5902426ef585a3e9ba629bcce0d5969e479bc503
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags_rcu - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. Must be called inside
813 * rcu_read_lock(), and result refcount is unchanged.
814 */
815
816 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
817 unsigned short mask)
818 {
819 struct net_device *dev, *ret;
820
821 ret = NULL;
822 for_each_netdev_rcu(net, dev) {
823 if (((dev->flags ^ if_flags) & mask) == 0) {
824 ret = dev;
825 break;
826 }
827 }
828 return ret;
829 }
830 EXPORT_SYMBOL(dev_get_by_flags_rcu);
831
832 /**
833 * dev_valid_name - check if name is okay for network device
834 * @name: name string
835 *
836 * Network device names need to be valid file names to
837 * to allow sysfs to work. We also disallow any kind of
838 * whitespace.
839 */
840 int dev_valid_name(const char *name)
841 {
842 if (*name == '\0')
843 return 0;
844 if (strlen(name) >= IFNAMSIZ)
845 return 0;
846 if (!strcmp(name, ".") || !strcmp(name, ".."))
847 return 0;
848
849 while (*name) {
850 if (*name == '/' || isspace(*name))
851 return 0;
852 name++;
853 }
854 return 1;
855 }
856 EXPORT_SYMBOL(dev_valid_name);
857
858 /**
859 * __dev_alloc_name - allocate a name for a device
860 * @net: network namespace to allocate the device name in
861 * @name: name format string
862 * @buf: scratch buffer and result name string
863 *
864 * Passed a format string - eg "lt%d" it will try and find a suitable
865 * id. It scans list of devices to build up a free map, then chooses
866 * the first empty slot. The caller must hold the dev_base or rtnl lock
867 * while allocating the name and adding the device in order to avoid
868 * duplicates.
869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
870 * Returns the number of the unit assigned or a negative errno code.
871 */
872
873 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
874 {
875 int i = 0;
876 const char *p;
877 const int max_netdevices = 8*PAGE_SIZE;
878 unsigned long *inuse;
879 struct net_device *d;
880
881 p = strnchr(name, IFNAMSIZ-1, '%');
882 if (p) {
883 /*
884 * Verify the string as this thing may have come from
885 * the user. There must be either one "%d" and no other "%"
886 * characters.
887 */
888 if (p[1] != 'd' || strchr(p + 2, '%'))
889 return -EINVAL;
890
891 /* Use one page as a bit array of possible slots */
892 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
893 if (!inuse)
894 return -ENOMEM;
895
896 for_each_netdev(net, d) {
897 if (!sscanf(d->name, name, &i))
898 continue;
899 if (i < 0 || i >= max_netdevices)
900 continue;
901
902 /* avoid cases where sscanf is not exact inverse of printf */
903 snprintf(buf, IFNAMSIZ, name, i);
904 if (!strncmp(buf, d->name, IFNAMSIZ))
905 set_bit(i, inuse);
906 }
907
908 i = find_first_zero_bit(inuse, max_netdevices);
909 free_page((unsigned long) inuse);
910 }
911
912 if (buf != name)
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!__dev_get_by_name(net, buf))
915 return i;
916
917 /* It is possible to run out of possible slots
918 * when the name is long and there isn't enough space left
919 * for the digits, or if all bits are used.
920 */
921 return -ENFILE;
922 }
923
924 /**
925 * dev_alloc_name - allocate a name for a device
926 * @dev: device
927 * @name: name format string
928 *
929 * Passed a format string - eg "lt%d" it will try and find a suitable
930 * id. It scans list of devices to build up a free map, then chooses
931 * the first empty slot. The caller must hold the dev_base or rtnl lock
932 * while allocating the name and adding the device in order to avoid
933 * duplicates.
934 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
935 * Returns the number of the unit assigned or a negative errno code.
936 */
937
938 int dev_alloc_name(struct net_device *dev, const char *name)
939 {
940 char buf[IFNAMSIZ];
941 struct net *net;
942 int ret;
943
944 BUG_ON(!dev_net(dev));
945 net = dev_net(dev);
946 ret = __dev_alloc_name(net, name, buf);
947 if (ret >= 0)
948 strlcpy(dev->name, buf, IFNAMSIZ);
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_alloc_name);
952
953 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
954 {
955 struct net *net;
956
957 BUG_ON(!dev_net(dev));
958 net = dev_net(dev);
959
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return dev_alloc_name(dev, name);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (dev->name != name)
968 strlcpy(dev->name, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(dev, newname, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 ret = device_rename(&dev->dev, dev->name);
1006 if (ret) {
1007 memcpy(dev->name, oldname, IFNAMSIZ);
1008 return ret;
1009 }
1010
1011 write_lock_bh(&dev_base_lock);
1012 hlist_del(&dev->name_hlist);
1013 write_unlock_bh(&dev_base_lock);
1014
1015 synchronize_rcu();
1016
1017 write_lock_bh(&dev_base_lock);
1018 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1019 write_unlock_bh(&dev_base_lock);
1020
1021 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1022 ret = notifier_to_errno(ret);
1023
1024 if (ret) {
1025 /* err >= 0 after dev_alloc_name() or stores the first errno */
1026 if (err >= 0) {
1027 err = ret;
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 goto rollback;
1030 } else {
1031 printk(KERN_ERR
1032 "%s: name change rollback failed: %d.\n",
1033 dev->name, ret);
1034 }
1035 }
1036
1037 return err;
1038 }
1039
1040 /**
1041 * dev_set_alias - change ifalias of a device
1042 * @dev: device
1043 * @alias: name up to IFALIASZ
1044 * @len: limit of bytes to copy from info
1045 *
1046 * Set ifalias for a device,
1047 */
1048 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1049 {
1050 ASSERT_RTNL();
1051
1052 if (len >= IFALIASZ)
1053 return -EINVAL;
1054
1055 if (!len) {
1056 if (dev->ifalias) {
1057 kfree(dev->ifalias);
1058 dev->ifalias = NULL;
1059 }
1060 return 0;
1061 }
1062
1063 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1064 if (!dev->ifalias)
1065 return -ENOMEM;
1066
1067 strlcpy(dev->ifalias, alias, len+1);
1068 return len;
1069 }
1070
1071
1072 /**
1073 * netdev_features_change - device changes features
1074 * @dev: device to cause notification
1075 *
1076 * Called to indicate a device has changed features.
1077 */
1078 void netdev_features_change(struct net_device *dev)
1079 {
1080 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1081 }
1082 EXPORT_SYMBOL(netdev_features_change);
1083
1084 /**
1085 * netdev_state_change - device changes state
1086 * @dev: device to cause notification
1087 *
1088 * Called to indicate a device has changed state. This function calls
1089 * the notifier chains for netdev_chain and sends a NEWLINK message
1090 * to the routing socket.
1091 */
1092 void netdev_state_change(struct net_device *dev)
1093 {
1094 if (dev->flags & IFF_UP) {
1095 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1096 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1097 }
1098 }
1099 EXPORT_SYMBOL(netdev_state_change);
1100
1101 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1102 {
1103 return call_netdevice_notifiers(event, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_bonding_change);
1106
1107 /**
1108 * dev_load - load a network module
1109 * @net: the applicable net namespace
1110 * @name: name of interface
1111 *
1112 * If a network interface is not present and the process has suitable
1113 * privileges this function loads the module. If module loading is not
1114 * available in this kernel then it becomes a nop.
1115 */
1116
1117 void dev_load(struct net *net, const char *name)
1118 {
1119 struct net_device *dev;
1120
1121 rcu_read_lock();
1122 dev = dev_get_by_name_rcu(net, name);
1123 rcu_read_unlock();
1124
1125 if (!dev && capable(CAP_NET_ADMIN))
1126 request_module("%s", name);
1127 }
1128 EXPORT_SYMBOL(dev_load);
1129
1130 static int __dev_open(struct net_device *dev)
1131 {
1132 const struct net_device_ops *ops = dev->netdev_ops;
1133 int ret;
1134
1135 ASSERT_RTNL();
1136
1137 /*
1138 * Is it even present?
1139 */
1140 if (!netif_device_present(dev))
1141 return -ENODEV;
1142
1143 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1144 ret = notifier_to_errno(ret);
1145 if (ret)
1146 return ret;
1147
1148 /*
1149 * Call device private open method
1150 */
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 /*
1160 * If it went open OK then:
1161 */
1162
1163 if (ret)
1164 clear_bit(__LINK_STATE_START, &dev->state);
1165 else {
1166 /*
1167 * Set the flags.
1168 */
1169 dev->flags |= IFF_UP;
1170
1171 /*
1172 * Enable NET_DMA
1173 */
1174 net_dmaengine_get();
1175
1176 /*
1177 * Initialize multicasting status
1178 */
1179 dev_set_rx_mode(dev);
1180
1181 /*
1182 * Wakeup transmit queue engine
1183 */
1184 dev_activate(dev);
1185 }
1186
1187 return ret;
1188 }
1189
1190 /**
1191 * dev_open - prepare an interface for use.
1192 * @dev: device to open
1193 *
1194 * Takes a device from down to up state. The device's private open
1195 * function is invoked and then the multicast lists are loaded. Finally
1196 * the device is moved into the up state and a %NETDEV_UP message is
1197 * sent to the netdev notifier chain.
1198 *
1199 * Calling this function on an active interface is a nop. On a failure
1200 * a negative errno code is returned.
1201 */
1202 int dev_open(struct net_device *dev)
1203 {
1204 int ret;
1205
1206 /*
1207 * Is it already up?
1208 */
1209 if (dev->flags & IFF_UP)
1210 return 0;
1211
1212 /*
1213 * Open device
1214 */
1215 ret = __dev_open(dev);
1216 if (ret < 0)
1217 return ret;
1218
1219 /*
1220 * ... and announce new interface.
1221 */
1222 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1223 call_netdevice_notifiers(NETDEV_UP, dev);
1224
1225 return ret;
1226 }
1227 EXPORT_SYMBOL(dev_open);
1228
1229 static int __dev_close(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232
1233 ASSERT_RTNL();
1234 might_sleep();
1235
1236 /*
1237 * Tell people we are going down, so that they can
1238 * prepare to death, when device is still operating.
1239 */
1240 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1241
1242 clear_bit(__LINK_STATE_START, &dev->state);
1243
1244 /* Synchronize to scheduled poll. We cannot touch poll list,
1245 * it can be even on different cpu. So just clear netif_running().
1246 *
1247 * dev->stop() will invoke napi_disable() on all of it's
1248 * napi_struct instances on this device.
1249 */
1250 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1251
1252 dev_deactivate(dev);
1253
1254 /*
1255 * Call the device specific close. This cannot fail.
1256 * Only if device is UP
1257 *
1258 * We allow it to be called even after a DETACH hot-plug
1259 * event.
1260 */
1261 if (ops->ndo_stop)
1262 ops->ndo_stop(dev);
1263
1264 /*
1265 * Device is now down.
1266 */
1267
1268 dev->flags &= ~IFF_UP;
1269
1270 /*
1271 * Shutdown NET_DMA
1272 */
1273 net_dmaengine_put();
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * dev_close - shutdown an interface.
1280 * @dev: device to shutdown
1281 *
1282 * This function moves an active device into down state. A
1283 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1284 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1285 * chain.
1286 */
1287 int dev_close(struct net_device *dev)
1288 {
1289 if (!(dev->flags & IFF_UP))
1290 return 0;
1291
1292 __dev_close(dev);
1293
1294 /*
1295 * Tell people we are down
1296 */
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1298 call_netdevice_notifiers(NETDEV_DOWN, dev);
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL(dev_close);
1303
1304
1305 /**
1306 * dev_disable_lro - disable Large Receive Offload on a device
1307 * @dev: device
1308 *
1309 * Disable Large Receive Offload (LRO) on a net device. Must be
1310 * called under RTNL. This is needed if received packets may be
1311 * forwarded to another interface.
1312 */
1313 void dev_disable_lro(struct net_device *dev)
1314 {
1315 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1316 dev->ethtool_ops->set_flags) {
1317 u32 flags = dev->ethtool_ops->get_flags(dev);
1318 if (flags & ETH_FLAG_LRO) {
1319 flags &= ~ETH_FLAG_LRO;
1320 dev->ethtool_ops->set_flags(dev, flags);
1321 }
1322 }
1323 WARN_ON(dev->features & NETIF_F_LRO);
1324 }
1325 EXPORT_SYMBOL(dev_disable_lro);
1326
1327
1328 static int dev_boot_phase = 1;
1329
1330 /*
1331 * Device change register/unregister. These are not inline or static
1332 * as we export them to the world.
1333 */
1334
1335 /**
1336 * register_netdevice_notifier - register a network notifier block
1337 * @nb: notifier
1338 *
1339 * Register a notifier to be called when network device events occur.
1340 * The notifier passed is linked into the kernel structures and must
1341 * not be reused until it has been unregistered. A negative errno code
1342 * is returned on a failure.
1343 *
1344 * When registered all registration and up events are replayed
1345 * to the new notifier to allow device to have a race free
1346 * view of the network device list.
1347 */
1348
1349 int register_netdevice_notifier(struct notifier_block *nb)
1350 {
1351 struct net_device *dev;
1352 struct net_device *last;
1353 struct net *net;
1354 int err;
1355
1356 rtnl_lock();
1357 err = raw_notifier_chain_register(&netdev_chain, nb);
1358 if (err)
1359 goto unlock;
1360 if (dev_boot_phase)
1361 goto unlock;
1362 for_each_net(net) {
1363 for_each_netdev(net, dev) {
1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1365 err = notifier_to_errno(err);
1366 if (err)
1367 goto rollback;
1368
1369 if (!(dev->flags & IFF_UP))
1370 continue;
1371
1372 nb->notifier_call(nb, NETDEV_UP, dev);
1373 }
1374 }
1375
1376 unlock:
1377 rtnl_unlock();
1378 return err;
1379
1380 rollback:
1381 last = dev;
1382 for_each_net(net) {
1383 for_each_netdev(net, dev) {
1384 if (dev == last)
1385 break;
1386
1387 if (dev->flags & IFF_UP) {
1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_DOWN, dev);
1390 }
1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1393 }
1394 }
1395
1396 raw_notifier_chain_unregister(&netdev_chain, nb);
1397 goto unlock;
1398 }
1399 EXPORT_SYMBOL(register_netdevice_notifier);
1400
1401 /**
1402 * unregister_netdevice_notifier - unregister a network notifier block
1403 * @nb: notifier
1404 *
1405 * Unregister a notifier previously registered by
1406 * register_netdevice_notifier(). The notifier is unlinked into the
1407 * kernel structures and may then be reused. A negative errno code
1408 * is returned on a failure.
1409 */
1410
1411 int unregister_netdevice_notifier(struct notifier_block *nb)
1412 {
1413 int err;
1414
1415 rtnl_lock();
1416 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1417 rtnl_unlock();
1418 return err;
1419 }
1420 EXPORT_SYMBOL(unregister_netdevice_notifier);
1421
1422 /**
1423 * call_netdevice_notifiers - call all network notifier blocks
1424 * @val: value passed unmodified to notifier function
1425 * @dev: net_device pointer passed unmodified to notifier function
1426 *
1427 * Call all network notifier blocks. Parameters and return value
1428 * are as for raw_notifier_call_chain().
1429 */
1430
1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1432 {
1433 ASSERT_RTNL();
1434 return raw_notifier_call_chain(&netdev_chain, val, dev);
1435 }
1436
1437 /* When > 0 there are consumers of rx skb time stamps */
1438 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1439
1440 void net_enable_timestamp(void)
1441 {
1442 atomic_inc(&netstamp_needed);
1443 }
1444 EXPORT_SYMBOL(net_enable_timestamp);
1445
1446 void net_disable_timestamp(void)
1447 {
1448 atomic_dec(&netstamp_needed);
1449 }
1450 EXPORT_SYMBOL(net_disable_timestamp);
1451
1452 static inline void net_timestamp_set(struct sk_buff *skb)
1453 {
1454 if (atomic_read(&netstamp_needed))
1455 __net_timestamp(skb);
1456 else
1457 skb->tstamp.tv64 = 0;
1458 }
1459
1460 static inline void net_timestamp_check(struct sk_buff *skb)
1461 {
1462 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1463 __net_timestamp(skb);
1464 }
1465
1466 /**
1467 * dev_forward_skb - loopback an skb to another netif
1468 *
1469 * @dev: destination network device
1470 * @skb: buffer to forward
1471 *
1472 * return values:
1473 * NET_RX_SUCCESS (no congestion)
1474 * NET_RX_DROP (packet was dropped, but freed)
1475 *
1476 * dev_forward_skb can be used for injecting an skb from the
1477 * start_xmit function of one device into the receive queue
1478 * of another device.
1479 *
1480 * The receiving device may be in another namespace, so
1481 * we have to clear all information in the skb that could
1482 * impact namespace isolation.
1483 */
1484 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1485 {
1486 skb_orphan(skb);
1487
1488 if (!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len))) {
1490 kfree_skb(skb);
1491 return NET_RX_DROP;
1492 }
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1498 }
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1500
1501 /*
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1504 */
1505
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 {
1508 struct packet_type *ptype;
1509
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp_set(skb);
1513 #else
1514 net_timestamp_set(skb);
1515 #endif
1516
1517 rcu_read_lock();
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1520 * they originated from - MvS (miquels@drinkel.ow.org)
1521 */
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1526 if (!skb2)
1527 break;
1528
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1532 */
1533 skb_reset_mac_header(skb2);
1534
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1539 "buggy, dev %s\n",
1540 skb2->protocol, dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550 }
1551
1552
1553 static inline void __netif_reschedule(struct Qdisc *q)
1554 {
1555 struct softnet_data *sd;
1556 unsigned long flags;
1557
1558 local_irq_save(flags);
1559 sd = &__get_cpu_var(softnet_data);
1560 q->next_sched = NULL;
1561 *sd->output_queue_tailp = q;
1562 sd->output_queue_tailp = &q->next_sched;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
1566
1567 void __netif_schedule(struct Qdisc *q)
1568 {
1569 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1570 __netif_reschedule(q);
1571 }
1572 EXPORT_SYMBOL(__netif_schedule);
1573
1574 void dev_kfree_skb_irq(struct sk_buff *skb)
1575 {
1576 if (!skb->destructor)
1577 dev_kfree_skb(skb);
1578 else if (atomic_dec_and_test(&skb->users)) {
1579 struct softnet_data *sd;
1580 unsigned long flags;
1581
1582 local_irq_save(flags);
1583 sd = &__get_cpu_var(softnet_data);
1584 skb->next = sd->completion_queue;
1585 sd->completion_queue = skb;
1586 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1587 local_irq_restore(flags);
1588 }
1589 }
1590 EXPORT_SYMBOL(dev_kfree_skb_irq);
1591
1592 void dev_kfree_skb_any(struct sk_buff *skb)
1593 {
1594 if (in_irq() || irqs_disabled())
1595 dev_kfree_skb_irq(skb);
1596 else
1597 dev_kfree_skb(skb);
1598 }
1599 EXPORT_SYMBOL(dev_kfree_skb_any);
1600
1601
1602 /**
1603 * netif_device_detach - mark device as removed
1604 * @dev: network device
1605 *
1606 * Mark device as removed from system and therefore no longer available.
1607 */
1608 void netif_device_detach(struct net_device *dev)
1609 {
1610 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1611 netif_running(dev)) {
1612 netif_tx_stop_all_queues(dev);
1613 }
1614 }
1615 EXPORT_SYMBOL(netif_device_detach);
1616
1617 /**
1618 * netif_device_attach - mark device as attached
1619 * @dev: network device
1620 *
1621 * Mark device as attached from system and restart if needed.
1622 */
1623 void netif_device_attach(struct net_device *dev)
1624 {
1625 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1626 netif_running(dev)) {
1627 netif_tx_wake_all_queues(dev);
1628 __netdev_watchdog_up(dev);
1629 }
1630 }
1631 EXPORT_SYMBOL(netif_device_attach);
1632
1633 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1634 {
1635 return ((features & NETIF_F_GEN_CSUM) ||
1636 ((features & NETIF_F_IP_CSUM) &&
1637 protocol == htons(ETH_P_IP)) ||
1638 ((features & NETIF_F_IPV6_CSUM) &&
1639 protocol == htons(ETH_P_IPV6)) ||
1640 ((features & NETIF_F_FCOE_CRC) &&
1641 protocol == htons(ETH_P_FCOE)));
1642 }
1643
1644 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1645 {
1646 if (can_checksum_protocol(dev->features, skb->protocol))
1647 return true;
1648
1649 if (skb->protocol == htons(ETH_P_8021Q)) {
1650 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1651 if (can_checksum_protocol(dev->features & dev->vlan_features,
1652 veh->h_vlan_encapsulated_proto))
1653 return true;
1654 }
1655
1656 return false;
1657 }
1658
1659 /**
1660 * skb_dev_set -- assign a new device to a buffer
1661 * @skb: buffer for the new device
1662 * @dev: network device
1663 *
1664 * If an skb is owned by a device already, we have to reset
1665 * all data private to the namespace a device belongs to
1666 * before assigning it a new device.
1667 */
1668 #ifdef CONFIG_NET_NS
1669 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1670 {
1671 skb_dst_drop(skb);
1672 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1673 secpath_reset(skb);
1674 nf_reset(skb);
1675 skb_init_secmark(skb);
1676 skb->mark = 0;
1677 skb->priority = 0;
1678 skb->nf_trace = 0;
1679 skb->ipvs_property = 0;
1680 #ifdef CONFIG_NET_SCHED
1681 skb->tc_index = 0;
1682 #endif
1683 }
1684 skb->dev = dev;
1685 }
1686 EXPORT_SYMBOL(skb_set_dev);
1687 #endif /* CONFIG_NET_NS */
1688
1689 /*
1690 * Invalidate hardware checksum when packet is to be mangled, and
1691 * complete checksum manually on outgoing path.
1692 */
1693 int skb_checksum_help(struct sk_buff *skb)
1694 {
1695 __wsum csum;
1696 int ret = 0, offset;
1697
1698 if (skb->ip_summed == CHECKSUM_COMPLETE)
1699 goto out_set_summed;
1700
1701 if (unlikely(skb_shinfo(skb)->gso_size)) {
1702 /* Let GSO fix up the checksum. */
1703 goto out_set_summed;
1704 }
1705
1706 offset = skb->csum_start - skb_headroom(skb);
1707 BUG_ON(offset >= skb_headlen(skb));
1708 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1709
1710 offset += skb->csum_offset;
1711 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1712
1713 if (skb_cloned(skb) &&
1714 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1715 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1716 if (ret)
1717 goto out;
1718 }
1719
1720 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1721 out_set_summed:
1722 skb->ip_summed = CHECKSUM_NONE;
1723 out:
1724 return ret;
1725 }
1726 EXPORT_SYMBOL(skb_checksum_help);
1727
1728 /**
1729 * skb_gso_segment - Perform segmentation on skb.
1730 * @skb: buffer to segment
1731 * @features: features for the output path (see dev->features)
1732 *
1733 * This function segments the given skb and returns a list of segments.
1734 *
1735 * It may return NULL if the skb requires no segmentation. This is
1736 * only possible when GSO is used for verifying header integrity.
1737 */
1738 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1739 {
1740 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1741 struct packet_type *ptype;
1742 __be16 type = skb->protocol;
1743 int err;
1744
1745 skb_reset_mac_header(skb);
1746 skb->mac_len = skb->network_header - skb->mac_header;
1747 __skb_pull(skb, skb->mac_len);
1748
1749 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1750 struct net_device *dev = skb->dev;
1751 struct ethtool_drvinfo info = {};
1752
1753 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1754 dev->ethtool_ops->get_drvinfo(dev, &info);
1755
1756 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1757 "ip_summed=%d",
1758 info.driver, dev ? dev->features : 0L,
1759 skb->sk ? skb->sk->sk_route_caps : 0L,
1760 skb->len, skb->data_len, skb->ip_summed);
1761
1762 if (skb_header_cloned(skb) &&
1763 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1764 return ERR_PTR(err);
1765 }
1766
1767 rcu_read_lock();
1768 list_for_each_entry_rcu(ptype,
1769 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1770 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1771 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1772 err = ptype->gso_send_check(skb);
1773 segs = ERR_PTR(err);
1774 if (err || skb_gso_ok(skb, features))
1775 break;
1776 __skb_push(skb, (skb->data -
1777 skb_network_header(skb)));
1778 }
1779 segs = ptype->gso_segment(skb, features);
1780 break;
1781 }
1782 }
1783 rcu_read_unlock();
1784
1785 __skb_push(skb, skb->data - skb_mac_header(skb));
1786
1787 return segs;
1788 }
1789 EXPORT_SYMBOL(skb_gso_segment);
1790
1791 /* Take action when hardware reception checksum errors are detected. */
1792 #ifdef CONFIG_BUG
1793 void netdev_rx_csum_fault(struct net_device *dev)
1794 {
1795 if (net_ratelimit()) {
1796 printk(KERN_ERR "%s: hw csum failure.\n",
1797 dev ? dev->name : "<unknown>");
1798 dump_stack();
1799 }
1800 }
1801 EXPORT_SYMBOL(netdev_rx_csum_fault);
1802 #endif
1803
1804 /* Actually, we should eliminate this check as soon as we know, that:
1805 * 1. IOMMU is present and allows to map all the memory.
1806 * 2. No high memory really exists on this machine.
1807 */
1808
1809 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1810 {
1811 #ifdef CONFIG_HIGHMEM
1812 int i;
1813 if (!(dev->features & NETIF_F_HIGHDMA)) {
1814 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1815 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1816 return 1;
1817 }
1818
1819 if (PCI_DMA_BUS_IS_PHYS) {
1820 struct device *pdev = dev->dev.parent;
1821
1822 if (!pdev)
1823 return 0;
1824 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1825 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1826 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1827 return 1;
1828 }
1829 }
1830 #endif
1831 return 0;
1832 }
1833
1834 struct dev_gso_cb {
1835 void (*destructor)(struct sk_buff *skb);
1836 };
1837
1838 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1839
1840 static void dev_gso_skb_destructor(struct sk_buff *skb)
1841 {
1842 struct dev_gso_cb *cb;
1843
1844 do {
1845 struct sk_buff *nskb = skb->next;
1846
1847 skb->next = nskb->next;
1848 nskb->next = NULL;
1849 kfree_skb(nskb);
1850 } while (skb->next);
1851
1852 cb = DEV_GSO_CB(skb);
1853 if (cb->destructor)
1854 cb->destructor(skb);
1855 }
1856
1857 /**
1858 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1859 * @skb: buffer to segment
1860 *
1861 * This function segments the given skb and stores the list of segments
1862 * in skb->next.
1863 */
1864 static int dev_gso_segment(struct sk_buff *skb)
1865 {
1866 struct net_device *dev = skb->dev;
1867 struct sk_buff *segs;
1868 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1869 NETIF_F_SG : 0);
1870
1871 segs = skb_gso_segment(skb, features);
1872
1873 /* Verifying header integrity only. */
1874 if (!segs)
1875 return 0;
1876
1877 if (IS_ERR(segs))
1878 return PTR_ERR(segs);
1879
1880 skb->next = segs;
1881 DEV_GSO_CB(skb)->destructor = skb->destructor;
1882 skb->destructor = dev_gso_skb_destructor;
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * Try to orphan skb early, right before transmission by the device.
1889 * We cannot orphan skb if tx timestamp is requested, since
1890 * drivers need to call skb_tstamp_tx() to send the timestamp.
1891 */
1892 static inline void skb_orphan_try(struct sk_buff *skb)
1893 {
1894 if (!skb_tx(skb)->flags)
1895 skb_orphan(skb);
1896 }
1897
1898 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1899 struct netdev_queue *txq)
1900 {
1901 const struct net_device_ops *ops = dev->netdev_ops;
1902 int rc = NETDEV_TX_OK;
1903
1904 if (likely(!skb->next)) {
1905 if (!list_empty(&ptype_all))
1906 dev_queue_xmit_nit(skb, dev);
1907
1908 /*
1909 * If device doesnt need skb->dst, release it right now while
1910 * its hot in this cpu cache
1911 */
1912 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1913 skb_dst_drop(skb);
1914
1915 skb_orphan_try(skb);
1916
1917 if (netif_needs_gso(dev, skb)) {
1918 if (unlikely(dev_gso_segment(skb)))
1919 goto out_kfree_skb;
1920 if (skb->next)
1921 goto gso;
1922 }
1923
1924 rc = ops->ndo_start_xmit(skb, dev);
1925 if (rc == NETDEV_TX_OK)
1926 txq_trans_update(txq);
1927 return rc;
1928 }
1929
1930 gso:
1931 do {
1932 struct sk_buff *nskb = skb->next;
1933
1934 skb->next = nskb->next;
1935 nskb->next = NULL;
1936
1937 /*
1938 * If device doesnt need nskb->dst, release it right now while
1939 * its hot in this cpu cache
1940 */
1941 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1942 skb_dst_drop(nskb);
1943
1944 rc = ops->ndo_start_xmit(nskb, dev);
1945 if (unlikely(rc != NETDEV_TX_OK)) {
1946 if (rc & ~NETDEV_TX_MASK)
1947 goto out_kfree_gso_skb;
1948 nskb->next = skb->next;
1949 skb->next = nskb;
1950 return rc;
1951 }
1952 txq_trans_update(txq);
1953 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1954 return NETDEV_TX_BUSY;
1955 } while (skb->next);
1956
1957 out_kfree_gso_skb:
1958 if (likely(skb->next == NULL))
1959 skb->destructor = DEV_GSO_CB(skb)->destructor;
1960 out_kfree_skb:
1961 kfree_skb(skb);
1962 return rc;
1963 }
1964
1965 static u32 hashrnd __read_mostly;
1966
1967 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1968 {
1969 u32 hash;
1970
1971 if (skb_rx_queue_recorded(skb)) {
1972 hash = skb_get_rx_queue(skb);
1973 while (unlikely(hash >= dev->real_num_tx_queues))
1974 hash -= dev->real_num_tx_queues;
1975 return hash;
1976 }
1977
1978 if (skb->sk && skb->sk->sk_hash)
1979 hash = skb->sk->sk_hash;
1980 else
1981 hash = (__force u16) skb->protocol;
1982
1983 hash = jhash_1word(hash, hashrnd);
1984
1985 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1986 }
1987 EXPORT_SYMBOL(skb_tx_hash);
1988
1989 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1990 {
1991 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1992 if (net_ratelimit()) {
1993 pr_warning("%s selects TX queue %d, but "
1994 "real number of TX queues is %d\n",
1995 dev->name, queue_index, dev->real_num_tx_queues);
1996 }
1997 return 0;
1998 }
1999 return queue_index;
2000 }
2001
2002 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2003 struct sk_buff *skb)
2004 {
2005 u16 queue_index;
2006 struct sock *sk = skb->sk;
2007
2008 if (sk_tx_queue_recorded(sk)) {
2009 queue_index = sk_tx_queue_get(sk);
2010 } else {
2011 const struct net_device_ops *ops = dev->netdev_ops;
2012
2013 if (ops->ndo_select_queue) {
2014 queue_index = ops->ndo_select_queue(dev, skb);
2015 queue_index = dev_cap_txqueue(dev, queue_index);
2016 } else {
2017 queue_index = 0;
2018 if (dev->real_num_tx_queues > 1)
2019 queue_index = skb_tx_hash(dev, skb);
2020
2021 if (sk) {
2022 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2023
2024 if (dst && skb_dst(skb) == dst)
2025 sk_tx_queue_set(sk, queue_index);
2026 }
2027 }
2028 }
2029
2030 skb_set_queue_mapping(skb, queue_index);
2031 return netdev_get_tx_queue(dev, queue_index);
2032 }
2033
2034 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2035 struct net_device *dev,
2036 struct netdev_queue *txq)
2037 {
2038 spinlock_t *root_lock = qdisc_lock(q);
2039 bool contended = qdisc_is_running(q);
2040 int rc;
2041
2042 /*
2043 * Heuristic to force contended enqueues to serialize on a
2044 * separate lock before trying to get qdisc main lock.
2045 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2046 * and dequeue packets faster.
2047 */
2048 if (unlikely(contended))
2049 spin_lock(&q->busylock);
2050
2051 spin_lock(root_lock);
2052 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2053 kfree_skb(skb);
2054 rc = NET_XMIT_DROP;
2055 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2056 qdisc_run_begin(q)) {
2057 /*
2058 * This is a work-conserving queue; there are no old skbs
2059 * waiting to be sent out; and the qdisc is not running -
2060 * xmit the skb directly.
2061 */
2062 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2063 skb_dst_force(skb);
2064 __qdisc_update_bstats(q, skb->len);
2065 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2066 if (unlikely(contended)) {
2067 spin_unlock(&q->busylock);
2068 contended = false;
2069 }
2070 __qdisc_run(q);
2071 } else
2072 qdisc_run_end(q);
2073
2074 rc = NET_XMIT_SUCCESS;
2075 } else {
2076 skb_dst_force(skb);
2077 rc = qdisc_enqueue_root(skb, q);
2078 if (qdisc_run_begin(q)) {
2079 if (unlikely(contended)) {
2080 spin_unlock(&q->busylock);
2081 contended = false;
2082 }
2083 __qdisc_run(q);
2084 }
2085 }
2086 spin_unlock(root_lock);
2087 if (unlikely(contended))
2088 spin_unlock(&q->busylock);
2089 return rc;
2090 }
2091
2092 /*
2093 * Returns true if either:
2094 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2095 * 2. skb is fragmented and the device does not support SG, or if
2096 * at least one of fragments is in highmem and device does not
2097 * support DMA from it.
2098 */
2099 static inline int skb_needs_linearize(struct sk_buff *skb,
2100 struct net_device *dev)
2101 {
2102 return skb_is_nonlinear(skb) &&
2103 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2104 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2105 illegal_highdma(dev, skb))));
2106 }
2107
2108 /**
2109 * dev_queue_xmit - transmit a buffer
2110 * @skb: buffer to transmit
2111 *
2112 * Queue a buffer for transmission to a network device. The caller must
2113 * have set the device and priority and built the buffer before calling
2114 * this function. The function can be called from an interrupt.
2115 *
2116 * A negative errno code is returned on a failure. A success does not
2117 * guarantee the frame will be transmitted as it may be dropped due
2118 * to congestion or traffic shaping.
2119 *
2120 * -----------------------------------------------------------------------------------
2121 * I notice this method can also return errors from the queue disciplines,
2122 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2123 * be positive.
2124 *
2125 * Regardless of the return value, the skb is consumed, so it is currently
2126 * difficult to retry a send to this method. (You can bump the ref count
2127 * before sending to hold a reference for retry if you are careful.)
2128 *
2129 * When calling this method, interrupts MUST be enabled. This is because
2130 * the BH enable code must have IRQs enabled so that it will not deadlock.
2131 * --BLG
2132 */
2133 int dev_queue_xmit(struct sk_buff *skb)
2134 {
2135 struct net_device *dev = skb->dev;
2136 struct netdev_queue *txq;
2137 struct Qdisc *q;
2138 int rc = -ENOMEM;
2139
2140 /* GSO will handle the following emulations directly. */
2141 if (netif_needs_gso(dev, skb))
2142 goto gso;
2143
2144 /* Convert a paged skb to linear, if required */
2145 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2146 goto out_kfree_skb;
2147
2148 /* If packet is not checksummed and device does not support
2149 * checksumming for this protocol, complete checksumming here.
2150 */
2151 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2152 skb_set_transport_header(skb, skb->csum_start -
2153 skb_headroom(skb));
2154 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2155 goto out_kfree_skb;
2156 }
2157
2158 gso:
2159 /* Disable soft irqs for various locks below. Also
2160 * stops preemption for RCU.
2161 */
2162 rcu_read_lock_bh();
2163
2164 txq = dev_pick_tx(dev, skb);
2165 q = rcu_dereference_bh(txq->qdisc);
2166
2167 #ifdef CONFIG_NET_CLS_ACT
2168 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2169 #endif
2170 if (q->enqueue) {
2171 rc = __dev_xmit_skb(skb, q, dev, txq);
2172 goto out;
2173 }
2174
2175 /* The device has no queue. Common case for software devices:
2176 loopback, all the sorts of tunnels...
2177
2178 Really, it is unlikely that netif_tx_lock protection is necessary
2179 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2180 counters.)
2181 However, it is possible, that they rely on protection
2182 made by us here.
2183
2184 Check this and shot the lock. It is not prone from deadlocks.
2185 Either shot noqueue qdisc, it is even simpler 8)
2186 */
2187 if (dev->flags & IFF_UP) {
2188 int cpu = smp_processor_id(); /* ok because BHs are off */
2189
2190 if (txq->xmit_lock_owner != cpu) {
2191
2192 HARD_TX_LOCK(dev, txq, cpu);
2193
2194 if (!netif_tx_queue_stopped(txq)) {
2195 rc = dev_hard_start_xmit(skb, dev, txq);
2196 if (dev_xmit_complete(rc)) {
2197 HARD_TX_UNLOCK(dev, txq);
2198 goto out;
2199 }
2200 }
2201 HARD_TX_UNLOCK(dev, txq);
2202 if (net_ratelimit())
2203 printk(KERN_CRIT "Virtual device %s asks to "
2204 "queue packet!\n", dev->name);
2205 } else {
2206 /* Recursion is detected! It is possible,
2207 * unfortunately */
2208 if (net_ratelimit())
2209 printk(KERN_CRIT "Dead loop on virtual device "
2210 "%s, fix it urgently!\n", dev->name);
2211 }
2212 }
2213
2214 rc = -ENETDOWN;
2215 rcu_read_unlock_bh();
2216
2217 out_kfree_skb:
2218 kfree_skb(skb);
2219 return rc;
2220 out:
2221 rcu_read_unlock_bh();
2222 return rc;
2223 }
2224 EXPORT_SYMBOL(dev_queue_xmit);
2225
2226
2227 /*=======================================================================
2228 Receiver routines
2229 =======================================================================*/
2230
2231 int netdev_max_backlog __read_mostly = 1000;
2232 int netdev_tstamp_prequeue __read_mostly = 1;
2233 int netdev_budget __read_mostly = 300;
2234 int weight_p __read_mostly = 64; /* old backlog weight */
2235
2236 /* Called with irq disabled */
2237 static inline void ____napi_schedule(struct softnet_data *sd,
2238 struct napi_struct *napi)
2239 {
2240 list_add_tail(&napi->poll_list, &sd->poll_list);
2241 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2242 }
2243
2244 #ifdef CONFIG_RPS
2245
2246 /* One global table that all flow-based protocols share. */
2247 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2248 EXPORT_SYMBOL(rps_sock_flow_table);
2249
2250 /*
2251 * get_rps_cpu is called from netif_receive_skb and returns the target
2252 * CPU from the RPS map of the receiving queue for a given skb.
2253 * rcu_read_lock must be held on entry.
2254 */
2255 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2256 struct rps_dev_flow **rflowp)
2257 {
2258 struct ipv6hdr *ip6;
2259 struct iphdr *ip;
2260 struct netdev_rx_queue *rxqueue;
2261 struct rps_map *map;
2262 struct rps_dev_flow_table *flow_table;
2263 struct rps_sock_flow_table *sock_flow_table;
2264 int cpu = -1;
2265 u8 ip_proto;
2266 u16 tcpu;
2267 u32 addr1, addr2, ihl;
2268 union {
2269 u32 v32;
2270 u16 v16[2];
2271 } ports;
2272
2273 if (skb_rx_queue_recorded(skb)) {
2274 u16 index = skb_get_rx_queue(skb);
2275 if (unlikely(index >= dev->num_rx_queues)) {
2276 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2277 "on queue %u, but number of RX queues is %u\n",
2278 dev->name, index, dev->num_rx_queues);
2279 goto done;
2280 }
2281 rxqueue = dev->_rx + index;
2282 } else
2283 rxqueue = dev->_rx;
2284
2285 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2286 goto done;
2287
2288 if (skb->rxhash)
2289 goto got_hash; /* Skip hash computation on packet header */
2290
2291 switch (skb->protocol) {
2292 case __constant_htons(ETH_P_IP):
2293 if (!pskb_may_pull(skb, sizeof(*ip)))
2294 goto done;
2295
2296 ip = (struct iphdr *) skb->data;
2297 ip_proto = ip->protocol;
2298 addr1 = (__force u32) ip->saddr;
2299 addr2 = (__force u32) ip->daddr;
2300 ihl = ip->ihl;
2301 break;
2302 case __constant_htons(ETH_P_IPV6):
2303 if (!pskb_may_pull(skb, sizeof(*ip6)))
2304 goto done;
2305
2306 ip6 = (struct ipv6hdr *) skb->data;
2307 ip_proto = ip6->nexthdr;
2308 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2309 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2310 ihl = (40 >> 2);
2311 break;
2312 default:
2313 goto done;
2314 }
2315 switch (ip_proto) {
2316 case IPPROTO_TCP:
2317 case IPPROTO_UDP:
2318 case IPPROTO_DCCP:
2319 case IPPROTO_ESP:
2320 case IPPROTO_AH:
2321 case IPPROTO_SCTP:
2322 case IPPROTO_UDPLITE:
2323 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2324 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2325 if (ports.v16[1] < ports.v16[0])
2326 swap(ports.v16[0], ports.v16[1]);
2327 break;
2328 }
2329 default:
2330 ports.v32 = 0;
2331 break;
2332 }
2333
2334 /* get a consistent hash (same value on both flow directions) */
2335 if (addr2 < addr1)
2336 swap(addr1, addr2);
2337 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2338 if (!skb->rxhash)
2339 skb->rxhash = 1;
2340
2341 got_hash:
2342 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2343 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2344 if (flow_table && sock_flow_table) {
2345 u16 next_cpu;
2346 struct rps_dev_flow *rflow;
2347
2348 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2349 tcpu = rflow->cpu;
2350
2351 next_cpu = sock_flow_table->ents[skb->rxhash &
2352 sock_flow_table->mask];
2353
2354 /*
2355 * If the desired CPU (where last recvmsg was done) is
2356 * different from current CPU (one in the rx-queue flow
2357 * table entry), switch if one of the following holds:
2358 * - Current CPU is unset (equal to RPS_NO_CPU).
2359 * - Current CPU is offline.
2360 * - The current CPU's queue tail has advanced beyond the
2361 * last packet that was enqueued using this table entry.
2362 * This guarantees that all previous packets for the flow
2363 * have been dequeued, thus preserving in order delivery.
2364 */
2365 if (unlikely(tcpu != next_cpu) &&
2366 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2367 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2368 rflow->last_qtail)) >= 0)) {
2369 tcpu = rflow->cpu = next_cpu;
2370 if (tcpu != RPS_NO_CPU)
2371 rflow->last_qtail = per_cpu(softnet_data,
2372 tcpu).input_queue_head;
2373 }
2374 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2375 *rflowp = rflow;
2376 cpu = tcpu;
2377 goto done;
2378 }
2379 }
2380
2381 map = rcu_dereference(rxqueue->rps_map);
2382 if (map) {
2383 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2384
2385 if (cpu_online(tcpu)) {
2386 cpu = tcpu;
2387 goto done;
2388 }
2389 }
2390
2391 done:
2392 return cpu;
2393 }
2394
2395 /* Called from hardirq (IPI) context */
2396 static void rps_trigger_softirq(void *data)
2397 {
2398 struct softnet_data *sd = data;
2399
2400 ____napi_schedule(sd, &sd->backlog);
2401 sd->received_rps++;
2402 }
2403
2404 #endif /* CONFIG_RPS */
2405
2406 /*
2407 * Check if this softnet_data structure is another cpu one
2408 * If yes, queue it to our IPI list and return 1
2409 * If no, return 0
2410 */
2411 static int rps_ipi_queued(struct softnet_data *sd)
2412 {
2413 #ifdef CONFIG_RPS
2414 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2415
2416 if (sd != mysd) {
2417 sd->rps_ipi_next = mysd->rps_ipi_list;
2418 mysd->rps_ipi_list = sd;
2419
2420 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2421 return 1;
2422 }
2423 #endif /* CONFIG_RPS */
2424 return 0;
2425 }
2426
2427 /*
2428 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2429 * queue (may be a remote CPU queue).
2430 */
2431 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2432 unsigned int *qtail)
2433 {
2434 struct softnet_data *sd;
2435 unsigned long flags;
2436
2437 sd = &per_cpu(softnet_data, cpu);
2438
2439 local_irq_save(flags);
2440
2441 rps_lock(sd);
2442 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2443 if (skb_queue_len(&sd->input_pkt_queue)) {
2444 enqueue:
2445 __skb_queue_tail(&sd->input_pkt_queue, skb);
2446 input_queue_tail_incr_save(sd, qtail);
2447 rps_unlock(sd);
2448 local_irq_restore(flags);
2449 return NET_RX_SUCCESS;
2450 }
2451
2452 /* Schedule NAPI for backlog device
2453 * We can use non atomic operation since we own the queue lock
2454 */
2455 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2456 if (!rps_ipi_queued(sd))
2457 ____napi_schedule(sd, &sd->backlog);
2458 }
2459 goto enqueue;
2460 }
2461
2462 sd->dropped++;
2463 rps_unlock(sd);
2464
2465 local_irq_restore(flags);
2466
2467 kfree_skb(skb);
2468 return NET_RX_DROP;
2469 }
2470
2471 /**
2472 * netif_rx - post buffer to the network code
2473 * @skb: buffer to post
2474 *
2475 * This function receives a packet from a device driver and queues it for
2476 * the upper (protocol) levels to process. It always succeeds. The buffer
2477 * may be dropped during processing for congestion control or by the
2478 * protocol layers.
2479 *
2480 * return values:
2481 * NET_RX_SUCCESS (no congestion)
2482 * NET_RX_DROP (packet was dropped)
2483 *
2484 */
2485
2486 int netif_rx(struct sk_buff *skb)
2487 {
2488 int ret;
2489
2490 /* if netpoll wants it, pretend we never saw it */
2491 if (netpoll_rx(skb))
2492 return NET_RX_DROP;
2493
2494 if (netdev_tstamp_prequeue)
2495 net_timestamp_check(skb);
2496
2497 #ifdef CONFIG_RPS
2498 {
2499 struct rps_dev_flow voidflow, *rflow = &voidflow;
2500 int cpu;
2501
2502 rcu_read_lock();
2503
2504 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2505 if (cpu < 0)
2506 cpu = smp_processor_id();
2507
2508 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2509
2510 rcu_read_unlock();
2511 }
2512 #else
2513 {
2514 unsigned int qtail;
2515 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2516 put_cpu();
2517 }
2518 #endif
2519 return ret;
2520 }
2521 EXPORT_SYMBOL(netif_rx);
2522
2523 int netif_rx_ni(struct sk_buff *skb)
2524 {
2525 int err;
2526
2527 preempt_disable();
2528 err = netif_rx(skb);
2529 if (local_softirq_pending())
2530 do_softirq();
2531 preempt_enable();
2532
2533 return err;
2534 }
2535 EXPORT_SYMBOL(netif_rx_ni);
2536
2537 static void net_tx_action(struct softirq_action *h)
2538 {
2539 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2540
2541 if (sd->completion_queue) {
2542 struct sk_buff *clist;
2543
2544 local_irq_disable();
2545 clist = sd->completion_queue;
2546 sd->completion_queue = NULL;
2547 local_irq_enable();
2548
2549 while (clist) {
2550 struct sk_buff *skb = clist;
2551 clist = clist->next;
2552
2553 WARN_ON(atomic_read(&skb->users));
2554 __kfree_skb(skb);
2555 }
2556 }
2557
2558 if (sd->output_queue) {
2559 struct Qdisc *head;
2560
2561 local_irq_disable();
2562 head = sd->output_queue;
2563 sd->output_queue = NULL;
2564 sd->output_queue_tailp = &sd->output_queue;
2565 local_irq_enable();
2566
2567 while (head) {
2568 struct Qdisc *q = head;
2569 spinlock_t *root_lock;
2570
2571 head = head->next_sched;
2572
2573 root_lock = qdisc_lock(q);
2574 if (spin_trylock(root_lock)) {
2575 smp_mb__before_clear_bit();
2576 clear_bit(__QDISC_STATE_SCHED,
2577 &q->state);
2578 qdisc_run(q);
2579 spin_unlock(root_lock);
2580 } else {
2581 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2582 &q->state)) {
2583 __netif_reschedule(q);
2584 } else {
2585 smp_mb__before_clear_bit();
2586 clear_bit(__QDISC_STATE_SCHED,
2587 &q->state);
2588 }
2589 }
2590 }
2591 }
2592 }
2593
2594 static inline int deliver_skb(struct sk_buff *skb,
2595 struct packet_type *pt_prev,
2596 struct net_device *orig_dev)
2597 {
2598 atomic_inc(&skb->users);
2599 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2600 }
2601
2602 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2603 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2604 /* This hook is defined here for ATM LANE */
2605 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2606 unsigned char *addr) __read_mostly;
2607 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2608 #endif
2609
2610 #ifdef CONFIG_NET_CLS_ACT
2611 /* TODO: Maybe we should just force sch_ingress to be compiled in
2612 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2613 * a compare and 2 stores extra right now if we dont have it on
2614 * but have CONFIG_NET_CLS_ACT
2615 * NOTE: This doesnt stop any functionality; if you dont have
2616 * the ingress scheduler, you just cant add policies on ingress.
2617 *
2618 */
2619 static int ing_filter(struct sk_buff *skb)
2620 {
2621 struct net_device *dev = skb->dev;
2622 u32 ttl = G_TC_RTTL(skb->tc_verd);
2623 struct netdev_queue *rxq;
2624 int result = TC_ACT_OK;
2625 struct Qdisc *q;
2626
2627 if (MAX_RED_LOOP < ttl++) {
2628 printk(KERN_WARNING
2629 "Redir loop detected Dropping packet (%d->%d)\n",
2630 skb->skb_iif, dev->ifindex);
2631 return TC_ACT_SHOT;
2632 }
2633
2634 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2635 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2636
2637 rxq = &dev->rx_queue;
2638
2639 q = rxq->qdisc;
2640 if (q != &noop_qdisc) {
2641 spin_lock(qdisc_lock(q));
2642 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2643 result = qdisc_enqueue_root(skb, q);
2644 spin_unlock(qdisc_lock(q));
2645 }
2646
2647 return result;
2648 }
2649
2650 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2651 struct packet_type **pt_prev,
2652 int *ret, struct net_device *orig_dev)
2653 {
2654 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2655 goto out;
2656
2657 if (*pt_prev) {
2658 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2659 *pt_prev = NULL;
2660 }
2661
2662 switch (ing_filter(skb)) {
2663 case TC_ACT_SHOT:
2664 case TC_ACT_STOLEN:
2665 kfree_skb(skb);
2666 return NULL;
2667 }
2668
2669 out:
2670 skb->tc_verd = 0;
2671 return skb;
2672 }
2673 #endif
2674
2675 /*
2676 * netif_nit_deliver - deliver received packets to network taps
2677 * @skb: buffer
2678 *
2679 * This function is used to deliver incoming packets to network
2680 * taps. It should be used when the normal netif_receive_skb path
2681 * is bypassed, for example because of VLAN acceleration.
2682 */
2683 void netif_nit_deliver(struct sk_buff *skb)
2684 {
2685 struct packet_type *ptype;
2686
2687 if (list_empty(&ptype_all))
2688 return;
2689
2690 skb_reset_network_header(skb);
2691 skb_reset_transport_header(skb);
2692 skb->mac_len = skb->network_header - skb->mac_header;
2693
2694 rcu_read_lock();
2695 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2696 if (!ptype->dev || ptype->dev == skb->dev)
2697 deliver_skb(skb, ptype, skb->dev);
2698 }
2699 rcu_read_unlock();
2700 }
2701
2702 /**
2703 * netdev_rx_handler_register - register receive handler
2704 * @dev: device to register a handler for
2705 * @rx_handler: receive handler to register
2706 * @rx_handler_data: data pointer that is used by rx handler
2707 *
2708 * Register a receive hander for a device. This handler will then be
2709 * called from __netif_receive_skb. A negative errno code is returned
2710 * on a failure.
2711 *
2712 * The caller must hold the rtnl_mutex.
2713 */
2714 int netdev_rx_handler_register(struct net_device *dev,
2715 rx_handler_func_t *rx_handler,
2716 void *rx_handler_data)
2717 {
2718 ASSERT_RTNL();
2719
2720 if (dev->rx_handler)
2721 return -EBUSY;
2722
2723 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2724 rcu_assign_pointer(dev->rx_handler, rx_handler);
2725
2726 return 0;
2727 }
2728 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2729
2730 /**
2731 * netdev_rx_handler_unregister - unregister receive handler
2732 * @dev: device to unregister a handler from
2733 *
2734 * Unregister a receive hander from a device.
2735 *
2736 * The caller must hold the rtnl_mutex.
2737 */
2738 void netdev_rx_handler_unregister(struct net_device *dev)
2739 {
2740
2741 ASSERT_RTNL();
2742 rcu_assign_pointer(dev->rx_handler, NULL);
2743 rcu_assign_pointer(dev->rx_handler_data, NULL);
2744 }
2745 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2746
2747 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2748 struct net_device *master)
2749 {
2750 if (skb->pkt_type == PACKET_HOST) {
2751 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2752
2753 memcpy(dest, master->dev_addr, ETH_ALEN);
2754 }
2755 }
2756
2757 /* On bonding slaves other than the currently active slave, suppress
2758 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2759 * ARP on active-backup slaves with arp_validate enabled.
2760 */
2761 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2762 {
2763 struct net_device *dev = skb->dev;
2764
2765 if (master->priv_flags & IFF_MASTER_ARPMON)
2766 dev->last_rx = jiffies;
2767
2768 if ((master->priv_flags & IFF_MASTER_ALB) &&
2769 (master->priv_flags & IFF_BRIDGE_PORT)) {
2770 /* Do address unmangle. The local destination address
2771 * will be always the one master has. Provides the right
2772 * functionality in a bridge.
2773 */
2774 skb_bond_set_mac_by_master(skb, master);
2775 }
2776
2777 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2778 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2779 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2780 return 0;
2781
2782 if (master->priv_flags & IFF_MASTER_ALB) {
2783 if (skb->pkt_type != PACKET_BROADCAST &&
2784 skb->pkt_type != PACKET_MULTICAST)
2785 return 0;
2786 }
2787 if (master->priv_flags & IFF_MASTER_8023AD &&
2788 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2789 return 0;
2790
2791 return 1;
2792 }
2793 return 0;
2794 }
2795 EXPORT_SYMBOL(__skb_bond_should_drop);
2796
2797 static int __netif_receive_skb(struct sk_buff *skb)
2798 {
2799 struct packet_type *ptype, *pt_prev;
2800 rx_handler_func_t *rx_handler;
2801 struct net_device *orig_dev;
2802 struct net_device *master;
2803 struct net_device *null_or_orig;
2804 struct net_device *orig_or_bond;
2805 int ret = NET_RX_DROP;
2806 __be16 type;
2807
2808 if (!netdev_tstamp_prequeue)
2809 net_timestamp_check(skb);
2810
2811 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2812 return NET_RX_SUCCESS;
2813
2814 /* if we've gotten here through NAPI, check netpoll */
2815 if (netpoll_receive_skb(skb))
2816 return NET_RX_DROP;
2817
2818 if (!skb->skb_iif)
2819 skb->skb_iif = skb->dev->ifindex;
2820
2821 /*
2822 * bonding note: skbs received on inactive slaves should only
2823 * be delivered to pkt handlers that are exact matches. Also
2824 * the deliver_no_wcard flag will be set. If packet handlers
2825 * are sensitive to duplicate packets these skbs will need to
2826 * be dropped at the handler. The vlan accel path may have
2827 * already set the deliver_no_wcard flag.
2828 */
2829 null_or_orig = NULL;
2830 orig_dev = skb->dev;
2831 master = ACCESS_ONCE(orig_dev->master);
2832 if (skb->deliver_no_wcard)
2833 null_or_orig = orig_dev;
2834 else if (master) {
2835 if (skb_bond_should_drop(skb, master)) {
2836 skb->deliver_no_wcard = 1;
2837 null_or_orig = orig_dev; /* deliver only exact match */
2838 } else
2839 skb->dev = master;
2840 }
2841
2842 __this_cpu_inc(softnet_data.processed);
2843 skb_reset_network_header(skb);
2844 skb_reset_transport_header(skb);
2845 skb->mac_len = skb->network_header - skb->mac_header;
2846
2847 pt_prev = NULL;
2848
2849 rcu_read_lock();
2850
2851 #ifdef CONFIG_NET_CLS_ACT
2852 if (skb->tc_verd & TC_NCLS) {
2853 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2854 goto ncls;
2855 }
2856 #endif
2857
2858 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2859 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2860 ptype->dev == orig_dev) {
2861 if (pt_prev)
2862 ret = deliver_skb(skb, pt_prev, orig_dev);
2863 pt_prev = ptype;
2864 }
2865 }
2866
2867 #ifdef CONFIG_NET_CLS_ACT
2868 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2869 if (!skb)
2870 goto out;
2871 ncls:
2872 #endif
2873
2874 /* Handle special case of bridge or macvlan */
2875 rx_handler = rcu_dereference(skb->dev->rx_handler);
2876 if (rx_handler) {
2877 if (pt_prev) {
2878 ret = deliver_skb(skb, pt_prev, orig_dev);
2879 pt_prev = NULL;
2880 }
2881 skb = rx_handler(skb);
2882 if (!skb)
2883 goto out;
2884 }
2885
2886 /*
2887 * Make sure frames received on VLAN interfaces stacked on
2888 * bonding interfaces still make their way to any base bonding
2889 * device that may have registered for a specific ptype. The
2890 * handler may have to adjust skb->dev and orig_dev.
2891 */
2892 orig_or_bond = orig_dev;
2893 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2894 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2895 orig_or_bond = vlan_dev_real_dev(skb->dev);
2896 }
2897
2898 type = skb->protocol;
2899 list_for_each_entry_rcu(ptype,
2900 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2901 if (ptype->type == type && (ptype->dev == null_or_orig ||
2902 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2903 ptype->dev == orig_or_bond)) {
2904 if (pt_prev)
2905 ret = deliver_skb(skb, pt_prev, orig_dev);
2906 pt_prev = ptype;
2907 }
2908 }
2909
2910 if (pt_prev) {
2911 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2912 } else {
2913 kfree_skb(skb);
2914 /* Jamal, now you will not able to escape explaining
2915 * me how you were going to use this. :-)
2916 */
2917 ret = NET_RX_DROP;
2918 }
2919
2920 out:
2921 rcu_read_unlock();
2922 return ret;
2923 }
2924
2925 /**
2926 * netif_receive_skb - process receive buffer from network
2927 * @skb: buffer to process
2928 *
2929 * netif_receive_skb() is the main receive data processing function.
2930 * It always succeeds. The buffer may be dropped during processing
2931 * for congestion control or by the protocol layers.
2932 *
2933 * This function may only be called from softirq context and interrupts
2934 * should be enabled.
2935 *
2936 * Return values (usually ignored):
2937 * NET_RX_SUCCESS: no congestion
2938 * NET_RX_DROP: packet was dropped
2939 */
2940 int netif_receive_skb(struct sk_buff *skb)
2941 {
2942 if (netdev_tstamp_prequeue)
2943 net_timestamp_check(skb);
2944
2945 #ifdef CONFIG_RPS
2946 {
2947 struct rps_dev_flow voidflow, *rflow = &voidflow;
2948 int cpu, ret;
2949
2950 rcu_read_lock();
2951
2952 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2953
2954 if (cpu >= 0) {
2955 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2956 rcu_read_unlock();
2957 } else {
2958 rcu_read_unlock();
2959 ret = __netif_receive_skb(skb);
2960 }
2961
2962 return ret;
2963 }
2964 #else
2965 return __netif_receive_skb(skb);
2966 #endif
2967 }
2968 EXPORT_SYMBOL(netif_receive_skb);
2969
2970 /* Network device is going away, flush any packets still pending
2971 * Called with irqs disabled.
2972 */
2973 static void flush_backlog(void *arg)
2974 {
2975 struct net_device *dev = arg;
2976 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2977 struct sk_buff *skb, *tmp;
2978
2979 rps_lock(sd);
2980 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2981 if (skb->dev == dev) {
2982 __skb_unlink(skb, &sd->input_pkt_queue);
2983 kfree_skb(skb);
2984 input_queue_head_incr(sd);
2985 }
2986 }
2987 rps_unlock(sd);
2988
2989 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2990 if (skb->dev == dev) {
2991 __skb_unlink(skb, &sd->process_queue);
2992 kfree_skb(skb);
2993 input_queue_head_incr(sd);
2994 }
2995 }
2996 }
2997
2998 static int napi_gro_complete(struct sk_buff *skb)
2999 {
3000 struct packet_type *ptype;
3001 __be16 type = skb->protocol;
3002 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3003 int err = -ENOENT;
3004
3005 if (NAPI_GRO_CB(skb)->count == 1) {
3006 skb_shinfo(skb)->gso_size = 0;
3007 goto out;
3008 }
3009
3010 rcu_read_lock();
3011 list_for_each_entry_rcu(ptype, head, list) {
3012 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3013 continue;
3014
3015 err = ptype->gro_complete(skb);
3016 break;
3017 }
3018 rcu_read_unlock();
3019
3020 if (err) {
3021 WARN_ON(&ptype->list == head);
3022 kfree_skb(skb);
3023 return NET_RX_SUCCESS;
3024 }
3025
3026 out:
3027 return netif_receive_skb(skb);
3028 }
3029
3030 static void napi_gro_flush(struct napi_struct *napi)
3031 {
3032 struct sk_buff *skb, *next;
3033
3034 for (skb = napi->gro_list; skb; skb = next) {
3035 next = skb->next;
3036 skb->next = NULL;
3037 napi_gro_complete(skb);
3038 }
3039
3040 napi->gro_count = 0;
3041 napi->gro_list = NULL;
3042 }
3043
3044 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3045 {
3046 struct sk_buff **pp = NULL;
3047 struct packet_type *ptype;
3048 __be16 type = skb->protocol;
3049 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3050 int same_flow;
3051 int mac_len;
3052 enum gro_result ret;
3053
3054 if (!(skb->dev->features & NETIF_F_GRO))
3055 goto normal;
3056
3057 if (skb_is_gso(skb) || skb_has_frags(skb))
3058 goto normal;
3059
3060 rcu_read_lock();
3061 list_for_each_entry_rcu(ptype, head, list) {
3062 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3063 continue;
3064
3065 skb_set_network_header(skb, skb_gro_offset(skb));
3066 mac_len = skb->network_header - skb->mac_header;
3067 skb->mac_len = mac_len;
3068 NAPI_GRO_CB(skb)->same_flow = 0;
3069 NAPI_GRO_CB(skb)->flush = 0;
3070 NAPI_GRO_CB(skb)->free = 0;
3071
3072 pp = ptype->gro_receive(&napi->gro_list, skb);
3073 break;
3074 }
3075 rcu_read_unlock();
3076
3077 if (&ptype->list == head)
3078 goto normal;
3079
3080 same_flow = NAPI_GRO_CB(skb)->same_flow;
3081 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3082
3083 if (pp) {
3084 struct sk_buff *nskb = *pp;
3085
3086 *pp = nskb->next;
3087 nskb->next = NULL;
3088 napi_gro_complete(nskb);
3089 napi->gro_count--;
3090 }
3091
3092 if (same_flow)
3093 goto ok;
3094
3095 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3096 goto normal;
3097
3098 napi->gro_count++;
3099 NAPI_GRO_CB(skb)->count = 1;
3100 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3101 skb->next = napi->gro_list;
3102 napi->gro_list = skb;
3103 ret = GRO_HELD;
3104
3105 pull:
3106 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3107 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3108
3109 BUG_ON(skb->end - skb->tail < grow);
3110
3111 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3112
3113 skb->tail += grow;
3114 skb->data_len -= grow;
3115
3116 skb_shinfo(skb)->frags[0].page_offset += grow;
3117 skb_shinfo(skb)->frags[0].size -= grow;
3118
3119 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3120 put_page(skb_shinfo(skb)->frags[0].page);
3121 memmove(skb_shinfo(skb)->frags,
3122 skb_shinfo(skb)->frags + 1,
3123 --skb_shinfo(skb)->nr_frags);
3124 }
3125 }
3126
3127 ok:
3128 return ret;
3129
3130 normal:
3131 ret = GRO_NORMAL;
3132 goto pull;
3133 }
3134 EXPORT_SYMBOL(dev_gro_receive);
3135
3136 static gro_result_t
3137 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3138 {
3139 struct sk_buff *p;
3140
3141 if (netpoll_rx_on(skb))
3142 return GRO_NORMAL;
3143
3144 for (p = napi->gro_list; p; p = p->next) {
3145 NAPI_GRO_CB(p)->same_flow =
3146 (p->dev == skb->dev) &&
3147 !compare_ether_header(skb_mac_header(p),
3148 skb_gro_mac_header(skb));
3149 NAPI_GRO_CB(p)->flush = 0;
3150 }
3151
3152 return dev_gro_receive(napi, skb);
3153 }
3154
3155 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3156 {
3157 switch (ret) {
3158 case GRO_NORMAL:
3159 if (netif_receive_skb(skb))
3160 ret = GRO_DROP;
3161 break;
3162
3163 case GRO_DROP:
3164 case GRO_MERGED_FREE:
3165 kfree_skb(skb);
3166 break;
3167
3168 case GRO_HELD:
3169 case GRO_MERGED:
3170 break;
3171 }
3172
3173 return ret;
3174 }
3175 EXPORT_SYMBOL(napi_skb_finish);
3176
3177 void skb_gro_reset_offset(struct sk_buff *skb)
3178 {
3179 NAPI_GRO_CB(skb)->data_offset = 0;
3180 NAPI_GRO_CB(skb)->frag0 = NULL;
3181 NAPI_GRO_CB(skb)->frag0_len = 0;
3182
3183 if (skb->mac_header == skb->tail &&
3184 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3185 NAPI_GRO_CB(skb)->frag0 =
3186 page_address(skb_shinfo(skb)->frags[0].page) +
3187 skb_shinfo(skb)->frags[0].page_offset;
3188 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3189 }
3190 }
3191 EXPORT_SYMBOL(skb_gro_reset_offset);
3192
3193 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3194 {
3195 skb_gro_reset_offset(skb);
3196
3197 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3198 }
3199 EXPORT_SYMBOL(napi_gro_receive);
3200
3201 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3202 {
3203 __skb_pull(skb, skb_headlen(skb));
3204 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3205
3206 napi->skb = skb;
3207 }
3208 EXPORT_SYMBOL(napi_reuse_skb);
3209
3210 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3211 {
3212 struct sk_buff *skb = napi->skb;
3213
3214 if (!skb) {
3215 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3216 if (skb)
3217 napi->skb = skb;
3218 }
3219 return skb;
3220 }
3221 EXPORT_SYMBOL(napi_get_frags);
3222
3223 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3224 gro_result_t ret)
3225 {
3226 switch (ret) {
3227 case GRO_NORMAL:
3228 case GRO_HELD:
3229 skb->protocol = eth_type_trans(skb, skb->dev);
3230
3231 if (ret == GRO_HELD)
3232 skb_gro_pull(skb, -ETH_HLEN);
3233 else if (netif_receive_skb(skb))
3234 ret = GRO_DROP;
3235 break;
3236
3237 case GRO_DROP:
3238 case GRO_MERGED_FREE:
3239 napi_reuse_skb(napi, skb);
3240 break;
3241
3242 case GRO_MERGED:
3243 break;
3244 }
3245
3246 return ret;
3247 }
3248 EXPORT_SYMBOL(napi_frags_finish);
3249
3250 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3251 {
3252 struct sk_buff *skb = napi->skb;
3253 struct ethhdr *eth;
3254 unsigned int hlen;
3255 unsigned int off;
3256
3257 napi->skb = NULL;
3258
3259 skb_reset_mac_header(skb);
3260 skb_gro_reset_offset(skb);
3261
3262 off = skb_gro_offset(skb);
3263 hlen = off + sizeof(*eth);
3264 eth = skb_gro_header_fast(skb, off);
3265 if (skb_gro_header_hard(skb, hlen)) {
3266 eth = skb_gro_header_slow(skb, hlen, off);
3267 if (unlikely(!eth)) {
3268 napi_reuse_skb(napi, skb);
3269 skb = NULL;
3270 goto out;
3271 }
3272 }
3273
3274 skb_gro_pull(skb, sizeof(*eth));
3275
3276 /*
3277 * This works because the only protocols we care about don't require
3278 * special handling. We'll fix it up properly at the end.
3279 */
3280 skb->protocol = eth->h_proto;
3281
3282 out:
3283 return skb;
3284 }
3285 EXPORT_SYMBOL(napi_frags_skb);
3286
3287 gro_result_t napi_gro_frags(struct napi_struct *napi)
3288 {
3289 struct sk_buff *skb = napi_frags_skb(napi);
3290
3291 if (!skb)
3292 return GRO_DROP;
3293
3294 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3295 }
3296 EXPORT_SYMBOL(napi_gro_frags);
3297
3298 /*
3299 * net_rps_action sends any pending IPI's for rps.
3300 * Note: called with local irq disabled, but exits with local irq enabled.
3301 */
3302 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3303 {
3304 #ifdef CONFIG_RPS
3305 struct softnet_data *remsd = sd->rps_ipi_list;
3306
3307 if (remsd) {
3308 sd->rps_ipi_list = NULL;
3309
3310 local_irq_enable();
3311
3312 /* Send pending IPI's to kick RPS processing on remote cpus. */
3313 while (remsd) {
3314 struct softnet_data *next = remsd->rps_ipi_next;
3315
3316 if (cpu_online(remsd->cpu))
3317 __smp_call_function_single(remsd->cpu,
3318 &remsd->csd, 0);
3319 remsd = next;
3320 }
3321 } else
3322 #endif
3323 local_irq_enable();
3324 }
3325
3326 static int process_backlog(struct napi_struct *napi, int quota)
3327 {
3328 int work = 0;
3329 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3330
3331 #ifdef CONFIG_RPS
3332 /* Check if we have pending ipi, its better to send them now,
3333 * not waiting net_rx_action() end.
3334 */
3335 if (sd->rps_ipi_list) {
3336 local_irq_disable();
3337 net_rps_action_and_irq_enable(sd);
3338 }
3339 #endif
3340 napi->weight = weight_p;
3341 local_irq_disable();
3342 while (work < quota) {
3343 struct sk_buff *skb;
3344 unsigned int qlen;
3345
3346 while ((skb = __skb_dequeue(&sd->process_queue))) {
3347 local_irq_enable();
3348 __netif_receive_skb(skb);
3349 local_irq_disable();
3350 input_queue_head_incr(sd);
3351 if (++work >= quota) {
3352 local_irq_enable();
3353 return work;
3354 }
3355 }
3356
3357 rps_lock(sd);
3358 qlen = skb_queue_len(&sd->input_pkt_queue);
3359 if (qlen)
3360 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3361 &sd->process_queue);
3362
3363 if (qlen < quota - work) {
3364 /*
3365 * Inline a custom version of __napi_complete().
3366 * only current cpu owns and manipulates this napi,
3367 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3368 * we can use a plain write instead of clear_bit(),
3369 * and we dont need an smp_mb() memory barrier.
3370 */
3371 list_del(&napi->poll_list);
3372 napi->state = 0;
3373
3374 quota = work + qlen;
3375 }
3376 rps_unlock(sd);
3377 }
3378 local_irq_enable();
3379
3380 return work;
3381 }
3382
3383 /**
3384 * __napi_schedule - schedule for receive
3385 * @n: entry to schedule
3386 *
3387 * The entry's receive function will be scheduled to run
3388 */
3389 void __napi_schedule(struct napi_struct *n)
3390 {
3391 unsigned long flags;
3392
3393 local_irq_save(flags);
3394 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3395 local_irq_restore(flags);
3396 }
3397 EXPORT_SYMBOL(__napi_schedule);
3398
3399 void __napi_complete(struct napi_struct *n)
3400 {
3401 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3402 BUG_ON(n->gro_list);
3403
3404 list_del(&n->poll_list);
3405 smp_mb__before_clear_bit();
3406 clear_bit(NAPI_STATE_SCHED, &n->state);
3407 }
3408 EXPORT_SYMBOL(__napi_complete);
3409
3410 void napi_complete(struct napi_struct *n)
3411 {
3412 unsigned long flags;
3413
3414 /*
3415 * don't let napi dequeue from the cpu poll list
3416 * just in case its running on a different cpu
3417 */
3418 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3419 return;
3420
3421 napi_gro_flush(n);
3422 local_irq_save(flags);
3423 __napi_complete(n);
3424 local_irq_restore(flags);
3425 }
3426 EXPORT_SYMBOL(napi_complete);
3427
3428 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3429 int (*poll)(struct napi_struct *, int), int weight)
3430 {
3431 INIT_LIST_HEAD(&napi->poll_list);
3432 napi->gro_count = 0;
3433 napi->gro_list = NULL;
3434 napi->skb = NULL;
3435 napi->poll = poll;
3436 napi->weight = weight;
3437 list_add(&napi->dev_list, &dev->napi_list);
3438 napi->dev = dev;
3439 #ifdef CONFIG_NETPOLL
3440 spin_lock_init(&napi->poll_lock);
3441 napi->poll_owner = -1;
3442 #endif
3443 set_bit(NAPI_STATE_SCHED, &napi->state);
3444 }
3445 EXPORT_SYMBOL(netif_napi_add);
3446
3447 void netif_napi_del(struct napi_struct *napi)
3448 {
3449 struct sk_buff *skb, *next;
3450
3451 list_del_init(&napi->dev_list);
3452 napi_free_frags(napi);
3453
3454 for (skb = napi->gro_list; skb; skb = next) {
3455 next = skb->next;
3456 skb->next = NULL;
3457 kfree_skb(skb);
3458 }
3459
3460 napi->gro_list = NULL;
3461 napi->gro_count = 0;
3462 }
3463 EXPORT_SYMBOL(netif_napi_del);
3464
3465 static void net_rx_action(struct softirq_action *h)
3466 {
3467 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3468 unsigned long time_limit = jiffies + 2;
3469 int budget = netdev_budget;
3470 void *have;
3471
3472 local_irq_disable();
3473
3474 while (!list_empty(&sd->poll_list)) {
3475 struct napi_struct *n;
3476 int work, weight;
3477
3478 /* If softirq window is exhuasted then punt.
3479 * Allow this to run for 2 jiffies since which will allow
3480 * an average latency of 1.5/HZ.
3481 */
3482 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3483 goto softnet_break;
3484
3485 local_irq_enable();
3486
3487 /* Even though interrupts have been re-enabled, this
3488 * access is safe because interrupts can only add new
3489 * entries to the tail of this list, and only ->poll()
3490 * calls can remove this head entry from the list.
3491 */
3492 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3493
3494 have = netpoll_poll_lock(n);
3495
3496 weight = n->weight;
3497
3498 /* This NAPI_STATE_SCHED test is for avoiding a race
3499 * with netpoll's poll_napi(). Only the entity which
3500 * obtains the lock and sees NAPI_STATE_SCHED set will
3501 * actually make the ->poll() call. Therefore we avoid
3502 * accidently calling ->poll() when NAPI is not scheduled.
3503 */
3504 work = 0;
3505 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3506 work = n->poll(n, weight);
3507 trace_napi_poll(n);
3508 }
3509
3510 WARN_ON_ONCE(work > weight);
3511
3512 budget -= work;
3513
3514 local_irq_disable();
3515
3516 /* Drivers must not modify the NAPI state if they
3517 * consume the entire weight. In such cases this code
3518 * still "owns" the NAPI instance and therefore can
3519 * move the instance around on the list at-will.
3520 */
3521 if (unlikely(work == weight)) {
3522 if (unlikely(napi_disable_pending(n))) {
3523 local_irq_enable();
3524 napi_complete(n);
3525 local_irq_disable();
3526 } else
3527 list_move_tail(&n->poll_list, &sd->poll_list);
3528 }
3529
3530 netpoll_poll_unlock(have);
3531 }
3532 out:
3533 net_rps_action_and_irq_enable(sd);
3534
3535 #ifdef CONFIG_NET_DMA
3536 /*
3537 * There may not be any more sk_buffs coming right now, so push
3538 * any pending DMA copies to hardware
3539 */
3540 dma_issue_pending_all();
3541 #endif
3542
3543 return;
3544
3545 softnet_break:
3546 sd->time_squeeze++;
3547 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3548 goto out;
3549 }
3550
3551 static gifconf_func_t *gifconf_list[NPROTO];
3552
3553 /**
3554 * register_gifconf - register a SIOCGIF handler
3555 * @family: Address family
3556 * @gifconf: Function handler
3557 *
3558 * Register protocol dependent address dumping routines. The handler
3559 * that is passed must not be freed or reused until it has been replaced
3560 * by another handler.
3561 */
3562 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3563 {
3564 if (family >= NPROTO)
3565 return -EINVAL;
3566 gifconf_list[family] = gifconf;
3567 return 0;
3568 }
3569 EXPORT_SYMBOL(register_gifconf);
3570
3571
3572 /*
3573 * Map an interface index to its name (SIOCGIFNAME)
3574 */
3575
3576 /*
3577 * We need this ioctl for efficient implementation of the
3578 * if_indextoname() function required by the IPv6 API. Without
3579 * it, we would have to search all the interfaces to find a
3580 * match. --pb
3581 */
3582
3583 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3584 {
3585 struct net_device *dev;
3586 struct ifreq ifr;
3587
3588 /*
3589 * Fetch the caller's info block.
3590 */
3591
3592 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3593 return -EFAULT;
3594
3595 rcu_read_lock();
3596 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3597 if (!dev) {
3598 rcu_read_unlock();
3599 return -ENODEV;
3600 }
3601
3602 strcpy(ifr.ifr_name, dev->name);
3603 rcu_read_unlock();
3604
3605 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3606 return -EFAULT;
3607 return 0;
3608 }
3609
3610 /*
3611 * Perform a SIOCGIFCONF call. This structure will change
3612 * size eventually, and there is nothing I can do about it.
3613 * Thus we will need a 'compatibility mode'.
3614 */
3615
3616 static int dev_ifconf(struct net *net, char __user *arg)
3617 {
3618 struct ifconf ifc;
3619 struct net_device *dev;
3620 char __user *pos;
3621 int len;
3622 int total;
3623 int i;
3624
3625 /*
3626 * Fetch the caller's info block.
3627 */
3628
3629 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3630 return -EFAULT;
3631
3632 pos = ifc.ifc_buf;
3633 len = ifc.ifc_len;
3634
3635 /*
3636 * Loop over the interfaces, and write an info block for each.
3637 */
3638
3639 total = 0;
3640 for_each_netdev(net, dev) {
3641 for (i = 0; i < NPROTO; i++) {
3642 if (gifconf_list[i]) {
3643 int done;
3644 if (!pos)
3645 done = gifconf_list[i](dev, NULL, 0);
3646 else
3647 done = gifconf_list[i](dev, pos + total,
3648 len - total);
3649 if (done < 0)
3650 return -EFAULT;
3651 total += done;
3652 }
3653 }
3654 }
3655
3656 /*
3657 * All done. Write the updated control block back to the caller.
3658 */
3659 ifc.ifc_len = total;
3660
3661 /*
3662 * Both BSD and Solaris return 0 here, so we do too.
3663 */
3664 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3665 }
3666
3667 #ifdef CONFIG_PROC_FS
3668 /*
3669 * This is invoked by the /proc filesystem handler to display a device
3670 * in detail.
3671 */
3672 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3673 __acquires(RCU)
3674 {
3675 struct net *net = seq_file_net(seq);
3676 loff_t off;
3677 struct net_device *dev;
3678
3679 rcu_read_lock();
3680 if (!*pos)
3681 return SEQ_START_TOKEN;
3682
3683 off = 1;
3684 for_each_netdev_rcu(net, dev)
3685 if (off++ == *pos)
3686 return dev;
3687
3688 return NULL;
3689 }
3690
3691 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3692 {
3693 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3694 first_net_device(seq_file_net(seq)) :
3695 next_net_device((struct net_device *)v);
3696
3697 ++*pos;
3698 return rcu_dereference(dev);
3699 }
3700
3701 void dev_seq_stop(struct seq_file *seq, void *v)
3702 __releases(RCU)
3703 {
3704 rcu_read_unlock();
3705 }
3706
3707 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3708 {
3709 const struct rtnl_link_stats64 *stats = dev_get_stats(dev);
3710
3711 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3712 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3713 dev->name, stats->rx_bytes, stats->rx_packets,
3714 stats->rx_errors,
3715 stats->rx_dropped + stats->rx_missed_errors,
3716 stats->rx_fifo_errors,
3717 stats->rx_length_errors + stats->rx_over_errors +
3718 stats->rx_crc_errors + stats->rx_frame_errors,
3719 stats->rx_compressed, stats->multicast,
3720 stats->tx_bytes, stats->tx_packets,
3721 stats->tx_errors, stats->tx_dropped,
3722 stats->tx_fifo_errors, stats->collisions,
3723 stats->tx_carrier_errors +
3724 stats->tx_aborted_errors +
3725 stats->tx_window_errors +
3726 stats->tx_heartbeat_errors,
3727 stats->tx_compressed);
3728 }
3729
3730 /*
3731 * Called from the PROCfs module. This now uses the new arbitrary sized
3732 * /proc/net interface to create /proc/net/dev
3733 */
3734 static int dev_seq_show(struct seq_file *seq, void *v)
3735 {
3736 if (v == SEQ_START_TOKEN)
3737 seq_puts(seq, "Inter-| Receive "
3738 " | Transmit\n"
3739 " face |bytes packets errs drop fifo frame "
3740 "compressed multicast|bytes packets errs "
3741 "drop fifo colls carrier compressed\n");
3742 else
3743 dev_seq_printf_stats(seq, v);
3744 return 0;
3745 }
3746
3747 static struct softnet_data *softnet_get_online(loff_t *pos)
3748 {
3749 struct softnet_data *sd = NULL;
3750
3751 while (*pos < nr_cpu_ids)
3752 if (cpu_online(*pos)) {
3753 sd = &per_cpu(softnet_data, *pos);
3754 break;
3755 } else
3756 ++*pos;
3757 return sd;
3758 }
3759
3760 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3761 {
3762 return softnet_get_online(pos);
3763 }
3764
3765 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3766 {
3767 ++*pos;
3768 return softnet_get_online(pos);
3769 }
3770
3771 static void softnet_seq_stop(struct seq_file *seq, void *v)
3772 {
3773 }
3774
3775 static int softnet_seq_show(struct seq_file *seq, void *v)
3776 {
3777 struct softnet_data *sd = v;
3778
3779 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3780 sd->processed, sd->dropped, sd->time_squeeze, 0,
3781 0, 0, 0, 0, /* was fastroute */
3782 sd->cpu_collision, sd->received_rps);
3783 return 0;
3784 }
3785
3786 static const struct seq_operations dev_seq_ops = {
3787 .start = dev_seq_start,
3788 .next = dev_seq_next,
3789 .stop = dev_seq_stop,
3790 .show = dev_seq_show,
3791 };
3792
3793 static int dev_seq_open(struct inode *inode, struct file *file)
3794 {
3795 return seq_open_net(inode, file, &dev_seq_ops,
3796 sizeof(struct seq_net_private));
3797 }
3798
3799 static const struct file_operations dev_seq_fops = {
3800 .owner = THIS_MODULE,
3801 .open = dev_seq_open,
3802 .read = seq_read,
3803 .llseek = seq_lseek,
3804 .release = seq_release_net,
3805 };
3806
3807 static const struct seq_operations softnet_seq_ops = {
3808 .start = softnet_seq_start,
3809 .next = softnet_seq_next,
3810 .stop = softnet_seq_stop,
3811 .show = softnet_seq_show,
3812 };
3813
3814 static int softnet_seq_open(struct inode *inode, struct file *file)
3815 {
3816 return seq_open(file, &softnet_seq_ops);
3817 }
3818
3819 static const struct file_operations softnet_seq_fops = {
3820 .owner = THIS_MODULE,
3821 .open = softnet_seq_open,
3822 .read = seq_read,
3823 .llseek = seq_lseek,
3824 .release = seq_release,
3825 };
3826
3827 static void *ptype_get_idx(loff_t pos)
3828 {
3829 struct packet_type *pt = NULL;
3830 loff_t i = 0;
3831 int t;
3832
3833 list_for_each_entry_rcu(pt, &ptype_all, list) {
3834 if (i == pos)
3835 return pt;
3836 ++i;
3837 }
3838
3839 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3840 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3841 if (i == pos)
3842 return pt;
3843 ++i;
3844 }
3845 }
3846 return NULL;
3847 }
3848
3849 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3850 __acquires(RCU)
3851 {
3852 rcu_read_lock();
3853 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3854 }
3855
3856 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3857 {
3858 struct packet_type *pt;
3859 struct list_head *nxt;
3860 int hash;
3861
3862 ++*pos;
3863 if (v == SEQ_START_TOKEN)
3864 return ptype_get_idx(0);
3865
3866 pt = v;
3867 nxt = pt->list.next;
3868 if (pt->type == htons(ETH_P_ALL)) {
3869 if (nxt != &ptype_all)
3870 goto found;
3871 hash = 0;
3872 nxt = ptype_base[0].next;
3873 } else
3874 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3875
3876 while (nxt == &ptype_base[hash]) {
3877 if (++hash >= PTYPE_HASH_SIZE)
3878 return NULL;
3879 nxt = ptype_base[hash].next;
3880 }
3881 found:
3882 return list_entry(nxt, struct packet_type, list);
3883 }
3884
3885 static void ptype_seq_stop(struct seq_file *seq, void *v)
3886 __releases(RCU)
3887 {
3888 rcu_read_unlock();
3889 }
3890
3891 static int ptype_seq_show(struct seq_file *seq, void *v)
3892 {
3893 struct packet_type *pt = v;
3894
3895 if (v == SEQ_START_TOKEN)
3896 seq_puts(seq, "Type Device Function\n");
3897 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3898 if (pt->type == htons(ETH_P_ALL))
3899 seq_puts(seq, "ALL ");
3900 else
3901 seq_printf(seq, "%04x", ntohs(pt->type));
3902
3903 seq_printf(seq, " %-8s %pF\n",
3904 pt->dev ? pt->dev->name : "", pt->func);
3905 }
3906
3907 return 0;
3908 }
3909
3910 static const struct seq_operations ptype_seq_ops = {
3911 .start = ptype_seq_start,
3912 .next = ptype_seq_next,
3913 .stop = ptype_seq_stop,
3914 .show = ptype_seq_show,
3915 };
3916
3917 static int ptype_seq_open(struct inode *inode, struct file *file)
3918 {
3919 return seq_open_net(inode, file, &ptype_seq_ops,
3920 sizeof(struct seq_net_private));
3921 }
3922
3923 static const struct file_operations ptype_seq_fops = {
3924 .owner = THIS_MODULE,
3925 .open = ptype_seq_open,
3926 .read = seq_read,
3927 .llseek = seq_lseek,
3928 .release = seq_release_net,
3929 };
3930
3931
3932 static int __net_init dev_proc_net_init(struct net *net)
3933 {
3934 int rc = -ENOMEM;
3935
3936 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3937 goto out;
3938 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3939 goto out_dev;
3940 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3941 goto out_softnet;
3942
3943 if (wext_proc_init(net))
3944 goto out_ptype;
3945 rc = 0;
3946 out:
3947 return rc;
3948 out_ptype:
3949 proc_net_remove(net, "ptype");
3950 out_softnet:
3951 proc_net_remove(net, "softnet_stat");
3952 out_dev:
3953 proc_net_remove(net, "dev");
3954 goto out;
3955 }
3956
3957 static void __net_exit dev_proc_net_exit(struct net *net)
3958 {
3959 wext_proc_exit(net);
3960
3961 proc_net_remove(net, "ptype");
3962 proc_net_remove(net, "softnet_stat");
3963 proc_net_remove(net, "dev");
3964 }
3965
3966 static struct pernet_operations __net_initdata dev_proc_ops = {
3967 .init = dev_proc_net_init,
3968 .exit = dev_proc_net_exit,
3969 };
3970
3971 static int __init dev_proc_init(void)
3972 {
3973 return register_pernet_subsys(&dev_proc_ops);
3974 }
3975 #else
3976 #define dev_proc_init() 0
3977 #endif /* CONFIG_PROC_FS */
3978
3979
3980 /**
3981 * netdev_set_master - set up master/slave pair
3982 * @slave: slave device
3983 * @master: new master device
3984 *
3985 * Changes the master device of the slave. Pass %NULL to break the
3986 * bonding. The caller must hold the RTNL semaphore. On a failure
3987 * a negative errno code is returned. On success the reference counts
3988 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3989 * function returns zero.
3990 */
3991 int netdev_set_master(struct net_device *slave, struct net_device *master)
3992 {
3993 struct net_device *old = slave->master;
3994
3995 ASSERT_RTNL();
3996
3997 if (master) {
3998 if (old)
3999 return -EBUSY;
4000 dev_hold(master);
4001 }
4002
4003 slave->master = master;
4004
4005 if (old) {
4006 synchronize_net();
4007 dev_put(old);
4008 }
4009 if (master)
4010 slave->flags |= IFF_SLAVE;
4011 else
4012 slave->flags &= ~IFF_SLAVE;
4013
4014 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4015 return 0;
4016 }
4017 EXPORT_SYMBOL(netdev_set_master);
4018
4019 static void dev_change_rx_flags(struct net_device *dev, int flags)
4020 {
4021 const struct net_device_ops *ops = dev->netdev_ops;
4022
4023 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4024 ops->ndo_change_rx_flags(dev, flags);
4025 }
4026
4027 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4028 {
4029 unsigned short old_flags = dev->flags;
4030 uid_t uid;
4031 gid_t gid;
4032
4033 ASSERT_RTNL();
4034
4035 dev->flags |= IFF_PROMISC;
4036 dev->promiscuity += inc;
4037 if (dev->promiscuity == 0) {
4038 /*
4039 * Avoid overflow.
4040 * If inc causes overflow, untouch promisc and return error.
4041 */
4042 if (inc < 0)
4043 dev->flags &= ~IFF_PROMISC;
4044 else {
4045 dev->promiscuity -= inc;
4046 printk(KERN_WARNING "%s: promiscuity touches roof, "
4047 "set promiscuity failed, promiscuity feature "
4048 "of device might be broken.\n", dev->name);
4049 return -EOVERFLOW;
4050 }
4051 }
4052 if (dev->flags != old_flags) {
4053 printk(KERN_INFO "device %s %s promiscuous mode\n",
4054 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4055 "left");
4056 if (audit_enabled) {
4057 current_uid_gid(&uid, &gid);
4058 audit_log(current->audit_context, GFP_ATOMIC,
4059 AUDIT_ANOM_PROMISCUOUS,
4060 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4061 dev->name, (dev->flags & IFF_PROMISC),
4062 (old_flags & IFF_PROMISC),
4063 audit_get_loginuid(current),
4064 uid, gid,
4065 audit_get_sessionid(current));
4066 }
4067
4068 dev_change_rx_flags(dev, IFF_PROMISC);
4069 }
4070 return 0;
4071 }
4072
4073 /**
4074 * dev_set_promiscuity - update promiscuity count on a device
4075 * @dev: device
4076 * @inc: modifier
4077 *
4078 * Add or remove promiscuity from a device. While the count in the device
4079 * remains above zero the interface remains promiscuous. Once it hits zero
4080 * the device reverts back to normal filtering operation. A negative inc
4081 * value is used to drop promiscuity on the device.
4082 * Return 0 if successful or a negative errno code on error.
4083 */
4084 int dev_set_promiscuity(struct net_device *dev, int inc)
4085 {
4086 unsigned short old_flags = dev->flags;
4087 int err;
4088
4089 err = __dev_set_promiscuity(dev, inc);
4090 if (err < 0)
4091 return err;
4092 if (dev->flags != old_flags)
4093 dev_set_rx_mode(dev);
4094 return err;
4095 }
4096 EXPORT_SYMBOL(dev_set_promiscuity);
4097
4098 /**
4099 * dev_set_allmulti - update allmulti count on a device
4100 * @dev: device
4101 * @inc: modifier
4102 *
4103 * Add or remove reception of all multicast frames to a device. While the
4104 * count in the device remains above zero the interface remains listening
4105 * to all interfaces. Once it hits zero the device reverts back to normal
4106 * filtering operation. A negative @inc value is used to drop the counter
4107 * when releasing a resource needing all multicasts.
4108 * Return 0 if successful or a negative errno code on error.
4109 */
4110
4111 int dev_set_allmulti(struct net_device *dev, int inc)
4112 {
4113 unsigned short old_flags = dev->flags;
4114
4115 ASSERT_RTNL();
4116
4117 dev->flags |= IFF_ALLMULTI;
4118 dev->allmulti += inc;
4119 if (dev->allmulti == 0) {
4120 /*
4121 * Avoid overflow.
4122 * If inc causes overflow, untouch allmulti and return error.
4123 */
4124 if (inc < 0)
4125 dev->flags &= ~IFF_ALLMULTI;
4126 else {
4127 dev->allmulti -= inc;
4128 printk(KERN_WARNING "%s: allmulti touches roof, "
4129 "set allmulti failed, allmulti feature of "
4130 "device might be broken.\n", dev->name);
4131 return -EOVERFLOW;
4132 }
4133 }
4134 if (dev->flags ^ old_flags) {
4135 dev_change_rx_flags(dev, IFF_ALLMULTI);
4136 dev_set_rx_mode(dev);
4137 }
4138 return 0;
4139 }
4140 EXPORT_SYMBOL(dev_set_allmulti);
4141
4142 /*
4143 * Upload unicast and multicast address lists to device and
4144 * configure RX filtering. When the device doesn't support unicast
4145 * filtering it is put in promiscuous mode while unicast addresses
4146 * are present.
4147 */
4148 void __dev_set_rx_mode(struct net_device *dev)
4149 {
4150 const struct net_device_ops *ops = dev->netdev_ops;
4151
4152 /* dev_open will call this function so the list will stay sane. */
4153 if (!(dev->flags&IFF_UP))
4154 return;
4155
4156 if (!netif_device_present(dev))
4157 return;
4158
4159 if (ops->ndo_set_rx_mode)
4160 ops->ndo_set_rx_mode(dev);
4161 else {
4162 /* Unicast addresses changes may only happen under the rtnl,
4163 * therefore calling __dev_set_promiscuity here is safe.
4164 */
4165 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4166 __dev_set_promiscuity(dev, 1);
4167 dev->uc_promisc = 1;
4168 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4169 __dev_set_promiscuity(dev, -1);
4170 dev->uc_promisc = 0;
4171 }
4172
4173 if (ops->ndo_set_multicast_list)
4174 ops->ndo_set_multicast_list(dev);
4175 }
4176 }
4177
4178 void dev_set_rx_mode(struct net_device *dev)
4179 {
4180 netif_addr_lock_bh(dev);
4181 __dev_set_rx_mode(dev);
4182 netif_addr_unlock_bh(dev);
4183 }
4184
4185 /**
4186 * dev_get_flags - get flags reported to userspace
4187 * @dev: device
4188 *
4189 * Get the combination of flag bits exported through APIs to userspace.
4190 */
4191 unsigned dev_get_flags(const struct net_device *dev)
4192 {
4193 unsigned flags;
4194
4195 flags = (dev->flags & ~(IFF_PROMISC |
4196 IFF_ALLMULTI |
4197 IFF_RUNNING |
4198 IFF_LOWER_UP |
4199 IFF_DORMANT)) |
4200 (dev->gflags & (IFF_PROMISC |
4201 IFF_ALLMULTI));
4202
4203 if (netif_running(dev)) {
4204 if (netif_oper_up(dev))
4205 flags |= IFF_RUNNING;
4206 if (netif_carrier_ok(dev))
4207 flags |= IFF_LOWER_UP;
4208 if (netif_dormant(dev))
4209 flags |= IFF_DORMANT;
4210 }
4211
4212 return flags;
4213 }
4214 EXPORT_SYMBOL(dev_get_flags);
4215
4216 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4217 {
4218 int old_flags = dev->flags;
4219 int ret;
4220
4221 ASSERT_RTNL();
4222
4223 /*
4224 * Set the flags on our device.
4225 */
4226
4227 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4228 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4229 IFF_AUTOMEDIA)) |
4230 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4231 IFF_ALLMULTI));
4232
4233 /*
4234 * Load in the correct multicast list now the flags have changed.
4235 */
4236
4237 if ((old_flags ^ flags) & IFF_MULTICAST)
4238 dev_change_rx_flags(dev, IFF_MULTICAST);
4239
4240 dev_set_rx_mode(dev);
4241
4242 /*
4243 * Have we downed the interface. We handle IFF_UP ourselves
4244 * according to user attempts to set it, rather than blindly
4245 * setting it.
4246 */
4247
4248 ret = 0;
4249 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4250 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4251
4252 if (!ret)
4253 dev_set_rx_mode(dev);
4254 }
4255
4256 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4257 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4258
4259 dev->gflags ^= IFF_PROMISC;
4260 dev_set_promiscuity(dev, inc);
4261 }
4262
4263 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4264 is important. Some (broken) drivers set IFF_PROMISC, when
4265 IFF_ALLMULTI is requested not asking us and not reporting.
4266 */
4267 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4268 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4269
4270 dev->gflags ^= IFF_ALLMULTI;
4271 dev_set_allmulti(dev, inc);
4272 }
4273
4274 return ret;
4275 }
4276
4277 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4278 {
4279 unsigned int changes = dev->flags ^ old_flags;
4280
4281 if (changes & IFF_UP) {
4282 if (dev->flags & IFF_UP)
4283 call_netdevice_notifiers(NETDEV_UP, dev);
4284 else
4285 call_netdevice_notifiers(NETDEV_DOWN, dev);
4286 }
4287
4288 if (dev->flags & IFF_UP &&
4289 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4290 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4291 }
4292
4293 /**
4294 * dev_change_flags - change device settings
4295 * @dev: device
4296 * @flags: device state flags
4297 *
4298 * Change settings on device based state flags. The flags are
4299 * in the userspace exported format.
4300 */
4301 int dev_change_flags(struct net_device *dev, unsigned flags)
4302 {
4303 int ret, changes;
4304 int old_flags = dev->flags;
4305
4306 ret = __dev_change_flags(dev, flags);
4307 if (ret < 0)
4308 return ret;
4309
4310 changes = old_flags ^ dev->flags;
4311 if (changes)
4312 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4313
4314 __dev_notify_flags(dev, old_flags);
4315 return ret;
4316 }
4317 EXPORT_SYMBOL(dev_change_flags);
4318
4319 /**
4320 * dev_set_mtu - Change maximum transfer unit
4321 * @dev: device
4322 * @new_mtu: new transfer unit
4323 *
4324 * Change the maximum transfer size of the network device.
4325 */
4326 int dev_set_mtu(struct net_device *dev, int new_mtu)
4327 {
4328 const struct net_device_ops *ops = dev->netdev_ops;
4329 int err;
4330
4331 if (new_mtu == dev->mtu)
4332 return 0;
4333
4334 /* MTU must be positive. */
4335 if (new_mtu < 0)
4336 return -EINVAL;
4337
4338 if (!netif_device_present(dev))
4339 return -ENODEV;
4340
4341 err = 0;
4342 if (ops->ndo_change_mtu)
4343 err = ops->ndo_change_mtu(dev, new_mtu);
4344 else
4345 dev->mtu = new_mtu;
4346
4347 if (!err && dev->flags & IFF_UP)
4348 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4349 return err;
4350 }
4351 EXPORT_SYMBOL(dev_set_mtu);
4352
4353 /**
4354 * dev_set_mac_address - Change Media Access Control Address
4355 * @dev: device
4356 * @sa: new address
4357 *
4358 * Change the hardware (MAC) address of the device
4359 */
4360 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4361 {
4362 const struct net_device_ops *ops = dev->netdev_ops;
4363 int err;
4364
4365 if (!ops->ndo_set_mac_address)
4366 return -EOPNOTSUPP;
4367 if (sa->sa_family != dev->type)
4368 return -EINVAL;
4369 if (!netif_device_present(dev))
4370 return -ENODEV;
4371 err = ops->ndo_set_mac_address(dev, sa);
4372 if (!err)
4373 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4374 return err;
4375 }
4376 EXPORT_SYMBOL(dev_set_mac_address);
4377
4378 /*
4379 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4380 */
4381 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4382 {
4383 int err;
4384 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4385
4386 if (!dev)
4387 return -ENODEV;
4388
4389 switch (cmd) {
4390 case SIOCGIFFLAGS: /* Get interface flags */
4391 ifr->ifr_flags = (short) dev_get_flags(dev);
4392 return 0;
4393
4394 case SIOCGIFMETRIC: /* Get the metric on the interface
4395 (currently unused) */
4396 ifr->ifr_metric = 0;
4397 return 0;
4398
4399 case SIOCGIFMTU: /* Get the MTU of a device */
4400 ifr->ifr_mtu = dev->mtu;
4401 return 0;
4402
4403 case SIOCGIFHWADDR:
4404 if (!dev->addr_len)
4405 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4406 else
4407 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4408 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4409 ifr->ifr_hwaddr.sa_family = dev->type;
4410 return 0;
4411
4412 case SIOCGIFSLAVE:
4413 err = -EINVAL;
4414 break;
4415
4416 case SIOCGIFMAP:
4417 ifr->ifr_map.mem_start = dev->mem_start;
4418 ifr->ifr_map.mem_end = dev->mem_end;
4419 ifr->ifr_map.base_addr = dev->base_addr;
4420 ifr->ifr_map.irq = dev->irq;
4421 ifr->ifr_map.dma = dev->dma;
4422 ifr->ifr_map.port = dev->if_port;
4423 return 0;
4424
4425 case SIOCGIFINDEX:
4426 ifr->ifr_ifindex = dev->ifindex;
4427 return 0;
4428
4429 case SIOCGIFTXQLEN:
4430 ifr->ifr_qlen = dev->tx_queue_len;
4431 return 0;
4432
4433 default:
4434 /* dev_ioctl() should ensure this case
4435 * is never reached
4436 */
4437 WARN_ON(1);
4438 err = -EINVAL;
4439 break;
4440
4441 }
4442 return err;
4443 }
4444
4445 /*
4446 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4447 */
4448 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4449 {
4450 int err;
4451 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4452 const struct net_device_ops *ops;
4453
4454 if (!dev)
4455 return -ENODEV;
4456
4457 ops = dev->netdev_ops;
4458
4459 switch (cmd) {
4460 case SIOCSIFFLAGS: /* Set interface flags */
4461 return dev_change_flags(dev, ifr->ifr_flags);
4462
4463 case SIOCSIFMETRIC: /* Set the metric on the interface
4464 (currently unused) */
4465 return -EOPNOTSUPP;
4466
4467 case SIOCSIFMTU: /* Set the MTU of a device */
4468 return dev_set_mtu(dev, ifr->ifr_mtu);
4469
4470 case SIOCSIFHWADDR:
4471 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4472
4473 case SIOCSIFHWBROADCAST:
4474 if (ifr->ifr_hwaddr.sa_family != dev->type)
4475 return -EINVAL;
4476 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4477 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4478 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4479 return 0;
4480
4481 case SIOCSIFMAP:
4482 if (ops->ndo_set_config) {
4483 if (!netif_device_present(dev))
4484 return -ENODEV;
4485 return ops->ndo_set_config(dev, &ifr->ifr_map);
4486 }
4487 return -EOPNOTSUPP;
4488
4489 case SIOCADDMULTI:
4490 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4491 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4492 return -EINVAL;
4493 if (!netif_device_present(dev))
4494 return -ENODEV;
4495 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4496
4497 case SIOCDELMULTI:
4498 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4499 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4500 return -EINVAL;
4501 if (!netif_device_present(dev))
4502 return -ENODEV;
4503 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4504
4505 case SIOCSIFTXQLEN:
4506 if (ifr->ifr_qlen < 0)
4507 return -EINVAL;
4508 dev->tx_queue_len = ifr->ifr_qlen;
4509 return 0;
4510
4511 case SIOCSIFNAME:
4512 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4513 return dev_change_name(dev, ifr->ifr_newname);
4514
4515 /*
4516 * Unknown or private ioctl
4517 */
4518 default:
4519 if ((cmd >= SIOCDEVPRIVATE &&
4520 cmd <= SIOCDEVPRIVATE + 15) ||
4521 cmd == SIOCBONDENSLAVE ||
4522 cmd == SIOCBONDRELEASE ||
4523 cmd == SIOCBONDSETHWADDR ||
4524 cmd == SIOCBONDSLAVEINFOQUERY ||
4525 cmd == SIOCBONDINFOQUERY ||
4526 cmd == SIOCBONDCHANGEACTIVE ||
4527 cmd == SIOCGMIIPHY ||
4528 cmd == SIOCGMIIREG ||
4529 cmd == SIOCSMIIREG ||
4530 cmd == SIOCBRADDIF ||
4531 cmd == SIOCBRDELIF ||
4532 cmd == SIOCSHWTSTAMP ||
4533 cmd == SIOCWANDEV) {
4534 err = -EOPNOTSUPP;
4535 if (ops->ndo_do_ioctl) {
4536 if (netif_device_present(dev))
4537 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4538 else
4539 err = -ENODEV;
4540 }
4541 } else
4542 err = -EINVAL;
4543
4544 }
4545 return err;
4546 }
4547
4548 /*
4549 * This function handles all "interface"-type I/O control requests. The actual
4550 * 'doing' part of this is dev_ifsioc above.
4551 */
4552
4553 /**
4554 * dev_ioctl - network device ioctl
4555 * @net: the applicable net namespace
4556 * @cmd: command to issue
4557 * @arg: pointer to a struct ifreq in user space
4558 *
4559 * Issue ioctl functions to devices. This is normally called by the
4560 * user space syscall interfaces but can sometimes be useful for
4561 * other purposes. The return value is the return from the syscall if
4562 * positive or a negative errno code on error.
4563 */
4564
4565 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4566 {
4567 struct ifreq ifr;
4568 int ret;
4569 char *colon;
4570
4571 /* One special case: SIOCGIFCONF takes ifconf argument
4572 and requires shared lock, because it sleeps writing
4573 to user space.
4574 */
4575
4576 if (cmd == SIOCGIFCONF) {
4577 rtnl_lock();
4578 ret = dev_ifconf(net, (char __user *) arg);
4579 rtnl_unlock();
4580 return ret;
4581 }
4582 if (cmd == SIOCGIFNAME)
4583 return dev_ifname(net, (struct ifreq __user *)arg);
4584
4585 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4586 return -EFAULT;
4587
4588 ifr.ifr_name[IFNAMSIZ-1] = 0;
4589
4590 colon = strchr(ifr.ifr_name, ':');
4591 if (colon)
4592 *colon = 0;
4593
4594 /*
4595 * See which interface the caller is talking about.
4596 */
4597
4598 switch (cmd) {
4599 /*
4600 * These ioctl calls:
4601 * - can be done by all.
4602 * - atomic and do not require locking.
4603 * - return a value
4604 */
4605 case SIOCGIFFLAGS:
4606 case SIOCGIFMETRIC:
4607 case SIOCGIFMTU:
4608 case SIOCGIFHWADDR:
4609 case SIOCGIFSLAVE:
4610 case SIOCGIFMAP:
4611 case SIOCGIFINDEX:
4612 case SIOCGIFTXQLEN:
4613 dev_load(net, ifr.ifr_name);
4614 rcu_read_lock();
4615 ret = dev_ifsioc_locked(net, &ifr, cmd);
4616 rcu_read_unlock();
4617 if (!ret) {
4618 if (colon)
4619 *colon = ':';
4620 if (copy_to_user(arg, &ifr,
4621 sizeof(struct ifreq)))
4622 ret = -EFAULT;
4623 }
4624 return ret;
4625
4626 case SIOCETHTOOL:
4627 dev_load(net, ifr.ifr_name);
4628 rtnl_lock();
4629 ret = dev_ethtool(net, &ifr);
4630 rtnl_unlock();
4631 if (!ret) {
4632 if (colon)
4633 *colon = ':';
4634 if (copy_to_user(arg, &ifr,
4635 sizeof(struct ifreq)))
4636 ret = -EFAULT;
4637 }
4638 return ret;
4639
4640 /*
4641 * These ioctl calls:
4642 * - require superuser power.
4643 * - require strict serialization.
4644 * - return a value
4645 */
4646 case SIOCGMIIPHY:
4647 case SIOCGMIIREG:
4648 case SIOCSIFNAME:
4649 if (!capable(CAP_NET_ADMIN))
4650 return -EPERM;
4651 dev_load(net, ifr.ifr_name);
4652 rtnl_lock();
4653 ret = dev_ifsioc(net, &ifr, cmd);
4654 rtnl_unlock();
4655 if (!ret) {
4656 if (colon)
4657 *colon = ':';
4658 if (copy_to_user(arg, &ifr,
4659 sizeof(struct ifreq)))
4660 ret = -EFAULT;
4661 }
4662 return ret;
4663
4664 /*
4665 * These ioctl calls:
4666 * - require superuser power.
4667 * - require strict serialization.
4668 * - do not return a value
4669 */
4670 case SIOCSIFFLAGS:
4671 case SIOCSIFMETRIC:
4672 case SIOCSIFMTU:
4673 case SIOCSIFMAP:
4674 case SIOCSIFHWADDR:
4675 case SIOCSIFSLAVE:
4676 case SIOCADDMULTI:
4677 case SIOCDELMULTI:
4678 case SIOCSIFHWBROADCAST:
4679 case SIOCSIFTXQLEN:
4680 case SIOCSMIIREG:
4681 case SIOCBONDENSLAVE:
4682 case SIOCBONDRELEASE:
4683 case SIOCBONDSETHWADDR:
4684 case SIOCBONDCHANGEACTIVE:
4685 case SIOCBRADDIF:
4686 case SIOCBRDELIF:
4687 case SIOCSHWTSTAMP:
4688 if (!capable(CAP_NET_ADMIN))
4689 return -EPERM;
4690 /* fall through */
4691 case SIOCBONDSLAVEINFOQUERY:
4692 case SIOCBONDINFOQUERY:
4693 dev_load(net, ifr.ifr_name);
4694 rtnl_lock();
4695 ret = dev_ifsioc(net, &ifr, cmd);
4696 rtnl_unlock();
4697 return ret;
4698
4699 case SIOCGIFMEM:
4700 /* Get the per device memory space. We can add this but
4701 * currently do not support it */
4702 case SIOCSIFMEM:
4703 /* Set the per device memory buffer space.
4704 * Not applicable in our case */
4705 case SIOCSIFLINK:
4706 return -EINVAL;
4707
4708 /*
4709 * Unknown or private ioctl.
4710 */
4711 default:
4712 if (cmd == SIOCWANDEV ||
4713 (cmd >= SIOCDEVPRIVATE &&
4714 cmd <= SIOCDEVPRIVATE + 15)) {
4715 dev_load(net, ifr.ifr_name);
4716 rtnl_lock();
4717 ret = dev_ifsioc(net, &ifr, cmd);
4718 rtnl_unlock();
4719 if (!ret && copy_to_user(arg, &ifr,
4720 sizeof(struct ifreq)))
4721 ret = -EFAULT;
4722 return ret;
4723 }
4724 /* Take care of Wireless Extensions */
4725 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4726 return wext_handle_ioctl(net, &ifr, cmd, arg);
4727 return -EINVAL;
4728 }
4729 }
4730
4731
4732 /**
4733 * dev_new_index - allocate an ifindex
4734 * @net: the applicable net namespace
4735 *
4736 * Returns a suitable unique value for a new device interface
4737 * number. The caller must hold the rtnl semaphore or the
4738 * dev_base_lock to be sure it remains unique.
4739 */
4740 static int dev_new_index(struct net *net)
4741 {
4742 static int ifindex;
4743 for (;;) {
4744 if (++ifindex <= 0)
4745 ifindex = 1;
4746 if (!__dev_get_by_index(net, ifindex))
4747 return ifindex;
4748 }
4749 }
4750
4751 /* Delayed registration/unregisteration */
4752 static LIST_HEAD(net_todo_list);
4753
4754 static void net_set_todo(struct net_device *dev)
4755 {
4756 list_add_tail(&dev->todo_list, &net_todo_list);
4757 }
4758
4759 static void rollback_registered_many(struct list_head *head)
4760 {
4761 struct net_device *dev, *tmp;
4762
4763 BUG_ON(dev_boot_phase);
4764 ASSERT_RTNL();
4765
4766 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4767 /* Some devices call without registering
4768 * for initialization unwind. Remove those
4769 * devices and proceed with the remaining.
4770 */
4771 if (dev->reg_state == NETREG_UNINITIALIZED) {
4772 pr_debug("unregister_netdevice: device %s/%p never "
4773 "was registered\n", dev->name, dev);
4774
4775 WARN_ON(1);
4776 list_del(&dev->unreg_list);
4777 continue;
4778 }
4779
4780 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4781
4782 /* If device is running, close it first. */
4783 dev_close(dev);
4784
4785 /* And unlink it from device chain. */
4786 unlist_netdevice(dev);
4787
4788 dev->reg_state = NETREG_UNREGISTERING;
4789 }
4790
4791 synchronize_net();
4792
4793 list_for_each_entry(dev, head, unreg_list) {
4794 /* Shutdown queueing discipline. */
4795 dev_shutdown(dev);
4796
4797
4798 /* Notify protocols, that we are about to destroy
4799 this device. They should clean all the things.
4800 */
4801 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4802
4803 if (!dev->rtnl_link_ops ||
4804 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4805 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4806
4807 /*
4808 * Flush the unicast and multicast chains
4809 */
4810 dev_uc_flush(dev);
4811 dev_mc_flush(dev);
4812
4813 if (dev->netdev_ops->ndo_uninit)
4814 dev->netdev_ops->ndo_uninit(dev);
4815
4816 /* Notifier chain MUST detach us from master device. */
4817 WARN_ON(dev->master);
4818
4819 /* Remove entries from kobject tree */
4820 netdev_unregister_kobject(dev);
4821 }
4822
4823 /* Process any work delayed until the end of the batch */
4824 dev = list_first_entry(head, struct net_device, unreg_list);
4825 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4826
4827 synchronize_net();
4828
4829 list_for_each_entry(dev, head, unreg_list)
4830 dev_put(dev);
4831 }
4832
4833 static void rollback_registered(struct net_device *dev)
4834 {
4835 LIST_HEAD(single);
4836
4837 list_add(&dev->unreg_list, &single);
4838 rollback_registered_many(&single);
4839 }
4840
4841 static void __netdev_init_queue_locks_one(struct net_device *dev,
4842 struct netdev_queue *dev_queue,
4843 void *_unused)
4844 {
4845 spin_lock_init(&dev_queue->_xmit_lock);
4846 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4847 dev_queue->xmit_lock_owner = -1;
4848 }
4849
4850 static void netdev_init_queue_locks(struct net_device *dev)
4851 {
4852 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4853 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4854 }
4855
4856 unsigned long netdev_fix_features(unsigned long features, const char *name)
4857 {
4858 /* Fix illegal SG+CSUM combinations. */
4859 if ((features & NETIF_F_SG) &&
4860 !(features & NETIF_F_ALL_CSUM)) {
4861 if (name)
4862 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4863 "checksum feature.\n", name);
4864 features &= ~NETIF_F_SG;
4865 }
4866
4867 /* TSO requires that SG is present as well. */
4868 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4869 if (name)
4870 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4871 "SG feature.\n", name);
4872 features &= ~NETIF_F_TSO;
4873 }
4874
4875 if (features & NETIF_F_UFO) {
4876 if (!(features & NETIF_F_GEN_CSUM)) {
4877 if (name)
4878 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4879 "since no NETIF_F_HW_CSUM feature.\n",
4880 name);
4881 features &= ~NETIF_F_UFO;
4882 }
4883
4884 if (!(features & NETIF_F_SG)) {
4885 if (name)
4886 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4887 "since no NETIF_F_SG feature.\n", name);
4888 features &= ~NETIF_F_UFO;
4889 }
4890 }
4891
4892 return features;
4893 }
4894 EXPORT_SYMBOL(netdev_fix_features);
4895
4896 /**
4897 * netif_stacked_transfer_operstate - transfer operstate
4898 * @rootdev: the root or lower level device to transfer state from
4899 * @dev: the device to transfer operstate to
4900 *
4901 * Transfer operational state from root to device. This is normally
4902 * called when a stacking relationship exists between the root
4903 * device and the device(a leaf device).
4904 */
4905 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4906 struct net_device *dev)
4907 {
4908 if (rootdev->operstate == IF_OPER_DORMANT)
4909 netif_dormant_on(dev);
4910 else
4911 netif_dormant_off(dev);
4912
4913 if (netif_carrier_ok(rootdev)) {
4914 if (!netif_carrier_ok(dev))
4915 netif_carrier_on(dev);
4916 } else {
4917 if (netif_carrier_ok(dev))
4918 netif_carrier_off(dev);
4919 }
4920 }
4921 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4922
4923 /**
4924 * register_netdevice - register a network device
4925 * @dev: device to register
4926 *
4927 * Take a completed network device structure and add it to the kernel
4928 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4929 * chain. 0 is returned on success. A negative errno code is returned
4930 * on a failure to set up the device, or if the name is a duplicate.
4931 *
4932 * Callers must hold the rtnl semaphore. You may want
4933 * register_netdev() instead of this.
4934 *
4935 * BUGS:
4936 * The locking appears insufficient to guarantee two parallel registers
4937 * will not get the same name.
4938 */
4939
4940 int register_netdevice(struct net_device *dev)
4941 {
4942 int ret;
4943 struct net *net = dev_net(dev);
4944
4945 BUG_ON(dev_boot_phase);
4946 ASSERT_RTNL();
4947
4948 might_sleep();
4949
4950 /* When net_device's are persistent, this will be fatal. */
4951 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4952 BUG_ON(!net);
4953
4954 spin_lock_init(&dev->addr_list_lock);
4955 netdev_set_addr_lockdep_class(dev);
4956 netdev_init_queue_locks(dev);
4957
4958 dev->iflink = -1;
4959
4960 #ifdef CONFIG_RPS
4961 if (!dev->num_rx_queues) {
4962 /*
4963 * Allocate a single RX queue if driver never called
4964 * alloc_netdev_mq
4965 */
4966
4967 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4968 if (!dev->_rx) {
4969 ret = -ENOMEM;
4970 goto out;
4971 }
4972
4973 dev->_rx->first = dev->_rx;
4974 atomic_set(&dev->_rx->count, 1);
4975 dev->num_rx_queues = 1;
4976 }
4977 #endif
4978 /* Init, if this function is available */
4979 if (dev->netdev_ops->ndo_init) {
4980 ret = dev->netdev_ops->ndo_init(dev);
4981 if (ret) {
4982 if (ret > 0)
4983 ret = -EIO;
4984 goto out;
4985 }
4986 }
4987
4988 ret = dev_get_valid_name(dev, dev->name, 0);
4989 if (ret)
4990 goto err_uninit;
4991
4992 dev->ifindex = dev_new_index(net);
4993 if (dev->iflink == -1)
4994 dev->iflink = dev->ifindex;
4995
4996 /* Fix illegal checksum combinations */
4997 if ((dev->features & NETIF_F_HW_CSUM) &&
4998 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4999 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5000 dev->name);
5001 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5002 }
5003
5004 if ((dev->features & NETIF_F_NO_CSUM) &&
5005 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5006 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5007 dev->name);
5008 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5009 }
5010
5011 dev->features = netdev_fix_features(dev->features, dev->name);
5012
5013 /* Enable software GSO if SG is supported. */
5014 if (dev->features & NETIF_F_SG)
5015 dev->features |= NETIF_F_GSO;
5016
5017 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5018 ret = notifier_to_errno(ret);
5019 if (ret)
5020 goto err_uninit;
5021
5022 ret = netdev_register_kobject(dev);
5023 if (ret)
5024 goto err_uninit;
5025 dev->reg_state = NETREG_REGISTERED;
5026
5027 /*
5028 * Default initial state at registry is that the
5029 * device is present.
5030 */
5031
5032 set_bit(__LINK_STATE_PRESENT, &dev->state);
5033
5034 dev_init_scheduler(dev);
5035 dev_hold(dev);
5036 list_netdevice(dev);
5037
5038 /* Notify protocols, that a new device appeared. */
5039 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5040 ret = notifier_to_errno(ret);
5041 if (ret) {
5042 rollback_registered(dev);
5043 dev->reg_state = NETREG_UNREGISTERED;
5044 }
5045 /*
5046 * Prevent userspace races by waiting until the network
5047 * device is fully setup before sending notifications.
5048 */
5049 if (!dev->rtnl_link_ops ||
5050 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5051 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5052
5053 out:
5054 return ret;
5055
5056 err_uninit:
5057 if (dev->netdev_ops->ndo_uninit)
5058 dev->netdev_ops->ndo_uninit(dev);
5059 goto out;
5060 }
5061 EXPORT_SYMBOL(register_netdevice);
5062
5063 /**
5064 * init_dummy_netdev - init a dummy network device for NAPI
5065 * @dev: device to init
5066 *
5067 * This takes a network device structure and initialize the minimum
5068 * amount of fields so it can be used to schedule NAPI polls without
5069 * registering a full blown interface. This is to be used by drivers
5070 * that need to tie several hardware interfaces to a single NAPI
5071 * poll scheduler due to HW limitations.
5072 */
5073 int init_dummy_netdev(struct net_device *dev)
5074 {
5075 /* Clear everything. Note we don't initialize spinlocks
5076 * are they aren't supposed to be taken by any of the
5077 * NAPI code and this dummy netdev is supposed to be
5078 * only ever used for NAPI polls
5079 */
5080 memset(dev, 0, sizeof(struct net_device));
5081
5082 /* make sure we BUG if trying to hit standard
5083 * register/unregister code path
5084 */
5085 dev->reg_state = NETREG_DUMMY;
5086
5087 /* initialize the ref count */
5088 atomic_set(&dev->refcnt, 1);
5089
5090 /* NAPI wants this */
5091 INIT_LIST_HEAD(&dev->napi_list);
5092
5093 /* a dummy interface is started by default */
5094 set_bit(__LINK_STATE_PRESENT, &dev->state);
5095 set_bit(__LINK_STATE_START, &dev->state);
5096
5097 return 0;
5098 }
5099 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5100
5101
5102 /**
5103 * register_netdev - register a network device
5104 * @dev: device to register
5105 *
5106 * Take a completed network device structure and add it to the kernel
5107 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5108 * chain. 0 is returned on success. A negative errno code is returned
5109 * on a failure to set up the device, or if the name is a duplicate.
5110 *
5111 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5112 * and expands the device name if you passed a format string to
5113 * alloc_netdev.
5114 */
5115 int register_netdev(struct net_device *dev)
5116 {
5117 int err;
5118
5119 rtnl_lock();
5120
5121 /*
5122 * If the name is a format string the caller wants us to do a
5123 * name allocation.
5124 */
5125 if (strchr(dev->name, '%')) {
5126 err = dev_alloc_name(dev, dev->name);
5127 if (err < 0)
5128 goto out;
5129 }
5130
5131 err = register_netdevice(dev);
5132 out:
5133 rtnl_unlock();
5134 return err;
5135 }
5136 EXPORT_SYMBOL(register_netdev);
5137
5138 /*
5139 * netdev_wait_allrefs - wait until all references are gone.
5140 *
5141 * This is called when unregistering network devices.
5142 *
5143 * Any protocol or device that holds a reference should register
5144 * for netdevice notification, and cleanup and put back the
5145 * reference if they receive an UNREGISTER event.
5146 * We can get stuck here if buggy protocols don't correctly
5147 * call dev_put.
5148 */
5149 static void netdev_wait_allrefs(struct net_device *dev)
5150 {
5151 unsigned long rebroadcast_time, warning_time;
5152
5153 linkwatch_forget_dev(dev);
5154
5155 rebroadcast_time = warning_time = jiffies;
5156 while (atomic_read(&dev->refcnt) != 0) {
5157 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5158 rtnl_lock();
5159
5160 /* Rebroadcast unregister notification */
5161 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5162 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5163 * should have already handle it the first time */
5164
5165 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5166 &dev->state)) {
5167 /* We must not have linkwatch events
5168 * pending on unregister. If this
5169 * happens, we simply run the queue
5170 * unscheduled, resulting in a noop
5171 * for this device.
5172 */
5173 linkwatch_run_queue();
5174 }
5175
5176 __rtnl_unlock();
5177
5178 rebroadcast_time = jiffies;
5179 }
5180
5181 msleep(250);
5182
5183 if (time_after(jiffies, warning_time + 10 * HZ)) {
5184 printk(KERN_EMERG "unregister_netdevice: "
5185 "waiting for %s to become free. Usage "
5186 "count = %d\n",
5187 dev->name, atomic_read(&dev->refcnt));
5188 warning_time = jiffies;
5189 }
5190 }
5191 }
5192
5193 /* The sequence is:
5194 *
5195 * rtnl_lock();
5196 * ...
5197 * register_netdevice(x1);
5198 * register_netdevice(x2);
5199 * ...
5200 * unregister_netdevice(y1);
5201 * unregister_netdevice(y2);
5202 * ...
5203 * rtnl_unlock();
5204 * free_netdev(y1);
5205 * free_netdev(y2);
5206 *
5207 * We are invoked by rtnl_unlock().
5208 * This allows us to deal with problems:
5209 * 1) We can delete sysfs objects which invoke hotplug
5210 * without deadlocking with linkwatch via keventd.
5211 * 2) Since we run with the RTNL semaphore not held, we can sleep
5212 * safely in order to wait for the netdev refcnt to drop to zero.
5213 *
5214 * We must not return until all unregister events added during
5215 * the interval the lock was held have been completed.
5216 */
5217 void netdev_run_todo(void)
5218 {
5219 struct list_head list;
5220
5221 /* Snapshot list, allow later requests */
5222 list_replace_init(&net_todo_list, &list);
5223
5224 __rtnl_unlock();
5225
5226 while (!list_empty(&list)) {
5227 struct net_device *dev
5228 = list_first_entry(&list, struct net_device, todo_list);
5229 list_del(&dev->todo_list);
5230
5231 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5232 printk(KERN_ERR "network todo '%s' but state %d\n",
5233 dev->name, dev->reg_state);
5234 dump_stack();
5235 continue;
5236 }
5237
5238 dev->reg_state = NETREG_UNREGISTERED;
5239
5240 on_each_cpu(flush_backlog, dev, 1);
5241
5242 netdev_wait_allrefs(dev);
5243
5244 /* paranoia */
5245 BUG_ON(atomic_read(&dev->refcnt));
5246 WARN_ON(dev->ip_ptr);
5247 WARN_ON(dev->ip6_ptr);
5248 WARN_ON(dev->dn_ptr);
5249
5250 if (dev->destructor)
5251 dev->destructor(dev);
5252
5253 /* Free network device */
5254 kobject_put(&dev->dev.kobj);
5255 }
5256 }
5257
5258 /**
5259 * dev_txq_stats_fold - fold tx_queues stats
5260 * @dev: device to get statistics from
5261 * @stats: struct net_device_stats to hold results
5262 */
5263 void dev_txq_stats_fold(const struct net_device *dev,
5264 struct net_device_stats *stats)
5265 {
5266 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5267 unsigned int i;
5268 struct netdev_queue *txq;
5269
5270 for (i = 0; i < dev->num_tx_queues; i++) {
5271 txq = netdev_get_tx_queue(dev, i);
5272 tx_bytes += txq->tx_bytes;
5273 tx_packets += txq->tx_packets;
5274 tx_dropped += txq->tx_dropped;
5275 }
5276 if (tx_bytes || tx_packets || tx_dropped) {
5277 stats->tx_bytes = tx_bytes;
5278 stats->tx_packets = tx_packets;
5279 stats->tx_dropped = tx_dropped;
5280 }
5281 }
5282 EXPORT_SYMBOL(dev_txq_stats_fold);
5283
5284 /**
5285 * dev_get_stats - get network device statistics
5286 * @dev: device to get statistics from
5287 *
5288 * Get network statistics from device. The device driver may provide
5289 * its own method by setting dev->netdev_ops->get_stats64 or
5290 * dev->netdev_ops->get_stats; otherwise the internal statistics
5291 * structure is used.
5292 */
5293 const struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev)
5294 {
5295 const struct net_device_ops *ops = dev->netdev_ops;
5296
5297 if (ops->ndo_get_stats64)
5298 return ops->ndo_get_stats64(dev);
5299 if (ops->ndo_get_stats)
5300 return (struct rtnl_link_stats64 *)ops->ndo_get_stats(dev);
5301
5302 dev_txq_stats_fold(dev, &dev->stats);
5303 return &dev->stats64;
5304 }
5305 EXPORT_SYMBOL(dev_get_stats);
5306
5307 static void netdev_init_one_queue(struct net_device *dev,
5308 struct netdev_queue *queue,
5309 void *_unused)
5310 {
5311 queue->dev = dev;
5312 }
5313
5314 static void netdev_init_queues(struct net_device *dev)
5315 {
5316 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5317 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5318 spin_lock_init(&dev->tx_global_lock);
5319 }
5320
5321 /**
5322 * alloc_netdev_mq - allocate network device
5323 * @sizeof_priv: size of private data to allocate space for
5324 * @name: device name format string
5325 * @setup: callback to initialize device
5326 * @queue_count: the number of subqueues to allocate
5327 *
5328 * Allocates a struct net_device with private data area for driver use
5329 * and performs basic initialization. Also allocates subquue structs
5330 * for each queue on the device at the end of the netdevice.
5331 */
5332 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5333 void (*setup)(struct net_device *), unsigned int queue_count)
5334 {
5335 struct netdev_queue *tx;
5336 struct net_device *dev;
5337 size_t alloc_size;
5338 struct net_device *p;
5339 #ifdef CONFIG_RPS
5340 struct netdev_rx_queue *rx;
5341 int i;
5342 #endif
5343
5344 BUG_ON(strlen(name) >= sizeof(dev->name));
5345
5346 alloc_size = sizeof(struct net_device);
5347 if (sizeof_priv) {
5348 /* ensure 32-byte alignment of private area */
5349 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5350 alloc_size += sizeof_priv;
5351 }
5352 /* ensure 32-byte alignment of whole construct */
5353 alloc_size += NETDEV_ALIGN - 1;
5354
5355 p = kzalloc(alloc_size, GFP_KERNEL);
5356 if (!p) {
5357 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5358 return NULL;
5359 }
5360
5361 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5362 if (!tx) {
5363 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5364 "tx qdiscs.\n");
5365 goto free_p;
5366 }
5367
5368 #ifdef CONFIG_RPS
5369 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5370 if (!rx) {
5371 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5372 "rx queues.\n");
5373 goto free_tx;
5374 }
5375
5376 atomic_set(&rx->count, queue_count);
5377
5378 /*
5379 * Set a pointer to first element in the array which holds the
5380 * reference count.
5381 */
5382 for (i = 0; i < queue_count; i++)
5383 rx[i].first = rx;
5384 #endif
5385
5386 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5387 dev->padded = (char *)dev - (char *)p;
5388
5389 if (dev_addr_init(dev))
5390 goto free_rx;
5391
5392 dev_mc_init(dev);
5393 dev_uc_init(dev);
5394
5395 dev_net_set(dev, &init_net);
5396
5397 dev->_tx = tx;
5398 dev->num_tx_queues = queue_count;
5399 dev->real_num_tx_queues = queue_count;
5400
5401 #ifdef CONFIG_RPS
5402 dev->_rx = rx;
5403 dev->num_rx_queues = queue_count;
5404 #endif
5405
5406 dev->gso_max_size = GSO_MAX_SIZE;
5407
5408 netdev_init_queues(dev);
5409
5410 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5411 dev->ethtool_ntuple_list.count = 0;
5412 INIT_LIST_HEAD(&dev->napi_list);
5413 INIT_LIST_HEAD(&dev->unreg_list);
5414 INIT_LIST_HEAD(&dev->link_watch_list);
5415 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5416 setup(dev);
5417 strcpy(dev->name, name);
5418 return dev;
5419
5420 free_rx:
5421 #ifdef CONFIG_RPS
5422 kfree(rx);
5423 free_tx:
5424 #endif
5425 kfree(tx);
5426 free_p:
5427 kfree(p);
5428 return NULL;
5429 }
5430 EXPORT_SYMBOL(alloc_netdev_mq);
5431
5432 /**
5433 * free_netdev - free network device
5434 * @dev: device
5435 *
5436 * This function does the last stage of destroying an allocated device
5437 * interface. The reference to the device object is released.
5438 * If this is the last reference then it will be freed.
5439 */
5440 void free_netdev(struct net_device *dev)
5441 {
5442 struct napi_struct *p, *n;
5443
5444 release_net(dev_net(dev));
5445
5446 kfree(dev->_tx);
5447
5448 /* Flush device addresses */
5449 dev_addr_flush(dev);
5450
5451 /* Clear ethtool n-tuple list */
5452 ethtool_ntuple_flush(dev);
5453
5454 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5455 netif_napi_del(p);
5456
5457 /* Compatibility with error handling in drivers */
5458 if (dev->reg_state == NETREG_UNINITIALIZED) {
5459 kfree((char *)dev - dev->padded);
5460 return;
5461 }
5462
5463 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5464 dev->reg_state = NETREG_RELEASED;
5465
5466 /* will free via device release */
5467 put_device(&dev->dev);
5468 }
5469 EXPORT_SYMBOL(free_netdev);
5470
5471 /**
5472 * synchronize_net - Synchronize with packet receive processing
5473 *
5474 * Wait for packets currently being received to be done.
5475 * Does not block later packets from starting.
5476 */
5477 void synchronize_net(void)
5478 {
5479 might_sleep();
5480 synchronize_rcu();
5481 }
5482 EXPORT_SYMBOL(synchronize_net);
5483
5484 /**
5485 * unregister_netdevice_queue - remove device from the kernel
5486 * @dev: device
5487 * @head: list
5488 *
5489 * This function shuts down a device interface and removes it
5490 * from the kernel tables.
5491 * If head not NULL, device is queued to be unregistered later.
5492 *
5493 * Callers must hold the rtnl semaphore. You may want
5494 * unregister_netdev() instead of this.
5495 */
5496
5497 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5498 {
5499 ASSERT_RTNL();
5500
5501 if (head) {
5502 list_move_tail(&dev->unreg_list, head);
5503 } else {
5504 rollback_registered(dev);
5505 /* Finish processing unregister after unlock */
5506 net_set_todo(dev);
5507 }
5508 }
5509 EXPORT_SYMBOL(unregister_netdevice_queue);
5510
5511 /**
5512 * unregister_netdevice_many - unregister many devices
5513 * @head: list of devices
5514 */
5515 void unregister_netdevice_many(struct list_head *head)
5516 {
5517 struct net_device *dev;
5518
5519 if (!list_empty(head)) {
5520 rollback_registered_many(head);
5521 list_for_each_entry(dev, head, unreg_list)
5522 net_set_todo(dev);
5523 }
5524 }
5525 EXPORT_SYMBOL(unregister_netdevice_many);
5526
5527 /**
5528 * unregister_netdev - remove device from the kernel
5529 * @dev: device
5530 *
5531 * This function shuts down a device interface and removes it
5532 * from the kernel tables.
5533 *
5534 * This is just a wrapper for unregister_netdevice that takes
5535 * the rtnl semaphore. In general you want to use this and not
5536 * unregister_netdevice.
5537 */
5538 void unregister_netdev(struct net_device *dev)
5539 {
5540 rtnl_lock();
5541 unregister_netdevice(dev);
5542 rtnl_unlock();
5543 }
5544 EXPORT_SYMBOL(unregister_netdev);
5545
5546 /**
5547 * dev_change_net_namespace - move device to different nethost namespace
5548 * @dev: device
5549 * @net: network namespace
5550 * @pat: If not NULL name pattern to try if the current device name
5551 * is already taken in the destination network namespace.
5552 *
5553 * This function shuts down a device interface and moves it
5554 * to a new network namespace. On success 0 is returned, on
5555 * a failure a netagive errno code is returned.
5556 *
5557 * Callers must hold the rtnl semaphore.
5558 */
5559
5560 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5561 {
5562 int err;
5563
5564 ASSERT_RTNL();
5565
5566 /* Don't allow namespace local devices to be moved. */
5567 err = -EINVAL;
5568 if (dev->features & NETIF_F_NETNS_LOCAL)
5569 goto out;
5570
5571 /* Ensure the device has been registrered */
5572 err = -EINVAL;
5573 if (dev->reg_state != NETREG_REGISTERED)
5574 goto out;
5575
5576 /* Get out if there is nothing todo */
5577 err = 0;
5578 if (net_eq(dev_net(dev), net))
5579 goto out;
5580
5581 /* Pick the destination device name, and ensure
5582 * we can use it in the destination network namespace.
5583 */
5584 err = -EEXIST;
5585 if (__dev_get_by_name(net, dev->name)) {
5586 /* We get here if we can't use the current device name */
5587 if (!pat)
5588 goto out;
5589 if (dev_get_valid_name(dev, pat, 1))
5590 goto out;
5591 }
5592
5593 /*
5594 * And now a mini version of register_netdevice unregister_netdevice.
5595 */
5596
5597 /* If device is running close it first. */
5598 dev_close(dev);
5599
5600 /* And unlink it from device chain */
5601 err = -ENODEV;
5602 unlist_netdevice(dev);
5603
5604 synchronize_net();
5605
5606 /* Shutdown queueing discipline. */
5607 dev_shutdown(dev);
5608
5609 /* Notify protocols, that we are about to destroy
5610 this device. They should clean all the things.
5611 */
5612 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5613 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5614
5615 /*
5616 * Flush the unicast and multicast chains
5617 */
5618 dev_uc_flush(dev);
5619 dev_mc_flush(dev);
5620
5621 /* Actually switch the network namespace */
5622 dev_net_set(dev, net);
5623
5624 /* If there is an ifindex conflict assign a new one */
5625 if (__dev_get_by_index(net, dev->ifindex)) {
5626 int iflink = (dev->iflink == dev->ifindex);
5627 dev->ifindex = dev_new_index(net);
5628 if (iflink)
5629 dev->iflink = dev->ifindex;
5630 }
5631
5632 /* Fixup kobjects */
5633 err = device_rename(&dev->dev, dev->name);
5634 WARN_ON(err);
5635
5636 /* Add the device back in the hashes */
5637 list_netdevice(dev);
5638
5639 /* Notify protocols, that a new device appeared. */
5640 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5641
5642 /*
5643 * Prevent userspace races by waiting until the network
5644 * device is fully setup before sending notifications.
5645 */
5646 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5647
5648 synchronize_net();
5649 err = 0;
5650 out:
5651 return err;
5652 }
5653 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5654
5655 static int dev_cpu_callback(struct notifier_block *nfb,
5656 unsigned long action,
5657 void *ocpu)
5658 {
5659 struct sk_buff **list_skb;
5660 struct sk_buff *skb;
5661 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5662 struct softnet_data *sd, *oldsd;
5663
5664 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5665 return NOTIFY_OK;
5666
5667 local_irq_disable();
5668 cpu = smp_processor_id();
5669 sd = &per_cpu(softnet_data, cpu);
5670 oldsd = &per_cpu(softnet_data, oldcpu);
5671
5672 /* Find end of our completion_queue. */
5673 list_skb = &sd->completion_queue;
5674 while (*list_skb)
5675 list_skb = &(*list_skb)->next;
5676 /* Append completion queue from offline CPU. */
5677 *list_skb = oldsd->completion_queue;
5678 oldsd->completion_queue = NULL;
5679
5680 /* Append output queue from offline CPU. */
5681 if (oldsd->output_queue) {
5682 *sd->output_queue_tailp = oldsd->output_queue;
5683 sd->output_queue_tailp = oldsd->output_queue_tailp;
5684 oldsd->output_queue = NULL;
5685 oldsd->output_queue_tailp = &oldsd->output_queue;
5686 }
5687
5688 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5689 local_irq_enable();
5690
5691 /* Process offline CPU's input_pkt_queue */
5692 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5693 netif_rx(skb);
5694 input_queue_head_incr(oldsd);
5695 }
5696 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5697 netif_rx(skb);
5698 input_queue_head_incr(oldsd);
5699 }
5700
5701 return NOTIFY_OK;
5702 }
5703
5704
5705 /**
5706 * netdev_increment_features - increment feature set by one
5707 * @all: current feature set
5708 * @one: new feature set
5709 * @mask: mask feature set
5710 *
5711 * Computes a new feature set after adding a device with feature set
5712 * @one to the master device with current feature set @all. Will not
5713 * enable anything that is off in @mask. Returns the new feature set.
5714 */
5715 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5716 unsigned long mask)
5717 {
5718 /* If device needs checksumming, downgrade to it. */
5719 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5720 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5721 else if (mask & NETIF_F_ALL_CSUM) {
5722 /* If one device supports v4/v6 checksumming, set for all. */
5723 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5724 !(all & NETIF_F_GEN_CSUM)) {
5725 all &= ~NETIF_F_ALL_CSUM;
5726 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5727 }
5728
5729 /* If one device supports hw checksumming, set for all. */
5730 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5731 all &= ~NETIF_F_ALL_CSUM;
5732 all |= NETIF_F_HW_CSUM;
5733 }
5734 }
5735
5736 one |= NETIF_F_ALL_CSUM;
5737
5738 one |= all & NETIF_F_ONE_FOR_ALL;
5739 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5740 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5741
5742 return all;
5743 }
5744 EXPORT_SYMBOL(netdev_increment_features);
5745
5746 static struct hlist_head *netdev_create_hash(void)
5747 {
5748 int i;
5749 struct hlist_head *hash;
5750
5751 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5752 if (hash != NULL)
5753 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5754 INIT_HLIST_HEAD(&hash[i]);
5755
5756 return hash;
5757 }
5758
5759 /* Initialize per network namespace state */
5760 static int __net_init netdev_init(struct net *net)
5761 {
5762 INIT_LIST_HEAD(&net->dev_base_head);
5763
5764 net->dev_name_head = netdev_create_hash();
5765 if (net->dev_name_head == NULL)
5766 goto err_name;
5767
5768 net->dev_index_head = netdev_create_hash();
5769 if (net->dev_index_head == NULL)
5770 goto err_idx;
5771
5772 return 0;
5773
5774 err_idx:
5775 kfree(net->dev_name_head);
5776 err_name:
5777 return -ENOMEM;
5778 }
5779
5780 /**
5781 * netdev_drivername - network driver for the device
5782 * @dev: network device
5783 * @buffer: buffer for resulting name
5784 * @len: size of buffer
5785 *
5786 * Determine network driver for device.
5787 */
5788 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5789 {
5790 const struct device_driver *driver;
5791 const struct device *parent;
5792
5793 if (len <= 0 || !buffer)
5794 return buffer;
5795 buffer[0] = 0;
5796
5797 parent = dev->dev.parent;
5798
5799 if (!parent)
5800 return buffer;
5801
5802 driver = parent->driver;
5803 if (driver && driver->name)
5804 strlcpy(buffer, driver->name, len);
5805 return buffer;
5806 }
5807
5808 static void __net_exit netdev_exit(struct net *net)
5809 {
5810 kfree(net->dev_name_head);
5811 kfree(net->dev_index_head);
5812 }
5813
5814 static struct pernet_operations __net_initdata netdev_net_ops = {
5815 .init = netdev_init,
5816 .exit = netdev_exit,
5817 };
5818
5819 static void __net_exit default_device_exit(struct net *net)
5820 {
5821 struct net_device *dev, *aux;
5822 /*
5823 * Push all migratable network devices back to the
5824 * initial network namespace
5825 */
5826 rtnl_lock();
5827 for_each_netdev_safe(net, dev, aux) {
5828 int err;
5829 char fb_name[IFNAMSIZ];
5830
5831 /* Ignore unmoveable devices (i.e. loopback) */
5832 if (dev->features & NETIF_F_NETNS_LOCAL)
5833 continue;
5834
5835 /* Leave virtual devices for the generic cleanup */
5836 if (dev->rtnl_link_ops)
5837 continue;
5838
5839 /* Push remaing network devices to init_net */
5840 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5841 err = dev_change_net_namespace(dev, &init_net, fb_name);
5842 if (err) {
5843 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5844 __func__, dev->name, err);
5845 BUG();
5846 }
5847 }
5848 rtnl_unlock();
5849 }
5850
5851 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5852 {
5853 /* At exit all network devices most be removed from a network
5854 * namespace. Do this in the reverse order of registeration.
5855 * Do this across as many network namespaces as possible to
5856 * improve batching efficiency.
5857 */
5858 struct net_device *dev;
5859 struct net *net;
5860 LIST_HEAD(dev_kill_list);
5861
5862 rtnl_lock();
5863 list_for_each_entry(net, net_list, exit_list) {
5864 for_each_netdev_reverse(net, dev) {
5865 if (dev->rtnl_link_ops)
5866 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5867 else
5868 unregister_netdevice_queue(dev, &dev_kill_list);
5869 }
5870 }
5871 unregister_netdevice_many(&dev_kill_list);
5872 rtnl_unlock();
5873 }
5874
5875 static struct pernet_operations __net_initdata default_device_ops = {
5876 .exit = default_device_exit,
5877 .exit_batch = default_device_exit_batch,
5878 };
5879
5880 /*
5881 * Initialize the DEV module. At boot time this walks the device list and
5882 * unhooks any devices that fail to initialise (normally hardware not
5883 * present) and leaves us with a valid list of present and active devices.
5884 *
5885 */
5886
5887 /*
5888 * This is called single threaded during boot, so no need
5889 * to take the rtnl semaphore.
5890 */
5891 static int __init net_dev_init(void)
5892 {
5893 int i, rc = -ENOMEM;
5894
5895 BUG_ON(!dev_boot_phase);
5896
5897 if (dev_proc_init())
5898 goto out;
5899
5900 if (netdev_kobject_init())
5901 goto out;
5902
5903 INIT_LIST_HEAD(&ptype_all);
5904 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5905 INIT_LIST_HEAD(&ptype_base[i]);
5906
5907 if (register_pernet_subsys(&netdev_net_ops))
5908 goto out;
5909
5910 /*
5911 * Initialise the packet receive queues.
5912 */
5913
5914 for_each_possible_cpu(i) {
5915 struct softnet_data *sd = &per_cpu(softnet_data, i);
5916
5917 memset(sd, 0, sizeof(*sd));
5918 skb_queue_head_init(&sd->input_pkt_queue);
5919 skb_queue_head_init(&sd->process_queue);
5920 sd->completion_queue = NULL;
5921 INIT_LIST_HEAD(&sd->poll_list);
5922 sd->output_queue = NULL;
5923 sd->output_queue_tailp = &sd->output_queue;
5924 #ifdef CONFIG_RPS
5925 sd->csd.func = rps_trigger_softirq;
5926 sd->csd.info = sd;
5927 sd->csd.flags = 0;
5928 sd->cpu = i;
5929 #endif
5930
5931 sd->backlog.poll = process_backlog;
5932 sd->backlog.weight = weight_p;
5933 sd->backlog.gro_list = NULL;
5934 sd->backlog.gro_count = 0;
5935 }
5936
5937 dev_boot_phase = 0;
5938
5939 /* The loopback device is special if any other network devices
5940 * is present in a network namespace the loopback device must
5941 * be present. Since we now dynamically allocate and free the
5942 * loopback device ensure this invariant is maintained by
5943 * keeping the loopback device as the first device on the
5944 * list of network devices. Ensuring the loopback devices
5945 * is the first device that appears and the last network device
5946 * that disappears.
5947 */
5948 if (register_pernet_device(&loopback_net_ops))
5949 goto out;
5950
5951 if (register_pernet_device(&default_device_ops))
5952 goto out;
5953
5954 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5955 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5956
5957 hotcpu_notifier(dev_cpu_callback, 0);
5958 dst_init();
5959 dev_mcast_init();
5960 rc = 0;
5961 out:
5962 return rc;
5963 }
5964
5965 subsys_initcall(net_dev_init);
5966
5967 static int __init initialize_hashrnd(void)
5968 {
5969 get_random_bytes(&hashrnd, sizeof(hashrnd));
5970 return 0;
5971 }
5972
5973 late_initcall_sync(initialize_hashrnd);
5974
This page took 0.269368 seconds and 5 git commands to generate.