libceph: kill ceph_msg->pagelist_count
[deliverable/linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25 * Ceph uses the messenger to exchange ceph_msg messages with other
26 * hosts in the system. The messenger provides ordered and reliable
27 * delivery. We tolerate TCP disconnects by reconnecting (with
28 * exponential backoff) in the case of a fault (disconnection, bad
29 * crc, protocol error). Acks allow sent messages to be discarded by
30 * the sender.
31 */
32
33 /*
34 * We track the state of the socket on a given connection using
35 * values defined below. The transition to a new socket state is
36 * handled by a function which verifies we aren't coming from an
37 * unexpected state.
38 *
39 * --------
40 * | NEW* | transient initial state
41 * --------
42 * | con_sock_state_init()
43 * v
44 * ----------
45 * | CLOSED | initialized, but no socket (and no
46 * ---------- TCP connection)
47 * ^ \
48 * | \ con_sock_state_connecting()
49 * | ----------------------
50 * | \
51 * + con_sock_state_closed() \
52 * |+--------------------------- \
53 * | \ \ \
54 * | ----------- \ \
55 * | | CLOSING | socket event; \ \
56 * | ----------- await close \ \
57 * | ^ \ |
58 * | | \ |
59 * | + con_sock_state_closing() \ |
60 * | / \ | |
61 * | / --------------- | |
62 * | / \ v v
63 * | / --------------
64 * | / -----------------| CONNECTING | socket created, TCP
65 * | | / -------------- connect initiated
66 * | | | con_sock_state_connected()
67 * | | v
68 * -------------
69 * | CONNECTED | TCP connection established
70 * -------------
71 *
72 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73 */
74
75 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
80
81 /*
82 * connection states
83 */
84 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
85 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
90
91 /*
92 * ceph_connection flag bits
93 */
94 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
95 * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103 switch (con_flag) {
104 case CON_FLAG_LOSSYTX:
105 case CON_FLAG_KEEPALIVE_PENDING:
106 case CON_FLAG_WRITE_PENDING:
107 case CON_FLAG_SOCK_CLOSED:
108 case CON_FLAG_BACKOFF:
109 return true;
110 default:
111 return false;
112 }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117 BUG_ON(!con_flag_valid(con_flag));
118
119 clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124 BUG_ON(!con_flag_valid(con_flag));
125
126 set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137 unsigned long con_flag)
138 {
139 BUG_ON(!con_flag_valid(con_flag));
140
141 return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145 unsigned long con_flag)
146 {
147 BUG_ON(!con_flag_valid(con_flag));
148
149 return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162 * When skipping (ignoring) a block of input we read it into a "skip
163 * buffer," which is this many bytes in size.
164 */
165 #define SKIP_BUF_SIZE 1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172 * Nicely render a sockaddr as a string. An array of formatted
173 * strings is used, to approximate reentrancy.
174 */
175 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page; /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187 int i;
188 char *s;
189 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193 s = addr_str[i];
194
195 switch (ss->ss_family) {
196 case AF_INET:
197 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198 ntohs(in4->sin_port));
199 break;
200
201 case AF_INET6:
202 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203 ntohs(in6->sin6_port));
204 break;
205
206 default:
207 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208 ss->ss_family);
209 }
210
211 return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218 ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222 * work queue for all reading and writing to/from the socket.
223 */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228 if (ceph_msgr_wq) {
229 destroy_workqueue(ceph_msgr_wq);
230 ceph_msgr_wq = NULL;
231 }
232
233 BUG_ON(zero_page == NULL);
234 kunmap(zero_page);
235 page_cache_release(zero_page);
236 zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241 BUG_ON(zero_page != NULL);
242 zero_page = ZERO_PAGE(0);
243 page_cache_get(zero_page);
244
245 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246 if (ceph_msgr_wq)
247 return 0;
248
249 pr_err("msgr_init failed to create workqueue\n");
250 _ceph_msgr_exit();
251
252 return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258 BUG_ON(ceph_msgr_wq == NULL);
259
260 _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266 flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274 int old_state;
275
276 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278 printk("%s: unexpected old state %d\n", __func__, old_state);
279 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280 CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285 int old_state;
286
287 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289 printk("%s: unexpected old state %d\n", __func__, old_state);
290 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291 CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296 int old_state;
297
298 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300 printk("%s: unexpected old state %d\n", __func__, old_state);
301 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302 CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307 int old_state;
308
309 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311 old_state != CON_SOCK_STATE_CONNECTED &&
312 old_state != CON_SOCK_STATE_CLOSING))
313 printk("%s: unexpected old state %d\n", __func__, old_state);
314 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315 CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324 old_state != CON_SOCK_STATE_CLOSING &&
325 old_state != CON_SOCK_STATE_CONNECTING &&
326 old_state != CON_SOCK_STATE_CLOSED))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333 * socket callback functions
334 */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339 struct ceph_connection *con = sk->sk_user_data;
340 if (atomic_read(&con->msgr->stopping)) {
341 return;
342 }
343
344 if (sk->sk_state != TCP_CLOSE_WAIT) {
345 dout("%s on %p state = %lu, queueing work\n", __func__,
346 con, con->state);
347 queue_con(con);
348 }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354 struct ceph_connection *con = sk->sk_user_data;
355
356 /* only queue to workqueue if there is data we want to write,
357 * and there is sufficient space in the socket buffer to accept
358 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
359 * doesn't get called again until try_write() fills the socket
360 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361 * and net/core/stream.c:sk_stream_write_space().
362 */
363 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365 dout("%s %p queueing write work\n", __func__, con);
366 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367 queue_con(con);
368 }
369 } else {
370 dout("%s %p nothing to write\n", __func__, con);
371 }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377 struct ceph_connection *con = sk->sk_user_data;
378
379 dout("%s %p state = %lu sk_state = %u\n", __func__,
380 con, con->state, sk->sk_state);
381
382 switch (sk->sk_state) {
383 case TCP_CLOSE:
384 dout("%s TCP_CLOSE\n", __func__);
385 case TCP_CLOSE_WAIT:
386 dout("%s TCP_CLOSE_WAIT\n", __func__);
387 con_sock_state_closing(con);
388 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389 queue_con(con);
390 break;
391 case TCP_ESTABLISHED:
392 dout("%s TCP_ESTABLISHED\n", __func__);
393 con_sock_state_connected(con);
394 queue_con(con);
395 break;
396 default: /* Everything else is uninteresting */
397 break;
398 }
399 }
400
401 /*
402 * set up socket callbacks
403 */
404 static void set_sock_callbacks(struct socket *sock,
405 struct ceph_connection *con)
406 {
407 struct sock *sk = sock->sk;
408 sk->sk_user_data = con;
409 sk->sk_data_ready = ceph_sock_data_ready;
410 sk->sk_write_space = ceph_sock_write_space;
411 sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416 * socket helpers
417 */
418
419 /*
420 * initiate connection to a remote socket.
421 */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425 struct socket *sock;
426 int ret;
427
428 BUG_ON(con->sock);
429 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430 IPPROTO_TCP, &sock);
431 if (ret)
432 return ret;
433 sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439 set_sock_callbacks(sock, con);
440
441 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443 con_sock_state_connecting(con);
444 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445 O_NONBLOCK);
446 if (ret == -EINPROGRESS) {
447 dout("connect %s EINPROGRESS sk_state = %u\n",
448 ceph_pr_addr(&con->peer_addr.in_addr),
449 sock->sk->sk_state);
450 } else if (ret < 0) {
451 pr_err("connect %s error %d\n",
452 ceph_pr_addr(&con->peer_addr.in_addr), ret);
453 sock_release(sock);
454 con->error_msg = "connect error";
455
456 return ret;
457 }
458 con->sock = sock;
459 return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464 struct kvec iov = {buf, len};
465 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466 int r;
467
468 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469 if (r == -EAGAIN)
470 r = 0;
471 return r;
472 }
473
474 /*
475 * write something. @more is true if caller will be sending more data
476 * shortly.
477 */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479 size_t kvlen, size_t len, int more)
480 {
481 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482 int r;
483
484 if (more)
485 msg.msg_flags |= MSG_MORE;
486 else
487 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
488
489 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490 if (r == -EAGAIN)
491 r = 0;
492 return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496 int offset, size_t size, int more)
497 {
498 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499 int ret;
500
501 ret = kernel_sendpage(sock, page, offset, size, flags);
502 if (ret == -EAGAIN)
503 ret = 0;
504
505 return ret;
506 }
507
508
509 /*
510 * Shutdown/close the socket for the given connection.
511 */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514 int rc = 0;
515
516 dout("con_close_socket on %p sock %p\n", con, con->sock);
517 if (con->sock) {
518 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519 sock_release(con->sock);
520 con->sock = NULL;
521 }
522
523 /*
524 * Forcibly clear the SOCK_CLOSED flag. It gets set
525 * independent of the connection mutex, and we could have
526 * received a socket close event before we had the chance to
527 * shut the socket down.
528 */
529 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531 con_sock_state_closed(con);
532 return rc;
533 }
534
535 /*
536 * Reset a connection. Discard all incoming and outgoing messages
537 * and clear *_seq state.
538 */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541 list_del_init(&msg->list_head);
542 BUG_ON(msg->con == NULL);
543 msg->con->ops->put(msg->con);
544 msg->con = NULL;
545
546 ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550 while (!list_empty(head)) {
551 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552 list_head);
553 ceph_msg_remove(msg);
554 }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559 /* reset connection, out_queue, msg_ and connect_seq */
560 /* discard existing out_queue and msg_seq */
561 dout("reset_connection %p\n", con);
562 ceph_msg_remove_list(&con->out_queue);
563 ceph_msg_remove_list(&con->out_sent);
564
565 if (con->in_msg) {
566 BUG_ON(con->in_msg->con != con);
567 con->in_msg->con = NULL;
568 ceph_msg_put(con->in_msg);
569 con->in_msg = NULL;
570 con->ops->put(con);
571 }
572
573 con->connect_seq = 0;
574 con->out_seq = 0;
575 if (con->out_msg) {
576 ceph_msg_put(con->out_msg);
577 con->out_msg = NULL;
578 }
579 con->in_seq = 0;
580 con->in_seq_acked = 0;
581 }
582
583 /*
584 * mark a peer down. drop any open connections.
585 */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588 mutex_lock(&con->mutex);
589 dout("con_close %p peer %s\n", con,
590 ceph_pr_addr(&con->peer_addr.in_addr));
591 con->state = CON_STATE_CLOSED;
592
593 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
594 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596 con_flag_clear(con, CON_FLAG_BACKOFF);
597
598 reset_connection(con);
599 con->peer_global_seq = 0;
600 cancel_delayed_work(&con->work);
601 con_close_socket(con);
602 mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607 * Reopen a closed connection, with a new peer address.
608 */
609 void ceph_con_open(struct ceph_connection *con,
610 __u8 entity_type, __u64 entity_num,
611 struct ceph_entity_addr *addr)
612 {
613 mutex_lock(&con->mutex);
614 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616 WARN_ON(con->state != CON_STATE_CLOSED);
617 con->state = CON_STATE_PREOPEN;
618
619 con->peer_name.type = (__u8) entity_type;
620 con->peer_name.num = cpu_to_le64(entity_num);
621
622 memcpy(&con->peer_addr, addr, sizeof(*addr));
623 con->delay = 0; /* reset backoff memory */
624 mutex_unlock(&con->mutex);
625 queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630 * return true if this connection ever successfully opened
631 */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634 return con->connect_seq > 0;
635 }
636
637 /*
638 * initialize a new connection.
639 */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641 const struct ceph_connection_operations *ops,
642 struct ceph_messenger *msgr)
643 {
644 dout("con_init %p\n", con);
645 memset(con, 0, sizeof(*con));
646 con->private = private;
647 con->ops = ops;
648 con->msgr = msgr;
649
650 con_sock_state_init(con);
651
652 mutex_init(&con->mutex);
653 INIT_LIST_HEAD(&con->out_queue);
654 INIT_LIST_HEAD(&con->out_sent);
655 INIT_DELAYED_WORK(&con->work, con_work);
656
657 con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663 * We maintain a global counter to order connection attempts. Get
664 * a unique seq greater than @gt.
665 */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668 u32 ret;
669
670 spin_lock(&msgr->global_seq_lock);
671 if (msgr->global_seq < gt)
672 msgr->global_seq = gt;
673 ret = ++msgr->global_seq;
674 spin_unlock(&msgr->global_seq_lock);
675 return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680 con->out_kvec_left = 0;
681 con->out_kvec_bytes = 0;
682 con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686 size_t size, void *data)
687 {
688 int index;
689
690 index = con->out_kvec_left;
691 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693 con->out_kvec[index].iov_len = size;
694 con->out_kvec[index].iov_base = data;
695 con->out_kvec_left++;
696 con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
701 unsigned int *bio_seg)
702 {
703 if (!bio) {
704 *bio_iter = NULL;
705 *bio_seg = 0;
706 return;
707 }
708 *bio_iter = bio;
709 *bio_seg = (unsigned int) bio->bi_idx;
710 }
711
712 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
713 {
714 if (*bio_iter == NULL)
715 return;
716
717 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
718
719 (*seg)++;
720 if (*seg == (*bio_iter)->bi_vcnt)
721 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
722 }
723 #endif
724
725 static void prepare_write_message_data(struct ceph_connection *con)
726 {
727 struct ceph_msg *msg = con->out_msg;
728
729 BUG_ON(!msg);
730 BUG_ON(!msg->hdr.data_len);
731
732 /* initialize page iterator */
733 con->out_msg_pos.page = 0;
734 if (msg->pages)
735 con->out_msg_pos.page_pos = msg->page_alignment;
736 else
737 con->out_msg_pos.page_pos = 0;
738 #ifdef CONFIG_BLOCK
739 if (msg->bio)
740 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
741 #endif
742 con->out_msg_pos.data_pos = 0;
743 con->out_msg_pos.did_page_crc = false;
744 con->out_more = 1; /* data + footer will follow */
745 }
746
747 /*
748 * Prepare footer for currently outgoing message, and finish things
749 * off. Assumes out_kvec* are already valid.. we just add on to the end.
750 */
751 static void prepare_write_message_footer(struct ceph_connection *con)
752 {
753 struct ceph_msg *m = con->out_msg;
754 int v = con->out_kvec_left;
755
756 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
757
758 dout("prepare_write_message_footer %p\n", con);
759 con->out_kvec_is_msg = true;
760 con->out_kvec[v].iov_base = &m->footer;
761 con->out_kvec[v].iov_len = sizeof(m->footer);
762 con->out_kvec_bytes += sizeof(m->footer);
763 con->out_kvec_left++;
764 con->out_more = m->more_to_follow;
765 con->out_msg_done = true;
766 }
767
768 /*
769 * Prepare headers for the next outgoing message.
770 */
771 static void prepare_write_message(struct ceph_connection *con)
772 {
773 struct ceph_msg *m;
774 u32 crc;
775
776 con_out_kvec_reset(con);
777 con->out_kvec_is_msg = true;
778 con->out_msg_done = false;
779
780 /* Sneak an ack in there first? If we can get it into the same
781 * TCP packet that's a good thing. */
782 if (con->in_seq > con->in_seq_acked) {
783 con->in_seq_acked = con->in_seq;
784 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
785 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
786 con_out_kvec_add(con, sizeof (con->out_temp_ack),
787 &con->out_temp_ack);
788 }
789
790 BUG_ON(list_empty(&con->out_queue));
791 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
792 con->out_msg = m;
793 BUG_ON(m->con != con);
794
795 /* put message on sent list */
796 ceph_msg_get(m);
797 list_move_tail(&m->list_head, &con->out_sent);
798
799 /*
800 * only assign outgoing seq # if we haven't sent this message
801 * yet. if it is requeued, resend with it's original seq.
802 */
803 if (m->needs_out_seq) {
804 m->hdr.seq = cpu_to_le64(++con->out_seq);
805 m->needs_out_seq = false;
806 }
807 #ifdef CONFIG_BLOCK
808 else
809 m->bio_iter = NULL;
810 #endif
811
812 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
813 m, con->out_seq, le16_to_cpu(m->hdr.type),
814 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
815 le32_to_cpu(m->hdr.data_len),
816 m->page_count);
817 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
818
819 /* tag + hdr + front + middle */
820 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
821 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
822 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
823
824 if (m->middle)
825 con_out_kvec_add(con, m->middle->vec.iov_len,
826 m->middle->vec.iov_base);
827
828 /* fill in crc (except data pages), footer */
829 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
830 con->out_msg->hdr.crc = cpu_to_le32(crc);
831 con->out_msg->footer.flags = 0;
832
833 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
834 con->out_msg->footer.front_crc = cpu_to_le32(crc);
835 if (m->middle) {
836 crc = crc32c(0, m->middle->vec.iov_base,
837 m->middle->vec.iov_len);
838 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
839 } else
840 con->out_msg->footer.middle_crc = 0;
841 dout("%s front_crc %u middle_crc %u\n", __func__,
842 le32_to_cpu(con->out_msg->footer.front_crc),
843 le32_to_cpu(con->out_msg->footer.middle_crc));
844
845 /* is there a data payload? */
846 con->out_msg->footer.data_crc = 0;
847 if (m->hdr.data_len)
848 prepare_write_message_data(con);
849 else
850 /* no, queue up footer too and be done */
851 prepare_write_message_footer(con);
852
853 con_flag_set(con, CON_FLAG_WRITE_PENDING);
854 }
855
856 /*
857 * Prepare an ack.
858 */
859 static void prepare_write_ack(struct ceph_connection *con)
860 {
861 dout("prepare_write_ack %p %llu -> %llu\n", con,
862 con->in_seq_acked, con->in_seq);
863 con->in_seq_acked = con->in_seq;
864
865 con_out_kvec_reset(con);
866
867 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
868
869 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
870 con_out_kvec_add(con, sizeof (con->out_temp_ack),
871 &con->out_temp_ack);
872
873 con->out_more = 1; /* more will follow.. eventually.. */
874 con_flag_set(con, CON_FLAG_WRITE_PENDING);
875 }
876
877 /*
878 * Prepare to write keepalive byte.
879 */
880 static void prepare_write_keepalive(struct ceph_connection *con)
881 {
882 dout("prepare_write_keepalive %p\n", con);
883 con_out_kvec_reset(con);
884 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
885 con_flag_set(con, CON_FLAG_WRITE_PENDING);
886 }
887
888 /*
889 * Connection negotiation.
890 */
891
892 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
893 int *auth_proto)
894 {
895 struct ceph_auth_handshake *auth;
896
897 if (!con->ops->get_authorizer) {
898 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
899 con->out_connect.authorizer_len = 0;
900 return NULL;
901 }
902
903 /* Can't hold the mutex while getting authorizer */
904 mutex_unlock(&con->mutex);
905 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
906 mutex_lock(&con->mutex);
907
908 if (IS_ERR(auth))
909 return auth;
910 if (con->state != CON_STATE_NEGOTIATING)
911 return ERR_PTR(-EAGAIN);
912
913 con->auth_reply_buf = auth->authorizer_reply_buf;
914 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
915 return auth;
916 }
917
918 /*
919 * We connected to a peer and are saying hello.
920 */
921 static void prepare_write_banner(struct ceph_connection *con)
922 {
923 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
924 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
925 &con->msgr->my_enc_addr);
926
927 con->out_more = 0;
928 con_flag_set(con, CON_FLAG_WRITE_PENDING);
929 }
930
931 static int prepare_write_connect(struct ceph_connection *con)
932 {
933 unsigned int global_seq = get_global_seq(con->msgr, 0);
934 int proto;
935 int auth_proto;
936 struct ceph_auth_handshake *auth;
937
938 switch (con->peer_name.type) {
939 case CEPH_ENTITY_TYPE_MON:
940 proto = CEPH_MONC_PROTOCOL;
941 break;
942 case CEPH_ENTITY_TYPE_OSD:
943 proto = CEPH_OSDC_PROTOCOL;
944 break;
945 case CEPH_ENTITY_TYPE_MDS:
946 proto = CEPH_MDSC_PROTOCOL;
947 break;
948 default:
949 BUG();
950 }
951
952 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
953 con->connect_seq, global_seq, proto);
954
955 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
956 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
957 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
958 con->out_connect.global_seq = cpu_to_le32(global_seq);
959 con->out_connect.protocol_version = cpu_to_le32(proto);
960 con->out_connect.flags = 0;
961
962 auth_proto = CEPH_AUTH_UNKNOWN;
963 auth = get_connect_authorizer(con, &auth_proto);
964 if (IS_ERR(auth))
965 return PTR_ERR(auth);
966
967 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
968 con->out_connect.authorizer_len = auth ?
969 cpu_to_le32(auth->authorizer_buf_len) : 0;
970
971 con_out_kvec_add(con, sizeof (con->out_connect),
972 &con->out_connect);
973 if (auth && auth->authorizer_buf_len)
974 con_out_kvec_add(con, auth->authorizer_buf_len,
975 auth->authorizer_buf);
976
977 con->out_more = 0;
978 con_flag_set(con, CON_FLAG_WRITE_PENDING);
979
980 return 0;
981 }
982
983 /*
984 * write as much of pending kvecs to the socket as we can.
985 * 1 -> done
986 * 0 -> socket full, but more to do
987 * <0 -> error
988 */
989 static int write_partial_kvec(struct ceph_connection *con)
990 {
991 int ret;
992
993 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
994 while (con->out_kvec_bytes > 0) {
995 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
996 con->out_kvec_left, con->out_kvec_bytes,
997 con->out_more);
998 if (ret <= 0)
999 goto out;
1000 con->out_kvec_bytes -= ret;
1001 if (con->out_kvec_bytes == 0)
1002 break; /* done */
1003
1004 /* account for full iov entries consumed */
1005 while (ret >= con->out_kvec_cur->iov_len) {
1006 BUG_ON(!con->out_kvec_left);
1007 ret -= con->out_kvec_cur->iov_len;
1008 con->out_kvec_cur++;
1009 con->out_kvec_left--;
1010 }
1011 /* and for a partially-consumed entry */
1012 if (ret) {
1013 con->out_kvec_cur->iov_len -= ret;
1014 con->out_kvec_cur->iov_base += ret;
1015 }
1016 }
1017 con->out_kvec_left = 0;
1018 con->out_kvec_is_msg = false;
1019 ret = 1;
1020 out:
1021 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1022 con->out_kvec_bytes, con->out_kvec_left, ret);
1023 return ret; /* done! */
1024 }
1025
1026 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1027 size_t len, size_t sent, bool in_trail)
1028 {
1029 struct ceph_msg *msg = con->out_msg;
1030
1031 BUG_ON(!msg);
1032 BUG_ON(!sent);
1033
1034 con->out_msg_pos.data_pos += sent;
1035 con->out_msg_pos.page_pos += sent;
1036 if (sent < len)
1037 return;
1038
1039 BUG_ON(sent != len);
1040 con->out_msg_pos.page_pos = 0;
1041 con->out_msg_pos.page++;
1042 con->out_msg_pos.did_page_crc = false;
1043 if (in_trail)
1044 list_move_tail(&page->lru,
1045 &msg->trail->head);
1046 else if (msg->pagelist)
1047 list_move_tail(&page->lru,
1048 &msg->pagelist->head);
1049 #ifdef CONFIG_BLOCK
1050 else if (msg->bio)
1051 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1052 #endif
1053 }
1054
1055 /*
1056 * Write as much message data payload as we can. If we finish, queue
1057 * up the footer.
1058 * 1 -> done, footer is now queued in out_kvec[].
1059 * 0 -> socket full, but more to do
1060 * <0 -> error
1061 */
1062 static int write_partial_msg_pages(struct ceph_connection *con)
1063 {
1064 struct ceph_msg *msg = con->out_msg;
1065 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1066 size_t len;
1067 bool do_datacrc = !con->msgr->nocrc;
1068 int ret;
1069 int total_max_write;
1070 bool in_trail = false;
1071 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1072 const size_t trail_off = data_len - trail_len;
1073
1074 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1075 con, msg, con->out_msg_pos.page, msg->page_count,
1076 con->out_msg_pos.page_pos);
1077
1078 /*
1079 * Iterate through each page that contains data to be
1080 * written, and send as much as possible for each.
1081 *
1082 * If we are calculating the data crc (the default), we will
1083 * need to map the page. If we have no pages, they have
1084 * been revoked, so use the zero page.
1085 */
1086 while (data_len > con->out_msg_pos.data_pos) {
1087 struct page *page = NULL;
1088 int max_write = PAGE_SIZE;
1089 int bio_offset = 0;
1090
1091 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1092 if (!in_trail)
1093 total_max_write = trail_off - con->out_msg_pos.data_pos;
1094
1095 if (in_trail) {
1096 total_max_write = data_len - con->out_msg_pos.data_pos;
1097
1098 page = list_first_entry(&msg->trail->head,
1099 struct page, lru);
1100 } else if (msg->pages) {
1101 page = msg->pages[con->out_msg_pos.page];
1102 } else if (msg->pagelist) {
1103 page = list_first_entry(&msg->pagelist->head,
1104 struct page, lru);
1105 #ifdef CONFIG_BLOCK
1106 } else if (msg->bio) {
1107 struct bio_vec *bv;
1108
1109 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1110 page = bv->bv_page;
1111 bio_offset = bv->bv_offset;
1112 max_write = bv->bv_len;
1113 #endif
1114 } else {
1115 page = zero_page;
1116 }
1117 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1118 total_max_write);
1119
1120 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1121 void *base;
1122 u32 crc = le32_to_cpu(msg->footer.data_crc);
1123 char *kaddr;
1124
1125 kaddr = kmap(page);
1126 BUG_ON(kaddr == NULL);
1127 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1128 crc = crc32c(crc, base, len);
1129 kunmap(page);
1130 msg->footer.data_crc = cpu_to_le32(crc);
1131 con->out_msg_pos.did_page_crc = true;
1132 }
1133 ret = ceph_tcp_sendpage(con->sock, page,
1134 con->out_msg_pos.page_pos + bio_offset,
1135 len, 1);
1136 if (ret <= 0)
1137 goto out;
1138
1139 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1140 }
1141
1142 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1143
1144 /* prepare and queue up footer, too */
1145 if (!do_datacrc)
1146 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1147 con_out_kvec_reset(con);
1148 prepare_write_message_footer(con);
1149 ret = 1;
1150 out:
1151 return ret;
1152 }
1153
1154 /*
1155 * write some zeros
1156 */
1157 static int write_partial_skip(struct ceph_connection *con)
1158 {
1159 int ret;
1160
1161 while (con->out_skip > 0) {
1162 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1163
1164 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1165 if (ret <= 0)
1166 goto out;
1167 con->out_skip -= ret;
1168 }
1169 ret = 1;
1170 out:
1171 return ret;
1172 }
1173
1174 /*
1175 * Prepare to read connection handshake, or an ack.
1176 */
1177 static void prepare_read_banner(struct ceph_connection *con)
1178 {
1179 dout("prepare_read_banner %p\n", con);
1180 con->in_base_pos = 0;
1181 }
1182
1183 static void prepare_read_connect(struct ceph_connection *con)
1184 {
1185 dout("prepare_read_connect %p\n", con);
1186 con->in_base_pos = 0;
1187 }
1188
1189 static void prepare_read_ack(struct ceph_connection *con)
1190 {
1191 dout("prepare_read_ack %p\n", con);
1192 con->in_base_pos = 0;
1193 }
1194
1195 static void prepare_read_tag(struct ceph_connection *con)
1196 {
1197 dout("prepare_read_tag %p\n", con);
1198 con->in_base_pos = 0;
1199 con->in_tag = CEPH_MSGR_TAG_READY;
1200 }
1201
1202 /*
1203 * Prepare to read a message.
1204 */
1205 static int prepare_read_message(struct ceph_connection *con)
1206 {
1207 dout("prepare_read_message %p\n", con);
1208 BUG_ON(con->in_msg != NULL);
1209 con->in_base_pos = 0;
1210 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1211 return 0;
1212 }
1213
1214
1215 static int read_partial(struct ceph_connection *con,
1216 int end, int size, void *object)
1217 {
1218 while (con->in_base_pos < end) {
1219 int left = end - con->in_base_pos;
1220 int have = size - left;
1221 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1222 if (ret <= 0)
1223 return ret;
1224 con->in_base_pos += ret;
1225 }
1226 return 1;
1227 }
1228
1229
1230 /*
1231 * Read all or part of the connect-side handshake on a new connection
1232 */
1233 static int read_partial_banner(struct ceph_connection *con)
1234 {
1235 int size;
1236 int end;
1237 int ret;
1238
1239 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1240
1241 /* peer's banner */
1242 size = strlen(CEPH_BANNER);
1243 end = size;
1244 ret = read_partial(con, end, size, con->in_banner);
1245 if (ret <= 0)
1246 goto out;
1247
1248 size = sizeof (con->actual_peer_addr);
1249 end += size;
1250 ret = read_partial(con, end, size, &con->actual_peer_addr);
1251 if (ret <= 0)
1252 goto out;
1253
1254 size = sizeof (con->peer_addr_for_me);
1255 end += size;
1256 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1257 if (ret <= 0)
1258 goto out;
1259
1260 out:
1261 return ret;
1262 }
1263
1264 static int read_partial_connect(struct ceph_connection *con)
1265 {
1266 int size;
1267 int end;
1268 int ret;
1269
1270 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1271
1272 size = sizeof (con->in_reply);
1273 end = size;
1274 ret = read_partial(con, end, size, &con->in_reply);
1275 if (ret <= 0)
1276 goto out;
1277
1278 size = le32_to_cpu(con->in_reply.authorizer_len);
1279 end += size;
1280 ret = read_partial(con, end, size, con->auth_reply_buf);
1281 if (ret <= 0)
1282 goto out;
1283
1284 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1285 con, (int)con->in_reply.tag,
1286 le32_to_cpu(con->in_reply.connect_seq),
1287 le32_to_cpu(con->in_reply.global_seq));
1288 out:
1289 return ret;
1290
1291 }
1292
1293 /*
1294 * Verify the hello banner looks okay.
1295 */
1296 static int verify_hello(struct ceph_connection *con)
1297 {
1298 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1299 pr_err("connect to %s got bad banner\n",
1300 ceph_pr_addr(&con->peer_addr.in_addr));
1301 con->error_msg = "protocol error, bad banner";
1302 return -1;
1303 }
1304 return 0;
1305 }
1306
1307 static bool addr_is_blank(struct sockaddr_storage *ss)
1308 {
1309 switch (ss->ss_family) {
1310 case AF_INET:
1311 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1312 case AF_INET6:
1313 return
1314 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1315 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1316 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1317 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1318 }
1319 return false;
1320 }
1321
1322 static int addr_port(struct sockaddr_storage *ss)
1323 {
1324 switch (ss->ss_family) {
1325 case AF_INET:
1326 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1327 case AF_INET6:
1328 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1329 }
1330 return 0;
1331 }
1332
1333 static void addr_set_port(struct sockaddr_storage *ss, int p)
1334 {
1335 switch (ss->ss_family) {
1336 case AF_INET:
1337 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1338 break;
1339 case AF_INET6:
1340 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1341 break;
1342 }
1343 }
1344
1345 /*
1346 * Unlike other *_pton function semantics, zero indicates success.
1347 */
1348 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1349 char delim, const char **ipend)
1350 {
1351 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1352 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1353
1354 memset(ss, 0, sizeof(*ss));
1355
1356 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1357 ss->ss_family = AF_INET;
1358 return 0;
1359 }
1360
1361 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1362 ss->ss_family = AF_INET6;
1363 return 0;
1364 }
1365
1366 return -EINVAL;
1367 }
1368
1369 /*
1370 * Extract hostname string and resolve using kernel DNS facility.
1371 */
1372 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1373 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1374 struct sockaddr_storage *ss, char delim, const char **ipend)
1375 {
1376 const char *end, *delim_p;
1377 char *colon_p, *ip_addr = NULL;
1378 int ip_len, ret;
1379
1380 /*
1381 * The end of the hostname occurs immediately preceding the delimiter or
1382 * the port marker (':') where the delimiter takes precedence.
1383 */
1384 delim_p = memchr(name, delim, namelen);
1385 colon_p = memchr(name, ':', namelen);
1386
1387 if (delim_p && colon_p)
1388 end = delim_p < colon_p ? delim_p : colon_p;
1389 else if (!delim_p && colon_p)
1390 end = colon_p;
1391 else {
1392 end = delim_p;
1393 if (!end) /* case: hostname:/ */
1394 end = name + namelen;
1395 }
1396
1397 if (end <= name)
1398 return -EINVAL;
1399
1400 /* do dns_resolve upcall */
1401 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1402 if (ip_len > 0)
1403 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1404 else
1405 ret = -ESRCH;
1406
1407 kfree(ip_addr);
1408
1409 *ipend = end;
1410
1411 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1412 ret, ret ? "failed" : ceph_pr_addr(ss));
1413
1414 return ret;
1415 }
1416 #else
1417 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1418 struct sockaddr_storage *ss, char delim, const char **ipend)
1419 {
1420 return -EINVAL;
1421 }
1422 #endif
1423
1424 /*
1425 * Parse a server name (IP or hostname). If a valid IP address is not found
1426 * then try to extract a hostname to resolve using userspace DNS upcall.
1427 */
1428 static int ceph_parse_server_name(const char *name, size_t namelen,
1429 struct sockaddr_storage *ss, char delim, const char **ipend)
1430 {
1431 int ret;
1432
1433 ret = ceph_pton(name, namelen, ss, delim, ipend);
1434 if (ret)
1435 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1436
1437 return ret;
1438 }
1439
1440 /*
1441 * Parse an ip[:port] list into an addr array. Use the default
1442 * monitor port if a port isn't specified.
1443 */
1444 int ceph_parse_ips(const char *c, const char *end,
1445 struct ceph_entity_addr *addr,
1446 int max_count, int *count)
1447 {
1448 int i, ret = -EINVAL;
1449 const char *p = c;
1450
1451 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1452 for (i = 0; i < max_count; i++) {
1453 const char *ipend;
1454 struct sockaddr_storage *ss = &addr[i].in_addr;
1455 int port;
1456 char delim = ',';
1457
1458 if (*p == '[') {
1459 delim = ']';
1460 p++;
1461 }
1462
1463 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1464 if (ret)
1465 goto bad;
1466 ret = -EINVAL;
1467
1468 p = ipend;
1469
1470 if (delim == ']') {
1471 if (*p != ']') {
1472 dout("missing matching ']'\n");
1473 goto bad;
1474 }
1475 p++;
1476 }
1477
1478 /* port? */
1479 if (p < end && *p == ':') {
1480 port = 0;
1481 p++;
1482 while (p < end && *p >= '0' && *p <= '9') {
1483 port = (port * 10) + (*p - '0');
1484 p++;
1485 }
1486 if (port > 65535 || port == 0)
1487 goto bad;
1488 } else {
1489 port = CEPH_MON_PORT;
1490 }
1491
1492 addr_set_port(ss, port);
1493
1494 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1495
1496 if (p == end)
1497 break;
1498 if (*p != ',')
1499 goto bad;
1500 p++;
1501 }
1502
1503 if (p != end)
1504 goto bad;
1505
1506 if (count)
1507 *count = i + 1;
1508 return 0;
1509
1510 bad:
1511 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1512 return ret;
1513 }
1514 EXPORT_SYMBOL(ceph_parse_ips);
1515
1516 static int process_banner(struct ceph_connection *con)
1517 {
1518 dout("process_banner on %p\n", con);
1519
1520 if (verify_hello(con) < 0)
1521 return -1;
1522
1523 ceph_decode_addr(&con->actual_peer_addr);
1524 ceph_decode_addr(&con->peer_addr_for_me);
1525
1526 /*
1527 * Make sure the other end is who we wanted. note that the other
1528 * end may not yet know their ip address, so if it's 0.0.0.0, give
1529 * them the benefit of the doubt.
1530 */
1531 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1532 sizeof(con->peer_addr)) != 0 &&
1533 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1534 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1535 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1536 ceph_pr_addr(&con->peer_addr.in_addr),
1537 (int)le32_to_cpu(con->peer_addr.nonce),
1538 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1539 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1540 con->error_msg = "wrong peer at address";
1541 return -1;
1542 }
1543
1544 /*
1545 * did we learn our address?
1546 */
1547 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1548 int port = addr_port(&con->msgr->inst.addr.in_addr);
1549
1550 memcpy(&con->msgr->inst.addr.in_addr,
1551 &con->peer_addr_for_me.in_addr,
1552 sizeof(con->peer_addr_for_me.in_addr));
1553 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1554 encode_my_addr(con->msgr);
1555 dout("process_banner learned my addr is %s\n",
1556 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1557 }
1558
1559 return 0;
1560 }
1561
1562 static int process_connect(struct ceph_connection *con)
1563 {
1564 u64 sup_feat = con->msgr->supported_features;
1565 u64 req_feat = con->msgr->required_features;
1566 u64 server_feat = le64_to_cpu(con->in_reply.features);
1567 int ret;
1568
1569 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1570
1571 switch (con->in_reply.tag) {
1572 case CEPH_MSGR_TAG_FEATURES:
1573 pr_err("%s%lld %s feature set mismatch,"
1574 " my %llx < server's %llx, missing %llx\n",
1575 ENTITY_NAME(con->peer_name),
1576 ceph_pr_addr(&con->peer_addr.in_addr),
1577 sup_feat, server_feat, server_feat & ~sup_feat);
1578 con->error_msg = "missing required protocol features";
1579 reset_connection(con);
1580 return -1;
1581
1582 case CEPH_MSGR_TAG_BADPROTOVER:
1583 pr_err("%s%lld %s protocol version mismatch,"
1584 " my %d != server's %d\n",
1585 ENTITY_NAME(con->peer_name),
1586 ceph_pr_addr(&con->peer_addr.in_addr),
1587 le32_to_cpu(con->out_connect.protocol_version),
1588 le32_to_cpu(con->in_reply.protocol_version));
1589 con->error_msg = "protocol version mismatch";
1590 reset_connection(con);
1591 return -1;
1592
1593 case CEPH_MSGR_TAG_BADAUTHORIZER:
1594 con->auth_retry++;
1595 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1596 con->auth_retry);
1597 if (con->auth_retry == 2) {
1598 con->error_msg = "connect authorization failure";
1599 return -1;
1600 }
1601 con->auth_retry = 1;
1602 con_out_kvec_reset(con);
1603 ret = prepare_write_connect(con);
1604 if (ret < 0)
1605 return ret;
1606 prepare_read_connect(con);
1607 break;
1608
1609 case CEPH_MSGR_TAG_RESETSESSION:
1610 /*
1611 * If we connected with a large connect_seq but the peer
1612 * has no record of a session with us (no connection, or
1613 * connect_seq == 0), they will send RESETSESION to indicate
1614 * that they must have reset their session, and may have
1615 * dropped messages.
1616 */
1617 dout("process_connect got RESET peer seq %u\n",
1618 le32_to_cpu(con->in_reply.connect_seq));
1619 pr_err("%s%lld %s connection reset\n",
1620 ENTITY_NAME(con->peer_name),
1621 ceph_pr_addr(&con->peer_addr.in_addr));
1622 reset_connection(con);
1623 con_out_kvec_reset(con);
1624 ret = prepare_write_connect(con);
1625 if (ret < 0)
1626 return ret;
1627 prepare_read_connect(con);
1628
1629 /* Tell ceph about it. */
1630 mutex_unlock(&con->mutex);
1631 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1632 if (con->ops->peer_reset)
1633 con->ops->peer_reset(con);
1634 mutex_lock(&con->mutex);
1635 if (con->state != CON_STATE_NEGOTIATING)
1636 return -EAGAIN;
1637 break;
1638
1639 case CEPH_MSGR_TAG_RETRY_SESSION:
1640 /*
1641 * If we sent a smaller connect_seq than the peer has, try
1642 * again with a larger value.
1643 */
1644 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1645 le32_to_cpu(con->out_connect.connect_seq),
1646 le32_to_cpu(con->in_reply.connect_seq));
1647 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1648 con_out_kvec_reset(con);
1649 ret = prepare_write_connect(con);
1650 if (ret < 0)
1651 return ret;
1652 prepare_read_connect(con);
1653 break;
1654
1655 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1656 /*
1657 * If we sent a smaller global_seq than the peer has, try
1658 * again with a larger value.
1659 */
1660 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1661 con->peer_global_seq,
1662 le32_to_cpu(con->in_reply.global_seq));
1663 get_global_seq(con->msgr,
1664 le32_to_cpu(con->in_reply.global_seq));
1665 con_out_kvec_reset(con);
1666 ret = prepare_write_connect(con);
1667 if (ret < 0)
1668 return ret;
1669 prepare_read_connect(con);
1670 break;
1671
1672 case CEPH_MSGR_TAG_READY:
1673 if (req_feat & ~server_feat) {
1674 pr_err("%s%lld %s protocol feature mismatch,"
1675 " my required %llx > server's %llx, need %llx\n",
1676 ENTITY_NAME(con->peer_name),
1677 ceph_pr_addr(&con->peer_addr.in_addr),
1678 req_feat, server_feat, req_feat & ~server_feat);
1679 con->error_msg = "missing required protocol features";
1680 reset_connection(con);
1681 return -1;
1682 }
1683
1684 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1685 con->state = CON_STATE_OPEN;
1686
1687 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1688 con->connect_seq++;
1689 con->peer_features = server_feat;
1690 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1691 con->peer_global_seq,
1692 le32_to_cpu(con->in_reply.connect_seq),
1693 con->connect_seq);
1694 WARN_ON(con->connect_seq !=
1695 le32_to_cpu(con->in_reply.connect_seq));
1696
1697 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1698 con_flag_set(con, CON_FLAG_LOSSYTX);
1699
1700 con->delay = 0; /* reset backoff memory */
1701
1702 prepare_read_tag(con);
1703 break;
1704
1705 case CEPH_MSGR_TAG_WAIT:
1706 /*
1707 * If there is a connection race (we are opening
1708 * connections to each other), one of us may just have
1709 * to WAIT. This shouldn't happen if we are the
1710 * client.
1711 */
1712 pr_err("process_connect got WAIT as client\n");
1713 con->error_msg = "protocol error, got WAIT as client";
1714 return -1;
1715
1716 default:
1717 pr_err("connect protocol error, will retry\n");
1718 con->error_msg = "protocol error, garbage tag during connect";
1719 return -1;
1720 }
1721 return 0;
1722 }
1723
1724
1725 /*
1726 * read (part of) an ack
1727 */
1728 static int read_partial_ack(struct ceph_connection *con)
1729 {
1730 int size = sizeof (con->in_temp_ack);
1731 int end = size;
1732
1733 return read_partial(con, end, size, &con->in_temp_ack);
1734 }
1735
1736
1737 /*
1738 * We can finally discard anything that's been acked.
1739 */
1740 static void process_ack(struct ceph_connection *con)
1741 {
1742 struct ceph_msg *m;
1743 u64 ack = le64_to_cpu(con->in_temp_ack);
1744 u64 seq;
1745
1746 while (!list_empty(&con->out_sent)) {
1747 m = list_first_entry(&con->out_sent, struct ceph_msg,
1748 list_head);
1749 seq = le64_to_cpu(m->hdr.seq);
1750 if (seq > ack)
1751 break;
1752 dout("got ack for seq %llu type %d at %p\n", seq,
1753 le16_to_cpu(m->hdr.type), m);
1754 m->ack_stamp = jiffies;
1755 ceph_msg_remove(m);
1756 }
1757 prepare_read_tag(con);
1758 }
1759
1760
1761
1762
1763 static int read_partial_message_section(struct ceph_connection *con,
1764 struct kvec *section,
1765 unsigned int sec_len, u32 *crc)
1766 {
1767 int ret, left;
1768
1769 BUG_ON(!section);
1770
1771 while (section->iov_len < sec_len) {
1772 BUG_ON(section->iov_base == NULL);
1773 left = sec_len - section->iov_len;
1774 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1775 section->iov_len, left);
1776 if (ret <= 0)
1777 return ret;
1778 section->iov_len += ret;
1779 }
1780 if (section->iov_len == sec_len)
1781 *crc = crc32c(0, section->iov_base, section->iov_len);
1782
1783 return 1;
1784 }
1785
1786 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1787
1788 static int read_partial_message_pages(struct ceph_connection *con,
1789 struct page **pages,
1790 unsigned int data_len, bool do_datacrc)
1791 {
1792 void *p;
1793 int ret;
1794 int left;
1795
1796 left = min((int)(data_len - con->in_msg_pos.data_pos),
1797 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1798 /* (page) data */
1799 BUG_ON(pages == NULL);
1800 p = kmap(pages[con->in_msg_pos.page]);
1801 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1802 left);
1803 if (ret > 0 && do_datacrc)
1804 con->in_data_crc =
1805 crc32c(con->in_data_crc,
1806 p + con->in_msg_pos.page_pos, ret);
1807 kunmap(pages[con->in_msg_pos.page]);
1808 if (ret <= 0)
1809 return ret;
1810 con->in_msg_pos.data_pos += ret;
1811 con->in_msg_pos.page_pos += ret;
1812 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1813 con->in_msg_pos.page_pos = 0;
1814 con->in_msg_pos.page++;
1815 }
1816
1817 return ret;
1818 }
1819
1820 #ifdef CONFIG_BLOCK
1821 static int read_partial_message_bio(struct ceph_connection *con,
1822 struct bio **bio_iter,
1823 unsigned int *bio_seg,
1824 unsigned int data_len, bool do_datacrc)
1825 {
1826 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1827 void *p;
1828 int ret, left;
1829
1830 left = min((int)(data_len - con->in_msg_pos.data_pos),
1831 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1832
1833 p = kmap(bv->bv_page) + bv->bv_offset;
1834
1835 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1836 left);
1837 if (ret > 0 && do_datacrc)
1838 con->in_data_crc =
1839 crc32c(con->in_data_crc,
1840 p + con->in_msg_pos.page_pos, ret);
1841 kunmap(bv->bv_page);
1842 if (ret <= 0)
1843 return ret;
1844 con->in_msg_pos.data_pos += ret;
1845 con->in_msg_pos.page_pos += ret;
1846 if (con->in_msg_pos.page_pos == bv->bv_len) {
1847 con->in_msg_pos.page_pos = 0;
1848 iter_bio_next(bio_iter, bio_seg);
1849 }
1850
1851 return ret;
1852 }
1853 #endif
1854
1855 /*
1856 * read (part of) a message.
1857 */
1858 static int read_partial_message(struct ceph_connection *con)
1859 {
1860 struct ceph_msg *m = con->in_msg;
1861 int size;
1862 int end;
1863 int ret;
1864 unsigned int front_len, middle_len, data_len;
1865 bool do_datacrc = !con->msgr->nocrc;
1866 u64 seq;
1867 u32 crc;
1868
1869 dout("read_partial_message con %p msg %p\n", con, m);
1870
1871 /* header */
1872 size = sizeof (con->in_hdr);
1873 end = size;
1874 ret = read_partial(con, end, size, &con->in_hdr);
1875 if (ret <= 0)
1876 return ret;
1877
1878 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1879 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1880 pr_err("read_partial_message bad hdr "
1881 " crc %u != expected %u\n",
1882 crc, con->in_hdr.crc);
1883 return -EBADMSG;
1884 }
1885
1886 front_len = le32_to_cpu(con->in_hdr.front_len);
1887 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1888 return -EIO;
1889 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1890 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1891 return -EIO;
1892 data_len = le32_to_cpu(con->in_hdr.data_len);
1893 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1894 return -EIO;
1895
1896 /* verify seq# */
1897 seq = le64_to_cpu(con->in_hdr.seq);
1898 if ((s64)seq - (s64)con->in_seq < 1) {
1899 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1900 ENTITY_NAME(con->peer_name),
1901 ceph_pr_addr(&con->peer_addr.in_addr),
1902 seq, con->in_seq + 1);
1903 con->in_base_pos = -front_len - middle_len - data_len -
1904 sizeof(m->footer);
1905 con->in_tag = CEPH_MSGR_TAG_READY;
1906 return 0;
1907 } else if ((s64)seq - (s64)con->in_seq > 1) {
1908 pr_err("read_partial_message bad seq %lld expected %lld\n",
1909 seq, con->in_seq + 1);
1910 con->error_msg = "bad message sequence # for incoming message";
1911 return -EBADMSG;
1912 }
1913
1914 /* allocate message? */
1915 if (!con->in_msg) {
1916 int skip = 0;
1917
1918 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1919 con->in_hdr.front_len, con->in_hdr.data_len);
1920 ret = ceph_con_in_msg_alloc(con, &skip);
1921 if (ret < 0)
1922 return ret;
1923 if (skip) {
1924 /* skip this message */
1925 dout("alloc_msg said skip message\n");
1926 BUG_ON(con->in_msg);
1927 con->in_base_pos = -front_len - middle_len - data_len -
1928 sizeof(m->footer);
1929 con->in_tag = CEPH_MSGR_TAG_READY;
1930 con->in_seq++;
1931 return 0;
1932 }
1933
1934 BUG_ON(!con->in_msg);
1935 BUG_ON(con->in_msg->con != con);
1936 m = con->in_msg;
1937 m->front.iov_len = 0; /* haven't read it yet */
1938 if (m->middle)
1939 m->middle->vec.iov_len = 0;
1940
1941 con->in_msg_pos.page = 0;
1942 if (m->pages)
1943 con->in_msg_pos.page_pos = m->page_alignment;
1944 else
1945 con->in_msg_pos.page_pos = 0;
1946 con->in_msg_pos.data_pos = 0;
1947
1948 #ifdef CONFIG_BLOCK
1949 if (m->bio)
1950 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1951 #endif
1952 }
1953
1954 /* front */
1955 ret = read_partial_message_section(con, &m->front, front_len,
1956 &con->in_front_crc);
1957 if (ret <= 0)
1958 return ret;
1959
1960 /* middle */
1961 if (m->middle) {
1962 ret = read_partial_message_section(con, &m->middle->vec,
1963 middle_len,
1964 &con->in_middle_crc);
1965 if (ret <= 0)
1966 return ret;
1967 }
1968
1969 /* (page) data */
1970 while (con->in_msg_pos.data_pos < data_len) {
1971 if (m->pages) {
1972 ret = read_partial_message_pages(con, m->pages,
1973 data_len, do_datacrc);
1974 if (ret <= 0)
1975 return ret;
1976 #ifdef CONFIG_BLOCK
1977 } else if (m->bio) {
1978 BUG_ON(!m->bio_iter);
1979 ret = read_partial_message_bio(con,
1980 &m->bio_iter, &m->bio_seg,
1981 data_len, do_datacrc);
1982 if (ret <= 0)
1983 return ret;
1984 #endif
1985 } else {
1986 BUG_ON(1);
1987 }
1988 }
1989
1990 /* footer */
1991 size = sizeof (m->footer);
1992 end += size;
1993 ret = read_partial(con, end, size, &m->footer);
1994 if (ret <= 0)
1995 return ret;
1996
1997 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1998 m, front_len, m->footer.front_crc, middle_len,
1999 m->footer.middle_crc, data_len, m->footer.data_crc);
2000
2001 /* crc ok? */
2002 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2003 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2004 m, con->in_front_crc, m->footer.front_crc);
2005 return -EBADMSG;
2006 }
2007 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2008 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2009 m, con->in_middle_crc, m->footer.middle_crc);
2010 return -EBADMSG;
2011 }
2012 if (do_datacrc &&
2013 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2014 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2015 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2016 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2017 return -EBADMSG;
2018 }
2019
2020 return 1; /* done! */
2021 }
2022
2023 /*
2024 * Process message. This happens in the worker thread. The callback should
2025 * be careful not to do anything that waits on other incoming messages or it
2026 * may deadlock.
2027 */
2028 static void process_message(struct ceph_connection *con)
2029 {
2030 struct ceph_msg *msg;
2031
2032 BUG_ON(con->in_msg->con != con);
2033 con->in_msg->con = NULL;
2034 msg = con->in_msg;
2035 con->in_msg = NULL;
2036 con->ops->put(con);
2037
2038 /* if first message, set peer_name */
2039 if (con->peer_name.type == 0)
2040 con->peer_name = msg->hdr.src;
2041
2042 con->in_seq++;
2043 mutex_unlock(&con->mutex);
2044
2045 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2046 msg, le64_to_cpu(msg->hdr.seq),
2047 ENTITY_NAME(msg->hdr.src),
2048 le16_to_cpu(msg->hdr.type),
2049 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2050 le32_to_cpu(msg->hdr.front_len),
2051 le32_to_cpu(msg->hdr.data_len),
2052 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2053 con->ops->dispatch(con, msg);
2054
2055 mutex_lock(&con->mutex);
2056 }
2057
2058
2059 /*
2060 * Write something to the socket. Called in a worker thread when the
2061 * socket appears to be writeable and we have something ready to send.
2062 */
2063 static int try_write(struct ceph_connection *con)
2064 {
2065 int ret = 1;
2066
2067 dout("try_write start %p state %lu\n", con, con->state);
2068
2069 more:
2070 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2071
2072 /* open the socket first? */
2073 if (con->state == CON_STATE_PREOPEN) {
2074 BUG_ON(con->sock);
2075 con->state = CON_STATE_CONNECTING;
2076
2077 con_out_kvec_reset(con);
2078 prepare_write_banner(con);
2079 prepare_read_banner(con);
2080
2081 BUG_ON(con->in_msg);
2082 con->in_tag = CEPH_MSGR_TAG_READY;
2083 dout("try_write initiating connect on %p new state %lu\n",
2084 con, con->state);
2085 ret = ceph_tcp_connect(con);
2086 if (ret < 0) {
2087 con->error_msg = "connect error";
2088 goto out;
2089 }
2090 }
2091
2092 more_kvec:
2093 /* kvec data queued? */
2094 if (con->out_skip) {
2095 ret = write_partial_skip(con);
2096 if (ret <= 0)
2097 goto out;
2098 }
2099 if (con->out_kvec_left) {
2100 ret = write_partial_kvec(con);
2101 if (ret <= 0)
2102 goto out;
2103 }
2104
2105 /* msg pages? */
2106 if (con->out_msg) {
2107 if (con->out_msg_done) {
2108 ceph_msg_put(con->out_msg);
2109 con->out_msg = NULL; /* we're done with this one */
2110 goto do_next;
2111 }
2112
2113 ret = write_partial_msg_pages(con);
2114 if (ret == 1)
2115 goto more_kvec; /* we need to send the footer, too! */
2116 if (ret == 0)
2117 goto out;
2118 if (ret < 0) {
2119 dout("try_write write_partial_msg_pages err %d\n",
2120 ret);
2121 goto out;
2122 }
2123 }
2124
2125 do_next:
2126 if (con->state == CON_STATE_OPEN) {
2127 /* is anything else pending? */
2128 if (!list_empty(&con->out_queue)) {
2129 prepare_write_message(con);
2130 goto more;
2131 }
2132 if (con->in_seq > con->in_seq_acked) {
2133 prepare_write_ack(con);
2134 goto more;
2135 }
2136 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2137 prepare_write_keepalive(con);
2138 goto more;
2139 }
2140 }
2141
2142 /* Nothing to do! */
2143 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2144 dout("try_write nothing else to write.\n");
2145 ret = 0;
2146 out:
2147 dout("try_write done on %p ret %d\n", con, ret);
2148 return ret;
2149 }
2150
2151
2152
2153 /*
2154 * Read what we can from the socket.
2155 */
2156 static int try_read(struct ceph_connection *con)
2157 {
2158 int ret = -1;
2159
2160 more:
2161 dout("try_read start on %p state %lu\n", con, con->state);
2162 if (con->state != CON_STATE_CONNECTING &&
2163 con->state != CON_STATE_NEGOTIATING &&
2164 con->state != CON_STATE_OPEN)
2165 return 0;
2166
2167 BUG_ON(!con->sock);
2168
2169 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2170 con->in_base_pos);
2171
2172 if (con->state == CON_STATE_CONNECTING) {
2173 dout("try_read connecting\n");
2174 ret = read_partial_banner(con);
2175 if (ret <= 0)
2176 goto out;
2177 ret = process_banner(con);
2178 if (ret < 0)
2179 goto out;
2180
2181 con->state = CON_STATE_NEGOTIATING;
2182
2183 /*
2184 * Received banner is good, exchange connection info.
2185 * Do not reset out_kvec, as sending our banner raced
2186 * with receiving peer banner after connect completed.
2187 */
2188 ret = prepare_write_connect(con);
2189 if (ret < 0)
2190 goto out;
2191 prepare_read_connect(con);
2192
2193 /* Send connection info before awaiting response */
2194 goto out;
2195 }
2196
2197 if (con->state == CON_STATE_NEGOTIATING) {
2198 dout("try_read negotiating\n");
2199 ret = read_partial_connect(con);
2200 if (ret <= 0)
2201 goto out;
2202 ret = process_connect(con);
2203 if (ret < 0)
2204 goto out;
2205 goto more;
2206 }
2207
2208 WARN_ON(con->state != CON_STATE_OPEN);
2209
2210 if (con->in_base_pos < 0) {
2211 /*
2212 * skipping + discarding content.
2213 *
2214 * FIXME: there must be a better way to do this!
2215 */
2216 static char buf[SKIP_BUF_SIZE];
2217 int skip = min((int) sizeof (buf), -con->in_base_pos);
2218
2219 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2220 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2221 if (ret <= 0)
2222 goto out;
2223 con->in_base_pos += ret;
2224 if (con->in_base_pos)
2225 goto more;
2226 }
2227 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2228 /*
2229 * what's next?
2230 */
2231 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2232 if (ret <= 0)
2233 goto out;
2234 dout("try_read got tag %d\n", (int)con->in_tag);
2235 switch (con->in_tag) {
2236 case CEPH_MSGR_TAG_MSG:
2237 prepare_read_message(con);
2238 break;
2239 case CEPH_MSGR_TAG_ACK:
2240 prepare_read_ack(con);
2241 break;
2242 case CEPH_MSGR_TAG_CLOSE:
2243 con_close_socket(con);
2244 con->state = CON_STATE_CLOSED;
2245 goto out;
2246 default:
2247 goto bad_tag;
2248 }
2249 }
2250 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2251 ret = read_partial_message(con);
2252 if (ret <= 0) {
2253 switch (ret) {
2254 case -EBADMSG:
2255 con->error_msg = "bad crc";
2256 ret = -EIO;
2257 break;
2258 case -EIO:
2259 con->error_msg = "io error";
2260 break;
2261 }
2262 goto out;
2263 }
2264 if (con->in_tag == CEPH_MSGR_TAG_READY)
2265 goto more;
2266 process_message(con);
2267 if (con->state == CON_STATE_OPEN)
2268 prepare_read_tag(con);
2269 goto more;
2270 }
2271 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2272 ret = read_partial_ack(con);
2273 if (ret <= 0)
2274 goto out;
2275 process_ack(con);
2276 goto more;
2277 }
2278
2279 out:
2280 dout("try_read done on %p ret %d\n", con, ret);
2281 return ret;
2282
2283 bad_tag:
2284 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2285 con->error_msg = "protocol error, garbage tag";
2286 ret = -1;
2287 goto out;
2288 }
2289
2290
2291 /*
2292 * Atomically queue work on a connection after the specified delay.
2293 * Bump @con reference to avoid races with connection teardown.
2294 * Returns 0 if work was queued, or an error code otherwise.
2295 */
2296 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2297 {
2298 if (!con->ops->get(con)) {
2299 dout("%s %p ref count 0\n", __func__, con);
2300
2301 return -ENOENT;
2302 }
2303
2304 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2305 dout("%s %p - already queued\n", __func__, con);
2306 con->ops->put(con);
2307
2308 return -EBUSY;
2309 }
2310
2311 dout("%s %p %lu\n", __func__, con, delay);
2312
2313 return 0;
2314 }
2315
2316 static void queue_con(struct ceph_connection *con)
2317 {
2318 (void) queue_con_delay(con, 0);
2319 }
2320
2321 static bool con_sock_closed(struct ceph_connection *con)
2322 {
2323 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2324 return false;
2325
2326 #define CASE(x) \
2327 case CON_STATE_ ## x: \
2328 con->error_msg = "socket closed (con state " #x ")"; \
2329 break;
2330
2331 switch (con->state) {
2332 CASE(CLOSED);
2333 CASE(PREOPEN);
2334 CASE(CONNECTING);
2335 CASE(NEGOTIATING);
2336 CASE(OPEN);
2337 CASE(STANDBY);
2338 default:
2339 pr_warning("%s con %p unrecognized state %lu\n",
2340 __func__, con, con->state);
2341 con->error_msg = "unrecognized con state";
2342 BUG();
2343 break;
2344 }
2345 #undef CASE
2346
2347 return true;
2348 }
2349
2350 static bool con_backoff(struct ceph_connection *con)
2351 {
2352 int ret;
2353
2354 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2355 return false;
2356
2357 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2358 if (ret) {
2359 dout("%s: con %p FAILED to back off %lu\n", __func__,
2360 con, con->delay);
2361 BUG_ON(ret == -ENOENT);
2362 con_flag_set(con, CON_FLAG_BACKOFF);
2363 }
2364
2365 return true;
2366 }
2367
2368 /* Finish fault handling; con->mutex must *not* be held here */
2369
2370 static void con_fault_finish(struct ceph_connection *con)
2371 {
2372 /*
2373 * in case we faulted due to authentication, invalidate our
2374 * current tickets so that we can get new ones.
2375 */
2376 if (con->auth_retry && con->ops->invalidate_authorizer) {
2377 dout("calling invalidate_authorizer()\n");
2378 con->ops->invalidate_authorizer(con);
2379 }
2380
2381 if (con->ops->fault)
2382 con->ops->fault(con);
2383 }
2384
2385 /*
2386 * Do some work on a connection. Drop a connection ref when we're done.
2387 */
2388 static void con_work(struct work_struct *work)
2389 {
2390 struct ceph_connection *con = container_of(work, struct ceph_connection,
2391 work.work);
2392 bool fault;
2393
2394 mutex_lock(&con->mutex);
2395 while (true) {
2396 int ret;
2397
2398 if ((fault = con_sock_closed(con))) {
2399 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2400 break;
2401 }
2402 if (con_backoff(con)) {
2403 dout("%s: con %p BACKOFF\n", __func__, con);
2404 break;
2405 }
2406 if (con->state == CON_STATE_STANDBY) {
2407 dout("%s: con %p STANDBY\n", __func__, con);
2408 break;
2409 }
2410 if (con->state == CON_STATE_CLOSED) {
2411 dout("%s: con %p CLOSED\n", __func__, con);
2412 BUG_ON(con->sock);
2413 break;
2414 }
2415 if (con->state == CON_STATE_PREOPEN) {
2416 dout("%s: con %p PREOPEN\n", __func__, con);
2417 BUG_ON(con->sock);
2418 }
2419
2420 ret = try_read(con);
2421 if (ret < 0) {
2422 if (ret == -EAGAIN)
2423 continue;
2424 con->error_msg = "socket error on read";
2425 fault = true;
2426 break;
2427 }
2428
2429 ret = try_write(con);
2430 if (ret < 0) {
2431 if (ret == -EAGAIN)
2432 continue;
2433 con->error_msg = "socket error on write";
2434 fault = true;
2435 }
2436
2437 break; /* If we make it to here, we're done */
2438 }
2439 if (fault)
2440 con_fault(con);
2441 mutex_unlock(&con->mutex);
2442
2443 if (fault)
2444 con_fault_finish(con);
2445
2446 con->ops->put(con);
2447 }
2448
2449 /*
2450 * Generic error/fault handler. A retry mechanism is used with
2451 * exponential backoff
2452 */
2453 static void con_fault(struct ceph_connection *con)
2454 {
2455 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2456 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2457 dout("fault %p state %lu to peer %s\n",
2458 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2459
2460 WARN_ON(con->state != CON_STATE_CONNECTING &&
2461 con->state != CON_STATE_NEGOTIATING &&
2462 con->state != CON_STATE_OPEN);
2463
2464 con_close_socket(con);
2465
2466 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2467 dout("fault on LOSSYTX channel, marking CLOSED\n");
2468 con->state = CON_STATE_CLOSED;
2469 return;
2470 }
2471
2472 if (con->in_msg) {
2473 BUG_ON(con->in_msg->con != con);
2474 con->in_msg->con = NULL;
2475 ceph_msg_put(con->in_msg);
2476 con->in_msg = NULL;
2477 con->ops->put(con);
2478 }
2479
2480 /* Requeue anything that hasn't been acked */
2481 list_splice_init(&con->out_sent, &con->out_queue);
2482
2483 /* If there are no messages queued or keepalive pending, place
2484 * the connection in a STANDBY state */
2485 if (list_empty(&con->out_queue) &&
2486 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2487 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2488 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2489 con->state = CON_STATE_STANDBY;
2490 } else {
2491 /* retry after a delay. */
2492 con->state = CON_STATE_PREOPEN;
2493 if (con->delay == 0)
2494 con->delay = BASE_DELAY_INTERVAL;
2495 else if (con->delay < MAX_DELAY_INTERVAL)
2496 con->delay *= 2;
2497 con_flag_set(con, CON_FLAG_BACKOFF);
2498 queue_con(con);
2499 }
2500 }
2501
2502
2503
2504 /*
2505 * initialize a new messenger instance
2506 */
2507 void ceph_messenger_init(struct ceph_messenger *msgr,
2508 struct ceph_entity_addr *myaddr,
2509 u32 supported_features,
2510 u32 required_features,
2511 bool nocrc)
2512 {
2513 msgr->supported_features = supported_features;
2514 msgr->required_features = required_features;
2515
2516 spin_lock_init(&msgr->global_seq_lock);
2517
2518 if (myaddr)
2519 msgr->inst.addr = *myaddr;
2520
2521 /* select a random nonce */
2522 msgr->inst.addr.type = 0;
2523 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2524 encode_my_addr(msgr);
2525 msgr->nocrc = nocrc;
2526
2527 atomic_set(&msgr->stopping, 0);
2528
2529 dout("%s %p\n", __func__, msgr);
2530 }
2531 EXPORT_SYMBOL(ceph_messenger_init);
2532
2533 static void clear_standby(struct ceph_connection *con)
2534 {
2535 /* come back from STANDBY? */
2536 if (con->state == CON_STATE_STANDBY) {
2537 dout("clear_standby %p and ++connect_seq\n", con);
2538 con->state = CON_STATE_PREOPEN;
2539 con->connect_seq++;
2540 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2541 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2542 }
2543 }
2544
2545 /*
2546 * Queue up an outgoing message on the given connection.
2547 */
2548 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2549 {
2550 /* set src+dst */
2551 msg->hdr.src = con->msgr->inst.name;
2552 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2553 msg->needs_out_seq = true;
2554
2555 mutex_lock(&con->mutex);
2556
2557 if (con->state == CON_STATE_CLOSED) {
2558 dout("con_send %p closed, dropping %p\n", con, msg);
2559 ceph_msg_put(msg);
2560 mutex_unlock(&con->mutex);
2561 return;
2562 }
2563
2564 BUG_ON(msg->con != NULL);
2565 msg->con = con->ops->get(con);
2566 BUG_ON(msg->con == NULL);
2567
2568 BUG_ON(!list_empty(&msg->list_head));
2569 list_add_tail(&msg->list_head, &con->out_queue);
2570 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2571 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2572 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2573 le32_to_cpu(msg->hdr.front_len),
2574 le32_to_cpu(msg->hdr.middle_len),
2575 le32_to_cpu(msg->hdr.data_len));
2576
2577 clear_standby(con);
2578 mutex_unlock(&con->mutex);
2579
2580 /* if there wasn't anything waiting to send before, queue
2581 * new work */
2582 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2583 queue_con(con);
2584 }
2585 EXPORT_SYMBOL(ceph_con_send);
2586
2587 /*
2588 * Revoke a message that was previously queued for send
2589 */
2590 void ceph_msg_revoke(struct ceph_msg *msg)
2591 {
2592 struct ceph_connection *con = msg->con;
2593
2594 if (!con)
2595 return; /* Message not in our possession */
2596
2597 mutex_lock(&con->mutex);
2598 if (!list_empty(&msg->list_head)) {
2599 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2600 list_del_init(&msg->list_head);
2601 BUG_ON(msg->con == NULL);
2602 msg->con->ops->put(msg->con);
2603 msg->con = NULL;
2604 msg->hdr.seq = 0;
2605
2606 ceph_msg_put(msg);
2607 }
2608 if (con->out_msg == msg) {
2609 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2610 con->out_msg = NULL;
2611 if (con->out_kvec_is_msg) {
2612 con->out_skip = con->out_kvec_bytes;
2613 con->out_kvec_is_msg = false;
2614 }
2615 msg->hdr.seq = 0;
2616
2617 ceph_msg_put(msg);
2618 }
2619 mutex_unlock(&con->mutex);
2620 }
2621
2622 /*
2623 * Revoke a message that we may be reading data into
2624 */
2625 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2626 {
2627 struct ceph_connection *con;
2628
2629 BUG_ON(msg == NULL);
2630 if (!msg->con) {
2631 dout("%s msg %p null con\n", __func__, msg);
2632
2633 return; /* Message not in our possession */
2634 }
2635
2636 con = msg->con;
2637 mutex_lock(&con->mutex);
2638 if (con->in_msg == msg) {
2639 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2640 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2641 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2642
2643 /* skip rest of message */
2644 dout("%s %p msg %p revoked\n", __func__, con, msg);
2645 con->in_base_pos = con->in_base_pos -
2646 sizeof(struct ceph_msg_header) -
2647 front_len -
2648 middle_len -
2649 data_len -
2650 sizeof(struct ceph_msg_footer);
2651 ceph_msg_put(con->in_msg);
2652 con->in_msg = NULL;
2653 con->in_tag = CEPH_MSGR_TAG_READY;
2654 con->in_seq++;
2655 } else {
2656 dout("%s %p in_msg %p msg %p no-op\n",
2657 __func__, con, con->in_msg, msg);
2658 }
2659 mutex_unlock(&con->mutex);
2660 }
2661
2662 /*
2663 * Queue a keepalive byte to ensure the tcp connection is alive.
2664 */
2665 void ceph_con_keepalive(struct ceph_connection *con)
2666 {
2667 dout("con_keepalive %p\n", con);
2668 mutex_lock(&con->mutex);
2669 clear_standby(con);
2670 mutex_unlock(&con->mutex);
2671 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2672 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2673 queue_con(con);
2674 }
2675 EXPORT_SYMBOL(ceph_con_keepalive);
2676
2677
2678 /*
2679 * construct a new message with given type, size
2680 * the new msg has a ref count of 1.
2681 */
2682 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2683 bool can_fail)
2684 {
2685 struct ceph_msg *m;
2686
2687 m = kmalloc(sizeof(*m), flags);
2688 if (m == NULL)
2689 goto out;
2690 kref_init(&m->kref);
2691
2692 m->con = NULL;
2693 INIT_LIST_HEAD(&m->list_head);
2694
2695 m->hdr.tid = 0;
2696 m->hdr.type = cpu_to_le16(type);
2697 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2698 m->hdr.version = 0;
2699 m->hdr.front_len = cpu_to_le32(front_len);
2700 m->hdr.middle_len = 0;
2701 m->hdr.data_len = 0;
2702 m->hdr.data_off = 0;
2703 m->hdr.reserved = 0;
2704 m->footer.front_crc = 0;
2705 m->footer.middle_crc = 0;
2706 m->footer.data_crc = 0;
2707 m->footer.flags = 0;
2708 m->front_max = front_len;
2709 m->front_is_vmalloc = false;
2710 m->more_to_follow = false;
2711 m->ack_stamp = 0;
2712 m->pool = NULL;
2713
2714 /* middle */
2715 m->middle = NULL;
2716
2717 /* data */
2718 m->page_count = 0;
2719 m->page_alignment = 0;
2720 m->pages = NULL;
2721 m->pagelist = NULL;
2722 #ifdef CONFIG_BLOCK
2723 m->bio = NULL;
2724 m->bio_iter = NULL;
2725 m->bio_seg = 0;
2726 #endif /* CONFIG_BLOCK */
2727 m->trail = NULL;
2728
2729 /* front */
2730 if (front_len) {
2731 if (front_len > PAGE_CACHE_SIZE) {
2732 m->front.iov_base = __vmalloc(front_len, flags,
2733 PAGE_KERNEL);
2734 m->front_is_vmalloc = true;
2735 } else {
2736 m->front.iov_base = kmalloc(front_len, flags);
2737 }
2738 if (m->front.iov_base == NULL) {
2739 dout("ceph_msg_new can't allocate %d bytes\n",
2740 front_len);
2741 goto out2;
2742 }
2743 } else {
2744 m->front.iov_base = NULL;
2745 }
2746 m->front.iov_len = front_len;
2747
2748 dout("ceph_msg_new %p front %d\n", m, front_len);
2749 return m;
2750
2751 out2:
2752 ceph_msg_put(m);
2753 out:
2754 if (!can_fail) {
2755 pr_err("msg_new can't create type %d front %d\n", type,
2756 front_len);
2757 WARN_ON(1);
2758 } else {
2759 dout("msg_new can't create type %d front %d\n", type,
2760 front_len);
2761 }
2762 return NULL;
2763 }
2764 EXPORT_SYMBOL(ceph_msg_new);
2765
2766 /*
2767 * Allocate "middle" portion of a message, if it is needed and wasn't
2768 * allocated by alloc_msg. This allows us to read a small fixed-size
2769 * per-type header in the front and then gracefully fail (i.e.,
2770 * propagate the error to the caller based on info in the front) when
2771 * the middle is too large.
2772 */
2773 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2774 {
2775 int type = le16_to_cpu(msg->hdr.type);
2776 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2777
2778 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2779 ceph_msg_type_name(type), middle_len);
2780 BUG_ON(!middle_len);
2781 BUG_ON(msg->middle);
2782
2783 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2784 if (!msg->middle)
2785 return -ENOMEM;
2786 return 0;
2787 }
2788
2789 /*
2790 * Allocate a message for receiving an incoming message on a
2791 * connection, and save the result in con->in_msg. Uses the
2792 * connection's private alloc_msg op if available.
2793 *
2794 * Returns 0 on success, or a negative error code.
2795 *
2796 * On success, if we set *skip = 1:
2797 * - the next message should be skipped and ignored.
2798 * - con->in_msg == NULL
2799 * or if we set *skip = 0:
2800 * - con->in_msg is non-null.
2801 * On error (ENOMEM, EAGAIN, ...),
2802 * - con->in_msg == NULL
2803 */
2804 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2805 {
2806 struct ceph_msg_header *hdr = &con->in_hdr;
2807 int type = le16_to_cpu(hdr->type);
2808 int front_len = le32_to_cpu(hdr->front_len);
2809 int middle_len = le32_to_cpu(hdr->middle_len);
2810 int ret = 0;
2811
2812 BUG_ON(con->in_msg != NULL);
2813
2814 if (con->ops->alloc_msg) {
2815 struct ceph_msg *msg;
2816
2817 mutex_unlock(&con->mutex);
2818 msg = con->ops->alloc_msg(con, hdr, skip);
2819 mutex_lock(&con->mutex);
2820 if (con->state != CON_STATE_OPEN) {
2821 if (msg)
2822 ceph_msg_put(msg);
2823 return -EAGAIN;
2824 }
2825 con->in_msg = msg;
2826 if (con->in_msg) {
2827 con->in_msg->con = con->ops->get(con);
2828 BUG_ON(con->in_msg->con == NULL);
2829 }
2830 if (*skip) {
2831 con->in_msg = NULL;
2832 return 0;
2833 }
2834 if (!con->in_msg) {
2835 con->error_msg =
2836 "error allocating memory for incoming message";
2837 return -ENOMEM;
2838 }
2839 }
2840 if (!con->in_msg) {
2841 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2842 if (!con->in_msg) {
2843 pr_err("unable to allocate msg type %d len %d\n",
2844 type, front_len);
2845 return -ENOMEM;
2846 }
2847 con->in_msg->con = con->ops->get(con);
2848 BUG_ON(con->in_msg->con == NULL);
2849 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2850 }
2851 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2852
2853 if (middle_len && !con->in_msg->middle) {
2854 ret = ceph_alloc_middle(con, con->in_msg);
2855 if (ret < 0) {
2856 ceph_msg_put(con->in_msg);
2857 con->in_msg = NULL;
2858 }
2859 }
2860
2861 return ret;
2862 }
2863
2864
2865 /*
2866 * Free a generically kmalloc'd message.
2867 */
2868 void ceph_msg_kfree(struct ceph_msg *m)
2869 {
2870 dout("msg_kfree %p\n", m);
2871 if (m->front_is_vmalloc)
2872 vfree(m->front.iov_base);
2873 else
2874 kfree(m->front.iov_base);
2875 kfree(m);
2876 }
2877
2878 /*
2879 * Drop a msg ref. Destroy as needed.
2880 */
2881 void ceph_msg_last_put(struct kref *kref)
2882 {
2883 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2884
2885 dout("ceph_msg_put last one on %p\n", m);
2886 WARN_ON(!list_empty(&m->list_head));
2887
2888 /* drop middle, data, if any */
2889 if (m->middle) {
2890 ceph_buffer_put(m->middle);
2891 m->middle = NULL;
2892 }
2893 m->page_count = 0;
2894 m->pages = NULL;
2895
2896 if (m->pagelist) {
2897 ceph_pagelist_release(m->pagelist);
2898 kfree(m->pagelist);
2899 m->pagelist = NULL;
2900 }
2901
2902 m->trail = NULL;
2903
2904 if (m->pool)
2905 ceph_msgpool_put(m->pool, m);
2906 else
2907 ceph_msg_kfree(m);
2908 }
2909 EXPORT_SYMBOL(ceph_msg_last_put);
2910
2911 void ceph_msg_dump(struct ceph_msg *msg)
2912 {
2913 pr_debug("msg_dump %p (front_max %d page_count %d)\n", msg,
2914 msg->front_max, msg->page_count);
2915 print_hex_dump(KERN_DEBUG, "header: ",
2916 DUMP_PREFIX_OFFSET, 16, 1,
2917 &msg->hdr, sizeof(msg->hdr), true);
2918 print_hex_dump(KERN_DEBUG, " front: ",
2919 DUMP_PREFIX_OFFSET, 16, 1,
2920 msg->front.iov_base, msg->front.iov_len, true);
2921 if (msg->middle)
2922 print_hex_dump(KERN_DEBUG, "middle: ",
2923 DUMP_PREFIX_OFFSET, 16, 1,
2924 msg->middle->vec.iov_base,
2925 msg->middle->vec.iov_len, true);
2926 print_hex_dump(KERN_DEBUG, "footer: ",
2927 DUMP_PREFIX_OFFSET, 16, 1,
2928 &msg->footer, sizeof(msg->footer), true);
2929 }
2930 EXPORT_SYMBOL(ceph_msg_dump);
This page took 0.218626 seconds and 6 git commands to generate.