netpoll: Add drop checks to all entry points
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)));
1461 }
1462
1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1464 {
1465 if (can_checksum_protocol(dev->features, skb->protocol))
1466 return true;
1467
1468 if (skb->protocol == htons(ETH_P_8021Q)) {
1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1470 if (can_checksum_protocol(dev->features & dev->vlan_features,
1471 veh->h_vlan_encapsulated_proto))
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
1478 /*
1479 * Invalidate hardware checksum when packet is to be mangled, and
1480 * complete checksum manually on outgoing path.
1481 */
1482 int skb_checksum_help(struct sk_buff *skb)
1483 {
1484 __wsum csum;
1485 int ret = 0, offset;
1486
1487 if (skb->ip_summed == CHECKSUM_COMPLETE)
1488 goto out_set_summed;
1489
1490 if (unlikely(skb_shinfo(skb)->gso_size)) {
1491 /* Let GSO fix up the checksum. */
1492 goto out_set_summed;
1493 }
1494
1495 offset = skb->csum_start - skb_headroom(skb);
1496 BUG_ON(offset >= skb_headlen(skb));
1497 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1498
1499 offset += skb->csum_offset;
1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1501
1502 if (skb_cloned(skb) &&
1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1505 if (ret)
1506 goto out;
1507 }
1508
1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1510 out_set_summed:
1511 skb->ip_summed = CHECKSUM_NONE;
1512 out:
1513 return ret;
1514 }
1515
1516 /**
1517 * skb_gso_segment - Perform segmentation on skb.
1518 * @skb: buffer to segment
1519 * @features: features for the output path (see dev->features)
1520 *
1521 * This function segments the given skb and returns a list of segments.
1522 *
1523 * It may return NULL if the skb requires no segmentation. This is
1524 * only possible when GSO is used for verifying header integrity.
1525 */
1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1527 {
1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1529 struct packet_type *ptype;
1530 __be16 type = skb->protocol;
1531 int err;
1532
1533 skb_reset_mac_header(skb);
1534 skb->mac_len = skb->network_header - skb->mac_header;
1535 __skb_pull(skb, skb->mac_len);
1536
1537 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1538 struct net_device *dev = skb->dev;
1539 struct ethtool_drvinfo info = {};
1540
1541 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1542 dev->ethtool_ops->get_drvinfo(dev, &info);
1543
1544 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1545 "ip_summed=%d",
1546 info.driver, dev ? dev->features : 0L,
1547 skb->sk ? skb->sk->sk_route_caps : 0L,
1548 skb->len, skb->data_len, skb->ip_summed);
1549
1550 if (skb_header_cloned(skb) &&
1551 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1552 return ERR_PTR(err);
1553 }
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype,
1557 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1558 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1559 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1560 err = ptype->gso_send_check(skb);
1561 segs = ERR_PTR(err);
1562 if (err || skb_gso_ok(skb, features))
1563 break;
1564 __skb_push(skb, (skb->data -
1565 skb_network_header(skb)));
1566 }
1567 segs = ptype->gso_segment(skb, features);
1568 break;
1569 }
1570 }
1571 rcu_read_unlock();
1572
1573 __skb_push(skb, skb->data - skb_mac_header(skb));
1574
1575 return segs;
1576 }
1577
1578 EXPORT_SYMBOL(skb_gso_segment);
1579
1580 /* Take action when hardware reception checksum errors are detected. */
1581 #ifdef CONFIG_BUG
1582 void netdev_rx_csum_fault(struct net_device *dev)
1583 {
1584 if (net_ratelimit()) {
1585 printk(KERN_ERR "%s: hw csum failure.\n",
1586 dev ? dev->name : "<unknown>");
1587 dump_stack();
1588 }
1589 }
1590 EXPORT_SYMBOL(netdev_rx_csum_fault);
1591 #endif
1592
1593 /* Actually, we should eliminate this check as soon as we know, that:
1594 * 1. IOMMU is present and allows to map all the memory.
1595 * 2. No high memory really exists on this machine.
1596 */
1597
1598 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1599 {
1600 #ifdef CONFIG_HIGHMEM
1601 int i;
1602
1603 if (dev->features & NETIF_F_HIGHDMA)
1604 return 0;
1605
1606 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1607 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1608 return 1;
1609
1610 #endif
1611 return 0;
1612 }
1613
1614 struct dev_gso_cb {
1615 void (*destructor)(struct sk_buff *skb);
1616 };
1617
1618 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1619
1620 static void dev_gso_skb_destructor(struct sk_buff *skb)
1621 {
1622 struct dev_gso_cb *cb;
1623
1624 do {
1625 struct sk_buff *nskb = skb->next;
1626
1627 skb->next = nskb->next;
1628 nskb->next = NULL;
1629 kfree_skb(nskb);
1630 } while (skb->next);
1631
1632 cb = DEV_GSO_CB(skb);
1633 if (cb->destructor)
1634 cb->destructor(skb);
1635 }
1636
1637 /**
1638 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1639 * @skb: buffer to segment
1640 *
1641 * This function segments the given skb and stores the list of segments
1642 * in skb->next.
1643 */
1644 static int dev_gso_segment(struct sk_buff *skb)
1645 {
1646 struct net_device *dev = skb->dev;
1647 struct sk_buff *segs;
1648 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1649 NETIF_F_SG : 0);
1650
1651 segs = skb_gso_segment(skb, features);
1652
1653 /* Verifying header integrity only. */
1654 if (!segs)
1655 return 0;
1656
1657 if (IS_ERR(segs))
1658 return PTR_ERR(segs);
1659
1660 skb->next = segs;
1661 DEV_GSO_CB(skb)->destructor = skb->destructor;
1662 skb->destructor = dev_gso_skb_destructor;
1663
1664 return 0;
1665 }
1666
1667 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1668 struct netdev_queue *txq)
1669 {
1670 const struct net_device_ops *ops = dev->netdev_ops;
1671
1672 prefetch(&dev->netdev_ops->ndo_start_xmit);
1673 if (likely(!skb->next)) {
1674 if (!list_empty(&ptype_all))
1675 dev_queue_xmit_nit(skb, dev);
1676
1677 if (netif_needs_gso(dev, skb)) {
1678 if (unlikely(dev_gso_segment(skb)))
1679 goto out_kfree_skb;
1680 if (skb->next)
1681 goto gso;
1682 }
1683
1684 return ops->ndo_start_xmit(skb, dev);
1685 }
1686
1687 gso:
1688 do {
1689 struct sk_buff *nskb = skb->next;
1690 int rc;
1691
1692 skb->next = nskb->next;
1693 nskb->next = NULL;
1694 rc = ops->ndo_start_xmit(nskb, dev);
1695 if (unlikely(rc)) {
1696 nskb->next = skb->next;
1697 skb->next = nskb;
1698 return rc;
1699 }
1700 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1701 return NETDEV_TX_BUSY;
1702 } while (skb->next);
1703
1704 skb->destructor = DEV_GSO_CB(skb)->destructor;
1705
1706 out_kfree_skb:
1707 kfree_skb(skb);
1708 return 0;
1709 }
1710
1711 static u32 simple_tx_hashrnd;
1712 static int simple_tx_hashrnd_initialized = 0;
1713
1714 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1715 {
1716 u32 addr1, addr2, ports;
1717 u32 hash, ihl;
1718 u8 ip_proto = 0;
1719
1720 if (unlikely(!simple_tx_hashrnd_initialized)) {
1721 get_random_bytes(&simple_tx_hashrnd, 4);
1722 simple_tx_hashrnd_initialized = 1;
1723 }
1724
1725 switch (skb->protocol) {
1726 case htons(ETH_P_IP):
1727 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1728 ip_proto = ip_hdr(skb)->protocol;
1729 addr1 = ip_hdr(skb)->saddr;
1730 addr2 = ip_hdr(skb)->daddr;
1731 ihl = ip_hdr(skb)->ihl;
1732 break;
1733 case htons(ETH_P_IPV6):
1734 ip_proto = ipv6_hdr(skb)->nexthdr;
1735 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1736 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1737 ihl = (40 >> 2);
1738 break;
1739 default:
1740 return 0;
1741 }
1742
1743
1744 switch (ip_proto) {
1745 case IPPROTO_TCP:
1746 case IPPROTO_UDP:
1747 case IPPROTO_DCCP:
1748 case IPPROTO_ESP:
1749 case IPPROTO_AH:
1750 case IPPROTO_SCTP:
1751 case IPPROTO_UDPLITE:
1752 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1753 break;
1754
1755 default:
1756 ports = 0;
1757 break;
1758 }
1759
1760 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1761
1762 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1763 }
1764
1765 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1766 struct sk_buff *skb)
1767 {
1768 const struct net_device_ops *ops = dev->netdev_ops;
1769 u16 queue_index = 0;
1770
1771 if (ops->ndo_select_queue)
1772 queue_index = ops->ndo_select_queue(dev, skb);
1773 else if (dev->real_num_tx_queues > 1)
1774 queue_index = simple_tx_hash(dev, skb);
1775
1776 skb_set_queue_mapping(skb, queue_index);
1777 return netdev_get_tx_queue(dev, queue_index);
1778 }
1779
1780 /**
1781 * dev_queue_xmit - transmit a buffer
1782 * @skb: buffer to transmit
1783 *
1784 * Queue a buffer for transmission to a network device. The caller must
1785 * have set the device and priority and built the buffer before calling
1786 * this function. The function can be called from an interrupt.
1787 *
1788 * A negative errno code is returned on a failure. A success does not
1789 * guarantee the frame will be transmitted as it may be dropped due
1790 * to congestion or traffic shaping.
1791 *
1792 * -----------------------------------------------------------------------------------
1793 * I notice this method can also return errors from the queue disciplines,
1794 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1795 * be positive.
1796 *
1797 * Regardless of the return value, the skb is consumed, so it is currently
1798 * difficult to retry a send to this method. (You can bump the ref count
1799 * before sending to hold a reference for retry if you are careful.)
1800 *
1801 * When calling this method, interrupts MUST be enabled. This is because
1802 * the BH enable code must have IRQs enabled so that it will not deadlock.
1803 * --BLG
1804 */
1805 int dev_queue_xmit(struct sk_buff *skb)
1806 {
1807 struct net_device *dev = skb->dev;
1808 struct netdev_queue *txq;
1809 struct Qdisc *q;
1810 int rc = -ENOMEM;
1811
1812 /* GSO will handle the following emulations directly. */
1813 if (netif_needs_gso(dev, skb))
1814 goto gso;
1815
1816 if (skb_shinfo(skb)->frag_list &&
1817 !(dev->features & NETIF_F_FRAGLIST) &&
1818 __skb_linearize(skb))
1819 goto out_kfree_skb;
1820
1821 /* Fragmented skb is linearized if device does not support SG,
1822 * or if at least one of fragments is in highmem and device
1823 * does not support DMA from it.
1824 */
1825 if (skb_shinfo(skb)->nr_frags &&
1826 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1827 __skb_linearize(skb))
1828 goto out_kfree_skb;
1829
1830 /* If packet is not checksummed and device does not support
1831 * checksumming for this protocol, complete checksumming here.
1832 */
1833 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1834 skb_set_transport_header(skb, skb->csum_start -
1835 skb_headroom(skb));
1836 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1837 goto out_kfree_skb;
1838 }
1839
1840 gso:
1841 /* Disable soft irqs for various locks below. Also
1842 * stops preemption for RCU.
1843 */
1844 rcu_read_lock_bh();
1845
1846 txq = dev_pick_tx(dev, skb);
1847 q = rcu_dereference(txq->qdisc);
1848
1849 #ifdef CONFIG_NET_CLS_ACT
1850 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1851 #endif
1852 if (q->enqueue) {
1853 spinlock_t *root_lock = qdisc_lock(q);
1854
1855 spin_lock(root_lock);
1856
1857 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1858 kfree_skb(skb);
1859 rc = NET_XMIT_DROP;
1860 } else {
1861 rc = qdisc_enqueue_root(skb, q);
1862 qdisc_run(q);
1863 }
1864 spin_unlock(root_lock);
1865
1866 goto out;
1867 }
1868
1869 /* The device has no queue. Common case for software devices:
1870 loopback, all the sorts of tunnels...
1871
1872 Really, it is unlikely that netif_tx_lock protection is necessary
1873 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1874 counters.)
1875 However, it is possible, that they rely on protection
1876 made by us here.
1877
1878 Check this and shot the lock. It is not prone from deadlocks.
1879 Either shot noqueue qdisc, it is even simpler 8)
1880 */
1881 if (dev->flags & IFF_UP) {
1882 int cpu = smp_processor_id(); /* ok because BHs are off */
1883
1884 if (txq->xmit_lock_owner != cpu) {
1885
1886 HARD_TX_LOCK(dev, txq, cpu);
1887
1888 if (!netif_tx_queue_stopped(txq)) {
1889 rc = 0;
1890 if (!dev_hard_start_xmit(skb, dev, txq)) {
1891 HARD_TX_UNLOCK(dev, txq);
1892 goto out;
1893 }
1894 }
1895 HARD_TX_UNLOCK(dev, txq);
1896 if (net_ratelimit())
1897 printk(KERN_CRIT "Virtual device %s asks to "
1898 "queue packet!\n", dev->name);
1899 } else {
1900 /* Recursion is detected! It is possible,
1901 * unfortunately */
1902 if (net_ratelimit())
1903 printk(KERN_CRIT "Dead loop on virtual device "
1904 "%s, fix it urgently!\n", dev->name);
1905 }
1906 }
1907
1908 rc = -ENETDOWN;
1909 rcu_read_unlock_bh();
1910
1911 out_kfree_skb:
1912 kfree_skb(skb);
1913 return rc;
1914 out:
1915 rcu_read_unlock_bh();
1916 return rc;
1917 }
1918
1919
1920 /*=======================================================================
1921 Receiver routines
1922 =======================================================================*/
1923
1924 int netdev_max_backlog __read_mostly = 1000;
1925 int netdev_budget __read_mostly = 300;
1926 int weight_p __read_mostly = 64; /* old backlog weight */
1927
1928 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1929
1930
1931 /**
1932 * netif_rx - post buffer to the network code
1933 * @skb: buffer to post
1934 *
1935 * This function receives a packet from a device driver and queues it for
1936 * the upper (protocol) levels to process. It always succeeds. The buffer
1937 * may be dropped during processing for congestion control or by the
1938 * protocol layers.
1939 *
1940 * return values:
1941 * NET_RX_SUCCESS (no congestion)
1942 * NET_RX_DROP (packet was dropped)
1943 *
1944 */
1945
1946 int netif_rx(struct sk_buff *skb)
1947 {
1948 struct softnet_data *queue;
1949 unsigned long flags;
1950
1951 /* if netpoll wants it, pretend we never saw it */
1952 if (netpoll_rx(skb))
1953 return NET_RX_DROP;
1954
1955 if (!skb->tstamp.tv64)
1956 net_timestamp(skb);
1957
1958 /*
1959 * The code is rearranged so that the path is the most
1960 * short when CPU is congested, but is still operating.
1961 */
1962 local_irq_save(flags);
1963 queue = &__get_cpu_var(softnet_data);
1964
1965 __get_cpu_var(netdev_rx_stat).total++;
1966 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1967 if (queue->input_pkt_queue.qlen) {
1968 enqueue:
1969 __skb_queue_tail(&queue->input_pkt_queue, skb);
1970 local_irq_restore(flags);
1971 return NET_RX_SUCCESS;
1972 }
1973
1974 napi_schedule(&queue->backlog);
1975 goto enqueue;
1976 }
1977
1978 __get_cpu_var(netdev_rx_stat).dropped++;
1979 local_irq_restore(flags);
1980
1981 kfree_skb(skb);
1982 return NET_RX_DROP;
1983 }
1984
1985 int netif_rx_ni(struct sk_buff *skb)
1986 {
1987 int err;
1988
1989 preempt_disable();
1990 err = netif_rx(skb);
1991 if (local_softirq_pending())
1992 do_softirq();
1993 preempt_enable();
1994
1995 return err;
1996 }
1997
1998 EXPORT_SYMBOL(netif_rx_ni);
1999
2000 static void net_tx_action(struct softirq_action *h)
2001 {
2002 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2003
2004 if (sd->completion_queue) {
2005 struct sk_buff *clist;
2006
2007 local_irq_disable();
2008 clist = sd->completion_queue;
2009 sd->completion_queue = NULL;
2010 local_irq_enable();
2011
2012 while (clist) {
2013 struct sk_buff *skb = clist;
2014 clist = clist->next;
2015
2016 WARN_ON(atomic_read(&skb->users));
2017 __kfree_skb(skb);
2018 }
2019 }
2020
2021 if (sd->output_queue) {
2022 struct Qdisc *head;
2023
2024 local_irq_disable();
2025 head = sd->output_queue;
2026 sd->output_queue = NULL;
2027 local_irq_enable();
2028
2029 while (head) {
2030 struct Qdisc *q = head;
2031 spinlock_t *root_lock;
2032
2033 head = head->next_sched;
2034
2035 root_lock = qdisc_lock(q);
2036 if (spin_trylock(root_lock)) {
2037 smp_mb__before_clear_bit();
2038 clear_bit(__QDISC_STATE_SCHED,
2039 &q->state);
2040 qdisc_run(q);
2041 spin_unlock(root_lock);
2042 } else {
2043 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2044 &q->state)) {
2045 __netif_reschedule(q);
2046 } else {
2047 smp_mb__before_clear_bit();
2048 clear_bit(__QDISC_STATE_SCHED,
2049 &q->state);
2050 }
2051 }
2052 }
2053 }
2054 }
2055
2056 static inline int deliver_skb(struct sk_buff *skb,
2057 struct packet_type *pt_prev,
2058 struct net_device *orig_dev)
2059 {
2060 atomic_inc(&skb->users);
2061 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2062 }
2063
2064 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2065 /* These hooks defined here for ATM */
2066 struct net_bridge;
2067 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2068 unsigned char *addr);
2069 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2070
2071 /*
2072 * If bridge module is loaded call bridging hook.
2073 * returns NULL if packet was consumed.
2074 */
2075 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2076 struct sk_buff *skb) __read_mostly;
2077 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2078 struct packet_type **pt_prev, int *ret,
2079 struct net_device *orig_dev)
2080 {
2081 struct net_bridge_port *port;
2082
2083 if (skb->pkt_type == PACKET_LOOPBACK ||
2084 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2085 return skb;
2086
2087 if (*pt_prev) {
2088 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2089 *pt_prev = NULL;
2090 }
2091
2092 return br_handle_frame_hook(port, skb);
2093 }
2094 #else
2095 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2096 #endif
2097
2098 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2099 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2100 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2101
2102 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2103 struct packet_type **pt_prev,
2104 int *ret,
2105 struct net_device *orig_dev)
2106 {
2107 if (skb->dev->macvlan_port == NULL)
2108 return skb;
2109
2110 if (*pt_prev) {
2111 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2112 *pt_prev = NULL;
2113 }
2114 return macvlan_handle_frame_hook(skb);
2115 }
2116 #else
2117 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2118 #endif
2119
2120 #ifdef CONFIG_NET_CLS_ACT
2121 /* TODO: Maybe we should just force sch_ingress to be compiled in
2122 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2123 * a compare and 2 stores extra right now if we dont have it on
2124 * but have CONFIG_NET_CLS_ACT
2125 * NOTE: This doesnt stop any functionality; if you dont have
2126 * the ingress scheduler, you just cant add policies on ingress.
2127 *
2128 */
2129 static int ing_filter(struct sk_buff *skb)
2130 {
2131 struct net_device *dev = skb->dev;
2132 u32 ttl = G_TC_RTTL(skb->tc_verd);
2133 struct netdev_queue *rxq;
2134 int result = TC_ACT_OK;
2135 struct Qdisc *q;
2136
2137 if (MAX_RED_LOOP < ttl++) {
2138 printk(KERN_WARNING
2139 "Redir loop detected Dropping packet (%d->%d)\n",
2140 skb->iif, dev->ifindex);
2141 return TC_ACT_SHOT;
2142 }
2143
2144 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2145 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2146
2147 rxq = &dev->rx_queue;
2148
2149 q = rxq->qdisc;
2150 if (q != &noop_qdisc) {
2151 spin_lock(qdisc_lock(q));
2152 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2153 result = qdisc_enqueue_root(skb, q);
2154 spin_unlock(qdisc_lock(q));
2155 }
2156
2157 return result;
2158 }
2159
2160 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2161 struct packet_type **pt_prev,
2162 int *ret, struct net_device *orig_dev)
2163 {
2164 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2165 goto out;
2166
2167 if (*pt_prev) {
2168 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2169 *pt_prev = NULL;
2170 } else {
2171 /* Huh? Why does turning on AF_PACKET affect this? */
2172 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2173 }
2174
2175 switch (ing_filter(skb)) {
2176 case TC_ACT_SHOT:
2177 case TC_ACT_STOLEN:
2178 kfree_skb(skb);
2179 return NULL;
2180 }
2181
2182 out:
2183 skb->tc_verd = 0;
2184 return skb;
2185 }
2186 #endif
2187
2188 /*
2189 * netif_nit_deliver - deliver received packets to network taps
2190 * @skb: buffer
2191 *
2192 * This function is used to deliver incoming packets to network
2193 * taps. It should be used when the normal netif_receive_skb path
2194 * is bypassed, for example because of VLAN acceleration.
2195 */
2196 void netif_nit_deliver(struct sk_buff *skb)
2197 {
2198 struct packet_type *ptype;
2199
2200 if (list_empty(&ptype_all))
2201 return;
2202
2203 skb_reset_network_header(skb);
2204 skb_reset_transport_header(skb);
2205 skb->mac_len = skb->network_header - skb->mac_header;
2206
2207 rcu_read_lock();
2208 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2209 if (!ptype->dev || ptype->dev == skb->dev)
2210 deliver_skb(skb, ptype, skb->dev);
2211 }
2212 rcu_read_unlock();
2213 }
2214
2215 /**
2216 * netif_receive_skb - process receive buffer from network
2217 * @skb: buffer to process
2218 *
2219 * netif_receive_skb() is the main receive data processing function.
2220 * It always succeeds. The buffer may be dropped during processing
2221 * for congestion control or by the protocol layers.
2222 *
2223 * This function may only be called from softirq context and interrupts
2224 * should be enabled.
2225 *
2226 * Return values (usually ignored):
2227 * NET_RX_SUCCESS: no congestion
2228 * NET_RX_DROP: packet was dropped
2229 */
2230 int netif_receive_skb(struct sk_buff *skb)
2231 {
2232 struct packet_type *ptype, *pt_prev;
2233 struct net_device *orig_dev;
2234 struct net_device *null_or_orig;
2235 int ret = NET_RX_DROP;
2236 __be16 type;
2237
2238 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2239 return NET_RX_SUCCESS;
2240
2241 /* if we've gotten here through NAPI, check netpoll */
2242 if (netpoll_receive_skb(skb))
2243 return NET_RX_DROP;
2244
2245 if (!skb->tstamp.tv64)
2246 net_timestamp(skb);
2247
2248 if (!skb->iif)
2249 skb->iif = skb->dev->ifindex;
2250
2251 null_or_orig = NULL;
2252 orig_dev = skb->dev;
2253 if (orig_dev->master) {
2254 if (skb_bond_should_drop(skb))
2255 null_or_orig = orig_dev; /* deliver only exact match */
2256 else
2257 skb->dev = orig_dev->master;
2258 }
2259
2260 __get_cpu_var(netdev_rx_stat).total++;
2261
2262 skb_reset_network_header(skb);
2263 skb_reset_transport_header(skb);
2264 skb->mac_len = skb->network_header - skb->mac_header;
2265
2266 pt_prev = NULL;
2267
2268 rcu_read_lock();
2269
2270 /* Don't receive packets in an exiting network namespace */
2271 if (!net_alive(dev_net(skb->dev))) {
2272 kfree_skb(skb);
2273 goto out;
2274 }
2275
2276 #ifdef CONFIG_NET_CLS_ACT
2277 if (skb->tc_verd & TC_NCLS) {
2278 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2279 goto ncls;
2280 }
2281 #endif
2282
2283 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2284 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2285 ptype->dev == orig_dev) {
2286 if (pt_prev)
2287 ret = deliver_skb(skb, pt_prev, orig_dev);
2288 pt_prev = ptype;
2289 }
2290 }
2291
2292 #ifdef CONFIG_NET_CLS_ACT
2293 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2294 if (!skb)
2295 goto out;
2296 ncls:
2297 #endif
2298
2299 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2300 if (!skb)
2301 goto out;
2302 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2303 if (!skb)
2304 goto out;
2305
2306 type = skb->protocol;
2307 list_for_each_entry_rcu(ptype,
2308 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2309 if (ptype->type == type &&
2310 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2311 ptype->dev == orig_dev)) {
2312 if (pt_prev)
2313 ret = deliver_skb(skb, pt_prev, orig_dev);
2314 pt_prev = ptype;
2315 }
2316 }
2317
2318 if (pt_prev) {
2319 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2320 } else {
2321 kfree_skb(skb);
2322 /* Jamal, now you will not able to escape explaining
2323 * me how you were going to use this. :-)
2324 */
2325 ret = NET_RX_DROP;
2326 }
2327
2328 out:
2329 rcu_read_unlock();
2330 return ret;
2331 }
2332
2333 /* Network device is going away, flush any packets still pending */
2334 static void flush_backlog(void *arg)
2335 {
2336 struct net_device *dev = arg;
2337 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2338 struct sk_buff *skb, *tmp;
2339
2340 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2341 if (skb->dev == dev) {
2342 __skb_unlink(skb, &queue->input_pkt_queue);
2343 kfree_skb(skb);
2344 }
2345 }
2346
2347 static int napi_gro_complete(struct sk_buff *skb)
2348 {
2349 struct packet_type *ptype;
2350 __be16 type = skb->protocol;
2351 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2352 int err = -ENOENT;
2353
2354 if (NAPI_GRO_CB(skb)->count == 1)
2355 goto out;
2356
2357 rcu_read_lock();
2358 list_for_each_entry_rcu(ptype, head, list) {
2359 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2360 continue;
2361
2362 err = ptype->gro_complete(skb);
2363 break;
2364 }
2365 rcu_read_unlock();
2366
2367 if (err) {
2368 WARN_ON(&ptype->list == head);
2369 kfree_skb(skb);
2370 return NET_RX_SUCCESS;
2371 }
2372
2373 out:
2374 skb_shinfo(skb)->gso_size = 0;
2375 __skb_push(skb, -skb_network_offset(skb));
2376 return netif_receive_skb(skb);
2377 }
2378
2379 void napi_gro_flush(struct napi_struct *napi)
2380 {
2381 struct sk_buff *skb, *next;
2382
2383 for (skb = napi->gro_list; skb; skb = next) {
2384 next = skb->next;
2385 skb->next = NULL;
2386 napi_gro_complete(skb);
2387 }
2388
2389 napi->gro_list = NULL;
2390 }
2391 EXPORT_SYMBOL(napi_gro_flush);
2392
2393 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2394 {
2395 struct sk_buff **pp = NULL;
2396 struct packet_type *ptype;
2397 __be16 type = skb->protocol;
2398 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2399 int count = 0;
2400 int same_flow;
2401 int mac_len;
2402 int free;
2403
2404 if (!(skb->dev->features & NETIF_F_GRO))
2405 goto normal;
2406
2407 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2408 goto normal;
2409
2410 rcu_read_lock();
2411 list_for_each_entry_rcu(ptype, head, list) {
2412 struct sk_buff *p;
2413
2414 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2415 continue;
2416
2417 skb_reset_network_header(skb);
2418 mac_len = skb->network_header - skb->mac_header;
2419 skb->mac_len = mac_len;
2420 NAPI_GRO_CB(skb)->same_flow = 0;
2421 NAPI_GRO_CB(skb)->flush = 0;
2422 NAPI_GRO_CB(skb)->free = 0;
2423
2424 for (p = napi->gro_list; p; p = p->next) {
2425 count++;
2426
2427 if (!NAPI_GRO_CB(p)->same_flow)
2428 continue;
2429
2430 if (p->mac_len != mac_len ||
2431 memcmp(skb_mac_header(p), skb_mac_header(skb),
2432 mac_len))
2433 NAPI_GRO_CB(p)->same_flow = 0;
2434 }
2435
2436 pp = ptype->gro_receive(&napi->gro_list, skb);
2437 break;
2438 }
2439 rcu_read_unlock();
2440
2441 if (&ptype->list == head)
2442 goto normal;
2443
2444 same_flow = NAPI_GRO_CB(skb)->same_flow;
2445 free = NAPI_GRO_CB(skb)->free;
2446
2447 if (pp) {
2448 struct sk_buff *nskb = *pp;
2449
2450 *pp = nskb->next;
2451 nskb->next = NULL;
2452 napi_gro_complete(nskb);
2453 count--;
2454 }
2455
2456 if (same_flow)
2457 goto ok;
2458
2459 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2460 __skb_push(skb, -skb_network_offset(skb));
2461 goto normal;
2462 }
2463
2464 NAPI_GRO_CB(skb)->count = 1;
2465 skb_shinfo(skb)->gso_size = skb->len;
2466 skb->next = napi->gro_list;
2467 napi->gro_list = skb;
2468
2469 ok:
2470 return free;
2471
2472 normal:
2473 return -1;
2474 }
2475 EXPORT_SYMBOL(dev_gro_receive);
2476
2477 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2478 {
2479 struct sk_buff *p;
2480
2481 for (p = napi->gro_list; p; p = p->next) {
2482 NAPI_GRO_CB(p)->same_flow = 1;
2483 NAPI_GRO_CB(p)->flush = 0;
2484 }
2485
2486 return dev_gro_receive(napi, skb);
2487 }
2488
2489 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2490 {
2491 if (netpoll_receive_skb(skb))
2492 return NET_RX_DROP;
2493
2494 switch (__napi_gro_receive(napi, skb)) {
2495 case -1:
2496 return netif_receive_skb(skb);
2497
2498 case 1:
2499 kfree_skb(skb);
2500 break;
2501 }
2502
2503 return NET_RX_SUCCESS;
2504 }
2505 EXPORT_SYMBOL(napi_gro_receive);
2506
2507 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2508 {
2509 __skb_pull(skb, skb_headlen(skb));
2510 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2511
2512 napi->skb = skb;
2513 }
2514 EXPORT_SYMBOL(napi_reuse_skb);
2515
2516 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2517 struct napi_gro_fraginfo *info)
2518 {
2519 struct net_device *dev = napi->dev;
2520 struct sk_buff *skb = napi->skb;
2521
2522 napi->skb = NULL;
2523
2524 if (!skb) {
2525 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2526 if (!skb)
2527 goto out;
2528
2529 skb_reserve(skb, NET_IP_ALIGN);
2530 }
2531
2532 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2533 skb_shinfo(skb)->nr_frags = info->nr_frags;
2534 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2535
2536 skb->data_len = info->len;
2537 skb->len += info->len;
2538 skb->truesize += info->len;
2539
2540 if (!pskb_may_pull(skb, ETH_HLEN)) {
2541 napi_reuse_skb(napi, skb);
2542 skb = NULL;
2543 goto out;
2544 }
2545
2546 skb->protocol = eth_type_trans(skb, dev);
2547
2548 skb->ip_summed = info->ip_summed;
2549 skb->csum = info->csum;
2550
2551 out:
2552 return skb;
2553 }
2554 EXPORT_SYMBOL(napi_fraginfo_skb);
2555
2556 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2557 {
2558 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2559 int err = NET_RX_DROP;
2560
2561 if (!skb)
2562 goto out;
2563
2564 if (netpoll_receive_skb(skb))
2565 goto out;
2566
2567 err = NET_RX_SUCCESS;
2568
2569 switch (__napi_gro_receive(napi, skb)) {
2570 case -1:
2571 return netif_receive_skb(skb);
2572
2573 case 0:
2574 goto out;
2575 }
2576
2577 napi_reuse_skb(napi, skb);
2578
2579 out:
2580 return err;
2581 }
2582 EXPORT_SYMBOL(napi_gro_frags);
2583
2584 static int process_backlog(struct napi_struct *napi, int quota)
2585 {
2586 int work = 0;
2587 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2588 unsigned long start_time = jiffies;
2589
2590 napi->weight = weight_p;
2591 do {
2592 struct sk_buff *skb;
2593
2594 local_irq_disable();
2595 skb = __skb_dequeue(&queue->input_pkt_queue);
2596 if (!skb) {
2597 __napi_complete(napi);
2598 local_irq_enable();
2599 break;
2600 }
2601 local_irq_enable();
2602
2603 napi_gro_receive(napi, skb);
2604 } while (++work < quota && jiffies == start_time);
2605
2606 napi_gro_flush(napi);
2607
2608 return work;
2609 }
2610
2611 /**
2612 * __napi_schedule - schedule for receive
2613 * @n: entry to schedule
2614 *
2615 * The entry's receive function will be scheduled to run
2616 */
2617 void __napi_schedule(struct napi_struct *n)
2618 {
2619 unsigned long flags;
2620
2621 local_irq_save(flags);
2622 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2623 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2624 local_irq_restore(flags);
2625 }
2626 EXPORT_SYMBOL(__napi_schedule);
2627
2628 void __napi_complete(struct napi_struct *n)
2629 {
2630 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2631 BUG_ON(n->gro_list);
2632
2633 list_del(&n->poll_list);
2634 smp_mb__before_clear_bit();
2635 clear_bit(NAPI_STATE_SCHED, &n->state);
2636 }
2637 EXPORT_SYMBOL(__napi_complete);
2638
2639 void napi_complete(struct napi_struct *n)
2640 {
2641 unsigned long flags;
2642
2643 /*
2644 * don't let napi dequeue from the cpu poll list
2645 * just in case its running on a different cpu
2646 */
2647 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2648 return;
2649
2650 napi_gro_flush(n);
2651 local_irq_save(flags);
2652 __napi_complete(n);
2653 local_irq_restore(flags);
2654 }
2655 EXPORT_SYMBOL(napi_complete);
2656
2657 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2658 int (*poll)(struct napi_struct *, int), int weight)
2659 {
2660 INIT_LIST_HEAD(&napi->poll_list);
2661 napi->gro_list = NULL;
2662 napi->skb = NULL;
2663 napi->poll = poll;
2664 napi->weight = weight;
2665 list_add(&napi->dev_list, &dev->napi_list);
2666 napi->dev = dev;
2667 #ifdef CONFIG_NETPOLL
2668 spin_lock_init(&napi->poll_lock);
2669 napi->poll_owner = -1;
2670 #endif
2671 set_bit(NAPI_STATE_SCHED, &napi->state);
2672 }
2673 EXPORT_SYMBOL(netif_napi_add);
2674
2675 void netif_napi_del(struct napi_struct *napi)
2676 {
2677 struct sk_buff *skb, *next;
2678
2679 list_del_init(&napi->dev_list);
2680 kfree(napi->skb);
2681
2682 for (skb = napi->gro_list; skb; skb = next) {
2683 next = skb->next;
2684 skb->next = NULL;
2685 kfree_skb(skb);
2686 }
2687
2688 napi->gro_list = NULL;
2689 }
2690 EXPORT_SYMBOL(netif_napi_del);
2691
2692
2693 static void net_rx_action(struct softirq_action *h)
2694 {
2695 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2696 unsigned long time_limit = jiffies + 2;
2697 int budget = netdev_budget;
2698 void *have;
2699
2700 local_irq_disable();
2701
2702 while (!list_empty(list)) {
2703 struct napi_struct *n;
2704 int work, weight;
2705
2706 /* If softirq window is exhuasted then punt.
2707 * Allow this to run for 2 jiffies since which will allow
2708 * an average latency of 1.5/HZ.
2709 */
2710 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2711 goto softnet_break;
2712
2713 local_irq_enable();
2714
2715 /* Even though interrupts have been re-enabled, this
2716 * access is safe because interrupts can only add new
2717 * entries to the tail of this list, and only ->poll()
2718 * calls can remove this head entry from the list.
2719 */
2720 n = list_entry(list->next, struct napi_struct, poll_list);
2721
2722 have = netpoll_poll_lock(n);
2723
2724 weight = n->weight;
2725
2726 /* This NAPI_STATE_SCHED test is for avoiding a race
2727 * with netpoll's poll_napi(). Only the entity which
2728 * obtains the lock and sees NAPI_STATE_SCHED set will
2729 * actually make the ->poll() call. Therefore we avoid
2730 * accidently calling ->poll() when NAPI is not scheduled.
2731 */
2732 work = 0;
2733 if (test_bit(NAPI_STATE_SCHED, &n->state))
2734 work = n->poll(n, weight);
2735
2736 WARN_ON_ONCE(work > weight);
2737
2738 budget -= work;
2739
2740 local_irq_disable();
2741
2742 /* Drivers must not modify the NAPI state if they
2743 * consume the entire weight. In such cases this code
2744 * still "owns" the NAPI instance and therefore can
2745 * move the instance around on the list at-will.
2746 */
2747 if (unlikely(work == weight)) {
2748 if (unlikely(napi_disable_pending(n)))
2749 __napi_complete(n);
2750 else
2751 list_move_tail(&n->poll_list, list);
2752 }
2753
2754 netpoll_poll_unlock(have);
2755 }
2756 out:
2757 local_irq_enable();
2758
2759 #ifdef CONFIG_NET_DMA
2760 /*
2761 * There may not be any more sk_buffs coming right now, so push
2762 * any pending DMA copies to hardware
2763 */
2764 dma_issue_pending_all();
2765 #endif
2766
2767 return;
2768
2769 softnet_break:
2770 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2771 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2772 goto out;
2773 }
2774
2775 static gifconf_func_t * gifconf_list [NPROTO];
2776
2777 /**
2778 * register_gifconf - register a SIOCGIF handler
2779 * @family: Address family
2780 * @gifconf: Function handler
2781 *
2782 * Register protocol dependent address dumping routines. The handler
2783 * that is passed must not be freed or reused until it has been replaced
2784 * by another handler.
2785 */
2786 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2787 {
2788 if (family >= NPROTO)
2789 return -EINVAL;
2790 gifconf_list[family] = gifconf;
2791 return 0;
2792 }
2793
2794
2795 /*
2796 * Map an interface index to its name (SIOCGIFNAME)
2797 */
2798
2799 /*
2800 * We need this ioctl for efficient implementation of the
2801 * if_indextoname() function required by the IPv6 API. Without
2802 * it, we would have to search all the interfaces to find a
2803 * match. --pb
2804 */
2805
2806 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2807 {
2808 struct net_device *dev;
2809 struct ifreq ifr;
2810
2811 /*
2812 * Fetch the caller's info block.
2813 */
2814
2815 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2816 return -EFAULT;
2817
2818 read_lock(&dev_base_lock);
2819 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2820 if (!dev) {
2821 read_unlock(&dev_base_lock);
2822 return -ENODEV;
2823 }
2824
2825 strcpy(ifr.ifr_name, dev->name);
2826 read_unlock(&dev_base_lock);
2827
2828 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2829 return -EFAULT;
2830 return 0;
2831 }
2832
2833 /*
2834 * Perform a SIOCGIFCONF call. This structure will change
2835 * size eventually, and there is nothing I can do about it.
2836 * Thus we will need a 'compatibility mode'.
2837 */
2838
2839 static int dev_ifconf(struct net *net, char __user *arg)
2840 {
2841 struct ifconf ifc;
2842 struct net_device *dev;
2843 char __user *pos;
2844 int len;
2845 int total;
2846 int i;
2847
2848 /*
2849 * Fetch the caller's info block.
2850 */
2851
2852 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2853 return -EFAULT;
2854
2855 pos = ifc.ifc_buf;
2856 len = ifc.ifc_len;
2857
2858 /*
2859 * Loop over the interfaces, and write an info block for each.
2860 */
2861
2862 total = 0;
2863 for_each_netdev(net, dev) {
2864 for (i = 0; i < NPROTO; i++) {
2865 if (gifconf_list[i]) {
2866 int done;
2867 if (!pos)
2868 done = gifconf_list[i](dev, NULL, 0);
2869 else
2870 done = gifconf_list[i](dev, pos + total,
2871 len - total);
2872 if (done < 0)
2873 return -EFAULT;
2874 total += done;
2875 }
2876 }
2877 }
2878
2879 /*
2880 * All done. Write the updated control block back to the caller.
2881 */
2882 ifc.ifc_len = total;
2883
2884 /*
2885 * Both BSD and Solaris return 0 here, so we do too.
2886 */
2887 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2888 }
2889
2890 #ifdef CONFIG_PROC_FS
2891 /*
2892 * This is invoked by the /proc filesystem handler to display a device
2893 * in detail.
2894 */
2895 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2896 __acquires(dev_base_lock)
2897 {
2898 struct net *net = seq_file_net(seq);
2899 loff_t off;
2900 struct net_device *dev;
2901
2902 read_lock(&dev_base_lock);
2903 if (!*pos)
2904 return SEQ_START_TOKEN;
2905
2906 off = 1;
2907 for_each_netdev(net, dev)
2908 if (off++ == *pos)
2909 return dev;
2910
2911 return NULL;
2912 }
2913
2914 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2915 {
2916 struct net *net = seq_file_net(seq);
2917 ++*pos;
2918 return v == SEQ_START_TOKEN ?
2919 first_net_device(net) : next_net_device((struct net_device *)v);
2920 }
2921
2922 void dev_seq_stop(struct seq_file *seq, void *v)
2923 __releases(dev_base_lock)
2924 {
2925 read_unlock(&dev_base_lock);
2926 }
2927
2928 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2929 {
2930 const struct net_device_stats *stats = dev_get_stats(dev);
2931
2932 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2933 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2934 dev->name, stats->rx_bytes, stats->rx_packets,
2935 stats->rx_errors,
2936 stats->rx_dropped + stats->rx_missed_errors,
2937 stats->rx_fifo_errors,
2938 stats->rx_length_errors + stats->rx_over_errors +
2939 stats->rx_crc_errors + stats->rx_frame_errors,
2940 stats->rx_compressed, stats->multicast,
2941 stats->tx_bytes, stats->tx_packets,
2942 stats->tx_errors, stats->tx_dropped,
2943 stats->tx_fifo_errors, stats->collisions,
2944 stats->tx_carrier_errors +
2945 stats->tx_aborted_errors +
2946 stats->tx_window_errors +
2947 stats->tx_heartbeat_errors,
2948 stats->tx_compressed);
2949 }
2950
2951 /*
2952 * Called from the PROCfs module. This now uses the new arbitrary sized
2953 * /proc/net interface to create /proc/net/dev
2954 */
2955 static int dev_seq_show(struct seq_file *seq, void *v)
2956 {
2957 if (v == SEQ_START_TOKEN)
2958 seq_puts(seq, "Inter-| Receive "
2959 " | Transmit\n"
2960 " face |bytes packets errs drop fifo frame "
2961 "compressed multicast|bytes packets errs "
2962 "drop fifo colls carrier compressed\n");
2963 else
2964 dev_seq_printf_stats(seq, v);
2965 return 0;
2966 }
2967
2968 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2969 {
2970 struct netif_rx_stats *rc = NULL;
2971
2972 while (*pos < nr_cpu_ids)
2973 if (cpu_online(*pos)) {
2974 rc = &per_cpu(netdev_rx_stat, *pos);
2975 break;
2976 } else
2977 ++*pos;
2978 return rc;
2979 }
2980
2981 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2982 {
2983 return softnet_get_online(pos);
2984 }
2985
2986 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2987 {
2988 ++*pos;
2989 return softnet_get_online(pos);
2990 }
2991
2992 static void softnet_seq_stop(struct seq_file *seq, void *v)
2993 {
2994 }
2995
2996 static int softnet_seq_show(struct seq_file *seq, void *v)
2997 {
2998 struct netif_rx_stats *s = v;
2999
3000 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3001 s->total, s->dropped, s->time_squeeze, 0,
3002 0, 0, 0, 0, /* was fastroute */
3003 s->cpu_collision );
3004 return 0;
3005 }
3006
3007 static const struct seq_operations dev_seq_ops = {
3008 .start = dev_seq_start,
3009 .next = dev_seq_next,
3010 .stop = dev_seq_stop,
3011 .show = dev_seq_show,
3012 };
3013
3014 static int dev_seq_open(struct inode *inode, struct file *file)
3015 {
3016 return seq_open_net(inode, file, &dev_seq_ops,
3017 sizeof(struct seq_net_private));
3018 }
3019
3020 static const struct file_operations dev_seq_fops = {
3021 .owner = THIS_MODULE,
3022 .open = dev_seq_open,
3023 .read = seq_read,
3024 .llseek = seq_lseek,
3025 .release = seq_release_net,
3026 };
3027
3028 static const struct seq_operations softnet_seq_ops = {
3029 .start = softnet_seq_start,
3030 .next = softnet_seq_next,
3031 .stop = softnet_seq_stop,
3032 .show = softnet_seq_show,
3033 };
3034
3035 static int softnet_seq_open(struct inode *inode, struct file *file)
3036 {
3037 return seq_open(file, &softnet_seq_ops);
3038 }
3039
3040 static const struct file_operations softnet_seq_fops = {
3041 .owner = THIS_MODULE,
3042 .open = softnet_seq_open,
3043 .read = seq_read,
3044 .llseek = seq_lseek,
3045 .release = seq_release,
3046 };
3047
3048 static void *ptype_get_idx(loff_t pos)
3049 {
3050 struct packet_type *pt = NULL;
3051 loff_t i = 0;
3052 int t;
3053
3054 list_for_each_entry_rcu(pt, &ptype_all, list) {
3055 if (i == pos)
3056 return pt;
3057 ++i;
3058 }
3059
3060 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3061 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3062 if (i == pos)
3063 return pt;
3064 ++i;
3065 }
3066 }
3067 return NULL;
3068 }
3069
3070 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3071 __acquires(RCU)
3072 {
3073 rcu_read_lock();
3074 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3075 }
3076
3077 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3078 {
3079 struct packet_type *pt;
3080 struct list_head *nxt;
3081 int hash;
3082
3083 ++*pos;
3084 if (v == SEQ_START_TOKEN)
3085 return ptype_get_idx(0);
3086
3087 pt = v;
3088 nxt = pt->list.next;
3089 if (pt->type == htons(ETH_P_ALL)) {
3090 if (nxt != &ptype_all)
3091 goto found;
3092 hash = 0;
3093 nxt = ptype_base[0].next;
3094 } else
3095 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3096
3097 while (nxt == &ptype_base[hash]) {
3098 if (++hash >= PTYPE_HASH_SIZE)
3099 return NULL;
3100 nxt = ptype_base[hash].next;
3101 }
3102 found:
3103 return list_entry(nxt, struct packet_type, list);
3104 }
3105
3106 static void ptype_seq_stop(struct seq_file *seq, void *v)
3107 __releases(RCU)
3108 {
3109 rcu_read_unlock();
3110 }
3111
3112 static int ptype_seq_show(struct seq_file *seq, void *v)
3113 {
3114 struct packet_type *pt = v;
3115
3116 if (v == SEQ_START_TOKEN)
3117 seq_puts(seq, "Type Device Function\n");
3118 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3119 if (pt->type == htons(ETH_P_ALL))
3120 seq_puts(seq, "ALL ");
3121 else
3122 seq_printf(seq, "%04x", ntohs(pt->type));
3123
3124 seq_printf(seq, " %-8s %pF\n",
3125 pt->dev ? pt->dev->name : "", pt->func);
3126 }
3127
3128 return 0;
3129 }
3130
3131 static const struct seq_operations ptype_seq_ops = {
3132 .start = ptype_seq_start,
3133 .next = ptype_seq_next,
3134 .stop = ptype_seq_stop,
3135 .show = ptype_seq_show,
3136 };
3137
3138 static int ptype_seq_open(struct inode *inode, struct file *file)
3139 {
3140 return seq_open_net(inode, file, &ptype_seq_ops,
3141 sizeof(struct seq_net_private));
3142 }
3143
3144 static const struct file_operations ptype_seq_fops = {
3145 .owner = THIS_MODULE,
3146 .open = ptype_seq_open,
3147 .read = seq_read,
3148 .llseek = seq_lseek,
3149 .release = seq_release_net,
3150 };
3151
3152
3153 static int __net_init dev_proc_net_init(struct net *net)
3154 {
3155 int rc = -ENOMEM;
3156
3157 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3158 goto out;
3159 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3160 goto out_dev;
3161 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3162 goto out_softnet;
3163
3164 if (wext_proc_init(net))
3165 goto out_ptype;
3166 rc = 0;
3167 out:
3168 return rc;
3169 out_ptype:
3170 proc_net_remove(net, "ptype");
3171 out_softnet:
3172 proc_net_remove(net, "softnet_stat");
3173 out_dev:
3174 proc_net_remove(net, "dev");
3175 goto out;
3176 }
3177
3178 static void __net_exit dev_proc_net_exit(struct net *net)
3179 {
3180 wext_proc_exit(net);
3181
3182 proc_net_remove(net, "ptype");
3183 proc_net_remove(net, "softnet_stat");
3184 proc_net_remove(net, "dev");
3185 }
3186
3187 static struct pernet_operations __net_initdata dev_proc_ops = {
3188 .init = dev_proc_net_init,
3189 .exit = dev_proc_net_exit,
3190 };
3191
3192 static int __init dev_proc_init(void)
3193 {
3194 return register_pernet_subsys(&dev_proc_ops);
3195 }
3196 #else
3197 #define dev_proc_init() 0
3198 #endif /* CONFIG_PROC_FS */
3199
3200
3201 /**
3202 * netdev_set_master - set up master/slave pair
3203 * @slave: slave device
3204 * @master: new master device
3205 *
3206 * Changes the master device of the slave. Pass %NULL to break the
3207 * bonding. The caller must hold the RTNL semaphore. On a failure
3208 * a negative errno code is returned. On success the reference counts
3209 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3210 * function returns zero.
3211 */
3212 int netdev_set_master(struct net_device *slave, struct net_device *master)
3213 {
3214 struct net_device *old = slave->master;
3215
3216 ASSERT_RTNL();
3217
3218 if (master) {
3219 if (old)
3220 return -EBUSY;
3221 dev_hold(master);
3222 }
3223
3224 slave->master = master;
3225
3226 synchronize_net();
3227
3228 if (old)
3229 dev_put(old);
3230
3231 if (master)
3232 slave->flags |= IFF_SLAVE;
3233 else
3234 slave->flags &= ~IFF_SLAVE;
3235
3236 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3237 return 0;
3238 }
3239
3240 static void dev_change_rx_flags(struct net_device *dev, int flags)
3241 {
3242 const struct net_device_ops *ops = dev->netdev_ops;
3243
3244 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3245 ops->ndo_change_rx_flags(dev, flags);
3246 }
3247
3248 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3249 {
3250 unsigned short old_flags = dev->flags;
3251 uid_t uid;
3252 gid_t gid;
3253
3254 ASSERT_RTNL();
3255
3256 dev->flags |= IFF_PROMISC;
3257 dev->promiscuity += inc;
3258 if (dev->promiscuity == 0) {
3259 /*
3260 * Avoid overflow.
3261 * If inc causes overflow, untouch promisc and return error.
3262 */
3263 if (inc < 0)
3264 dev->flags &= ~IFF_PROMISC;
3265 else {
3266 dev->promiscuity -= inc;
3267 printk(KERN_WARNING "%s: promiscuity touches roof, "
3268 "set promiscuity failed, promiscuity feature "
3269 "of device might be broken.\n", dev->name);
3270 return -EOVERFLOW;
3271 }
3272 }
3273 if (dev->flags != old_flags) {
3274 printk(KERN_INFO "device %s %s promiscuous mode\n",
3275 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3276 "left");
3277 if (audit_enabled) {
3278 current_uid_gid(&uid, &gid);
3279 audit_log(current->audit_context, GFP_ATOMIC,
3280 AUDIT_ANOM_PROMISCUOUS,
3281 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3282 dev->name, (dev->flags & IFF_PROMISC),
3283 (old_flags & IFF_PROMISC),
3284 audit_get_loginuid(current),
3285 uid, gid,
3286 audit_get_sessionid(current));
3287 }
3288
3289 dev_change_rx_flags(dev, IFF_PROMISC);
3290 }
3291 return 0;
3292 }
3293
3294 /**
3295 * dev_set_promiscuity - update promiscuity count on a device
3296 * @dev: device
3297 * @inc: modifier
3298 *
3299 * Add or remove promiscuity from a device. While the count in the device
3300 * remains above zero the interface remains promiscuous. Once it hits zero
3301 * the device reverts back to normal filtering operation. A negative inc
3302 * value is used to drop promiscuity on the device.
3303 * Return 0 if successful or a negative errno code on error.
3304 */
3305 int dev_set_promiscuity(struct net_device *dev, int inc)
3306 {
3307 unsigned short old_flags = dev->flags;
3308 int err;
3309
3310 err = __dev_set_promiscuity(dev, inc);
3311 if (err < 0)
3312 return err;
3313 if (dev->flags != old_flags)
3314 dev_set_rx_mode(dev);
3315 return err;
3316 }
3317
3318 /**
3319 * dev_set_allmulti - update allmulti count on a device
3320 * @dev: device
3321 * @inc: modifier
3322 *
3323 * Add or remove reception of all multicast frames to a device. While the
3324 * count in the device remains above zero the interface remains listening
3325 * to all interfaces. Once it hits zero the device reverts back to normal
3326 * filtering operation. A negative @inc value is used to drop the counter
3327 * when releasing a resource needing all multicasts.
3328 * Return 0 if successful or a negative errno code on error.
3329 */
3330
3331 int dev_set_allmulti(struct net_device *dev, int inc)
3332 {
3333 unsigned short old_flags = dev->flags;
3334
3335 ASSERT_RTNL();
3336
3337 dev->flags |= IFF_ALLMULTI;
3338 dev->allmulti += inc;
3339 if (dev->allmulti == 0) {
3340 /*
3341 * Avoid overflow.
3342 * If inc causes overflow, untouch allmulti and return error.
3343 */
3344 if (inc < 0)
3345 dev->flags &= ~IFF_ALLMULTI;
3346 else {
3347 dev->allmulti -= inc;
3348 printk(KERN_WARNING "%s: allmulti touches roof, "
3349 "set allmulti failed, allmulti feature of "
3350 "device might be broken.\n", dev->name);
3351 return -EOVERFLOW;
3352 }
3353 }
3354 if (dev->flags ^ old_flags) {
3355 dev_change_rx_flags(dev, IFF_ALLMULTI);
3356 dev_set_rx_mode(dev);
3357 }
3358 return 0;
3359 }
3360
3361 /*
3362 * Upload unicast and multicast address lists to device and
3363 * configure RX filtering. When the device doesn't support unicast
3364 * filtering it is put in promiscuous mode while unicast addresses
3365 * are present.
3366 */
3367 void __dev_set_rx_mode(struct net_device *dev)
3368 {
3369 const struct net_device_ops *ops = dev->netdev_ops;
3370
3371 /* dev_open will call this function so the list will stay sane. */
3372 if (!(dev->flags&IFF_UP))
3373 return;
3374
3375 if (!netif_device_present(dev))
3376 return;
3377
3378 if (ops->ndo_set_rx_mode)
3379 ops->ndo_set_rx_mode(dev);
3380 else {
3381 /* Unicast addresses changes may only happen under the rtnl,
3382 * therefore calling __dev_set_promiscuity here is safe.
3383 */
3384 if (dev->uc_count > 0 && !dev->uc_promisc) {
3385 __dev_set_promiscuity(dev, 1);
3386 dev->uc_promisc = 1;
3387 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3388 __dev_set_promiscuity(dev, -1);
3389 dev->uc_promisc = 0;
3390 }
3391
3392 if (ops->ndo_set_multicast_list)
3393 ops->ndo_set_multicast_list(dev);
3394 }
3395 }
3396
3397 void dev_set_rx_mode(struct net_device *dev)
3398 {
3399 netif_addr_lock_bh(dev);
3400 __dev_set_rx_mode(dev);
3401 netif_addr_unlock_bh(dev);
3402 }
3403
3404 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3405 void *addr, int alen, int glbl)
3406 {
3407 struct dev_addr_list *da;
3408
3409 for (; (da = *list) != NULL; list = &da->next) {
3410 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3411 alen == da->da_addrlen) {
3412 if (glbl) {
3413 int old_glbl = da->da_gusers;
3414 da->da_gusers = 0;
3415 if (old_glbl == 0)
3416 break;
3417 }
3418 if (--da->da_users)
3419 return 0;
3420
3421 *list = da->next;
3422 kfree(da);
3423 (*count)--;
3424 return 0;
3425 }
3426 }
3427 return -ENOENT;
3428 }
3429
3430 int __dev_addr_add(struct dev_addr_list **list, int *count,
3431 void *addr, int alen, int glbl)
3432 {
3433 struct dev_addr_list *da;
3434
3435 for (da = *list; da != NULL; da = da->next) {
3436 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3437 da->da_addrlen == alen) {
3438 if (glbl) {
3439 int old_glbl = da->da_gusers;
3440 da->da_gusers = 1;
3441 if (old_glbl)
3442 return 0;
3443 }
3444 da->da_users++;
3445 return 0;
3446 }
3447 }
3448
3449 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3450 if (da == NULL)
3451 return -ENOMEM;
3452 memcpy(da->da_addr, addr, alen);
3453 da->da_addrlen = alen;
3454 da->da_users = 1;
3455 da->da_gusers = glbl ? 1 : 0;
3456 da->next = *list;
3457 *list = da;
3458 (*count)++;
3459 return 0;
3460 }
3461
3462 /**
3463 * dev_unicast_delete - Release secondary unicast address.
3464 * @dev: device
3465 * @addr: address to delete
3466 * @alen: length of @addr
3467 *
3468 * Release reference to a secondary unicast address and remove it
3469 * from the device if the reference count drops to zero.
3470 *
3471 * The caller must hold the rtnl_mutex.
3472 */
3473 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3474 {
3475 int err;
3476
3477 ASSERT_RTNL();
3478
3479 netif_addr_lock_bh(dev);
3480 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3481 if (!err)
3482 __dev_set_rx_mode(dev);
3483 netif_addr_unlock_bh(dev);
3484 return err;
3485 }
3486 EXPORT_SYMBOL(dev_unicast_delete);
3487
3488 /**
3489 * dev_unicast_add - add a secondary unicast address
3490 * @dev: device
3491 * @addr: address to add
3492 * @alen: length of @addr
3493 *
3494 * Add a secondary unicast address to the device or increase
3495 * the reference count if it already exists.
3496 *
3497 * The caller must hold the rtnl_mutex.
3498 */
3499 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3500 {
3501 int err;
3502
3503 ASSERT_RTNL();
3504
3505 netif_addr_lock_bh(dev);
3506 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3507 if (!err)
3508 __dev_set_rx_mode(dev);
3509 netif_addr_unlock_bh(dev);
3510 return err;
3511 }
3512 EXPORT_SYMBOL(dev_unicast_add);
3513
3514 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3515 struct dev_addr_list **from, int *from_count)
3516 {
3517 struct dev_addr_list *da, *next;
3518 int err = 0;
3519
3520 da = *from;
3521 while (da != NULL) {
3522 next = da->next;
3523 if (!da->da_synced) {
3524 err = __dev_addr_add(to, to_count,
3525 da->da_addr, da->da_addrlen, 0);
3526 if (err < 0)
3527 break;
3528 da->da_synced = 1;
3529 da->da_users++;
3530 } else if (da->da_users == 1) {
3531 __dev_addr_delete(to, to_count,
3532 da->da_addr, da->da_addrlen, 0);
3533 __dev_addr_delete(from, from_count,
3534 da->da_addr, da->da_addrlen, 0);
3535 }
3536 da = next;
3537 }
3538 return err;
3539 }
3540
3541 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3542 struct dev_addr_list **from, int *from_count)
3543 {
3544 struct dev_addr_list *da, *next;
3545
3546 da = *from;
3547 while (da != NULL) {
3548 next = da->next;
3549 if (da->da_synced) {
3550 __dev_addr_delete(to, to_count,
3551 da->da_addr, da->da_addrlen, 0);
3552 da->da_synced = 0;
3553 __dev_addr_delete(from, from_count,
3554 da->da_addr, da->da_addrlen, 0);
3555 }
3556 da = next;
3557 }
3558 }
3559
3560 /**
3561 * dev_unicast_sync - Synchronize device's unicast list to another device
3562 * @to: destination device
3563 * @from: source device
3564 *
3565 * Add newly added addresses to the destination device and release
3566 * addresses that have no users left. The source device must be
3567 * locked by netif_tx_lock_bh.
3568 *
3569 * This function is intended to be called from the dev->set_rx_mode
3570 * function of layered software devices.
3571 */
3572 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3573 {
3574 int err = 0;
3575
3576 netif_addr_lock_bh(to);
3577 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3578 &from->uc_list, &from->uc_count);
3579 if (!err)
3580 __dev_set_rx_mode(to);
3581 netif_addr_unlock_bh(to);
3582 return err;
3583 }
3584 EXPORT_SYMBOL(dev_unicast_sync);
3585
3586 /**
3587 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3588 * @to: destination device
3589 * @from: source device
3590 *
3591 * Remove all addresses that were added to the destination device by
3592 * dev_unicast_sync(). This function is intended to be called from the
3593 * dev->stop function of layered software devices.
3594 */
3595 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3596 {
3597 netif_addr_lock_bh(from);
3598 netif_addr_lock(to);
3599
3600 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3601 &from->uc_list, &from->uc_count);
3602 __dev_set_rx_mode(to);
3603
3604 netif_addr_unlock(to);
3605 netif_addr_unlock_bh(from);
3606 }
3607 EXPORT_SYMBOL(dev_unicast_unsync);
3608
3609 static void __dev_addr_discard(struct dev_addr_list **list)
3610 {
3611 struct dev_addr_list *tmp;
3612
3613 while (*list != NULL) {
3614 tmp = *list;
3615 *list = tmp->next;
3616 if (tmp->da_users > tmp->da_gusers)
3617 printk("__dev_addr_discard: address leakage! "
3618 "da_users=%d\n", tmp->da_users);
3619 kfree(tmp);
3620 }
3621 }
3622
3623 static void dev_addr_discard(struct net_device *dev)
3624 {
3625 netif_addr_lock_bh(dev);
3626
3627 __dev_addr_discard(&dev->uc_list);
3628 dev->uc_count = 0;
3629
3630 __dev_addr_discard(&dev->mc_list);
3631 dev->mc_count = 0;
3632
3633 netif_addr_unlock_bh(dev);
3634 }
3635
3636 /**
3637 * dev_get_flags - get flags reported to userspace
3638 * @dev: device
3639 *
3640 * Get the combination of flag bits exported through APIs to userspace.
3641 */
3642 unsigned dev_get_flags(const struct net_device *dev)
3643 {
3644 unsigned flags;
3645
3646 flags = (dev->flags & ~(IFF_PROMISC |
3647 IFF_ALLMULTI |
3648 IFF_RUNNING |
3649 IFF_LOWER_UP |
3650 IFF_DORMANT)) |
3651 (dev->gflags & (IFF_PROMISC |
3652 IFF_ALLMULTI));
3653
3654 if (netif_running(dev)) {
3655 if (netif_oper_up(dev))
3656 flags |= IFF_RUNNING;
3657 if (netif_carrier_ok(dev))
3658 flags |= IFF_LOWER_UP;
3659 if (netif_dormant(dev))
3660 flags |= IFF_DORMANT;
3661 }
3662
3663 return flags;
3664 }
3665
3666 /**
3667 * dev_change_flags - change device settings
3668 * @dev: device
3669 * @flags: device state flags
3670 *
3671 * Change settings on device based state flags. The flags are
3672 * in the userspace exported format.
3673 */
3674 int dev_change_flags(struct net_device *dev, unsigned flags)
3675 {
3676 int ret, changes;
3677 int old_flags = dev->flags;
3678
3679 ASSERT_RTNL();
3680
3681 /*
3682 * Set the flags on our device.
3683 */
3684
3685 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3686 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3687 IFF_AUTOMEDIA)) |
3688 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3689 IFF_ALLMULTI));
3690
3691 /*
3692 * Load in the correct multicast list now the flags have changed.
3693 */
3694
3695 if ((old_flags ^ flags) & IFF_MULTICAST)
3696 dev_change_rx_flags(dev, IFF_MULTICAST);
3697
3698 dev_set_rx_mode(dev);
3699
3700 /*
3701 * Have we downed the interface. We handle IFF_UP ourselves
3702 * according to user attempts to set it, rather than blindly
3703 * setting it.
3704 */
3705
3706 ret = 0;
3707 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3708 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3709
3710 if (!ret)
3711 dev_set_rx_mode(dev);
3712 }
3713
3714 if (dev->flags & IFF_UP &&
3715 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3716 IFF_VOLATILE)))
3717 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3718
3719 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3720 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3721 dev->gflags ^= IFF_PROMISC;
3722 dev_set_promiscuity(dev, inc);
3723 }
3724
3725 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3726 is important. Some (broken) drivers set IFF_PROMISC, when
3727 IFF_ALLMULTI is requested not asking us and not reporting.
3728 */
3729 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3730 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3731 dev->gflags ^= IFF_ALLMULTI;
3732 dev_set_allmulti(dev, inc);
3733 }
3734
3735 /* Exclude state transition flags, already notified */
3736 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3737 if (changes)
3738 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3739
3740 return ret;
3741 }
3742
3743 /**
3744 * dev_set_mtu - Change maximum transfer unit
3745 * @dev: device
3746 * @new_mtu: new transfer unit
3747 *
3748 * Change the maximum transfer size of the network device.
3749 */
3750 int dev_set_mtu(struct net_device *dev, int new_mtu)
3751 {
3752 const struct net_device_ops *ops = dev->netdev_ops;
3753 int err;
3754
3755 if (new_mtu == dev->mtu)
3756 return 0;
3757
3758 /* MTU must be positive. */
3759 if (new_mtu < 0)
3760 return -EINVAL;
3761
3762 if (!netif_device_present(dev))
3763 return -ENODEV;
3764
3765 err = 0;
3766 if (ops->ndo_change_mtu)
3767 err = ops->ndo_change_mtu(dev, new_mtu);
3768 else
3769 dev->mtu = new_mtu;
3770
3771 if (!err && dev->flags & IFF_UP)
3772 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3773 return err;
3774 }
3775
3776 /**
3777 * dev_set_mac_address - Change Media Access Control Address
3778 * @dev: device
3779 * @sa: new address
3780 *
3781 * Change the hardware (MAC) address of the device
3782 */
3783 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3784 {
3785 const struct net_device_ops *ops = dev->netdev_ops;
3786 int err;
3787
3788 if (!ops->ndo_set_mac_address)
3789 return -EOPNOTSUPP;
3790 if (sa->sa_family != dev->type)
3791 return -EINVAL;
3792 if (!netif_device_present(dev))
3793 return -ENODEV;
3794 err = ops->ndo_set_mac_address(dev, sa);
3795 if (!err)
3796 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3797 return err;
3798 }
3799
3800 /*
3801 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3802 */
3803 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3804 {
3805 int err;
3806 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3807
3808 if (!dev)
3809 return -ENODEV;
3810
3811 switch (cmd) {
3812 case SIOCGIFFLAGS: /* Get interface flags */
3813 ifr->ifr_flags = dev_get_flags(dev);
3814 return 0;
3815
3816 case SIOCGIFMETRIC: /* Get the metric on the interface
3817 (currently unused) */
3818 ifr->ifr_metric = 0;
3819 return 0;
3820
3821 case SIOCGIFMTU: /* Get the MTU of a device */
3822 ifr->ifr_mtu = dev->mtu;
3823 return 0;
3824
3825 case SIOCGIFHWADDR:
3826 if (!dev->addr_len)
3827 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3828 else
3829 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3830 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3831 ifr->ifr_hwaddr.sa_family = dev->type;
3832 return 0;
3833
3834 case SIOCGIFSLAVE:
3835 err = -EINVAL;
3836 break;
3837
3838 case SIOCGIFMAP:
3839 ifr->ifr_map.mem_start = dev->mem_start;
3840 ifr->ifr_map.mem_end = dev->mem_end;
3841 ifr->ifr_map.base_addr = dev->base_addr;
3842 ifr->ifr_map.irq = dev->irq;
3843 ifr->ifr_map.dma = dev->dma;
3844 ifr->ifr_map.port = dev->if_port;
3845 return 0;
3846
3847 case SIOCGIFINDEX:
3848 ifr->ifr_ifindex = dev->ifindex;
3849 return 0;
3850
3851 case SIOCGIFTXQLEN:
3852 ifr->ifr_qlen = dev->tx_queue_len;
3853 return 0;
3854
3855 default:
3856 /* dev_ioctl() should ensure this case
3857 * is never reached
3858 */
3859 WARN_ON(1);
3860 err = -EINVAL;
3861 break;
3862
3863 }
3864 return err;
3865 }
3866
3867 /*
3868 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3869 */
3870 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3871 {
3872 int err;
3873 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3874 const struct net_device_ops *ops;
3875
3876 if (!dev)
3877 return -ENODEV;
3878
3879 ops = dev->netdev_ops;
3880
3881 switch (cmd) {
3882 case SIOCSIFFLAGS: /* Set interface flags */
3883 return dev_change_flags(dev, ifr->ifr_flags);
3884
3885 case SIOCSIFMETRIC: /* Set the metric on the interface
3886 (currently unused) */
3887 return -EOPNOTSUPP;
3888
3889 case SIOCSIFMTU: /* Set the MTU of a device */
3890 return dev_set_mtu(dev, ifr->ifr_mtu);
3891
3892 case SIOCSIFHWADDR:
3893 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3894
3895 case SIOCSIFHWBROADCAST:
3896 if (ifr->ifr_hwaddr.sa_family != dev->type)
3897 return -EINVAL;
3898 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3899 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3900 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3901 return 0;
3902
3903 case SIOCSIFMAP:
3904 if (ops->ndo_set_config) {
3905 if (!netif_device_present(dev))
3906 return -ENODEV;
3907 return ops->ndo_set_config(dev, &ifr->ifr_map);
3908 }
3909 return -EOPNOTSUPP;
3910
3911 case SIOCADDMULTI:
3912 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3913 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3914 return -EINVAL;
3915 if (!netif_device_present(dev))
3916 return -ENODEV;
3917 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3918 dev->addr_len, 1);
3919
3920 case SIOCDELMULTI:
3921 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3922 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3923 return -EINVAL;
3924 if (!netif_device_present(dev))
3925 return -ENODEV;
3926 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3927 dev->addr_len, 1);
3928
3929 case SIOCSIFTXQLEN:
3930 if (ifr->ifr_qlen < 0)
3931 return -EINVAL;
3932 dev->tx_queue_len = ifr->ifr_qlen;
3933 return 0;
3934
3935 case SIOCSIFNAME:
3936 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3937 return dev_change_name(dev, ifr->ifr_newname);
3938
3939 /*
3940 * Unknown or private ioctl
3941 */
3942
3943 default:
3944 if ((cmd >= SIOCDEVPRIVATE &&
3945 cmd <= SIOCDEVPRIVATE + 15) ||
3946 cmd == SIOCBONDENSLAVE ||
3947 cmd == SIOCBONDRELEASE ||
3948 cmd == SIOCBONDSETHWADDR ||
3949 cmd == SIOCBONDSLAVEINFOQUERY ||
3950 cmd == SIOCBONDINFOQUERY ||
3951 cmd == SIOCBONDCHANGEACTIVE ||
3952 cmd == SIOCGMIIPHY ||
3953 cmd == SIOCGMIIREG ||
3954 cmd == SIOCSMIIREG ||
3955 cmd == SIOCBRADDIF ||
3956 cmd == SIOCBRDELIF ||
3957 cmd == SIOCWANDEV) {
3958 err = -EOPNOTSUPP;
3959 if (ops->ndo_do_ioctl) {
3960 if (netif_device_present(dev))
3961 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3962 else
3963 err = -ENODEV;
3964 }
3965 } else
3966 err = -EINVAL;
3967
3968 }
3969 return err;
3970 }
3971
3972 /*
3973 * This function handles all "interface"-type I/O control requests. The actual
3974 * 'doing' part of this is dev_ifsioc above.
3975 */
3976
3977 /**
3978 * dev_ioctl - network device ioctl
3979 * @net: the applicable net namespace
3980 * @cmd: command to issue
3981 * @arg: pointer to a struct ifreq in user space
3982 *
3983 * Issue ioctl functions to devices. This is normally called by the
3984 * user space syscall interfaces but can sometimes be useful for
3985 * other purposes. The return value is the return from the syscall if
3986 * positive or a negative errno code on error.
3987 */
3988
3989 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3990 {
3991 struct ifreq ifr;
3992 int ret;
3993 char *colon;
3994
3995 /* One special case: SIOCGIFCONF takes ifconf argument
3996 and requires shared lock, because it sleeps writing
3997 to user space.
3998 */
3999
4000 if (cmd == SIOCGIFCONF) {
4001 rtnl_lock();
4002 ret = dev_ifconf(net, (char __user *) arg);
4003 rtnl_unlock();
4004 return ret;
4005 }
4006 if (cmd == SIOCGIFNAME)
4007 return dev_ifname(net, (struct ifreq __user *)arg);
4008
4009 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4010 return -EFAULT;
4011
4012 ifr.ifr_name[IFNAMSIZ-1] = 0;
4013
4014 colon = strchr(ifr.ifr_name, ':');
4015 if (colon)
4016 *colon = 0;
4017
4018 /*
4019 * See which interface the caller is talking about.
4020 */
4021
4022 switch (cmd) {
4023 /*
4024 * These ioctl calls:
4025 * - can be done by all.
4026 * - atomic and do not require locking.
4027 * - return a value
4028 */
4029 case SIOCGIFFLAGS:
4030 case SIOCGIFMETRIC:
4031 case SIOCGIFMTU:
4032 case SIOCGIFHWADDR:
4033 case SIOCGIFSLAVE:
4034 case SIOCGIFMAP:
4035 case SIOCGIFINDEX:
4036 case SIOCGIFTXQLEN:
4037 dev_load(net, ifr.ifr_name);
4038 read_lock(&dev_base_lock);
4039 ret = dev_ifsioc_locked(net, &ifr, cmd);
4040 read_unlock(&dev_base_lock);
4041 if (!ret) {
4042 if (colon)
4043 *colon = ':';
4044 if (copy_to_user(arg, &ifr,
4045 sizeof(struct ifreq)))
4046 ret = -EFAULT;
4047 }
4048 return ret;
4049
4050 case SIOCETHTOOL:
4051 dev_load(net, ifr.ifr_name);
4052 rtnl_lock();
4053 ret = dev_ethtool(net, &ifr);
4054 rtnl_unlock();
4055 if (!ret) {
4056 if (colon)
4057 *colon = ':';
4058 if (copy_to_user(arg, &ifr,
4059 sizeof(struct ifreq)))
4060 ret = -EFAULT;
4061 }
4062 return ret;
4063
4064 /*
4065 * These ioctl calls:
4066 * - require superuser power.
4067 * - require strict serialization.
4068 * - return a value
4069 */
4070 case SIOCGMIIPHY:
4071 case SIOCGMIIREG:
4072 case SIOCSIFNAME:
4073 if (!capable(CAP_NET_ADMIN))
4074 return -EPERM;
4075 dev_load(net, ifr.ifr_name);
4076 rtnl_lock();
4077 ret = dev_ifsioc(net, &ifr, cmd);
4078 rtnl_unlock();
4079 if (!ret) {
4080 if (colon)
4081 *colon = ':';
4082 if (copy_to_user(arg, &ifr,
4083 sizeof(struct ifreq)))
4084 ret = -EFAULT;
4085 }
4086 return ret;
4087
4088 /*
4089 * These ioctl calls:
4090 * - require superuser power.
4091 * - require strict serialization.
4092 * - do not return a value
4093 */
4094 case SIOCSIFFLAGS:
4095 case SIOCSIFMETRIC:
4096 case SIOCSIFMTU:
4097 case SIOCSIFMAP:
4098 case SIOCSIFHWADDR:
4099 case SIOCSIFSLAVE:
4100 case SIOCADDMULTI:
4101 case SIOCDELMULTI:
4102 case SIOCSIFHWBROADCAST:
4103 case SIOCSIFTXQLEN:
4104 case SIOCSMIIREG:
4105 case SIOCBONDENSLAVE:
4106 case SIOCBONDRELEASE:
4107 case SIOCBONDSETHWADDR:
4108 case SIOCBONDCHANGEACTIVE:
4109 case SIOCBRADDIF:
4110 case SIOCBRDELIF:
4111 if (!capable(CAP_NET_ADMIN))
4112 return -EPERM;
4113 /* fall through */
4114 case SIOCBONDSLAVEINFOQUERY:
4115 case SIOCBONDINFOQUERY:
4116 dev_load(net, ifr.ifr_name);
4117 rtnl_lock();
4118 ret = dev_ifsioc(net, &ifr, cmd);
4119 rtnl_unlock();
4120 return ret;
4121
4122 case SIOCGIFMEM:
4123 /* Get the per device memory space. We can add this but
4124 * currently do not support it */
4125 case SIOCSIFMEM:
4126 /* Set the per device memory buffer space.
4127 * Not applicable in our case */
4128 case SIOCSIFLINK:
4129 return -EINVAL;
4130
4131 /*
4132 * Unknown or private ioctl.
4133 */
4134 default:
4135 if (cmd == SIOCWANDEV ||
4136 (cmd >= SIOCDEVPRIVATE &&
4137 cmd <= SIOCDEVPRIVATE + 15)) {
4138 dev_load(net, ifr.ifr_name);
4139 rtnl_lock();
4140 ret = dev_ifsioc(net, &ifr, cmd);
4141 rtnl_unlock();
4142 if (!ret && copy_to_user(arg, &ifr,
4143 sizeof(struct ifreq)))
4144 ret = -EFAULT;
4145 return ret;
4146 }
4147 /* Take care of Wireless Extensions */
4148 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4149 return wext_handle_ioctl(net, &ifr, cmd, arg);
4150 return -EINVAL;
4151 }
4152 }
4153
4154
4155 /**
4156 * dev_new_index - allocate an ifindex
4157 * @net: the applicable net namespace
4158 *
4159 * Returns a suitable unique value for a new device interface
4160 * number. The caller must hold the rtnl semaphore or the
4161 * dev_base_lock to be sure it remains unique.
4162 */
4163 static int dev_new_index(struct net *net)
4164 {
4165 static int ifindex;
4166 for (;;) {
4167 if (++ifindex <= 0)
4168 ifindex = 1;
4169 if (!__dev_get_by_index(net, ifindex))
4170 return ifindex;
4171 }
4172 }
4173
4174 /* Delayed registration/unregisteration */
4175 static LIST_HEAD(net_todo_list);
4176
4177 static void net_set_todo(struct net_device *dev)
4178 {
4179 list_add_tail(&dev->todo_list, &net_todo_list);
4180 }
4181
4182 static void rollback_registered(struct net_device *dev)
4183 {
4184 BUG_ON(dev_boot_phase);
4185 ASSERT_RTNL();
4186
4187 /* Some devices call without registering for initialization unwind. */
4188 if (dev->reg_state == NETREG_UNINITIALIZED) {
4189 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4190 "was registered\n", dev->name, dev);
4191
4192 WARN_ON(1);
4193 return;
4194 }
4195
4196 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4197
4198 /* If device is running, close it first. */
4199 dev_close(dev);
4200
4201 /* And unlink it from device chain. */
4202 unlist_netdevice(dev);
4203
4204 dev->reg_state = NETREG_UNREGISTERING;
4205
4206 synchronize_net();
4207
4208 /* Shutdown queueing discipline. */
4209 dev_shutdown(dev);
4210
4211
4212 /* Notify protocols, that we are about to destroy
4213 this device. They should clean all the things.
4214 */
4215 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4216
4217 /*
4218 * Flush the unicast and multicast chains
4219 */
4220 dev_addr_discard(dev);
4221
4222 if (dev->netdev_ops->ndo_uninit)
4223 dev->netdev_ops->ndo_uninit(dev);
4224
4225 /* Notifier chain MUST detach us from master device. */
4226 WARN_ON(dev->master);
4227
4228 /* Remove entries from kobject tree */
4229 netdev_unregister_kobject(dev);
4230
4231 synchronize_net();
4232
4233 dev_put(dev);
4234 }
4235
4236 static void __netdev_init_queue_locks_one(struct net_device *dev,
4237 struct netdev_queue *dev_queue,
4238 void *_unused)
4239 {
4240 spin_lock_init(&dev_queue->_xmit_lock);
4241 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4242 dev_queue->xmit_lock_owner = -1;
4243 }
4244
4245 static void netdev_init_queue_locks(struct net_device *dev)
4246 {
4247 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4248 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4249 }
4250
4251 unsigned long netdev_fix_features(unsigned long features, const char *name)
4252 {
4253 /* Fix illegal SG+CSUM combinations. */
4254 if ((features & NETIF_F_SG) &&
4255 !(features & NETIF_F_ALL_CSUM)) {
4256 if (name)
4257 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4258 "checksum feature.\n", name);
4259 features &= ~NETIF_F_SG;
4260 }
4261
4262 /* TSO requires that SG is present as well. */
4263 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4264 if (name)
4265 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4266 "SG feature.\n", name);
4267 features &= ~NETIF_F_TSO;
4268 }
4269
4270 if (features & NETIF_F_UFO) {
4271 if (!(features & NETIF_F_GEN_CSUM)) {
4272 if (name)
4273 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4274 "since no NETIF_F_HW_CSUM feature.\n",
4275 name);
4276 features &= ~NETIF_F_UFO;
4277 }
4278
4279 if (!(features & NETIF_F_SG)) {
4280 if (name)
4281 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4282 "since no NETIF_F_SG feature.\n", name);
4283 features &= ~NETIF_F_UFO;
4284 }
4285 }
4286
4287 return features;
4288 }
4289 EXPORT_SYMBOL(netdev_fix_features);
4290
4291 /**
4292 * register_netdevice - register a network device
4293 * @dev: device to register
4294 *
4295 * Take a completed network device structure and add it to the kernel
4296 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4297 * chain. 0 is returned on success. A negative errno code is returned
4298 * on a failure to set up the device, or if the name is a duplicate.
4299 *
4300 * Callers must hold the rtnl semaphore. You may want
4301 * register_netdev() instead of this.
4302 *
4303 * BUGS:
4304 * The locking appears insufficient to guarantee two parallel registers
4305 * will not get the same name.
4306 */
4307
4308 int register_netdevice(struct net_device *dev)
4309 {
4310 struct hlist_head *head;
4311 struct hlist_node *p;
4312 int ret;
4313 struct net *net = dev_net(dev);
4314
4315 BUG_ON(dev_boot_phase);
4316 ASSERT_RTNL();
4317
4318 might_sleep();
4319
4320 /* When net_device's are persistent, this will be fatal. */
4321 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4322 BUG_ON(!net);
4323
4324 spin_lock_init(&dev->addr_list_lock);
4325 netdev_set_addr_lockdep_class(dev);
4326 netdev_init_queue_locks(dev);
4327
4328 dev->iflink = -1;
4329
4330 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4331 /* Netdevice_ops API compatiability support.
4332 * This is temporary until all network devices are converted.
4333 */
4334 if (dev->netdev_ops) {
4335 const struct net_device_ops *ops = dev->netdev_ops;
4336
4337 dev->init = ops->ndo_init;
4338 dev->uninit = ops->ndo_uninit;
4339 dev->open = ops->ndo_open;
4340 dev->change_rx_flags = ops->ndo_change_rx_flags;
4341 dev->set_rx_mode = ops->ndo_set_rx_mode;
4342 dev->set_multicast_list = ops->ndo_set_multicast_list;
4343 dev->set_mac_address = ops->ndo_set_mac_address;
4344 dev->validate_addr = ops->ndo_validate_addr;
4345 dev->do_ioctl = ops->ndo_do_ioctl;
4346 dev->set_config = ops->ndo_set_config;
4347 dev->change_mtu = ops->ndo_change_mtu;
4348 dev->tx_timeout = ops->ndo_tx_timeout;
4349 dev->get_stats = ops->ndo_get_stats;
4350 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4351 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4352 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4353 #ifdef CONFIG_NET_POLL_CONTROLLER
4354 dev->poll_controller = ops->ndo_poll_controller;
4355 #endif
4356 } else {
4357 char drivername[64];
4358 pr_info("%s (%s): not using net_device_ops yet\n",
4359 dev->name, netdev_drivername(dev, drivername, 64));
4360
4361 /* This works only because net_device_ops and the
4362 compatiablity structure are the same. */
4363 dev->netdev_ops = (void *) &(dev->init);
4364 }
4365 #endif
4366
4367 /* Init, if this function is available */
4368 if (dev->netdev_ops->ndo_init) {
4369 ret = dev->netdev_ops->ndo_init(dev);
4370 if (ret) {
4371 if (ret > 0)
4372 ret = -EIO;
4373 goto out;
4374 }
4375 }
4376
4377 if (!dev_valid_name(dev->name)) {
4378 ret = -EINVAL;
4379 goto err_uninit;
4380 }
4381
4382 dev->ifindex = dev_new_index(net);
4383 if (dev->iflink == -1)
4384 dev->iflink = dev->ifindex;
4385
4386 /* Check for existence of name */
4387 head = dev_name_hash(net, dev->name);
4388 hlist_for_each(p, head) {
4389 struct net_device *d
4390 = hlist_entry(p, struct net_device, name_hlist);
4391 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4392 ret = -EEXIST;
4393 goto err_uninit;
4394 }
4395 }
4396
4397 /* Fix illegal checksum combinations */
4398 if ((dev->features & NETIF_F_HW_CSUM) &&
4399 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4400 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4401 dev->name);
4402 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4403 }
4404
4405 if ((dev->features & NETIF_F_NO_CSUM) &&
4406 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4407 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4408 dev->name);
4409 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4410 }
4411
4412 dev->features = netdev_fix_features(dev->features, dev->name);
4413
4414 /* Enable software GSO if SG is supported. */
4415 if (dev->features & NETIF_F_SG)
4416 dev->features |= NETIF_F_GSO;
4417
4418 netdev_initialize_kobject(dev);
4419 ret = netdev_register_kobject(dev);
4420 if (ret)
4421 goto err_uninit;
4422 dev->reg_state = NETREG_REGISTERED;
4423
4424 /*
4425 * Default initial state at registry is that the
4426 * device is present.
4427 */
4428
4429 set_bit(__LINK_STATE_PRESENT, &dev->state);
4430
4431 dev_init_scheduler(dev);
4432 dev_hold(dev);
4433 list_netdevice(dev);
4434
4435 /* Notify protocols, that a new device appeared. */
4436 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4437 ret = notifier_to_errno(ret);
4438 if (ret) {
4439 rollback_registered(dev);
4440 dev->reg_state = NETREG_UNREGISTERED;
4441 }
4442
4443 out:
4444 return ret;
4445
4446 err_uninit:
4447 if (dev->netdev_ops->ndo_uninit)
4448 dev->netdev_ops->ndo_uninit(dev);
4449 goto out;
4450 }
4451
4452 /**
4453 * init_dummy_netdev - init a dummy network device for NAPI
4454 * @dev: device to init
4455 *
4456 * This takes a network device structure and initialize the minimum
4457 * amount of fields so it can be used to schedule NAPI polls without
4458 * registering a full blown interface. This is to be used by drivers
4459 * that need to tie several hardware interfaces to a single NAPI
4460 * poll scheduler due to HW limitations.
4461 */
4462 int init_dummy_netdev(struct net_device *dev)
4463 {
4464 /* Clear everything. Note we don't initialize spinlocks
4465 * are they aren't supposed to be taken by any of the
4466 * NAPI code and this dummy netdev is supposed to be
4467 * only ever used for NAPI polls
4468 */
4469 memset(dev, 0, sizeof(struct net_device));
4470
4471 /* make sure we BUG if trying to hit standard
4472 * register/unregister code path
4473 */
4474 dev->reg_state = NETREG_DUMMY;
4475
4476 /* initialize the ref count */
4477 atomic_set(&dev->refcnt, 1);
4478
4479 /* NAPI wants this */
4480 INIT_LIST_HEAD(&dev->napi_list);
4481
4482 /* a dummy interface is started by default */
4483 set_bit(__LINK_STATE_PRESENT, &dev->state);
4484 set_bit(__LINK_STATE_START, &dev->state);
4485
4486 return 0;
4487 }
4488 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4489
4490
4491 /**
4492 * register_netdev - register a network device
4493 * @dev: device to register
4494 *
4495 * Take a completed network device structure and add it to the kernel
4496 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4497 * chain. 0 is returned on success. A negative errno code is returned
4498 * on a failure to set up the device, or if the name is a duplicate.
4499 *
4500 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4501 * and expands the device name if you passed a format string to
4502 * alloc_netdev.
4503 */
4504 int register_netdev(struct net_device *dev)
4505 {
4506 int err;
4507
4508 rtnl_lock();
4509
4510 /*
4511 * If the name is a format string the caller wants us to do a
4512 * name allocation.
4513 */
4514 if (strchr(dev->name, '%')) {
4515 err = dev_alloc_name(dev, dev->name);
4516 if (err < 0)
4517 goto out;
4518 }
4519
4520 err = register_netdevice(dev);
4521 out:
4522 rtnl_unlock();
4523 return err;
4524 }
4525 EXPORT_SYMBOL(register_netdev);
4526
4527 /*
4528 * netdev_wait_allrefs - wait until all references are gone.
4529 *
4530 * This is called when unregistering network devices.
4531 *
4532 * Any protocol or device that holds a reference should register
4533 * for netdevice notification, and cleanup and put back the
4534 * reference if they receive an UNREGISTER event.
4535 * We can get stuck here if buggy protocols don't correctly
4536 * call dev_put.
4537 */
4538 static void netdev_wait_allrefs(struct net_device *dev)
4539 {
4540 unsigned long rebroadcast_time, warning_time;
4541
4542 rebroadcast_time = warning_time = jiffies;
4543 while (atomic_read(&dev->refcnt) != 0) {
4544 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4545 rtnl_lock();
4546
4547 /* Rebroadcast unregister notification */
4548 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4549
4550 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4551 &dev->state)) {
4552 /* We must not have linkwatch events
4553 * pending on unregister. If this
4554 * happens, we simply run the queue
4555 * unscheduled, resulting in a noop
4556 * for this device.
4557 */
4558 linkwatch_run_queue();
4559 }
4560
4561 __rtnl_unlock();
4562
4563 rebroadcast_time = jiffies;
4564 }
4565
4566 msleep(250);
4567
4568 if (time_after(jiffies, warning_time + 10 * HZ)) {
4569 printk(KERN_EMERG "unregister_netdevice: "
4570 "waiting for %s to become free. Usage "
4571 "count = %d\n",
4572 dev->name, atomic_read(&dev->refcnt));
4573 warning_time = jiffies;
4574 }
4575 }
4576 }
4577
4578 /* The sequence is:
4579 *
4580 * rtnl_lock();
4581 * ...
4582 * register_netdevice(x1);
4583 * register_netdevice(x2);
4584 * ...
4585 * unregister_netdevice(y1);
4586 * unregister_netdevice(y2);
4587 * ...
4588 * rtnl_unlock();
4589 * free_netdev(y1);
4590 * free_netdev(y2);
4591 *
4592 * We are invoked by rtnl_unlock().
4593 * This allows us to deal with problems:
4594 * 1) We can delete sysfs objects which invoke hotplug
4595 * without deadlocking with linkwatch via keventd.
4596 * 2) Since we run with the RTNL semaphore not held, we can sleep
4597 * safely in order to wait for the netdev refcnt to drop to zero.
4598 *
4599 * We must not return until all unregister events added during
4600 * the interval the lock was held have been completed.
4601 */
4602 void netdev_run_todo(void)
4603 {
4604 struct list_head list;
4605
4606 /* Snapshot list, allow later requests */
4607 list_replace_init(&net_todo_list, &list);
4608
4609 __rtnl_unlock();
4610
4611 while (!list_empty(&list)) {
4612 struct net_device *dev
4613 = list_entry(list.next, struct net_device, todo_list);
4614 list_del(&dev->todo_list);
4615
4616 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4617 printk(KERN_ERR "network todo '%s' but state %d\n",
4618 dev->name, dev->reg_state);
4619 dump_stack();
4620 continue;
4621 }
4622
4623 dev->reg_state = NETREG_UNREGISTERED;
4624
4625 on_each_cpu(flush_backlog, dev, 1);
4626
4627 netdev_wait_allrefs(dev);
4628
4629 /* paranoia */
4630 BUG_ON(atomic_read(&dev->refcnt));
4631 WARN_ON(dev->ip_ptr);
4632 WARN_ON(dev->ip6_ptr);
4633 WARN_ON(dev->dn_ptr);
4634
4635 if (dev->destructor)
4636 dev->destructor(dev);
4637
4638 /* Free network device */
4639 kobject_put(&dev->dev.kobj);
4640 }
4641 }
4642
4643 /**
4644 * dev_get_stats - get network device statistics
4645 * @dev: device to get statistics from
4646 *
4647 * Get network statistics from device. The device driver may provide
4648 * its own method by setting dev->netdev_ops->get_stats; otherwise
4649 * the internal statistics structure is used.
4650 */
4651 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4652 {
4653 const struct net_device_ops *ops = dev->netdev_ops;
4654
4655 if (ops->ndo_get_stats)
4656 return ops->ndo_get_stats(dev);
4657 else
4658 return &dev->stats;
4659 }
4660 EXPORT_SYMBOL(dev_get_stats);
4661
4662 static void netdev_init_one_queue(struct net_device *dev,
4663 struct netdev_queue *queue,
4664 void *_unused)
4665 {
4666 queue->dev = dev;
4667 }
4668
4669 static void netdev_init_queues(struct net_device *dev)
4670 {
4671 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4672 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4673 spin_lock_init(&dev->tx_global_lock);
4674 }
4675
4676 /**
4677 * alloc_netdev_mq - allocate network device
4678 * @sizeof_priv: size of private data to allocate space for
4679 * @name: device name format string
4680 * @setup: callback to initialize device
4681 * @queue_count: the number of subqueues to allocate
4682 *
4683 * Allocates a struct net_device with private data area for driver use
4684 * and performs basic initialization. Also allocates subquue structs
4685 * for each queue on the device at the end of the netdevice.
4686 */
4687 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4688 void (*setup)(struct net_device *), unsigned int queue_count)
4689 {
4690 struct netdev_queue *tx;
4691 struct net_device *dev;
4692 size_t alloc_size;
4693 void *p;
4694
4695 BUG_ON(strlen(name) >= sizeof(dev->name));
4696
4697 alloc_size = sizeof(struct net_device);
4698 if (sizeof_priv) {
4699 /* ensure 32-byte alignment of private area */
4700 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4701 alloc_size += sizeof_priv;
4702 }
4703 /* ensure 32-byte alignment of whole construct */
4704 alloc_size += NETDEV_ALIGN_CONST;
4705
4706 p = kzalloc(alloc_size, GFP_KERNEL);
4707 if (!p) {
4708 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4709 return NULL;
4710 }
4711
4712 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4713 if (!tx) {
4714 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4715 "tx qdiscs.\n");
4716 kfree(p);
4717 return NULL;
4718 }
4719
4720 dev = (struct net_device *)
4721 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4722 dev->padded = (char *)dev - (char *)p;
4723 dev_net_set(dev, &init_net);
4724
4725 dev->_tx = tx;
4726 dev->num_tx_queues = queue_count;
4727 dev->real_num_tx_queues = queue_count;
4728
4729 dev->gso_max_size = GSO_MAX_SIZE;
4730
4731 netdev_init_queues(dev);
4732
4733 INIT_LIST_HEAD(&dev->napi_list);
4734 setup(dev);
4735 strcpy(dev->name, name);
4736 return dev;
4737 }
4738 EXPORT_SYMBOL(alloc_netdev_mq);
4739
4740 /**
4741 * free_netdev - free network device
4742 * @dev: device
4743 *
4744 * This function does the last stage of destroying an allocated device
4745 * interface. The reference to the device object is released.
4746 * If this is the last reference then it will be freed.
4747 */
4748 void free_netdev(struct net_device *dev)
4749 {
4750 struct napi_struct *p, *n;
4751
4752 release_net(dev_net(dev));
4753
4754 kfree(dev->_tx);
4755
4756 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4757 netif_napi_del(p);
4758
4759 /* Compatibility with error handling in drivers */
4760 if (dev->reg_state == NETREG_UNINITIALIZED) {
4761 kfree((char *)dev - dev->padded);
4762 return;
4763 }
4764
4765 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4766 dev->reg_state = NETREG_RELEASED;
4767
4768 /* will free via device release */
4769 put_device(&dev->dev);
4770 }
4771
4772 /**
4773 * synchronize_net - Synchronize with packet receive processing
4774 *
4775 * Wait for packets currently being received to be done.
4776 * Does not block later packets from starting.
4777 */
4778 void synchronize_net(void)
4779 {
4780 might_sleep();
4781 synchronize_rcu();
4782 }
4783
4784 /**
4785 * unregister_netdevice - remove device from the kernel
4786 * @dev: device
4787 *
4788 * This function shuts down a device interface and removes it
4789 * from the kernel tables.
4790 *
4791 * Callers must hold the rtnl semaphore. You may want
4792 * unregister_netdev() instead of this.
4793 */
4794
4795 void unregister_netdevice(struct net_device *dev)
4796 {
4797 ASSERT_RTNL();
4798
4799 rollback_registered(dev);
4800 /* Finish processing unregister after unlock */
4801 net_set_todo(dev);
4802 }
4803
4804 /**
4805 * unregister_netdev - remove device from the kernel
4806 * @dev: device
4807 *
4808 * This function shuts down a device interface and removes it
4809 * from the kernel tables.
4810 *
4811 * This is just a wrapper for unregister_netdevice that takes
4812 * the rtnl semaphore. In general you want to use this and not
4813 * unregister_netdevice.
4814 */
4815 void unregister_netdev(struct net_device *dev)
4816 {
4817 rtnl_lock();
4818 unregister_netdevice(dev);
4819 rtnl_unlock();
4820 }
4821
4822 EXPORT_SYMBOL(unregister_netdev);
4823
4824 /**
4825 * dev_change_net_namespace - move device to different nethost namespace
4826 * @dev: device
4827 * @net: network namespace
4828 * @pat: If not NULL name pattern to try if the current device name
4829 * is already taken in the destination network namespace.
4830 *
4831 * This function shuts down a device interface and moves it
4832 * to a new network namespace. On success 0 is returned, on
4833 * a failure a netagive errno code is returned.
4834 *
4835 * Callers must hold the rtnl semaphore.
4836 */
4837
4838 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4839 {
4840 char buf[IFNAMSIZ];
4841 const char *destname;
4842 int err;
4843
4844 ASSERT_RTNL();
4845
4846 /* Don't allow namespace local devices to be moved. */
4847 err = -EINVAL;
4848 if (dev->features & NETIF_F_NETNS_LOCAL)
4849 goto out;
4850
4851 #ifdef CONFIG_SYSFS
4852 /* Don't allow real devices to be moved when sysfs
4853 * is enabled.
4854 */
4855 err = -EINVAL;
4856 if (dev->dev.parent)
4857 goto out;
4858 #endif
4859
4860 /* Ensure the device has been registrered */
4861 err = -EINVAL;
4862 if (dev->reg_state != NETREG_REGISTERED)
4863 goto out;
4864
4865 /* Get out if there is nothing todo */
4866 err = 0;
4867 if (net_eq(dev_net(dev), net))
4868 goto out;
4869
4870 /* Pick the destination device name, and ensure
4871 * we can use it in the destination network namespace.
4872 */
4873 err = -EEXIST;
4874 destname = dev->name;
4875 if (__dev_get_by_name(net, destname)) {
4876 /* We get here if we can't use the current device name */
4877 if (!pat)
4878 goto out;
4879 if (!dev_valid_name(pat))
4880 goto out;
4881 if (strchr(pat, '%')) {
4882 if (__dev_alloc_name(net, pat, buf) < 0)
4883 goto out;
4884 destname = buf;
4885 } else
4886 destname = pat;
4887 if (__dev_get_by_name(net, destname))
4888 goto out;
4889 }
4890
4891 /*
4892 * And now a mini version of register_netdevice unregister_netdevice.
4893 */
4894
4895 /* If device is running close it first. */
4896 dev_close(dev);
4897
4898 /* And unlink it from device chain */
4899 err = -ENODEV;
4900 unlist_netdevice(dev);
4901
4902 synchronize_net();
4903
4904 /* Shutdown queueing discipline. */
4905 dev_shutdown(dev);
4906
4907 /* Notify protocols, that we are about to destroy
4908 this device. They should clean all the things.
4909 */
4910 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4911
4912 /*
4913 * Flush the unicast and multicast chains
4914 */
4915 dev_addr_discard(dev);
4916
4917 netdev_unregister_kobject(dev);
4918
4919 /* Actually switch the network namespace */
4920 dev_net_set(dev, net);
4921
4922 /* Assign the new device name */
4923 if (destname != dev->name)
4924 strcpy(dev->name, destname);
4925
4926 /* If there is an ifindex conflict assign a new one */
4927 if (__dev_get_by_index(net, dev->ifindex)) {
4928 int iflink = (dev->iflink == dev->ifindex);
4929 dev->ifindex = dev_new_index(net);
4930 if (iflink)
4931 dev->iflink = dev->ifindex;
4932 }
4933
4934 /* Fixup kobjects */
4935 err = netdev_register_kobject(dev);
4936 WARN_ON(err);
4937
4938 /* Add the device back in the hashes */
4939 list_netdevice(dev);
4940
4941 /* Notify protocols, that a new device appeared. */
4942 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4943
4944 synchronize_net();
4945 err = 0;
4946 out:
4947 return err;
4948 }
4949
4950 static int dev_cpu_callback(struct notifier_block *nfb,
4951 unsigned long action,
4952 void *ocpu)
4953 {
4954 struct sk_buff **list_skb;
4955 struct Qdisc **list_net;
4956 struct sk_buff *skb;
4957 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4958 struct softnet_data *sd, *oldsd;
4959
4960 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4961 return NOTIFY_OK;
4962
4963 local_irq_disable();
4964 cpu = smp_processor_id();
4965 sd = &per_cpu(softnet_data, cpu);
4966 oldsd = &per_cpu(softnet_data, oldcpu);
4967
4968 /* Find end of our completion_queue. */
4969 list_skb = &sd->completion_queue;
4970 while (*list_skb)
4971 list_skb = &(*list_skb)->next;
4972 /* Append completion queue from offline CPU. */
4973 *list_skb = oldsd->completion_queue;
4974 oldsd->completion_queue = NULL;
4975
4976 /* Find end of our output_queue. */
4977 list_net = &sd->output_queue;
4978 while (*list_net)
4979 list_net = &(*list_net)->next_sched;
4980 /* Append output queue from offline CPU. */
4981 *list_net = oldsd->output_queue;
4982 oldsd->output_queue = NULL;
4983
4984 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4985 local_irq_enable();
4986
4987 /* Process offline CPU's input_pkt_queue */
4988 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4989 netif_rx(skb);
4990
4991 return NOTIFY_OK;
4992 }
4993
4994
4995 /**
4996 * netdev_increment_features - increment feature set by one
4997 * @all: current feature set
4998 * @one: new feature set
4999 * @mask: mask feature set
5000 *
5001 * Computes a new feature set after adding a device with feature set
5002 * @one to the master device with current feature set @all. Will not
5003 * enable anything that is off in @mask. Returns the new feature set.
5004 */
5005 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5006 unsigned long mask)
5007 {
5008 /* If device needs checksumming, downgrade to it. */
5009 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5010 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5011 else if (mask & NETIF_F_ALL_CSUM) {
5012 /* If one device supports v4/v6 checksumming, set for all. */
5013 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5014 !(all & NETIF_F_GEN_CSUM)) {
5015 all &= ~NETIF_F_ALL_CSUM;
5016 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5017 }
5018
5019 /* If one device supports hw checksumming, set for all. */
5020 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5021 all &= ~NETIF_F_ALL_CSUM;
5022 all |= NETIF_F_HW_CSUM;
5023 }
5024 }
5025
5026 one |= NETIF_F_ALL_CSUM;
5027
5028 one |= all & NETIF_F_ONE_FOR_ALL;
5029 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5030 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5031
5032 return all;
5033 }
5034 EXPORT_SYMBOL(netdev_increment_features);
5035
5036 static struct hlist_head *netdev_create_hash(void)
5037 {
5038 int i;
5039 struct hlist_head *hash;
5040
5041 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5042 if (hash != NULL)
5043 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5044 INIT_HLIST_HEAD(&hash[i]);
5045
5046 return hash;
5047 }
5048
5049 /* Initialize per network namespace state */
5050 static int __net_init netdev_init(struct net *net)
5051 {
5052 INIT_LIST_HEAD(&net->dev_base_head);
5053
5054 net->dev_name_head = netdev_create_hash();
5055 if (net->dev_name_head == NULL)
5056 goto err_name;
5057
5058 net->dev_index_head = netdev_create_hash();
5059 if (net->dev_index_head == NULL)
5060 goto err_idx;
5061
5062 return 0;
5063
5064 err_idx:
5065 kfree(net->dev_name_head);
5066 err_name:
5067 return -ENOMEM;
5068 }
5069
5070 /**
5071 * netdev_drivername - network driver for the device
5072 * @dev: network device
5073 * @buffer: buffer for resulting name
5074 * @len: size of buffer
5075 *
5076 * Determine network driver for device.
5077 */
5078 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5079 {
5080 const struct device_driver *driver;
5081 const struct device *parent;
5082
5083 if (len <= 0 || !buffer)
5084 return buffer;
5085 buffer[0] = 0;
5086
5087 parent = dev->dev.parent;
5088
5089 if (!parent)
5090 return buffer;
5091
5092 driver = parent->driver;
5093 if (driver && driver->name)
5094 strlcpy(buffer, driver->name, len);
5095 return buffer;
5096 }
5097
5098 static void __net_exit netdev_exit(struct net *net)
5099 {
5100 kfree(net->dev_name_head);
5101 kfree(net->dev_index_head);
5102 }
5103
5104 static struct pernet_operations __net_initdata netdev_net_ops = {
5105 .init = netdev_init,
5106 .exit = netdev_exit,
5107 };
5108
5109 static void __net_exit default_device_exit(struct net *net)
5110 {
5111 struct net_device *dev;
5112 /*
5113 * Push all migratable of the network devices back to the
5114 * initial network namespace
5115 */
5116 rtnl_lock();
5117 restart:
5118 for_each_netdev(net, dev) {
5119 int err;
5120 char fb_name[IFNAMSIZ];
5121
5122 /* Ignore unmoveable devices (i.e. loopback) */
5123 if (dev->features & NETIF_F_NETNS_LOCAL)
5124 continue;
5125
5126 /* Delete virtual devices */
5127 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5128 dev->rtnl_link_ops->dellink(dev);
5129 goto restart;
5130 }
5131
5132 /* Push remaing network devices to init_net */
5133 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5134 err = dev_change_net_namespace(dev, &init_net, fb_name);
5135 if (err) {
5136 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5137 __func__, dev->name, err);
5138 BUG();
5139 }
5140 goto restart;
5141 }
5142 rtnl_unlock();
5143 }
5144
5145 static struct pernet_operations __net_initdata default_device_ops = {
5146 .exit = default_device_exit,
5147 };
5148
5149 /*
5150 * Initialize the DEV module. At boot time this walks the device list and
5151 * unhooks any devices that fail to initialise (normally hardware not
5152 * present) and leaves us with a valid list of present and active devices.
5153 *
5154 */
5155
5156 /*
5157 * This is called single threaded during boot, so no need
5158 * to take the rtnl semaphore.
5159 */
5160 static int __init net_dev_init(void)
5161 {
5162 int i, rc = -ENOMEM;
5163
5164 BUG_ON(!dev_boot_phase);
5165
5166 if (dev_proc_init())
5167 goto out;
5168
5169 if (netdev_kobject_init())
5170 goto out;
5171
5172 INIT_LIST_HEAD(&ptype_all);
5173 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5174 INIT_LIST_HEAD(&ptype_base[i]);
5175
5176 if (register_pernet_subsys(&netdev_net_ops))
5177 goto out;
5178
5179 /*
5180 * Initialise the packet receive queues.
5181 */
5182
5183 for_each_possible_cpu(i) {
5184 struct softnet_data *queue;
5185
5186 queue = &per_cpu(softnet_data, i);
5187 skb_queue_head_init(&queue->input_pkt_queue);
5188 queue->completion_queue = NULL;
5189 INIT_LIST_HEAD(&queue->poll_list);
5190
5191 queue->backlog.poll = process_backlog;
5192 queue->backlog.weight = weight_p;
5193 queue->backlog.gro_list = NULL;
5194 }
5195
5196 dev_boot_phase = 0;
5197
5198 /* The loopback device is special if any other network devices
5199 * is present in a network namespace the loopback device must
5200 * be present. Since we now dynamically allocate and free the
5201 * loopback device ensure this invariant is maintained by
5202 * keeping the loopback device as the first device on the
5203 * list of network devices. Ensuring the loopback devices
5204 * is the first device that appears and the last network device
5205 * that disappears.
5206 */
5207 if (register_pernet_device(&loopback_net_ops))
5208 goto out;
5209
5210 if (register_pernet_device(&default_device_ops))
5211 goto out;
5212
5213 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5214 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5215
5216 hotcpu_notifier(dev_cpu_callback, 0);
5217 dst_init();
5218 dev_mcast_init();
5219 rc = 0;
5220 out:
5221 return rc;
5222 }
5223
5224 subsys_initcall(net_dev_init);
5225
5226 EXPORT_SYMBOL(__dev_get_by_index);
5227 EXPORT_SYMBOL(__dev_get_by_name);
5228 EXPORT_SYMBOL(__dev_remove_pack);
5229 EXPORT_SYMBOL(dev_valid_name);
5230 EXPORT_SYMBOL(dev_add_pack);
5231 EXPORT_SYMBOL(dev_alloc_name);
5232 EXPORT_SYMBOL(dev_close);
5233 EXPORT_SYMBOL(dev_get_by_flags);
5234 EXPORT_SYMBOL(dev_get_by_index);
5235 EXPORT_SYMBOL(dev_get_by_name);
5236 EXPORT_SYMBOL(dev_open);
5237 EXPORT_SYMBOL(dev_queue_xmit);
5238 EXPORT_SYMBOL(dev_remove_pack);
5239 EXPORT_SYMBOL(dev_set_allmulti);
5240 EXPORT_SYMBOL(dev_set_promiscuity);
5241 EXPORT_SYMBOL(dev_change_flags);
5242 EXPORT_SYMBOL(dev_set_mtu);
5243 EXPORT_SYMBOL(dev_set_mac_address);
5244 EXPORT_SYMBOL(free_netdev);
5245 EXPORT_SYMBOL(netdev_boot_setup_check);
5246 EXPORT_SYMBOL(netdev_set_master);
5247 EXPORT_SYMBOL(netdev_state_change);
5248 EXPORT_SYMBOL(netif_receive_skb);
5249 EXPORT_SYMBOL(netif_rx);
5250 EXPORT_SYMBOL(register_gifconf);
5251 EXPORT_SYMBOL(register_netdevice);
5252 EXPORT_SYMBOL(register_netdevice_notifier);
5253 EXPORT_SYMBOL(skb_checksum_help);
5254 EXPORT_SYMBOL(synchronize_net);
5255 EXPORT_SYMBOL(unregister_netdevice);
5256 EXPORT_SYMBOL(unregister_netdevice_notifier);
5257 EXPORT_SYMBOL(net_enable_timestamp);
5258 EXPORT_SYMBOL(net_disable_timestamp);
5259 EXPORT_SYMBOL(dev_get_flags);
5260
5261 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5262 EXPORT_SYMBOL(br_handle_frame_hook);
5263 EXPORT_SYMBOL(br_fdb_get_hook);
5264 EXPORT_SYMBOL(br_fdb_put_hook);
5265 #endif
5266
5267 EXPORT_SYMBOL(dev_load);
5268
5269 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.193963 seconds and 5 git commands to generate.