net: Potential null skb->dev dereference
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 /*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
175
176 /*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
211 {
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228 static void unlist_netdevice(struct net_device *dev)
229 {
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327 }
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331 {
332 }
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 }
336 #endif
337
338 /*******************************************************************************
339
340 Protocol management and registration routines
341
342 *******************************************************************************/
343
344 /*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360 /**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373 void dev_add_pack(struct packet_type *pt)
374 {
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385 }
386 EXPORT_SYMBOL(dev_add_pack);
387
388 /**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401 void __dev_remove_pack(struct packet_type *pt)
402 {
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446 /******************************************************************************
447
448 Device Boot-time Settings Routines
449
450 *******************************************************************************/
451
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455 /**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 {
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480 }
481
482 /**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491 int netdev_boot_setup_check(struct net_device *dev)
492 {
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511 /**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521 unsigned long netdev_boot_base(const char *prefix, int unit)
522 {
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540 }
541
542 /*
543 * Saves at boot time configured settings for any netdevice.
544 */
545 int __init netdev_boot_setup(char *str)
546 {
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567 }
568
569 __setup("netdev=", netdev_boot_setup);
570
571 /*******************************************************************************
572
573 Device Interface Subroutines
574
575 *******************************************************************************/
576
577 /**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 {
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600 }
601 EXPORT_SYMBOL(__dev_get_by_name);
602
603 /**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629 /**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 {
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651 }
652 EXPORT_SYMBOL(dev_get_by_name);
653
654 /**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_index);
679
680 /**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 {
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706 /**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_index);
729
730 /**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 {
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(dev_getbyhwaddr);
759
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786 /**
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
800 {
801 struct net_device *dev, *ret;
802
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
810 }
811 }
812 rcu_read_unlock();
813 return ret;
814 }
815 EXPORT_SYMBOL(dev_get_by_flags);
816
817 /**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
824 */
825 int dev_valid_name(const char *name)
826 {
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
840 }
841 EXPORT_SYMBOL(dev_valid_name);
842
843 /**
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859 {
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
880
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907 }
908
909 /**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923 int dev_alloc_name(struct net_device *dev, const char *name)
924 {
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935 }
936 EXPORT_SYMBOL(dev_alloc_name);
937
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940 {
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952 }
953
954 /**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
962 int dev_change_name(struct net_device *dev, const char *newname)
963 {
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
968
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
971
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
984
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
995 }
996
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1006
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1020 }
1021 }
1022
1023 return err;
1024 }
1025
1026 /**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1031 *
1032 * Set ifalias for a device,
1033 */
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035 {
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055 }
1056
1057
1058 /**
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064 void netdev_features_change(struct net_device *dev)
1065 {
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1067 }
1068 EXPORT_SYMBOL(netdev_features_change);
1069
1070 /**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078 void netdev_state_change(struct net_device *dev)
1079 {
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084 }
1085 EXPORT_SYMBOL(netdev_state_change);
1086
1087 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1088 {
1089 call_netdevice_notifiers(event, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_bonding_change);
1092
1093 /**
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
1103 void dev_load(struct net *net, const char *name)
1104 {
1105 struct net_device *dev;
1106
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1110
1111 if (!dev && capable(CAP_NET_ADMIN))
1112 request_module("%s", name);
1113 }
1114 EXPORT_SYMBOL(dev_load);
1115
1116 static int __dev_open(struct net_device *dev)
1117 {
1118 const struct net_device_ops *ops = dev->netdev_ops;
1119 int ret;
1120
1121 ASSERT_RTNL();
1122
1123 /*
1124 * Is it even present?
1125 */
1126 if (!netif_device_present(dev))
1127 return -ENODEV;
1128
1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1130 ret = notifier_to_errno(ret);
1131 if (ret)
1132 return ret;
1133
1134 /*
1135 * Call device private open method
1136 */
1137 set_bit(__LINK_STATE_START, &dev->state);
1138
1139 if (ops->ndo_validate_addr)
1140 ret = ops->ndo_validate_addr(dev);
1141
1142 if (!ret && ops->ndo_open)
1143 ret = ops->ndo_open(dev);
1144
1145 /*
1146 * If it went open OK then:
1147 */
1148
1149 if (ret)
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151 else {
1152 /*
1153 * Set the flags.
1154 */
1155 dev->flags |= IFF_UP;
1156
1157 /*
1158 * Enable NET_DMA
1159 */
1160 net_dmaengine_get();
1161
1162 /*
1163 * Initialize multicasting status
1164 */
1165 dev_set_rx_mode(dev);
1166
1167 /*
1168 * Wakeup transmit queue engine
1169 */
1170 dev_activate(dev);
1171 }
1172
1173 return ret;
1174 }
1175
1176 /**
1177 * dev_open - prepare an interface for use.
1178 * @dev: device to open
1179 *
1180 * Takes a device from down to up state. The device's private open
1181 * function is invoked and then the multicast lists are loaded. Finally
1182 * the device is moved into the up state and a %NETDEV_UP message is
1183 * sent to the netdev notifier chain.
1184 *
1185 * Calling this function on an active interface is a nop. On a failure
1186 * a negative errno code is returned.
1187 */
1188 int dev_open(struct net_device *dev)
1189 {
1190 int ret;
1191
1192 /*
1193 * Is it already up?
1194 */
1195 if (dev->flags & IFF_UP)
1196 return 0;
1197
1198 /*
1199 * Open device
1200 */
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1204
1205 /*
1206 * ... and announce new interface.
1207 */
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1210
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(dev_open);
1214
1215 static int __dev_close(struct net_device *dev)
1216 {
1217 const struct net_device_ops *ops = dev->netdev_ops;
1218
1219 ASSERT_RTNL();
1220 might_sleep();
1221
1222 /*
1223 * Tell people we are going down, so that they can
1224 * prepare to death, when device is still operating.
1225 */
1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1227
1228 clear_bit(__LINK_STATE_START, &dev->state);
1229
1230 /* Synchronize to scheduled poll. We cannot touch poll list,
1231 * it can be even on different cpu. So just clear netif_running().
1232 *
1233 * dev->stop() will invoke napi_disable() on all of it's
1234 * napi_struct instances on this device.
1235 */
1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1237
1238 dev_deactivate(dev);
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 /*
1251 * Device is now down.
1252 */
1253
1254 dev->flags &= ~IFF_UP;
1255
1256 /*
1257 * Shutdown NET_DMA
1258 */
1259 net_dmaengine_put();
1260
1261 return 0;
1262 }
1263
1264 /**
1265 * dev_close - shutdown an interface.
1266 * @dev: device to shutdown
1267 *
1268 * This function moves an active device into down state. A
1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1271 * chain.
1272 */
1273 int dev_close(struct net_device *dev)
1274 {
1275 if (!(dev->flags & IFF_UP))
1276 return 0;
1277
1278 __dev_close(dev);
1279
1280 /*
1281 * Tell people we are down
1282 */
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1284 call_netdevice_notifiers(NETDEV_DOWN, dev);
1285
1286 return 0;
1287 }
1288 EXPORT_SYMBOL(dev_close);
1289
1290
1291 /**
1292 * dev_disable_lro - disable Large Receive Offload on a device
1293 * @dev: device
1294 *
1295 * Disable Large Receive Offload (LRO) on a net device. Must be
1296 * called under RTNL. This is needed if received packets may be
1297 * forwarded to another interface.
1298 */
1299 void dev_disable_lro(struct net_device *dev)
1300 {
1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1302 dev->ethtool_ops->set_flags) {
1303 u32 flags = dev->ethtool_ops->get_flags(dev);
1304 if (flags & ETH_FLAG_LRO) {
1305 flags &= ~ETH_FLAG_LRO;
1306 dev->ethtool_ops->set_flags(dev, flags);
1307 }
1308 }
1309 WARN_ON(dev->features & NETIF_F_LRO);
1310 }
1311 EXPORT_SYMBOL(dev_disable_lro);
1312
1313
1314 static int dev_boot_phase = 1;
1315
1316 /*
1317 * Device change register/unregister. These are not inline or static
1318 * as we export them to the world.
1319 */
1320
1321 /**
1322 * register_netdevice_notifier - register a network notifier block
1323 * @nb: notifier
1324 *
1325 * Register a notifier to be called when network device events occur.
1326 * The notifier passed is linked into the kernel structures and must
1327 * not be reused until it has been unregistered. A negative errno code
1328 * is returned on a failure.
1329 *
1330 * When registered all registration and up events are replayed
1331 * to the new notifier to allow device to have a race free
1332 * view of the network device list.
1333 */
1334
1335 int register_netdevice_notifier(struct notifier_block *nb)
1336 {
1337 struct net_device *dev;
1338 struct net_device *last;
1339 struct net *net;
1340 int err;
1341
1342 rtnl_lock();
1343 err = raw_notifier_chain_register(&netdev_chain, nb);
1344 if (err)
1345 goto unlock;
1346 if (dev_boot_phase)
1347 goto unlock;
1348 for_each_net(net) {
1349 for_each_netdev(net, dev) {
1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1351 err = notifier_to_errno(err);
1352 if (err)
1353 goto rollback;
1354
1355 if (!(dev->flags & IFF_UP))
1356 continue;
1357
1358 nb->notifier_call(nb, NETDEV_UP, dev);
1359 }
1360 }
1361
1362 unlock:
1363 rtnl_unlock();
1364 return err;
1365
1366 rollback:
1367 last = dev;
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 if (dev == last)
1371 break;
1372
1373 if (dev->flags & IFF_UP) {
1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1375 nb->notifier_call(nb, NETDEV_DOWN, dev);
1376 }
1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1379 }
1380 }
1381
1382 raw_notifier_chain_unregister(&netdev_chain, nb);
1383 goto unlock;
1384 }
1385 EXPORT_SYMBOL(register_netdevice_notifier);
1386
1387 /**
1388 * unregister_netdevice_notifier - unregister a network notifier block
1389 * @nb: notifier
1390 *
1391 * Unregister a notifier previously registered by
1392 * register_netdevice_notifier(). The notifier is unlinked into the
1393 * kernel structures and may then be reused. A negative errno code
1394 * is returned on a failure.
1395 */
1396
1397 int unregister_netdevice_notifier(struct notifier_block *nb)
1398 {
1399 int err;
1400
1401 rtnl_lock();
1402 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1403 rtnl_unlock();
1404 return err;
1405 }
1406 EXPORT_SYMBOL(unregister_netdevice_notifier);
1407
1408 /**
1409 * call_netdevice_notifiers - call all network notifier blocks
1410 * @val: value passed unmodified to notifier function
1411 * @dev: net_device pointer passed unmodified to notifier function
1412 *
1413 * Call all network notifier blocks. Parameters and return value
1414 * are as for raw_notifier_call_chain().
1415 */
1416
1417 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1418 {
1419 return raw_notifier_call_chain(&netdev_chain, val, dev);
1420 }
1421
1422 /* When > 0 there are consumers of rx skb time stamps */
1423 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1424
1425 void net_enable_timestamp(void)
1426 {
1427 atomic_inc(&netstamp_needed);
1428 }
1429 EXPORT_SYMBOL(net_enable_timestamp);
1430
1431 void net_disable_timestamp(void)
1432 {
1433 atomic_dec(&netstamp_needed);
1434 }
1435 EXPORT_SYMBOL(net_disable_timestamp);
1436
1437 static inline void net_timestamp(struct sk_buff *skb)
1438 {
1439 if (atomic_read(&netstamp_needed))
1440 __net_timestamp(skb);
1441 else
1442 skb->tstamp.tv64 = 0;
1443 }
1444
1445 /**
1446 * dev_forward_skb - loopback an skb to another netif
1447 *
1448 * @dev: destination network device
1449 * @skb: buffer to forward
1450 *
1451 * return values:
1452 * NET_RX_SUCCESS (no congestion)
1453 * NET_RX_DROP (packet was dropped)
1454 *
1455 * dev_forward_skb can be used for injecting an skb from the
1456 * start_xmit function of one device into the receive queue
1457 * of another device.
1458 *
1459 * The receiving device may be in another namespace, so
1460 * we have to clear all information in the skb that could
1461 * impact namespace isolation.
1462 */
1463 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1464 {
1465 skb_orphan(skb);
1466
1467 if (!(dev->flags & IFF_UP))
1468 return NET_RX_DROP;
1469
1470 if (skb->len > (dev->mtu + dev->hard_header_len))
1471 return NET_RX_DROP;
1472
1473 skb_set_dev(skb, dev);
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
1477 return netif_rx(skb);
1478 }
1479 EXPORT_SYMBOL_GPL(dev_forward_skb);
1480
1481 /*
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1484 */
1485
1486 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1487 {
1488 struct packet_type *ptype;
1489
1490 #ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493 #else
1494 net_timestamp(skb);
1495 #endif
1496
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1501 */
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1506 if (!skb2)
1507 break;
1508
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1512 */
1513 skb_reset_mac_header(skb2);
1514
1515 if (skb_network_header(skb2) < skb2->data ||
1516 skb2->network_header > skb2->tail) {
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
1521 skb_reset_network_header(skb2);
1522 }
1523
1524 skb2->transport_header = skb2->network_header;
1525 skb2->pkt_type = PACKET_OUTGOING;
1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1527 }
1528 }
1529 rcu_read_unlock();
1530 }
1531
1532
1533 static inline void __netif_reschedule(struct Qdisc *q)
1534 {
1535 struct softnet_data *sd;
1536 unsigned long flags;
1537
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1544 }
1545
1546 void __netif_schedule(struct Qdisc *q)
1547 {
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
1550 }
1551 EXPORT_SYMBOL(__netif_schedule);
1552
1553 void dev_kfree_skb_irq(struct sk_buff *skb)
1554 {
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
1558
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
1566 }
1567 EXPORT_SYMBOL(dev_kfree_skb_irq);
1568
1569 void dev_kfree_skb_any(struct sk_buff *skb)
1570 {
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1575 }
1576 EXPORT_SYMBOL(dev_kfree_skb_any);
1577
1578
1579 /**
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1582 *
1583 * Mark device as removed from system and therefore no longer available.
1584 */
1585 void netif_device_detach(struct net_device *dev)
1586 {
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
1589 netif_tx_stop_all_queues(dev);
1590 }
1591 }
1592 EXPORT_SYMBOL(netif_device_detach);
1593
1594 /**
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1597 *
1598 * Mark device as attached from system and restart if needed.
1599 */
1600 void netif_device_attach(struct net_device *dev)
1601 {
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
1604 netif_tx_wake_all_queues(dev);
1605 __netdev_watchdog_up(dev);
1606 }
1607 }
1608 EXPORT_SYMBOL(netif_device_attach);
1609
1610 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1611 {
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
1619 }
1620
1621 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1622 {
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1625
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635
1636 /**
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1640 *
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1644 */
1645 #ifdef CONFIG_NET_NS
1646 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1647 {
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657 #ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659 #endif
1660 }
1661 skb->dev = dev;
1662 }
1663 EXPORT_SYMBOL(skb_set_dev);
1664 #endif /* CONFIG_NET_NS */
1665
1666 /*
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1669 */
1670 int skb_checksum_help(struct sk_buff *skb)
1671 {
1672 __wsum csum;
1673 int ret = 0, offset;
1674
1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
1676 goto out_set_summed;
1677
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1681 }
1682
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1686
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1689
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1695 }
1696
1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1698 out_set_summed:
1699 skb->ip_summed = CHECKSUM_NONE;
1700 out:
1701 return ret;
1702 }
1703 EXPORT_SYMBOL(skb_checksum_help);
1704
1705 /**
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
1708 * @features: features for the output path (see dev->features)
1709 *
1710 * This function segments the given skb and returns a list of segments.
1711 *
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
1714 */
1715 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1716 {
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
1719 __be16 type = skb->protocol;
1720 int err;
1721
1722 skb_reset_mac_header(skb);
1723 skb->mac_len = skb->network_header - skb->mac_header;
1724 __skb_pull(skb, skb->mac_len);
1725
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1729
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1732
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1738
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1742 }
1743
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
1755 }
1756 segs = ptype->gso_segment(skb, features);
1757 break;
1758 }
1759 }
1760 rcu_read_unlock();
1761
1762 __skb_push(skb, skb->data - skb_mac_header(skb));
1763
1764 return segs;
1765 }
1766 EXPORT_SYMBOL(skb_gso_segment);
1767
1768 /* Take action when hardware reception checksum errors are detected. */
1769 #ifdef CONFIG_BUG
1770 void netdev_rx_csum_fault(struct net_device *dev)
1771 {
1772 if (net_ratelimit()) {
1773 printk(KERN_ERR "%s: hw csum failure.\n",
1774 dev ? dev->name : "<unknown>");
1775 dump_stack();
1776 }
1777 }
1778 EXPORT_SYMBOL(netdev_rx_csum_fault);
1779 #endif
1780
1781 /* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1784 */
1785
1786 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1787 {
1788 #ifdef CONFIG_HIGHMEM
1789 int i;
1790
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1793
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1797
1798 #endif
1799 return 0;
1800 }
1801
1802 struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1804 };
1805
1806 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1807
1808 static void dev_gso_skb_destructor(struct sk_buff *skb)
1809 {
1810 struct dev_gso_cb *cb;
1811
1812 do {
1813 struct sk_buff *nskb = skb->next;
1814
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1819
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1823 }
1824
1825 /**
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1828 *
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1831 */
1832 static int dev_gso_segment(struct sk_buff *skb)
1833 {
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1838
1839 segs = skb_gso_segment(skb, features);
1840
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
1844
1845 if (IS_ERR(segs))
1846 return PTR_ERR(segs);
1847
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1851
1852 return 0;
1853 }
1854
1855 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
1857 {
1858 const struct net_device_ops *ops = dev->netdev_ops;
1859 int rc = NETDEV_TX_OK;
1860
1861 if (likely(!skb->next)) {
1862 if (!list_empty(&ptype_all))
1863 dev_queue_xmit_nit(skb, dev);
1864
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1870 }
1871
1872 /*
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1875 */
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1878
1879 rc = ops->ndo_start_xmit(skb, dev);
1880 if (rc == NETDEV_TX_OK)
1881 txq_trans_update(txq);
1882 /*
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1888 *
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1895 */
1896 return rc;
1897 }
1898
1899 gso:
1900 do {
1901 struct sk_buff *nskb = skb->next;
1902
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
1905
1906 /*
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1912
1913 rc = ops->ndo_start_xmit(nskb, dev);
1914 if (unlikely(rc != NETDEV_TX_OK)) {
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
1917 nskb->next = skb->next;
1918 skb->next = nskb;
1919 return rc;
1920 }
1921 txq_trans_update(txq);
1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1923 return NETDEV_TX_BUSY;
1924 } while (skb->next);
1925
1926 out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
1929 out_kfree_skb:
1930 kfree_skb(skb);
1931 return rc;
1932 }
1933
1934 static u32 skb_tx_hashrnd;
1935
1936 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1937 {
1938 u32 hash;
1939
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
1942 while (unlikely(hash >= dev->real_num_tx_queues))
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1945 }
1946
1947 if (skb->sk && skb->sk->sk_hash)
1948 hash = skb->sk->sk_hash;
1949 else
1950 hash = skb->protocol;
1951
1952 hash = jhash_1word(hash, skb_tx_hashrnd);
1953
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1955 }
1956 EXPORT_SYMBOL(skb_tx_hash);
1957
1958 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1959 {
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
1962 WARN(1, "%s selects TX queue %d, but "
1963 "real number of TX queues is %d\n",
1964 dev->name, queue_index,
1965 dev->real_num_tx_queues);
1966 }
1967 return 0;
1968 }
1969 return queue_index;
1970 }
1971
1972 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1973 struct sk_buff *skb)
1974 {
1975 u16 queue_index;
1976 struct sock *sk = skb->sk;
1977
1978 if (sk_tx_queue_recorded(sk)) {
1979 queue_index = sk_tx_queue_get(sk);
1980 } else {
1981 const struct net_device_ops *ops = dev->netdev_ops;
1982
1983 if (ops->ndo_select_queue) {
1984 queue_index = ops->ndo_select_queue(dev, skb);
1985 queue_index = dev_cap_txqueue(dev, queue_index);
1986 } else {
1987 queue_index = 0;
1988 if (dev->real_num_tx_queues > 1)
1989 queue_index = skb_tx_hash(dev, skb);
1990
1991 if (sk && sk->sk_dst_cache)
1992 sk_tx_queue_set(sk, queue_index);
1993 }
1994 }
1995
1996 skb_set_queue_mapping(skb, queue_index);
1997 return netdev_get_tx_queue(dev, queue_index);
1998 }
1999
2000 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2001 struct net_device *dev,
2002 struct netdev_queue *txq)
2003 {
2004 spinlock_t *root_lock = qdisc_lock(q);
2005 int rc;
2006
2007 spin_lock(root_lock);
2008 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2009 kfree_skb(skb);
2010 rc = NET_XMIT_DROP;
2011 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2012 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2013 /*
2014 * This is a work-conserving queue; there are no old skbs
2015 * waiting to be sent out; and the qdisc is not running -
2016 * xmit the skb directly.
2017 */
2018 __qdisc_update_bstats(q, skb->len);
2019 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2020 __qdisc_run(q);
2021 else
2022 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2023
2024 rc = NET_XMIT_SUCCESS;
2025 } else {
2026 rc = qdisc_enqueue_root(skb, q);
2027 qdisc_run(q);
2028 }
2029 spin_unlock(root_lock);
2030
2031 return rc;
2032 }
2033
2034 /*
2035 * Returns true if either:
2036 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2037 * 2. skb is fragmented and the device does not support SG, or if
2038 * at least one of fragments is in highmem and device does not
2039 * support DMA from it.
2040 */
2041 static inline int skb_needs_linearize(struct sk_buff *skb,
2042 struct net_device *dev)
2043 {
2044 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2045 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2046 illegal_highdma(dev, skb)));
2047 }
2048
2049 /**
2050 * dev_queue_xmit - transmit a buffer
2051 * @skb: buffer to transmit
2052 *
2053 * Queue a buffer for transmission to a network device. The caller must
2054 * have set the device and priority and built the buffer before calling
2055 * this function. The function can be called from an interrupt.
2056 *
2057 * A negative errno code is returned on a failure. A success does not
2058 * guarantee the frame will be transmitted as it may be dropped due
2059 * to congestion or traffic shaping.
2060 *
2061 * -----------------------------------------------------------------------------------
2062 * I notice this method can also return errors from the queue disciplines,
2063 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2064 * be positive.
2065 *
2066 * Regardless of the return value, the skb is consumed, so it is currently
2067 * difficult to retry a send to this method. (You can bump the ref count
2068 * before sending to hold a reference for retry if you are careful.)
2069 *
2070 * When calling this method, interrupts MUST be enabled. This is because
2071 * the BH enable code must have IRQs enabled so that it will not deadlock.
2072 * --BLG
2073 */
2074 int dev_queue_xmit(struct sk_buff *skb)
2075 {
2076 struct net_device *dev = skb->dev;
2077 struct netdev_queue *txq;
2078 struct Qdisc *q;
2079 int rc = -ENOMEM;
2080
2081 /* GSO will handle the following emulations directly. */
2082 if (netif_needs_gso(dev, skb))
2083 goto gso;
2084
2085 /* Convert a paged skb to linear, if required */
2086 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2087 goto out_kfree_skb;
2088
2089 /* If packet is not checksummed and device does not support
2090 * checksumming for this protocol, complete checksumming here.
2091 */
2092 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2093 skb_set_transport_header(skb, skb->csum_start -
2094 skb_headroom(skb));
2095 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2096 goto out_kfree_skb;
2097 }
2098
2099 gso:
2100 /* Disable soft irqs for various locks below. Also
2101 * stops preemption for RCU.
2102 */
2103 rcu_read_lock_bh();
2104
2105 txq = dev_pick_tx(dev, skb);
2106 q = rcu_dereference_bh(txq->qdisc);
2107
2108 #ifdef CONFIG_NET_CLS_ACT
2109 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2110 #endif
2111 if (q->enqueue) {
2112 rc = __dev_xmit_skb(skb, q, dev, txq);
2113 goto out;
2114 }
2115
2116 /* The device has no queue. Common case for software devices:
2117 loopback, all the sorts of tunnels...
2118
2119 Really, it is unlikely that netif_tx_lock protection is necessary
2120 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2121 counters.)
2122 However, it is possible, that they rely on protection
2123 made by us here.
2124
2125 Check this and shot the lock. It is not prone from deadlocks.
2126 Either shot noqueue qdisc, it is even simpler 8)
2127 */
2128 if (dev->flags & IFF_UP) {
2129 int cpu = smp_processor_id(); /* ok because BHs are off */
2130
2131 if (txq->xmit_lock_owner != cpu) {
2132
2133 HARD_TX_LOCK(dev, txq, cpu);
2134
2135 if (!netif_tx_queue_stopped(txq)) {
2136 rc = dev_hard_start_xmit(skb, dev, txq);
2137 if (dev_xmit_complete(rc)) {
2138 HARD_TX_UNLOCK(dev, txq);
2139 goto out;
2140 }
2141 }
2142 HARD_TX_UNLOCK(dev, txq);
2143 if (net_ratelimit())
2144 printk(KERN_CRIT "Virtual device %s asks to "
2145 "queue packet!\n", dev->name);
2146 } else {
2147 /* Recursion is detected! It is possible,
2148 * unfortunately */
2149 if (net_ratelimit())
2150 printk(KERN_CRIT "Dead loop on virtual device "
2151 "%s, fix it urgently!\n", dev->name);
2152 }
2153 }
2154
2155 rc = -ENETDOWN;
2156 rcu_read_unlock_bh();
2157
2158 out_kfree_skb:
2159 kfree_skb(skb);
2160 return rc;
2161 out:
2162 rcu_read_unlock_bh();
2163 return rc;
2164 }
2165 EXPORT_SYMBOL(dev_queue_xmit);
2166
2167
2168 /*=======================================================================
2169 Receiver routines
2170 =======================================================================*/
2171
2172 int netdev_max_backlog __read_mostly = 1000;
2173 int netdev_budget __read_mostly = 300;
2174 int weight_p __read_mostly = 64; /* old backlog weight */
2175
2176 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2177
2178
2179 /**
2180 * netif_rx - post buffer to the network code
2181 * @skb: buffer to post
2182 *
2183 * This function receives a packet from a device driver and queues it for
2184 * the upper (protocol) levels to process. It always succeeds. The buffer
2185 * may be dropped during processing for congestion control or by the
2186 * protocol layers.
2187 *
2188 * return values:
2189 * NET_RX_SUCCESS (no congestion)
2190 * NET_RX_DROP (packet was dropped)
2191 *
2192 */
2193
2194 int netif_rx(struct sk_buff *skb)
2195 {
2196 struct softnet_data *queue;
2197 unsigned long flags;
2198
2199 /* if netpoll wants it, pretend we never saw it */
2200 if (netpoll_rx(skb))
2201 return NET_RX_DROP;
2202
2203 if (!skb->tstamp.tv64)
2204 net_timestamp(skb);
2205
2206 /*
2207 * The code is rearranged so that the path is the most
2208 * short when CPU is congested, but is still operating.
2209 */
2210 local_irq_save(flags);
2211 queue = &__get_cpu_var(softnet_data);
2212
2213 __get_cpu_var(netdev_rx_stat).total++;
2214 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2215 if (queue->input_pkt_queue.qlen) {
2216 enqueue:
2217 __skb_queue_tail(&queue->input_pkt_queue, skb);
2218 local_irq_restore(flags);
2219 return NET_RX_SUCCESS;
2220 }
2221
2222 napi_schedule(&queue->backlog);
2223 goto enqueue;
2224 }
2225
2226 __get_cpu_var(netdev_rx_stat).dropped++;
2227 local_irq_restore(flags);
2228
2229 kfree_skb(skb);
2230 return NET_RX_DROP;
2231 }
2232 EXPORT_SYMBOL(netif_rx);
2233
2234 int netif_rx_ni(struct sk_buff *skb)
2235 {
2236 int err;
2237
2238 preempt_disable();
2239 err = netif_rx(skb);
2240 if (local_softirq_pending())
2241 do_softirq();
2242 preempt_enable();
2243
2244 return err;
2245 }
2246 EXPORT_SYMBOL(netif_rx_ni);
2247
2248 static void net_tx_action(struct softirq_action *h)
2249 {
2250 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2251
2252 if (sd->completion_queue) {
2253 struct sk_buff *clist;
2254
2255 local_irq_disable();
2256 clist = sd->completion_queue;
2257 sd->completion_queue = NULL;
2258 local_irq_enable();
2259
2260 while (clist) {
2261 struct sk_buff *skb = clist;
2262 clist = clist->next;
2263
2264 WARN_ON(atomic_read(&skb->users));
2265 __kfree_skb(skb);
2266 }
2267 }
2268
2269 if (sd->output_queue) {
2270 struct Qdisc *head;
2271
2272 local_irq_disable();
2273 head = sd->output_queue;
2274 sd->output_queue = NULL;
2275 local_irq_enable();
2276
2277 while (head) {
2278 struct Qdisc *q = head;
2279 spinlock_t *root_lock;
2280
2281 head = head->next_sched;
2282
2283 root_lock = qdisc_lock(q);
2284 if (spin_trylock(root_lock)) {
2285 smp_mb__before_clear_bit();
2286 clear_bit(__QDISC_STATE_SCHED,
2287 &q->state);
2288 qdisc_run(q);
2289 spin_unlock(root_lock);
2290 } else {
2291 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2292 &q->state)) {
2293 __netif_reschedule(q);
2294 } else {
2295 smp_mb__before_clear_bit();
2296 clear_bit(__QDISC_STATE_SCHED,
2297 &q->state);
2298 }
2299 }
2300 }
2301 }
2302 }
2303
2304 static inline int deliver_skb(struct sk_buff *skb,
2305 struct packet_type *pt_prev,
2306 struct net_device *orig_dev)
2307 {
2308 atomic_inc(&skb->users);
2309 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2310 }
2311
2312 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2313
2314 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2315 /* This hook is defined here for ATM LANE */
2316 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2317 unsigned char *addr) __read_mostly;
2318 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2319 #endif
2320
2321 /*
2322 * If bridge module is loaded call bridging hook.
2323 * returns NULL if packet was consumed.
2324 */
2325 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2326 struct sk_buff *skb) __read_mostly;
2327 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2328
2329 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2330 struct packet_type **pt_prev, int *ret,
2331 struct net_device *orig_dev)
2332 {
2333 struct net_bridge_port *port;
2334
2335 if (skb->pkt_type == PACKET_LOOPBACK ||
2336 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2337 return skb;
2338
2339 if (*pt_prev) {
2340 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2341 *pt_prev = NULL;
2342 }
2343
2344 return br_handle_frame_hook(port, skb);
2345 }
2346 #else
2347 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2348 #endif
2349
2350 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2351 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2352 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2353
2354 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2355 struct packet_type **pt_prev,
2356 int *ret,
2357 struct net_device *orig_dev)
2358 {
2359 if (skb->dev->macvlan_port == NULL)
2360 return skb;
2361
2362 if (*pt_prev) {
2363 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2364 *pt_prev = NULL;
2365 }
2366 return macvlan_handle_frame_hook(skb);
2367 }
2368 #else
2369 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2370 #endif
2371
2372 #ifdef CONFIG_NET_CLS_ACT
2373 /* TODO: Maybe we should just force sch_ingress to be compiled in
2374 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2375 * a compare and 2 stores extra right now if we dont have it on
2376 * but have CONFIG_NET_CLS_ACT
2377 * NOTE: This doesnt stop any functionality; if you dont have
2378 * the ingress scheduler, you just cant add policies on ingress.
2379 *
2380 */
2381 static int ing_filter(struct sk_buff *skb)
2382 {
2383 struct net_device *dev = skb->dev;
2384 u32 ttl = G_TC_RTTL(skb->tc_verd);
2385 struct netdev_queue *rxq;
2386 int result = TC_ACT_OK;
2387 struct Qdisc *q;
2388
2389 if (MAX_RED_LOOP < ttl++) {
2390 printk(KERN_WARNING
2391 "Redir loop detected Dropping packet (%d->%d)\n",
2392 skb->skb_iif, dev->ifindex);
2393 return TC_ACT_SHOT;
2394 }
2395
2396 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2397 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2398
2399 rxq = &dev->rx_queue;
2400
2401 q = rxq->qdisc;
2402 if (q != &noop_qdisc) {
2403 spin_lock(qdisc_lock(q));
2404 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2405 result = qdisc_enqueue_root(skb, q);
2406 spin_unlock(qdisc_lock(q));
2407 }
2408
2409 return result;
2410 }
2411
2412 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2413 struct packet_type **pt_prev,
2414 int *ret, struct net_device *orig_dev)
2415 {
2416 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2417 goto out;
2418
2419 if (*pt_prev) {
2420 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2421 *pt_prev = NULL;
2422 } else {
2423 /* Huh? Why does turning on AF_PACKET affect this? */
2424 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2425 }
2426
2427 switch (ing_filter(skb)) {
2428 case TC_ACT_SHOT:
2429 case TC_ACT_STOLEN:
2430 kfree_skb(skb);
2431 return NULL;
2432 }
2433
2434 out:
2435 skb->tc_verd = 0;
2436 return skb;
2437 }
2438 #endif
2439
2440 /*
2441 * netif_nit_deliver - deliver received packets to network taps
2442 * @skb: buffer
2443 *
2444 * This function is used to deliver incoming packets to network
2445 * taps. It should be used when the normal netif_receive_skb path
2446 * is bypassed, for example because of VLAN acceleration.
2447 */
2448 void netif_nit_deliver(struct sk_buff *skb)
2449 {
2450 struct packet_type *ptype;
2451
2452 if (list_empty(&ptype_all))
2453 return;
2454
2455 skb_reset_network_header(skb);
2456 skb_reset_transport_header(skb);
2457 skb->mac_len = skb->network_header - skb->mac_header;
2458
2459 rcu_read_lock();
2460 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2461 if (!ptype->dev || ptype->dev == skb->dev)
2462 deliver_skb(skb, ptype, skb->dev);
2463 }
2464 rcu_read_unlock();
2465 }
2466
2467 /**
2468 * netif_receive_skb - process receive buffer from network
2469 * @skb: buffer to process
2470 *
2471 * netif_receive_skb() is the main receive data processing function.
2472 * It always succeeds. The buffer may be dropped during processing
2473 * for congestion control or by the protocol layers.
2474 *
2475 * This function may only be called from softirq context and interrupts
2476 * should be enabled.
2477 *
2478 * Return values (usually ignored):
2479 * NET_RX_SUCCESS: no congestion
2480 * NET_RX_DROP: packet was dropped
2481 */
2482 int netif_receive_skb(struct sk_buff *skb)
2483 {
2484 struct packet_type *ptype, *pt_prev;
2485 struct net_device *orig_dev;
2486 struct net_device *master;
2487 struct net_device *null_or_orig;
2488 struct net_device *null_or_bond;
2489 int ret = NET_RX_DROP;
2490 __be16 type;
2491
2492 if (!skb->tstamp.tv64)
2493 net_timestamp(skb);
2494
2495 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2496 return NET_RX_SUCCESS;
2497
2498 /* if we've gotten here through NAPI, check netpoll */
2499 if (netpoll_receive_skb(skb))
2500 return NET_RX_DROP;
2501
2502 if (!skb->skb_iif)
2503 skb->skb_iif = skb->dev->ifindex;
2504
2505 null_or_orig = NULL;
2506 orig_dev = skb->dev;
2507 master = ACCESS_ONCE(orig_dev->master);
2508 if (master) {
2509 if (skb_bond_should_drop(skb, master))
2510 null_or_orig = orig_dev; /* deliver only exact match */
2511 else
2512 skb->dev = master;
2513 }
2514
2515 __get_cpu_var(netdev_rx_stat).total++;
2516
2517 skb_reset_network_header(skb);
2518 skb_reset_transport_header(skb);
2519 skb->mac_len = skb->network_header - skb->mac_header;
2520
2521 pt_prev = NULL;
2522
2523 rcu_read_lock();
2524
2525 #ifdef CONFIG_NET_CLS_ACT
2526 if (skb->tc_verd & TC_NCLS) {
2527 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2528 goto ncls;
2529 }
2530 #endif
2531
2532 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2533 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2534 ptype->dev == orig_dev) {
2535 if (pt_prev)
2536 ret = deliver_skb(skb, pt_prev, orig_dev);
2537 pt_prev = ptype;
2538 }
2539 }
2540
2541 #ifdef CONFIG_NET_CLS_ACT
2542 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2543 if (!skb)
2544 goto out;
2545 ncls:
2546 #endif
2547
2548 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2549 if (!skb)
2550 goto out;
2551 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2552 if (!skb)
2553 goto out;
2554
2555 /*
2556 * Make sure frames received on VLAN interfaces stacked on
2557 * bonding interfaces still make their way to any base bonding
2558 * device that may have registered for a specific ptype. The
2559 * handler may have to adjust skb->dev and orig_dev.
2560 */
2561 null_or_bond = NULL;
2562 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2563 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2564 null_or_bond = vlan_dev_real_dev(skb->dev);
2565 }
2566
2567 type = skb->protocol;
2568 list_for_each_entry_rcu(ptype,
2569 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2570 if (ptype->type == type && (ptype->dev == null_or_orig ||
2571 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2572 ptype->dev == null_or_bond)) {
2573 if (pt_prev)
2574 ret = deliver_skb(skb, pt_prev, orig_dev);
2575 pt_prev = ptype;
2576 }
2577 }
2578
2579 if (pt_prev) {
2580 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2581 } else {
2582 kfree_skb(skb);
2583 /* Jamal, now you will not able to escape explaining
2584 * me how you were going to use this. :-)
2585 */
2586 ret = NET_RX_DROP;
2587 }
2588
2589 out:
2590 rcu_read_unlock();
2591 return ret;
2592 }
2593 EXPORT_SYMBOL(netif_receive_skb);
2594
2595 /* Network device is going away, flush any packets still pending */
2596 static void flush_backlog(void *arg)
2597 {
2598 struct net_device *dev = arg;
2599 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2600 struct sk_buff *skb, *tmp;
2601
2602 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2603 if (skb->dev == dev) {
2604 __skb_unlink(skb, &queue->input_pkt_queue);
2605 kfree_skb(skb);
2606 }
2607 }
2608
2609 static int napi_gro_complete(struct sk_buff *skb)
2610 {
2611 struct packet_type *ptype;
2612 __be16 type = skb->protocol;
2613 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2614 int err = -ENOENT;
2615
2616 if (NAPI_GRO_CB(skb)->count == 1) {
2617 skb_shinfo(skb)->gso_size = 0;
2618 goto out;
2619 }
2620
2621 rcu_read_lock();
2622 list_for_each_entry_rcu(ptype, head, list) {
2623 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2624 continue;
2625
2626 err = ptype->gro_complete(skb);
2627 break;
2628 }
2629 rcu_read_unlock();
2630
2631 if (err) {
2632 WARN_ON(&ptype->list == head);
2633 kfree_skb(skb);
2634 return NET_RX_SUCCESS;
2635 }
2636
2637 out:
2638 return netif_receive_skb(skb);
2639 }
2640
2641 static void napi_gro_flush(struct napi_struct *napi)
2642 {
2643 struct sk_buff *skb, *next;
2644
2645 for (skb = napi->gro_list; skb; skb = next) {
2646 next = skb->next;
2647 skb->next = NULL;
2648 napi_gro_complete(skb);
2649 }
2650
2651 napi->gro_count = 0;
2652 napi->gro_list = NULL;
2653 }
2654
2655 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2656 {
2657 struct sk_buff **pp = NULL;
2658 struct packet_type *ptype;
2659 __be16 type = skb->protocol;
2660 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2661 int same_flow;
2662 int mac_len;
2663 enum gro_result ret;
2664
2665 if (!(skb->dev->features & NETIF_F_GRO))
2666 goto normal;
2667
2668 if (skb_is_gso(skb) || skb_has_frags(skb))
2669 goto normal;
2670
2671 rcu_read_lock();
2672 list_for_each_entry_rcu(ptype, head, list) {
2673 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2674 continue;
2675
2676 skb_set_network_header(skb, skb_gro_offset(skb));
2677 mac_len = skb->network_header - skb->mac_header;
2678 skb->mac_len = mac_len;
2679 NAPI_GRO_CB(skb)->same_flow = 0;
2680 NAPI_GRO_CB(skb)->flush = 0;
2681 NAPI_GRO_CB(skb)->free = 0;
2682
2683 pp = ptype->gro_receive(&napi->gro_list, skb);
2684 break;
2685 }
2686 rcu_read_unlock();
2687
2688 if (&ptype->list == head)
2689 goto normal;
2690
2691 same_flow = NAPI_GRO_CB(skb)->same_flow;
2692 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2693
2694 if (pp) {
2695 struct sk_buff *nskb = *pp;
2696
2697 *pp = nskb->next;
2698 nskb->next = NULL;
2699 napi_gro_complete(nskb);
2700 napi->gro_count--;
2701 }
2702
2703 if (same_flow)
2704 goto ok;
2705
2706 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2707 goto normal;
2708
2709 napi->gro_count++;
2710 NAPI_GRO_CB(skb)->count = 1;
2711 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2712 skb->next = napi->gro_list;
2713 napi->gro_list = skb;
2714 ret = GRO_HELD;
2715
2716 pull:
2717 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2718 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2719
2720 BUG_ON(skb->end - skb->tail < grow);
2721
2722 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2723
2724 skb->tail += grow;
2725 skb->data_len -= grow;
2726
2727 skb_shinfo(skb)->frags[0].page_offset += grow;
2728 skb_shinfo(skb)->frags[0].size -= grow;
2729
2730 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2731 put_page(skb_shinfo(skb)->frags[0].page);
2732 memmove(skb_shinfo(skb)->frags,
2733 skb_shinfo(skb)->frags + 1,
2734 --skb_shinfo(skb)->nr_frags);
2735 }
2736 }
2737
2738 ok:
2739 return ret;
2740
2741 normal:
2742 ret = GRO_NORMAL;
2743 goto pull;
2744 }
2745 EXPORT_SYMBOL(dev_gro_receive);
2746
2747 static gro_result_t
2748 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2749 {
2750 struct sk_buff *p;
2751
2752 if (netpoll_rx_on(skb))
2753 return GRO_NORMAL;
2754
2755 for (p = napi->gro_list; p; p = p->next) {
2756 NAPI_GRO_CB(p)->same_flow =
2757 (p->dev == skb->dev) &&
2758 !compare_ether_header(skb_mac_header(p),
2759 skb_gro_mac_header(skb));
2760 NAPI_GRO_CB(p)->flush = 0;
2761 }
2762
2763 return dev_gro_receive(napi, skb);
2764 }
2765
2766 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2767 {
2768 switch (ret) {
2769 case GRO_NORMAL:
2770 if (netif_receive_skb(skb))
2771 ret = GRO_DROP;
2772 break;
2773
2774 case GRO_DROP:
2775 case GRO_MERGED_FREE:
2776 kfree_skb(skb);
2777 break;
2778
2779 case GRO_HELD:
2780 case GRO_MERGED:
2781 break;
2782 }
2783
2784 return ret;
2785 }
2786 EXPORT_SYMBOL(napi_skb_finish);
2787
2788 void skb_gro_reset_offset(struct sk_buff *skb)
2789 {
2790 NAPI_GRO_CB(skb)->data_offset = 0;
2791 NAPI_GRO_CB(skb)->frag0 = NULL;
2792 NAPI_GRO_CB(skb)->frag0_len = 0;
2793
2794 if (skb->mac_header == skb->tail &&
2795 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2796 NAPI_GRO_CB(skb)->frag0 =
2797 page_address(skb_shinfo(skb)->frags[0].page) +
2798 skb_shinfo(skb)->frags[0].page_offset;
2799 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2800 }
2801 }
2802 EXPORT_SYMBOL(skb_gro_reset_offset);
2803
2804 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2805 {
2806 skb_gro_reset_offset(skb);
2807
2808 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2809 }
2810 EXPORT_SYMBOL(napi_gro_receive);
2811
2812 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2813 {
2814 __skb_pull(skb, skb_headlen(skb));
2815 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2816
2817 napi->skb = skb;
2818 }
2819 EXPORT_SYMBOL(napi_reuse_skb);
2820
2821 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2822 {
2823 struct sk_buff *skb = napi->skb;
2824
2825 if (!skb) {
2826 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2827 if (skb)
2828 napi->skb = skb;
2829 }
2830 return skb;
2831 }
2832 EXPORT_SYMBOL(napi_get_frags);
2833
2834 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2835 gro_result_t ret)
2836 {
2837 switch (ret) {
2838 case GRO_NORMAL:
2839 case GRO_HELD:
2840 skb->protocol = eth_type_trans(skb, skb->dev);
2841
2842 if (ret == GRO_HELD)
2843 skb_gro_pull(skb, -ETH_HLEN);
2844 else if (netif_receive_skb(skb))
2845 ret = GRO_DROP;
2846 break;
2847
2848 case GRO_DROP:
2849 case GRO_MERGED_FREE:
2850 napi_reuse_skb(napi, skb);
2851 break;
2852
2853 case GRO_MERGED:
2854 break;
2855 }
2856
2857 return ret;
2858 }
2859 EXPORT_SYMBOL(napi_frags_finish);
2860
2861 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2862 {
2863 struct sk_buff *skb = napi->skb;
2864 struct ethhdr *eth;
2865 unsigned int hlen;
2866 unsigned int off;
2867
2868 napi->skb = NULL;
2869
2870 skb_reset_mac_header(skb);
2871 skb_gro_reset_offset(skb);
2872
2873 off = skb_gro_offset(skb);
2874 hlen = off + sizeof(*eth);
2875 eth = skb_gro_header_fast(skb, off);
2876 if (skb_gro_header_hard(skb, hlen)) {
2877 eth = skb_gro_header_slow(skb, hlen, off);
2878 if (unlikely(!eth)) {
2879 napi_reuse_skb(napi, skb);
2880 skb = NULL;
2881 goto out;
2882 }
2883 }
2884
2885 skb_gro_pull(skb, sizeof(*eth));
2886
2887 /*
2888 * This works because the only protocols we care about don't require
2889 * special handling. We'll fix it up properly at the end.
2890 */
2891 skb->protocol = eth->h_proto;
2892
2893 out:
2894 return skb;
2895 }
2896 EXPORT_SYMBOL(napi_frags_skb);
2897
2898 gro_result_t napi_gro_frags(struct napi_struct *napi)
2899 {
2900 struct sk_buff *skb = napi_frags_skb(napi);
2901
2902 if (!skb)
2903 return GRO_DROP;
2904
2905 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2906 }
2907 EXPORT_SYMBOL(napi_gro_frags);
2908
2909 static int process_backlog(struct napi_struct *napi, int quota)
2910 {
2911 int work = 0;
2912 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2913 unsigned long start_time = jiffies;
2914
2915 napi->weight = weight_p;
2916 do {
2917 struct sk_buff *skb;
2918
2919 local_irq_disable();
2920 skb = __skb_dequeue(&queue->input_pkt_queue);
2921 if (!skb) {
2922 __napi_complete(napi);
2923 local_irq_enable();
2924 break;
2925 }
2926 local_irq_enable();
2927
2928 netif_receive_skb(skb);
2929 } while (++work < quota && jiffies == start_time);
2930
2931 return work;
2932 }
2933
2934 /**
2935 * __napi_schedule - schedule for receive
2936 * @n: entry to schedule
2937 *
2938 * The entry's receive function will be scheduled to run
2939 */
2940 void __napi_schedule(struct napi_struct *n)
2941 {
2942 unsigned long flags;
2943
2944 local_irq_save(flags);
2945 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2946 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2947 local_irq_restore(flags);
2948 }
2949 EXPORT_SYMBOL(__napi_schedule);
2950
2951 void __napi_complete(struct napi_struct *n)
2952 {
2953 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2954 BUG_ON(n->gro_list);
2955
2956 list_del(&n->poll_list);
2957 smp_mb__before_clear_bit();
2958 clear_bit(NAPI_STATE_SCHED, &n->state);
2959 }
2960 EXPORT_SYMBOL(__napi_complete);
2961
2962 void napi_complete(struct napi_struct *n)
2963 {
2964 unsigned long flags;
2965
2966 /*
2967 * don't let napi dequeue from the cpu poll list
2968 * just in case its running on a different cpu
2969 */
2970 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2971 return;
2972
2973 napi_gro_flush(n);
2974 local_irq_save(flags);
2975 __napi_complete(n);
2976 local_irq_restore(flags);
2977 }
2978 EXPORT_SYMBOL(napi_complete);
2979
2980 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2981 int (*poll)(struct napi_struct *, int), int weight)
2982 {
2983 INIT_LIST_HEAD(&napi->poll_list);
2984 napi->gro_count = 0;
2985 napi->gro_list = NULL;
2986 napi->skb = NULL;
2987 napi->poll = poll;
2988 napi->weight = weight;
2989 list_add(&napi->dev_list, &dev->napi_list);
2990 napi->dev = dev;
2991 #ifdef CONFIG_NETPOLL
2992 spin_lock_init(&napi->poll_lock);
2993 napi->poll_owner = -1;
2994 #endif
2995 set_bit(NAPI_STATE_SCHED, &napi->state);
2996 }
2997 EXPORT_SYMBOL(netif_napi_add);
2998
2999 void netif_napi_del(struct napi_struct *napi)
3000 {
3001 struct sk_buff *skb, *next;
3002
3003 list_del_init(&napi->dev_list);
3004 napi_free_frags(napi);
3005
3006 for (skb = napi->gro_list; skb; skb = next) {
3007 next = skb->next;
3008 skb->next = NULL;
3009 kfree_skb(skb);
3010 }
3011
3012 napi->gro_list = NULL;
3013 napi->gro_count = 0;
3014 }
3015 EXPORT_SYMBOL(netif_napi_del);
3016
3017
3018 static void net_rx_action(struct softirq_action *h)
3019 {
3020 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3021 unsigned long time_limit = jiffies + 2;
3022 int budget = netdev_budget;
3023 void *have;
3024
3025 local_irq_disable();
3026
3027 while (!list_empty(list)) {
3028 struct napi_struct *n;
3029 int work, weight;
3030
3031 /* If softirq window is exhuasted then punt.
3032 * Allow this to run for 2 jiffies since which will allow
3033 * an average latency of 1.5/HZ.
3034 */
3035 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3036 goto softnet_break;
3037
3038 local_irq_enable();
3039
3040 /* Even though interrupts have been re-enabled, this
3041 * access is safe because interrupts can only add new
3042 * entries to the tail of this list, and only ->poll()
3043 * calls can remove this head entry from the list.
3044 */
3045 n = list_first_entry(list, struct napi_struct, poll_list);
3046
3047 have = netpoll_poll_lock(n);
3048
3049 weight = n->weight;
3050
3051 /* This NAPI_STATE_SCHED test is for avoiding a race
3052 * with netpoll's poll_napi(). Only the entity which
3053 * obtains the lock and sees NAPI_STATE_SCHED set will
3054 * actually make the ->poll() call. Therefore we avoid
3055 * accidently calling ->poll() when NAPI is not scheduled.
3056 */
3057 work = 0;
3058 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3059 work = n->poll(n, weight);
3060 trace_napi_poll(n);
3061 }
3062
3063 WARN_ON_ONCE(work > weight);
3064
3065 budget -= work;
3066
3067 local_irq_disable();
3068
3069 /* Drivers must not modify the NAPI state if they
3070 * consume the entire weight. In such cases this code
3071 * still "owns" the NAPI instance and therefore can
3072 * move the instance around on the list at-will.
3073 */
3074 if (unlikely(work == weight)) {
3075 if (unlikely(napi_disable_pending(n))) {
3076 local_irq_enable();
3077 napi_complete(n);
3078 local_irq_disable();
3079 } else
3080 list_move_tail(&n->poll_list, list);
3081 }
3082
3083 netpoll_poll_unlock(have);
3084 }
3085 out:
3086 local_irq_enable();
3087
3088 #ifdef CONFIG_NET_DMA
3089 /*
3090 * There may not be any more sk_buffs coming right now, so push
3091 * any pending DMA copies to hardware
3092 */
3093 dma_issue_pending_all();
3094 #endif
3095
3096 return;
3097
3098 softnet_break:
3099 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3100 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3101 goto out;
3102 }
3103
3104 static gifconf_func_t *gifconf_list[NPROTO];
3105
3106 /**
3107 * register_gifconf - register a SIOCGIF handler
3108 * @family: Address family
3109 * @gifconf: Function handler
3110 *
3111 * Register protocol dependent address dumping routines. The handler
3112 * that is passed must not be freed or reused until it has been replaced
3113 * by another handler.
3114 */
3115 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3116 {
3117 if (family >= NPROTO)
3118 return -EINVAL;
3119 gifconf_list[family] = gifconf;
3120 return 0;
3121 }
3122 EXPORT_SYMBOL(register_gifconf);
3123
3124
3125 /*
3126 * Map an interface index to its name (SIOCGIFNAME)
3127 */
3128
3129 /*
3130 * We need this ioctl for efficient implementation of the
3131 * if_indextoname() function required by the IPv6 API. Without
3132 * it, we would have to search all the interfaces to find a
3133 * match. --pb
3134 */
3135
3136 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3137 {
3138 struct net_device *dev;
3139 struct ifreq ifr;
3140
3141 /*
3142 * Fetch the caller's info block.
3143 */
3144
3145 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3146 return -EFAULT;
3147
3148 rcu_read_lock();
3149 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3150 if (!dev) {
3151 rcu_read_unlock();
3152 return -ENODEV;
3153 }
3154
3155 strcpy(ifr.ifr_name, dev->name);
3156 rcu_read_unlock();
3157
3158 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3159 return -EFAULT;
3160 return 0;
3161 }
3162
3163 /*
3164 * Perform a SIOCGIFCONF call. This structure will change
3165 * size eventually, and there is nothing I can do about it.
3166 * Thus we will need a 'compatibility mode'.
3167 */
3168
3169 static int dev_ifconf(struct net *net, char __user *arg)
3170 {
3171 struct ifconf ifc;
3172 struct net_device *dev;
3173 char __user *pos;
3174 int len;
3175 int total;
3176 int i;
3177
3178 /*
3179 * Fetch the caller's info block.
3180 */
3181
3182 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3183 return -EFAULT;
3184
3185 pos = ifc.ifc_buf;
3186 len = ifc.ifc_len;
3187
3188 /*
3189 * Loop over the interfaces, and write an info block for each.
3190 */
3191
3192 total = 0;
3193 for_each_netdev(net, dev) {
3194 for (i = 0; i < NPROTO; i++) {
3195 if (gifconf_list[i]) {
3196 int done;
3197 if (!pos)
3198 done = gifconf_list[i](dev, NULL, 0);
3199 else
3200 done = gifconf_list[i](dev, pos + total,
3201 len - total);
3202 if (done < 0)
3203 return -EFAULT;
3204 total += done;
3205 }
3206 }
3207 }
3208
3209 /*
3210 * All done. Write the updated control block back to the caller.
3211 */
3212 ifc.ifc_len = total;
3213
3214 /*
3215 * Both BSD and Solaris return 0 here, so we do too.
3216 */
3217 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3218 }
3219
3220 #ifdef CONFIG_PROC_FS
3221 /*
3222 * This is invoked by the /proc filesystem handler to display a device
3223 * in detail.
3224 */
3225 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3226 __acquires(RCU)
3227 {
3228 struct net *net = seq_file_net(seq);
3229 loff_t off;
3230 struct net_device *dev;
3231
3232 rcu_read_lock();
3233 if (!*pos)
3234 return SEQ_START_TOKEN;
3235
3236 off = 1;
3237 for_each_netdev_rcu(net, dev)
3238 if (off++ == *pos)
3239 return dev;
3240
3241 return NULL;
3242 }
3243
3244 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3245 {
3246 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3247 first_net_device(seq_file_net(seq)) :
3248 next_net_device((struct net_device *)v);
3249
3250 ++*pos;
3251 return rcu_dereference(dev);
3252 }
3253
3254 void dev_seq_stop(struct seq_file *seq, void *v)
3255 __releases(RCU)
3256 {
3257 rcu_read_unlock();
3258 }
3259
3260 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3261 {
3262 const struct net_device_stats *stats = dev_get_stats(dev);
3263
3264 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3265 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3266 dev->name, stats->rx_bytes, stats->rx_packets,
3267 stats->rx_errors,
3268 stats->rx_dropped + stats->rx_missed_errors,
3269 stats->rx_fifo_errors,
3270 stats->rx_length_errors + stats->rx_over_errors +
3271 stats->rx_crc_errors + stats->rx_frame_errors,
3272 stats->rx_compressed, stats->multicast,
3273 stats->tx_bytes, stats->tx_packets,
3274 stats->tx_errors, stats->tx_dropped,
3275 stats->tx_fifo_errors, stats->collisions,
3276 stats->tx_carrier_errors +
3277 stats->tx_aborted_errors +
3278 stats->tx_window_errors +
3279 stats->tx_heartbeat_errors,
3280 stats->tx_compressed);
3281 }
3282
3283 /*
3284 * Called from the PROCfs module. This now uses the new arbitrary sized
3285 * /proc/net interface to create /proc/net/dev
3286 */
3287 static int dev_seq_show(struct seq_file *seq, void *v)
3288 {
3289 if (v == SEQ_START_TOKEN)
3290 seq_puts(seq, "Inter-| Receive "
3291 " | Transmit\n"
3292 " face |bytes packets errs drop fifo frame "
3293 "compressed multicast|bytes packets errs "
3294 "drop fifo colls carrier compressed\n");
3295 else
3296 dev_seq_printf_stats(seq, v);
3297 return 0;
3298 }
3299
3300 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3301 {
3302 struct netif_rx_stats *rc = NULL;
3303
3304 while (*pos < nr_cpu_ids)
3305 if (cpu_online(*pos)) {
3306 rc = &per_cpu(netdev_rx_stat, *pos);
3307 break;
3308 } else
3309 ++*pos;
3310 return rc;
3311 }
3312
3313 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3314 {
3315 return softnet_get_online(pos);
3316 }
3317
3318 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3319 {
3320 ++*pos;
3321 return softnet_get_online(pos);
3322 }
3323
3324 static void softnet_seq_stop(struct seq_file *seq, void *v)
3325 {
3326 }
3327
3328 static int softnet_seq_show(struct seq_file *seq, void *v)
3329 {
3330 struct netif_rx_stats *s = v;
3331
3332 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3333 s->total, s->dropped, s->time_squeeze, 0,
3334 0, 0, 0, 0, /* was fastroute */
3335 s->cpu_collision);
3336 return 0;
3337 }
3338
3339 static const struct seq_operations dev_seq_ops = {
3340 .start = dev_seq_start,
3341 .next = dev_seq_next,
3342 .stop = dev_seq_stop,
3343 .show = dev_seq_show,
3344 };
3345
3346 static int dev_seq_open(struct inode *inode, struct file *file)
3347 {
3348 return seq_open_net(inode, file, &dev_seq_ops,
3349 sizeof(struct seq_net_private));
3350 }
3351
3352 static const struct file_operations dev_seq_fops = {
3353 .owner = THIS_MODULE,
3354 .open = dev_seq_open,
3355 .read = seq_read,
3356 .llseek = seq_lseek,
3357 .release = seq_release_net,
3358 };
3359
3360 static const struct seq_operations softnet_seq_ops = {
3361 .start = softnet_seq_start,
3362 .next = softnet_seq_next,
3363 .stop = softnet_seq_stop,
3364 .show = softnet_seq_show,
3365 };
3366
3367 static int softnet_seq_open(struct inode *inode, struct file *file)
3368 {
3369 return seq_open(file, &softnet_seq_ops);
3370 }
3371
3372 static const struct file_operations softnet_seq_fops = {
3373 .owner = THIS_MODULE,
3374 .open = softnet_seq_open,
3375 .read = seq_read,
3376 .llseek = seq_lseek,
3377 .release = seq_release,
3378 };
3379
3380 static void *ptype_get_idx(loff_t pos)
3381 {
3382 struct packet_type *pt = NULL;
3383 loff_t i = 0;
3384 int t;
3385
3386 list_for_each_entry_rcu(pt, &ptype_all, list) {
3387 if (i == pos)
3388 return pt;
3389 ++i;
3390 }
3391
3392 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3393 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3394 if (i == pos)
3395 return pt;
3396 ++i;
3397 }
3398 }
3399 return NULL;
3400 }
3401
3402 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3403 __acquires(RCU)
3404 {
3405 rcu_read_lock();
3406 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3407 }
3408
3409 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3410 {
3411 struct packet_type *pt;
3412 struct list_head *nxt;
3413 int hash;
3414
3415 ++*pos;
3416 if (v == SEQ_START_TOKEN)
3417 return ptype_get_idx(0);
3418
3419 pt = v;
3420 nxt = pt->list.next;
3421 if (pt->type == htons(ETH_P_ALL)) {
3422 if (nxt != &ptype_all)
3423 goto found;
3424 hash = 0;
3425 nxt = ptype_base[0].next;
3426 } else
3427 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3428
3429 while (nxt == &ptype_base[hash]) {
3430 if (++hash >= PTYPE_HASH_SIZE)
3431 return NULL;
3432 nxt = ptype_base[hash].next;
3433 }
3434 found:
3435 return list_entry(nxt, struct packet_type, list);
3436 }
3437
3438 static void ptype_seq_stop(struct seq_file *seq, void *v)
3439 __releases(RCU)
3440 {
3441 rcu_read_unlock();
3442 }
3443
3444 static int ptype_seq_show(struct seq_file *seq, void *v)
3445 {
3446 struct packet_type *pt = v;
3447
3448 if (v == SEQ_START_TOKEN)
3449 seq_puts(seq, "Type Device Function\n");
3450 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3451 if (pt->type == htons(ETH_P_ALL))
3452 seq_puts(seq, "ALL ");
3453 else
3454 seq_printf(seq, "%04x", ntohs(pt->type));
3455
3456 seq_printf(seq, " %-8s %pF\n",
3457 pt->dev ? pt->dev->name : "", pt->func);
3458 }
3459
3460 return 0;
3461 }
3462
3463 static const struct seq_operations ptype_seq_ops = {
3464 .start = ptype_seq_start,
3465 .next = ptype_seq_next,
3466 .stop = ptype_seq_stop,
3467 .show = ptype_seq_show,
3468 };
3469
3470 static int ptype_seq_open(struct inode *inode, struct file *file)
3471 {
3472 return seq_open_net(inode, file, &ptype_seq_ops,
3473 sizeof(struct seq_net_private));
3474 }
3475
3476 static const struct file_operations ptype_seq_fops = {
3477 .owner = THIS_MODULE,
3478 .open = ptype_seq_open,
3479 .read = seq_read,
3480 .llseek = seq_lseek,
3481 .release = seq_release_net,
3482 };
3483
3484
3485 static int __net_init dev_proc_net_init(struct net *net)
3486 {
3487 int rc = -ENOMEM;
3488
3489 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3490 goto out;
3491 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3492 goto out_dev;
3493 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3494 goto out_softnet;
3495
3496 if (wext_proc_init(net))
3497 goto out_ptype;
3498 rc = 0;
3499 out:
3500 return rc;
3501 out_ptype:
3502 proc_net_remove(net, "ptype");
3503 out_softnet:
3504 proc_net_remove(net, "softnet_stat");
3505 out_dev:
3506 proc_net_remove(net, "dev");
3507 goto out;
3508 }
3509
3510 static void __net_exit dev_proc_net_exit(struct net *net)
3511 {
3512 wext_proc_exit(net);
3513
3514 proc_net_remove(net, "ptype");
3515 proc_net_remove(net, "softnet_stat");
3516 proc_net_remove(net, "dev");
3517 }
3518
3519 static struct pernet_operations __net_initdata dev_proc_ops = {
3520 .init = dev_proc_net_init,
3521 .exit = dev_proc_net_exit,
3522 };
3523
3524 static int __init dev_proc_init(void)
3525 {
3526 return register_pernet_subsys(&dev_proc_ops);
3527 }
3528 #else
3529 #define dev_proc_init() 0
3530 #endif /* CONFIG_PROC_FS */
3531
3532
3533 /**
3534 * netdev_set_master - set up master/slave pair
3535 * @slave: slave device
3536 * @master: new master device
3537 *
3538 * Changes the master device of the slave. Pass %NULL to break the
3539 * bonding. The caller must hold the RTNL semaphore. On a failure
3540 * a negative errno code is returned. On success the reference counts
3541 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3542 * function returns zero.
3543 */
3544 int netdev_set_master(struct net_device *slave, struct net_device *master)
3545 {
3546 struct net_device *old = slave->master;
3547
3548 ASSERT_RTNL();
3549
3550 if (master) {
3551 if (old)
3552 return -EBUSY;
3553 dev_hold(master);
3554 }
3555
3556 slave->master = master;
3557
3558 synchronize_net();
3559
3560 if (old)
3561 dev_put(old);
3562
3563 if (master)
3564 slave->flags |= IFF_SLAVE;
3565 else
3566 slave->flags &= ~IFF_SLAVE;
3567
3568 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3569 return 0;
3570 }
3571 EXPORT_SYMBOL(netdev_set_master);
3572
3573 static void dev_change_rx_flags(struct net_device *dev, int flags)
3574 {
3575 const struct net_device_ops *ops = dev->netdev_ops;
3576
3577 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3578 ops->ndo_change_rx_flags(dev, flags);
3579 }
3580
3581 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3582 {
3583 unsigned short old_flags = dev->flags;
3584 uid_t uid;
3585 gid_t gid;
3586
3587 ASSERT_RTNL();
3588
3589 dev->flags |= IFF_PROMISC;
3590 dev->promiscuity += inc;
3591 if (dev->promiscuity == 0) {
3592 /*
3593 * Avoid overflow.
3594 * If inc causes overflow, untouch promisc and return error.
3595 */
3596 if (inc < 0)
3597 dev->flags &= ~IFF_PROMISC;
3598 else {
3599 dev->promiscuity -= inc;
3600 printk(KERN_WARNING "%s: promiscuity touches roof, "
3601 "set promiscuity failed, promiscuity feature "
3602 "of device might be broken.\n", dev->name);
3603 return -EOVERFLOW;
3604 }
3605 }
3606 if (dev->flags != old_flags) {
3607 printk(KERN_INFO "device %s %s promiscuous mode\n",
3608 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3609 "left");
3610 if (audit_enabled) {
3611 current_uid_gid(&uid, &gid);
3612 audit_log(current->audit_context, GFP_ATOMIC,
3613 AUDIT_ANOM_PROMISCUOUS,
3614 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3615 dev->name, (dev->flags & IFF_PROMISC),
3616 (old_flags & IFF_PROMISC),
3617 audit_get_loginuid(current),
3618 uid, gid,
3619 audit_get_sessionid(current));
3620 }
3621
3622 dev_change_rx_flags(dev, IFF_PROMISC);
3623 }
3624 return 0;
3625 }
3626
3627 /**
3628 * dev_set_promiscuity - update promiscuity count on a device
3629 * @dev: device
3630 * @inc: modifier
3631 *
3632 * Add or remove promiscuity from a device. While the count in the device
3633 * remains above zero the interface remains promiscuous. Once it hits zero
3634 * the device reverts back to normal filtering operation. A negative inc
3635 * value is used to drop promiscuity on the device.
3636 * Return 0 if successful or a negative errno code on error.
3637 */
3638 int dev_set_promiscuity(struct net_device *dev, int inc)
3639 {
3640 unsigned short old_flags = dev->flags;
3641 int err;
3642
3643 err = __dev_set_promiscuity(dev, inc);
3644 if (err < 0)
3645 return err;
3646 if (dev->flags != old_flags)
3647 dev_set_rx_mode(dev);
3648 return err;
3649 }
3650 EXPORT_SYMBOL(dev_set_promiscuity);
3651
3652 /**
3653 * dev_set_allmulti - update allmulti count on a device
3654 * @dev: device
3655 * @inc: modifier
3656 *
3657 * Add or remove reception of all multicast frames to a device. While the
3658 * count in the device remains above zero the interface remains listening
3659 * to all interfaces. Once it hits zero the device reverts back to normal
3660 * filtering operation. A negative @inc value is used to drop the counter
3661 * when releasing a resource needing all multicasts.
3662 * Return 0 if successful or a negative errno code on error.
3663 */
3664
3665 int dev_set_allmulti(struct net_device *dev, int inc)
3666 {
3667 unsigned short old_flags = dev->flags;
3668
3669 ASSERT_RTNL();
3670
3671 dev->flags |= IFF_ALLMULTI;
3672 dev->allmulti += inc;
3673 if (dev->allmulti == 0) {
3674 /*
3675 * Avoid overflow.
3676 * If inc causes overflow, untouch allmulti and return error.
3677 */
3678 if (inc < 0)
3679 dev->flags &= ~IFF_ALLMULTI;
3680 else {
3681 dev->allmulti -= inc;
3682 printk(KERN_WARNING "%s: allmulti touches roof, "
3683 "set allmulti failed, allmulti feature of "
3684 "device might be broken.\n", dev->name);
3685 return -EOVERFLOW;
3686 }
3687 }
3688 if (dev->flags ^ old_flags) {
3689 dev_change_rx_flags(dev, IFF_ALLMULTI);
3690 dev_set_rx_mode(dev);
3691 }
3692 return 0;
3693 }
3694 EXPORT_SYMBOL(dev_set_allmulti);
3695
3696 /*
3697 * Upload unicast and multicast address lists to device and
3698 * configure RX filtering. When the device doesn't support unicast
3699 * filtering it is put in promiscuous mode while unicast addresses
3700 * are present.
3701 */
3702 void __dev_set_rx_mode(struct net_device *dev)
3703 {
3704 const struct net_device_ops *ops = dev->netdev_ops;
3705
3706 /* dev_open will call this function so the list will stay sane. */
3707 if (!(dev->flags&IFF_UP))
3708 return;
3709
3710 if (!netif_device_present(dev))
3711 return;
3712
3713 if (ops->ndo_set_rx_mode)
3714 ops->ndo_set_rx_mode(dev);
3715 else {
3716 /* Unicast addresses changes may only happen under the rtnl,
3717 * therefore calling __dev_set_promiscuity here is safe.
3718 */
3719 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3720 __dev_set_promiscuity(dev, 1);
3721 dev->uc_promisc = 1;
3722 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3723 __dev_set_promiscuity(dev, -1);
3724 dev->uc_promisc = 0;
3725 }
3726
3727 if (ops->ndo_set_multicast_list)
3728 ops->ndo_set_multicast_list(dev);
3729 }
3730 }
3731
3732 void dev_set_rx_mode(struct net_device *dev)
3733 {
3734 netif_addr_lock_bh(dev);
3735 __dev_set_rx_mode(dev);
3736 netif_addr_unlock_bh(dev);
3737 }
3738
3739 /* hw addresses list handling functions */
3740
3741 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3742 int addr_len, unsigned char addr_type)
3743 {
3744 struct netdev_hw_addr *ha;
3745 int alloc_size;
3746
3747 if (addr_len > MAX_ADDR_LEN)
3748 return -EINVAL;
3749
3750 list_for_each_entry(ha, &list->list, list) {
3751 if (!memcmp(ha->addr, addr, addr_len) &&
3752 ha->type == addr_type) {
3753 ha->refcount++;
3754 return 0;
3755 }
3756 }
3757
3758
3759 alloc_size = sizeof(*ha);
3760 if (alloc_size < L1_CACHE_BYTES)
3761 alloc_size = L1_CACHE_BYTES;
3762 ha = kmalloc(alloc_size, GFP_ATOMIC);
3763 if (!ha)
3764 return -ENOMEM;
3765 memcpy(ha->addr, addr, addr_len);
3766 ha->type = addr_type;
3767 ha->refcount = 1;
3768 ha->synced = false;
3769 list_add_tail_rcu(&ha->list, &list->list);
3770 list->count++;
3771 return 0;
3772 }
3773
3774 static void ha_rcu_free(struct rcu_head *head)
3775 {
3776 struct netdev_hw_addr *ha;
3777
3778 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3779 kfree(ha);
3780 }
3781
3782 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3783 int addr_len, unsigned char addr_type)
3784 {
3785 struct netdev_hw_addr *ha;
3786
3787 list_for_each_entry(ha, &list->list, list) {
3788 if (!memcmp(ha->addr, addr, addr_len) &&
3789 (ha->type == addr_type || !addr_type)) {
3790 if (--ha->refcount)
3791 return 0;
3792 list_del_rcu(&ha->list);
3793 call_rcu(&ha->rcu_head, ha_rcu_free);
3794 list->count--;
3795 return 0;
3796 }
3797 }
3798 return -ENOENT;
3799 }
3800
3801 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3802 struct netdev_hw_addr_list *from_list,
3803 int addr_len,
3804 unsigned char addr_type)
3805 {
3806 int err;
3807 struct netdev_hw_addr *ha, *ha2;
3808 unsigned char type;
3809
3810 list_for_each_entry(ha, &from_list->list, list) {
3811 type = addr_type ? addr_type : ha->type;
3812 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3813 if (err)
3814 goto unroll;
3815 }
3816 return 0;
3817
3818 unroll:
3819 list_for_each_entry(ha2, &from_list->list, list) {
3820 if (ha2 == ha)
3821 break;
3822 type = addr_type ? addr_type : ha2->type;
3823 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3824 }
3825 return err;
3826 }
3827
3828 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3829 struct netdev_hw_addr_list *from_list,
3830 int addr_len,
3831 unsigned char addr_type)
3832 {
3833 struct netdev_hw_addr *ha;
3834 unsigned char type;
3835
3836 list_for_each_entry(ha, &from_list->list, list) {
3837 type = addr_type ? addr_type : ha->type;
3838 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3839 }
3840 }
3841
3842 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3843 struct netdev_hw_addr_list *from_list,
3844 int addr_len)
3845 {
3846 int err = 0;
3847 struct netdev_hw_addr *ha, *tmp;
3848
3849 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3850 if (!ha->synced) {
3851 err = __hw_addr_add(to_list, ha->addr,
3852 addr_len, ha->type);
3853 if (err)
3854 break;
3855 ha->synced = true;
3856 ha->refcount++;
3857 } else if (ha->refcount == 1) {
3858 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3859 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3860 }
3861 }
3862 return err;
3863 }
3864
3865 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3866 struct netdev_hw_addr_list *from_list,
3867 int addr_len)
3868 {
3869 struct netdev_hw_addr *ha, *tmp;
3870
3871 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3872 if (ha->synced) {
3873 __hw_addr_del(to_list, ha->addr,
3874 addr_len, ha->type);
3875 ha->synced = false;
3876 __hw_addr_del(from_list, ha->addr,
3877 addr_len, ha->type);
3878 }
3879 }
3880 }
3881
3882 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3883 {
3884 struct netdev_hw_addr *ha, *tmp;
3885
3886 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3887 list_del_rcu(&ha->list);
3888 call_rcu(&ha->rcu_head, ha_rcu_free);
3889 }
3890 list->count = 0;
3891 }
3892
3893 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3894 {
3895 INIT_LIST_HEAD(&list->list);
3896 list->count = 0;
3897 }
3898
3899 /* Device addresses handling functions */
3900
3901 static void dev_addr_flush(struct net_device *dev)
3902 {
3903 /* rtnl_mutex must be held here */
3904
3905 __hw_addr_flush(&dev->dev_addrs);
3906 dev->dev_addr = NULL;
3907 }
3908
3909 static int dev_addr_init(struct net_device *dev)
3910 {
3911 unsigned char addr[MAX_ADDR_LEN];
3912 struct netdev_hw_addr *ha;
3913 int err;
3914
3915 /* rtnl_mutex must be held here */
3916
3917 __hw_addr_init(&dev->dev_addrs);
3918 memset(addr, 0, sizeof(addr));
3919 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3920 NETDEV_HW_ADDR_T_LAN);
3921 if (!err) {
3922 /*
3923 * Get the first (previously created) address from the list
3924 * and set dev_addr pointer to this location.
3925 */
3926 ha = list_first_entry(&dev->dev_addrs.list,
3927 struct netdev_hw_addr, list);
3928 dev->dev_addr = ha->addr;
3929 }
3930 return err;
3931 }
3932
3933 /**
3934 * dev_addr_add - Add a device address
3935 * @dev: device
3936 * @addr: address to add
3937 * @addr_type: address type
3938 *
3939 * Add a device address to the device or increase the reference count if
3940 * it already exists.
3941 *
3942 * The caller must hold the rtnl_mutex.
3943 */
3944 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3945 unsigned char addr_type)
3946 {
3947 int err;
3948
3949 ASSERT_RTNL();
3950
3951 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3952 if (!err)
3953 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3954 return err;
3955 }
3956 EXPORT_SYMBOL(dev_addr_add);
3957
3958 /**
3959 * dev_addr_del - Release a device address.
3960 * @dev: device
3961 * @addr: address to delete
3962 * @addr_type: address type
3963 *
3964 * Release reference to a device address and remove it from the device
3965 * if the reference count drops to zero.
3966 *
3967 * The caller must hold the rtnl_mutex.
3968 */
3969 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3970 unsigned char addr_type)
3971 {
3972 int err;
3973 struct netdev_hw_addr *ha;
3974
3975 ASSERT_RTNL();
3976
3977 /*
3978 * We can not remove the first address from the list because
3979 * dev->dev_addr points to that.
3980 */
3981 ha = list_first_entry(&dev->dev_addrs.list,
3982 struct netdev_hw_addr, list);
3983 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3984 return -ENOENT;
3985
3986 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3987 addr_type);
3988 if (!err)
3989 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3990 return err;
3991 }
3992 EXPORT_SYMBOL(dev_addr_del);
3993
3994 /**
3995 * dev_addr_add_multiple - Add device addresses from another device
3996 * @to_dev: device to which addresses will be added
3997 * @from_dev: device from which addresses will be added
3998 * @addr_type: address type - 0 means type will be used from from_dev
3999 *
4000 * Add device addresses of the one device to another.
4001 **
4002 * The caller must hold the rtnl_mutex.
4003 */
4004 int dev_addr_add_multiple(struct net_device *to_dev,
4005 struct net_device *from_dev,
4006 unsigned char addr_type)
4007 {
4008 int err;
4009
4010 ASSERT_RTNL();
4011
4012 if (from_dev->addr_len != to_dev->addr_len)
4013 return -EINVAL;
4014 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4015 to_dev->addr_len, addr_type);
4016 if (!err)
4017 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4018 return err;
4019 }
4020 EXPORT_SYMBOL(dev_addr_add_multiple);
4021
4022 /**
4023 * dev_addr_del_multiple - Delete device addresses by another device
4024 * @to_dev: device where the addresses will be deleted
4025 * @from_dev: device by which addresses the addresses will be deleted
4026 * @addr_type: address type - 0 means type will used from from_dev
4027 *
4028 * Deletes addresses in to device by the list of addresses in from device.
4029 *
4030 * The caller must hold the rtnl_mutex.
4031 */
4032 int dev_addr_del_multiple(struct net_device *to_dev,
4033 struct net_device *from_dev,
4034 unsigned char addr_type)
4035 {
4036 ASSERT_RTNL();
4037
4038 if (from_dev->addr_len != to_dev->addr_len)
4039 return -EINVAL;
4040 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4041 to_dev->addr_len, addr_type);
4042 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4043 return 0;
4044 }
4045 EXPORT_SYMBOL(dev_addr_del_multiple);
4046
4047 /* multicast addresses handling functions */
4048
4049 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4050 void *addr, int alen, int glbl)
4051 {
4052 struct dev_addr_list *da;
4053
4054 for (; (da = *list) != NULL; list = &da->next) {
4055 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4056 alen == da->da_addrlen) {
4057 if (glbl) {
4058 int old_glbl = da->da_gusers;
4059 da->da_gusers = 0;
4060 if (old_glbl == 0)
4061 break;
4062 }
4063 if (--da->da_users)
4064 return 0;
4065
4066 *list = da->next;
4067 kfree(da);
4068 (*count)--;
4069 return 0;
4070 }
4071 }
4072 return -ENOENT;
4073 }
4074
4075 int __dev_addr_add(struct dev_addr_list **list, int *count,
4076 void *addr, int alen, int glbl)
4077 {
4078 struct dev_addr_list *da;
4079
4080 for (da = *list; da != NULL; da = da->next) {
4081 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4082 da->da_addrlen == alen) {
4083 if (glbl) {
4084 int old_glbl = da->da_gusers;
4085 da->da_gusers = 1;
4086 if (old_glbl)
4087 return 0;
4088 }
4089 da->da_users++;
4090 return 0;
4091 }
4092 }
4093
4094 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4095 if (da == NULL)
4096 return -ENOMEM;
4097 memcpy(da->da_addr, addr, alen);
4098 da->da_addrlen = alen;
4099 da->da_users = 1;
4100 da->da_gusers = glbl ? 1 : 0;
4101 da->next = *list;
4102 *list = da;
4103 (*count)++;
4104 return 0;
4105 }
4106
4107 /**
4108 * dev_unicast_delete - Release secondary unicast address.
4109 * @dev: device
4110 * @addr: address to delete
4111 *
4112 * Release reference to a secondary unicast address and remove it
4113 * from the device if the reference count drops to zero.
4114 *
4115 * The caller must hold the rtnl_mutex.
4116 */
4117 int dev_unicast_delete(struct net_device *dev, void *addr)
4118 {
4119 int err;
4120
4121 ASSERT_RTNL();
4122
4123 netif_addr_lock_bh(dev);
4124 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4125 NETDEV_HW_ADDR_T_UNICAST);
4126 if (!err)
4127 __dev_set_rx_mode(dev);
4128 netif_addr_unlock_bh(dev);
4129 return err;
4130 }
4131 EXPORT_SYMBOL(dev_unicast_delete);
4132
4133 /**
4134 * dev_unicast_add - add a secondary unicast address
4135 * @dev: device
4136 * @addr: address to add
4137 *
4138 * Add a secondary unicast address to the device or increase
4139 * the reference count if it already exists.
4140 *
4141 * The caller must hold the rtnl_mutex.
4142 */
4143 int dev_unicast_add(struct net_device *dev, void *addr)
4144 {
4145 int err;
4146
4147 ASSERT_RTNL();
4148
4149 netif_addr_lock_bh(dev);
4150 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4151 NETDEV_HW_ADDR_T_UNICAST);
4152 if (!err)
4153 __dev_set_rx_mode(dev);
4154 netif_addr_unlock_bh(dev);
4155 return err;
4156 }
4157 EXPORT_SYMBOL(dev_unicast_add);
4158
4159 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4160 struct dev_addr_list **from, int *from_count)
4161 {
4162 struct dev_addr_list *da, *next;
4163 int err = 0;
4164
4165 da = *from;
4166 while (da != NULL) {
4167 next = da->next;
4168 if (!da->da_synced) {
4169 err = __dev_addr_add(to, to_count,
4170 da->da_addr, da->da_addrlen, 0);
4171 if (err < 0)
4172 break;
4173 da->da_synced = 1;
4174 da->da_users++;
4175 } else if (da->da_users == 1) {
4176 __dev_addr_delete(to, to_count,
4177 da->da_addr, da->da_addrlen, 0);
4178 __dev_addr_delete(from, from_count,
4179 da->da_addr, da->da_addrlen, 0);
4180 }
4181 da = next;
4182 }
4183 return err;
4184 }
4185 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4186
4187 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4188 struct dev_addr_list **from, int *from_count)
4189 {
4190 struct dev_addr_list *da, *next;
4191
4192 da = *from;
4193 while (da != NULL) {
4194 next = da->next;
4195 if (da->da_synced) {
4196 __dev_addr_delete(to, to_count,
4197 da->da_addr, da->da_addrlen, 0);
4198 da->da_synced = 0;
4199 __dev_addr_delete(from, from_count,
4200 da->da_addr, da->da_addrlen, 0);
4201 }
4202 da = next;
4203 }
4204 }
4205 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4206
4207 /**
4208 * dev_unicast_sync - Synchronize device's unicast list to another device
4209 * @to: destination device
4210 * @from: source device
4211 *
4212 * Add newly added addresses to the destination device and release
4213 * addresses that have no users left. The source device must be
4214 * locked by netif_tx_lock_bh.
4215 *
4216 * This function is intended to be called from the dev->set_rx_mode
4217 * function of layered software devices.
4218 */
4219 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4220 {
4221 int err = 0;
4222
4223 if (to->addr_len != from->addr_len)
4224 return -EINVAL;
4225
4226 netif_addr_lock_bh(to);
4227 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4228 if (!err)
4229 __dev_set_rx_mode(to);
4230 netif_addr_unlock_bh(to);
4231 return err;
4232 }
4233 EXPORT_SYMBOL(dev_unicast_sync);
4234
4235 /**
4236 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4237 * @to: destination device
4238 * @from: source device
4239 *
4240 * Remove all addresses that were added to the destination device by
4241 * dev_unicast_sync(). This function is intended to be called from the
4242 * dev->stop function of layered software devices.
4243 */
4244 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4245 {
4246 if (to->addr_len != from->addr_len)
4247 return;
4248
4249 netif_addr_lock_bh(from);
4250 netif_addr_lock(to);
4251 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4252 __dev_set_rx_mode(to);
4253 netif_addr_unlock(to);
4254 netif_addr_unlock_bh(from);
4255 }
4256 EXPORT_SYMBOL(dev_unicast_unsync);
4257
4258 static void dev_unicast_flush(struct net_device *dev)
4259 {
4260 netif_addr_lock_bh(dev);
4261 __hw_addr_flush(&dev->uc);
4262 netif_addr_unlock_bh(dev);
4263 }
4264
4265 static void dev_unicast_init(struct net_device *dev)
4266 {
4267 __hw_addr_init(&dev->uc);
4268 }
4269
4270
4271 static void __dev_addr_discard(struct dev_addr_list **list)
4272 {
4273 struct dev_addr_list *tmp;
4274
4275 while (*list != NULL) {
4276 tmp = *list;
4277 *list = tmp->next;
4278 if (tmp->da_users > tmp->da_gusers)
4279 printk("__dev_addr_discard: address leakage! "
4280 "da_users=%d\n", tmp->da_users);
4281 kfree(tmp);
4282 }
4283 }
4284
4285 static void dev_addr_discard(struct net_device *dev)
4286 {
4287 netif_addr_lock_bh(dev);
4288
4289 __dev_addr_discard(&dev->mc_list);
4290 netdev_mc_count(dev) = 0;
4291
4292 netif_addr_unlock_bh(dev);
4293 }
4294
4295 /**
4296 * dev_get_flags - get flags reported to userspace
4297 * @dev: device
4298 *
4299 * Get the combination of flag bits exported through APIs to userspace.
4300 */
4301 unsigned dev_get_flags(const struct net_device *dev)
4302 {
4303 unsigned flags;
4304
4305 flags = (dev->flags & ~(IFF_PROMISC |
4306 IFF_ALLMULTI |
4307 IFF_RUNNING |
4308 IFF_LOWER_UP |
4309 IFF_DORMANT)) |
4310 (dev->gflags & (IFF_PROMISC |
4311 IFF_ALLMULTI));
4312
4313 if (netif_running(dev)) {
4314 if (netif_oper_up(dev))
4315 flags |= IFF_RUNNING;
4316 if (netif_carrier_ok(dev))
4317 flags |= IFF_LOWER_UP;
4318 if (netif_dormant(dev))
4319 flags |= IFF_DORMANT;
4320 }
4321
4322 return flags;
4323 }
4324 EXPORT_SYMBOL(dev_get_flags);
4325
4326 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4327 {
4328 int old_flags = dev->flags;
4329 int ret;
4330
4331 ASSERT_RTNL();
4332
4333 /*
4334 * Set the flags on our device.
4335 */
4336
4337 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4338 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4339 IFF_AUTOMEDIA)) |
4340 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4341 IFF_ALLMULTI));
4342
4343 /*
4344 * Load in the correct multicast list now the flags have changed.
4345 */
4346
4347 if ((old_flags ^ flags) & IFF_MULTICAST)
4348 dev_change_rx_flags(dev, IFF_MULTICAST);
4349
4350 dev_set_rx_mode(dev);
4351
4352 /*
4353 * Have we downed the interface. We handle IFF_UP ourselves
4354 * according to user attempts to set it, rather than blindly
4355 * setting it.
4356 */
4357
4358 ret = 0;
4359 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4360 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4361
4362 if (!ret)
4363 dev_set_rx_mode(dev);
4364 }
4365
4366 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4367 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4368
4369 dev->gflags ^= IFF_PROMISC;
4370 dev_set_promiscuity(dev, inc);
4371 }
4372
4373 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4374 is important. Some (broken) drivers set IFF_PROMISC, when
4375 IFF_ALLMULTI is requested not asking us and not reporting.
4376 */
4377 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4378 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4379
4380 dev->gflags ^= IFF_ALLMULTI;
4381 dev_set_allmulti(dev, inc);
4382 }
4383
4384 return ret;
4385 }
4386
4387 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4388 {
4389 unsigned int changes = dev->flags ^ old_flags;
4390
4391 if (changes & IFF_UP) {
4392 if (dev->flags & IFF_UP)
4393 call_netdevice_notifiers(NETDEV_UP, dev);
4394 else
4395 call_netdevice_notifiers(NETDEV_DOWN, dev);
4396 }
4397
4398 if (dev->flags & IFF_UP &&
4399 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4400 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4401 }
4402
4403 /**
4404 * dev_change_flags - change device settings
4405 * @dev: device
4406 * @flags: device state flags
4407 *
4408 * Change settings on device based state flags. The flags are
4409 * in the userspace exported format.
4410 */
4411 int dev_change_flags(struct net_device *dev, unsigned flags)
4412 {
4413 int ret, changes;
4414 int old_flags = dev->flags;
4415
4416 ret = __dev_change_flags(dev, flags);
4417 if (ret < 0)
4418 return ret;
4419
4420 changes = old_flags ^ dev->flags;
4421 if (changes)
4422 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4423
4424 __dev_notify_flags(dev, old_flags);
4425 return ret;
4426 }
4427 EXPORT_SYMBOL(dev_change_flags);
4428
4429 /**
4430 * dev_set_mtu - Change maximum transfer unit
4431 * @dev: device
4432 * @new_mtu: new transfer unit
4433 *
4434 * Change the maximum transfer size of the network device.
4435 */
4436 int dev_set_mtu(struct net_device *dev, int new_mtu)
4437 {
4438 const struct net_device_ops *ops = dev->netdev_ops;
4439 int err;
4440
4441 if (new_mtu == dev->mtu)
4442 return 0;
4443
4444 /* MTU must be positive. */
4445 if (new_mtu < 0)
4446 return -EINVAL;
4447
4448 if (!netif_device_present(dev))
4449 return -ENODEV;
4450
4451 err = 0;
4452 if (ops->ndo_change_mtu)
4453 err = ops->ndo_change_mtu(dev, new_mtu);
4454 else
4455 dev->mtu = new_mtu;
4456
4457 if (!err && dev->flags & IFF_UP)
4458 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4459 return err;
4460 }
4461 EXPORT_SYMBOL(dev_set_mtu);
4462
4463 /**
4464 * dev_set_mac_address - Change Media Access Control Address
4465 * @dev: device
4466 * @sa: new address
4467 *
4468 * Change the hardware (MAC) address of the device
4469 */
4470 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4471 {
4472 const struct net_device_ops *ops = dev->netdev_ops;
4473 int err;
4474
4475 if (!ops->ndo_set_mac_address)
4476 return -EOPNOTSUPP;
4477 if (sa->sa_family != dev->type)
4478 return -EINVAL;
4479 if (!netif_device_present(dev))
4480 return -ENODEV;
4481 err = ops->ndo_set_mac_address(dev, sa);
4482 if (!err)
4483 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4484 return err;
4485 }
4486 EXPORT_SYMBOL(dev_set_mac_address);
4487
4488 /*
4489 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4490 */
4491 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4492 {
4493 int err;
4494 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4495
4496 if (!dev)
4497 return -ENODEV;
4498
4499 switch (cmd) {
4500 case SIOCGIFFLAGS: /* Get interface flags */
4501 ifr->ifr_flags = (short) dev_get_flags(dev);
4502 return 0;
4503
4504 case SIOCGIFMETRIC: /* Get the metric on the interface
4505 (currently unused) */
4506 ifr->ifr_metric = 0;
4507 return 0;
4508
4509 case SIOCGIFMTU: /* Get the MTU of a device */
4510 ifr->ifr_mtu = dev->mtu;
4511 return 0;
4512
4513 case SIOCGIFHWADDR:
4514 if (!dev->addr_len)
4515 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4516 else
4517 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4518 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4519 ifr->ifr_hwaddr.sa_family = dev->type;
4520 return 0;
4521
4522 case SIOCGIFSLAVE:
4523 err = -EINVAL;
4524 break;
4525
4526 case SIOCGIFMAP:
4527 ifr->ifr_map.mem_start = dev->mem_start;
4528 ifr->ifr_map.mem_end = dev->mem_end;
4529 ifr->ifr_map.base_addr = dev->base_addr;
4530 ifr->ifr_map.irq = dev->irq;
4531 ifr->ifr_map.dma = dev->dma;
4532 ifr->ifr_map.port = dev->if_port;
4533 return 0;
4534
4535 case SIOCGIFINDEX:
4536 ifr->ifr_ifindex = dev->ifindex;
4537 return 0;
4538
4539 case SIOCGIFTXQLEN:
4540 ifr->ifr_qlen = dev->tx_queue_len;
4541 return 0;
4542
4543 default:
4544 /* dev_ioctl() should ensure this case
4545 * is never reached
4546 */
4547 WARN_ON(1);
4548 err = -EINVAL;
4549 break;
4550
4551 }
4552 return err;
4553 }
4554
4555 /*
4556 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4557 */
4558 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4559 {
4560 int err;
4561 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4562 const struct net_device_ops *ops;
4563
4564 if (!dev)
4565 return -ENODEV;
4566
4567 ops = dev->netdev_ops;
4568
4569 switch (cmd) {
4570 case SIOCSIFFLAGS: /* Set interface flags */
4571 return dev_change_flags(dev, ifr->ifr_flags);
4572
4573 case SIOCSIFMETRIC: /* Set the metric on the interface
4574 (currently unused) */
4575 return -EOPNOTSUPP;
4576
4577 case SIOCSIFMTU: /* Set the MTU of a device */
4578 return dev_set_mtu(dev, ifr->ifr_mtu);
4579
4580 case SIOCSIFHWADDR:
4581 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4582
4583 case SIOCSIFHWBROADCAST:
4584 if (ifr->ifr_hwaddr.sa_family != dev->type)
4585 return -EINVAL;
4586 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4587 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4588 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4589 return 0;
4590
4591 case SIOCSIFMAP:
4592 if (ops->ndo_set_config) {
4593 if (!netif_device_present(dev))
4594 return -ENODEV;
4595 return ops->ndo_set_config(dev, &ifr->ifr_map);
4596 }
4597 return -EOPNOTSUPP;
4598
4599 case SIOCADDMULTI:
4600 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4601 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4602 return -EINVAL;
4603 if (!netif_device_present(dev))
4604 return -ENODEV;
4605 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4606 dev->addr_len, 1);
4607
4608 case SIOCDELMULTI:
4609 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4610 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4611 return -EINVAL;
4612 if (!netif_device_present(dev))
4613 return -ENODEV;
4614 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4615 dev->addr_len, 1);
4616
4617 case SIOCSIFTXQLEN:
4618 if (ifr->ifr_qlen < 0)
4619 return -EINVAL;
4620 dev->tx_queue_len = ifr->ifr_qlen;
4621 return 0;
4622
4623 case SIOCSIFNAME:
4624 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4625 return dev_change_name(dev, ifr->ifr_newname);
4626
4627 /*
4628 * Unknown or private ioctl
4629 */
4630 default:
4631 if ((cmd >= SIOCDEVPRIVATE &&
4632 cmd <= SIOCDEVPRIVATE + 15) ||
4633 cmd == SIOCBONDENSLAVE ||
4634 cmd == SIOCBONDRELEASE ||
4635 cmd == SIOCBONDSETHWADDR ||
4636 cmd == SIOCBONDSLAVEINFOQUERY ||
4637 cmd == SIOCBONDINFOQUERY ||
4638 cmd == SIOCBONDCHANGEACTIVE ||
4639 cmd == SIOCGMIIPHY ||
4640 cmd == SIOCGMIIREG ||
4641 cmd == SIOCSMIIREG ||
4642 cmd == SIOCBRADDIF ||
4643 cmd == SIOCBRDELIF ||
4644 cmd == SIOCSHWTSTAMP ||
4645 cmd == SIOCWANDEV) {
4646 err = -EOPNOTSUPP;
4647 if (ops->ndo_do_ioctl) {
4648 if (netif_device_present(dev))
4649 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4650 else
4651 err = -ENODEV;
4652 }
4653 } else
4654 err = -EINVAL;
4655
4656 }
4657 return err;
4658 }
4659
4660 /*
4661 * This function handles all "interface"-type I/O control requests. The actual
4662 * 'doing' part of this is dev_ifsioc above.
4663 */
4664
4665 /**
4666 * dev_ioctl - network device ioctl
4667 * @net: the applicable net namespace
4668 * @cmd: command to issue
4669 * @arg: pointer to a struct ifreq in user space
4670 *
4671 * Issue ioctl functions to devices. This is normally called by the
4672 * user space syscall interfaces but can sometimes be useful for
4673 * other purposes. The return value is the return from the syscall if
4674 * positive or a negative errno code on error.
4675 */
4676
4677 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4678 {
4679 struct ifreq ifr;
4680 int ret;
4681 char *colon;
4682
4683 /* One special case: SIOCGIFCONF takes ifconf argument
4684 and requires shared lock, because it sleeps writing
4685 to user space.
4686 */
4687
4688 if (cmd == SIOCGIFCONF) {
4689 rtnl_lock();
4690 ret = dev_ifconf(net, (char __user *) arg);
4691 rtnl_unlock();
4692 return ret;
4693 }
4694 if (cmd == SIOCGIFNAME)
4695 return dev_ifname(net, (struct ifreq __user *)arg);
4696
4697 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4698 return -EFAULT;
4699
4700 ifr.ifr_name[IFNAMSIZ-1] = 0;
4701
4702 colon = strchr(ifr.ifr_name, ':');
4703 if (colon)
4704 *colon = 0;
4705
4706 /*
4707 * See which interface the caller is talking about.
4708 */
4709
4710 switch (cmd) {
4711 /*
4712 * These ioctl calls:
4713 * - can be done by all.
4714 * - atomic and do not require locking.
4715 * - return a value
4716 */
4717 case SIOCGIFFLAGS:
4718 case SIOCGIFMETRIC:
4719 case SIOCGIFMTU:
4720 case SIOCGIFHWADDR:
4721 case SIOCGIFSLAVE:
4722 case SIOCGIFMAP:
4723 case SIOCGIFINDEX:
4724 case SIOCGIFTXQLEN:
4725 dev_load(net, ifr.ifr_name);
4726 rcu_read_lock();
4727 ret = dev_ifsioc_locked(net, &ifr, cmd);
4728 rcu_read_unlock();
4729 if (!ret) {
4730 if (colon)
4731 *colon = ':';
4732 if (copy_to_user(arg, &ifr,
4733 sizeof(struct ifreq)))
4734 ret = -EFAULT;
4735 }
4736 return ret;
4737
4738 case SIOCETHTOOL:
4739 dev_load(net, ifr.ifr_name);
4740 rtnl_lock();
4741 ret = dev_ethtool(net, &ifr);
4742 rtnl_unlock();
4743 if (!ret) {
4744 if (colon)
4745 *colon = ':';
4746 if (copy_to_user(arg, &ifr,
4747 sizeof(struct ifreq)))
4748 ret = -EFAULT;
4749 }
4750 return ret;
4751
4752 /*
4753 * These ioctl calls:
4754 * - require superuser power.
4755 * - require strict serialization.
4756 * - return a value
4757 */
4758 case SIOCGMIIPHY:
4759 case SIOCGMIIREG:
4760 case SIOCSIFNAME:
4761 if (!capable(CAP_NET_ADMIN))
4762 return -EPERM;
4763 dev_load(net, ifr.ifr_name);
4764 rtnl_lock();
4765 ret = dev_ifsioc(net, &ifr, cmd);
4766 rtnl_unlock();
4767 if (!ret) {
4768 if (colon)
4769 *colon = ':';
4770 if (copy_to_user(arg, &ifr,
4771 sizeof(struct ifreq)))
4772 ret = -EFAULT;
4773 }
4774 return ret;
4775
4776 /*
4777 * These ioctl calls:
4778 * - require superuser power.
4779 * - require strict serialization.
4780 * - do not return a value
4781 */
4782 case SIOCSIFFLAGS:
4783 case SIOCSIFMETRIC:
4784 case SIOCSIFMTU:
4785 case SIOCSIFMAP:
4786 case SIOCSIFHWADDR:
4787 case SIOCSIFSLAVE:
4788 case SIOCADDMULTI:
4789 case SIOCDELMULTI:
4790 case SIOCSIFHWBROADCAST:
4791 case SIOCSIFTXQLEN:
4792 case SIOCSMIIREG:
4793 case SIOCBONDENSLAVE:
4794 case SIOCBONDRELEASE:
4795 case SIOCBONDSETHWADDR:
4796 case SIOCBONDCHANGEACTIVE:
4797 case SIOCBRADDIF:
4798 case SIOCBRDELIF:
4799 case SIOCSHWTSTAMP:
4800 if (!capable(CAP_NET_ADMIN))
4801 return -EPERM;
4802 /* fall through */
4803 case SIOCBONDSLAVEINFOQUERY:
4804 case SIOCBONDINFOQUERY:
4805 dev_load(net, ifr.ifr_name);
4806 rtnl_lock();
4807 ret = dev_ifsioc(net, &ifr, cmd);
4808 rtnl_unlock();
4809 return ret;
4810
4811 case SIOCGIFMEM:
4812 /* Get the per device memory space. We can add this but
4813 * currently do not support it */
4814 case SIOCSIFMEM:
4815 /* Set the per device memory buffer space.
4816 * Not applicable in our case */
4817 case SIOCSIFLINK:
4818 return -EINVAL;
4819
4820 /*
4821 * Unknown or private ioctl.
4822 */
4823 default:
4824 if (cmd == SIOCWANDEV ||
4825 (cmd >= SIOCDEVPRIVATE &&
4826 cmd <= SIOCDEVPRIVATE + 15)) {
4827 dev_load(net, ifr.ifr_name);
4828 rtnl_lock();
4829 ret = dev_ifsioc(net, &ifr, cmd);
4830 rtnl_unlock();
4831 if (!ret && copy_to_user(arg, &ifr,
4832 sizeof(struct ifreq)))
4833 ret = -EFAULT;
4834 return ret;
4835 }
4836 /* Take care of Wireless Extensions */
4837 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4838 return wext_handle_ioctl(net, &ifr, cmd, arg);
4839 return -EINVAL;
4840 }
4841 }
4842
4843
4844 /**
4845 * dev_new_index - allocate an ifindex
4846 * @net: the applicable net namespace
4847 *
4848 * Returns a suitable unique value for a new device interface
4849 * number. The caller must hold the rtnl semaphore or the
4850 * dev_base_lock to be sure it remains unique.
4851 */
4852 static int dev_new_index(struct net *net)
4853 {
4854 static int ifindex;
4855 for (;;) {
4856 if (++ifindex <= 0)
4857 ifindex = 1;
4858 if (!__dev_get_by_index(net, ifindex))
4859 return ifindex;
4860 }
4861 }
4862
4863 /* Delayed registration/unregisteration */
4864 static LIST_HEAD(net_todo_list);
4865
4866 static void net_set_todo(struct net_device *dev)
4867 {
4868 list_add_tail(&dev->todo_list, &net_todo_list);
4869 }
4870
4871 static void rollback_registered_many(struct list_head *head)
4872 {
4873 struct net_device *dev, *tmp;
4874
4875 BUG_ON(dev_boot_phase);
4876 ASSERT_RTNL();
4877
4878 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4879 /* Some devices call without registering
4880 * for initialization unwind. Remove those
4881 * devices and proceed with the remaining.
4882 */
4883 if (dev->reg_state == NETREG_UNINITIALIZED) {
4884 pr_debug("unregister_netdevice: device %s/%p never "
4885 "was registered\n", dev->name, dev);
4886
4887 WARN_ON(1);
4888 list_del(&dev->unreg_list);
4889 continue;
4890 }
4891
4892 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4893
4894 /* If device is running, close it first. */
4895 dev_close(dev);
4896
4897 /* And unlink it from device chain. */
4898 unlist_netdevice(dev);
4899
4900 dev->reg_state = NETREG_UNREGISTERING;
4901 }
4902
4903 synchronize_net();
4904
4905 list_for_each_entry(dev, head, unreg_list) {
4906 /* Shutdown queueing discipline. */
4907 dev_shutdown(dev);
4908
4909
4910 /* Notify protocols, that we are about to destroy
4911 this device. They should clean all the things.
4912 */
4913 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4914
4915 if (!dev->rtnl_link_ops ||
4916 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4917 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4918
4919 /*
4920 * Flush the unicast and multicast chains
4921 */
4922 dev_unicast_flush(dev);
4923 dev_addr_discard(dev);
4924
4925 if (dev->netdev_ops->ndo_uninit)
4926 dev->netdev_ops->ndo_uninit(dev);
4927
4928 /* Notifier chain MUST detach us from master device. */
4929 WARN_ON(dev->master);
4930
4931 /* Remove entries from kobject tree */
4932 netdev_unregister_kobject(dev);
4933 }
4934
4935 /* Process any work delayed until the end of the batch */
4936 dev = list_first_entry(head, struct net_device, unreg_list);
4937 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4938
4939 synchronize_net();
4940
4941 list_for_each_entry(dev, head, unreg_list)
4942 dev_put(dev);
4943 }
4944
4945 static void rollback_registered(struct net_device *dev)
4946 {
4947 LIST_HEAD(single);
4948
4949 list_add(&dev->unreg_list, &single);
4950 rollback_registered_many(&single);
4951 }
4952
4953 static void __netdev_init_queue_locks_one(struct net_device *dev,
4954 struct netdev_queue *dev_queue,
4955 void *_unused)
4956 {
4957 spin_lock_init(&dev_queue->_xmit_lock);
4958 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4959 dev_queue->xmit_lock_owner = -1;
4960 }
4961
4962 static void netdev_init_queue_locks(struct net_device *dev)
4963 {
4964 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4965 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4966 }
4967
4968 unsigned long netdev_fix_features(unsigned long features, const char *name)
4969 {
4970 /* Fix illegal SG+CSUM combinations. */
4971 if ((features & NETIF_F_SG) &&
4972 !(features & NETIF_F_ALL_CSUM)) {
4973 if (name)
4974 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4975 "checksum feature.\n", name);
4976 features &= ~NETIF_F_SG;
4977 }
4978
4979 /* TSO requires that SG is present as well. */
4980 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4981 if (name)
4982 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4983 "SG feature.\n", name);
4984 features &= ~NETIF_F_TSO;
4985 }
4986
4987 if (features & NETIF_F_UFO) {
4988 if (!(features & NETIF_F_GEN_CSUM)) {
4989 if (name)
4990 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4991 "since no NETIF_F_HW_CSUM feature.\n",
4992 name);
4993 features &= ~NETIF_F_UFO;
4994 }
4995
4996 if (!(features & NETIF_F_SG)) {
4997 if (name)
4998 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4999 "since no NETIF_F_SG feature.\n", name);
5000 features &= ~NETIF_F_UFO;
5001 }
5002 }
5003
5004 return features;
5005 }
5006 EXPORT_SYMBOL(netdev_fix_features);
5007
5008 /**
5009 * netif_stacked_transfer_operstate - transfer operstate
5010 * @rootdev: the root or lower level device to transfer state from
5011 * @dev: the device to transfer operstate to
5012 *
5013 * Transfer operational state from root to device. This is normally
5014 * called when a stacking relationship exists between the root
5015 * device and the device(a leaf device).
5016 */
5017 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5018 struct net_device *dev)
5019 {
5020 if (rootdev->operstate == IF_OPER_DORMANT)
5021 netif_dormant_on(dev);
5022 else
5023 netif_dormant_off(dev);
5024
5025 if (netif_carrier_ok(rootdev)) {
5026 if (!netif_carrier_ok(dev))
5027 netif_carrier_on(dev);
5028 } else {
5029 if (netif_carrier_ok(dev))
5030 netif_carrier_off(dev);
5031 }
5032 }
5033 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5034
5035 /**
5036 * register_netdevice - register a network device
5037 * @dev: device to register
5038 *
5039 * Take a completed network device structure and add it to the kernel
5040 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5041 * chain. 0 is returned on success. A negative errno code is returned
5042 * on a failure to set up the device, or if the name is a duplicate.
5043 *
5044 * Callers must hold the rtnl semaphore. You may want
5045 * register_netdev() instead of this.
5046 *
5047 * BUGS:
5048 * The locking appears insufficient to guarantee two parallel registers
5049 * will not get the same name.
5050 */
5051
5052 int register_netdevice(struct net_device *dev)
5053 {
5054 int ret;
5055 struct net *net = dev_net(dev);
5056
5057 BUG_ON(dev_boot_phase);
5058 ASSERT_RTNL();
5059
5060 might_sleep();
5061
5062 /* When net_device's are persistent, this will be fatal. */
5063 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5064 BUG_ON(!net);
5065
5066 spin_lock_init(&dev->addr_list_lock);
5067 netdev_set_addr_lockdep_class(dev);
5068 netdev_init_queue_locks(dev);
5069
5070 dev->iflink = -1;
5071
5072 /* Init, if this function is available */
5073 if (dev->netdev_ops->ndo_init) {
5074 ret = dev->netdev_ops->ndo_init(dev);
5075 if (ret) {
5076 if (ret > 0)
5077 ret = -EIO;
5078 goto out;
5079 }
5080 }
5081
5082 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5083 if (ret)
5084 goto err_uninit;
5085
5086 dev->ifindex = dev_new_index(net);
5087 if (dev->iflink == -1)
5088 dev->iflink = dev->ifindex;
5089
5090 /* Fix illegal checksum combinations */
5091 if ((dev->features & NETIF_F_HW_CSUM) &&
5092 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5093 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5094 dev->name);
5095 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5096 }
5097
5098 if ((dev->features & NETIF_F_NO_CSUM) &&
5099 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5100 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5101 dev->name);
5102 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5103 }
5104
5105 dev->features = netdev_fix_features(dev->features, dev->name);
5106
5107 /* Enable software GSO if SG is supported. */
5108 if (dev->features & NETIF_F_SG)
5109 dev->features |= NETIF_F_GSO;
5110
5111 netdev_initialize_kobject(dev);
5112
5113 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5114 ret = notifier_to_errno(ret);
5115 if (ret)
5116 goto err_uninit;
5117
5118 ret = netdev_register_kobject(dev);
5119 if (ret)
5120 goto err_uninit;
5121 dev->reg_state = NETREG_REGISTERED;
5122
5123 /*
5124 * Default initial state at registry is that the
5125 * device is present.
5126 */
5127
5128 set_bit(__LINK_STATE_PRESENT, &dev->state);
5129
5130 dev_init_scheduler(dev);
5131 dev_hold(dev);
5132 list_netdevice(dev);
5133
5134 /* Notify protocols, that a new device appeared. */
5135 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5136 ret = notifier_to_errno(ret);
5137 if (ret) {
5138 rollback_registered(dev);
5139 dev->reg_state = NETREG_UNREGISTERED;
5140 }
5141 /*
5142 * Prevent userspace races by waiting until the network
5143 * device is fully setup before sending notifications.
5144 */
5145 if (!dev->rtnl_link_ops ||
5146 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5147 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5148
5149 out:
5150 return ret;
5151
5152 err_uninit:
5153 if (dev->netdev_ops->ndo_uninit)
5154 dev->netdev_ops->ndo_uninit(dev);
5155 goto out;
5156 }
5157 EXPORT_SYMBOL(register_netdevice);
5158
5159 /**
5160 * init_dummy_netdev - init a dummy network device for NAPI
5161 * @dev: device to init
5162 *
5163 * This takes a network device structure and initialize the minimum
5164 * amount of fields so it can be used to schedule NAPI polls without
5165 * registering a full blown interface. This is to be used by drivers
5166 * that need to tie several hardware interfaces to a single NAPI
5167 * poll scheduler due to HW limitations.
5168 */
5169 int init_dummy_netdev(struct net_device *dev)
5170 {
5171 /* Clear everything. Note we don't initialize spinlocks
5172 * are they aren't supposed to be taken by any of the
5173 * NAPI code and this dummy netdev is supposed to be
5174 * only ever used for NAPI polls
5175 */
5176 memset(dev, 0, sizeof(struct net_device));
5177
5178 /* make sure we BUG if trying to hit standard
5179 * register/unregister code path
5180 */
5181 dev->reg_state = NETREG_DUMMY;
5182
5183 /* initialize the ref count */
5184 atomic_set(&dev->refcnt, 1);
5185
5186 /* NAPI wants this */
5187 INIT_LIST_HEAD(&dev->napi_list);
5188
5189 /* a dummy interface is started by default */
5190 set_bit(__LINK_STATE_PRESENT, &dev->state);
5191 set_bit(__LINK_STATE_START, &dev->state);
5192
5193 return 0;
5194 }
5195 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5196
5197
5198 /**
5199 * register_netdev - register a network device
5200 * @dev: device to register
5201 *
5202 * Take a completed network device structure and add it to the kernel
5203 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5204 * chain. 0 is returned on success. A negative errno code is returned
5205 * on a failure to set up the device, or if the name is a duplicate.
5206 *
5207 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5208 * and expands the device name if you passed a format string to
5209 * alloc_netdev.
5210 */
5211 int register_netdev(struct net_device *dev)
5212 {
5213 int err;
5214
5215 rtnl_lock();
5216
5217 /*
5218 * If the name is a format string the caller wants us to do a
5219 * name allocation.
5220 */
5221 if (strchr(dev->name, '%')) {
5222 err = dev_alloc_name(dev, dev->name);
5223 if (err < 0)
5224 goto out;
5225 }
5226
5227 err = register_netdevice(dev);
5228 out:
5229 rtnl_unlock();
5230 return err;
5231 }
5232 EXPORT_SYMBOL(register_netdev);
5233
5234 /*
5235 * netdev_wait_allrefs - wait until all references are gone.
5236 *
5237 * This is called when unregistering network devices.
5238 *
5239 * Any protocol or device that holds a reference should register
5240 * for netdevice notification, and cleanup and put back the
5241 * reference if they receive an UNREGISTER event.
5242 * We can get stuck here if buggy protocols don't correctly
5243 * call dev_put.
5244 */
5245 static void netdev_wait_allrefs(struct net_device *dev)
5246 {
5247 unsigned long rebroadcast_time, warning_time;
5248
5249 linkwatch_forget_dev(dev);
5250
5251 rebroadcast_time = warning_time = jiffies;
5252 while (atomic_read(&dev->refcnt) != 0) {
5253 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5254 rtnl_lock();
5255
5256 /* Rebroadcast unregister notification */
5257 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5258 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5259 * should have already handle it the first time */
5260
5261 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5262 &dev->state)) {
5263 /* We must not have linkwatch events
5264 * pending on unregister. If this
5265 * happens, we simply run the queue
5266 * unscheduled, resulting in a noop
5267 * for this device.
5268 */
5269 linkwatch_run_queue();
5270 }
5271
5272 __rtnl_unlock();
5273
5274 rebroadcast_time = jiffies;
5275 }
5276
5277 msleep(250);
5278
5279 if (time_after(jiffies, warning_time + 10 * HZ)) {
5280 printk(KERN_EMERG "unregister_netdevice: "
5281 "waiting for %s to become free. Usage "
5282 "count = %d\n",
5283 dev->name, atomic_read(&dev->refcnt));
5284 warning_time = jiffies;
5285 }
5286 }
5287 }
5288
5289 /* The sequence is:
5290 *
5291 * rtnl_lock();
5292 * ...
5293 * register_netdevice(x1);
5294 * register_netdevice(x2);
5295 * ...
5296 * unregister_netdevice(y1);
5297 * unregister_netdevice(y2);
5298 * ...
5299 * rtnl_unlock();
5300 * free_netdev(y1);
5301 * free_netdev(y2);
5302 *
5303 * We are invoked by rtnl_unlock().
5304 * This allows us to deal with problems:
5305 * 1) We can delete sysfs objects which invoke hotplug
5306 * without deadlocking with linkwatch via keventd.
5307 * 2) Since we run with the RTNL semaphore not held, we can sleep
5308 * safely in order to wait for the netdev refcnt to drop to zero.
5309 *
5310 * We must not return until all unregister events added during
5311 * the interval the lock was held have been completed.
5312 */
5313 void netdev_run_todo(void)
5314 {
5315 struct list_head list;
5316
5317 /* Snapshot list, allow later requests */
5318 list_replace_init(&net_todo_list, &list);
5319
5320 __rtnl_unlock();
5321
5322 while (!list_empty(&list)) {
5323 struct net_device *dev
5324 = list_first_entry(&list, struct net_device, todo_list);
5325 list_del(&dev->todo_list);
5326
5327 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5328 printk(KERN_ERR "network todo '%s' but state %d\n",
5329 dev->name, dev->reg_state);
5330 dump_stack();
5331 continue;
5332 }
5333
5334 dev->reg_state = NETREG_UNREGISTERED;
5335
5336 on_each_cpu(flush_backlog, dev, 1);
5337
5338 netdev_wait_allrefs(dev);
5339
5340 /* paranoia */
5341 BUG_ON(atomic_read(&dev->refcnt));
5342 WARN_ON(dev->ip_ptr);
5343 WARN_ON(dev->ip6_ptr);
5344 WARN_ON(dev->dn_ptr);
5345
5346 if (dev->destructor)
5347 dev->destructor(dev);
5348
5349 /* Free network device */
5350 kobject_put(&dev->dev.kobj);
5351 }
5352 }
5353
5354 /**
5355 * dev_txq_stats_fold - fold tx_queues stats
5356 * @dev: device to get statistics from
5357 * @stats: struct net_device_stats to hold results
5358 */
5359 void dev_txq_stats_fold(const struct net_device *dev,
5360 struct net_device_stats *stats)
5361 {
5362 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5363 unsigned int i;
5364 struct netdev_queue *txq;
5365
5366 for (i = 0; i < dev->num_tx_queues; i++) {
5367 txq = netdev_get_tx_queue(dev, i);
5368 tx_bytes += txq->tx_bytes;
5369 tx_packets += txq->tx_packets;
5370 tx_dropped += txq->tx_dropped;
5371 }
5372 if (tx_bytes || tx_packets || tx_dropped) {
5373 stats->tx_bytes = tx_bytes;
5374 stats->tx_packets = tx_packets;
5375 stats->tx_dropped = tx_dropped;
5376 }
5377 }
5378 EXPORT_SYMBOL(dev_txq_stats_fold);
5379
5380 /**
5381 * dev_get_stats - get network device statistics
5382 * @dev: device to get statistics from
5383 *
5384 * Get network statistics from device. The device driver may provide
5385 * its own method by setting dev->netdev_ops->get_stats; otherwise
5386 * the internal statistics structure is used.
5387 */
5388 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5389 {
5390 const struct net_device_ops *ops = dev->netdev_ops;
5391
5392 if (ops->ndo_get_stats)
5393 return ops->ndo_get_stats(dev);
5394
5395 dev_txq_stats_fold(dev, &dev->stats);
5396 return &dev->stats;
5397 }
5398 EXPORT_SYMBOL(dev_get_stats);
5399
5400 static void netdev_init_one_queue(struct net_device *dev,
5401 struct netdev_queue *queue,
5402 void *_unused)
5403 {
5404 queue->dev = dev;
5405 }
5406
5407 static void netdev_init_queues(struct net_device *dev)
5408 {
5409 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5410 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5411 spin_lock_init(&dev->tx_global_lock);
5412 }
5413
5414 /**
5415 * alloc_netdev_mq - allocate network device
5416 * @sizeof_priv: size of private data to allocate space for
5417 * @name: device name format string
5418 * @setup: callback to initialize device
5419 * @queue_count: the number of subqueues to allocate
5420 *
5421 * Allocates a struct net_device with private data area for driver use
5422 * and performs basic initialization. Also allocates subquue structs
5423 * for each queue on the device at the end of the netdevice.
5424 */
5425 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5426 void (*setup)(struct net_device *), unsigned int queue_count)
5427 {
5428 struct netdev_queue *tx;
5429 struct net_device *dev;
5430 size_t alloc_size;
5431 struct net_device *p;
5432
5433 BUG_ON(strlen(name) >= sizeof(dev->name));
5434
5435 alloc_size = sizeof(struct net_device);
5436 if (sizeof_priv) {
5437 /* ensure 32-byte alignment of private area */
5438 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5439 alloc_size += sizeof_priv;
5440 }
5441 /* ensure 32-byte alignment of whole construct */
5442 alloc_size += NETDEV_ALIGN - 1;
5443
5444 p = kzalloc(alloc_size, GFP_KERNEL);
5445 if (!p) {
5446 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5447 return NULL;
5448 }
5449
5450 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5451 if (!tx) {
5452 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5453 "tx qdiscs.\n");
5454 goto free_p;
5455 }
5456
5457 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5458 dev->padded = (char *)dev - (char *)p;
5459
5460 if (dev_addr_init(dev))
5461 goto free_tx;
5462
5463 dev_unicast_init(dev);
5464
5465 dev_net_set(dev, &init_net);
5466
5467 dev->_tx = tx;
5468 dev->num_tx_queues = queue_count;
5469 dev->real_num_tx_queues = queue_count;
5470
5471 dev->gso_max_size = GSO_MAX_SIZE;
5472
5473 netdev_init_queues(dev);
5474
5475 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5476 dev->ethtool_ntuple_list.count = 0;
5477 INIT_LIST_HEAD(&dev->napi_list);
5478 INIT_LIST_HEAD(&dev->unreg_list);
5479 INIT_LIST_HEAD(&dev->link_watch_list);
5480 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5481 setup(dev);
5482 strcpy(dev->name, name);
5483 return dev;
5484
5485 free_tx:
5486 kfree(tx);
5487
5488 free_p:
5489 kfree(p);
5490 return NULL;
5491 }
5492 EXPORT_SYMBOL(alloc_netdev_mq);
5493
5494 /**
5495 * free_netdev - free network device
5496 * @dev: device
5497 *
5498 * This function does the last stage of destroying an allocated device
5499 * interface. The reference to the device object is released.
5500 * If this is the last reference then it will be freed.
5501 */
5502 void free_netdev(struct net_device *dev)
5503 {
5504 struct napi_struct *p, *n;
5505
5506 release_net(dev_net(dev));
5507
5508 kfree(dev->_tx);
5509
5510 /* Flush device addresses */
5511 dev_addr_flush(dev);
5512
5513 /* Clear ethtool n-tuple list */
5514 ethtool_ntuple_flush(dev);
5515
5516 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5517 netif_napi_del(p);
5518
5519 /* Compatibility with error handling in drivers */
5520 if (dev->reg_state == NETREG_UNINITIALIZED) {
5521 kfree((char *)dev - dev->padded);
5522 return;
5523 }
5524
5525 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5526 dev->reg_state = NETREG_RELEASED;
5527
5528 /* will free via device release */
5529 put_device(&dev->dev);
5530 }
5531 EXPORT_SYMBOL(free_netdev);
5532
5533 /**
5534 * synchronize_net - Synchronize with packet receive processing
5535 *
5536 * Wait for packets currently being received to be done.
5537 * Does not block later packets from starting.
5538 */
5539 void synchronize_net(void)
5540 {
5541 might_sleep();
5542 synchronize_rcu();
5543 }
5544 EXPORT_SYMBOL(synchronize_net);
5545
5546 /**
5547 * unregister_netdevice_queue - remove device from the kernel
5548 * @dev: device
5549 * @head: list
5550 *
5551 * This function shuts down a device interface and removes it
5552 * from the kernel tables.
5553 * If head not NULL, device is queued to be unregistered later.
5554 *
5555 * Callers must hold the rtnl semaphore. You may want
5556 * unregister_netdev() instead of this.
5557 */
5558
5559 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5560 {
5561 ASSERT_RTNL();
5562
5563 if (head) {
5564 list_move_tail(&dev->unreg_list, head);
5565 } else {
5566 rollback_registered(dev);
5567 /* Finish processing unregister after unlock */
5568 net_set_todo(dev);
5569 }
5570 }
5571 EXPORT_SYMBOL(unregister_netdevice_queue);
5572
5573 /**
5574 * unregister_netdevice_many - unregister many devices
5575 * @head: list of devices
5576 */
5577 void unregister_netdevice_many(struct list_head *head)
5578 {
5579 struct net_device *dev;
5580
5581 if (!list_empty(head)) {
5582 rollback_registered_many(head);
5583 list_for_each_entry(dev, head, unreg_list)
5584 net_set_todo(dev);
5585 }
5586 }
5587 EXPORT_SYMBOL(unregister_netdevice_many);
5588
5589 /**
5590 * unregister_netdev - remove device from the kernel
5591 * @dev: device
5592 *
5593 * This function shuts down a device interface and removes it
5594 * from the kernel tables.
5595 *
5596 * This is just a wrapper for unregister_netdevice that takes
5597 * the rtnl semaphore. In general you want to use this and not
5598 * unregister_netdevice.
5599 */
5600 void unregister_netdev(struct net_device *dev)
5601 {
5602 rtnl_lock();
5603 unregister_netdevice(dev);
5604 rtnl_unlock();
5605 }
5606 EXPORT_SYMBOL(unregister_netdev);
5607
5608 /**
5609 * dev_change_net_namespace - move device to different nethost namespace
5610 * @dev: device
5611 * @net: network namespace
5612 * @pat: If not NULL name pattern to try if the current device name
5613 * is already taken in the destination network namespace.
5614 *
5615 * This function shuts down a device interface and moves it
5616 * to a new network namespace. On success 0 is returned, on
5617 * a failure a netagive errno code is returned.
5618 *
5619 * Callers must hold the rtnl semaphore.
5620 */
5621
5622 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5623 {
5624 int err;
5625
5626 ASSERT_RTNL();
5627
5628 /* Don't allow namespace local devices to be moved. */
5629 err = -EINVAL;
5630 if (dev->features & NETIF_F_NETNS_LOCAL)
5631 goto out;
5632
5633 #ifdef CONFIG_SYSFS
5634 /* Don't allow real devices to be moved when sysfs
5635 * is enabled.
5636 */
5637 err = -EINVAL;
5638 if (dev->dev.parent)
5639 goto out;
5640 #endif
5641
5642 /* Ensure the device has been registrered */
5643 err = -EINVAL;
5644 if (dev->reg_state != NETREG_REGISTERED)
5645 goto out;
5646
5647 /* Get out if there is nothing todo */
5648 err = 0;
5649 if (net_eq(dev_net(dev), net))
5650 goto out;
5651
5652 /* Pick the destination device name, and ensure
5653 * we can use it in the destination network namespace.
5654 */
5655 err = -EEXIST;
5656 if (__dev_get_by_name(net, dev->name)) {
5657 /* We get here if we can't use the current device name */
5658 if (!pat)
5659 goto out;
5660 if (dev_get_valid_name(net, pat, dev->name, 1))
5661 goto out;
5662 }
5663
5664 /*
5665 * And now a mini version of register_netdevice unregister_netdevice.
5666 */
5667
5668 /* If device is running close it first. */
5669 dev_close(dev);
5670
5671 /* And unlink it from device chain */
5672 err = -ENODEV;
5673 unlist_netdevice(dev);
5674
5675 synchronize_net();
5676
5677 /* Shutdown queueing discipline. */
5678 dev_shutdown(dev);
5679
5680 /* Notify protocols, that we are about to destroy
5681 this device. They should clean all the things.
5682 */
5683 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5684 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5685
5686 /*
5687 * Flush the unicast and multicast chains
5688 */
5689 dev_unicast_flush(dev);
5690 dev_addr_discard(dev);
5691
5692 netdev_unregister_kobject(dev);
5693
5694 /* Actually switch the network namespace */
5695 dev_net_set(dev, net);
5696
5697 /* If there is an ifindex conflict assign a new one */
5698 if (__dev_get_by_index(net, dev->ifindex)) {
5699 int iflink = (dev->iflink == dev->ifindex);
5700 dev->ifindex = dev_new_index(net);
5701 if (iflink)
5702 dev->iflink = dev->ifindex;
5703 }
5704
5705 /* Fixup kobjects */
5706 err = netdev_register_kobject(dev);
5707 WARN_ON(err);
5708
5709 /* Add the device back in the hashes */
5710 list_netdevice(dev);
5711
5712 /* Notify protocols, that a new device appeared. */
5713 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5714
5715 /*
5716 * Prevent userspace races by waiting until the network
5717 * device is fully setup before sending notifications.
5718 */
5719 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5720
5721 synchronize_net();
5722 err = 0;
5723 out:
5724 return err;
5725 }
5726 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5727
5728 static int dev_cpu_callback(struct notifier_block *nfb,
5729 unsigned long action,
5730 void *ocpu)
5731 {
5732 struct sk_buff **list_skb;
5733 struct Qdisc **list_net;
5734 struct sk_buff *skb;
5735 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5736 struct softnet_data *sd, *oldsd;
5737
5738 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5739 return NOTIFY_OK;
5740
5741 local_irq_disable();
5742 cpu = smp_processor_id();
5743 sd = &per_cpu(softnet_data, cpu);
5744 oldsd = &per_cpu(softnet_data, oldcpu);
5745
5746 /* Find end of our completion_queue. */
5747 list_skb = &sd->completion_queue;
5748 while (*list_skb)
5749 list_skb = &(*list_skb)->next;
5750 /* Append completion queue from offline CPU. */
5751 *list_skb = oldsd->completion_queue;
5752 oldsd->completion_queue = NULL;
5753
5754 /* Find end of our output_queue. */
5755 list_net = &sd->output_queue;
5756 while (*list_net)
5757 list_net = &(*list_net)->next_sched;
5758 /* Append output queue from offline CPU. */
5759 *list_net = oldsd->output_queue;
5760 oldsd->output_queue = NULL;
5761
5762 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5763 local_irq_enable();
5764
5765 /* Process offline CPU's input_pkt_queue */
5766 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5767 netif_rx(skb);
5768
5769 return NOTIFY_OK;
5770 }
5771
5772
5773 /**
5774 * netdev_increment_features - increment feature set by one
5775 * @all: current feature set
5776 * @one: new feature set
5777 * @mask: mask feature set
5778 *
5779 * Computes a new feature set after adding a device with feature set
5780 * @one to the master device with current feature set @all. Will not
5781 * enable anything that is off in @mask. Returns the new feature set.
5782 */
5783 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5784 unsigned long mask)
5785 {
5786 /* If device needs checksumming, downgrade to it. */
5787 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5788 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5789 else if (mask & NETIF_F_ALL_CSUM) {
5790 /* If one device supports v4/v6 checksumming, set for all. */
5791 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5792 !(all & NETIF_F_GEN_CSUM)) {
5793 all &= ~NETIF_F_ALL_CSUM;
5794 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5795 }
5796
5797 /* If one device supports hw checksumming, set for all. */
5798 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5799 all &= ~NETIF_F_ALL_CSUM;
5800 all |= NETIF_F_HW_CSUM;
5801 }
5802 }
5803
5804 one |= NETIF_F_ALL_CSUM;
5805
5806 one |= all & NETIF_F_ONE_FOR_ALL;
5807 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5808 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5809
5810 return all;
5811 }
5812 EXPORT_SYMBOL(netdev_increment_features);
5813
5814 static struct hlist_head *netdev_create_hash(void)
5815 {
5816 int i;
5817 struct hlist_head *hash;
5818
5819 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5820 if (hash != NULL)
5821 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5822 INIT_HLIST_HEAD(&hash[i]);
5823
5824 return hash;
5825 }
5826
5827 /* Initialize per network namespace state */
5828 static int __net_init netdev_init(struct net *net)
5829 {
5830 INIT_LIST_HEAD(&net->dev_base_head);
5831
5832 net->dev_name_head = netdev_create_hash();
5833 if (net->dev_name_head == NULL)
5834 goto err_name;
5835
5836 net->dev_index_head = netdev_create_hash();
5837 if (net->dev_index_head == NULL)
5838 goto err_idx;
5839
5840 return 0;
5841
5842 err_idx:
5843 kfree(net->dev_name_head);
5844 err_name:
5845 return -ENOMEM;
5846 }
5847
5848 /**
5849 * netdev_drivername - network driver for the device
5850 * @dev: network device
5851 * @buffer: buffer for resulting name
5852 * @len: size of buffer
5853 *
5854 * Determine network driver for device.
5855 */
5856 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5857 {
5858 const struct device_driver *driver;
5859 const struct device *parent;
5860
5861 if (len <= 0 || !buffer)
5862 return buffer;
5863 buffer[0] = 0;
5864
5865 parent = dev->dev.parent;
5866
5867 if (!parent)
5868 return buffer;
5869
5870 driver = parent->driver;
5871 if (driver && driver->name)
5872 strlcpy(buffer, driver->name, len);
5873 return buffer;
5874 }
5875
5876 static void __net_exit netdev_exit(struct net *net)
5877 {
5878 kfree(net->dev_name_head);
5879 kfree(net->dev_index_head);
5880 }
5881
5882 static struct pernet_operations __net_initdata netdev_net_ops = {
5883 .init = netdev_init,
5884 .exit = netdev_exit,
5885 };
5886
5887 static void __net_exit default_device_exit(struct net *net)
5888 {
5889 struct net_device *dev, *aux;
5890 /*
5891 * Push all migratable network devices back to the
5892 * initial network namespace
5893 */
5894 rtnl_lock();
5895 for_each_netdev_safe(net, dev, aux) {
5896 int err;
5897 char fb_name[IFNAMSIZ];
5898
5899 /* Ignore unmoveable devices (i.e. loopback) */
5900 if (dev->features & NETIF_F_NETNS_LOCAL)
5901 continue;
5902
5903 /* Leave virtual devices for the generic cleanup */
5904 if (dev->rtnl_link_ops)
5905 continue;
5906
5907 /* Push remaing network devices to init_net */
5908 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5909 err = dev_change_net_namespace(dev, &init_net, fb_name);
5910 if (err) {
5911 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5912 __func__, dev->name, err);
5913 BUG();
5914 }
5915 }
5916 rtnl_unlock();
5917 }
5918
5919 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5920 {
5921 /* At exit all network devices most be removed from a network
5922 * namespace. Do this in the reverse order of registeration.
5923 * Do this across as many network namespaces as possible to
5924 * improve batching efficiency.
5925 */
5926 struct net_device *dev;
5927 struct net *net;
5928 LIST_HEAD(dev_kill_list);
5929
5930 rtnl_lock();
5931 list_for_each_entry(net, net_list, exit_list) {
5932 for_each_netdev_reverse(net, dev) {
5933 if (dev->rtnl_link_ops)
5934 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5935 else
5936 unregister_netdevice_queue(dev, &dev_kill_list);
5937 }
5938 }
5939 unregister_netdevice_many(&dev_kill_list);
5940 rtnl_unlock();
5941 }
5942
5943 static struct pernet_operations __net_initdata default_device_ops = {
5944 .exit = default_device_exit,
5945 .exit_batch = default_device_exit_batch,
5946 };
5947
5948 /*
5949 * Initialize the DEV module. At boot time this walks the device list and
5950 * unhooks any devices that fail to initialise (normally hardware not
5951 * present) and leaves us with a valid list of present and active devices.
5952 *
5953 */
5954
5955 /*
5956 * This is called single threaded during boot, so no need
5957 * to take the rtnl semaphore.
5958 */
5959 static int __init net_dev_init(void)
5960 {
5961 int i, rc = -ENOMEM;
5962
5963 BUG_ON(!dev_boot_phase);
5964
5965 if (dev_proc_init())
5966 goto out;
5967
5968 if (netdev_kobject_init())
5969 goto out;
5970
5971 INIT_LIST_HEAD(&ptype_all);
5972 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5973 INIT_LIST_HEAD(&ptype_base[i]);
5974
5975 if (register_pernet_subsys(&netdev_net_ops))
5976 goto out;
5977
5978 /*
5979 * Initialise the packet receive queues.
5980 */
5981
5982 for_each_possible_cpu(i) {
5983 struct softnet_data *queue;
5984
5985 queue = &per_cpu(softnet_data, i);
5986 skb_queue_head_init(&queue->input_pkt_queue);
5987 queue->completion_queue = NULL;
5988 INIT_LIST_HEAD(&queue->poll_list);
5989
5990 queue->backlog.poll = process_backlog;
5991 queue->backlog.weight = weight_p;
5992 queue->backlog.gro_list = NULL;
5993 queue->backlog.gro_count = 0;
5994 }
5995
5996 dev_boot_phase = 0;
5997
5998 /* The loopback device is special if any other network devices
5999 * is present in a network namespace the loopback device must
6000 * be present. Since we now dynamically allocate and free the
6001 * loopback device ensure this invariant is maintained by
6002 * keeping the loopback device as the first device on the
6003 * list of network devices. Ensuring the loopback devices
6004 * is the first device that appears and the last network device
6005 * that disappears.
6006 */
6007 if (register_pernet_device(&loopback_net_ops))
6008 goto out;
6009
6010 if (register_pernet_device(&default_device_ops))
6011 goto out;
6012
6013 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6014 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6015
6016 hotcpu_notifier(dev_cpu_callback, 0);
6017 dst_init();
6018 dev_mcast_init();
6019 rc = 0;
6020 out:
6021 return rc;
6022 }
6023
6024 subsys_initcall(net_dev_init);
6025
6026 static int __init initialize_hashrnd(void)
6027 {
6028 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6029 return 0;
6030 }
6031
6032 late_initcall_sync(initialize_hashrnd);
6033
This page took 0.155279 seconds and 5 git commands to generate.