2265 prepare_read_message(con);
2266 break;
2267 case CEPH_MSGR_TAG_ACK:
2268 prepare_read_ack(con);
2269 break;
2270 case CEPH_MSGR_TAG_CLOSE:
2271 con_close_socket(con);
2272 con->state = CON_STATE_CLOSED;
2273 goto out;
2274 default:
2275 goto bad_tag;
2276 }
2277 }
2278 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2279 ret = read_partial_message(con);
2280 if (ret <= 0) {
2281 switch (ret) {
2282 case -EBADMSG:
2283 con->error_msg = "bad crc";
2284 ret = -EIO;
2285 break;
2286 case -EIO:
2287 con->error_msg = "io error";
2288 break;
2289 }
2290 goto out;
2291 }
2292 if (con->in_tag == CEPH_MSGR_TAG_READY)
2293 goto more;
2294 process_message(con);
2295 if (con->state == CON_STATE_OPEN)
2296 prepare_read_tag(con);
2297 goto more;
2298 }
2299 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2300 ret = read_partial_ack(con);
2301 if (ret <= 0)
2302 goto out;
2303 process_ack(con);
2304 goto more;
2305 }
2306
2307 out:
2308 dout("try_read done on %p ret %d\n", con, ret);
2309 return ret;
2310
2311 bad_tag:
2312 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2313 con->error_msg = "protocol error, garbage tag";
2314 ret = -1;
2315 goto out;
2316 }
2317
2318
2319 /*
2320 * Atomically queue work on a connection after the specified delay.
2321 * Bump @con reference to avoid races with connection teardown.
2322 * Returns 0 if work was queued, or an error code otherwise.
2323 */
2324 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2325 {
2326 if (!con->ops->get(con)) {
2327 dout("%s %p ref count 0\n", __func__, con);
2328
2329 return -ENOENT;
2330 }
2331
2332 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2333 dout("%s %p - already queued\n", __func__, con);
2334 con->ops->put(con);
2335
2336 return -EBUSY;
2337 }
2338
2339 dout("%s %p %lu\n", __func__, con, delay);
2340
2341 return 0;
2342 }
2343
2344 static void queue_con(struct ceph_connection *con)
2345 {
2346 (void) queue_con_delay(con, 0);
2347 }
2348
2349 static bool con_sock_closed(struct ceph_connection *con)
2350 {
2351 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2352 return false;
2353
2354 #define CASE(x) \
2355 case CON_STATE_ ## x: \
2356 con->error_msg = "socket closed (con state " #x ")"; \
2357 break;
2358
2359 switch (con->state) {
2360 CASE(CLOSED);
2361 CASE(PREOPEN);
2362 CASE(CONNECTING);
2363 CASE(NEGOTIATING);
2364 CASE(OPEN);
2365 CASE(STANDBY);
2366 default:
2367 pr_warning("%s con %p unrecognized state %lu\n",
2368 __func__, con, con->state);
2369 con->error_msg = "unrecognized con state";
2370 BUG();
2371 break;
2372 }
2373 #undef CASE
2374
2375 return true;
2376 }
2377
2378 static bool con_backoff(struct ceph_connection *con)
2379 {
2380 int ret;
2381
2382 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2383 return false;
2384
2385 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2386 if (ret) {
2387 dout("%s: con %p FAILED to back off %lu\n", __func__,
2388 con, con->delay);
2389 BUG_ON(ret == -ENOENT);
2390 con_flag_set(con, CON_FLAG_BACKOFF);
2391 }
2392
2393 return true;
2394 }
2395
2396 /* Finish fault handling; con->mutex must *not* be held here */
2397
2398 static void con_fault_finish(struct ceph_connection *con)
2399 {
2400 /*
2401 * in case we faulted due to authentication, invalidate our
2402 * current tickets so that we can get new ones.
2403 */
2404 if (con->auth_retry && con->ops->invalidate_authorizer) {
2405 dout("calling invalidate_authorizer()\n");
2406 con->ops->invalidate_authorizer(con);
2407 }
2408
2409 if (con->ops->fault)
2410 con->ops->fault(con);
2411 }
2412
2413 /*
2414 * Do some work on a connection. Drop a connection ref when we're done.
2415 */
2416 static void con_work(struct work_struct *work)
2417 {
2418 struct ceph_connection *con = container_of(work, struct ceph_connection,
2419 work.work);
2420 bool fault;
2421
2422 mutex_lock(&con->mutex);
2423 while (true) {
2424 int ret;
2425
2426 if ((fault = con_sock_closed(con))) {
2427 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2428 break;
2429 }
2430 if (con_backoff(con)) {
2431 dout("%s: con %p BACKOFF\n", __func__, con);
2432 break;
2433 }
2434 if (con->state == CON_STATE_STANDBY) {
2435 dout("%s: con %p STANDBY\n", __func__, con);
2436 break;
2437 }
2438 if (con->state == CON_STATE_CLOSED) {
2439 dout("%s: con %p CLOSED\n", __func__, con);
2440 BUG_ON(con->sock);
2441 break;
2442 }
2443 if (con->state == CON_STATE_PREOPEN) {
2444 dout("%s: con %p PREOPEN\n", __func__, con);
2445 BUG_ON(con->sock);
2446 }
2447
2448 ret = try_read(con);
2449 if (ret < 0) {
2450 if (ret == -EAGAIN)
2451 continue;
2452 con->error_msg = "socket error on read";
2453 fault = true;
2454 break;
2455 }
2456
2457 ret = try_write(con);
2458 if (ret < 0) {
2459 if (ret == -EAGAIN)
2460 continue;
2461 con->error_msg = "socket error on write";
2462 fault = true;
2463 }
2464
2465 break; /* If we make it to here, we're done */
2466 }
2467 if (fault)
2468 con_fault(con);
2469 mutex_unlock(&con->mutex);
2470
2471 if (fault)
2472 con_fault_finish(con);
2473
2474 con->ops->put(con);
2475 }
2476
2477 /*
2478 * Generic error/fault handler. A retry mechanism is used with
2479 * exponential backoff
2480 */
2481 static void con_fault(struct ceph_connection *con)
2482 {
2483 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2484 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2485 dout("fault %p state %lu to peer %s\n",
2486 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2487
2488 WARN_ON(con->state != CON_STATE_CONNECTING &&
2489 con->state != CON_STATE_NEGOTIATING &&
2490 con->state != CON_STATE_OPEN);
2491
2492 con_close_socket(con);
2493
2494 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2495 dout("fault on LOSSYTX channel, marking CLOSED\n");
2496 con->state = CON_STATE_CLOSED;
2497 return;
2498 }
2499
2500 if (con->in_msg) {
2501 BUG_ON(con->in_msg->con != con);
2502 con->in_msg->con = NULL;
2503 ceph_msg_put(con->in_msg);
2504 con->in_msg = NULL;
2505 con->ops->put(con);
2506 }
2507
2508 /* Requeue anything that hasn't been acked */
2509 list_splice_init(&con->out_sent, &con->out_queue);
2510
2511 /* If there are no messages queued or keepalive pending, place
2512 * the connection in a STANDBY state */
2513 if (list_empty(&con->out_queue) &&
2514 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2515 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2516 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2517 con->state = CON_STATE_STANDBY;
2518 } else {
2519 /* retry after a delay. */
2520 con->state = CON_STATE_PREOPEN;
2521 if (con->delay == 0)
2522 con->delay = BASE_DELAY_INTERVAL;
2523 else if (con->delay < MAX_DELAY_INTERVAL)
2524 con->delay *= 2;
2525 con_flag_set(con, CON_FLAG_BACKOFF);
2526 queue_con(con);
2527 }
2528 }
2529
2530
2531
2532 /*
2533 * initialize a new messenger instance
2534 */
2535 void ceph_messenger_init(struct ceph_messenger *msgr,
2536 struct ceph_entity_addr *myaddr,
2537 u32 supported_features,
2538 u32 required_features,
2539 bool nocrc)
2540 {
2541 msgr->supported_features = supported_features;
2542 msgr->required_features = required_features;
2543
2544 spin_lock_init(&msgr->global_seq_lock);
2545
2546 if (myaddr)
2547 msgr->inst.addr = *myaddr;
2548
2549 /* select a random nonce */
2550 msgr->inst.addr.type = 0;
2551 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2552 encode_my_addr(msgr);
2553 msgr->nocrc = nocrc;
2554
2555 atomic_set(&msgr->stopping, 0);
2556
2557 dout("%s %p\n", __func__, msgr);
2558 }
2559 EXPORT_SYMBOL(ceph_messenger_init);
2560
2561 static void clear_standby(struct ceph_connection *con)
2562 {
2563 /* come back from STANDBY? */
2564 if (con->state == CON_STATE_STANDBY) {
2565 dout("clear_standby %p and ++connect_seq\n", con);
2566 con->state = CON_STATE_PREOPEN;
2567 con->connect_seq++;
2568 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2569 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2570 }
2571 }
2572
2573 /*
2574 * Queue up an outgoing message on the given connection.
2575 */
2576 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2577 {
2578 /* set src+dst */
2579 msg->hdr.src = con->msgr->inst.name;
2580 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2581 msg->needs_out_seq = true;
2582
2583 mutex_lock(&con->mutex);
2584
2585 if (con->state == CON_STATE_CLOSED) {
2586 dout("con_send %p closed, dropping %p\n", con, msg);
2587 ceph_msg_put(msg);
2588 mutex_unlock(&con->mutex);
2589 return;
2590 }
2591
2592 BUG_ON(msg->con != NULL);
2593 msg->con = con->ops->get(con);
2594 BUG_ON(msg->con == NULL);
2595
2596 BUG_ON(!list_empty(&msg->list_head));
2597 list_add_tail(&msg->list_head, &con->out_queue);
2598 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2599 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2600 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2601 le32_to_cpu(msg->hdr.front_len),
2602 le32_to_cpu(msg->hdr.middle_len),
2603 le32_to_cpu(msg->hdr.data_len));
2604
2605 clear_standby(con);
2606 mutex_unlock(&con->mutex);
2607
2608 /* if there wasn't anything waiting to send before, queue
2609 * new work */
2610 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2611 queue_con(con);
2612 }
2613 EXPORT_SYMBOL(ceph_con_send);
2614
2615 /*
2616 * Revoke a message that was previously queued for send
2617 */
2618 void ceph_msg_revoke(struct ceph_msg *msg)
2619 {
2620 struct ceph_connection *con = msg->con;
2621
2622 if (!con)
2623 return; /* Message not in our possession */
2624
2625 mutex_lock(&con->mutex);
2626 if (!list_empty(&msg->list_head)) {
2627 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2628 list_del_init(&msg->list_head);
2629 BUG_ON(msg->con == NULL);
2630 msg->con->ops->put(msg->con);
2631 msg->con = NULL;
2632 msg->hdr.seq = 0;
2633
2634 ceph_msg_put(msg);
2635 }
2636 if (con->out_msg == msg) {
2637 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2638 con->out_msg = NULL;
2639 if (con->out_kvec_is_msg) {
2640 con->out_skip = con->out_kvec_bytes;
2641 con->out_kvec_is_msg = false;
2642 }
2643 msg->hdr.seq = 0;
2644
2645 ceph_msg_put(msg);
2646 }
2647 mutex_unlock(&con->mutex);
2648 }
2649
2650 /*
2651 * Revoke a message that we may be reading data into
2652 */
2653 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2654 {
2655 struct ceph_connection *con;
2656
2657 BUG_ON(msg == NULL);
2658 if (!msg->con) {
2659 dout("%s msg %p null con\n", __func__, msg);
2660
2661 return; /* Message not in our possession */
2662 }
2663
2664 con = msg->con;
2665 mutex_lock(&con->mutex);
2666 if (con->in_msg == msg) {
2667 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2668 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2669 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2670
2671 /* skip rest of message */
2672 dout("%s %p msg %p revoked\n", __func__, con, msg);
2673 con->in_base_pos = con->in_base_pos -
2674 sizeof(struct ceph_msg_header) -
2675 front_len -
2676 middle_len -
2677 data_len -
2678 sizeof(struct ceph_msg_footer);
2679 ceph_msg_put(con->in_msg);
2680 con->in_msg = NULL;
2681 con->in_tag = CEPH_MSGR_TAG_READY;
2682 con->in_seq++;
2683 } else {
2684 dout("%s %p in_msg %p msg %p no-op\n",
2685 __func__, con, con->in_msg, msg);
2686 }
2687 mutex_unlock(&con->mutex);
2688 }
2689
2690 /*
2691 * Queue a keepalive byte to ensure the tcp connection is alive.
2692 */
2693 void ceph_con_keepalive(struct ceph_connection *con)
2694 {
2695 dout("con_keepalive %p\n", con);
2696 mutex_lock(&con->mutex);
2697 clear_standby(con);
2698 mutex_unlock(&con->mutex);
2699 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2700 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2701 queue_con(con);
2702 }
2703 EXPORT_SYMBOL(ceph_con_keepalive);
2704
2705 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2706 size_t length, size_t alignment)
2707 {
2708 BUG_ON(!pages);
2709 BUG_ON(!length);
2710 BUG_ON(msg->pages);
2711 BUG_ON(msg->length);
2712
2713 msg->pages = pages;
2714 msg->length = length;
2715 msg->page_alignment = alignment & ~PAGE_MASK;
2716 }
2717 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2718
2719 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2720 struct ceph_pagelist *pagelist)
2721 {
2722 BUG_ON(!pagelist);
2723 BUG_ON(!pagelist->length);
2724 BUG_ON(msg->pagelist);
2725
2726 msg->pagelist = pagelist;
2727 }
2728 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
2729
2730 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
2731 {
2732 BUG_ON(!bio);
2733 BUG_ON(msg->bio);
2734
2735 msg->bio = bio;
2736 }
2737 EXPORT_SYMBOL(ceph_msg_data_set_bio);
2738
2739 void ceph_msg_data_set_trail(struct ceph_msg *msg, struct ceph_pagelist *trail)
2740 {
2741 BUG_ON(!trail);
2742 BUG_ON(!trail->length);
2743 BUG_ON(msg->trail);
2744
2745 msg->trail = trail;
2746 }
2747 EXPORT_SYMBOL(ceph_msg_data_set_trail);
2748
2749 /*
2750 * construct a new message with given type, size
2751 * the new msg has a ref count of 1.
2752 */
2753 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2754 bool can_fail)
2755 {
2756 struct ceph_msg *m;
2757
2758 m = kzalloc(sizeof(*m), flags);
2759 if (m == NULL)
2760 goto out;
2761
2762 m->hdr.type = cpu_to_le16(type);
2763 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2764 m->hdr.front_len = cpu_to_le32(front_len);
2765
2766 INIT_LIST_HEAD(&m->list_head);
2767 kref_init(&m->kref);
2768
2769 /* front */
2770 m->front_max = front_len;
2771 if (front_len) {
2772 if (front_len > PAGE_CACHE_SIZE) {
2773 m->front.iov_base = __vmalloc(front_len, flags,
2774 PAGE_KERNEL);
2775 m->front_is_vmalloc = true;
2776 } else {
2777 m->front.iov_base = kmalloc(front_len, flags);
2778 }
2779 if (m->front.iov_base == NULL) {
2780 dout("ceph_msg_new can't allocate %d bytes\n",
2781 front_len);
2782 goto out2;
2783 }
2784 } else {
2785 m->front.iov_base = NULL;
2786 }
2787 m->front.iov_len = front_len;
2788
2789 dout("ceph_msg_new %p front %d\n", m, front_len);
2790 return m;
2791
2792 out2:
2793 ceph_msg_put(m);
2794 out:
2795 if (!can_fail) {
2796 pr_err("msg_new can't create type %d front %d\n", type,
2797 front_len);
2798 WARN_ON(1);
2799 } else {
2800 dout("msg_new can't create type %d front %d\n", type,
2801 front_len);
2802 }
2803 return NULL;
2804 }
2805 EXPORT_SYMBOL(ceph_msg_new);
2806
2807 /*
2808 * Allocate "middle" portion of a message, if it is needed and wasn't
2809 * allocated by alloc_msg. This allows us to read a small fixed-size
2810 * per-type header in the front and then gracefully fail (i.e.,
2811 * propagate the error to the caller based on info in the front) when
2812 * the middle is too large.
2813 */
2814 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2815 {
2816 int type = le16_to_cpu(msg->hdr.type);
2817 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2818
2819 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2820 ceph_msg_type_name(type), middle_len);
2821 BUG_ON(!middle_len);
2822 BUG_ON(msg->middle);
2823
2824 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2825 if (!msg->middle)
2826 return -ENOMEM;
2827 return 0;
2828 }
2829
2830 /*
2831 * Allocate a message for receiving an incoming message on a
2832 * connection, and save the result in con->in_msg. Uses the
2833 * connection's private alloc_msg op if available.
2834 *
2835 * Returns 0 on success, or a negative error code.
2836 *
2837 * On success, if we set *skip = 1:
2838 * - the next message should be skipped and ignored.
2839 * - con->in_msg == NULL
2840 * or if we set *skip = 0:
2841 * - con->in_msg is non-null.
2842 * On error (ENOMEM, EAGAIN, ...),
2843 * - con->in_msg == NULL
2844 */
2845 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2846 {
2847 struct ceph_msg_header *hdr = &con->in_hdr;
2848 int middle_len = le32_to_cpu(hdr->middle_len);
2849 struct ceph_msg *msg;
2850 int ret = 0;
2851
2852 BUG_ON(con->in_msg != NULL);
2853 BUG_ON(!con->ops->alloc_msg);
2854
2855 mutex_unlock(&con->mutex);
2856 msg = con->ops->alloc_msg(con, hdr, skip);
2857 mutex_lock(&con->mutex);
2858 if (con->state != CON_STATE_OPEN) {
2859 if (msg)
2860 ceph_msg_put(msg);
2861 return -EAGAIN;
2862 }
2863 if (msg) {
2864 BUG_ON(*skip);
2865 con->in_msg = msg;
2866 con->in_msg->con = con->ops->get(con);
2867 BUG_ON(con->in_msg->con == NULL);
2868 } else {
2869 /*
2870 * Null message pointer means either we should skip
2871 * this message or we couldn't allocate memory. The
2872 * former is not an error.
2873 */
2874 if (*skip)
2875 return 0;
2876 con->error_msg = "error allocating memory for incoming message";
2877
2878 return -ENOMEM;
2879 }
2880 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2881
2882 if (middle_len && !con->in_msg->middle) {
2883 ret = ceph_alloc_middle(con, con->in_msg);
2884 if (ret < 0) {
2885 ceph_msg_put(con->in_msg);
2886 con->in_msg = NULL;
2887 }
2888 }
2889
2890 return ret;
2891 }
2892
2893
2894 /*
2895 * Free a generically kmalloc'd message.
2896 */
2897 void ceph_msg_kfree(struct ceph_msg *m)
2898 {
2899 dout("msg_kfree %p\n", m);
2900 if (m->front_is_vmalloc)
2901 vfree(m->front.iov_base);
2902 else
2903 kfree(m->front.iov_base);
2904 kfree(m);
2905 }
2906
2907 /*
2908 * Drop a msg ref. Destroy as needed.
2909 */
2910 void ceph_msg_last_put(struct kref *kref)
2911 {
2912 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2913
2914 dout("ceph_msg_put last one on %p\n", m);
2915 WARN_ON(!list_empty(&m->list_head));
2916
2917 /* drop middle, data, if any */
2918 if (m->middle) {
2919 ceph_buffer_put(m->middle);
2920 m->middle = NULL;
2921 }
2922 m->length = 0;
2923 m->pages = NULL;
2924
2925 if (m->pagelist) {
2926 ceph_pagelist_release(m->pagelist);
2927 kfree(m->pagelist);
2928 m->pagelist = NULL;
2929 }
2930
2931 m->trail = NULL;
2932
2933 if (m->pool)
2934 ceph_msgpool_put(m->pool, m);
2935 else
2936 ceph_msg_kfree(m);
2937 }
2938 EXPORT_SYMBOL(ceph_msg_last_put);
2939
2940 void ceph_msg_dump(struct ceph_msg *msg)
2941 {
2942 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
2943 msg->front_max, msg->length);
2944 print_hex_dump(KERN_DEBUG, "header: ",
2945 DUMP_PREFIX_OFFSET, 16, 1,
2946 &msg->hdr, sizeof(msg->hdr), true);
2947 print_hex_dump(KERN_DEBUG, " front: ",
2948 DUMP_PREFIX_OFFSET, 16, 1,
2949 msg->front.iov_base, msg->front.iov_len, true);
2950 if (msg->middle)
2951 print_hex_dump(KERN_DEBUG, "middle: ",
2952 DUMP_PREFIX_OFFSET, 16, 1,
2953 msg->middle->vec.iov_base,
2954 msg->middle->vec.iov_len, true);
2955 print_hex_dump(KERN_DEBUG, "footer: ",
2956 DUMP_PREFIX_OFFSET, 16, 1,
2957 &msg->footer, sizeof(msg->footer), true);
2958 }
2959 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.151902 seconds and 6 git commands to generate.