Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25
26 #define list_entry_next(pos, member) \
27 list_entry(pos->member.next, typeof(*pos), member)
28
29 /*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38 /*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86 /*
87 * connection states
88 */
89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
95
96 /*
97 * ceph_connection flag bits
98 */
99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
100 * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105
106 static bool con_flag_valid(unsigned long con_flag)
107 {
108 switch (con_flag) {
109 case CON_FLAG_LOSSYTX:
110 case CON_FLAG_KEEPALIVE_PENDING:
111 case CON_FLAG_WRITE_PENDING:
112 case CON_FLAG_SOCK_CLOSED:
113 case CON_FLAG_BACKOFF:
114 return true;
115 default:
116 return false;
117 }
118 }
119
120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 {
122 BUG_ON(!con_flag_valid(con_flag));
123
124 clear_bit(con_flag, &con->flags);
125 }
126
127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 {
129 BUG_ON(!con_flag_valid(con_flag));
130
131 set_bit(con_flag, &con->flags);
132 }
133
134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 {
136 BUG_ON(!con_flag_valid(con_flag));
137
138 return test_bit(con_flag, &con->flags);
139 }
140
141 static bool con_flag_test_and_clear(struct ceph_connection *con,
142 unsigned long con_flag)
143 {
144 BUG_ON(!con_flag_valid(con_flag));
145
146 return test_and_clear_bit(con_flag, &con->flags);
147 }
148
149 static bool con_flag_test_and_set(struct ceph_connection *con,
150 unsigned long con_flag)
151 {
152 BUG_ON(!con_flag_valid(con_flag));
153
154 return test_and_set_bit(con_flag, &con->flags);
155 }
156
157 /* Slab caches for frequently-allocated structures */
158
159 static struct kmem_cache *ceph_msg_cache;
160 static struct kmem_cache *ceph_msg_data_cache;
161
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg = CEPH_MSGR_TAG_MSG;
164 static char tag_ack = CEPH_MSGR_TAG_ACK;
165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
167
168 #ifdef CONFIG_LOCKDEP
169 static struct lock_class_key socket_class;
170 #endif
171
172 /*
173 * When skipping (ignoring) a block of input we read it into a "skip
174 * buffer," which is this many bytes in size.
175 */
176 #define SKIP_BUF_SIZE 1024
177
178 static void queue_con(struct ceph_connection *con);
179 static void cancel_con(struct ceph_connection *con);
180 static void ceph_con_workfn(struct work_struct *);
181 static void con_fault(struct ceph_connection *con);
182
183 /*
184 * Nicely render a sockaddr as a string. An array of formatted
185 * strings is used, to approximate reentrancy.
186 */
187 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
188 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
189 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
190 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
191
192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
193 static atomic_t addr_str_seq = ATOMIC_INIT(0);
194
195 static struct page *zero_page; /* used in certain error cases */
196
197 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
198 {
199 int i;
200 char *s;
201 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
202 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
203
204 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
205 s = addr_str[i];
206
207 switch (ss->ss_family) {
208 case AF_INET:
209 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
210 ntohs(in4->sin_port));
211 break;
212
213 case AF_INET6:
214 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
215 ntohs(in6->sin6_port));
216 break;
217
218 default:
219 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
220 ss->ss_family);
221 }
222
223 return s;
224 }
225 EXPORT_SYMBOL(ceph_pr_addr);
226
227 static void encode_my_addr(struct ceph_messenger *msgr)
228 {
229 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
230 ceph_encode_addr(&msgr->my_enc_addr);
231 }
232
233 /*
234 * work queue for all reading and writing to/from the socket.
235 */
236 static struct workqueue_struct *ceph_msgr_wq;
237
238 static int ceph_msgr_slab_init(void)
239 {
240 BUG_ON(ceph_msg_cache);
241 ceph_msg_cache = kmem_cache_create("ceph_msg",
242 sizeof (struct ceph_msg),
243 __alignof__(struct ceph_msg), 0, NULL);
244
245 if (!ceph_msg_cache)
246 return -ENOMEM;
247
248 BUG_ON(ceph_msg_data_cache);
249 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
250 sizeof (struct ceph_msg_data),
251 __alignof__(struct ceph_msg_data),
252 0, NULL);
253 if (ceph_msg_data_cache)
254 return 0;
255
256 kmem_cache_destroy(ceph_msg_cache);
257 ceph_msg_cache = NULL;
258
259 return -ENOMEM;
260 }
261
262 static void ceph_msgr_slab_exit(void)
263 {
264 BUG_ON(!ceph_msg_data_cache);
265 kmem_cache_destroy(ceph_msg_data_cache);
266 ceph_msg_data_cache = NULL;
267
268 BUG_ON(!ceph_msg_cache);
269 kmem_cache_destroy(ceph_msg_cache);
270 ceph_msg_cache = NULL;
271 }
272
273 static void _ceph_msgr_exit(void)
274 {
275 if (ceph_msgr_wq) {
276 destroy_workqueue(ceph_msgr_wq);
277 ceph_msgr_wq = NULL;
278 }
279
280 BUG_ON(zero_page == NULL);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283
284 ceph_msgr_slab_exit();
285 }
286
287 int ceph_msgr_init(void)
288 {
289 if (ceph_msgr_slab_init())
290 return -ENOMEM;
291
292 BUG_ON(zero_page != NULL);
293 zero_page = ZERO_PAGE(0);
294 page_cache_get(zero_page);
295
296 /*
297 * The number of active work items is limited by the number of
298 * connections, so leave @max_active at default.
299 */
300 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
301 if (ceph_msgr_wq)
302 return 0;
303
304 pr_err("msgr_init failed to create workqueue\n");
305 _ceph_msgr_exit();
306
307 return -ENOMEM;
308 }
309 EXPORT_SYMBOL(ceph_msgr_init);
310
311 void ceph_msgr_exit(void)
312 {
313 BUG_ON(ceph_msgr_wq == NULL);
314
315 _ceph_msgr_exit();
316 }
317 EXPORT_SYMBOL(ceph_msgr_exit);
318
319 void ceph_msgr_flush(void)
320 {
321 flush_workqueue(ceph_msgr_wq);
322 }
323 EXPORT_SYMBOL(ceph_msgr_flush);
324
325 /* Connection socket state transition functions */
326
327 static void con_sock_state_init(struct ceph_connection *con)
328 {
329 int old_state;
330
331 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
333 printk("%s: unexpected old state %d\n", __func__, old_state);
334 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
335 CON_SOCK_STATE_CLOSED);
336 }
337
338 static void con_sock_state_connecting(struct ceph_connection *con)
339 {
340 int old_state;
341
342 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
343 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
344 printk("%s: unexpected old state %d\n", __func__, old_state);
345 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
346 CON_SOCK_STATE_CONNECTING);
347 }
348
349 static void con_sock_state_connected(struct ceph_connection *con)
350 {
351 int old_state;
352
353 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
354 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
355 printk("%s: unexpected old state %d\n", __func__, old_state);
356 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357 CON_SOCK_STATE_CONNECTED);
358 }
359
360 static void con_sock_state_closing(struct ceph_connection *con)
361 {
362 int old_state;
363
364 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
365 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
366 old_state != CON_SOCK_STATE_CONNECTED &&
367 old_state != CON_SOCK_STATE_CLOSING))
368 printk("%s: unexpected old state %d\n", __func__, old_state);
369 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
370 CON_SOCK_STATE_CLOSING);
371 }
372
373 static void con_sock_state_closed(struct ceph_connection *con)
374 {
375 int old_state;
376
377 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
378 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
379 old_state != CON_SOCK_STATE_CLOSING &&
380 old_state != CON_SOCK_STATE_CONNECTING &&
381 old_state != CON_SOCK_STATE_CLOSED))
382 printk("%s: unexpected old state %d\n", __func__, old_state);
383 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
384 CON_SOCK_STATE_CLOSED);
385 }
386
387 /*
388 * socket callback functions
389 */
390
391 /* data available on socket, or listen socket received a connect */
392 static void ceph_sock_data_ready(struct sock *sk)
393 {
394 struct ceph_connection *con = sk->sk_user_data;
395 if (atomic_read(&con->msgr->stopping)) {
396 return;
397 }
398
399 if (sk->sk_state != TCP_CLOSE_WAIT) {
400 dout("%s on %p state = %lu, queueing work\n", __func__,
401 con, con->state);
402 queue_con(con);
403 }
404 }
405
406 /* socket has buffer space for writing */
407 static void ceph_sock_write_space(struct sock *sk)
408 {
409 struct ceph_connection *con = sk->sk_user_data;
410
411 /* only queue to workqueue if there is data we want to write,
412 * and there is sufficient space in the socket buffer to accept
413 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
414 * doesn't get called again until try_write() fills the socket
415 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
416 * and net/core/stream.c:sk_stream_write_space().
417 */
418 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
419 if (sk_stream_is_writeable(sk)) {
420 dout("%s %p queueing write work\n", __func__, con);
421 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
422 queue_con(con);
423 }
424 } else {
425 dout("%s %p nothing to write\n", __func__, con);
426 }
427 }
428
429 /* socket's state has changed */
430 static void ceph_sock_state_change(struct sock *sk)
431 {
432 struct ceph_connection *con = sk->sk_user_data;
433
434 dout("%s %p state = %lu sk_state = %u\n", __func__,
435 con, con->state, sk->sk_state);
436
437 switch (sk->sk_state) {
438 case TCP_CLOSE:
439 dout("%s TCP_CLOSE\n", __func__);
440 case TCP_CLOSE_WAIT:
441 dout("%s TCP_CLOSE_WAIT\n", __func__);
442 con_sock_state_closing(con);
443 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
444 queue_con(con);
445 break;
446 case TCP_ESTABLISHED:
447 dout("%s TCP_ESTABLISHED\n", __func__);
448 con_sock_state_connected(con);
449 queue_con(con);
450 break;
451 default: /* Everything else is uninteresting */
452 break;
453 }
454 }
455
456 /*
457 * set up socket callbacks
458 */
459 static void set_sock_callbacks(struct socket *sock,
460 struct ceph_connection *con)
461 {
462 struct sock *sk = sock->sk;
463 sk->sk_user_data = con;
464 sk->sk_data_ready = ceph_sock_data_ready;
465 sk->sk_write_space = ceph_sock_write_space;
466 sk->sk_state_change = ceph_sock_state_change;
467 }
468
469
470 /*
471 * socket helpers
472 */
473
474 /*
475 * initiate connection to a remote socket.
476 */
477 static int ceph_tcp_connect(struct ceph_connection *con)
478 {
479 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
480 struct socket *sock;
481 int ret;
482
483 BUG_ON(con->sock);
484 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
485 SOCK_STREAM, IPPROTO_TCP, &sock);
486 if (ret)
487 return ret;
488 sock->sk->sk_allocation = GFP_NOFS;
489
490 #ifdef CONFIG_LOCKDEP
491 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
492 #endif
493
494 set_sock_callbacks(sock, con);
495
496 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497
498 con_sock_state_connecting(con);
499 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 O_NONBLOCK);
501 if (ret == -EINPROGRESS) {
502 dout("connect %s EINPROGRESS sk_state = %u\n",
503 ceph_pr_addr(&con->peer_addr.in_addr),
504 sock->sk->sk_state);
505 } else if (ret < 0) {
506 pr_err("connect %s error %d\n",
507 ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 sock_release(sock);
509 return ret;
510 }
511
512 if (con->msgr->tcp_nodelay) {
513 int optval = 1;
514
515 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
516 (char *)&optval, sizeof(optval));
517 if (ret)
518 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
519 ret);
520 }
521
522 con->sock = sock;
523 return 0;
524 }
525
526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
527 {
528 struct kvec iov = {buf, len};
529 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
530 int r;
531
532 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
533 if (r == -EAGAIN)
534 r = 0;
535 return r;
536 }
537
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 int page_offset, size_t length)
540 {
541 void *kaddr;
542 int ret;
543
544 BUG_ON(page_offset + length > PAGE_SIZE);
545
546 kaddr = kmap(page);
547 BUG_ON(!kaddr);
548 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
549 kunmap(page);
550
551 return ret;
552 }
553
554 /*
555 * write something. @more is true if caller will be sending more data
556 * shortly.
557 */
558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
559 size_t kvlen, size_t len, int more)
560 {
561 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
562 int r;
563
564 if (more)
565 msg.msg_flags |= MSG_MORE;
566 else
567 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
568
569 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
570 if (r == -EAGAIN)
571 r = 0;
572 return r;
573 }
574
575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
576 int offset, size_t size, bool more)
577 {
578 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
579 int ret;
580
581 ret = kernel_sendpage(sock, page, offset, size, flags);
582 if (ret == -EAGAIN)
583 ret = 0;
584
585 return ret;
586 }
587
588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
589 int offset, size_t size, bool more)
590 {
591 int ret;
592 struct kvec iov;
593
594 /* sendpage cannot properly handle pages with page_count == 0,
595 * we need to fallback to sendmsg if that's the case */
596 if (page_count(page) >= 1)
597 return __ceph_tcp_sendpage(sock, page, offset, size, more);
598
599 iov.iov_base = kmap(page) + offset;
600 iov.iov_len = size;
601 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
602 kunmap(page);
603
604 return ret;
605 }
606
607 /*
608 * Shutdown/close the socket for the given connection.
609 */
610 static int con_close_socket(struct ceph_connection *con)
611 {
612 int rc = 0;
613
614 dout("con_close_socket on %p sock %p\n", con, con->sock);
615 if (con->sock) {
616 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
617 sock_release(con->sock);
618 con->sock = NULL;
619 }
620
621 /*
622 * Forcibly clear the SOCK_CLOSED flag. It gets set
623 * independent of the connection mutex, and we could have
624 * received a socket close event before we had the chance to
625 * shut the socket down.
626 */
627 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
628
629 con_sock_state_closed(con);
630 return rc;
631 }
632
633 /*
634 * Reset a connection. Discard all incoming and outgoing messages
635 * and clear *_seq state.
636 */
637 static void ceph_msg_remove(struct ceph_msg *msg)
638 {
639 list_del_init(&msg->list_head);
640 BUG_ON(msg->con == NULL);
641 msg->con->ops->put(msg->con);
642 msg->con = NULL;
643
644 ceph_msg_put(msg);
645 }
646 static void ceph_msg_remove_list(struct list_head *head)
647 {
648 while (!list_empty(head)) {
649 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
650 list_head);
651 ceph_msg_remove(msg);
652 }
653 }
654
655 static void reset_connection(struct ceph_connection *con)
656 {
657 /* reset connection, out_queue, msg_ and connect_seq */
658 /* discard existing out_queue and msg_seq */
659 dout("reset_connection %p\n", con);
660 ceph_msg_remove_list(&con->out_queue);
661 ceph_msg_remove_list(&con->out_sent);
662
663 if (con->in_msg) {
664 BUG_ON(con->in_msg->con != con);
665 con->in_msg->con = NULL;
666 ceph_msg_put(con->in_msg);
667 con->in_msg = NULL;
668 con->ops->put(con);
669 }
670
671 con->connect_seq = 0;
672 con->out_seq = 0;
673 if (con->out_msg) {
674 ceph_msg_put(con->out_msg);
675 con->out_msg = NULL;
676 }
677 con->in_seq = 0;
678 con->in_seq_acked = 0;
679 }
680
681 /*
682 * mark a peer down. drop any open connections.
683 */
684 void ceph_con_close(struct ceph_connection *con)
685 {
686 mutex_lock(&con->mutex);
687 dout("con_close %p peer %s\n", con,
688 ceph_pr_addr(&con->peer_addr.in_addr));
689 con->state = CON_STATE_CLOSED;
690
691 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
692 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
693 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
694 con_flag_clear(con, CON_FLAG_BACKOFF);
695
696 reset_connection(con);
697 con->peer_global_seq = 0;
698 cancel_con(con);
699 con_close_socket(con);
700 mutex_unlock(&con->mutex);
701 }
702 EXPORT_SYMBOL(ceph_con_close);
703
704 /*
705 * Reopen a closed connection, with a new peer address.
706 */
707 void ceph_con_open(struct ceph_connection *con,
708 __u8 entity_type, __u64 entity_num,
709 struct ceph_entity_addr *addr)
710 {
711 mutex_lock(&con->mutex);
712 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
713
714 WARN_ON(con->state != CON_STATE_CLOSED);
715 con->state = CON_STATE_PREOPEN;
716
717 con->peer_name.type = (__u8) entity_type;
718 con->peer_name.num = cpu_to_le64(entity_num);
719
720 memcpy(&con->peer_addr, addr, sizeof(*addr));
721 con->delay = 0; /* reset backoff memory */
722 mutex_unlock(&con->mutex);
723 queue_con(con);
724 }
725 EXPORT_SYMBOL(ceph_con_open);
726
727 /*
728 * return true if this connection ever successfully opened
729 */
730 bool ceph_con_opened(struct ceph_connection *con)
731 {
732 return con->connect_seq > 0;
733 }
734
735 /*
736 * initialize a new connection.
737 */
738 void ceph_con_init(struct ceph_connection *con, void *private,
739 const struct ceph_connection_operations *ops,
740 struct ceph_messenger *msgr)
741 {
742 dout("con_init %p\n", con);
743 memset(con, 0, sizeof(*con));
744 con->private = private;
745 con->ops = ops;
746 con->msgr = msgr;
747
748 con_sock_state_init(con);
749
750 mutex_init(&con->mutex);
751 INIT_LIST_HEAD(&con->out_queue);
752 INIT_LIST_HEAD(&con->out_sent);
753 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
754
755 con->state = CON_STATE_CLOSED;
756 }
757 EXPORT_SYMBOL(ceph_con_init);
758
759
760 /*
761 * We maintain a global counter to order connection attempts. Get
762 * a unique seq greater than @gt.
763 */
764 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
765 {
766 u32 ret;
767
768 spin_lock(&msgr->global_seq_lock);
769 if (msgr->global_seq < gt)
770 msgr->global_seq = gt;
771 ret = ++msgr->global_seq;
772 spin_unlock(&msgr->global_seq_lock);
773 return ret;
774 }
775
776 static void con_out_kvec_reset(struct ceph_connection *con)
777 {
778 con->out_kvec_left = 0;
779 con->out_kvec_bytes = 0;
780 con->out_kvec_cur = &con->out_kvec[0];
781 }
782
783 static void con_out_kvec_add(struct ceph_connection *con,
784 size_t size, void *data)
785 {
786 int index;
787
788 index = con->out_kvec_left;
789 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
790
791 con->out_kvec[index].iov_len = size;
792 con->out_kvec[index].iov_base = data;
793 con->out_kvec_left++;
794 con->out_kvec_bytes += size;
795 }
796
797 #ifdef CONFIG_BLOCK
798
799 /*
800 * For a bio data item, a piece is whatever remains of the next
801 * entry in the current bio iovec, or the first entry in the next
802 * bio in the list.
803 */
804 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
805 size_t length)
806 {
807 struct ceph_msg_data *data = cursor->data;
808 struct bio *bio;
809
810 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
811
812 bio = data->bio;
813 BUG_ON(!bio);
814
815 cursor->resid = min(length, data->bio_length);
816 cursor->bio = bio;
817 cursor->bvec_iter = bio->bi_iter;
818 cursor->last_piece =
819 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
820 }
821
822 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
823 size_t *page_offset,
824 size_t *length)
825 {
826 struct ceph_msg_data *data = cursor->data;
827 struct bio *bio;
828 struct bio_vec bio_vec;
829
830 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
831
832 bio = cursor->bio;
833 BUG_ON(!bio);
834
835 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
836
837 *page_offset = (size_t) bio_vec.bv_offset;
838 BUG_ON(*page_offset >= PAGE_SIZE);
839 if (cursor->last_piece) /* pagelist offset is always 0 */
840 *length = cursor->resid;
841 else
842 *length = (size_t) bio_vec.bv_len;
843 BUG_ON(*length > cursor->resid);
844 BUG_ON(*page_offset + *length > PAGE_SIZE);
845
846 return bio_vec.bv_page;
847 }
848
849 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
850 size_t bytes)
851 {
852 struct bio *bio;
853 struct bio_vec bio_vec;
854
855 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
856
857 bio = cursor->bio;
858 BUG_ON(!bio);
859
860 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
861
862 /* Advance the cursor offset */
863
864 BUG_ON(cursor->resid < bytes);
865 cursor->resid -= bytes;
866
867 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
868
869 if (bytes < bio_vec.bv_len)
870 return false; /* more bytes to process in this segment */
871
872 /* Move on to the next segment, and possibly the next bio */
873
874 if (!cursor->bvec_iter.bi_size) {
875 bio = bio->bi_next;
876 cursor->bio = bio;
877 if (bio)
878 cursor->bvec_iter = bio->bi_iter;
879 else
880 memset(&cursor->bvec_iter, 0,
881 sizeof(cursor->bvec_iter));
882 }
883
884 if (!cursor->last_piece) {
885 BUG_ON(!cursor->resid);
886 BUG_ON(!bio);
887 /* A short read is OK, so use <= rather than == */
888 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
889 cursor->last_piece = true;
890 }
891
892 return true;
893 }
894 #endif /* CONFIG_BLOCK */
895
896 /*
897 * For a page array, a piece comes from the first page in the array
898 * that has not already been fully consumed.
899 */
900 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
901 size_t length)
902 {
903 struct ceph_msg_data *data = cursor->data;
904 int page_count;
905
906 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
907
908 BUG_ON(!data->pages);
909 BUG_ON(!data->length);
910
911 cursor->resid = min(length, data->length);
912 page_count = calc_pages_for(data->alignment, (u64)data->length);
913 cursor->page_offset = data->alignment & ~PAGE_MASK;
914 cursor->page_index = 0;
915 BUG_ON(page_count > (int)USHRT_MAX);
916 cursor->page_count = (unsigned short)page_count;
917 BUG_ON(length > SIZE_MAX - cursor->page_offset);
918 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
919 }
920
921 static struct page *
922 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
923 size_t *page_offset, size_t *length)
924 {
925 struct ceph_msg_data *data = cursor->data;
926
927 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
928
929 BUG_ON(cursor->page_index >= cursor->page_count);
930 BUG_ON(cursor->page_offset >= PAGE_SIZE);
931
932 *page_offset = cursor->page_offset;
933 if (cursor->last_piece)
934 *length = cursor->resid;
935 else
936 *length = PAGE_SIZE - *page_offset;
937
938 return data->pages[cursor->page_index];
939 }
940
941 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
942 size_t bytes)
943 {
944 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
945
946 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
947
948 /* Advance the cursor page offset */
949
950 cursor->resid -= bytes;
951 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
952 if (!bytes || cursor->page_offset)
953 return false; /* more bytes to process in the current page */
954
955 if (!cursor->resid)
956 return false; /* no more data */
957
958 /* Move on to the next page; offset is already at 0 */
959
960 BUG_ON(cursor->page_index >= cursor->page_count);
961 cursor->page_index++;
962 cursor->last_piece = cursor->resid <= PAGE_SIZE;
963
964 return true;
965 }
966
967 /*
968 * For a pagelist, a piece is whatever remains to be consumed in the
969 * first page in the list, or the front of the next page.
970 */
971 static void
972 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
973 size_t length)
974 {
975 struct ceph_msg_data *data = cursor->data;
976 struct ceph_pagelist *pagelist;
977 struct page *page;
978
979 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
980
981 pagelist = data->pagelist;
982 BUG_ON(!pagelist);
983
984 if (!length)
985 return; /* pagelist can be assigned but empty */
986
987 BUG_ON(list_empty(&pagelist->head));
988 page = list_first_entry(&pagelist->head, struct page, lru);
989
990 cursor->resid = min(length, pagelist->length);
991 cursor->page = page;
992 cursor->offset = 0;
993 cursor->last_piece = cursor->resid <= PAGE_SIZE;
994 }
995
996 static struct page *
997 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
998 size_t *page_offset, size_t *length)
999 {
1000 struct ceph_msg_data *data = cursor->data;
1001 struct ceph_pagelist *pagelist;
1002
1003 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1004
1005 pagelist = data->pagelist;
1006 BUG_ON(!pagelist);
1007
1008 BUG_ON(!cursor->page);
1009 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1010
1011 /* offset of first page in pagelist is always 0 */
1012 *page_offset = cursor->offset & ~PAGE_MASK;
1013 if (cursor->last_piece)
1014 *length = cursor->resid;
1015 else
1016 *length = PAGE_SIZE - *page_offset;
1017
1018 return cursor->page;
1019 }
1020
1021 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1022 size_t bytes)
1023 {
1024 struct ceph_msg_data *data = cursor->data;
1025 struct ceph_pagelist *pagelist;
1026
1027 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1028
1029 pagelist = data->pagelist;
1030 BUG_ON(!pagelist);
1031
1032 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1033 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1034
1035 /* Advance the cursor offset */
1036
1037 cursor->resid -= bytes;
1038 cursor->offset += bytes;
1039 /* offset of first page in pagelist is always 0 */
1040 if (!bytes || cursor->offset & ~PAGE_MASK)
1041 return false; /* more bytes to process in the current page */
1042
1043 if (!cursor->resid)
1044 return false; /* no more data */
1045
1046 /* Move on to the next page */
1047
1048 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1049 cursor->page = list_entry_next(cursor->page, lru);
1050 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1051
1052 return true;
1053 }
1054
1055 /*
1056 * Message data is handled (sent or received) in pieces, where each
1057 * piece resides on a single page. The network layer might not
1058 * consume an entire piece at once. A data item's cursor keeps
1059 * track of which piece is next to process and how much remains to
1060 * be processed in that piece. It also tracks whether the current
1061 * piece is the last one in the data item.
1062 */
1063 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1064 {
1065 size_t length = cursor->total_resid;
1066
1067 switch (cursor->data->type) {
1068 case CEPH_MSG_DATA_PAGELIST:
1069 ceph_msg_data_pagelist_cursor_init(cursor, length);
1070 break;
1071 case CEPH_MSG_DATA_PAGES:
1072 ceph_msg_data_pages_cursor_init(cursor, length);
1073 break;
1074 #ifdef CONFIG_BLOCK
1075 case CEPH_MSG_DATA_BIO:
1076 ceph_msg_data_bio_cursor_init(cursor, length);
1077 break;
1078 #endif /* CONFIG_BLOCK */
1079 case CEPH_MSG_DATA_NONE:
1080 default:
1081 /* BUG(); */
1082 break;
1083 }
1084 cursor->need_crc = true;
1085 }
1086
1087 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1088 {
1089 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1090 struct ceph_msg_data *data;
1091
1092 BUG_ON(!length);
1093 BUG_ON(length > msg->data_length);
1094 BUG_ON(list_empty(&msg->data));
1095
1096 cursor->data_head = &msg->data;
1097 cursor->total_resid = length;
1098 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1099 cursor->data = data;
1100
1101 __ceph_msg_data_cursor_init(cursor);
1102 }
1103
1104 /*
1105 * Return the page containing the next piece to process for a given
1106 * data item, and supply the page offset and length of that piece.
1107 * Indicate whether this is the last piece in this data item.
1108 */
1109 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1110 size_t *page_offset, size_t *length,
1111 bool *last_piece)
1112 {
1113 struct page *page;
1114
1115 switch (cursor->data->type) {
1116 case CEPH_MSG_DATA_PAGELIST:
1117 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1118 break;
1119 case CEPH_MSG_DATA_PAGES:
1120 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1121 break;
1122 #ifdef CONFIG_BLOCK
1123 case CEPH_MSG_DATA_BIO:
1124 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1125 break;
1126 #endif /* CONFIG_BLOCK */
1127 case CEPH_MSG_DATA_NONE:
1128 default:
1129 page = NULL;
1130 break;
1131 }
1132 BUG_ON(!page);
1133 BUG_ON(*page_offset + *length > PAGE_SIZE);
1134 BUG_ON(!*length);
1135 if (last_piece)
1136 *last_piece = cursor->last_piece;
1137
1138 return page;
1139 }
1140
1141 /*
1142 * Returns true if the result moves the cursor on to the next piece
1143 * of the data item.
1144 */
1145 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1146 size_t bytes)
1147 {
1148 bool new_piece;
1149
1150 BUG_ON(bytes > cursor->resid);
1151 switch (cursor->data->type) {
1152 case CEPH_MSG_DATA_PAGELIST:
1153 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1154 break;
1155 case CEPH_MSG_DATA_PAGES:
1156 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1157 break;
1158 #ifdef CONFIG_BLOCK
1159 case CEPH_MSG_DATA_BIO:
1160 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1161 break;
1162 #endif /* CONFIG_BLOCK */
1163 case CEPH_MSG_DATA_NONE:
1164 default:
1165 BUG();
1166 break;
1167 }
1168 cursor->total_resid -= bytes;
1169
1170 if (!cursor->resid && cursor->total_resid) {
1171 WARN_ON(!cursor->last_piece);
1172 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1173 cursor->data = list_entry_next(cursor->data, links);
1174 __ceph_msg_data_cursor_init(cursor);
1175 new_piece = true;
1176 }
1177 cursor->need_crc = new_piece;
1178
1179 return new_piece;
1180 }
1181
1182 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1183 {
1184 BUG_ON(!msg);
1185 BUG_ON(!data_len);
1186
1187 /* Initialize data cursor */
1188
1189 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1190 }
1191
1192 /*
1193 * Prepare footer for currently outgoing message, and finish things
1194 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1195 */
1196 static void prepare_write_message_footer(struct ceph_connection *con)
1197 {
1198 struct ceph_msg *m = con->out_msg;
1199 int v = con->out_kvec_left;
1200
1201 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1202
1203 dout("prepare_write_message_footer %p\n", con);
1204 con->out_kvec_is_msg = true;
1205 con->out_kvec[v].iov_base = &m->footer;
1206 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1207 if (con->ops->sign_message)
1208 con->ops->sign_message(con, m);
1209 else
1210 m->footer.sig = 0;
1211 con->out_kvec[v].iov_len = sizeof(m->footer);
1212 con->out_kvec_bytes += sizeof(m->footer);
1213 } else {
1214 m->old_footer.flags = m->footer.flags;
1215 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1216 con->out_kvec_bytes += sizeof(m->old_footer);
1217 }
1218 con->out_kvec_left++;
1219 con->out_more = m->more_to_follow;
1220 con->out_msg_done = true;
1221 }
1222
1223 /*
1224 * Prepare headers for the next outgoing message.
1225 */
1226 static void prepare_write_message(struct ceph_connection *con)
1227 {
1228 struct ceph_msg *m;
1229 u32 crc;
1230
1231 con_out_kvec_reset(con);
1232 con->out_kvec_is_msg = true;
1233 con->out_msg_done = false;
1234
1235 /* Sneak an ack in there first? If we can get it into the same
1236 * TCP packet that's a good thing. */
1237 if (con->in_seq > con->in_seq_acked) {
1238 con->in_seq_acked = con->in_seq;
1239 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1240 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1241 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1242 &con->out_temp_ack);
1243 }
1244
1245 BUG_ON(list_empty(&con->out_queue));
1246 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1247 con->out_msg = m;
1248 BUG_ON(m->con != con);
1249
1250 /* put message on sent list */
1251 ceph_msg_get(m);
1252 list_move_tail(&m->list_head, &con->out_sent);
1253
1254 /*
1255 * only assign outgoing seq # if we haven't sent this message
1256 * yet. if it is requeued, resend with it's original seq.
1257 */
1258 if (m->needs_out_seq) {
1259 m->hdr.seq = cpu_to_le64(++con->out_seq);
1260 m->needs_out_seq = false;
1261 }
1262 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1263
1264 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1265 m, con->out_seq, le16_to_cpu(m->hdr.type),
1266 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1267 m->data_length);
1268 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1269
1270 /* tag + hdr + front + middle */
1271 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1272 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1273 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1274
1275 if (m->middle)
1276 con_out_kvec_add(con, m->middle->vec.iov_len,
1277 m->middle->vec.iov_base);
1278
1279 /* fill in crc (except data pages), footer */
1280 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1281 con->out_msg->hdr.crc = cpu_to_le32(crc);
1282 con->out_msg->footer.flags = 0;
1283
1284 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1285 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1286 if (m->middle) {
1287 crc = crc32c(0, m->middle->vec.iov_base,
1288 m->middle->vec.iov_len);
1289 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1290 } else
1291 con->out_msg->footer.middle_crc = 0;
1292 dout("%s front_crc %u middle_crc %u\n", __func__,
1293 le32_to_cpu(con->out_msg->footer.front_crc),
1294 le32_to_cpu(con->out_msg->footer.middle_crc));
1295
1296 /* is there a data payload? */
1297 con->out_msg->footer.data_crc = 0;
1298 if (m->data_length) {
1299 prepare_message_data(con->out_msg, m->data_length);
1300 con->out_more = 1; /* data + footer will follow */
1301 } else {
1302 /* no, queue up footer too and be done */
1303 prepare_write_message_footer(con);
1304 }
1305
1306 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1307 }
1308
1309 /*
1310 * Prepare an ack.
1311 */
1312 static void prepare_write_ack(struct ceph_connection *con)
1313 {
1314 dout("prepare_write_ack %p %llu -> %llu\n", con,
1315 con->in_seq_acked, con->in_seq);
1316 con->in_seq_acked = con->in_seq;
1317
1318 con_out_kvec_reset(con);
1319
1320 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1321
1322 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1323 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1324 &con->out_temp_ack);
1325
1326 con->out_more = 1; /* more will follow.. eventually.. */
1327 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1328 }
1329
1330 /*
1331 * Prepare to share the seq during handshake
1332 */
1333 static void prepare_write_seq(struct ceph_connection *con)
1334 {
1335 dout("prepare_write_seq %p %llu -> %llu\n", con,
1336 con->in_seq_acked, con->in_seq);
1337 con->in_seq_acked = con->in_seq;
1338
1339 con_out_kvec_reset(con);
1340
1341 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1342 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1343 &con->out_temp_ack);
1344
1345 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1346 }
1347
1348 /*
1349 * Prepare to write keepalive byte.
1350 */
1351 static void prepare_write_keepalive(struct ceph_connection *con)
1352 {
1353 dout("prepare_write_keepalive %p\n", con);
1354 con_out_kvec_reset(con);
1355 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1356 struct timespec now = CURRENT_TIME;
1357
1358 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1359 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1360 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1361 &con->out_temp_keepalive2);
1362 } else {
1363 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1364 }
1365 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1366 }
1367
1368 /*
1369 * Connection negotiation.
1370 */
1371
1372 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1373 int *auth_proto)
1374 {
1375 struct ceph_auth_handshake *auth;
1376
1377 if (!con->ops->get_authorizer) {
1378 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1379 con->out_connect.authorizer_len = 0;
1380 return NULL;
1381 }
1382
1383 /* Can't hold the mutex while getting authorizer */
1384 mutex_unlock(&con->mutex);
1385 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1386 mutex_lock(&con->mutex);
1387
1388 if (IS_ERR(auth))
1389 return auth;
1390 if (con->state != CON_STATE_NEGOTIATING)
1391 return ERR_PTR(-EAGAIN);
1392
1393 con->auth_reply_buf = auth->authorizer_reply_buf;
1394 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1395 return auth;
1396 }
1397
1398 /*
1399 * We connected to a peer and are saying hello.
1400 */
1401 static void prepare_write_banner(struct ceph_connection *con)
1402 {
1403 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1404 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1405 &con->msgr->my_enc_addr);
1406
1407 con->out_more = 0;
1408 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1409 }
1410
1411 static int prepare_write_connect(struct ceph_connection *con)
1412 {
1413 unsigned int global_seq = get_global_seq(con->msgr, 0);
1414 int proto;
1415 int auth_proto;
1416 struct ceph_auth_handshake *auth;
1417
1418 switch (con->peer_name.type) {
1419 case CEPH_ENTITY_TYPE_MON:
1420 proto = CEPH_MONC_PROTOCOL;
1421 break;
1422 case CEPH_ENTITY_TYPE_OSD:
1423 proto = CEPH_OSDC_PROTOCOL;
1424 break;
1425 case CEPH_ENTITY_TYPE_MDS:
1426 proto = CEPH_MDSC_PROTOCOL;
1427 break;
1428 default:
1429 BUG();
1430 }
1431
1432 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1433 con->connect_seq, global_seq, proto);
1434
1435 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1436 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1437 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1438 con->out_connect.global_seq = cpu_to_le32(global_seq);
1439 con->out_connect.protocol_version = cpu_to_le32(proto);
1440 con->out_connect.flags = 0;
1441
1442 auth_proto = CEPH_AUTH_UNKNOWN;
1443 auth = get_connect_authorizer(con, &auth_proto);
1444 if (IS_ERR(auth))
1445 return PTR_ERR(auth);
1446
1447 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1448 con->out_connect.authorizer_len = auth ?
1449 cpu_to_le32(auth->authorizer_buf_len) : 0;
1450
1451 con_out_kvec_add(con, sizeof (con->out_connect),
1452 &con->out_connect);
1453 if (auth && auth->authorizer_buf_len)
1454 con_out_kvec_add(con, auth->authorizer_buf_len,
1455 auth->authorizer_buf);
1456
1457 con->out_more = 0;
1458 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * write as much of pending kvecs to the socket as we can.
1465 * 1 -> done
1466 * 0 -> socket full, but more to do
1467 * <0 -> error
1468 */
1469 static int write_partial_kvec(struct ceph_connection *con)
1470 {
1471 int ret;
1472
1473 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1474 while (con->out_kvec_bytes > 0) {
1475 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1476 con->out_kvec_left, con->out_kvec_bytes,
1477 con->out_more);
1478 if (ret <= 0)
1479 goto out;
1480 con->out_kvec_bytes -= ret;
1481 if (con->out_kvec_bytes == 0)
1482 break; /* done */
1483
1484 /* account for full iov entries consumed */
1485 while (ret >= con->out_kvec_cur->iov_len) {
1486 BUG_ON(!con->out_kvec_left);
1487 ret -= con->out_kvec_cur->iov_len;
1488 con->out_kvec_cur++;
1489 con->out_kvec_left--;
1490 }
1491 /* and for a partially-consumed entry */
1492 if (ret) {
1493 con->out_kvec_cur->iov_len -= ret;
1494 con->out_kvec_cur->iov_base += ret;
1495 }
1496 }
1497 con->out_kvec_left = 0;
1498 con->out_kvec_is_msg = false;
1499 ret = 1;
1500 out:
1501 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1502 con->out_kvec_bytes, con->out_kvec_left, ret);
1503 return ret; /* done! */
1504 }
1505
1506 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1507 unsigned int page_offset,
1508 unsigned int length)
1509 {
1510 char *kaddr;
1511
1512 kaddr = kmap(page);
1513 BUG_ON(kaddr == NULL);
1514 crc = crc32c(crc, kaddr + page_offset, length);
1515 kunmap(page);
1516
1517 return crc;
1518 }
1519 /*
1520 * Write as much message data payload as we can. If we finish, queue
1521 * up the footer.
1522 * 1 -> done, footer is now queued in out_kvec[].
1523 * 0 -> socket full, but more to do
1524 * <0 -> error
1525 */
1526 static int write_partial_message_data(struct ceph_connection *con)
1527 {
1528 struct ceph_msg *msg = con->out_msg;
1529 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1530 bool do_datacrc = !con->msgr->nocrc;
1531 u32 crc;
1532
1533 dout("%s %p msg %p\n", __func__, con, msg);
1534
1535 if (list_empty(&msg->data))
1536 return -EINVAL;
1537
1538 /*
1539 * Iterate through each page that contains data to be
1540 * written, and send as much as possible for each.
1541 *
1542 * If we are calculating the data crc (the default), we will
1543 * need to map the page. If we have no pages, they have
1544 * been revoked, so use the zero page.
1545 */
1546 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1547 while (cursor->resid) {
1548 struct page *page;
1549 size_t page_offset;
1550 size_t length;
1551 bool last_piece;
1552 bool need_crc;
1553 int ret;
1554
1555 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1556 &last_piece);
1557 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1558 length, !last_piece);
1559 if (ret <= 0) {
1560 if (do_datacrc)
1561 msg->footer.data_crc = cpu_to_le32(crc);
1562
1563 return ret;
1564 }
1565 if (do_datacrc && cursor->need_crc)
1566 crc = ceph_crc32c_page(crc, page, page_offset, length);
1567 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1568 }
1569
1570 dout("%s %p msg %p done\n", __func__, con, msg);
1571
1572 /* prepare and queue up footer, too */
1573 if (do_datacrc)
1574 msg->footer.data_crc = cpu_to_le32(crc);
1575 else
1576 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1577 con_out_kvec_reset(con);
1578 prepare_write_message_footer(con);
1579
1580 return 1; /* must return > 0 to indicate success */
1581 }
1582
1583 /*
1584 * write some zeros
1585 */
1586 static int write_partial_skip(struct ceph_connection *con)
1587 {
1588 int ret;
1589
1590 while (con->out_skip > 0) {
1591 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1592
1593 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1594 if (ret <= 0)
1595 goto out;
1596 con->out_skip -= ret;
1597 }
1598 ret = 1;
1599 out:
1600 return ret;
1601 }
1602
1603 /*
1604 * Prepare to read connection handshake, or an ack.
1605 */
1606 static void prepare_read_banner(struct ceph_connection *con)
1607 {
1608 dout("prepare_read_banner %p\n", con);
1609 con->in_base_pos = 0;
1610 }
1611
1612 static void prepare_read_connect(struct ceph_connection *con)
1613 {
1614 dout("prepare_read_connect %p\n", con);
1615 con->in_base_pos = 0;
1616 }
1617
1618 static void prepare_read_ack(struct ceph_connection *con)
1619 {
1620 dout("prepare_read_ack %p\n", con);
1621 con->in_base_pos = 0;
1622 }
1623
1624 static void prepare_read_seq(struct ceph_connection *con)
1625 {
1626 dout("prepare_read_seq %p\n", con);
1627 con->in_base_pos = 0;
1628 con->in_tag = CEPH_MSGR_TAG_SEQ;
1629 }
1630
1631 static void prepare_read_tag(struct ceph_connection *con)
1632 {
1633 dout("prepare_read_tag %p\n", con);
1634 con->in_base_pos = 0;
1635 con->in_tag = CEPH_MSGR_TAG_READY;
1636 }
1637
1638 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1639 {
1640 dout("prepare_read_keepalive_ack %p\n", con);
1641 con->in_base_pos = 0;
1642 }
1643
1644 /*
1645 * Prepare to read a message.
1646 */
1647 static int prepare_read_message(struct ceph_connection *con)
1648 {
1649 dout("prepare_read_message %p\n", con);
1650 BUG_ON(con->in_msg != NULL);
1651 con->in_base_pos = 0;
1652 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1653 return 0;
1654 }
1655
1656
1657 static int read_partial(struct ceph_connection *con,
1658 int end, int size, void *object)
1659 {
1660 while (con->in_base_pos < end) {
1661 int left = end - con->in_base_pos;
1662 int have = size - left;
1663 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1664 if (ret <= 0)
1665 return ret;
1666 con->in_base_pos += ret;
1667 }
1668 return 1;
1669 }
1670
1671
1672 /*
1673 * Read all or part of the connect-side handshake on a new connection
1674 */
1675 static int read_partial_banner(struct ceph_connection *con)
1676 {
1677 int size;
1678 int end;
1679 int ret;
1680
1681 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1682
1683 /* peer's banner */
1684 size = strlen(CEPH_BANNER);
1685 end = size;
1686 ret = read_partial(con, end, size, con->in_banner);
1687 if (ret <= 0)
1688 goto out;
1689
1690 size = sizeof (con->actual_peer_addr);
1691 end += size;
1692 ret = read_partial(con, end, size, &con->actual_peer_addr);
1693 if (ret <= 0)
1694 goto out;
1695
1696 size = sizeof (con->peer_addr_for_me);
1697 end += size;
1698 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1699 if (ret <= 0)
1700 goto out;
1701
1702 out:
1703 return ret;
1704 }
1705
1706 static int read_partial_connect(struct ceph_connection *con)
1707 {
1708 int size;
1709 int end;
1710 int ret;
1711
1712 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1713
1714 size = sizeof (con->in_reply);
1715 end = size;
1716 ret = read_partial(con, end, size, &con->in_reply);
1717 if (ret <= 0)
1718 goto out;
1719
1720 size = le32_to_cpu(con->in_reply.authorizer_len);
1721 end += size;
1722 ret = read_partial(con, end, size, con->auth_reply_buf);
1723 if (ret <= 0)
1724 goto out;
1725
1726 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1727 con, (int)con->in_reply.tag,
1728 le32_to_cpu(con->in_reply.connect_seq),
1729 le32_to_cpu(con->in_reply.global_seq));
1730 out:
1731 return ret;
1732
1733 }
1734
1735 /*
1736 * Verify the hello banner looks okay.
1737 */
1738 static int verify_hello(struct ceph_connection *con)
1739 {
1740 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1741 pr_err("connect to %s got bad banner\n",
1742 ceph_pr_addr(&con->peer_addr.in_addr));
1743 con->error_msg = "protocol error, bad banner";
1744 return -1;
1745 }
1746 return 0;
1747 }
1748
1749 static bool addr_is_blank(struct sockaddr_storage *ss)
1750 {
1751 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1752 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1753
1754 switch (ss->ss_family) {
1755 case AF_INET:
1756 return addr->s_addr == htonl(INADDR_ANY);
1757 case AF_INET6:
1758 return ipv6_addr_any(addr6);
1759 default:
1760 return true;
1761 }
1762 }
1763
1764 static int addr_port(struct sockaddr_storage *ss)
1765 {
1766 switch (ss->ss_family) {
1767 case AF_INET:
1768 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1769 case AF_INET6:
1770 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1771 }
1772 return 0;
1773 }
1774
1775 static void addr_set_port(struct sockaddr_storage *ss, int p)
1776 {
1777 switch (ss->ss_family) {
1778 case AF_INET:
1779 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1780 break;
1781 case AF_INET6:
1782 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1783 break;
1784 }
1785 }
1786
1787 /*
1788 * Unlike other *_pton function semantics, zero indicates success.
1789 */
1790 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1791 char delim, const char **ipend)
1792 {
1793 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1794 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1795
1796 memset(ss, 0, sizeof(*ss));
1797
1798 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1799 ss->ss_family = AF_INET;
1800 return 0;
1801 }
1802
1803 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1804 ss->ss_family = AF_INET6;
1805 return 0;
1806 }
1807
1808 return -EINVAL;
1809 }
1810
1811 /*
1812 * Extract hostname string and resolve using kernel DNS facility.
1813 */
1814 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1815 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1816 struct sockaddr_storage *ss, char delim, const char **ipend)
1817 {
1818 const char *end, *delim_p;
1819 char *colon_p, *ip_addr = NULL;
1820 int ip_len, ret;
1821
1822 /*
1823 * The end of the hostname occurs immediately preceding the delimiter or
1824 * the port marker (':') where the delimiter takes precedence.
1825 */
1826 delim_p = memchr(name, delim, namelen);
1827 colon_p = memchr(name, ':', namelen);
1828
1829 if (delim_p && colon_p)
1830 end = delim_p < colon_p ? delim_p : colon_p;
1831 else if (!delim_p && colon_p)
1832 end = colon_p;
1833 else {
1834 end = delim_p;
1835 if (!end) /* case: hostname:/ */
1836 end = name + namelen;
1837 }
1838
1839 if (end <= name)
1840 return -EINVAL;
1841
1842 /* do dns_resolve upcall */
1843 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1844 if (ip_len > 0)
1845 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1846 else
1847 ret = -ESRCH;
1848
1849 kfree(ip_addr);
1850
1851 *ipend = end;
1852
1853 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1854 ret, ret ? "failed" : ceph_pr_addr(ss));
1855
1856 return ret;
1857 }
1858 #else
1859 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1860 struct sockaddr_storage *ss, char delim, const char **ipend)
1861 {
1862 return -EINVAL;
1863 }
1864 #endif
1865
1866 /*
1867 * Parse a server name (IP or hostname). If a valid IP address is not found
1868 * then try to extract a hostname to resolve using userspace DNS upcall.
1869 */
1870 static int ceph_parse_server_name(const char *name, size_t namelen,
1871 struct sockaddr_storage *ss, char delim, const char **ipend)
1872 {
1873 int ret;
1874
1875 ret = ceph_pton(name, namelen, ss, delim, ipend);
1876 if (ret)
1877 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1878
1879 return ret;
1880 }
1881
1882 /*
1883 * Parse an ip[:port] list into an addr array. Use the default
1884 * monitor port if a port isn't specified.
1885 */
1886 int ceph_parse_ips(const char *c, const char *end,
1887 struct ceph_entity_addr *addr,
1888 int max_count, int *count)
1889 {
1890 int i, ret = -EINVAL;
1891 const char *p = c;
1892
1893 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1894 for (i = 0; i < max_count; i++) {
1895 const char *ipend;
1896 struct sockaddr_storage *ss = &addr[i].in_addr;
1897 int port;
1898 char delim = ',';
1899
1900 if (*p == '[') {
1901 delim = ']';
1902 p++;
1903 }
1904
1905 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1906 if (ret)
1907 goto bad;
1908 ret = -EINVAL;
1909
1910 p = ipend;
1911
1912 if (delim == ']') {
1913 if (*p != ']') {
1914 dout("missing matching ']'\n");
1915 goto bad;
1916 }
1917 p++;
1918 }
1919
1920 /* port? */
1921 if (p < end && *p == ':') {
1922 port = 0;
1923 p++;
1924 while (p < end && *p >= '0' && *p <= '9') {
1925 port = (port * 10) + (*p - '0');
1926 p++;
1927 }
1928 if (port == 0)
1929 port = CEPH_MON_PORT;
1930 else if (port > 65535)
1931 goto bad;
1932 } else {
1933 port = CEPH_MON_PORT;
1934 }
1935
1936 addr_set_port(ss, port);
1937
1938 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1939
1940 if (p == end)
1941 break;
1942 if (*p != ',')
1943 goto bad;
1944 p++;
1945 }
1946
1947 if (p != end)
1948 goto bad;
1949
1950 if (count)
1951 *count = i + 1;
1952 return 0;
1953
1954 bad:
1955 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1956 return ret;
1957 }
1958 EXPORT_SYMBOL(ceph_parse_ips);
1959
1960 static int process_banner(struct ceph_connection *con)
1961 {
1962 dout("process_banner on %p\n", con);
1963
1964 if (verify_hello(con) < 0)
1965 return -1;
1966
1967 ceph_decode_addr(&con->actual_peer_addr);
1968 ceph_decode_addr(&con->peer_addr_for_me);
1969
1970 /*
1971 * Make sure the other end is who we wanted. note that the other
1972 * end may not yet know their ip address, so if it's 0.0.0.0, give
1973 * them the benefit of the doubt.
1974 */
1975 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1976 sizeof(con->peer_addr)) != 0 &&
1977 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1978 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1979 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1980 ceph_pr_addr(&con->peer_addr.in_addr),
1981 (int)le32_to_cpu(con->peer_addr.nonce),
1982 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1983 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1984 con->error_msg = "wrong peer at address";
1985 return -1;
1986 }
1987
1988 /*
1989 * did we learn our address?
1990 */
1991 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1992 int port = addr_port(&con->msgr->inst.addr.in_addr);
1993
1994 memcpy(&con->msgr->inst.addr.in_addr,
1995 &con->peer_addr_for_me.in_addr,
1996 sizeof(con->peer_addr_for_me.in_addr));
1997 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1998 encode_my_addr(con->msgr);
1999 dout("process_banner learned my addr is %s\n",
2000 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2001 }
2002
2003 return 0;
2004 }
2005
2006 static int process_connect(struct ceph_connection *con)
2007 {
2008 u64 sup_feat = con->msgr->supported_features;
2009 u64 req_feat = con->msgr->required_features;
2010 u64 server_feat = ceph_sanitize_features(
2011 le64_to_cpu(con->in_reply.features));
2012 int ret;
2013
2014 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2015
2016 switch (con->in_reply.tag) {
2017 case CEPH_MSGR_TAG_FEATURES:
2018 pr_err("%s%lld %s feature set mismatch,"
2019 " my %llx < server's %llx, missing %llx\n",
2020 ENTITY_NAME(con->peer_name),
2021 ceph_pr_addr(&con->peer_addr.in_addr),
2022 sup_feat, server_feat, server_feat & ~sup_feat);
2023 con->error_msg = "missing required protocol features";
2024 reset_connection(con);
2025 return -1;
2026
2027 case CEPH_MSGR_TAG_BADPROTOVER:
2028 pr_err("%s%lld %s protocol version mismatch,"
2029 " my %d != server's %d\n",
2030 ENTITY_NAME(con->peer_name),
2031 ceph_pr_addr(&con->peer_addr.in_addr),
2032 le32_to_cpu(con->out_connect.protocol_version),
2033 le32_to_cpu(con->in_reply.protocol_version));
2034 con->error_msg = "protocol version mismatch";
2035 reset_connection(con);
2036 return -1;
2037
2038 case CEPH_MSGR_TAG_BADAUTHORIZER:
2039 con->auth_retry++;
2040 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2041 con->auth_retry);
2042 if (con->auth_retry == 2) {
2043 con->error_msg = "connect authorization failure";
2044 return -1;
2045 }
2046 con_out_kvec_reset(con);
2047 ret = prepare_write_connect(con);
2048 if (ret < 0)
2049 return ret;
2050 prepare_read_connect(con);
2051 break;
2052
2053 case CEPH_MSGR_TAG_RESETSESSION:
2054 /*
2055 * If we connected with a large connect_seq but the peer
2056 * has no record of a session with us (no connection, or
2057 * connect_seq == 0), they will send RESETSESION to indicate
2058 * that they must have reset their session, and may have
2059 * dropped messages.
2060 */
2061 dout("process_connect got RESET peer seq %u\n",
2062 le32_to_cpu(con->in_reply.connect_seq));
2063 pr_err("%s%lld %s connection reset\n",
2064 ENTITY_NAME(con->peer_name),
2065 ceph_pr_addr(&con->peer_addr.in_addr));
2066 reset_connection(con);
2067 con_out_kvec_reset(con);
2068 ret = prepare_write_connect(con);
2069 if (ret < 0)
2070 return ret;
2071 prepare_read_connect(con);
2072
2073 /* Tell ceph about it. */
2074 mutex_unlock(&con->mutex);
2075 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2076 if (con->ops->peer_reset)
2077 con->ops->peer_reset(con);
2078 mutex_lock(&con->mutex);
2079 if (con->state != CON_STATE_NEGOTIATING)
2080 return -EAGAIN;
2081 break;
2082
2083 case CEPH_MSGR_TAG_RETRY_SESSION:
2084 /*
2085 * If we sent a smaller connect_seq than the peer has, try
2086 * again with a larger value.
2087 */
2088 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2089 le32_to_cpu(con->out_connect.connect_seq),
2090 le32_to_cpu(con->in_reply.connect_seq));
2091 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2092 con_out_kvec_reset(con);
2093 ret = prepare_write_connect(con);
2094 if (ret < 0)
2095 return ret;
2096 prepare_read_connect(con);
2097 break;
2098
2099 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2100 /*
2101 * If we sent a smaller global_seq than the peer has, try
2102 * again with a larger value.
2103 */
2104 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2105 con->peer_global_seq,
2106 le32_to_cpu(con->in_reply.global_seq));
2107 get_global_seq(con->msgr,
2108 le32_to_cpu(con->in_reply.global_seq));
2109 con_out_kvec_reset(con);
2110 ret = prepare_write_connect(con);
2111 if (ret < 0)
2112 return ret;
2113 prepare_read_connect(con);
2114 break;
2115
2116 case CEPH_MSGR_TAG_SEQ:
2117 case CEPH_MSGR_TAG_READY:
2118 if (req_feat & ~server_feat) {
2119 pr_err("%s%lld %s protocol feature mismatch,"
2120 " my required %llx > server's %llx, need %llx\n",
2121 ENTITY_NAME(con->peer_name),
2122 ceph_pr_addr(&con->peer_addr.in_addr),
2123 req_feat, server_feat, req_feat & ~server_feat);
2124 con->error_msg = "missing required protocol features";
2125 reset_connection(con);
2126 return -1;
2127 }
2128
2129 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2130 con->state = CON_STATE_OPEN;
2131 con->auth_retry = 0; /* we authenticated; clear flag */
2132 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2133 con->connect_seq++;
2134 con->peer_features = server_feat;
2135 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2136 con->peer_global_seq,
2137 le32_to_cpu(con->in_reply.connect_seq),
2138 con->connect_seq);
2139 WARN_ON(con->connect_seq !=
2140 le32_to_cpu(con->in_reply.connect_seq));
2141
2142 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2143 con_flag_set(con, CON_FLAG_LOSSYTX);
2144
2145 con->delay = 0; /* reset backoff memory */
2146
2147 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2148 prepare_write_seq(con);
2149 prepare_read_seq(con);
2150 } else {
2151 prepare_read_tag(con);
2152 }
2153 break;
2154
2155 case CEPH_MSGR_TAG_WAIT:
2156 /*
2157 * If there is a connection race (we are opening
2158 * connections to each other), one of us may just have
2159 * to WAIT. This shouldn't happen if we are the
2160 * client.
2161 */
2162 con->error_msg = "protocol error, got WAIT as client";
2163 return -1;
2164
2165 default:
2166 con->error_msg = "protocol error, garbage tag during connect";
2167 return -1;
2168 }
2169 return 0;
2170 }
2171
2172
2173 /*
2174 * read (part of) an ack
2175 */
2176 static int read_partial_ack(struct ceph_connection *con)
2177 {
2178 int size = sizeof (con->in_temp_ack);
2179 int end = size;
2180
2181 return read_partial(con, end, size, &con->in_temp_ack);
2182 }
2183
2184 /*
2185 * We can finally discard anything that's been acked.
2186 */
2187 static void process_ack(struct ceph_connection *con)
2188 {
2189 struct ceph_msg *m;
2190 u64 ack = le64_to_cpu(con->in_temp_ack);
2191 u64 seq;
2192
2193 while (!list_empty(&con->out_sent)) {
2194 m = list_first_entry(&con->out_sent, struct ceph_msg,
2195 list_head);
2196 seq = le64_to_cpu(m->hdr.seq);
2197 if (seq > ack)
2198 break;
2199 dout("got ack for seq %llu type %d at %p\n", seq,
2200 le16_to_cpu(m->hdr.type), m);
2201 m->ack_stamp = jiffies;
2202 ceph_msg_remove(m);
2203 }
2204 prepare_read_tag(con);
2205 }
2206
2207
2208 static int read_partial_message_section(struct ceph_connection *con,
2209 struct kvec *section,
2210 unsigned int sec_len, u32 *crc)
2211 {
2212 int ret, left;
2213
2214 BUG_ON(!section);
2215
2216 while (section->iov_len < sec_len) {
2217 BUG_ON(section->iov_base == NULL);
2218 left = sec_len - section->iov_len;
2219 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2220 section->iov_len, left);
2221 if (ret <= 0)
2222 return ret;
2223 section->iov_len += ret;
2224 }
2225 if (section->iov_len == sec_len)
2226 *crc = crc32c(0, section->iov_base, section->iov_len);
2227
2228 return 1;
2229 }
2230
2231 static int read_partial_msg_data(struct ceph_connection *con)
2232 {
2233 struct ceph_msg *msg = con->in_msg;
2234 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2235 const bool do_datacrc = !con->msgr->nocrc;
2236 struct page *page;
2237 size_t page_offset;
2238 size_t length;
2239 u32 crc = 0;
2240 int ret;
2241
2242 BUG_ON(!msg);
2243 if (list_empty(&msg->data))
2244 return -EIO;
2245
2246 if (do_datacrc)
2247 crc = con->in_data_crc;
2248 while (cursor->resid) {
2249 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2250 NULL);
2251 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2252 if (ret <= 0) {
2253 if (do_datacrc)
2254 con->in_data_crc = crc;
2255
2256 return ret;
2257 }
2258
2259 if (do_datacrc)
2260 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2261 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2262 }
2263 if (do_datacrc)
2264 con->in_data_crc = crc;
2265
2266 return 1; /* must return > 0 to indicate success */
2267 }
2268
2269 /*
2270 * read (part of) a message.
2271 */
2272 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2273
2274 static int read_partial_message(struct ceph_connection *con)
2275 {
2276 struct ceph_msg *m = con->in_msg;
2277 int size;
2278 int end;
2279 int ret;
2280 unsigned int front_len, middle_len, data_len;
2281 bool do_datacrc = !con->msgr->nocrc;
2282 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2283 u64 seq;
2284 u32 crc;
2285
2286 dout("read_partial_message con %p msg %p\n", con, m);
2287
2288 /* header */
2289 size = sizeof (con->in_hdr);
2290 end = size;
2291 ret = read_partial(con, end, size, &con->in_hdr);
2292 if (ret <= 0)
2293 return ret;
2294
2295 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2296 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2297 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2298 crc, con->in_hdr.crc);
2299 return -EBADMSG;
2300 }
2301
2302 front_len = le32_to_cpu(con->in_hdr.front_len);
2303 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2304 return -EIO;
2305 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2306 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2307 return -EIO;
2308 data_len = le32_to_cpu(con->in_hdr.data_len);
2309 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2310 return -EIO;
2311
2312 /* verify seq# */
2313 seq = le64_to_cpu(con->in_hdr.seq);
2314 if ((s64)seq - (s64)con->in_seq < 1) {
2315 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2316 ENTITY_NAME(con->peer_name),
2317 ceph_pr_addr(&con->peer_addr.in_addr),
2318 seq, con->in_seq + 1);
2319 con->in_base_pos = -front_len - middle_len - data_len -
2320 sizeof(m->footer);
2321 con->in_tag = CEPH_MSGR_TAG_READY;
2322 return 0;
2323 } else if ((s64)seq - (s64)con->in_seq > 1) {
2324 pr_err("read_partial_message bad seq %lld expected %lld\n",
2325 seq, con->in_seq + 1);
2326 con->error_msg = "bad message sequence # for incoming message";
2327 return -EBADE;
2328 }
2329
2330 /* allocate message? */
2331 if (!con->in_msg) {
2332 int skip = 0;
2333
2334 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2335 front_len, data_len);
2336 ret = ceph_con_in_msg_alloc(con, &skip);
2337 if (ret < 0)
2338 return ret;
2339
2340 BUG_ON(!con->in_msg ^ skip);
2341 if (skip) {
2342 /* skip this message */
2343 dout("alloc_msg said skip message\n");
2344 con->in_base_pos = -front_len - middle_len - data_len -
2345 sizeof(m->footer);
2346 con->in_tag = CEPH_MSGR_TAG_READY;
2347 con->in_seq++;
2348 return 0;
2349 }
2350
2351 BUG_ON(!con->in_msg);
2352 BUG_ON(con->in_msg->con != con);
2353 m = con->in_msg;
2354 m->front.iov_len = 0; /* haven't read it yet */
2355 if (m->middle)
2356 m->middle->vec.iov_len = 0;
2357
2358 /* prepare for data payload, if any */
2359
2360 if (data_len)
2361 prepare_message_data(con->in_msg, data_len);
2362 }
2363
2364 /* front */
2365 ret = read_partial_message_section(con, &m->front, front_len,
2366 &con->in_front_crc);
2367 if (ret <= 0)
2368 return ret;
2369
2370 /* middle */
2371 if (m->middle) {
2372 ret = read_partial_message_section(con, &m->middle->vec,
2373 middle_len,
2374 &con->in_middle_crc);
2375 if (ret <= 0)
2376 return ret;
2377 }
2378
2379 /* (page) data */
2380 if (data_len) {
2381 ret = read_partial_msg_data(con);
2382 if (ret <= 0)
2383 return ret;
2384 }
2385
2386 /* footer */
2387 if (need_sign)
2388 size = sizeof(m->footer);
2389 else
2390 size = sizeof(m->old_footer);
2391
2392 end += size;
2393 ret = read_partial(con, end, size, &m->footer);
2394 if (ret <= 0)
2395 return ret;
2396
2397 if (!need_sign) {
2398 m->footer.flags = m->old_footer.flags;
2399 m->footer.sig = 0;
2400 }
2401
2402 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2403 m, front_len, m->footer.front_crc, middle_len,
2404 m->footer.middle_crc, data_len, m->footer.data_crc);
2405
2406 /* crc ok? */
2407 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2408 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2409 m, con->in_front_crc, m->footer.front_crc);
2410 return -EBADMSG;
2411 }
2412 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2413 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2414 m, con->in_middle_crc, m->footer.middle_crc);
2415 return -EBADMSG;
2416 }
2417 if (do_datacrc &&
2418 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2419 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2420 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2421 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2422 return -EBADMSG;
2423 }
2424
2425 if (need_sign && con->ops->check_message_signature &&
2426 con->ops->check_message_signature(con, m)) {
2427 pr_err("read_partial_message %p signature check failed\n", m);
2428 return -EBADMSG;
2429 }
2430
2431 return 1; /* done! */
2432 }
2433
2434 /*
2435 * Process message. This happens in the worker thread. The callback should
2436 * be careful not to do anything that waits on other incoming messages or it
2437 * may deadlock.
2438 */
2439 static void process_message(struct ceph_connection *con)
2440 {
2441 struct ceph_msg *msg;
2442
2443 BUG_ON(con->in_msg->con != con);
2444 con->in_msg->con = NULL;
2445 msg = con->in_msg;
2446 con->in_msg = NULL;
2447 con->ops->put(con);
2448
2449 /* if first message, set peer_name */
2450 if (con->peer_name.type == 0)
2451 con->peer_name = msg->hdr.src;
2452
2453 con->in_seq++;
2454 mutex_unlock(&con->mutex);
2455
2456 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2457 msg, le64_to_cpu(msg->hdr.seq),
2458 ENTITY_NAME(msg->hdr.src),
2459 le16_to_cpu(msg->hdr.type),
2460 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2461 le32_to_cpu(msg->hdr.front_len),
2462 le32_to_cpu(msg->hdr.data_len),
2463 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2464 con->ops->dispatch(con, msg);
2465
2466 mutex_lock(&con->mutex);
2467 }
2468
2469 static int read_keepalive_ack(struct ceph_connection *con)
2470 {
2471 struct ceph_timespec ceph_ts;
2472 size_t size = sizeof(ceph_ts);
2473 int ret = read_partial(con, size, size, &ceph_ts);
2474 if (ret <= 0)
2475 return ret;
2476 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2477 prepare_read_tag(con);
2478 return 1;
2479 }
2480
2481 /*
2482 * Write something to the socket. Called in a worker thread when the
2483 * socket appears to be writeable and we have something ready to send.
2484 */
2485 static int try_write(struct ceph_connection *con)
2486 {
2487 int ret = 1;
2488
2489 dout("try_write start %p state %lu\n", con, con->state);
2490
2491 more:
2492 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2493
2494 /* open the socket first? */
2495 if (con->state == CON_STATE_PREOPEN) {
2496 BUG_ON(con->sock);
2497 con->state = CON_STATE_CONNECTING;
2498
2499 con_out_kvec_reset(con);
2500 prepare_write_banner(con);
2501 prepare_read_banner(con);
2502
2503 BUG_ON(con->in_msg);
2504 con->in_tag = CEPH_MSGR_TAG_READY;
2505 dout("try_write initiating connect on %p new state %lu\n",
2506 con, con->state);
2507 ret = ceph_tcp_connect(con);
2508 if (ret < 0) {
2509 con->error_msg = "connect error";
2510 goto out;
2511 }
2512 }
2513
2514 more_kvec:
2515 /* kvec data queued? */
2516 if (con->out_skip) {
2517 ret = write_partial_skip(con);
2518 if (ret <= 0)
2519 goto out;
2520 }
2521 if (con->out_kvec_left) {
2522 ret = write_partial_kvec(con);
2523 if (ret <= 0)
2524 goto out;
2525 }
2526
2527 /* msg pages? */
2528 if (con->out_msg) {
2529 if (con->out_msg_done) {
2530 ceph_msg_put(con->out_msg);
2531 con->out_msg = NULL; /* we're done with this one */
2532 goto do_next;
2533 }
2534
2535 ret = write_partial_message_data(con);
2536 if (ret == 1)
2537 goto more_kvec; /* we need to send the footer, too! */
2538 if (ret == 0)
2539 goto out;
2540 if (ret < 0) {
2541 dout("try_write write_partial_message_data err %d\n",
2542 ret);
2543 goto out;
2544 }
2545 }
2546
2547 do_next:
2548 if (con->state == CON_STATE_OPEN) {
2549 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2550 prepare_write_keepalive(con);
2551 goto more;
2552 }
2553 /* is anything else pending? */
2554 if (!list_empty(&con->out_queue)) {
2555 prepare_write_message(con);
2556 goto more;
2557 }
2558 if (con->in_seq > con->in_seq_acked) {
2559 prepare_write_ack(con);
2560 goto more;
2561 }
2562 }
2563
2564 /* Nothing to do! */
2565 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2566 dout("try_write nothing else to write.\n");
2567 ret = 0;
2568 out:
2569 dout("try_write done on %p ret %d\n", con, ret);
2570 return ret;
2571 }
2572
2573
2574
2575 /*
2576 * Read what we can from the socket.
2577 */
2578 static int try_read(struct ceph_connection *con)
2579 {
2580 int ret = -1;
2581
2582 more:
2583 dout("try_read start on %p state %lu\n", con, con->state);
2584 if (con->state != CON_STATE_CONNECTING &&
2585 con->state != CON_STATE_NEGOTIATING &&
2586 con->state != CON_STATE_OPEN)
2587 return 0;
2588
2589 BUG_ON(!con->sock);
2590
2591 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2592 con->in_base_pos);
2593
2594 if (con->state == CON_STATE_CONNECTING) {
2595 dout("try_read connecting\n");
2596 ret = read_partial_banner(con);
2597 if (ret <= 0)
2598 goto out;
2599 ret = process_banner(con);
2600 if (ret < 0)
2601 goto out;
2602
2603 con->state = CON_STATE_NEGOTIATING;
2604
2605 /*
2606 * Received banner is good, exchange connection info.
2607 * Do not reset out_kvec, as sending our banner raced
2608 * with receiving peer banner after connect completed.
2609 */
2610 ret = prepare_write_connect(con);
2611 if (ret < 0)
2612 goto out;
2613 prepare_read_connect(con);
2614
2615 /* Send connection info before awaiting response */
2616 goto out;
2617 }
2618
2619 if (con->state == CON_STATE_NEGOTIATING) {
2620 dout("try_read negotiating\n");
2621 ret = read_partial_connect(con);
2622 if (ret <= 0)
2623 goto out;
2624 ret = process_connect(con);
2625 if (ret < 0)
2626 goto out;
2627 goto more;
2628 }
2629
2630 WARN_ON(con->state != CON_STATE_OPEN);
2631
2632 if (con->in_base_pos < 0) {
2633 /*
2634 * skipping + discarding content.
2635 *
2636 * FIXME: there must be a better way to do this!
2637 */
2638 static char buf[SKIP_BUF_SIZE];
2639 int skip = min((int) sizeof (buf), -con->in_base_pos);
2640
2641 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2642 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2643 if (ret <= 0)
2644 goto out;
2645 con->in_base_pos += ret;
2646 if (con->in_base_pos)
2647 goto more;
2648 }
2649 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2650 /*
2651 * what's next?
2652 */
2653 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2654 if (ret <= 0)
2655 goto out;
2656 dout("try_read got tag %d\n", (int)con->in_tag);
2657 switch (con->in_tag) {
2658 case CEPH_MSGR_TAG_MSG:
2659 prepare_read_message(con);
2660 break;
2661 case CEPH_MSGR_TAG_ACK:
2662 prepare_read_ack(con);
2663 break;
2664 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2665 prepare_read_keepalive_ack(con);
2666 break;
2667 case CEPH_MSGR_TAG_CLOSE:
2668 con_close_socket(con);
2669 con->state = CON_STATE_CLOSED;
2670 goto out;
2671 default:
2672 goto bad_tag;
2673 }
2674 }
2675 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2676 ret = read_partial_message(con);
2677 if (ret <= 0) {
2678 switch (ret) {
2679 case -EBADMSG:
2680 con->error_msg = "bad crc";
2681 /* fall through */
2682 case -EBADE:
2683 ret = -EIO;
2684 break;
2685 case -EIO:
2686 con->error_msg = "io error";
2687 break;
2688 }
2689 goto out;
2690 }
2691 if (con->in_tag == CEPH_MSGR_TAG_READY)
2692 goto more;
2693 process_message(con);
2694 if (con->state == CON_STATE_OPEN)
2695 prepare_read_tag(con);
2696 goto more;
2697 }
2698 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2699 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2700 /*
2701 * the final handshake seq exchange is semantically
2702 * equivalent to an ACK
2703 */
2704 ret = read_partial_ack(con);
2705 if (ret <= 0)
2706 goto out;
2707 process_ack(con);
2708 goto more;
2709 }
2710 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2711 ret = read_keepalive_ack(con);
2712 if (ret <= 0)
2713 goto out;
2714 goto more;
2715 }
2716
2717 out:
2718 dout("try_read done on %p ret %d\n", con, ret);
2719 return ret;
2720
2721 bad_tag:
2722 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2723 con->error_msg = "protocol error, garbage tag";
2724 ret = -1;
2725 goto out;
2726 }
2727
2728
2729 /*
2730 * Atomically queue work on a connection after the specified delay.
2731 * Bump @con reference to avoid races with connection teardown.
2732 * Returns 0 if work was queued, or an error code otherwise.
2733 */
2734 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2735 {
2736 if (!con->ops->get(con)) {
2737 dout("%s %p ref count 0\n", __func__, con);
2738 return -ENOENT;
2739 }
2740
2741 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2742 dout("%s %p - already queued\n", __func__, con);
2743 con->ops->put(con);
2744 return -EBUSY;
2745 }
2746
2747 dout("%s %p %lu\n", __func__, con, delay);
2748 return 0;
2749 }
2750
2751 static void queue_con(struct ceph_connection *con)
2752 {
2753 (void) queue_con_delay(con, 0);
2754 }
2755
2756 static void cancel_con(struct ceph_connection *con)
2757 {
2758 if (cancel_delayed_work(&con->work)) {
2759 dout("%s %p\n", __func__, con);
2760 con->ops->put(con);
2761 }
2762 }
2763
2764 static bool con_sock_closed(struct ceph_connection *con)
2765 {
2766 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2767 return false;
2768
2769 #define CASE(x) \
2770 case CON_STATE_ ## x: \
2771 con->error_msg = "socket closed (con state " #x ")"; \
2772 break;
2773
2774 switch (con->state) {
2775 CASE(CLOSED);
2776 CASE(PREOPEN);
2777 CASE(CONNECTING);
2778 CASE(NEGOTIATING);
2779 CASE(OPEN);
2780 CASE(STANDBY);
2781 default:
2782 pr_warn("%s con %p unrecognized state %lu\n",
2783 __func__, con, con->state);
2784 con->error_msg = "unrecognized con state";
2785 BUG();
2786 break;
2787 }
2788 #undef CASE
2789
2790 return true;
2791 }
2792
2793 static bool con_backoff(struct ceph_connection *con)
2794 {
2795 int ret;
2796
2797 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2798 return false;
2799
2800 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2801 if (ret) {
2802 dout("%s: con %p FAILED to back off %lu\n", __func__,
2803 con, con->delay);
2804 BUG_ON(ret == -ENOENT);
2805 con_flag_set(con, CON_FLAG_BACKOFF);
2806 }
2807
2808 return true;
2809 }
2810
2811 /* Finish fault handling; con->mutex must *not* be held here */
2812
2813 static void con_fault_finish(struct ceph_connection *con)
2814 {
2815 /*
2816 * in case we faulted due to authentication, invalidate our
2817 * current tickets so that we can get new ones.
2818 */
2819 if (con->auth_retry && con->ops->invalidate_authorizer) {
2820 dout("calling invalidate_authorizer()\n");
2821 con->ops->invalidate_authorizer(con);
2822 }
2823
2824 if (con->ops->fault)
2825 con->ops->fault(con);
2826 }
2827
2828 /*
2829 * Do some work on a connection. Drop a connection ref when we're done.
2830 */
2831 static void ceph_con_workfn(struct work_struct *work)
2832 {
2833 struct ceph_connection *con = container_of(work, struct ceph_connection,
2834 work.work);
2835 bool fault;
2836
2837 mutex_lock(&con->mutex);
2838 while (true) {
2839 int ret;
2840
2841 if ((fault = con_sock_closed(con))) {
2842 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2843 break;
2844 }
2845 if (con_backoff(con)) {
2846 dout("%s: con %p BACKOFF\n", __func__, con);
2847 break;
2848 }
2849 if (con->state == CON_STATE_STANDBY) {
2850 dout("%s: con %p STANDBY\n", __func__, con);
2851 break;
2852 }
2853 if (con->state == CON_STATE_CLOSED) {
2854 dout("%s: con %p CLOSED\n", __func__, con);
2855 BUG_ON(con->sock);
2856 break;
2857 }
2858 if (con->state == CON_STATE_PREOPEN) {
2859 dout("%s: con %p PREOPEN\n", __func__, con);
2860 BUG_ON(con->sock);
2861 }
2862
2863 ret = try_read(con);
2864 if (ret < 0) {
2865 if (ret == -EAGAIN)
2866 continue;
2867 if (!con->error_msg)
2868 con->error_msg = "socket error on read";
2869 fault = true;
2870 break;
2871 }
2872
2873 ret = try_write(con);
2874 if (ret < 0) {
2875 if (ret == -EAGAIN)
2876 continue;
2877 if (!con->error_msg)
2878 con->error_msg = "socket error on write";
2879 fault = true;
2880 }
2881
2882 break; /* If we make it to here, we're done */
2883 }
2884 if (fault)
2885 con_fault(con);
2886 mutex_unlock(&con->mutex);
2887
2888 if (fault)
2889 con_fault_finish(con);
2890
2891 con->ops->put(con);
2892 }
2893
2894 /*
2895 * Generic error/fault handler. A retry mechanism is used with
2896 * exponential backoff
2897 */
2898 static void con_fault(struct ceph_connection *con)
2899 {
2900 dout("fault %p state %lu to peer %s\n",
2901 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2902
2903 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2904 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2905 con->error_msg = NULL;
2906
2907 WARN_ON(con->state != CON_STATE_CONNECTING &&
2908 con->state != CON_STATE_NEGOTIATING &&
2909 con->state != CON_STATE_OPEN);
2910
2911 con_close_socket(con);
2912
2913 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2914 dout("fault on LOSSYTX channel, marking CLOSED\n");
2915 con->state = CON_STATE_CLOSED;
2916 return;
2917 }
2918
2919 if (con->in_msg) {
2920 BUG_ON(con->in_msg->con != con);
2921 con->in_msg->con = NULL;
2922 ceph_msg_put(con->in_msg);
2923 con->in_msg = NULL;
2924 con->ops->put(con);
2925 }
2926
2927 /* Requeue anything that hasn't been acked */
2928 list_splice_init(&con->out_sent, &con->out_queue);
2929
2930 /* If there are no messages queued or keepalive pending, place
2931 * the connection in a STANDBY state */
2932 if (list_empty(&con->out_queue) &&
2933 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2934 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2935 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2936 con->state = CON_STATE_STANDBY;
2937 } else {
2938 /* retry after a delay. */
2939 con->state = CON_STATE_PREOPEN;
2940 if (con->delay == 0)
2941 con->delay = BASE_DELAY_INTERVAL;
2942 else if (con->delay < MAX_DELAY_INTERVAL)
2943 con->delay *= 2;
2944 con_flag_set(con, CON_FLAG_BACKOFF);
2945 queue_con(con);
2946 }
2947 }
2948
2949
2950
2951 /*
2952 * initialize a new messenger instance
2953 */
2954 void ceph_messenger_init(struct ceph_messenger *msgr,
2955 struct ceph_entity_addr *myaddr,
2956 u64 supported_features,
2957 u64 required_features,
2958 bool nocrc,
2959 bool tcp_nodelay)
2960 {
2961 msgr->supported_features = supported_features;
2962 msgr->required_features = required_features;
2963
2964 spin_lock_init(&msgr->global_seq_lock);
2965
2966 if (myaddr)
2967 msgr->inst.addr = *myaddr;
2968
2969 /* select a random nonce */
2970 msgr->inst.addr.type = 0;
2971 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2972 encode_my_addr(msgr);
2973 msgr->nocrc = nocrc;
2974 msgr->tcp_nodelay = tcp_nodelay;
2975
2976 atomic_set(&msgr->stopping, 0);
2977 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2978
2979 dout("%s %p\n", __func__, msgr);
2980 }
2981 EXPORT_SYMBOL(ceph_messenger_init);
2982
2983 void ceph_messenger_fini(struct ceph_messenger *msgr)
2984 {
2985 put_net(read_pnet(&msgr->net));
2986 }
2987 EXPORT_SYMBOL(ceph_messenger_fini);
2988
2989 static void clear_standby(struct ceph_connection *con)
2990 {
2991 /* come back from STANDBY? */
2992 if (con->state == CON_STATE_STANDBY) {
2993 dout("clear_standby %p and ++connect_seq\n", con);
2994 con->state = CON_STATE_PREOPEN;
2995 con->connect_seq++;
2996 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2997 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2998 }
2999 }
3000
3001 /*
3002 * Queue up an outgoing message on the given connection.
3003 */
3004 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3005 {
3006 /* set src+dst */
3007 msg->hdr.src = con->msgr->inst.name;
3008 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3009 msg->needs_out_seq = true;
3010
3011 mutex_lock(&con->mutex);
3012
3013 if (con->state == CON_STATE_CLOSED) {
3014 dout("con_send %p closed, dropping %p\n", con, msg);
3015 ceph_msg_put(msg);
3016 mutex_unlock(&con->mutex);
3017 return;
3018 }
3019
3020 BUG_ON(msg->con != NULL);
3021 msg->con = con->ops->get(con);
3022 BUG_ON(msg->con == NULL);
3023
3024 BUG_ON(!list_empty(&msg->list_head));
3025 list_add_tail(&msg->list_head, &con->out_queue);
3026 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3027 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3028 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3029 le32_to_cpu(msg->hdr.front_len),
3030 le32_to_cpu(msg->hdr.middle_len),
3031 le32_to_cpu(msg->hdr.data_len));
3032
3033 clear_standby(con);
3034 mutex_unlock(&con->mutex);
3035
3036 /* if there wasn't anything waiting to send before, queue
3037 * new work */
3038 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3039 queue_con(con);
3040 }
3041 EXPORT_SYMBOL(ceph_con_send);
3042
3043 /*
3044 * Revoke a message that was previously queued for send
3045 */
3046 void ceph_msg_revoke(struct ceph_msg *msg)
3047 {
3048 struct ceph_connection *con = msg->con;
3049
3050 if (!con)
3051 return; /* Message not in our possession */
3052
3053 mutex_lock(&con->mutex);
3054 if (!list_empty(&msg->list_head)) {
3055 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3056 list_del_init(&msg->list_head);
3057 BUG_ON(msg->con == NULL);
3058 msg->con->ops->put(msg->con);
3059 msg->con = NULL;
3060 msg->hdr.seq = 0;
3061
3062 ceph_msg_put(msg);
3063 }
3064 if (con->out_msg == msg) {
3065 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3066 con->out_msg = NULL;
3067 if (con->out_kvec_is_msg) {
3068 con->out_skip = con->out_kvec_bytes;
3069 con->out_kvec_is_msg = false;
3070 }
3071 msg->hdr.seq = 0;
3072
3073 ceph_msg_put(msg);
3074 }
3075 mutex_unlock(&con->mutex);
3076 }
3077
3078 /*
3079 * Revoke a message that we may be reading data into
3080 */
3081 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3082 {
3083 struct ceph_connection *con;
3084
3085 BUG_ON(msg == NULL);
3086 if (!msg->con) {
3087 dout("%s msg %p null con\n", __func__, msg);
3088
3089 return; /* Message not in our possession */
3090 }
3091
3092 con = msg->con;
3093 mutex_lock(&con->mutex);
3094 if (con->in_msg == msg) {
3095 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3096 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3097 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3098
3099 /* skip rest of message */
3100 dout("%s %p msg %p revoked\n", __func__, con, msg);
3101 con->in_base_pos = con->in_base_pos -
3102 sizeof(struct ceph_msg_header) -
3103 front_len -
3104 middle_len -
3105 data_len -
3106 sizeof(struct ceph_msg_footer);
3107 ceph_msg_put(con->in_msg);
3108 con->in_msg = NULL;
3109 con->in_tag = CEPH_MSGR_TAG_READY;
3110 con->in_seq++;
3111 } else {
3112 dout("%s %p in_msg %p msg %p no-op\n",
3113 __func__, con, con->in_msg, msg);
3114 }
3115 mutex_unlock(&con->mutex);
3116 }
3117
3118 /*
3119 * Queue a keepalive byte to ensure the tcp connection is alive.
3120 */
3121 void ceph_con_keepalive(struct ceph_connection *con)
3122 {
3123 dout("con_keepalive %p\n", con);
3124 mutex_lock(&con->mutex);
3125 clear_standby(con);
3126 mutex_unlock(&con->mutex);
3127 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3128 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3129 queue_con(con);
3130 }
3131 EXPORT_SYMBOL(ceph_con_keepalive);
3132
3133 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3134 unsigned long interval)
3135 {
3136 if (interval > 0 &&
3137 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3138 struct timespec now = CURRENT_TIME;
3139 struct timespec ts;
3140 jiffies_to_timespec(interval, &ts);
3141 ts = timespec_add(con->last_keepalive_ack, ts);
3142 return timespec_compare(&now, &ts) >= 0;
3143 }
3144 return false;
3145 }
3146
3147 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3148 {
3149 struct ceph_msg_data *data;
3150
3151 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3152 return NULL;
3153
3154 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3155 if (data)
3156 data->type = type;
3157 INIT_LIST_HEAD(&data->links);
3158
3159 return data;
3160 }
3161
3162 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3163 {
3164 if (!data)
3165 return;
3166
3167 WARN_ON(!list_empty(&data->links));
3168 if (data->type == CEPH_MSG_DATA_PAGELIST)
3169 ceph_pagelist_release(data->pagelist);
3170 kmem_cache_free(ceph_msg_data_cache, data);
3171 }
3172
3173 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3174 size_t length, size_t alignment)
3175 {
3176 struct ceph_msg_data *data;
3177
3178 BUG_ON(!pages);
3179 BUG_ON(!length);
3180
3181 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3182 BUG_ON(!data);
3183 data->pages = pages;
3184 data->length = length;
3185 data->alignment = alignment & ~PAGE_MASK;
3186
3187 list_add_tail(&data->links, &msg->data);
3188 msg->data_length += length;
3189 }
3190 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3191
3192 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3193 struct ceph_pagelist *pagelist)
3194 {
3195 struct ceph_msg_data *data;
3196
3197 BUG_ON(!pagelist);
3198 BUG_ON(!pagelist->length);
3199
3200 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3201 BUG_ON(!data);
3202 data->pagelist = pagelist;
3203
3204 list_add_tail(&data->links, &msg->data);
3205 msg->data_length += pagelist->length;
3206 }
3207 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3208
3209 #ifdef CONFIG_BLOCK
3210 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3211 size_t length)
3212 {
3213 struct ceph_msg_data *data;
3214
3215 BUG_ON(!bio);
3216
3217 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3218 BUG_ON(!data);
3219 data->bio = bio;
3220 data->bio_length = length;
3221
3222 list_add_tail(&data->links, &msg->data);
3223 msg->data_length += length;
3224 }
3225 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3226 #endif /* CONFIG_BLOCK */
3227
3228 /*
3229 * construct a new message with given type, size
3230 * the new msg has a ref count of 1.
3231 */
3232 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3233 bool can_fail)
3234 {
3235 struct ceph_msg *m;
3236
3237 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3238 if (m == NULL)
3239 goto out;
3240
3241 m->hdr.type = cpu_to_le16(type);
3242 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3243 m->hdr.front_len = cpu_to_le32(front_len);
3244
3245 INIT_LIST_HEAD(&m->list_head);
3246 kref_init(&m->kref);
3247 INIT_LIST_HEAD(&m->data);
3248
3249 /* front */
3250 if (front_len) {
3251 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3252 if (m->front.iov_base == NULL) {
3253 dout("ceph_msg_new can't allocate %d bytes\n",
3254 front_len);
3255 goto out2;
3256 }
3257 } else {
3258 m->front.iov_base = NULL;
3259 }
3260 m->front_alloc_len = m->front.iov_len = front_len;
3261
3262 dout("ceph_msg_new %p front %d\n", m, front_len);
3263 return m;
3264
3265 out2:
3266 ceph_msg_put(m);
3267 out:
3268 if (!can_fail) {
3269 pr_err("msg_new can't create type %d front %d\n", type,
3270 front_len);
3271 WARN_ON(1);
3272 } else {
3273 dout("msg_new can't create type %d front %d\n", type,
3274 front_len);
3275 }
3276 return NULL;
3277 }
3278 EXPORT_SYMBOL(ceph_msg_new);
3279
3280 /*
3281 * Allocate "middle" portion of a message, if it is needed and wasn't
3282 * allocated by alloc_msg. This allows us to read a small fixed-size
3283 * per-type header in the front and then gracefully fail (i.e.,
3284 * propagate the error to the caller based on info in the front) when
3285 * the middle is too large.
3286 */
3287 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3288 {
3289 int type = le16_to_cpu(msg->hdr.type);
3290 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3291
3292 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3293 ceph_msg_type_name(type), middle_len);
3294 BUG_ON(!middle_len);
3295 BUG_ON(msg->middle);
3296
3297 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3298 if (!msg->middle)
3299 return -ENOMEM;
3300 return 0;
3301 }
3302
3303 /*
3304 * Allocate a message for receiving an incoming message on a
3305 * connection, and save the result in con->in_msg. Uses the
3306 * connection's private alloc_msg op if available.
3307 *
3308 * Returns 0 on success, or a negative error code.
3309 *
3310 * On success, if we set *skip = 1:
3311 * - the next message should be skipped and ignored.
3312 * - con->in_msg == NULL
3313 * or if we set *skip = 0:
3314 * - con->in_msg is non-null.
3315 * On error (ENOMEM, EAGAIN, ...),
3316 * - con->in_msg == NULL
3317 */
3318 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3319 {
3320 struct ceph_msg_header *hdr = &con->in_hdr;
3321 int middle_len = le32_to_cpu(hdr->middle_len);
3322 struct ceph_msg *msg;
3323 int ret = 0;
3324
3325 BUG_ON(con->in_msg != NULL);
3326 BUG_ON(!con->ops->alloc_msg);
3327
3328 mutex_unlock(&con->mutex);
3329 msg = con->ops->alloc_msg(con, hdr, skip);
3330 mutex_lock(&con->mutex);
3331 if (con->state != CON_STATE_OPEN) {
3332 if (msg)
3333 ceph_msg_put(msg);
3334 return -EAGAIN;
3335 }
3336 if (msg) {
3337 BUG_ON(*skip);
3338 con->in_msg = msg;
3339 con->in_msg->con = con->ops->get(con);
3340 BUG_ON(con->in_msg->con == NULL);
3341 } else {
3342 /*
3343 * Null message pointer means either we should skip
3344 * this message or we couldn't allocate memory. The
3345 * former is not an error.
3346 */
3347 if (*skip)
3348 return 0;
3349
3350 con->error_msg = "error allocating memory for incoming message";
3351 return -ENOMEM;
3352 }
3353 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3354
3355 if (middle_len && !con->in_msg->middle) {
3356 ret = ceph_alloc_middle(con, con->in_msg);
3357 if (ret < 0) {
3358 ceph_msg_put(con->in_msg);
3359 con->in_msg = NULL;
3360 }
3361 }
3362
3363 return ret;
3364 }
3365
3366
3367 /*
3368 * Free a generically kmalloc'd message.
3369 */
3370 static void ceph_msg_free(struct ceph_msg *m)
3371 {
3372 dout("%s %p\n", __func__, m);
3373 kvfree(m->front.iov_base);
3374 kmem_cache_free(ceph_msg_cache, m);
3375 }
3376
3377 static void ceph_msg_release(struct kref *kref)
3378 {
3379 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3380 LIST_HEAD(data);
3381 struct list_head *links;
3382 struct list_head *next;
3383
3384 dout("%s %p\n", __func__, m);
3385 WARN_ON(!list_empty(&m->list_head));
3386
3387 /* drop middle, data, if any */
3388 if (m->middle) {
3389 ceph_buffer_put(m->middle);
3390 m->middle = NULL;
3391 }
3392
3393 list_splice_init(&m->data, &data);
3394 list_for_each_safe(links, next, &data) {
3395 struct ceph_msg_data *data;
3396
3397 data = list_entry(links, struct ceph_msg_data, links);
3398 list_del_init(links);
3399 ceph_msg_data_destroy(data);
3400 }
3401 m->data_length = 0;
3402
3403 if (m->pool)
3404 ceph_msgpool_put(m->pool, m);
3405 else
3406 ceph_msg_free(m);
3407 }
3408
3409 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3410 {
3411 dout("%s %p (was %d)\n", __func__, msg,
3412 atomic_read(&msg->kref.refcount));
3413 kref_get(&msg->kref);
3414 return msg;
3415 }
3416 EXPORT_SYMBOL(ceph_msg_get);
3417
3418 void ceph_msg_put(struct ceph_msg *msg)
3419 {
3420 dout("%s %p (was %d)\n", __func__, msg,
3421 atomic_read(&msg->kref.refcount));
3422 kref_put(&msg->kref, ceph_msg_release);
3423 }
3424 EXPORT_SYMBOL(ceph_msg_put);
3425
3426 void ceph_msg_dump(struct ceph_msg *msg)
3427 {
3428 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3429 msg->front_alloc_len, msg->data_length);
3430 print_hex_dump(KERN_DEBUG, "header: ",
3431 DUMP_PREFIX_OFFSET, 16, 1,
3432 &msg->hdr, sizeof(msg->hdr), true);
3433 print_hex_dump(KERN_DEBUG, " front: ",
3434 DUMP_PREFIX_OFFSET, 16, 1,
3435 msg->front.iov_base, msg->front.iov_len, true);
3436 if (msg->middle)
3437 print_hex_dump(KERN_DEBUG, "middle: ",
3438 DUMP_PREFIX_OFFSET, 16, 1,
3439 msg->middle->vec.iov_base,
3440 msg->middle->vec.iov_len, true);
3441 print_hex_dump(KERN_DEBUG, "footer: ",
3442 DUMP_PREFIX_OFFSET, 16, 1,
3443 &msg->footer, sizeof(msg->footer), true);
3444 }
3445 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.096092 seconds and 6 git commands to generate.