Merge tag 'regulator-v3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly; /* Taps */
147 static struct list_head offload_base __read_mostly;
148
149 /*
150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * semaphore.
152 *
153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154 *
155 * Writers must hold the rtnl semaphore while they loop through the
156 * dev_base_head list, and hold dev_base_lock for writing when they do the
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
159 *
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
163 *
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
166 * semaphore held.
167 */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176
177 static seqcount_t devnet_rename_seq;
178
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 while (++net->dev_base_seq == 0);
182 }
183
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187
188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223
224 dev_base_seq_inc(net);
225 }
226
227 /* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
229 */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 ASSERT_RTNL();
233
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
236 list_del_rcu(&dev->dev_list);
237 hlist_del_rcu(&dev->name_hlist);
238 hlist_del_rcu(&dev->index_hlist);
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(dev_net(dev));
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257
258 #ifdef CONFIG_LOCKDEP
259 /*
260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279
280 static const char *const netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339
340 /*******************************************************************************
341
342 Protocol management and registration routines
343
344 *******************************************************************************/
345
346 /*
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
349 * here.
350 *
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
359 * --ANK (980803)
360 */
361
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 if (pt->type == htons(ETH_P_ALL))
365 return &ptype_all;
366 else
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369
370 /**
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
373 *
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
377 *
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
381 */
382
383 void dev_add_pack(struct packet_type *pt)
384 {
385 struct list_head *head = ptype_head(pt);
386
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392
393 /**
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
396 *
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
400 * returns.
401 *
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
405 */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 struct list_head *head = ptype_head(pt);
409 struct packet_type *pt1;
410
411 spin_lock(&ptype_lock);
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446
447 /**
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
450 *
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
454 *
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
458 */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 struct list_head *head = &offload_base;
462
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468
469 /**
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
472 *
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
476 * function returns.
477 *
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
481 */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
486
487 spin_lock(&offload_lock);
488
489 list_for_each_entry(po1, head, list) {
490 if (po == po1) {
491 list_del_rcu(&po->list);
492 goto out;
493 }
494 }
495
496 pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501
502 /**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 __dev_remove_offload(po);
517
518 synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521
522 /******************************************************************************
523
524 Device Boot-time Settings Routines
525
526 *******************************************************************************/
527
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531 /**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557
558 /**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587 /**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616 }
617
618 /*
619 * Saves at boot time configured settings for any netdevice.
620 */
621 int __init netdev_boot_setup(char *str)
622 {
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643 }
644
645 __setup("netdev=", netdev_boot_setup);
646
647 /*******************************************************************************
648
649 Device Interface Subroutines
650
651 *******************************************************************************/
652
653 /**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677
678 /**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703 /**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727
728 /**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752
753 /**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778 /**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801
802 /**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 struct net_device *dev;
815 unsigned int seq;
816
817 retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834 }
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271 }
1272
1273 /**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285 int dev_open(struct net_device *dev)
1286 {
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, unreg_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, unreg_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->unreg_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365 LIST_HEAD(tmp_list);
1366
1367 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_move(&dev->unreg_list, &tmp_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry(dev, head, unreg_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 }
1377
1378 /* rollback_registered_many needs the complete original list */
1379 list_splice(&tmp_list, head);
1380 return 0;
1381 }
1382
1383 /**
1384 * dev_close - shutdown an interface.
1385 * @dev: device to shutdown
1386 *
1387 * This function moves an active device into down state. A
1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 * chain.
1391 */
1392 int dev_close(struct net_device *dev)
1393 {
1394 if (dev->flags & IFF_UP) {
1395 LIST_HEAD(single);
1396
1397 /* Block netpoll rx while the interface is going down */
1398 netpoll_rx_disable(dev);
1399
1400 list_add(&dev->unreg_list, &single);
1401 dev_close_many(&single);
1402 list_del(&single);
1403
1404 netpoll_rx_enable(dev);
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409
1410
1411 /**
1412 * dev_disable_lro - disable Large Receive Offload on a device
1413 * @dev: device
1414 *
1415 * Disable Large Receive Offload (LRO) on a net device. Must be
1416 * called under RTNL. This is needed if received packets may be
1417 * forwarded to another interface.
1418 */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 /*
1422 * If we're trying to disable lro on a vlan device
1423 * use the underlying physical device instead
1424 */
1425 if (is_vlan_dev(dev))
1426 dev = vlan_dev_real_dev(dev);
1427
1428 dev->wanted_features &= ~NETIF_F_LRO;
1429 netdev_update_features(dev);
1430
1431 if (unlikely(dev->features & NETIF_F_LRO))
1432 netdev_WARN(dev, "failed to disable LRO!\n");
1433 }
1434 EXPORT_SYMBOL(dev_disable_lro);
1435
1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1437 struct net_device *dev)
1438 {
1439 struct netdev_notifier_info info;
1440
1441 netdev_notifier_info_init(&info, dev);
1442 return nb->notifier_call(nb, val, &info);
1443 }
1444
1445 static int dev_boot_phase = 1;
1446
1447 /**
1448 * register_netdevice_notifier - register a network notifier block
1449 * @nb: notifier
1450 *
1451 * Register a notifier to be called when network device events occur.
1452 * The notifier passed is linked into the kernel structures and must
1453 * not be reused until it has been unregistered. A negative errno code
1454 * is returned on a failure.
1455 *
1456 * When registered all registration and up events are replayed
1457 * to the new notifier to allow device to have a race free
1458 * view of the network device list.
1459 */
1460
1461 int register_netdevice_notifier(struct notifier_block *nb)
1462 {
1463 struct net_device *dev;
1464 struct net_device *last;
1465 struct net *net;
1466 int err;
1467
1468 rtnl_lock();
1469 err = raw_notifier_chain_register(&netdev_chain, nb);
1470 if (err)
1471 goto unlock;
1472 if (dev_boot_phase)
1473 goto unlock;
1474 for_each_net(net) {
1475 for_each_netdev(net, dev) {
1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1477 err = notifier_to_errno(err);
1478 if (err)
1479 goto rollback;
1480
1481 if (!(dev->flags & IFF_UP))
1482 continue;
1483
1484 call_netdevice_notifier(nb, NETDEV_UP, dev);
1485 }
1486 }
1487
1488 unlock:
1489 rtnl_unlock();
1490 return err;
1491
1492 rollback:
1493 last = dev;
1494 for_each_net(net) {
1495 for_each_netdev(net, dev) {
1496 if (dev == last)
1497 goto outroll;
1498
1499 if (dev->flags & IFF_UP) {
1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 dev);
1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 }
1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1505 }
1506 }
1507
1508 outroll:
1509 raw_notifier_chain_unregister(&netdev_chain, nb);
1510 goto unlock;
1511 }
1512 EXPORT_SYMBOL(register_netdevice_notifier);
1513
1514 /**
1515 * unregister_netdevice_notifier - unregister a network notifier block
1516 * @nb: notifier
1517 *
1518 * Unregister a notifier previously registered by
1519 * register_netdevice_notifier(). The notifier is unlinked into the
1520 * kernel structures and may then be reused. A negative errno code
1521 * is returned on a failure.
1522 *
1523 * After unregistering unregister and down device events are synthesized
1524 * for all devices on the device list to the removed notifier to remove
1525 * the need for special case cleanup code.
1526 */
1527
1528 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 {
1530 struct net_device *dev;
1531 struct net *net;
1532 int err;
1533
1534 rtnl_lock();
1535 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1536 if (err)
1537 goto unlock;
1538
1539 for_each_net(net) {
1540 for_each_netdev(net, dev) {
1541 if (dev->flags & IFF_UP) {
1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 dev);
1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 }
1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 }
1548 }
1549 unlock:
1550 rtnl_unlock();
1551 return err;
1552 }
1553 EXPORT_SYMBOL(unregister_netdevice_notifier);
1554
1555 /**
1556 * call_netdevice_notifiers_info - call all network notifier blocks
1557 * @val: value passed unmodified to notifier function
1558 * @dev: net_device pointer passed unmodified to notifier function
1559 * @info: notifier information data
1560 *
1561 * Call all network notifier blocks. Parameters and return value
1562 * are as for raw_notifier_call_chain().
1563 */
1564
1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1566 struct netdev_notifier_info *info)
1567 {
1568 ASSERT_RTNL();
1569 netdev_notifier_info_init(info, dev);
1570 return raw_notifier_call_chain(&netdev_chain, val, info);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1573
1574 /**
1575 * call_netdevice_notifiers - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 {
1585 struct netdev_notifier_info info;
1586
1587 return call_netdevice_notifiers_info(val, dev, &info);
1588 }
1589 EXPORT_SYMBOL(call_netdevice_notifiers);
1590
1591 static struct static_key netstamp_needed __read_mostly;
1592 #ifdef HAVE_JUMP_LABEL
1593 /* We are not allowed to call static_key_slow_dec() from irq context
1594 * If net_disable_timestamp() is called from irq context, defer the
1595 * static_key_slow_dec() calls.
1596 */
1597 static atomic_t netstamp_needed_deferred;
1598 #endif
1599
1600 void net_enable_timestamp(void)
1601 {
1602 #ifdef HAVE_JUMP_LABEL
1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1604
1605 if (deferred) {
1606 while (--deferred)
1607 static_key_slow_dec(&netstamp_needed);
1608 return;
1609 }
1610 #endif
1611 static_key_slow_inc(&netstamp_needed);
1612 }
1613 EXPORT_SYMBOL(net_enable_timestamp);
1614
1615 void net_disable_timestamp(void)
1616 {
1617 #ifdef HAVE_JUMP_LABEL
1618 if (in_interrupt()) {
1619 atomic_inc(&netstamp_needed_deferred);
1620 return;
1621 }
1622 #endif
1623 static_key_slow_dec(&netstamp_needed);
1624 }
1625 EXPORT_SYMBOL(net_disable_timestamp);
1626
1627 static inline void net_timestamp_set(struct sk_buff *skb)
1628 {
1629 skb->tstamp.tv64 = 0;
1630 if (static_key_false(&netstamp_needed))
1631 __net_timestamp(skb);
1632 }
1633
1634 #define net_timestamp_check(COND, SKB) \
1635 if (static_key_false(&netstamp_needed)) { \
1636 if ((COND) && !(SKB)->tstamp.tv64) \
1637 __net_timestamp(SKB); \
1638 } \
1639
1640 static inline bool is_skb_forwardable(struct net_device *dev,
1641 struct sk_buff *skb)
1642 {
1643 unsigned int len;
1644
1645 if (!(dev->flags & IFF_UP))
1646 return false;
1647
1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1649 if (skb->len <= len)
1650 return true;
1651
1652 /* if TSO is enabled, we don't care about the length as the packet
1653 * could be forwarded without being segmented before
1654 */
1655 if (skb_is_gso(skb))
1656 return true;
1657
1658 return false;
1659 }
1660
1661 /**
1662 * dev_forward_skb - loopback an skb to another netif
1663 *
1664 * @dev: destination network device
1665 * @skb: buffer to forward
1666 *
1667 * return values:
1668 * NET_RX_SUCCESS (no congestion)
1669 * NET_RX_DROP (packet was dropped, but freed)
1670 *
1671 * dev_forward_skb can be used for injecting an skb from the
1672 * start_xmit function of one device into the receive queue
1673 * of another device.
1674 *
1675 * The receiving device may be in another namespace, so
1676 * we have to clear all information in the skb that could
1677 * impact namespace isolation.
1678 */
1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694 skb->protocol = eth_type_trans(skb, dev);
1695
1696 /* eth_type_trans() can set pkt_type.
1697 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1698 * eth_type_trans().
1699 */
1700 skb_scrub_packet(skb, true);
1701
1702 return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 struct packet_type *pt_prev,
1708 struct net_device *orig_dev)
1709 {
1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 return -ENOMEM;
1712 atomic_inc(&skb->users);
1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 if (!ptype->af_packet_priv || !skb->sk)
1719 return false;
1720
1721 if (ptype->id_match)
1722 return ptype->id_match(ptype, skb->sk);
1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 return true;
1725
1726 return false;
1727 }
1728
1729 /*
1730 * Support routine. Sends outgoing frames to any network
1731 * taps currently in use.
1732 */
1733
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 struct packet_type *ptype;
1737 struct sk_buff *skb2 = NULL;
1738 struct packet_type *pt_prev = NULL;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 /* Never send packets back to the socket
1743 * they originated from - MvS (miquels@drinkel.ow.org)
1744 */
1745 if ((ptype->dev == dev || !ptype->dev) &&
1746 (!skb_loop_sk(ptype, skb))) {
1747 if (pt_prev) {
1748 deliver_skb(skb2, pt_prev, skb->dev);
1749 pt_prev = ptype;
1750 continue;
1751 }
1752
1753 skb2 = skb_clone(skb, GFP_ATOMIC);
1754 if (!skb2)
1755 break;
1756
1757 net_timestamp_set(skb2);
1758
1759 /* skb->nh should be correctly
1760 set by sender, so that the second statement is
1761 just protection against buggy protocols.
1762 */
1763 skb_reset_mac_header(skb2);
1764
1765 if (skb_network_header(skb2) < skb2->data ||
1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 ntohs(skb2->protocol),
1769 dev->name);
1770 skb_reset_network_header(skb2);
1771 }
1772
1773 skb2->transport_header = skb2->network_header;
1774 skb2->pkt_type = PACKET_OUTGOING;
1775 pt_prev = ptype;
1776 }
1777 }
1778 if (pt_prev)
1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 rcu_read_unlock();
1781 }
1782
1783 /**
1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785 * @dev: Network device
1786 * @txq: number of queues available
1787 *
1788 * If real_num_tx_queues is changed the tc mappings may no longer be
1789 * valid. To resolve this verify the tc mapping remains valid and if
1790 * not NULL the mapping. With no priorities mapping to this
1791 * offset/count pair it will no longer be used. In the worst case TC0
1792 * is invalid nothing can be done so disable priority mappings. If is
1793 * expected that drivers will fix this mapping if they can before
1794 * calling netif_set_real_num_tx_queues.
1795 */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 int i;
1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800
1801 /* If TC0 is invalidated disable TC mapping */
1802 if (tc->offset + tc->count > txq) {
1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 dev->num_tc = 0;
1805 return;
1806 }
1807
1808 /* Invalidated prio to tc mappings set to TC0 */
1809 for (i = 1; i < TC_BITMASK + 1; i++) {
1810 int q = netdev_get_prio_tc_map(dev, i);
1811
1812 tc = &dev->tc_to_txq[q];
1813 if (tc->offset + tc->count > txq) {
1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 i, q);
1816 netdev_set_prio_tc_map(dev, i, 0);
1817 }
1818 }
1819 }
1820
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P) \
1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *map = NULL;
1830 int pos;
1831
1832 if (dev_maps)
1833 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834
1835 for (pos = 0; map && pos < map->len; pos++) {
1836 if (map->queues[pos] == index) {
1837 if (map->len > 1) {
1838 map->queues[pos] = map->queues[--map->len];
1839 } else {
1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 kfree_rcu(map, rcu);
1842 map = NULL;
1843 }
1844 break;
1845 }
1846 }
1847
1848 return map;
1849 }
1850
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 struct xps_dev_maps *dev_maps;
1854 int cpu, i;
1855 bool active = false;
1856
1857 mutex_lock(&xps_map_mutex);
1858 dev_maps = xmap_dereference(dev->xps_maps);
1859
1860 if (!dev_maps)
1861 goto out_no_maps;
1862
1863 for_each_possible_cpu(cpu) {
1864 for (i = index; i < dev->num_tx_queues; i++) {
1865 if (!remove_xps_queue(dev_maps, cpu, i))
1866 break;
1867 }
1868 if (i == dev->num_tx_queues)
1869 active = true;
1870 }
1871
1872 if (!active) {
1873 RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 kfree_rcu(dev_maps, rcu);
1875 }
1876
1877 for (i = index; i < dev->num_tx_queues; i++)
1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 NUMA_NO_NODE);
1880
1881 out_no_maps:
1882 mutex_unlock(&xps_map_mutex);
1883 }
1884
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 int cpu, u16 index)
1887 {
1888 struct xps_map *new_map;
1889 int alloc_len = XPS_MIN_MAP_ALLOC;
1890 int i, pos;
1891
1892 for (pos = 0; map && pos < map->len; pos++) {
1893 if (map->queues[pos] != index)
1894 continue;
1895 return map;
1896 }
1897
1898 /* Need to add queue to this CPU's existing map */
1899 if (map) {
1900 if (pos < map->alloc_len)
1901 return map;
1902
1903 alloc_len = map->alloc_len * 2;
1904 }
1905
1906 /* Need to allocate new map to store queue on this CPU's map */
1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 cpu_to_node(cpu));
1909 if (!new_map)
1910 return NULL;
1911
1912 for (i = 0; i < pos; i++)
1913 new_map->queues[i] = map->queues[i];
1914 new_map->alloc_len = alloc_len;
1915 new_map->len = pos;
1916
1917 return new_map;
1918 }
1919
1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1921 u16 index)
1922 {
1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1924 struct xps_map *map, *new_map;
1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1926 int cpu, numa_node_id = -2;
1927 bool active = false;
1928
1929 mutex_lock(&xps_map_mutex);
1930
1931 dev_maps = xmap_dereference(dev->xps_maps);
1932
1933 /* allocate memory for queue storage */
1934 for_each_online_cpu(cpu) {
1935 if (!cpumask_test_cpu(cpu, mask))
1936 continue;
1937
1938 if (!new_dev_maps)
1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1940 if (!new_dev_maps) {
1941 mutex_unlock(&xps_map_mutex);
1942 return -ENOMEM;
1943 }
1944
1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1946 NULL;
1947
1948 map = expand_xps_map(map, cpu, index);
1949 if (!map)
1950 goto error;
1951
1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1953 }
1954
1955 if (!new_dev_maps)
1956 goto out_no_new_maps;
1957
1958 for_each_possible_cpu(cpu) {
1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1960 /* add queue to CPU maps */
1961 int pos = 0;
1962
1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1964 while ((pos < map->len) && (map->queues[pos] != index))
1965 pos++;
1966
1967 if (pos == map->len)
1968 map->queues[map->len++] = index;
1969 #ifdef CONFIG_NUMA
1970 if (numa_node_id == -2)
1971 numa_node_id = cpu_to_node(cpu);
1972 else if (numa_node_id != cpu_to_node(cpu))
1973 numa_node_id = -1;
1974 #endif
1975 } else if (dev_maps) {
1976 /* fill in the new device map from the old device map */
1977 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1979 }
1980
1981 }
1982
1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984
1985 /* Cleanup old maps */
1986 if (dev_maps) {
1987 for_each_possible_cpu(cpu) {
1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1990 if (map && map != new_map)
1991 kfree_rcu(map, rcu);
1992 }
1993
1994 kfree_rcu(dev_maps, rcu);
1995 }
1996
1997 dev_maps = new_dev_maps;
1998 active = true;
1999
2000 out_no_new_maps:
2001 /* update Tx queue numa node */
2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2003 (numa_node_id >= 0) ? numa_node_id :
2004 NUMA_NO_NODE);
2005
2006 if (!dev_maps)
2007 goto out_no_maps;
2008
2009 /* removes queue from unused CPUs */
2010 for_each_possible_cpu(cpu) {
2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2012 continue;
2013
2014 if (remove_xps_queue(dev_maps, cpu, index))
2015 active = true;
2016 }
2017
2018 /* free map if not active */
2019 if (!active) {
2020 RCU_INIT_POINTER(dev->xps_maps, NULL);
2021 kfree_rcu(dev_maps, rcu);
2022 }
2023
2024 out_no_maps:
2025 mutex_unlock(&xps_map_mutex);
2026
2027 return 0;
2028 error:
2029 /* remove any maps that we added */
2030 for_each_possible_cpu(cpu) {
2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2033 NULL;
2034 if (new_map && new_map != map)
2035 kfree(new_map);
2036 }
2037
2038 mutex_unlock(&xps_map_mutex);
2039
2040 kfree(new_dev_maps);
2041 return -ENOMEM;
2042 }
2043 EXPORT_SYMBOL(netif_set_xps_queue);
2044
2045 #endif
2046 /*
2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049 */
2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2051 {
2052 int rc;
2053
2054 if (txq < 1 || txq > dev->num_tx_queues)
2055 return -EINVAL;
2056
2057 if (dev->reg_state == NETREG_REGISTERED ||
2058 dev->reg_state == NETREG_UNREGISTERING) {
2059 ASSERT_RTNL();
2060
2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2062 txq);
2063 if (rc)
2064 return rc;
2065
2066 if (dev->num_tc)
2067 netif_setup_tc(dev, txq);
2068
2069 if (txq < dev->real_num_tx_queues) {
2070 qdisc_reset_all_tx_gt(dev, txq);
2071 #ifdef CONFIG_XPS
2072 netif_reset_xps_queues_gt(dev, txq);
2073 #endif
2074 }
2075 }
2076
2077 dev->real_num_tx_queues = txq;
2078 return 0;
2079 }
2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2081
2082 #ifdef CONFIG_RPS
2083 /**
2084 * netif_set_real_num_rx_queues - set actual number of RX queues used
2085 * @dev: Network device
2086 * @rxq: Actual number of RX queues
2087 *
2088 * This must be called either with the rtnl_lock held or before
2089 * registration of the net device. Returns 0 on success, or a
2090 * negative error code. If called before registration, it always
2091 * succeeds.
2092 */
2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2094 {
2095 int rc;
2096
2097 if (rxq < 1 || rxq > dev->num_rx_queues)
2098 return -EINVAL;
2099
2100 if (dev->reg_state == NETREG_REGISTERED) {
2101 ASSERT_RTNL();
2102
2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2104 rxq);
2105 if (rc)
2106 return rc;
2107 }
2108
2109 dev->real_num_rx_queues = rxq;
2110 return 0;
2111 }
2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2113 #endif
2114
2115 /**
2116 * netif_get_num_default_rss_queues - default number of RSS queues
2117 *
2118 * This routine should set an upper limit on the number of RSS queues
2119 * used by default by multiqueue devices.
2120 */
2121 int netif_get_num_default_rss_queues(void)
2122 {
2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124 }
2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126
2127 static inline void __netif_reschedule(struct Qdisc *q)
2128 {
2129 struct softnet_data *sd;
2130 unsigned long flags;
2131
2132 local_irq_save(flags);
2133 sd = &__get_cpu_var(softnet_data);
2134 q->next_sched = NULL;
2135 *sd->output_queue_tailp = q;
2136 sd->output_queue_tailp = &q->next_sched;
2137 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2138 local_irq_restore(flags);
2139 }
2140
2141 void __netif_schedule(struct Qdisc *q)
2142 {
2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2144 __netif_reschedule(q);
2145 }
2146 EXPORT_SYMBOL(__netif_schedule);
2147
2148 void dev_kfree_skb_irq(struct sk_buff *skb)
2149 {
2150 if (atomic_dec_and_test(&skb->users)) {
2151 struct softnet_data *sd;
2152 unsigned long flags;
2153
2154 local_irq_save(flags);
2155 sd = &__get_cpu_var(softnet_data);
2156 skb->next = sd->completion_queue;
2157 sd->completion_queue = skb;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160 }
2161 }
2162 EXPORT_SYMBOL(dev_kfree_skb_irq);
2163
2164 void dev_kfree_skb_any(struct sk_buff *skb)
2165 {
2166 if (in_irq() || irqs_disabled())
2167 dev_kfree_skb_irq(skb);
2168 else
2169 dev_kfree_skb(skb);
2170 }
2171 EXPORT_SYMBOL(dev_kfree_skb_any);
2172
2173
2174 /**
2175 * netif_device_detach - mark device as removed
2176 * @dev: network device
2177 *
2178 * Mark device as removed from system and therefore no longer available.
2179 */
2180 void netif_device_detach(struct net_device *dev)
2181 {
2182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2183 netif_running(dev)) {
2184 netif_tx_stop_all_queues(dev);
2185 }
2186 }
2187 EXPORT_SYMBOL(netif_device_detach);
2188
2189 /**
2190 * netif_device_attach - mark device as attached
2191 * @dev: network device
2192 *
2193 * Mark device as attached from system and restart if needed.
2194 */
2195 void netif_device_attach(struct net_device *dev)
2196 {
2197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2198 netif_running(dev)) {
2199 netif_tx_wake_all_queues(dev);
2200 __netdev_watchdog_up(dev);
2201 }
2202 }
2203 EXPORT_SYMBOL(netif_device_attach);
2204
2205 static void skb_warn_bad_offload(const struct sk_buff *skb)
2206 {
2207 static const netdev_features_t null_features = 0;
2208 struct net_device *dev = skb->dev;
2209 const char *driver = "";
2210
2211 if (!net_ratelimit())
2212 return;
2213
2214 if (dev && dev->dev.parent)
2215 driver = dev_driver_string(dev->dev.parent);
2216
2217 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2218 "gso_type=%d ip_summed=%d\n",
2219 driver, dev ? &dev->features : &null_features,
2220 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2221 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2222 skb_shinfo(skb)->gso_type, skb->ip_summed);
2223 }
2224
2225 /*
2226 * Invalidate hardware checksum when packet is to be mangled, and
2227 * complete checksum manually on outgoing path.
2228 */
2229 int skb_checksum_help(struct sk_buff *skb)
2230 {
2231 __wsum csum;
2232 int ret = 0, offset;
2233
2234 if (skb->ip_summed == CHECKSUM_COMPLETE)
2235 goto out_set_summed;
2236
2237 if (unlikely(skb_shinfo(skb)->gso_size)) {
2238 skb_warn_bad_offload(skb);
2239 return -EINVAL;
2240 }
2241
2242 /* Before computing a checksum, we should make sure no frag could
2243 * be modified by an external entity : checksum could be wrong.
2244 */
2245 if (skb_has_shared_frag(skb)) {
2246 ret = __skb_linearize(skb);
2247 if (ret)
2248 goto out;
2249 }
2250
2251 offset = skb_checksum_start_offset(skb);
2252 BUG_ON(offset >= skb_headlen(skb));
2253 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2254
2255 offset += skb->csum_offset;
2256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2257
2258 if (skb_cloned(skb) &&
2259 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2260 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2261 if (ret)
2262 goto out;
2263 }
2264
2265 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2266 out_set_summed:
2267 skb->ip_summed = CHECKSUM_NONE;
2268 out:
2269 return ret;
2270 }
2271 EXPORT_SYMBOL(skb_checksum_help);
2272
2273 __be16 skb_network_protocol(struct sk_buff *skb)
2274 {
2275 __be16 type = skb->protocol;
2276 int vlan_depth = ETH_HLEN;
2277
2278 /* Tunnel gso handlers can set protocol to ethernet. */
2279 if (type == htons(ETH_P_TEB)) {
2280 struct ethhdr *eth;
2281
2282 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2283 return 0;
2284
2285 eth = (struct ethhdr *)skb_mac_header(skb);
2286 type = eth->h_proto;
2287 }
2288
2289 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2290 struct vlan_hdr *vh;
2291
2292 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2293 return 0;
2294
2295 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2296 type = vh->h_vlan_encapsulated_proto;
2297 vlan_depth += VLAN_HLEN;
2298 }
2299
2300 return type;
2301 }
2302
2303 /**
2304 * skb_mac_gso_segment - mac layer segmentation handler.
2305 * @skb: buffer to segment
2306 * @features: features for the output path (see dev->features)
2307 */
2308 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2309 netdev_features_t features)
2310 {
2311 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2312 struct packet_offload *ptype;
2313 __be16 type = skb_network_protocol(skb);
2314
2315 if (unlikely(!type))
2316 return ERR_PTR(-EINVAL);
2317
2318 __skb_pull(skb, skb->mac_len);
2319
2320 rcu_read_lock();
2321 list_for_each_entry_rcu(ptype, &offload_base, list) {
2322 if (ptype->type == type && ptype->callbacks.gso_segment) {
2323 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2324 int err;
2325
2326 err = ptype->callbacks.gso_send_check(skb);
2327 segs = ERR_PTR(err);
2328 if (err || skb_gso_ok(skb, features))
2329 break;
2330 __skb_push(skb, (skb->data -
2331 skb_network_header(skb)));
2332 }
2333 segs = ptype->callbacks.gso_segment(skb, features);
2334 break;
2335 }
2336 }
2337 rcu_read_unlock();
2338
2339 __skb_push(skb, skb->data - skb_mac_header(skb));
2340
2341 return segs;
2342 }
2343 EXPORT_SYMBOL(skb_mac_gso_segment);
2344
2345
2346 /* openvswitch calls this on rx path, so we need a different check.
2347 */
2348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2349 {
2350 if (tx_path)
2351 return skb->ip_summed != CHECKSUM_PARTIAL;
2352 else
2353 return skb->ip_summed == CHECKSUM_NONE;
2354 }
2355
2356 /**
2357 * __skb_gso_segment - Perform segmentation on skb.
2358 * @skb: buffer to segment
2359 * @features: features for the output path (see dev->features)
2360 * @tx_path: whether it is called in TX path
2361 *
2362 * This function segments the given skb and returns a list of segments.
2363 *
2364 * It may return NULL if the skb requires no segmentation. This is
2365 * only possible when GSO is used for verifying header integrity.
2366 */
2367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2368 netdev_features_t features, bool tx_path)
2369 {
2370 if (unlikely(skb_needs_check(skb, tx_path))) {
2371 int err;
2372
2373 skb_warn_bad_offload(skb);
2374
2375 if (skb_header_cloned(skb) &&
2376 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2377 return ERR_PTR(err);
2378 }
2379
2380 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2381 skb_reset_mac_header(skb);
2382 skb_reset_mac_len(skb);
2383
2384 return skb_mac_gso_segment(skb, features);
2385 }
2386 EXPORT_SYMBOL(__skb_gso_segment);
2387
2388 /* Take action when hardware reception checksum errors are detected. */
2389 #ifdef CONFIG_BUG
2390 void netdev_rx_csum_fault(struct net_device *dev)
2391 {
2392 if (net_ratelimit()) {
2393 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2394 dump_stack();
2395 }
2396 }
2397 EXPORT_SYMBOL(netdev_rx_csum_fault);
2398 #endif
2399
2400 /* Actually, we should eliminate this check as soon as we know, that:
2401 * 1. IOMMU is present and allows to map all the memory.
2402 * 2. No high memory really exists on this machine.
2403 */
2404
2405 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2406 {
2407 #ifdef CONFIG_HIGHMEM
2408 int i;
2409 if (!(dev->features & NETIF_F_HIGHDMA)) {
2410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2411 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2412 if (PageHighMem(skb_frag_page(frag)))
2413 return 1;
2414 }
2415 }
2416
2417 if (PCI_DMA_BUS_IS_PHYS) {
2418 struct device *pdev = dev->dev.parent;
2419
2420 if (!pdev)
2421 return 0;
2422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2423 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2424 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2425 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2426 return 1;
2427 }
2428 }
2429 #endif
2430 return 0;
2431 }
2432
2433 struct dev_gso_cb {
2434 void (*destructor)(struct sk_buff *skb);
2435 };
2436
2437 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2438
2439 static void dev_gso_skb_destructor(struct sk_buff *skb)
2440 {
2441 struct dev_gso_cb *cb;
2442
2443 do {
2444 struct sk_buff *nskb = skb->next;
2445
2446 skb->next = nskb->next;
2447 nskb->next = NULL;
2448 kfree_skb(nskb);
2449 } while (skb->next);
2450
2451 cb = DEV_GSO_CB(skb);
2452 if (cb->destructor)
2453 cb->destructor(skb);
2454 }
2455
2456 /**
2457 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2458 * @skb: buffer to segment
2459 * @features: device features as applicable to this skb
2460 *
2461 * This function segments the given skb and stores the list of segments
2462 * in skb->next.
2463 */
2464 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2465 {
2466 struct sk_buff *segs;
2467
2468 segs = skb_gso_segment(skb, features);
2469
2470 /* Verifying header integrity only. */
2471 if (!segs)
2472 return 0;
2473
2474 if (IS_ERR(segs))
2475 return PTR_ERR(segs);
2476
2477 skb->next = segs;
2478 DEV_GSO_CB(skb)->destructor = skb->destructor;
2479 skb->destructor = dev_gso_skb_destructor;
2480
2481 return 0;
2482 }
2483
2484 static netdev_features_t harmonize_features(struct sk_buff *skb,
2485 netdev_features_t features)
2486 {
2487 if (skb->ip_summed != CHECKSUM_NONE &&
2488 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2489 features &= ~NETIF_F_ALL_CSUM;
2490 } else if (illegal_highdma(skb->dev, skb)) {
2491 features &= ~NETIF_F_SG;
2492 }
2493
2494 return features;
2495 }
2496
2497 netdev_features_t netif_skb_features(struct sk_buff *skb)
2498 {
2499 __be16 protocol = skb->protocol;
2500 netdev_features_t features = skb->dev->features;
2501
2502 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2503 features &= ~NETIF_F_GSO_MASK;
2504
2505 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2506 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2507 protocol = veh->h_vlan_encapsulated_proto;
2508 } else if (!vlan_tx_tag_present(skb)) {
2509 return harmonize_features(skb, features);
2510 }
2511
2512 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2513 NETIF_F_HW_VLAN_STAG_TX);
2514
2515 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2516 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2517 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2518 NETIF_F_HW_VLAN_STAG_TX;
2519
2520 return harmonize_features(skb, features);
2521 }
2522 EXPORT_SYMBOL(netif_skb_features);
2523
2524 /*
2525 * Returns true if either:
2526 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2527 * 2. skb is fragmented and the device does not support SG.
2528 */
2529 static inline int skb_needs_linearize(struct sk_buff *skb,
2530 netdev_features_t features)
2531 {
2532 return skb_is_nonlinear(skb) &&
2533 ((skb_has_frag_list(skb) &&
2534 !(features & NETIF_F_FRAGLIST)) ||
2535 (skb_shinfo(skb)->nr_frags &&
2536 !(features & NETIF_F_SG)));
2537 }
2538
2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2540 struct netdev_queue *txq)
2541 {
2542 const struct net_device_ops *ops = dev->netdev_ops;
2543 int rc = NETDEV_TX_OK;
2544 unsigned int skb_len;
2545
2546 if (likely(!skb->next)) {
2547 netdev_features_t features;
2548
2549 /*
2550 * If device doesn't need skb->dst, release it right now while
2551 * its hot in this cpu cache
2552 */
2553 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2554 skb_dst_drop(skb);
2555
2556 features = netif_skb_features(skb);
2557
2558 if (vlan_tx_tag_present(skb) &&
2559 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2560 skb = __vlan_put_tag(skb, skb->vlan_proto,
2561 vlan_tx_tag_get(skb));
2562 if (unlikely(!skb))
2563 goto out;
2564
2565 skb->vlan_tci = 0;
2566 }
2567
2568 /* If encapsulation offload request, verify we are testing
2569 * hardware encapsulation features instead of standard
2570 * features for the netdev
2571 */
2572 if (skb->encapsulation)
2573 features &= dev->hw_enc_features;
2574
2575 if (netif_needs_gso(skb, features)) {
2576 if (unlikely(dev_gso_segment(skb, features)))
2577 goto out_kfree_skb;
2578 if (skb->next)
2579 goto gso;
2580 } else {
2581 if (skb_needs_linearize(skb, features) &&
2582 __skb_linearize(skb))
2583 goto out_kfree_skb;
2584
2585 /* If packet is not checksummed and device does not
2586 * support checksumming for this protocol, complete
2587 * checksumming here.
2588 */
2589 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2590 if (skb->encapsulation)
2591 skb_set_inner_transport_header(skb,
2592 skb_checksum_start_offset(skb));
2593 else
2594 skb_set_transport_header(skb,
2595 skb_checksum_start_offset(skb));
2596 if (!(features & NETIF_F_ALL_CSUM) &&
2597 skb_checksum_help(skb))
2598 goto out_kfree_skb;
2599 }
2600 }
2601
2602 if (!list_empty(&ptype_all))
2603 dev_queue_xmit_nit(skb, dev);
2604
2605 skb_len = skb->len;
2606 rc = ops->ndo_start_xmit(skb, dev);
2607 trace_net_dev_xmit(skb, rc, dev, skb_len);
2608 if (rc == NETDEV_TX_OK)
2609 txq_trans_update(txq);
2610 return rc;
2611 }
2612
2613 gso:
2614 do {
2615 struct sk_buff *nskb = skb->next;
2616
2617 skb->next = nskb->next;
2618 nskb->next = NULL;
2619
2620 if (!list_empty(&ptype_all))
2621 dev_queue_xmit_nit(nskb, dev);
2622
2623 skb_len = nskb->len;
2624 rc = ops->ndo_start_xmit(nskb, dev);
2625 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 if (unlikely(rc != NETDEV_TX_OK)) {
2627 if (rc & ~NETDEV_TX_MASK)
2628 goto out_kfree_gso_skb;
2629 nskb->next = skb->next;
2630 skb->next = nskb;
2631 return rc;
2632 }
2633 txq_trans_update(txq);
2634 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 return NETDEV_TX_BUSY;
2636 } while (skb->next);
2637
2638 out_kfree_gso_skb:
2639 if (likely(skb->next == NULL)) {
2640 skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 consume_skb(skb);
2642 return rc;
2643 }
2644 out_kfree_skb:
2645 kfree_skb(skb);
2646 out:
2647 return rc;
2648 }
2649
2650 static void qdisc_pkt_len_init(struct sk_buff *skb)
2651 {
2652 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2653
2654 qdisc_skb_cb(skb)->pkt_len = skb->len;
2655
2656 /* To get more precise estimation of bytes sent on wire,
2657 * we add to pkt_len the headers size of all segments
2658 */
2659 if (shinfo->gso_size) {
2660 unsigned int hdr_len;
2661 u16 gso_segs = shinfo->gso_segs;
2662
2663 /* mac layer + network layer */
2664 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2665
2666 /* + transport layer */
2667 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2668 hdr_len += tcp_hdrlen(skb);
2669 else
2670 hdr_len += sizeof(struct udphdr);
2671
2672 if (shinfo->gso_type & SKB_GSO_DODGY)
2673 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2674 shinfo->gso_size);
2675
2676 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2677 }
2678 }
2679
2680 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2681 struct net_device *dev,
2682 struct netdev_queue *txq)
2683 {
2684 spinlock_t *root_lock = qdisc_lock(q);
2685 bool contended;
2686 int rc;
2687
2688 qdisc_pkt_len_init(skb);
2689 qdisc_calculate_pkt_len(skb, q);
2690 /*
2691 * Heuristic to force contended enqueues to serialize on a
2692 * separate lock before trying to get qdisc main lock.
2693 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2694 * and dequeue packets faster.
2695 */
2696 contended = qdisc_is_running(q);
2697 if (unlikely(contended))
2698 spin_lock(&q->busylock);
2699
2700 spin_lock(root_lock);
2701 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2702 kfree_skb(skb);
2703 rc = NET_XMIT_DROP;
2704 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2705 qdisc_run_begin(q)) {
2706 /*
2707 * This is a work-conserving queue; there are no old skbs
2708 * waiting to be sent out; and the qdisc is not running -
2709 * xmit the skb directly.
2710 */
2711 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2712 skb_dst_force(skb);
2713
2714 qdisc_bstats_update(q, skb);
2715
2716 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2717 if (unlikely(contended)) {
2718 spin_unlock(&q->busylock);
2719 contended = false;
2720 }
2721 __qdisc_run(q);
2722 } else
2723 qdisc_run_end(q);
2724
2725 rc = NET_XMIT_SUCCESS;
2726 } else {
2727 skb_dst_force(skb);
2728 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2729 if (qdisc_run_begin(q)) {
2730 if (unlikely(contended)) {
2731 spin_unlock(&q->busylock);
2732 contended = false;
2733 }
2734 __qdisc_run(q);
2735 }
2736 }
2737 spin_unlock(root_lock);
2738 if (unlikely(contended))
2739 spin_unlock(&q->busylock);
2740 return rc;
2741 }
2742
2743 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2744 static void skb_update_prio(struct sk_buff *skb)
2745 {
2746 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2747
2748 if (!skb->priority && skb->sk && map) {
2749 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2750
2751 if (prioidx < map->priomap_len)
2752 skb->priority = map->priomap[prioidx];
2753 }
2754 }
2755 #else
2756 #define skb_update_prio(skb)
2757 #endif
2758
2759 static DEFINE_PER_CPU(int, xmit_recursion);
2760 #define RECURSION_LIMIT 10
2761
2762 /**
2763 * dev_loopback_xmit - loop back @skb
2764 * @skb: buffer to transmit
2765 */
2766 int dev_loopback_xmit(struct sk_buff *skb)
2767 {
2768 skb_reset_mac_header(skb);
2769 __skb_pull(skb, skb_network_offset(skb));
2770 skb->pkt_type = PACKET_LOOPBACK;
2771 skb->ip_summed = CHECKSUM_UNNECESSARY;
2772 WARN_ON(!skb_dst(skb));
2773 skb_dst_force(skb);
2774 netif_rx_ni(skb);
2775 return 0;
2776 }
2777 EXPORT_SYMBOL(dev_loopback_xmit);
2778
2779 /**
2780 * dev_queue_xmit - transmit a buffer
2781 * @skb: buffer to transmit
2782 *
2783 * Queue a buffer for transmission to a network device. The caller must
2784 * have set the device and priority and built the buffer before calling
2785 * this function. The function can be called from an interrupt.
2786 *
2787 * A negative errno code is returned on a failure. A success does not
2788 * guarantee the frame will be transmitted as it may be dropped due
2789 * to congestion or traffic shaping.
2790 *
2791 * -----------------------------------------------------------------------------------
2792 * I notice this method can also return errors from the queue disciplines,
2793 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2794 * be positive.
2795 *
2796 * Regardless of the return value, the skb is consumed, so it is currently
2797 * difficult to retry a send to this method. (You can bump the ref count
2798 * before sending to hold a reference for retry if you are careful.)
2799 *
2800 * When calling this method, interrupts MUST be enabled. This is because
2801 * the BH enable code must have IRQs enabled so that it will not deadlock.
2802 * --BLG
2803 */
2804 int dev_queue_xmit(struct sk_buff *skb)
2805 {
2806 struct net_device *dev = skb->dev;
2807 struct netdev_queue *txq;
2808 struct Qdisc *q;
2809 int rc = -ENOMEM;
2810
2811 skb_reset_mac_header(skb);
2812
2813 /* Disable soft irqs for various locks below. Also
2814 * stops preemption for RCU.
2815 */
2816 rcu_read_lock_bh();
2817
2818 skb_update_prio(skb);
2819
2820 txq = netdev_pick_tx(dev, skb);
2821 q = rcu_dereference_bh(txq->qdisc);
2822
2823 #ifdef CONFIG_NET_CLS_ACT
2824 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2825 #endif
2826 trace_net_dev_queue(skb);
2827 if (q->enqueue) {
2828 rc = __dev_xmit_skb(skb, q, dev, txq);
2829 goto out;
2830 }
2831
2832 /* The device has no queue. Common case for software devices:
2833 loopback, all the sorts of tunnels...
2834
2835 Really, it is unlikely that netif_tx_lock protection is necessary
2836 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2837 counters.)
2838 However, it is possible, that they rely on protection
2839 made by us here.
2840
2841 Check this and shot the lock. It is not prone from deadlocks.
2842 Either shot noqueue qdisc, it is even simpler 8)
2843 */
2844 if (dev->flags & IFF_UP) {
2845 int cpu = smp_processor_id(); /* ok because BHs are off */
2846
2847 if (txq->xmit_lock_owner != cpu) {
2848
2849 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2850 goto recursion_alert;
2851
2852 HARD_TX_LOCK(dev, txq, cpu);
2853
2854 if (!netif_xmit_stopped(txq)) {
2855 __this_cpu_inc(xmit_recursion);
2856 rc = dev_hard_start_xmit(skb, dev, txq);
2857 __this_cpu_dec(xmit_recursion);
2858 if (dev_xmit_complete(rc)) {
2859 HARD_TX_UNLOCK(dev, txq);
2860 goto out;
2861 }
2862 }
2863 HARD_TX_UNLOCK(dev, txq);
2864 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2865 dev->name);
2866 } else {
2867 /* Recursion is detected! It is possible,
2868 * unfortunately
2869 */
2870 recursion_alert:
2871 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2872 dev->name);
2873 }
2874 }
2875
2876 rc = -ENETDOWN;
2877 rcu_read_unlock_bh();
2878
2879 kfree_skb(skb);
2880 return rc;
2881 out:
2882 rcu_read_unlock_bh();
2883 return rc;
2884 }
2885 EXPORT_SYMBOL(dev_queue_xmit);
2886
2887
2888 /*=======================================================================
2889 Receiver routines
2890 =======================================================================*/
2891
2892 int netdev_max_backlog __read_mostly = 1000;
2893 EXPORT_SYMBOL(netdev_max_backlog);
2894
2895 int netdev_tstamp_prequeue __read_mostly = 1;
2896 int netdev_budget __read_mostly = 300;
2897 int weight_p __read_mostly = 64; /* old backlog weight */
2898
2899 /* Called with irq disabled */
2900 static inline void ____napi_schedule(struct softnet_data *sd,
2901 struct napi_struct *napi)
2902 {
2903 list_add_tail(&napi->poll_list, &sd->poll_list);
2904 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2905 }
2906
2907 #ifdef CONFIG_RPS
2908
2909 /* One global table that all flow-based protocols share. */
2910 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2911 EXPORT_SYMBOL(rps_sock_flow_table);
2912
2913 struct static_key rps_needed __read_mostly;
2914
2915 static struct rps_dev_flow *
2916 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2917 struct rps_dev_flow *rflow, u16 next_cpu)
2918 {
2919 if (next_cpu != RPS_NO_CPU) {
2920 #ifdef CONFIG_RFS_ACCEL
2921 struct netdev_rx_queue *rxqueue;
2922 struct rps_dev_flow_table *flow_table;
2923 struct rps_dev_flow *old_rflow;
2924 u32 flow_id;
2925 u16 rxq_index;
2926 int rc;
2927
2928 /* Should we steer this flow to a different hardware queue? */
2929 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2930 !(dev->features & NETIF_F_NTUPLE))
2931 goto out;
2932 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2933 if (rxq_index == skb_get_rx_queue(skb))
2934 goto out;
2935
2936 rxqueue = dev->_rx + rxq_index;
2937 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2938 if (!flow_table)
2939 goto out;
2940 flow_id = skb->rxhash & flow_table->mask;
2941 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2942 rxq_index, flow_id);
2943 if (rc < 0)
2944 goto out;
2945 old_rflow = rflow;
2946 rflow = &flow_table->flows[flow_id];
2947 rflow->filter = rc;
2948 if (old_rflow->filter == rflow->filter)
2949 old_rflow->filter = RPS_NO_FILTER;
2950 out:
2951 #endif
2952 rflow->last_qtail =
2953 per_cpu(softnet_data, next_cpu).input_queue_head;
2954 }
2955
2956 rflow->cpu = next_cpu;
2957 return rflow;
2958 }
2959
2960 /*
2961 * get_rps_cpu is called from netif_receive_skb and returns the target
2962 * CPU from the RPS map of the receiving queue for a given skb.
2963 * rcu_read_lock must be held on entry.
2964 */
2965 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2966 struct rps_dev_flow **rflowp)
2967 {
2968 struct netdev_rx_queue *rxqueue;
2969 struct rps_map *map;
2970 struct rps_dev_flow_table *flow_table;
2971 struct rps_sock_flow_table *sock_flow_table;
2972 int cpu = -1;
2973 u16 tcpu;
2974
2975 if (skb_rx_queue_recorded(skb)) {
2976 u16 index = skb_get_rx_queue(skb);
2977 if (unlikely(index >= dev->real_num_rx_queues)) {
2978 WARN_ONCE(dev->real_num_rx_queues > 1,
2979 "%s received packet on queue %u, but number "
2980 "of RX queues is %u\n",
2981 dev->name, index, dev->real_num_rx_queues);
2982 goto done;
2983 }
2984 rxqueue = dev->_rx + index;
2985 } else
2986 rxqueue = dev->_rx;
2987
2988 map = rcu_dereference(rxqueue->rps_map);
2989 if (map) {
2990 if (map->len == 1 &&
2991 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2992 tcpu = map->cpus[0];
2993 if (cpu_online(tcpu))
2994 cpu = tcpu;
2995 goto done;
2996 }
2997 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2998 goto done;
2999 }
3000
3001 skb_reset_network_header(skb);
3002 if (!skb_get_rxhash(skb))
3003 goto done;
3004
3005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3007 if (flow_table && sock_flow_table) {
3008 u16 next_cpu;
3009 struct rps_dev_flow *rflow;
3010
3011 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3012 tcpu = rflow->cpu;
3013
3014 next_cpu = sock_flow_table->ents[skb->rxhash &
3015 sock_flow_table->mask];
3016
3017 /*
3018 * If the desired CPU (where last recvmsg was done) is
3019 * different from current CPU (one in the rx-queue flow
3020 * table entry), switch if one of the following holds:
3021 * - Current CPU is unset (equal to RPS_NO_CPU).
3022 * - Current CPU is offline.
3023 * - The current CPU's queue tail has advanced beyond the
3024 * last packet that was enqueued using this table entry.
3025 * This guarantees that all previous packets for the flow
3026 * have been dequeued, thus preserving in order delivery.
3027 */
3028 if (unlikely(tcpu != next_cpu) &&
3029 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3030 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3031 rflow->last_qtail)) >= 0)) {
3032 tcpu = next_cpu;
3033 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3034 }
3035
3036 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3037 *rflowp = rflow;
3038 cpu = tcpu;
3039 goto done;
3040 }
3041 }
3042
3043 if (map) {
3044 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3045
3046 if (cpu_online(tcpu)) {
3047 cpu = tcpu;
3048 goto done;
3049 }
3050 }
3051
3052 done:
3053 return cpu;
3054 }
3055
3056 #ifdef CONFIG_RFS_ACCEL
3057
3058 /**
3059 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3060 * @dev: Device on which the filter was set
3061 * @rxq_index: RX queue index
3062 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3063 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3064 *
3065 * Drivers that implement ndo_rx_flow_steer() should periodically call
3066 * this function for each installed filter and remove the filters for
3067 * which it returns %true.
3068 */
3069 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3070 u32 flow_id, u16 filter_id)
3071 {
3072 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3073 struct rps_dev_flow_table *flow_table;
3074 struct rps_dev_flow *rflow;
3075 bool expire = true;
3076 int cpu;
3077
3078 rcu_read_lock();
3079 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3080 if (flow_table && flow_id <= flow_table->mask) {
3081 rflow = &flow_table->flows[flow_id];
3082 cpu = ACCESS_ONCE(rflow->cpu);
3083 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3084 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3085 rflow->last_qtail) <
3086 (int)(10 * flow_table->mask)))
3087 expire = false;
3088 }
3089 rcu_read_unlock();
3090 return expire;
3091 }
3092 EXPORT_SYMBOL(rps_may_expire_flow);
3093
3094 #endif /* CONFIG_RFS_ACCEL */
3095
3096 /* Called from hardirq (IPI) context */
3097 static void rps_trigger_softirq(void *data)
3098 {
3099 struct softnet_data *sd = data;
3100
3101 ____napi_schedule(sd, &sd->backlog);
3102 sd->received_rps++;
3103 }
3104
3105 #endif /* CONFIG_RPS */
3106
3107 /*
3108 * Check if this softnet_data structure is another cpu one
3109 * If yes, queue it to our IPI list and return 1
3110 * If no, return 0
3111 */
3112 static int rps_ipi_queued(struct softnet_data *sd)
3113 {
3114 #ifdef CONFIG_RPS
3115 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3116
3117 if (sd != mysd) {
3118 sd->rps_ipi_next = mysd->rps_ipi_list;
3119 mysd->rps_ipi_list = sd;
3120
3121 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3122 return 1;
3123 }
3124 #endif /* CONFIG_RPS */
3125 return 0;
3126 }
3127
3128 #ifdef CONFIG_NET_FLOW_LIMIT
3129 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3130 #endif
3131
3132 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3133 {
3134 #ifdef CONFIG_NET_FLOW_LIMIT
3135 struct sd_flow_limit *fl;
3136 struct softnet_data *sd;
3137 unsigned int old_flow, new_flow;
3138
3139 if (qlen < (netdev_max_backlog >> 1))
3140 return false;
3141
3142 sd = &__get_cpu_var(softnet_data);
3143
3144 rcu_read_lock();
3145 fl = rcu_dereference(sd->flow_limit);
3146 if (fl) {
3147 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3148 old_flow = fl->history[fl->history_head];
3149 fl->history[fl->history_head] = new_flow;
3150
3151 fl->history_head++;
3152 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3153
3154 if (likely(fl->buckets[old_flow]))
3155 fl->buckets[old_flow]--;
3156
3157 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3158 fl->count++;
3159 rcu_read_unlock();
3160 return true;
3161 }
3162 }
3163 rcu_read_unlock();
3164 #endif
3165 return false;
3166 }
3167
3168 /*
3169 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3170 * queue (may be a remote CPU queue).
3171 */
3172 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3173 unsigned int *qtail)
3174 {
3175 struct softnet_data *sd;
3176 unsigned long flags;
3177 unsigned int qlen;
3178
3179 sd = &per_cpu(softnet_data, cpu);
3180
3181 local_irq_save(flags);
3182
3183 rps_lock(sd);
3184 qlen = skb_queue_len(&sd->input_pkt_queue);
3185 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3186 if (skb_queue_len(&sd->input_pkt_queue)) {
3187 enqueue:
3188 __skb_queue_tail(&sd->input_pkt_queue, skb);
3189 input_queue_tail_incr_save(sd, qtail);
3190 rps_unlock(sd);
3191 local_irq_restore(flags);
3192 return NET_RX_SUCCESS;
3193 }
3194
3195 /* Schedule NAPI for backlog device
3196 * We can use non atomic operation since we own the queue lock
3197 */
3198 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3199 if (!rps_ipi_queued(sd))
3200 ____napi_schedule(sd, &sd->backlog);
3201 }
3202 goto enqueue;
3203 }
3204
3205 sd->dropped++;
3206 rps_unlock(sd);
3207
3208 local_irq_restore(flags);
3209
3210 atomic_long_inc(&skb->dev->rx_dropped);
3211 kfree_skb(skb);
3212 return NET_RX_DROP;
3213 }
3214
3215 /**
3216 * netif_rx - post buffer to the network code
3217 * @skb: buffer to post
3218 *
3219 * This function receives a packet from a device driver and queues it for
3220 * the upper (protocol) levels to process. It always succeeds. The buffer
3221 * may be dropped during processing for congestion control or by the
3222 * protocol layers.
3223 *
3224 * return values:
3225 * NET_RX_SUCCESS (no congestion)
3226 * NET_RX_DROP (packet was dropped)
3227 *
3228 */
3229
3230 int netif_rx(struct sk_buff *skb)
3231 {
3232 int ret;
3233
3234 /* if netpoll wants it, pretend we never saw it */
3235 if (netpoll_rx(skb))
3236 return NET_RX_DROP;
3237
3238 net_timestamp_check(netdev_tstamp_prequeue, skb);
3239
3240 trace_netif_rx(skb);
3241 #ifdef CONFIG_RPS
3242 if (static_key_false(&rps_needed)) {
3243 struct rps_dev_flow voidflow, *rflow = &voidflow;
3244 int cpu;
3245
3246 preempt_disable();
3247 rcu_read_lock();
3248
3249 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3250 if (cpu < 0)
3251 cpu = smp_processor_id();
3252
3253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3254
3255 rcu_read_unlock();
3256 preempt_enable();
3257 } else
3258 #endif
3259 {
3260 unsigned int qtail;
3261 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3262 put_cpu();
3263 }
3264 return ret;
3265 }
3266 EXPORT_SYMBOL(netif_rx);
3267
3268 int netif_rx_ni(struct sk_buff *skb)
3269 {
3270 int err;
3271
3272 preempt_disable();
3273 err = netif_rx(skb);
3274 if (local_softirq_pending())
3275 do_softirq();
3276 preempt_enable();
3277
3278 return err;
3279 }
3280 EXPORT_SYMBOL(netif_rx_ni);
3281
3282 static void net_tx_action(struct softirq_action *h)
3283 {
3284 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3285
3286 if (sd->completion_queue) {
3287 struct sk_buff *clist;
3288
3289 local_irq_disable();
3290 clist = sd->completion_queue;
3291 sd->completion_queue = NULL;
3292 local_irq_enable();
3293
3294 while (clist) {
3295 struct sk_buff *skb = clist;
3296 clist = clist->next;
3297
3298 WARN_ON(atomic_read(&skb->users));
3299 trace_kfree_skb(skb, net_tx_action);
3300 __kfree_skb(skb);
3301 }
3302 }
3303
3304 if (sd->output_queue) {
3305 struct Qdisc *head;
3306
3307 local_irq_disable();
3308 head = sd->output_queue;
3309 sd->output_queue = NULL;
3310 sd->output_queue_tailp = &sd->output_queue;
3311 local_irq_enable();
3312
3313 while (head) {
3314 struct Qdisc *q = head;
3315 spinlock_t *root_lock;
3316
3317 head = head->next_sched;
3318
3319 root_lock = qdisc_lock(q);
3320 if (spin_trylock(root_lock)) {
3321 smp_mb__before_clear_bit();
3322 clear_bit(__QDISC_STATE_SCHED,
3323 &q->state);
3324 qdisc_run(q);
3325 spin_unlock(root_lock);
3326 } else {
3327 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3328 &q->state)) {
3329 __netif_reschedule(q);
3330 } else {
3331 smp_mb__before_clear_bit();
3332 clear_bit(__QDISC_STATE_SCHED,
3333 &q->state);
3334 }
3335 }
3336 }
3337 }
3338 }
3339
3340 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3341 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3342 /* This hook is defined here for ATM LANE */
3343 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3344 unsigned char *addr) __read_mostly;
3345 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3346 #endif
3347
3348 #ifdef CONFIG_NET_CLS_ACT
3349 /* TODO: Maybe we should just force sch_ingress to be compiled in
3350 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3351 * a compare and 2 stores extra right now if we dont have it on
3352 * but have CONFIG_NET_CLS_ACT
3353 * NOTE: This doesn't stop any functionality; if you dont have
3354 * the ingress scheduler, you just can't add policies on ingress.
3355 *
3356 */
3357 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3358 {
3359 struct net_device *dev = skb->dev;
3360 u32 ttl = G_TC_RTTL(skb->tc_verd);
3361 int result = TC_ACT_OK;
3362 struct Qdisc *q;
3363
3364 if (unlikely(MAX_RED_LOOP < ttl++)) {
3365 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3366 skb->skb_iif, dev->ifindex);
3367 return TC_ACT_SHOT;
3368 }
3369
3370 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3371 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3372
3373 q = rxq->qdisc;
3374 if (q != &noop_qdisc) {
3375 spin_lock(qdisc_lock(q));
3376 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3377 result = qdisc_enqueue_root(skb, q);
3378 spin_unlock(qdisc_lock(q));
3379 }
3380
3381 return result;
3382 }
3383
3384 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3385 struct packet_type **pt_prev,
3386 int *ret, struct net_device *orig_dev)
3387 {
3388 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3389
3390 if (!rxq || rxq->qdisc == &noop_qdisc)
3391 goto out;
3392
3393 if (*pt_prev) {
3394 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3395 *pt_prev = NULL;
3396 }
3397
3398 switch (ing_filter(skb, rxq)) {
3399 case TC_ACT_SHOT:
3400 case TC_ACT_STOLEN:
3401 kfree_skb(skb);
3402 return NULL;
3403 }
3404
3405 out:
3406 skb->tc_verd = 0;
3407 return skb;
3408 }
3409 #endif
3410
3411 /**
3412 * netdev_rx_handler_register - register receive handler
3413 * @dev: device to register a handler for
3414 * @rx_handler: receive handler to register
3415 * @rx_handler_data: data pointer that is used by rx handler
3416 *
3417 * Register a receive hander for a device. This handler will then be
3418 * called from __netif_receive_skb. A negative errno code is returned
3419 * on a failure.
3420 *
3421 * The caller must hold the rtnl_mutex.
3422 *
3423 * For a general description of rx_handler, see enum rx_handler_result.
3424 */
3425 int netdev_rx_handler_register(struct net_device *dev,
3426 rx_handler_func_t *rx_handler,
3427 void *rx_handler_data)
3428 {
3429 ASSERT_RTNL();
3430
3431 if (dev->rx_handler)
3432 return -EBUSY;
3433
3434 /* Note: rx_handler_data must be set before rx_handler */
3435 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3436 rcu_assign_pointer(dev->rx_handler, rx_handler);
3437
3438 return 0;
3439 }
3440 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3441
3442 /**
3443 * netdev_rx_handler_unregister - unregister receive handler
3444 * @dev: device to unregister a handler from
3445 *
3446 * Unregister a receive handler from a device.
3447 *
3448 * The caller must hold the rtnl_mutex.
3449 */
3450 void netdev_rx_handler_unregister(struct net_device *dev)
3451 {
3452
3453 ASSERT_RTNL();
3454 RCU_INIT_POINTER(dev->rx_handler, NULL);
3455 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3456 * section has a guarantee to see a non NULL rx_handler_data
3457 * as well.
3458 */
3459 synchronize_net();
3460 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3461 }
3462 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3463
3464 /*
3465 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3466 * the special handling of PFMEMALLOC skbs.
3467 */
3468 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3469 {
3470 switch (skb->protocol) {
3471 case __constant_htons(ETH_P_ARP):
3472 case __constant_htons(ETH_P_IP):
3473 case __constant_htons(ETH_P_IPV6):
3474 case __constant_htons(ETH_P_8021Q):
3475 case __constant_htons(ETH_P_8021AD):
3476 return true;
3477 default:
3478 return false;
3479 }
3480 }
3481
3482 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3483 {
3484 struct packet_type *ptype, *pt_prev;
3485 rx_handler_func_t *rx_handler;
3486 struct net_device *orig_dev;
3487 struct net_device *null_or_dev;
3488 bool deliver_exact = false;
3489 int ret = NET_RX_DROP;
3490 __be16 type;
3491
3492 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3493
3494 trace_netif_receive_skb(skb);
3495
3496 /* if we've gotten here through NAPI, check netpoll */
3497 if (netpoll_receive_skb(skb))
3498 goto out;
3499
3500 orig_dev = skb->dev;
3501
3502 skb_reset_network_header(skb);
3503 if (!skb_transport_header_was_set(skb))
3504 skb_reset_transport_header(skb);
3505 skb_reset_mac_len(skb);
3506
3507 pt_prev = NULL;
3508
3509 rcu_read_lock();
3510
3511 another_round:
3512 skb->skb_iif = skb->dev->ifindex;
3513
3514 __this_cpu_inc(softnet_data.processed);
3515
3516 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3517 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3518 skb = vlan_untag(skb);
3519 if (unlikely(!skb))
3520 goto unlock;
3521 }
3522
3523 #ifdef CONFIG_NET_CLS_ACT
3524 if (skb->tc_verd & TC_NCLS) {
3525 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3526 goto ncls;
3527 }
3528 #endif
3529
3530 if (pfmemalloc)
3531 goto skip_taps;
3532
3533 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3534 if (!ptype->dev || ptype->dev == skb->dev) {
3535 if (pt_prev)
3536 ret = deliver_skb(skb, pt_prev, orig_dev);
3537 pt_prev = ptype;
3538 }
3539 }
3540
3541 skip_taps:
3542 #ifdef CONFIG_NET_CLS_ACT
3543 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3544 if (!skb)
3545 goto unlock;
3546 ncls:
3547 #endif
3548
3549 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3550 goto drop;
3551
3552 if (vlan_tx_tag_present(skb)) {
3553 if (pt_prev) {
3554 ret = deliver_skb(skb, pt_prev, orig_dev);
3555 pt_prev = NULL;
3556 }
3557 if (vlan_do_receive(&skb))
3558 goto another_round;
3559 else if (unlikely(!skb))
3560 goto unlock;
3561 }
3562
3563 rx_handler = rcu_dereference(skb->dev->rx_handler);
3564 if (rx_handler) {
3565 if (pt_prev) {
3566 ret = deliver_skb(skb, pt_prev, orig_dev);
3567 pt_prev = NULL;
3568 }
3569 switch (rx_handler(&skb)) {
3570 case RX_HANDLER_CONSUMED:
3571 ret = NET_RX_SUCCESS;
3572 goto unlock;
3573 case RX_HANDLER_ANOTHER:
3574 goto another_round;
3575 case RX_HANDLER_EXACT:
3576 deliver_exact = true;
3577 case RX_HANDLER_PASS:
3578 break;
3579 default:
3580 BUG();
3581 }
3582 }
3583
3584 if (unlikely(vlan_tx_tag_present(skb))) {
3585 if (vlan_tx_tag_get_id(skb))
3586 skb->pkt_type = PACKET_OTHERHOST;
3587 /* Note: we might in the future use prio bits
3588 * and set skb->priority like in vlan_do_receive()
3589 * For the time being, just ignore Priority Code Point
3590 */
3591 skb->vlan_tci = 0;
3592 }
3593
3594 /* deliver only exact match when indicated */
3595 null_or_dev = deliver_exact ? skb->dev : NULL;
3596
3597 type = skb->protocol;
3598 list_for_each_entry_rcu(ptype,
3599 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3600 if (ptype->type == type &&
3601 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3602 ptype->dev == orig_dev)) {
3603 if (pt_prev)
3604 ret = deliver_skb(skb, pt_prev, orig_dev);
3605 pt_prev = ptype;
3606 }
3607 }
3608
3609 if (pt_prev) {
3610 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3611 goto drop;
3612 else
3613 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3614 } else {
3615 drop:
3616 atomic_long_inc(&skb->dev->rx_dropped);
3617 kfree_skb(skb);
3618 /* Jamal, now you will not able to escape explaining
3619 * me how you were going to use this. :-)
3620 */
3621 ret = NET_RX_DROP;
3622 }
3623
3624 unlock:
3625 rcu_read_unlock();
3626 out:
3627 return ret;
3628 }
3629
3630 static int __netif_receive_skb(struct sk_buff *skb)
3631 {
3632 int ret;
3633
3634 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3635 unsigned long pflags = current->flags;
3636
3637 /*
3638 * PFMEMALLOC skbs are special, they should
3639 * - be delivered to SOCK_MEMALLOC sockets only
3640 * - stay away from userspace
3641 * - have bounded memory usage
3642 *
3643 * Use PF_MEMALLOC as this saves us from propagating the allocation
3644 * context down to all allocation sites.
3645 */
3646 current->flags |= PF_MEMALLOC;
3647 ret = __netif_receive_skb_core(skb, true);
3648 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3649 } else
3650 ret = __netif_receive_skb_core(skb, false);
3651
3652 return ret;
3653 }
3654
3655 /**
3656 * netif_receive_skb - process receive buffer from network
3657 * @skb: buffer to process
3658 *
3659 * netif_receive_skb() is the main receive data processing function.
3660 * It always succeeds. The buffer may be dropped during processing
3661 * for congestion control or by the protocol layers.
3662 *
3663 * This function may only be called from softirq context and interrupts
3664 * should be enabled.
3665 *
3666 * Return values (usually ignored):
3667 * NET_RX_SUCCESS: no congestion
3668 * NET_RX_DROP: packet was dropped
3669 */
3670 int netif_receive_skb(struct sk_buff *skb)
3671 {
3672 net_timestamp_check(netdev_tstamp_prequeue, skb);
3673
3674 if (skb_defer_rx_timestamp(skb))
3675 return NET_RX_SUCCESS;
3676
3677 #ifdef CONFIG_RPS
3678 if (static_key_false(&rps_needed)) {
3679 struct rps_dev_flow voidflow, *rflow = &voidflow;
3680 int cpu, ret;
3681
3682 rcu_read_lock();
3683
3684 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3685
3686 if (cpu >= 0) {
3687 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3688 rcu_read_unlock();
3689 return ret;
3690 }
3691 rcu_read_unlock();
3692 }
3693 #endif
3694 return __netif_receive_skb(skb);
3695 }
3696 EXPORT_SYMBOL(netif_receive_skb);
3697
3698 /* Network device is going away, flush any packets still pending
3699 * Called with irqs disabled.
3700 */
3701 static void flush_backlog(void *arg)
3702 {
3703 struct net_device *dev = arg;
3704 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3705 struct sk_buff *skb, *tmp;
3706
3707 rps_lock(sd);
3708 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3709 if (skb->dev == dev) {
3710 __skb_unlink(skb, &sd->input_pkt_queue);
3711 kfree_skb(skb);
3712 input_queue_head_incr(sd);
3713 }
3714 }
3715 rps_unlock(sd);
3716
3717 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3718 if (skb->dev == dev) {
3719 __skb_unlink(skb, &sd->process_queue);
3720 kfree_skb(skb);
3721 input_queue_head_incr(sd);
3722 }
3723 }
3724 }
3725
3726 static int napi_gro_complete(struct sk_buff *skb)
3727 {
3728 struct packet_offload *ptype;
3729 __be16 type = skb->protocol;
3730 struct list_head *head = &offload_base;
3731 int err = -ENOENT;
3732
3733 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3734
3735 if (NAPI_GRO_CB(skb)->count == 1) {
3736 skb_shinfo(skb)->gso_size = 0;
3737 goto out;
3738 }
3739
3740 rcu_read_lock();
3741 list_for_each_entry_rcu(ptype, head, list) {
3742 if (ptype->type != type || !ptype->callbacks.gro_complete)
3743 continue;
3744
3745 err = ptype->callbacks.gro_complete(skb);
3746 break;
3747 }
3748 rcu_read_unlock();
3749
3750 if (err) {
3751 WARN_ON(&ptype->list == head);
3752 kfree_skb(skb);
3753 return NET_RX_SUCCESS;
3754 }
3755
3756 out:
3757 return netif_receive_skb(skb);
3758 }
3759
3760 /* napi->gro_list contains packets ordered by age.
3761 * youngest packets at the head of it.
3762 * Complete skbs in reverse order to reduce latencies.
3763 */
3764 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3765 {
3766 struct sk_buff *skb, *prev = NULL;
3767
3768 /* scan list and build reverse chain */
3769 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3770 skb->prev = prev;
3771 prev = skb;
3772 }
3773
3774 for (skb = prev; skb; skb = prev) {
3775 skb->next = NULL;
3776
3777 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3778 return;
3779
3780 prev = skb->prev;
3781 napi_gro_complete(skb);
3782 napi->gro_count--;
3783 }
3784
3785 napi->gro_list = NULL;
3786 }
3787 EXPORT_SYMBOL(napi_gro_flush);
3788
3789 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3790 {
3791 struct sk_buff *p;
3792 unsigned int maclen = skb->dev->hard_header_len;
3793
3794 for (p = napi->gro_list; p; p = p->next) {
3795 unsigned long diffs;
3796
3797 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3798 diffs |= p->vlan_tci ^ skb->vlan_tci;
3799 if (maclen == ETH_HLEN)
3800 diffs |= compare_ether_header(skb_mac_header(p),
3801 skb_gro_mac_header(skb));
3802 else if (!diffs)
3803 diffs = memcmp(skb_mac_header(p),
3804 skb_gro_mac_header(skb),
3805 maclen);
3806 NAPI_GRO_CB(p)->same_flow = !diffs;
3807 NAPI_GRO_CB(p)->flush = 0;
3808 }
3809 }
3810
3811 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3812 {
3813 struct sk_buff **pp = NULL;
3814 struct packet_offload *ptype;
3815 __be16 type = skb->protocol;
3816 struct list_head *head = &offload_base;
3817 int same_flow;
3818 enum gro_result ret;
3819
3820 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3821 goto normal;
3822
3823 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3824 goto normal;
3825
3826 gro_list_prepare(napi, skb);
3827
3828 rcu_read_lock();
3829 list_for_each_entry_rcu(ptype, head, list) {
3830 if (ptype->type != type || !ptype->callbacks.gro_receive)
3831 continue;
3832
3833 skb_set_network_header(skb, skb_gro_offset(skb));
3834 skb_reset_mac_len(skb);
3835 NAPI_GRO_CB(skb)->same_flow = 0;
3836 NAPI_GRO_CB(skb)->flush = 0;
3837 NAPI_GRO_CB(skb)->free = 0;
3838
3839 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3840 break;
3841 }
3842 rcu_read_unlock();
3843
3844 if (&ptype->list == head)
3845 goto normal;
3846
3847 same_flow = NAPI_GRO_CB(skb)->same_flow;
3848 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3849
3850 if (pp) {
3851 struct sk_buff *nskb = *pp;
3852
3853 *pp = nskb->next;
3854 nskb->next = NULL;
3855 napi_gro_complete(nskb);
3856 napi->gro_count--;
3857 }
3858
3859 if (same_flow)
3860 goto ok;
3861
3862 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3863 goto normal;
3864
3865 napi->gro_count++;
3866 NAPI_GRO_CB(skb)->count = 1;
3867 NAPI_GRO_CB(skb)->age = jiffies;
3868 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3869 skb->next = napi->gro_list;
3870 napi->gro_list = skb;
3871 ret = GRO_HELD;
3872
3873 pull:
3874 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3875 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3876
3877 BUG_ON(skb->end - skb->tail < grow);
3878
3879 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3880
3881 skb->tail += grow;
3882 skb->data_len -= grow;
3883
3884 skb_shinfo(skb)->frags[0].page_offset += grow;
3885 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3886
3887 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3888 skb_frag_unref(skb, 0);
3889 memmove(skb_shinfo(skb)->frags,
3890 skb_shinfo(skb)->frags + 1,
3891 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3892 }
3893 }
3894
3895 ok:
3896 return ret;
3897
3898 normal:
3899 ret = GRO_NORMAL;
3900 goto pull;
3901 }
3902
3903
3904 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3905 {
3906 switch (ret) {
3907 case GRO_NORMAL:
3908 if (netif_receive_skb(skb))
3909 ret = GRO_DROP;
3910 break;
3911
3912 case GRO_DROP:
3913 kfree_skb(skb);
3914 break;
3915
3916 case GRO_MERGED_FREE:
3917 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3918 kmem_cache_free(skbuff_head_cache, skb);
3919 else
3920 __kfree_skb(skb);
3921 break;
3922
3923 case GRO_HELD:
3924 case GRO_MERGED:
3925 break;
3926 }
3927
3928 return ret;
3929 }
3930
3931 static void skb_gro_reset_offset(struct sk_buff *skb)
3932 {
3933 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3934 const skb_frag_t *frag0 = &pinfo->frags[0];
3935
3936 NAPI_GRO_CB(skb)->data_offset = 0;
3937 NAPI_GRO_CB(skb)->frag0 = NULL;
3938 NAPI_GRO_CB(skb)->frag0_len = 0;
3939
3940 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3941 pinfo->nr_frags &&
3942 !PageHighMem(skb_frag_page(frag0))) {
3943 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3944 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3945 }
3946 }
3947
3948 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3949 {
3950 skb_gro_reset_offset(skb);
3951
3952 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3953 }
3954 EXPORT_SYMBOL(napi_gro_receive);
3955
3956 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3957 {
3958 __skb_pull(skb, skb_headlen(skb));
3959 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3960 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3961 skb->vlan_tci = 0;
3962 skb->dev = napi->dev;
3963 skb->skb_iif = 0;
3964
3965 napi->skb = skb;
3966 }
3967
3968 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3969 {
3970 struct sk_buff *skb = napi->skb;
3971
3972 if (!skb) {
3973 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3974 if (skb)
3975 napi->skb = skb;
3976 }
3977 return skb;
3978 }
3979 EXPORT_SYMBOL(napi_get_frags);
3980
3981 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3982 gro_result_t ret)
3983 {
3984 switch (ret) {
3985 case GRO_NORMAL:
3986 case GRO_HELD:
3987 skb->protocol = eth_type_trans(skb, skb->dev);
3988
3989 if (ret == GRO_HELD)
3990 skb_gro_pull(skb, -ETH_HLEN);
3991 else if (netif_receive_skb(skb))
3992 ret = GRO_DROP;
3993 break;
3994
3995 case GRO_DROP:
3996 case GRO_MERGED_FREE:
3997 napi_reuse_skb(napi, skb);
3998 break;
3999
4000 case GRO_MERGED:
4001 break;
4002 }
4003
4004 return ret;
4005 }
4006
4007 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4008 {
4009 struct sk_buff *skb = napi->skb;
4010 struct ethhdr *eth;
4011 unsigned int hlen;
4012 unsigned int off;
4013
4014 napi->skb = NULL;
4015
4016 skb_reset_mac_header(skb);
4017 skb_gro_reset_offset(skb);
4018
4019 off = skb_gro_offset(skb);
4020 hlen = off + sizeof(*eth);
4021 eth = skb_gro_header_fast(skb, off);
4022 if (skb_gro_header_hard(skb, hlen)) {
4023 eth = skb_gro_header_slow(skb, hlen, off);
4024 if (unlikely(!eth)) {
4025 napi_reuse_skb(napi, skb);
4026 skb = NULL;
4027 goto out;
4028 }
4029 }
4030
4031 skb_gro_pull(skb, sizeof(*eth));
4032
4033 /*
4034 * This works because the only protocols we care about don't require
4035 * special handling. We'll fix it up properly at the end.
4036 */
4037 skb->protocol = eth->h_proto;
4038
4039 out:
4040 return skb;
4041 }
4042
4043 gro_result_t napi_gro_frags(struct napi_struct *napi)
4044 {
4045 struct sk_buff *skb = napi_frags_skb(napi);
4046
4047 if (!skb)
4048 return GRO_DROP;
4049
4050 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4051 }
4052 EXPORT_SYMBOL(napi_gro_frags);
4053
4054 /*
4055 * net_rps_action sends any pending IPI's for rps.
4056 * Note: called with local irq disabled, but exits with local irq enabled.
4057 */
4058 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4059 {
4060 #ifdef CONFIG_RPS
4061 struct softnet_data *remsd = sd->rps_ipi_list;
4062
4063 if (remsd) {
4064 sd->rps_ipi_list = NULL;
4065
4066 local_irq_enable();
4067
4068 /* Send pending IPI's to kick RPS processing on remote cpus. */
4069 while (remsd) {
4070 struct softnet_data *next = remsd->rps_ipi_next;
4071
4072 if (cpu_online(remsd->cpu))
4073 __smp_call_function_single(remsd->cpu,
4074 &remsd->csd, 0);
4075 remsd = next;
4076 }
4077 } else
4078 #endif
4079 local_irq_enable();
4080 }
4081
4082 static int process_backlog(struct napi_struct *napi, int quota)
4083 {
4084 int work = 0;
4085 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4086
4087 #ifdef CONFIG_RPS
4088 /* Check if we have pending ipi, its better to send them now,
4089 * not waiting net_rx_action() end.
4090 */
4091 if (sd->rps_ipi_list) {
4092 local_irq_disable();
4093 net_rps_action_and_irq_enable(sd);
4094 }
4095 #endif
4096 napi->weight = weight_p;
4097 local_irq_disable();
4098 while (work < quota) {
4099 struct sk_buff *skb;
4100 unsigned int qlen;
4101
4102 while ((skb = __skb_dequeue(&sd->process_queue))) {
4103 local_irq_enable();
4104 __netif_receive_skb(skb);
4105 local_irq_disable();
4106 input_queue_head_incr(sd);
4107 if (++work >= quota) {
4108 local_irq_enable();
4109 return work;
4110 }
4111 }
4112
4113 rps_lock(sd);
4114 qlen = skb_queue_len(&sd->input_pkt_queue);
4115 if (qlen)
4116 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4117 &sd->process_queue);
4118
4119 if (qlen < quota - work) {
4120 /*
4121 * Inline a custom version of __napi_complete().
4122 * only current cpu owns and manipulates this napi,
4123 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4124 * we can use a plain write instead of clear_bit(),
4125 * and we dont need an smp_mb() memory barrier.
4126 */
4127 list_del(&napi->poll_list);
4128 napi->state = 0;
4129
4130 quota = work + qlen;
4131 }
4132 rps_unlock(sd);
4133 }
4134 local_irq_enable();
4135
4136 return work;
4137 }
4138
4139 /**
4140 * __napi_schedule - schedule for receive
4141 * @n: entry to schedule
4142 *
4143 * The entry's receive function will be scheduled to run
4144 */
4145 void __napi_schedule(struct napi_struct *n)
4146 {
4147 unsigned long flags;
4148
4149 local_irq_save(flags);
4150 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4151 local_irq_restore(flags);
4152 }
4153 EXPORT_SYMBOL(__napi_schedule);
4154
4155 void __napi_complete(struct napi_struct *n)
4156 {
4157 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4158 BUG_ON(n->gro_list);
4159
4160 list_del(&n->poll_list);
4161 smp_mb__before_clear_bit();
4162 clear_bit(NAPI_STATE_SCHED, &n->state);
4163 }
4164 EXPORT_SYMBOL(__napi_complete);
4165
4166 void napi_complete(struct napi_struct *n)
4167 {
4168 unsigned long flags;
4169
4170 /*
4171 * don't let napi dequeue from the cpu poll list
4172 * just in case its running on a different cpu
4173 */
4174 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4175 return;
4176
4177 napi_gro_flush(n, false);
4178 local_irq_save(flags);
4179 __napi_complete(n);
4180 local_irq_restore(flags);
4181 }
4182 EXPORT_SYMBOL(napi_complete);
4183
4184 /* must be called under rcu_read_lock(), as we dont take a reference */
4185 struct napi_struct *napi_by_id(unsigned int napi_id)
4186 {
4187 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4188 struct napi_struct *napi;
4189
4190 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4191 if (napi->napi_id == napi_id)
4192 return napi;
4193
4194 return NULL;
4195 }
4196 EXPORT_SYMBOL_GPL(napi_by_id);
4197
4198 void napi_hash_add(struct napi_struct *napi)
4199 {
4200 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4201
4202 spin_lock(&napi_hash_lock);
4203
4204 /* 0 is not a valid id, we also skip an id that is taken
4205 * we expect both events to be extremely rare
4206 */
4207 napi->napi_id = 0;
4208 while (!napi->napi_id) {
4209 napi->napi_id = ++napi_gen_id;
4210 if (napi_by_id(napi->napi_id))
4211 napi->napi_id = 0;
4212 }
4213
4214 hlist_add_head_rcu(&napi->napi_hash_node,
4215 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4216
4217 spin_unlock(&napi_hash_lock);
4218 }
4219 }
4220 EXPORT_SYMBOL_GPL(napi_hash_add);
4221
4222 /* Warning : caller is responsible to make sure rcu grace period
4223 * is respected before freeing memory containing @napi
4224 */
4225 void napi_hash_del(struct napi_struct *napi)
4226 {
4227 spin_lock(&napi_hash_lock);
4228
4229 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4230 hlist_del_rcu(&napi->napi_hash_node);
4231
4232 spin_unlock(&napi_hash_lock);
4233 }
4234 EXPORT_SYMBOL_GPL(napi_hash_del);
4235
4236 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4237 int (*poll)(struct napi_struct *, int), int weight)
4238 {
4239 INIT_LIST_HEAD(&napi->poll_list);
4240 napi->gro_count = 0;
4241 napi->gro_list = NULL;
4242 napi->skb = NULL;
4243 napi->poll = poll;
4244 if (weight > NAPI_POLL_WEIGHT)
4245 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4246 weight, dev->name);
4247 napi->weight = weight;
4248 list_add(&napi->dev_list, &dev->napi_list);
4249 napi->dev = dev;
4250 #ifdef CONFIG_NETPOLL
4251 spin_lock_init(&napi->poll_lock);
4252 napi->poll_owner = -1;
4253 #endif
4254 set_bit(NAPI_STATE_SCHED, &napi->state);
4255 }
4256 EXPORT_SYMBOL(netif_napi_add);
4257
4258 void netif_napi_del(struct napi_struct *napi)
4259 {
4260 struct sk_buff *skb, *next;
4261
4262 list_del_init(&napi->dev_list);
4263 napi_free_frags(napi);
4264
4265 for (skb = napi->gro_list; skb; skb = next) {
4266 next = skb->next;
4267 skb->next = NULL;
4268 kfree_skb(skb);
4269 }
4270
4271 napi->gro_list = NULL;
4272 napi->gro_count = 0;
4273 }
4274 EXPORT_SYMBOL(netif_napi_del);
4275
4276 static void net_rx_action(struct softirq_action *h)
4277 {
4278 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4279 unsigned long time_limit = jiffies + 2;
4280 int budget = netdev_budget;
4281 void *have;
4282
4283 local_irq_disable();
4284
4285 while (!list_empty(&sd->poll_list)) {
4286 struct napi_struct *n;
4287 int work, weight;
4288
4289 /* If softirq window is exhuasted then punt.
4290 * Allow this to run for 2 jiffies since which will allow
4291 * an average latency of 1.5/HZ.
4292 */
4293 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4294 goto softnet_break;
4295
4296 local_irq_enable();
4297
4298 /* Even though interrupts have been re-enabled, this
4299 * access is safe because interrupts can only add new
4300 * entries to the tail of this list, and only ->poll()
4301 * calls can remove this head entry from the list.
4302 */
4303 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4304
4305 have = netpoll_poll_lock(n);
4306
4307 weight = n->weight;
4308
4309 /* This NAPI_STATE_SCHED test is for avoiding a race
4310 * with netpoll's poll_napi(). Only the entity which
4311 * obtains the lock and sees NAPI_STATE_SCHED set will
4312 * actually make the ->poll() call. Therefore we avoid
4313 * accidentally calling ->poll() when NAPI is not scheduled.
4314 */
4315 work = 0;
4316 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4317 work = n->poll(n, weight);
4318 trace_napi_poll(n);
4319 }
4320
4321 WARN_ON_ONCE(work > weight);
4322
4323 budget -= work;
4324
4325 local_irq_disable();
4326
4327 /* Drivers must not modify the NAPI state if they
4328 * consume the entire weight. In such cases this code
4329 * still "owns" the NAPI instance and therefore can
4330 * move the instance around on the list at-will.
4331 */
4332 if (unlikely(work == weight)) {
4333 if (unlikely(napi_disable_pending(n))) {
4334 local_irq_enable();
4335 napi_complete(n);
4336 local_irq_disable();
4337 } else {
4338 if (n->gro_list) {
4339 /* flush too old packets
4340 * If HZ < 1000, flush all packets.
4341 */
4342 local_irq_enable();
4343 napi_gro_flush(n, HZ >= 1000);
4344 local_irq_disable();
4345 }
4346 list_move_tail(&n->poll_list, &sd->poll_list);
4347 }
4348 }
4349
4350 netpoll_poll_unlock(have);
4351 }
4352 out:
4353 net_rps_action_and_irq_enable(sd);
4354
4355 #ifdef CONFIG_NET_DMA
4356 /*
4357 * There may not be any more sk_buffs coming right now, so push
4358 * any pending DMA copies to hardware
4359 */
4360 dma_issue_pending_all();
4361 #endif
4362
4363 return;
4364
4365 softnet_break:
4366 sd->time_squeeze++;
4367 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4368 goto out;
4369 }
4370
4371 struct netdev_adjacent {
4372 struct net_device *dev;
4373
4374 /* upper master flag, there can only be one master device per list */
4375 bool master;
4376
4377 /* indicates that this dev is our first-level lower/upper device */
4378 bool neighbour;
4379
4380 /* counter for the number of times this device was added to us */
4381 u16 ref_nr;
4382
4383 struct list_head list;
4384 struct rcu_head rcu;
4385 };
4386
4387 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4388 struct net_device *adj_dev,
4389 bool upper)
4390 {
4391 struct netdev_adjacent *adj;
4392 struct list_head *dev_list;
4393
4394 dev_list = upper ? &dev->upper_dev_list : &dev->lower_dev_list;
4395
4396 list_for_each_entry(adj, dev_list, list) {
4397 if (adj->dev == adj_dev)
4398 return adj;
4399 }
4400 return NULL;
4401 }
4402
4403 static inline struct netdev_adjacent *__netdev_find_upper(struct net_device *dev,
4404 struct net_device *udev)
4405 {
4406 return __netdev_find_adj(dev, udev, true);
4407 }
4408
4409 static inline struct netdev_adjacent *__netdev_find_lower(struct net_device *dev,
4410 struct net_device *ldev)
4411 {
4412 return __netdev_find_adj(dev, ldev, false);
4413 }
4414
4415 /**
4416 * netdev_has_upper_dev - Check if device is linked to an upper device
4417 * @dev: device
4418 * @upper_dev: upper device to check
4419 *
4420 * Find out if a device is linked to specified upper device and return true
4421 * in case it is. Note that this checks only immediate upper device,
4422 * not through a complete stack of devices. The caller must hold the RTNL lock.
4423 */
4424 bool netdev_has_upper_dev(struct net_device *dev,
4425 struct net_device *upper_dev)
4426 {
4427 ASSERT_RTNL();
4428
4429 return __netdev_find_upper(dev, upper_dev);
4430 }
4431 EXPORT_SYMBOL(netdev_has_upper_dev);
4432
4433 /**
4434 * netdev_has_any_upper_dev - Check if device is linked to some device
4435 * @dev: device
4436 *
4437 * Find out if a device is linked to an upper device and return true in case
4438 * it is. The caller must hold the RTNL lock.
4439 */
4440 bool netdev_has_any_upper_dev(struct net_device *dev)
4441 {
4442 ASSERT_RTNL();
4443
4444 return !list_empty(&dev->upper_dev_list);
4445 }
4446 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4447
4448 /**
4449 * netdev_master_upper_dev_get - Get master upper device
4450 * @dev: device
4451 *
4452 * Find a master upper device and return pointer to it or NULL in case
4453 * it's not there. The caller must hold the RTNL lock.
4454 */
4455 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4456 {
4457 struct netdev_adjacent *upper;
4458
4459 ASSERT_RTNL();
4460
4461 if (list_empty(&dev->upper_dev_list))
4462 return NULL;
4463
4464 upper = list_first_entry(&dev->upper_dev_list,
4465 struct netdev_adjacent, list);
4466 if (likely(upper->master))
4467 return upper->dev;
4468 return NULL;
4469 }
4470 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4471
4472 /* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4473 * @dev: device
4474 * @iter: list_head ** of the current position
4475 *
4476 * Gets the next device from the dev's upper list, starting from iter
4477 * position. The caller must hold RCU read lock.
4478 */
4479 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4480 struct list_head **iter)
4481 {
4482 struct netdev_adjacent *upper;
4483
4484 WARN_ON_ONCE(!rcu_read_lock_held());
4485
4486 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4487
4488 if (&upper->list == &dev->upper_dev_list)
4489 return NULL;
4490
4491 *iter = &upper->list;
4492
4493 return upper->dev;
4494 }
4495 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4496
4497 /**
4498 * netdev_master_upper_dev_get_rcu - Get master upper device
4499 * @dev: device
4500 *
4501 * Find a master upper device and return pointer to it or NULL in case
4502 * it's not there. The caller must hold the RCU read lock.
4503 */
4504 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4505 {
4506 struct netdev_adjacent *upper;
4507
4508 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4509 struct netdev_adjacent, list);
4510 if (upper && likely(upper->master))
4511 return upper->dev;
4512 return NULL;
4513 }
4514 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4515
4516 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4517 struct net_device *adj_dev,
4518 bool neighbour, bool master,
4519 bool upper)
4520 {
4521 struct netdev_adjacent *adj;
4522
4523 adj = __netdev_find_adj(dev, adj_dev, upper);
4524
4525 if (adj) {
4526 BUG_ON(neighbour);
4527 adj->ref_nr++;
4528 return 0;
4529 }
4530
4531 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4532 if (!adj)
4533 return -ENOMEM;
4534
4535 adj->dev = adj_dev;
4536 adj->master = master;
4537 adj->neighbour = neighbour;
4538 adj->ref_nr = 1;
4539
4540 dev_hold(adj_dev);
4541 pr_debug("dev_hold for %s, because of %s link added from %s to %s\n",
4542 adj_dev->name, upper ? "upper" : "lower", dev->name,
4543 adj_dev->name);
4544
4545 if (!upper) {
4546 list_add_tail_rcu(&adj->list, &dev->lower_dev_list);
4547 return 0;
4548 }
4549
4550 /* Ensure that master upper link is always the first item in list. */
4551 if (master)
4552 list_add_rcu(&adj->list, &dev->upper_dev_list);
4553 else
4554 list_add_tail_rcu(&adj->list, &dev->upper_dev_list);
4555
4556 return 0;
4557 }
4558
4559 static inline int __netdev_upper_dev_insert(struct net_device *dev,
4560 struct net_device *udev,
4561 bool master, bool neighbour)
4562 {
4563 return __netdev_adjacent_dev_insert(dev, udev, neighbour, master,
4564 true);
4565 }
4566
4567 static inline int __netdev_lower_dev_insert(struct net_device *dev,
4568 struct net_device *ldev,
4569 bool neighbour)
4570 {
4571 return __netdev_adjacent_dev_insert(dev, ldev, neighbour, false,
4572 false);
4573 }
4574
4575 void __netdev_adjacent_dev_remove(struct net_device *dev,
4576 struct net_device *adj_dev, bool upper)
4577 {
4578 struct netdev_adjacent *adj;
4579
4580 if (upper)
4581 adj = __netdev_find_upper(dev, adj_dev);
4582 else
4583 adj = __netdev_find_lower(dev, adj_dev);
4584
4585 if (!adj)
4586 BUG();
4587
4588 if (adj->ref_nr > 1) {
4589 adj->ref_nr--;
4590 return;
4591 }
4592
4593 list_del_rcu(&adj->list);
4594 pr_debug("dev_put for %s, because of %s link removed from %s to %s\n",
4595 adj_dev->name, upper ? "upper" : "lower", dev->name,
4596 adj_dev->name);
4597 dev_put(adj_dev);
4598 kfree_rcu(adj, rcu);
4599 }
4600
4601 static inline void __netdev_upper_dev_remove(struct net_device *dev,
4602 struct net_device *udev)
4603 {
4604 return __netdev_adjacent_dev_remove(dev, udev, true);
4605 }
4606
4607 static inline void __netdev_lower_dev_remove(struct net_device *dev,
4608 struct net_device *ldev)
4609 {
4610 return __netdev_adjacent_dev_remove(dev, ldev, false);
4611 }
4612
4613 int __netdev_adjacent_dev_insert_link(struct net_device *dev,
4614 struct net_device *upper_dev,
4615 bool master, bool neighbour)
4616 {
4617 int ret;
4618
4619 ret = __netdev_upper_dev_insert(dev, upper_dev, master, neighbour);
4620 if (ret)
4621 return ret;
4622
4623 ret = __netdev_lower_dev_insert(upper_dev, dev, neighbour);
4624 if (ret) {
4625 __netdev_upper_dev_remove(dev, upper_dev);
4626 return ret;
4627 }
4628
4629 return 0;
4630 }
4631
4632 static inline int __netdev_adjacent_dev_link(struct net_device *dev,
4633 struct net_device *udev)
4634 {
4635 return __netdev_adjacent_dev_insert_link(dev, udev, false, false);
4636 }
4637
4638 static inline int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4639 struct net_device *udev,
4640 bool master)
4641 {
4642 return __netdev_adjacent_dev_insert_link(dev, udev, master, true);
4643 }
4644
4645 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4646 struct net_device *upper_dev)
4647 {
4648 __netdev_upper_dev_remove(dev, upper_dev);
4649 __netdev_lower_dev_remove(upper_dev, dev);
4650 }
4651
4652
4653 static int __netdev_upper_dev_link(struct net_device *dev,
4654 struct net_device *upper_dev, bool master)
4655 {
4656 struct netdev_adjacent *i, *j, *to_i, *to_j;
4657 int ret = 0;
4658
4659 ASSERT_RTNL();
4660
4661 if (dev == upper_dev)
4662 return -EBUSY;
4663
4664 /* To prevent loops, check if dev is not upper device to upper_dev. */
4665 if (__netdev_find_upper(upper_dev, dev))
4666 return -EBUSY;
4667
4668 if (__netdev_find_upper(dev, upper_dev))
4669 return -EEXIST;
4670
4671 if (master && netdev_master_upper_dev_get(dev))
4672 return -EBUSY;
4673
4674 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, master);
4675 if (ret)
4676 return ret;
4677
4678 /* Now that we linked these devs, make all the upper_dev's
4679 * upper_dev_list visible to every dev's lower_dev_list and vice
4680 * versa, and don't forget the devices itself. All of these
4681 * links are non-neighbours.
4682 */
4683 list_for_each_entry(i, &dev->lower_dev_list, list) {
4684 list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4685 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4686 if (ret)
4687 goto rollback_mesh;
4688 }
4689 }
4690
4691 /* add dev to every upper_dev's upper device */
4692 list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4693 ret = __netdev_adjacent_dev_link(dev, i->dev);
4694 if (ret)
4695 goto rollback_upper_mesh;
4696 }
4697
4698 /* add upper_dev to every dev's lower device */
4699 list_for_each_entry(i, &dev->lower_dev_list, list) {
4700 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4701 if (ret)
4702 goto rollback_lower_mesh;
4703 }
4704
4705 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4706 return 0;
4707
4708 rollback_lower_mesh:
4709 to_i = i;
4710 list_for_each_entry(i, &dev->lower_dev_list, list) {
4711 if (i == to_i)
4712 break;
4713 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4714 }
4715
4716 i = NULL;
4717
4718 rollback_upper_mesh:
4719 to_i = i;
4720 list_for_each_entry(i, &upper_dev->upper_dev_list, list) {
4721 if (i == to_i)
4722 break;
4723 __netdev_adjacent_dev_unlink(dev, i->dev);
4724 }
4725
4726 i = j = NULL;
4727
4728 rollback_mesh:
4729 to_i = i;
4730 to_j = j;
4731 list_for_each_entry(i, &dev->lower_dev_list, list) {
4732 list_for_each_entry(j, &upper_dev->upper_dev_list, list) {
4733 if (i == to_i && j == to_j)
4734 break;
4735 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4736 }
4737 if (i == to_i)
4738 break;
4739 }
4740
4741 __netdev_adjacent_dev_unlink(dev, upper_dev);
4742
4743 return ret;
4744 }
4745
4746 /**
4747 * netdev_upper_dev_link - Add a link to the upper device
4748 * @dev: device
4749 * @upper_dev: new upper device
4750 *
4751 * Adds a link to device which is upper to this one. The caller must hold
4752 * the RTNL lock. On a failure a negative errno code is returned.
4753 * On success the reference counts are adjusted and the function
4754 * returns zero.
4755 */
4756 int netdev_upper_dev_link(struct net_device *dev,
4757 struct net_device *upper_dev)
4758 {
4759 return __netdev_upper_dev_link(dev, upper_dev, false);
4760 }
4761 EXPORT_SYMBOL(netdev_upper_dev_link);
4762
4763 /**
4764 * netdev_master_upper_dev_link - Add a master link to the upper device
4765 * @dev: device
4766 * @upper_dev: new upper device
4767 *
4768 * Adds a link to device which is upper to this one. In this case, only
4769 * one master upper device can be linked, although other non-master devices
4770 * might be linked as well. The caller must hold the RTNL lock.
4771 * On a failure a negative errno code is returned. On success the reference
4772 * counts are adjusted and the function returns zero.
4773 */
4774 int netdev_master_upper_dev_link(struct net_device *dev,
4775 struct net_device *upper_dev)
4776 {
4777 return __netdev_upper_dev_link(dev, upper_dev, true);
4778 }
4779 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4780
4781 /**
4782 * netdev_upper_dev_unlink - Removes a link to upper device
4783 * @dev: device
4784 * @upper_dev: new upper device
4785 *
4786 * Removes a link to device which is upper to this one. The caller must hold
4787 * the RTNL lock.
4788 */
4789 void netdev_upper_dev_unlink(struct net_device *dev,
4790 struct net_device *upper_dev)
4791 {
4792 struct netdev_adjacent *i, *j;
4793 ASSERT_RTNL();
4794
4795 __netdev_adjacent_dev_unlink(dev, upper_dev);
4796
4797 /* Here is the tricky part. We must remove all dev's lower
4798 * devices from all upper_dev's upper devices and vice
4799 * versa, to maintain the graph relationship.
4800 */
4801 list_for_each_entry(i, &dev->lower_dev_list, list)
4802 list_for_each_entry(j, &upper_dev->upper_dev_list, list)
4803 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4804
4805 /* remove also the devices itself from lower/upper device
4806 * list
4807 */
4808 list_for_each_entry(i, &dev->lower_dev_list, list)
4809 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4810
4811 list_for_each_entry(i, &upper_dev->upper_dev_list, list)
4812 __netdev_adjacent_dev_unlink(dev, i->dev);
4813
4814 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4815 }
4816 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4817
4818 static void dev_change_rx_flags(struct net_device *dev, int flags)
4819 {
4820 const struct net_device_ops *ops = dev->netdev_ops;
4821
4822 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4823 ops->ndo_change_rx_flags(dev, flags);
4824 }
4825
4826 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4827 {
4828 unsigned int old_flags = dev->flags;
4829 kuid_t uid;
4830 kgid_t gid;
4831
4832 ASSERT_RTNL();
4833
4834 dev->flags |= IFF_PROMISC;
4835 dev->promiscuity += inc;
4836 if (dev->promiscuity == 0) {
4837 /*
4838 * Avoid overflow.
4839 * If inc causes overflow, untouch promisc and return error.
4840 */
4841 if (inc < 0)
4842 dev->flags &= ~IFF_PROMISC;
4843 else {
4844 dev->promiscuity -= inc;
4845 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4846 dev->name);
4847 return -EOVERFLOW;
4848 }
4849 }
4850 if (dev->flags != old_flags) {
4851 pr_info("device %s %s promiscuous mode\n",
4852 dev->name,
4853 dev->flags & IFF_PROMISC ? "entered" : "left");
4854 if (audit_enabled) {
4855 current_uid_gid(&uid, &gid);
4856 audit_log(current->audit_context, GFP_ATOMIC,
4857 AUDIT_ANOM_PROMISCUOUS,
4858 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4859 dev->name, (dev->flags & IFF_PROMISC),
4860 (old_flags & IFF_PROMISC),
4861 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4862 from_kuid(&init_user_ns, uid),
4863 from_kgid(&init_user_ns, gid),
4864 audit_get_sessionid(current));
4865 }
4866
4867 dev_change_rx_flags(dev, IFF_PROMISC);
4868 }
4869 return 0;
4870 }
4871
4872 /**
4873 * dev_set_promiscuity - update promiscuity count on a device
4874 * @dev: device
4875 * @inc: modifier
4876 *
4877 * Add or remove promiscuity from a device. While the count in the device
4878 * remains above zero the interface remains promiscuous. Once it hits zero
4879 * the device reverts back to normal filtering operation. A negative inc
4880 * value is used to drop promiscuity on the device.
4881 * Return 0 if successful or a negative errno code on error.
4882 */
4883 int dev_set_promiscuity(struct net_device *dev, int inc)
4884 {
4885 unsigned int old_flags = dev->flags;
4886 int err;
4887
4888 err = __dev_set_promiscuity(dev, inc);
4889 if (err < 0)
4890 return err;
4891 if (dev->flags != old_flags)
4892 dev_set_rx_mode(dev);
4893 return err;
4894 }
4895 EXPORT_SYMBOL(dev_set_promiscuity);
4896
4897 /**
4898 * dev_set_allmulti - update allmulti count on a device
4899 * @dev: device
4900 * @inc: modifier
4901 *
4902 * Add or remove reception of all multicast frames to a device. While the
4903 * count in the device remains above zero the interface remains listening
4904 * to all interfaces. Once it hits zero the device reverts back to normal
4905 * filtering operation. A negative @inc value is used to drop the counter
4906 * when releasing a resource needing all multicasts.
4907 * Return 0 if successful or a negative errno code on error.
4908 */
4909
4910 int dev_set_allmulti(struct net_device *dev, int inc)
4911 {
4912 unsigned int old_flags = dev->flags;
4913
4914 ASSERT_RTNL();
4915
4916 dev->flags |= IFF_ALLMULTI;
4917 dev->allmulti += inc;
4918 if (dev->allmulti == 0) {
4919 /*
4920 * Avoid overflow.
4921 * If inc causes overflow, untouch allmulti and return error.
4922 */
4923 if (inc < 0)
4924 dev->flags &= ~IFF_ALLMULTI;
4925 else {
4926 dev->allmulti -= inc;
4927 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4928 dev->name);
4929 return -EOVERFLOW;
4930 }
4931 }
4932 if (dev->flags ^ old_flags) {
4933 dev_change_rx_flags(dev, IFF_ALLMULTI);
4934 dev_set_rx_mode(dev);
4935 }
4936 return 0;
4937 }
4938 EXPORT_SYMBOL(dev_set_allmulti);
4939
4940 /*
4941 * Upload unicast and multicast address lists to device and
4942 * configure RX filtering. When the device doesn't support unicast
4943 * filtering it is put in promiscuous mode while unicast addresses
4944 * are present.
4945 */
4946 void __dev_set_rx_mode(struct net_device *dev)
4947 {
4948 const struct net_device_ops *ops = dev->netdev_ops;
4949
4950 /* dev_open will call this function so the list will stay sane. */
4951 if (!(dev->flags&IFF_UP))
4952 return;
4953
4954 if (!netif_device_present(dev))
4955 return;
4956
4957 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4958 /* Unicast addresses changes may only happen under the rtnl,
4959 * therefore calling __dev_set_promiscuity here is safe.
4960 */
4961 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4962 __dev_set_promiscuity(dev, 1);
4963 dev->uc_promisc = true;
4964 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4965 __dev_set_promiscuity(dev, -1);
4966 dev->uc_promisc = false;
4967 }
4968 }
4969
4970 if (ops->ndo_set_rx_mode)
4971 ops->ndo_set_rx_mode(dev);
4972 }
4973
4974 void dev_set_rx_mode(struct net_device *dev)
4975 {
4976 netif_addr_lock_bh(dev);
4977 __dev_set_rx_mode(dev);
4978 netif_addr_unlock_bh(dev);
4979 }
4980
4981 /**
4982 * dev_get_flags - get flags reported to userspace
4983 * @dev: device
4984 *
4985 * Get the combination of flag bits exported through APIs to userspace.
4986 */
4987 unsigned int dev_get_flags(const struct net_device *dev)
4988 {
4989 unsigned int flags;
4990
4991 flags = (dev->flags & ~(IFF_PROMISC |
4992 IFF_ALLMULTI |
4993 IFF_RUNNING |
4994 IFF_LOWER_UP |
4995 IFF_DORMANT)) |
4996 (dev->gflags & (IFF_PROMISC |
4997 IFF_ALLMULTI));
4998
4999 if (netif_running(dev)) {
5000 if (netif_oper_up(dev))
5001 flags |= IFF_RUNNING;
5002 if (netif_carrier_ok(dev))
5003 flags |= IFF_LOWER_UP;
5004 if (netif_dormant(dev))
5005 flags |= IFF_DORMANT;
5006 }
5007
5008 return flags;
5009 }
5010 EXPORT_SYMBOL(dev_get_flags);
5011
5012 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5013 {
5014 unsigned int old_flags = dev->flags;
5015 int ret;
5016
5017 ASSERT_RTNL();
5018
5019 /*
5020 * Set the flags on our device.
5021 */
5022
5023 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5024 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5025 IFF_AUTOMEDIA)) |
5026 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5027 IFF_ALLMULTI));
5028
5029 /*
5030 * Load in the correct multicast list now the flags have changed.
5031 */
5032
5033 if ((old_flags ^ flags) & IFF_MULTICAST)
5034 dev_change_rx_flags(dev, IFF_MULTICAST);
5035
5036 dev_set_rx_mode(dev);
5037
5038 /*
5039 * Have we downed the interface. We handle IFF_UP ourselves
5040 * according to user attempts to set it, rather than blindly
5041 * setting it.
5042 */
5043
5044 ret = 0;
5045 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5046 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5047
5048 if (!ret)
5049 dev_set_rx_mode(dev);
5050 }
5051
5052 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5053 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5054
5055 dev->gflags ^= IFF_PROMISC;
5056 dev_set_promiscuity(dev, inc);
5057 }
5058
5059 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5060 is important. Some (broken) drivers set IFF_PROMISC, when
5061 IFF_ALLMULTI is requested not asking us and not reporting.
5062 */
5063 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5064 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5065
5066 dev->gflags ^= IFF_ALLMULTI;
5067 dev_set_allmulti(dev, inc);
5068 }
5069
5070 return ret;
5071 }
5072
5073 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
5074 {
5075 unsigned int changes = dev->flags ^ old_flags;
5076
5077 if (changes & IFF_UP) {
5078 if (dev->flags & IFF_UP)
5079 call_netdevice_notifiers(NETDEV_UP, dev);
5080 else
5081 call_netdevice_notifiers(NETDEV_DOWN, dev);
5082 }
5083
5084 if (dev->flags & IFF_UP &&
5085 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5086 struct netdev_notifier_change_info change_info;
5087
5088 change_info.flags_changed = changes;
5089 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5090 &change_info.info);
5091 }
5092 }
5093
5094 /**
5095 * dev_change_flags - change device settings
5096 * @dev: device
5097 * @flags: device state flags
5098 *
5099 * Change settings on device based state flags. The flags are
5100 * in the userspace exported format.
5101 */
5102 int dev_change_flags(struct net_device *dev, unsigned int flags)
5103 {
5104 int ret;
5105 unsigned int changes, old_flags = dev->flags;
5106
5107 ret = __dev_change_flags(dev, flags);
5108 if (ret < 0)
5109 return ret;
5110
5111 changes = old_flags ^ dev->flags;
5112 if (changes)
5113 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
5114
5115 __dev_notify_flags(dev, old_flags);
5116 return ret;
5117 }
5118 EXPORT_SYMBOL(dev_change_flags);
5119
5120 /**
5121 * dev_set_mtu - Change maximum transfer unit
5122 * @dev: device
5123 * @new_mtu: new transfer unit
5124 *
5125 * Change the maximum transfer size of the network device.
5126 */
5127 int dev_set_mtu(struct net_device *dev, int new_mtu)
5128 {
5129 const struct net_device_ops *ops = dev->netdev_ops;
5130 int err;
5131
5132 if (new_mtu == dev->mtu)
5133 return 0;
5134
5135 /* MTU must be positive. */
5136 if (new_mtu < 0)
5137 return -EINVAL;
5138
5139 if (!netif_device_present(dev))
5140 return -ENODEV;
5141
5142 err = 0;
5143 if (ops->ndo_change_mtu)
5144 err = ops->ndo_change_mtu(dev, new_mtu);
5145 else
5146 dev->mtu = new_mtu;
5147
5148 if (!err)
5149 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5150 return err;
5151 }
5152 EXPORT_SYMBOL(dev_set_mtu);
5153
5154 /**
5155 * dev_set_group - Change group this device belongs to
5156 * @dev: device
5157 * @new_group: group this device should belong to
5158 */
5159 void dev_set_group(struct net_device *dev, int new_group)
5160 {
5161 dev->group = new_group;
5162 }
5163 EXPORT_SYMBOL(dev_set_group);
5164
5165 /**
5166 * dev_set_mac_address - Change Media Access Control Address
5167 * @dev: device
5168 * @sa: new address
5169 *
5170 * Change the hardware (MAC) address of the device
5171 */
5172 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5173 {
5174 const struct net_device_ops *ops = dev->netdev_ops;
5175 int err;
5176
5177 if (!ops->ndo_set_mac_address)
5178 return -EOPNOTSUPP;
5179 if (sa->sa_family != dev->type)
5180 return -EINVAL;
5181 if (!netif_device_present(dev))
5182 return -ENODEV;
5183 err = ops->ndo_set_mac_address(dev, sa);
5184 if (err)
5185 return err;
5186 dev->addr_assign_type = NET_ADDR_SET;
5187 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5188 add_device_randomness(dev->dev_addr, dev->addr_len);
5189 return 0;
5190 }
5191 EXPORT_SYMBOL(dev_set_mac_address);
5192
5193 /**
5194 * dev_change_carrier - Change device carrier
5195 * @dev: device
5196 * @new_carrier: new value
5197 *
5198 * Change device carrier
5199 */
5200 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5201 {
5202 const struct net_device_ops *ops = dev->netdev_ops;
5203
5204 if (!ops->ndo_change_carrier)
5205 return -EOPNOTSUPP;
5206 if (!netif_device_present(dev))
5207 return -ENODEV;
5208 return ops->ndo_change_carrier(dev, new_carrier);
5209 }
5210 EXPORT_SYMBOL(dev_change_carrier);
5211
5212 /**
5213 * dev_get_phys_port_id - Get device physical port ID
5214 * @dev: device
5215 * @ppid: port ID
5216 *
5217 * Get device physical port ID
5218 */
5219 int dev_get_phys_port_id(struct net_device *dev,
5220 struct netdev_phys_port_id *ppid)
5221 {
5222 const struct net_device_ops *ops = dev->netdev_ops;
5223
5224 if (!ops->ndo_get_phys_port_id)
5225 return -EOPNOTSUPP;
5226 return ops->ndo_get_phys_port_id(dev, ppid);
5227 }
5228 EXPORT_SYMBOL(dev_get_phys_port_id);
5229
5230 /**
5231 * dev_new_index - allocate an ifindex
5232 * @net: the applicable net namespace
5233 *
5234 * Returns a suitable unique value for a new device interface
5235 * number. The caller must hold the rtnl semaphore or the
5236 * dev_base_lock to be sure it remains unique.
5237 */
5238 static int dev_new_index(struct net *net)
5239 {
5240 int ifindex = net->ifindex;
5241 for (;;) {
5242 if (++ifindex <= 0)
5243 ifindex = 1;
5244 if (!__dev_get_by_index(net, ifindex))
5245 return net->ifindex = ifindex;
5246 }
5247 }
5248
5249 /* Delayed registration/unregisteration */
5250 static LIST_HEAD(net_todo_list);
5251 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5252
5253 static void net_set_todo(struct net_device *dev)
5254 {
5255 list_add_tail(&dev->todo_list, &net_todo_list);
5256 dev_net(dev)->dev_unreg_count++;
5257 }
5258
5259 static void rollback_registered_many(struct list_head *head)
5260 {
5261 struct net_device *dev, *tmp;
5262
5263 BUG_ON(dev_boot_phase);
5264 ASSERT_RTNL();
5265
5266 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5267 /* Some devices call without registering
5268 * for initialization unwind. Remove those
5269 * devices and proceed with the remaining.
5270 */
5271 if (dev->reg_state == NETREG_UNINITIALIZED) {
5272 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5273 dev->name, dev);
5274
5275 WARN_ON(1);
5276 list_del(&dev->unreg_list);
5277 continue;
5278 }
5279 dev->dismantle = true;
5280 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5281 }
5282
5283 /* If device is running, close it first. */
5284 dev_close_many(head);
5285
5286 list_for_each_entry(dev, head, unreg_list) {
5287 /* And unlink it from device chain. */
5288 unlist_netdevice(dev);
5289
5290 dev->reg_state = NETREG_UNREGISTERING;
5291 }
5292
5293 synchronize_net();
5294
5295 list_for_each_entry(dev, head, unreg_list) {
5296 /* Shutdown queueing discipline. */
5297 dev_shutdown(dev);
5298
5299
5300 /* Notify protocols, that we are about to destroy
5301 this device. They should clean all the things.
5302 */
5303 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5304
5305 if (!dev->rtnl_link_ops ||
5306 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5307 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5308
5309 /*
5310 * Flush the unicast and multicast chains
5311 */
5312 dev_uc_flush(dev);
5313 dev_mc_flush(dev);
5314
5315 if (dev->netdev_ops->ndo_uninit)
5316 dev->netdev_ops->ndo_uninit(dev);
5317
5318 /* Notifier chain MUST detach us all upper devices. */
5319 WARN_ON(netdev_has_any_upper_dev(dev));
5320
5321 /* Remove entries from kobject tree */
5322 netdev_unregister_kobject(dev);
5323 #ifdef CONFIG_XPS
5324 /* Remove XPS queueing entries */
5325 netif_reset_xps_queues_gt(dev, 0);
5326 #endif
5327 }
5328
5329 synchronize_net();
5330
5331 list_for_each_entry(dev, head, unreg_list)
5332 dev_put(dev);
5333 }
5334
5335 static void rollback_registered(struct net_device *dev)
5336 {
5337 LIST_HEAD(single);
5338
5339 list_add(&dev->unreg_list, &single);
5340 rollback_registered_many(&single);
5341 list_del(&single);
5342 }
5343
5344 static netdev_features_t netdev_fix_features(struct net_device *dev,
5345 netdev_features_t features)
5346 {
5347 /* Fix illegal checksum combinations */
5348 if ((features & NETIF_F_HW_CSUM) &&
5349 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5350 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5351 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5352 }
5353
5354 /* TSO requires that SG is present as well. */
5355 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5356 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5357 features &= ~NETIF_F_ALL_TSO;
5358 }
5359
5360 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5361 !(features & NETIF_F_IP_CSUM)) {
5362 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5363 features &= ~NETIF_F_TSO;
5364 features &= ~NETIF_F_TSO_ECN;
5365 }
5366
5367 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5368 !(features & NETIF_F_IPV6_CSUM)) {
5369 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5370 features &= ~NETIF_F_TSO6;
5371 }
5372
5373 /* TSO ECN requires that TSO is present as well. */
5374 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5375 features &= ~NETIF_F_TSO_ECN;
5376
5377 /* Software GSO depends on SG. */
5378 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5379 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5380 features &= ~NETIF_F_GSO;
5381 }
5382
5383 /* UFO needs SG and checksumming */
5384 if (features & NETIF_F_UFO) {
5385 /* maybe split UFO into V4 and V6? */
5386 if (!((features & NETIF_F_GEN_CSUM) ||
5387 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5388 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5389 netdev_dbg(dev,
5390 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5391 features &= ~NETIF_F_UFO;
5392 }
5393
5394 if (!(features & NETIF_F_SG)) {
5395 netdev_dbg(dev,
5396 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5397 features &= ~NETIF_F_UFO;
5398 }
5399 }
5400
5401 return features;
5402 }
5403
5404 int __netdev_update_features(struct net_device *dev)
5405 {
5406 netdev_features_t features;
5407 int err = 0;
5408
5409 ASSERT_RTNL();
5410
5411 features = netdev_get_wanted_features(dev);
5412
5413 if (dev->netdev_ops->ndo_fix_features)
5414 features = dev->netdev_ops->ndo_fix_features(dev, features);
5415
5416 /* driver might be less strict about feature dependencies */
5417 features = netdev_fix_features(dev, features);
5418
5419 if (dev->features == features)
5420 return 0;
5421
5422 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5423 &dev->features, &features);
5424
5425 if (dev->netdev_ops->ndo_set_features)
5426 err = dev->netdev_ops->ndo_set_features(dev, features);
5427
5428 if (unlikely(err < 0)) {
5429 netdev_err(dev,
5430 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5431 err, &features, &dev->features);
5432 return -1;
5433 }
5434
5435 if (!err)
5436 dev->features = features;
5437
5438 return 1;
5439 }
5440
5441 /**
5442 * netdev_update_features - recalculate device features
5443 * @dev: the device to check
5444 *
5445 * Recalculate dev->features set and send notifications if it
5446 * has changed. Should be called after driver or hardware dependent
5447 * conditions might have changed that influence the features.
5448 */
5449 void netdev_update_features(struct net_device *dev)
5450 {
5451 if (__netdev_update_features(dev))
5452 netdev_features_change(dev);
5453 }
5454 EXPORT_SYMBOL(netdev_update_features);
5455
5456 /**
5457 * netdev_change_features - recalculate device features
5458 * @dev: the device to check
5459 *
5460 * Recalculate dev->features set and send notifications even
5461 * if they have not changed. Should be called instead of
5462 * netdev_update_features() if also dev->vlan_features might
5463 * have changed to allow the changes to be propagated to stacked
5464 * VLAN devices.
5465 */
5466 void netdev_change_features(struct net_device *dev)
5467 {
5468 __netdev_update_features(dev);
5469 netdev_features_change(dev);
5470 }
5471 EXPORT_SYMBOL(netdev_change_features);
5472
5473 /**
5474 * netif_stacked_transfer_operstate - transfer operstate
5475 * @rootdev: the root or lower level device to transfer state from
5476 * @dev: the device to transfer operstate to
5477 *
5478 * Transfer operational state from root to device. This is normally
5479 * called when a stacking relationship exists between the root
5480 * device and the device(a leaf device).
5481 */
5482 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5483 struct net_device *dev)
5484 {
5485 if (rootdev->operstate == IF_OPER_DORMANT)
5486 netif_dormant_on(dev);
5487 else
5488 netif_dormant_off(dev);
5489
5490 if (netif_carrier_ok(rootdev)) {
5491 if (!netif_carrier_ok(dev))
5492 netif_carrier_on(dev);
5493 } else {
5494 if (netif_carrier_ok(dev))
5495 netif_carrier_off(dev);
5496 }
5497 }
5498 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5499
5500 #ifdef CONFIG_RPS
5501 static int netif_alloc_rx_queues(struct net_device *dev)
5502 {
5503 unsigned int i, count = dev->num_rx_queues;
5504 struct netdev_rx_queue *rx;
5505
5506 BUG_ON(count < 1);
5507
5508 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5509 if (!rx)
5510 return -ENOMEM;
5511
5512 dev->_rx = rx;
5513
5514 for (i = 0; i < count; i++)
5515 rx[i].dev = dev;
5516 return 0;
5517 }
5518 #endif
5519
5520 static void netdev_init_one_queue(struct net_device *dev,
5521 struct netdev_queue *queue, void *_unused)
5522 {
5523 /* Initialize queue lock */
5524 spin_lock_init(&queue->_xmit_lock);
5525 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5526 queue->xmit_lock_owner = -1;
5527 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5528 queue->dev = dev;
5529 #ifdef CONFIG_BQL
5530 dql_init(&queue->dql, HZ);
5531 #endif
5532 }
5533
5534 static void netif_free_tx_queues(struct net_device *dev)
5535 {
5536 if (is_vmalloc_addr(dev->_tx))
5537 vfree(dev->_tx);
5538 else
5539 kfree(dev->_tx);
5540 }
5541
5542 static int netif_alloc_netdev_queues(struct net_device *dev)
5543 {
5544 unsigned int count = dev->num_tx_queues;
5545 struct netdev_queue *tx;
5546 size_t sz = count * sizeof(*tx);
5547
5548 BUG_ON(count < 1 || count > 0xffff);
5549
5550 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5551 if (!tx) {
5552 tx = vzalloc(sz);
5553 if (!tx)
5554 return -ENOMEM;
5555 }
5556 dev->_tx = tx;
5557
5558 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5559 spin_lock_init(&dev->tx_global_lock);
5560
5561 return 0;
5562 }
5563
5564 /**
5565 * register_netdevice - register a network device
5566 * @dev: device to register
5567 *
5568 * Take a completed network device structure and add it to the kernel
5569 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5570 * chain. 0 is returned on success. A negative errno code is returned
5571 * on a failure to set up the device, or if the name is a duplicate.
5572 *
5573 * Callers must hold the rtnl semaphore. You may want
5574 * register_netdev() instead of this.
5575 *
5576 * BUGS:
5577 * The locking appears insufficient to guarantee two parallel registers
5578 * will not get the same name.
5579 */
5580
5581 int register_netdevice(struct net_device *dev)
5582 {
5583 int ret;
5584 struct net *net = dev_net(dev);
5585
5586 BUG_ON(dev_boot_phase);
5587 ASSERT_RTNL();
5588
5589 might_sleep();
5590
5591 /* When net_device's are persistent, this will be fatal. */
5592 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5593 BUG_ON(!net);
5594
5595 spin_lock_init(&dev->addr_list_lock);
5596 netdev_set_addr_lockdep_class(dev);
5597
5598 dev->iflink = -1;
5599
5600 ret = dev_get_valid_name(net, dev, dev->name);
5601 if (ret < 0)
5602 goto out;
5603
5604 /* Init, if this function is available */
5605 if (dev->netdev_ops->ndo_init) {
5606 ret = dev->netdev_ops->ndo_init(dev);
5607 if (ret) {
5608 if (ret > 0)
5609 ret = -EIO;
5610 goto out;
5611 }
5612 }
5613
5614 if (((dev->hw_features | dev->features) &
5615 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5616 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5617 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5618 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5619 ret = -EINVAL;
5620 goto err_uninit;
5621 }
5622
5623 ret = -EBUSY;
5624 if (!dev->ifindex)
5625 dev->ifindex = dev_new_index(net);
5626 else if (__dev_get_by_index(net, dev->ifindex))
5627 goto err_uninit;
5628
5629 if (dev->iflink == -1)
5630 dev->iflink = dev->ifindex;
5631
5632 /* Transfer changeable features to wanted_features and enable
5633 * software offloads (GSO and GRO).
5634 */
5635 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5636 dev->features |= NETIF_F_SOFT_FEATURES;
5637 dev->wanted_features = dev->features & dev->hw_features;
5638
5639 /* Turn on no cache copy if HW is doing checksum */
5640 if (!(dev->flags & IFF_LOOPBACK)) {
5641 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5642 if (dev->features & NETIF_F_ALL_CSUM) {
5643 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5644 dev->features |= NETIF_F_NOCACHE_COPY;
5645 }
5646 }
5647
5648 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5649 */
5650 dev->vlan_features |= NETIF_F_HIGHDMA;
5651
5652 /* Make NETIF_F_SG inheritable to tunnel devices.
5653 */
5654 dev->hw_enc_features |= NETIF_F_SG;
5655
5656 /* Make NETIF_F_SG inheritable to MPLS.
5657 */
5658 dev->mpls_features |= NETIF_F_SG;
5659
5660 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5661 ret = notifier_to_errno(ret);
5662 if (ret)
5663 goto err_uninit;
5664
5665 ret = netdev_register_kobject(dev);
5666 if (ret)
5667 goto err_uninit;
5668 dev->reg_state = NETREG_REGISTERED;
5669
5670 __netdev_update_features(dev);
5671
5672 /*
5673 * Default initial state at registry is that the
5674 * device is present.
5675 */
5676
5677 set_bit(__LINK_STATE_PRESENT, &dev->state);
5678
5679 linkwatch_init_dev(dev);
5680
5681 dev_init_scheduler(dev);
5682 dev_hold(dev);
5683 list_netdevice(dev);
5684 add_device_randomness(dev->dev_addr, dev->addr_len);
5685
5686 /* If the device has permanent device address, driver should
5687 * set dev_addr and also addr_assign_type should be set to
5688 * NET_ADDR_PERM (default value).
5689 */
5690 if (dev->addr_assign_type == NET_ADDR_PERM)
5691 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5692
5693 /* Notify protocols, that a new device appeared. */
5694 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5695 ret = notifier_to_errno(ret);
5696 if (ret) {
5697 rollback_registered(dev);
5698 dev->reg_state = NETREG_UNREGISTERED;
5699 }
5700 /*
5701 * Prevent userspace races by waiting until the network
5702 * device is fully setup before sending notifications.
5703 */
5704 if (!dev->rtnl_link_ops ||
5705 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5706 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5707
5708 out:
5709 return ret;
5710
5711 err_uninit:
5712 if (dev->netdev_ops->ndo_uninit)
5713 dev->netdev_ops->ndo_uninit(dev);
5714 goto out;
5715 }
5716 EXPORT_SYMBOL(register_netdevice);
5717
5718 /**
5719 * init_dummy_netdev - init a dummy network device for NAPI
5720 * @dev: device to init
5721 *
5722 * This takes a network device structure and initialize the minimum
5723 * amount of fields so it can be used to schedule NAPI polls without
5724 * registering a full blown interface. This is to be used by drivers
5725 * that need to tie several hardware interfaces to a single NAPI
5726 * poll scheduler due to HW limitations.
5727 */
5728 int init_dummy_netdev(struct net_device *dev)
5729 {
5730 /* Clear everything. Note we don't initialize spinlocks
5731 * are they aren't supposed to be taken by any of the
5732 * NAPI code and this dummy netdev is supposed to be
5733 * only ever used for NAPI polls
5734 */
5735 memset(dev, 0, sizeof(struct net_device));
5736
5737 /* make sure we BUG if trying to hit standard
5738 * register/unregister code path
5739 */
5740 dev->reg_state = NETREG_DUMMY;
5741
5742 /* NAPI wants this */
5743 INIT_LIST_HEAD(&dev->napi_list);
5744
5745 /* a dummy interface is started by default */
5746 set_bit(__LINK_STATE_PRESENT, &dev->state);
5747 set_bit(__LINK_STATE_START, &dev->state);
5748
5749 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5750 * because users of this 'device' dont need to change
5751 * its refcount.
5752 */
5753
5754 return 0;
5755 }
5756 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5757
5758
5759 /**
5760 * register_netdev - register a network device
5761 * @dev: device to register
5762 *
5763 * Take a completed network device structure and add it to the kernel
5764 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5765 * chain. 0 is returned on success. A negative errno code is returned
5766 * on a failure to set up the device, or if the name is a duplicate.
5767 *
5768 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5769 * and expands the device name if you passed a format string to
5770 * alloc_netdev.
5771 */
5772 int register_netdev(struct net_device *dev)
5773 {
5774 int err;
5775
5776 rtnl_lock();
5777 err = register_netdevice(dev);
5778 rtnl_unlock();
5779 return err;
5780 }
5781 EXPORT_SYMBOL(register_netdev);
5782
5783 int netdev_refcnt_read(const struct net_device *dev)
5784 {
5785 int i, refcnt = 0;
5786
5787 for_each_possible_cpu(i)
5788 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5789 return refcnt;
5790 }
5791 EXPORT_SYMBOL(netdev_refcnt_read);
5792
5793 /**
5794 * netdev_wait_allrefs - wait until all references are gone.
5795 * @dev: target net_device
5796 *
5797 * This is called when unregistering network devices.
5798 *
5799 * Any protocol or device that holds a reference should register
5800 * for netdevice notification, and cleanup and put back the
5801 * reference if they receive an UNREGISTER event.
5802 * We can get stuck here if buggy protocols don't correctly
5803 * call dev_put.
5804 */
5805 static void netdev_wait_allrefs(struct net_device *dev)
5806 {
5807 unsigned long rebroadcast_time, warning_time;
5808 int refcnt;
5809
5810 linkwatch_forget_dev(dev);
5811
5812 rebroadcast_time = warning_time = jiffies;
5813 refcnt = netdev_refcnt_read(dev);
5814
5815 while (refcnt != 0) {
5816 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5817 rtnl_lock();
5818
5819 /* Rebroadcast unregister notification */
5820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5821
5822 __rtnl_unlock();
5823 rcu_barrier();
5824 rtnl_lock();
5825
5826 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5827 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5828 &dev->state)) {
5829 /* We must not have linkwatch events
5830 * pending on unregister. If this
5831 * happens, we simply run the queue
5832 * unscheduled, resulting in a noop
5833 * for this device.
5834 */
5835 linkwatch_run_queue();
5836 }
5837
5838 __rtnl_unlock();
5839
5840 rebroadcast_time = jiffies;
5841 }
5842
5843 msleep(250);
5844
5845 refcnt = netdev_refcnt_read(dev);
5846
5847 if (time_after(jiffies, warning_time + 10 * HZ)) {
5848 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5849 dev->name, refcnt);
5850 warning_time = jiffies;
5851 }
5852 }
5853 }
5854
5855 /* The sequence is:
5856 *
5857 * rtnl_lock();
5858 * ...
5859 * register_netdevice(x1);
5860 * register_netdevice(x2);
5861 * ...
5862 * unregister_netdevice(y1);
5863 * unregister_netdevice(y2);
5864 * ...
5865 * rtnl_unlock();
5866 * free_netdev(y1);
5867 * free_netdev(y2);
5868 *
5869 * We are invoked by rtnl_unlock().
5870 * This allows us to deal with problems:
5871 * 1) We can delete sysfs objects which invoke hotplug
5872 * without deadlocking with linkwatch via keventd.
5873 * 2) Since we run with the RTNL semaphore not held, we can sleep
5874 * safely in order to wait for the netdev refcnt to drop to zero.
5875 *
5876 * We must not return until all unregister events added during
5877 * the interval the lock was held have been completed.
5878 */
5879 void netdev_run_todo(void)
5880 {
5881 struct list_head list;
5882
5883 /* Snapshot list, allow later requests */
5884 list_replace_init(&net_todo_list, &list);
5885
5886 __rtnl_unlock();
5887
5888
5889 /* Wait for rcu callbacks to finish before next phase */
5890 if (!list_empty(&list))
5891 rcu_barrier();
5892
5893 while (!list_empty(&list)) {
5894 struct net_device *dev
5895 = list_first_entry(&list, struct net_device, todo_list);
5896 list_del(&dev->todo_list);
5897
5898 rtnl_lock();
5899 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5900 __rtnl_unlock();
5901
5902 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5903 pr_err("network todo '%s' but state %d\n",
5904 dev->name, dev->reg_state);
5905 dump_stack();
5906 continue;
5907 }
5908
5909 dev->reg_state = NETREG_UNREGISTERED;
5910
5911 on_each_cpu(flush_backlog, dev, 1);
5912
5913 netdev_wait_allrefs(dev);
5914
5915 /* paranoia */
5916 BUG_ON(netdev_refcnt_read(dev));
5917 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5918 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5919 WARN_ON(dev->dn_ptr);
5920
5921 if (dev->destructor)
5922 dev->destructor(dev);
5923
5924 /* Report a network device has been unregistered */
5925 rtnl_lock();
5926 dev_net(dev)->dev_unreg_count--;
5927 __rtnl_unlock();
5928 wake_up(&netdev_unregistering_wq);
5929
5930 /* Free network device */
5931 kobject_put(&dev->dev.kobj);
5932 }
5933 }
5934
5935 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5936 * fields in the same order, with only the type differing.
5937 */
5938 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5939 const struct net_device_stats *netdev_stats)
5940 {
5941 #if BITS_PER_LONG == 64
5942 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5943 memcpy(stats64, netdev_stats, sizeof(*stats64));
5944 #else
5945 size_t i, n = sizeof(*stats64) / sizeof(u64);
5946 const unsigned long *src = (const unsigned long *)netdev_stats;
5947 u64 *dst = (u64 *)stats64;
5948
5949 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5950 sizeof(*stats64) / sizeof(u64));
5951 for (i = 0; i < n; i++)
5952 dst[i] = src[i];
5953 #endif
5954 }
5955 EXPORT_SYMBOL(netdev_stats_to_stats64);
5956
5957 /**
5958 * dev_get_stats - get network device statistics
5959 * @dev: device to get statistics from
5960 * @storage: place to store stats
5961 *
5962 * Get network statistics from device. Return @storage.
5963 * The device driver may provide its own method by setting
5964 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5965 * otherwise the internal statistics structure is used.
5966 */
5967 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5968 struct rtnl_link_stats64 *storage)
5969 {
5970 const struct net_device_ops *ops = dev->netdev_ops;
5971
5972 if (ops->ndo_get_stats64) {
5973 memset(storage, 0, sizeof(*storage));
5974 ops->ndo_get_stats64(dev, storage);
5975 } else if (ops->ndo_get_stats) {
5976 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5977 } else {
5978 netdev_stats_to_stats64(storage, &dev->stats);
5979 }
5980 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5981 return storage;
5982 }
5983 EXPORT_SYMBOL(dev_get_stats);
5984
5985 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5986 {
5987 struct netdev_queue *queue = dev_ingress_queue(dev);
5988
5989 #ifdef CONFIG_NET_CLS_ACT
5990 if (queue)
5991 return queue;
5992 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5993 if (!queue)
5994 return NULL;
5995 netdev_init_one_queue(dev, queue, NULL);
5996 queue->qdisc = &noop_qdisc;
5997 queue->qdisc_sleeping = &noop_qdisc;
5998 rcu_assign_pointer(dev->ingress_queue, queue);
5999 #endif
6000 return queue;
6001 }
6002
6003 static const struct ethtool_ops default_ethtool_ops;
6004
6005 void netdev_set_default_ethtool_ops(struct net_device *dev,
6006 const struct ethtool_ops *ops)
6007 {
6008 if (dev->ethtool_ops == &default_ethtool_ops)
6009 dev->ethtool_ops = ops;
6010 }
6011 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6012
6013 /**
6014 * alloc_netdev_mqs - allocate network device
6015 * @sizeof_priv: size of private data to allocate space for
6016 * @name: device name format string
6017 * @setup: callback to initialize device
6018 * @txqs: the number of TX subqueues to allocate
6019 * @rxqs: the number of RX subqueues to allocate
6020 *
6021 * Allocates a struct net_device with private data area for driver use
6022 * and performs basic initialization. Also allocates subquue structs
6023 * for each queue on the device.
6024 */
6025 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6026 void (*setup)(struct net_device *),
6027 unsigned int txqs, unsigned int rxqs)
6028 {
6029 struct net_device *dev;
6030 size_t alloc_size;
6031 struct net_device *p;
6032
6033 BUG_ON(strlen(name) >= sizeof(dev->name));
6034
6035 if (txqs < 1) {
6036 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6037 return NULL;
6038 }
6039
6040 #ifdef CONFIG_RPS
6041 if (rxqs < 1) {
6042 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6043 return NULL;
6044 }
6045 #endif
6046
6047 alloc_size = sizeof(struct net_device);
6048 if (sizeof_priv) {
6049 /* ensure 32-byte alignment of private area */
6050 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6051 alloc_size += sizeof_priv;
6052 }
6053 /* ensure 32-byte alignment of whole construct */
6054 alloc_size += NETDEV_ALIGN - 1;
6055
6056 p = kzalloc(alloc_size, GFP_KERNEL);
6057 if (!p)
6058 return NULL;
6059
6060 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6061 dev->padded = (char *)dev - (char *)p;
6062
6063 dev->pcpu_refcnt = alloc_percpu(int);
6064 if (!dev->pcpu_refcnt)
6065 goto free_p;
6066
6067 if (dev_addr_init(dev))
6068 goto free_pcpu;
6069
6070 dev_mc_init(dev);
6071 dev_uc_init(dev);
6072
6073 dev_net_set(dev, &init_net);
6074
6075 dev->gso_max_size = GSO_MAX_SIZE;
6076 dev->gso_max_segs = GSO_MAX_SEGS;
6077
6078 INIT_LIST_HEAD(&dev->napi_list);
6079 INIT_LIST_HEAD(&dev->unreg_list);
6080 INIT_LIST_HEAD(&dev->link_watch_list);
6081 INIT_LIST_HEAD(&dev->upper_dev_list);
6082 INIT_LIST_HEAD(&dev->lower_dev_list);
6083 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6084 setup(dev);
6085
6086 dev->num_tx_queues = txqs;
6087 dev->real_num_tx_queues = txqs;
6088 if (netif_alloc_netdev_queues(dev))
6089 goto free_all;
6090
6091 #ifdef CONFIG_RPS
6092 dev->num_rx_queues = rxqs;
6093 dev->real_num_rx_queues = rxqs;
6094 if (netif_alloc_rx_queues(dev))
6095 goto free_all;
6096 #endif
6097
6098 strcpy(dev->name, name);
6099 dev->group = INIT_NETDEV_GROUP;
6100 if (!dev->ethtool_ops)
6101 dev->ethtool_ops = &default_ethtool_ops;
6102 return dev;
6103
6104 free_all:
6105 free_netdev(dev);
6106 return NULL;
6107
6108 free_pcpu:
6109 free_percpu(dev->pcpu_refcnt);
6110 netif_free_tx_queues(dev);
6111 #ifdef CONFIG_RPS
6112 kfree(dev->_rx);
6113 #endif
6114
6115 free_p:
6116 kfree(p);
6117 return NULL;
6118 }
6119 EXPORT_SYMBOL(alloc_netdev_mqs);
6120
6121 /**
6122 * free_netdev - free network device
6123 * @dev: device
6124 *
6125 * This function does the last stage of destroying an allocated device
6126 * interface. The reference to the device object is released.
6127 * If this is the last reference then it will be freed.
6128 */
6129 void free_netdev(struct net_device *dev)
6130 {
6131 struct napi_struct *p, *n;
6132
6133 release_net(dev_net(dev));
6134
6135 netif_free_tx_queues(dev);
6136 #ifdef CONFIG_RPS
6137 kfree(dev->_rx);
6138 #endif
6139
6140 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6141
6142 /* Flush device addresses */
6143 dev_addr_flush(dev);
6144
6145 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6146 netif_napi_del(p);
6147
6148 free_percpu(dev->pcpu_refcnt);
6149 dev->pcpu_refcnt = NULL;
6150
6151 /* Compatibility with error handling in drivers */
6152 if (dev->reg_state == NETREG_UNINITIALIZED) {
6153 kfree((char *)dev - dev->padded);
6154 return;
6155 }
6156
6157 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6158 dev->reg_state = NETREG_RELEASED;
6159
6160 /* will free via device release */
6161 put_device(&dev->dev);
6162 }
6163 EXPORT_SYMBOL(free_netdev);
6164
6165 /**
6166 * synchronize_net - Synchronize with packet receive processing
6167 *
6168 * Wait for packets currently being received to be done.
6169 * Does not block later packets from starting.
6170 */
6171 void synchronize_net(void)
6172 {
6173 might_sleep();
6174 if (rtnl_is_locked())
6175 synchronize_rcu_expedited();
6176 else
6177 synchronize_rcu();
6178 }
6179 EXPORT_SYMBOL(synchronize_net);
6180
6181 /**
6182 * unregister_netdevice_queue - remove device from the kernel
6183 * @dev: device
6184 * @head: list
6185 *
6186 * This function shuts down a device interface and removes it
6187 * from the kernel tables.
6188 * If head not NULL, device is queued to be unregistered later.
6189 *
6190 * Callers must hold the rtnl semaphore. You may want
6191 * unregister_netdev() instead of this.
6192 */
6193
6194 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6195 {
6196 ASSERT_RTNL();
6197
6198 if (head) {
6199 list_move_tail(&dev->unreg_list, head);
6200 } else {
6201 rollback_registered(dev);
6202 /* Finish processing unregister after unlock */
6203 net_set_todo(dev);
6204 }
6205 }
6206 EXPORT_SYMBOL(unregister_netdevice_queue);
6207
6208 /**
6209 * unregister_netdevice_many - unregister many devices
6210 * @head: list of devices
6211 */
6212 void unregister_netdevice_many(struct list_head *head)
6213 {
6214 struct net_device *dev;
6215
6216 if (!list_empty(head)) {
6217 rollback_registered_many(head);
6218 list_for_each_entry(dev, head, unreg_list)
6219 net_set_todo(dev);
6220 }
6221 }
6222 EXPORT_SYMBOL(unregister_netdevice_many);
6223
6224 /**
6225 * unregister_netdev - remove device from the kernel
6226 * @dev: device
6227 *
6228 * This function shuts down a device interface and removes it
6229 * from the kernel tables.
6230 *
6231 * This is just a wrapper for unregister_netdevice that takes
6232 * the rtnl semaphore. In general you want to use this and not
6233 * unregister_netdevice.
6234 */
6235 void unregister_netdev(struct net_device *dev)
6236 {
6237 rtnl_lock();
6238 unregister_netdevice(dev);
6239 rtnl_unlock();
6240 }
6241 EXPORT_SYMBOL(unregister_netdev);
6242
6243 /**
6244 * dev_change_net_namespace - move device to different nethost namespace
6245 * @dev: device
6246 * @net: network namespace
6247 * @pat: If not NULL name pattern to try if the current device name
6248 * is already taken in the destination network namespace.
6249 *
6250 * This function shuts down a device interface and moves it
6251 * to a new network namespace. On success 0 is returned, on
6252 * a failure a netagive errno code is returned.
6253 *
6254 * Callers must hold the rtnl semaphore.
6255 */
6256
6257 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6258 {
6259 int err;
6260
6261 ASSERT_RTNL();
6262
6263 /* Don't allow namespace local devices to be moved. */
6264 err = -EINVAL;
6265 if (dev->features & NETIF_F_NETNS_LOCAL)
6266 goto out;
6267
6268 /* Ensure the device has been registrered */
6269 if (dev->reg_state != NETREG_REGISTERED)
6270 goto out;
6271
6272 /* Get out if there is nothing todo */
6273 err = 0;
6274 if (net_eq(dev_net(dev), net))
6275 goto out;
6276
6277 /* Pick the destination device name, and ensure
6278 * we can use it in the destination network namespace.
6279 */
6280 err = -EEXIST;
6281 if (__dev_get_by_name(net, dev->name)) {
6282 /* We get here if we can't use the current device name */
6283 if (!pat)
6284 goto out;
6285 if (dev_get_valid_name(net, dev, pat) < 0)
6286 goto out;
6287 }
6288
6289 /*
6290 * And now a mini version of register_netdevice unregister_netdevice.
6291 */
6292
6293 /* If device is running close it first. */
6294 dev_close(dev);
6295
6296 /* And unlink it from device chain */
6297 err = -ENODEV;
6298 unlist_netdevice(dev);
6299
6300 synchronize_net();
6301
6302 /* Shutdown queueing discipline. */
6303 dev_shutdown(dev);
6304
6305 /* Notify protocols, that we are about to destroy
6306 this device. They should clean all the things.
6307
6308 Note that dev->reg_state stays at NETREG_REGISTERED.
6309 This is wanted because this way 8021q and macvlan know
6310 the device is just moving and can keep their slaves up.
6311 */
6312 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6313 rcu_barrier();
6314 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6315 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6316
6317 /*
6318 * Flush the unicast and multicast chains
6319 */
6320 dev_uc_flush(dev);
6321 dev_mc_flush(dev);
6322
6323 /* Send a netdev-removed uevent to the old namespace */
6324 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6325
6326 /* Actually switch the network namespace */
6327 dev_net_set(dev, net);
6328
6329 /* If there is an ifindex conflict assign a new one */
6330 if (__dev_get_by_index(net, dev->ifindex)) {
6331 int iflink = (dev->iflink == dev->ifindex);
6332 dev->ifindex = dev_new_index(net);
6333 if (iflink)
6334 dev->iflink = dev->ifindex;
6335 }
6336
6337 /* Send a netdev-add uevent to the new namespace */
6338 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6339
6340 /* Fixup kobjects */
6341 err = device_rename(&dev->dev, dev->name);
6342 WARN_ON(err);
6343
6344 /* Add the device back in the hashes */
6345 list_netdevice(dev);
6346
6347 /* Notify protocols, that a new device appeared. */
6348 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6349
6350 /*
6351 * Prevent userspace races by waiting until the network
6352 * device is fully setup before sending notifications.
6353 */
6354 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6355
6356 synchronize_net();
6357 err = 0;
6358 out:
6359 return err;
6360 }
6361 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6362
6363 static int dev_cpu_callback(struct notifier_block *nfb,
6364 unsigned long action,
6365 void *ocpu)
6366 {
6367 struct sk_buff **list_skb;
6368 struct sk_buff *skb;
6369 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6370 struct softnet_data *sd, *oldsd;
6371
6372 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6373 return NOTIFY_OK;
6374
6375 local_irq_disable();
6376 cpu = smp_processor_id();
6377 sd = &per_cpu(softnet_data, cpu);
6378 oldsd = &per_cpu(softnet_data, oldcpu);
6379
6380 /* Find end of our completion_queue. */
6381 list_skb = &sd->completion_queue;
6382 while (*list_skb)
6383 list_skb = &(*list_skb)->next;
6384 /* Append completion queue from offline CPU. */
6385 *list_skb = oldsd->completion_queue;
6386 oldsd->completion_queue = NULL;
6387
6388 /* Append output queue from offline CPU. */
6389 if (oldsd->output_queue) {
6390 *sd->output_queue_tailp = oldsd->output_queue;
6391 sd->output_queue_tailp = oldsd->output_queue_tailp;
6392 oldsd->output_queue = NULL;
6393 oldsd->output_queue_tailp = &oldsd->output_queue;
6394 }
6395 /* Append NAPI poll list from offline CPU. */
6396 if (!list_empty(&oldsd->poll_list)) {
6397 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6398 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6399 }
6400
6401 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6402 local_irq_enable();
6403
6404 /* Process offline CPU's input_pkt_queue */
6405 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6406 netif_rx(skb);
6407 input_queue_head_incr(oldsd);
6408 }
6409 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6410 netif_rx(skb);
6411 input_queue_head_incr(oldsd);
6412 }
6413
6414 return NOTIFY_OK;
6415 }
6416
6417
6418 /**
6419 * netdev_increment_features - increment feature set by one
6420 * @all: current feature set
6421 * @one: new feature set
6422 * @mask: mask feature set
6423 *
6424 * Computes a new feature set after adding a device with feature set
6425 * @one to the master device with current feature set @all. Will not
6426 * enable anything that is off in @mask. Returns the new feature set.
6427 */
6428 netdev_features_t netdev_increment_features(netdev_features_t all,
6429 netdev_features_t one, netdev_features_t mask)
6430 {
6431 if (mask & NETIF_F_GEN_CSUM)
6432 mask |= NETIF_F_ALL_CSUM;
6433 mask |= NETIF_F_VLAN_CHALLENGED;
6434
6435 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6436 all &= one | ~NETIF_F_ALL_FOR_ALL;
6437
6438 /* If one device supports hw checksumming, set for all. */
6439 if (all & NETIF_F_GEN_CSUM)
6440 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6441
6442 return all;
6443 }
6444 EXPORT_SYMBOL(netdev_increment_features);
6445
6446 static struct hlist_head * __net_init netdev_create_hash(void)
6447 {
6448 int i;
6449 struct hlist_head *hash;
6450
6451 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6452 if (hash != NULL)
6453 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6454 INIT_HLIST_HEAD(&hash[i]);
6455
6456 return hash;
6457 }
6458
6459 /* Initialize per network namespace state */
6460 static int __net_init netdev_init(struct net *net)
6461 {
6462 if (net != &init_net)
6463 INIT_LIST_HEAD(&net->dev_base_head);
6464
6465 net->dev_name_head = netdev_create_hash();
6466 if (net->dev_name_head == NULL)
6467 goto err_name;
6468
6469 net->dev_index_head = netdev_create_hash();
6470 if (net->dev_index_head == NULL)
6471 goto err_idx;
6472
6473 return 0;
6474
6475 err_idx:
6476 kfree(net->dev_name_head);
6477 err_name:
6478 return -ENOMEM;
6479 }
6480
6481 /**
6482 * netdev_drivername - network driver for the device
6483 * @dev: network device
6484 *
6485 * Determine network driver for device.
6486 */
6487 const char *netdev_drivername(const struct net_device *dev)
6488 {
6489 const struct device_driver *driver;
6490 const struct device *parent;
6491 const char *empty = "";
6492
6493 parent = dev->dev.parent;
6494 if (!parent)
6495 return empty;
6496
6497 driver = parent->driver;
6498 if (driver && driver->name)
6499 return driver->name;
6500 return empty;
6501 }
6502
6503 static int __netdev_printk(const char *level, const struct net_device *dev,
6504 struct va_format *vaf)
6505 {
6506 int r;
6507
6508 if (dev && dev->dev.parent) {
6509 r = dev_printk_emit(level[1] - '0',
6510 dev->dev.parent,
6511 "%s %s %s: %pV",
6512 dev_driver_string(dev->dev.parent),
6513 dev_name(dev->dev.parent),
6514 netdev_name(dev), vaf);
6515 } else if (dev) {
6516 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6517 } else {
6518 r = printk("%s(NULL net_device): %pV", level, vaf);
6519 }
6520
6521 return r;
6522 }
6523
6524 int netdev_printk(const char *level, const struct net_device *dev,
6525 const char *format, ...)
6526 {
6527 struct va_format vaf;
6528 va_list args;
6529 int r;
6530
6531 va_start(args, format);
6532
6533 vaf.fmt = format;
6534 vaf.va = &args;
6535
6536 r = __netdev_printk(level, dev, &vaf);
6537
6538 va_end(args);
6539
6540 return r;
6541 }
6542 EXPORT_SYMBOL(netdev_printk);
6543
6544 #define define_netdev_printk_level(func, level) \
6545 int func(const struct net_device *dev, const char *fmt, ...) \
6546 { \
6547 int r; \
6548 struct va_format vaf; \
6549 va_list args; \
6550 \
6551 va_start(args, fmt); \
6552 \
6553 vaf.fmt = fmt; \
6554 vaf.va = &args; \
6555 \
6556 r = __netdev_printk(level, dev, &vaf); \
6557 \
6558 va_end(args); \
6559 \
6560 return r; \
6561 } \
6562 EXPORT_SYMBOL(func);
6563
6564 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6565 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6566 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6567 define_netdev_printk_level(netdev_err, KERN_ERR);
6568 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6569 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6570 define_netdev_printk_level(netdev_info, KERN_INFO);
6571
6572 static void __net_exit netdev_exit(struct net *net)
6573 {
6574 kfree(net->dev_name_head);
6575 kfree(net->dev_index_head);
6576 }
6577
6578 static struct pernet_operations __net_initdata netdev_net_ops = {
6579 .init = netdev_init,
6580 .exit = netdev_exit,
6581 };
6582
6583 static void __net_exit default_device_exit(struct net *net)
6584 {
6585 struct net_device *dev, *aux;
6586 /*
6587 * Push all migratable network devices back to the
6588 * initial network namespace
6589 */
6590 rtnl_lock();
6591 for_each_netdev_safe(net, dev, aux) {
6592 int err;
6593 char fb_name[IFNAMSIZ];
6594
6595 /* Ignore unmoveable devices (i.e. loopback) */
6596 if (dev->features & NETIF_F_NETNS_LOCAL)
6597 continue;
6598
6599 /* Leave virtual devices for the generic cleanup */
6600 if (dev->rtnl_link_ops)
6601 continue;
6602
6603 /* Push remaining network devices to init_net */
6604 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6605 err = dev_change_net_namespace(dev, &init_net, fb_name);
6606 if (err) {
6607 pr_emerg("%s: failed to move %s to init_net: %d\n",
6608 __func__, dev->name, err);
6609 BUG();
6610 }
6611 }
6612 rtnl_unlock();
6613 }
6614
6615 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6616 {
6617 /* Return with the rtnl_lock held when there are no network
6618 * devices unregistering in any network namespace in net_list.
6619 */
6620 struct net *net;
6621 bool unregistering;
6622 DEFINE_WAIT(wait);
6623
6624 for (;;) {
6625 prepare_to_wait(&netdev_unregistering_wq, &wait,
6626 TASK_UNINTERRUPTIBLE);
6627 unregistering = false;
6628 rtnl_lock();
6629 list_for_each_entry(net, net_list, exit_list) {
6630 if (net->dev_unreg_count > 0) {
6631 unregistering = true;
6632 break;
6633 }
6634 }
6635 if (!unregistering)
6636 break;
6637 __rtnl_unlock();
6638 schedule();
6639 }
6640 finish_wait(&netdev_unregistering_wq, &wait);
6641 }
6642
6643 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6644 {
6645 /* At exit all network devices most be removed from a network
6646 * namespace. Do this in the reverse order of registration.
6647 * Do this across as many network namespaces as possible to
6648 * improve batching efficiency.
6649 */
6650 struct net_device *dev;
6651 struct net *net;
6652 LIST_HEAD(dev_kill_list);
6653
6654 /* To prevent network device cleanup code from dereferencing
6655 * loopback devices or network devices that have been freed
6656 * wait here for all pending unregistrations to complete,
6657 * before unregistring the loopback device and allowing the
6658 * network namespace be freed.
6659 *
6660 * The netdev todo list containing all network devices
6661 * unregistrations that happen in default_device_exit_batch
6662 * will run in the rtnl_unlock() at the end of
6663 * default_device_exit_batch.
6664 */
6665 rtnl_lock_unregistering(net_list);
6666 list_for_each_entry(net, net_list, exit_list) {
6667 for_each_netdev_reverse(net, dev) {
6668 if (dev->rtnl_link_ops)
6669 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6670 else
6671 unregister_netdevice_queue(dev, &dev_kill_list);
6672 }
6673 }
6674 unregister_netdevice_many(&dev_kill_list);
6675 list_del(&dev_kill_list);
6676 rtnl_unlock();
6677 }
6678
6679 static struct pernet_operations __net_initdata default_device_ops = {
6680 .exit = default_device_exit,
6681 .exit_batch = default_device_exit_batch,
6682 };
6683
6684 /*
6685 * Initialize the DEV module. At boot time this walks the device list and
6686 * unhooks any devices that fail to initialise (normally hardware not
6687 * present) and leaves us with a valid list of present and active devices.
6688 *
6689 */
6690
6691 /*
6692 * This is called single threaded during boot, so no need
6693 * to take the rtnl semaphore.
6694 */
6695 static int __init net_dev_init(void)
6696 {
6697 int i, rc = -ENOMEM;
6698
6699 BUG_ON(!dev_boot_phase);
6700
6701 if (dev_proc_init())
6702 goto out;
6703
6704 if (netdev_kobject_init())
6705 goto out;
6706
6707 INIT_LIST_HEAD(&ptype_all);
6708 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6709 INIT_LIST_HEAD(&ptype_base[i]);
6710
6711 INIT_LIST_HEAD(&offload_base);
6712
6713 if (register_pernet_subsys(&netdev_net_ops))
6714 goto out;
6715
6716 /*
6717 * Initialise the packet receive queues.
6718 */
6719
6720 for_each_possible_cpu(i) {
6721 struct softnet_data *sd = &per_cpu(softnet_data, i);
6722
6723 memset(sd, 0, sizeof(*sd));
6724 skb_queue_head_init(&sd->input_pkt_queue);
6725 skb_queue_head_init(&sd->process_queue);
6726 sd->completion_queue = NULL;
6727 INIT_LIST_HEAD(&sd->poll_list);
6728 sd->output_queue = NULL;
6729 sd->output_queue_tailp = &sd->output_queue;
6730 #ifdef CONFIG_RPS
6731 sd->csd.func = rps_trigger_softirq;
6732 sd->csd.info = sd;
6733 sd->csd.flags = 0;
6734 sd->cpu = i;
6735 #endif
6736
6737 sd->backlog.poll = process_backlog;
6738 sd->backlog.weight = weight_p;
6739 sd->backlog.gro_list = NULL;
6740 sd->backlog.gro_count = 0;
6741
6742 #ifdef CONFIG_NET_FLOW_LIMIT
6743 sd->flow_limit = NULL;
6744 #endif
6745 }
6746
6747 dev_boot_phase = 0;
6748
6749 /* The loopback device is special if any other network devices
6750 * is present in a network namespace the loopback device must
6751 * be present. Since we now dynamically allocate and free the
6752 * loopback device ensure this invariant is maintained by
6753 * keeping the loopback device as the first device on the
6754 * list of network devices. Ensuring the loopback devices
6755 * is the first device that appears and the last network device
6756 * that disappears.
6757 */
6758 if (register_pernet_device(&loopback_net_ops))
6759 goto out;
6760
6761 if (register_pernet_device(&default_device_ops))
6762 goto out;
6763
6764 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6765 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6766
6767 hotcpu_notifier(dev_cpu_callback, 0);
6768 dst_init();
6769 rc = 0;
6770 out:
6771 return rc;
6772 }
6773
6774 subsys_initcall(net_dev_init);
This page took 0.252487 seconds and 5 git commands to generate.