net: netprio: rename config to be more consistent with cgroup configs
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 /*
151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
152 * semaphore.
153 *
154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
155 *
156 * Writers must hold the rtnl semaphore while they loop through the
157 * dev_base_head list, and hold dev_base_lock for writing when they do the
158 * actual updates. This allows pure readers to access the list even
159 * while a writer is preparing to update it.
160 *
161 * To put it another way, dev_base_lock is held for writing only to
162 * protect against pure readers; the rtnl semaphore provides the
163 * protection against other writers.
164 *
165 * See, for example usages, register_netdevice() and
166 * unregister_netdevice(), which must be called with the rtnl
167 * semaphore held.
168 */
169 DEFINE_RWLOCK(dev_base_lock);
170 EXPORT_SYMBOL(dev_base_lock);
171
172 /* protects napi_hash addition/deletion and napi_gen_id */
173 static DEFINE_SPINLOCK(napi_hash_lock);
174
175 static unsigned int napi_gen_id;
176 static DEFINE_HASHTABLE(napi_hash, 8);
177
178 static seqcount_t devnet_rename_seq;
179
180 static inline void dev_base_seq_inc(struct net *net)
181 {
182 while (++net->dev_base_seq == 0);
183 }
184
185 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
186 {
187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
188
189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
190 }
191
192 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
193 {
194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
195 }
196
197 static inline void rps_lock(struct softnet_data *sd)
198 {
199 #ifdef CONFIG_RPS
200 spin_lock(&sd->input_pkt_queue.lock);
201 #endif
202 }
203
204 static inline void rps_unlock(struct softnet_data *sd)
205 {
206 #ifdef CONFIG_RPS
207 spin_unlock(&sd->input_pkt_queue.lock);
208 #endif
209 }
210
211 /* Device list insertion */
212 static void list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head_rcu(&dev->index_hlist,
222 dev_index_hash(net, dev->ifindex));
223 write_unlock_bh(&dev_base_lock);
224
225 dev_base_seq_inc(net);
226 }
227
228 /* Device list removal
229 * caller must respect a RCU grace period before freeing/reusing dev
230 */
231 static void unlist_netdevice(struct net_device *dev)
232 {
233 ASSERT_RTNL();
234
235 /* Unlink dev from the device chain */
236 write_lock_bh(&dev_base_lock);
237 list_del_rcu(&dev->dev_list);
238 hlist_del_rcu(&dev->name_hlist);
239 hlist_del_rcu(&dev->index_hlist);
240 write_unlock_bh(&dev_base_lock);
241
242 dev_base_seq_inc(dev_net(dev));
243 }
244
245 /*
246 * Our notifier list
247 */
248
249 static RAW_NOTIFIER_HEAD(netdev_chain);
250
251 /*
252 * Device drivers call our routines to queue packets here. We empty the
253 * queue in the local softnet handler.
254 */
255
256 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
257 EXPORT_PER_CPU_SYMBOL(softnet_data);
258
259 #ifdef CONFIG_LOCKDEP
260 /*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
280
281 static const char *const netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
300
301 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
302 {
303 int i;
304
305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
306 if (netdev_lock_type[i] == dev_type)
307 return i;
308 /* the last key is used by default */
309 return ARRAY_SIZE(netdev_lock_type) - 1;
310 }
311
312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
313 unsigned short dev_type)
314 {
315 int i;
316
317 i = netdev_lock_pos(dev_type);
318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
319 netdev_lock_name[i]);
320 }
321
322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev->type);
327 lockdep_set_class_and_name(&dev->addr_list_lock,
328 &netdev_addr_lock_key[i],
329 netdev_lock_name[i]);
330 }
331 #else
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334 {
335 }
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 }
339 #endif
340
341 /*******************************************************************************
342
343 Protocol management and registration routines
344
345 *******************************************************************************/
346
347 /*
348 * Add a protocol ID to the list. Now that the input handler is
349 * smarter we can dispense with all the messy stuff that used to be
350 * here.
351 *
352 * BEWARE!!! Protocol handlers, mangling input packets,
353 * MUST BE last in hash buckets and checking protocol handlers
354 * MUST start from promiscuous ptype_all chain in net_bh.
355 * It is true now, do not change it.
356 * Explanation follows: if protocol handler, mangling packet, will
357 * be the first on list, it is not able to sense, that packet
358 * is cloned and should be copied-on-write, so that it will
359 * change it and subsequent readers will get broken packet.
360 * --ANK (980803)
361 */
362
363 static inline struct list_head *ptype_head(const struct packet_type *pt)
364 {
365 if (pt->type == htons(ETH_P_ALL))
366 return &ptype_all;
367 else
368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
369 }
370
371 /**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384 void dev_add_pack(struct packet_type *pt)
385 {
386 struct list_head *head = ptype_head(pt);
387
388 spin_lock(&ptype_lock);
389 list_add_rcu(&pt->list, head);
390 spin_unlock(&ptype_lock);
391 }
392 EXPORT_SYMBOL(dev_add_pack);
393
394 /**
395 * __dev_remove_pack - remove packet handler
396 * @pt: packet type declaration
397 *
398 * Remove a protocol handler that was previously added to the kernel
399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
400 * from the kernel lists and can be freed or reused once this function
401 * returns.
402 *
403 * The packet type might still be in use by receivers
404 * and must not be freed until after all the CPU's have gone
405 * through a quiescent state.
406 */
407 void __dev_remove_pack(struct packet_type *pt)
408 {
409 struct list_head *head = ptype_head(pt);
410 struct packet_type *pt1;
411
412 spin_lock(&ptype_lock);
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 pr_warn("dev_remove_pack: %p not found\n", pt);
422 out:
423 spin_unlock(&ptype_lock);
424 }
425 EXPORT_SYMBOL(__dev_remove_pack);
426
427 /**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439 void dev_remove_pack(struct packet_type *pt)
440 {
441 __dev_remove_pack(pt);
442
443 synchronize_net();
444 }
445 EXPORT_SYMBOL(dev_remove_pack);
446
447
448 /**
449 * dev_add_offload - register offload handlers
450 * @po: protocol offload declaration
451 *
452 * Add protocol offload handlers to the networking stack. The passed
453 * &proto_offload is linked into kernel lists and may not be freed until
454 * it has been removed from the kernel lists.
455 *
456 * This call does not sleep therefore it can not
457 * guarantee all CPU's that are in middle of receiving packets
458 * will see the new offload handlers (until the next received packet).
459 */
460 void dev_add_offload(struct packet_offload *po)
461 {
462 struct list_head *head = &offload_base;
463
464 spin_lock(&offload_lock);
465 list_add_rcu(&po->list, head);
466 spin_unlock(&offload_lock);
467 }
468 EXPORT_SYMBOL(dev_add_offload);
469
470 /**
471 * __dev_remove_offload - remove offload handler
472 * @po: packet offload declaration
473 *
474 * Remove a protocol offload handler that was previously added to the
475 * kernel offload handlers by dev_add_offload(). The passed &offload_type
476 * is removed from the kernel lists and can be freed or reused once this
477 * function returns.
478 *
479 * The packet type might still be in use by receivers
480 * and must not be freed until after all the CPU's have gone
481 * through a quiescent state.
482 */
483 void __dev_remove_offload(struct packet_offload *po)
484 {
485 struct list_head *head = &offload_base;
486 struct packet_offload *po1;
487
488 spin_lock(&offload_lock);
489
490 list_for_each_entry(po1, head, list) {
491 if (po == po1) {
492 list_del_rcu(&po->list);
493 goto out;
494 }
495 }
496
497 pr_warn("dev_remove_offload: %p not found\n", po);
498 out:
499 spin_unlock(&offload_lock);
500 }
501 EXPORT_SYMBOL(__dev_remove_offload);
502
503 /**
504 * dev_remove_offload - remove packet offload handler
505 * @po: packet offload declaration
506 *
507 * Remove a packet offload handler that was previously added to the kernel
508 * offload handlers by dev_add_offload(). The passed &offload_type is
509 * removed from the kernel lists and can be freed or reused once this
510 * function returns.
511 *
512 * This call sleeps to guarantee that no CPU is looking at the packet
513 * type after return.
514 */
515 void dev_remove_offload(struct packet_offload *po)
516 {
517 __dev_remove_offload(po);
518
519 synchronize_net();
520 }
521 EXPORT_SYMBOL(dev_remove_offload);
522
523 /******************************************************************************
524
525 Device Boot-time Settings Routines
526
527 *******************************************************************************/
528
529 /* Boot time configuration table */
530 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
531
532 /**
533 * netdev_boot_setup_add - add new setup entry
534 * @name: name of the device
535 * @map: configured settings for the device
536 *
537 * Adds new setup entry to the dev_boot_setup list. The function
538 * returns 0 on error and 1 on success. This is a generic routine to
539 * all netdevices.
540 */
541 static int netdev_boot_setup_add(char *name, struct ifmap *map)
542 {
543 struct netdev_boot_setup *s;
544 int i;
545
546 s = dev_boot_setup;
547 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
548 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
549 memset(s[i].name, 0, sizeof(s[i].name));
550 strlcpy(s[i].name, name, IFNAMSIZ);
551 memcpy(&s[i].map, map, sizeof(s[i].map));
552 break;
553 }
554 }
555
556 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
557 }
558
559 /**
560 * netdev_boot_setup_check - check boot time settings
561 * @dev: the netdevice
562 *
563 * Check boot time settings for the device.
564 * The found settings are set for the device to be used
565 * later in the device probing.
566 * Returns 0 if no settings found, 1 if they are.
567 */
568 int netdev_boot_setup_check(struct net_device *dev)
569 {
570 struct netdev_boot_setup *s = dev_boot_setup;
571 int i;
572
573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
575 !strcmp(dev->name, s[i].name)) {
576 dev->irq = s[i].map.irq;
577 dev->base_addr = s[i].map.base_addr;
578 dev->mem_start = s[i].map.mem_start;
579 dev->mem_end = s[i].map.mem_end;
580 return 1;
581 }
582 }
583 return 0;
584 }
585 EXPORT_SYMBOL(netdev_boot_setup_check);
586
587
588 /**
589 * netdev_boot_base - get address from boot time settings
590 * @prefix: prefix for network device
591 * @unit: id for network device
592 *
593 * Check boot time settings for the base address of device.
594 * The found settings are set for the device to be used
595 * later in the device probing.
596 * Returns 0 if no settings found.
597 */
598 unsigned long netdev_boot_base(const char *prefix, int unit)
599 {
600 const struct netdev_boot_setup *s = dev_boot_setup;
601 char name[IFNAMSIZ];
602 int i;
603
604 sprintf(name, "%s%d", prefix, unit);
605
606 /*
607 * If device already registered then return base of 1
608 * to indicate not to probe for this interface
609 */
610 if (__dev_get_by_name(&init_net, name))
611 return 1;
612
613 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
614 if (!strcmp(name, s[i].name))
615 return s[i].map.base_addr;
616 return 0;
617 }
618
619 /*
620 * Saves at boot time configured settings for any netdevice.
621 */
622 int __init netdev_boot_setup(char *str)
623 {
624 int ints[5];
625 struct ifmap map;
626
627 str = get_options(str, ARRAY_SIZE(ints), ints);
628 if (!str || !*str)
629 return 0;
630
631 /* Save settings */
632 memset(&map, 0, sizeof(map));
633 if (ints[0] > 0)
634 map.irq = ints[1];
635 if (ints[0] > 1)
636 map.base_addr = ints[2];
637 if (ints[0] > 2)
638 map.mem_start = ints[3];
639 if (ints[0] > 3)
640 map.mem_end = ints[4];
641
642 /* Add new entry to the list */
643 return netdev_boot_setup_add(str, &map);
644 }
645
646 __setup("netdev=", netdev_boot_setup);
647
648 /*******************************************************************************
649
650 Device Interface Subroutines
651
652 *******************************************************************************/
653
654 /**
655 * __dev_get_by_name - find a device by its name
656 * @net: the applicable net namespace
657 * @name: name to find
658 *
659 * Find an interface by name. Must be called under RTNL semaphore
660 * or @dev_base_lock. If the name is found a pointer to the device
661 * is returned. If the name is not found then %NULL is returned. The
662 * reference counters are not incremented so the caller must be
663 * careful with locks.
664 */
665
666 struct net_device *__dev_get_by_name(struct net *net, const char *name)
667 {
668 struct net_device *dev;
669 struct hlist_head *head = dev_name_hash(net, name);
670
671 hlist_for_each_entry(dev, head, name_hlist)
672 if (!strncmp(dev->name, name, IFNAMSIZ))
673 return dev;
674
675 return NULL;
676 }
677 EXPORT_SYMBOL(__dev_get_by_name);
678
679 /**
680 * dev_get_by_name_rcu - find a device by its name
681 * @net: the applicable net namespace
682 * @name: name to find
683 *
684 * Find an interface by name.
685 * If the name is found a pointer to the device is returned.
686 * If the name is not found then %NULL is returned.
687 * The reference counters are not incremented so the caller must be
688 * careful with locks. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
692 {
693 struct net_device *dev;
694 struct hlist_head *head = dev_name_hash(net, name);
695
696 hlist_for_each_entry_rcu(dev, head, name_hlist)
697 if (!strncmp(dev->name, name, IFNAMSIZ))
698 return dev;
699
700 return NULL;
701 }
702 EXPORT_SYMBOL(dev_get_by_name_rcu);
703
704 /**
705 * dev_get_by_name - find a device by its name
706 * @net: the applicable net namespace
707 * @name: name to find
708 *
709 * Find an interface by name. This can be called from any
710 * context and does its own locking. The returned handle has
711 * the usage count incremented and the caller must use dev_put() to
712 * release it when it is no longer needed. %NULL is returned if no
713 * matching device is found.
714 */
715
716 struct net_device *dev_get_by_name(struct net *net, const char *name)
717 {
718 struct net_device *dev;
719
720 rcu_read_lock();
721 dev = dev_get_by_name_rcu(net, name);
722 if (dev)
723 dev_hold(dev);
724 rcu_read_unlock();
725 return dev;
726 }
727 EXPORT_SYMBOL(dev_get_by_name);
728
729 /**
730 * __dev_get_by_index - find a device by its ifindex
731 * @net: the applicable net namespace
732 * @ifindex: index of device
733 *
734 * Search for an interface by index. Returns %NULL if the device
735 * is not found or a pointer to the device. The device has not
736 * had its reference counter increased so the caller must be careful
737 * about locking. The caller must hold either the RTNL semaphore
738 * or @dev_base_lock.
739 */
740
741 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
742 {
743 struct net_device *dev;
744 struct hlist_head *head = dev_index_hash(net, ifindex);
745
746 hlist_for_each_entry(dev, head, index_hlist)
747 if (dev->ifindex == ifindex)
748 return dev;
749
750 return NULL;
751 }
752 EXPORT_SYMBOL(__dev_get_by_index);
753
754 /**
755 * dev_get_by_index_rcu - find a device by its ifindex
756 * @net: the applicable net namespace
757 * @ifindex: index of device
758 *
759 * Search for an interface by index. Returns %NULL if the device
760 * is not found or a pointer to the device. The device has not
761 * had its reference counter increased so the caller must be careful
762 * about locking. The caller must hold RCU lock.
763 */
764
765 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
766 {
767 struct net_device *dev;
768 struct hlist_head *head = dev_index_hash(net, ifindex);
769
770 hlist_for_each_entry_rcu(dev, head, index_hlist)
771 if (dev->ifindex == ifindex)
772 return dev;
773
774 return NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_index_rcu);
777
778
779 /**
780 * dev_get_by_index - find a device by its ifindex
781 * @net: the applicable net namespace
782 * @ifindex: index of device
783 *
784 * Search for an interface by index. Returns NULL if the device
785 * is not found or a pointer to the device. The device returned has
786 * had a reference added and the pointer is safe until the user calls
787 * dev_put to indicate they have finished with it.
788 */
789
790 struct net_device *dev_get_by_index(struct net *net, int ifindex)
791 {
792 struct net_device *dev;
793
794 rcu_read_lock();
795 dev = dev_get_by_index_rcu(net, ifindex);
796 if (dev)
797 dev_hold(dev);
798 rcu_read_unlock();
799 return dev;
800 }
801 EXPORT_SYMBOL(dev_get_by_index);
802
803 /**
804 * netdev_get_name - get a netdevice name, knowing its ifindex.
805 * @net: network namespace
806 * @name: a pointer to the buffer where the name will be stored.
807 * @ifindex: the ifindex of the interface to get the name from.
808 *
809 * The use of raw_seqcount_begin() and cond_resched() before
810 * retrying is required as we want to give the writers a chance
811 * to complete when CONFIG_PREEMPT is not set.
812 */
813 int netdev_get_name(struct net *net, char *name, int ifindex)
814 {
815 struct net_device *dev;
816 unsigned int seq;
817
818 retry:
819 seq = raw_seqcount_begin(&devnet_rename_seq);
820 rcu_read_lock();
821 dev = dev_get_by_index_rcu(net, ifindex);
822 if (!dev) {
823 rcu_read_unlock();
824 return -ENODEV;
825 }
826
827 strcpy(name, dev->name);
828 rcu_read_unlock();
829 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
830 cond_resched();
831 goto retry;
832 }
833
834 return 0;
835 }
836
837 /**
838 * dev_getbyhwaddr_rcu - find a device by its hardware address
839 * @net: the applicable net namespace
840 * @type: media type of device
841 * @ha: hardware address
842 *
843 * Search for an interface by MAC address. Returns NULL if the device
844 * is not found or a pointer to the device.
845 * The caller must hold RCU or RTNL.
846 * The returned device has not had its ref count increased
847 * and the caller must therefore be careful about locking
848 *
849 */
850
851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
852 const char *ha)
853 {
854 struct net_device *dev;
855
856 for_each_netdev_rcu(net, dev)
857 if (dev->type == type &&
858 !memcmp(dev->dev_addr, ha, dev->addr_len))
859 return dev;
860
861 return NULL;
862 }
863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
864
865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
866 {
867 struct net_device *dev;
868
869 ASSERT_RTNL();
870 for_each_netdev(net, dev)
871 if (dev->type == type)
872 return dev;
873
874 return NULL;
875 }
876 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
877
878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
879 {
880 struct net_device *dev, *ret = NULL;
881
882 rcu_read_lock();
883 for_each_netdev_rcu(net, dev)
884 if (dev->type == type) {
885 dev_hold(dev);
886 ret = dev;
887 break;
888 }
889 rcu_read_unlock();
890 return ret;
891 }
892 EXPORT_SYMBOL(dev_getfirstbyhwtype);
893
894 /**
895 * dev_get_by_flags_rcu - find any device with given flags
896 * @net: the applicable net namespace
897 * @if_flags: IFF_* values
898 * @mask: bitmask of bits in if_flags to check
899 *
900 * Search for any interface with the given flags. Returns NULL if a device
901 * is not found or a pointer to the device. Must be called inside
902 * rcu_read_lock(), and result refcount is unchanged.
903 */
904
905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
906 unsigned short mask)
907 {
908 struct net_device *dev, *ret;
909
910 ret = NULL;
911 for_each_netdev_rcu(net, dev) {
912 if (((dev->flags ^ if_flags) & mask) == 0) {
913 ret = dev;
914 break;
915 }
916 }
917 return ret;
918 }
919 EXPORT_SYMBOL(dev_get_by_flags_rcu);
920
921 /**
922 * dev_valid_name - check if name is okay for network device
923 * @name: name string
924 *
925 * Network device names need to be valid file names to
926 * to allow sysfs to work. We also disallow any kind of
927 * whitespace.
928 */
929 bool dev_valid_name(const char *name)
930 {
931 if (*name == '\0')
932 return false;
933 if (strlen(name) >= IFNAMSIZ)
934 return false;
935 if (!strcmp(name, ".") || !strcmp(name, ".."))
936 return false;
937
938 while (*name) {
939 if (*name == '/' || isspace(*name))
940 return false;
941 name++;
942 }
943 return true;
944 }
945 EXPORT_SYMBOL(dev_valid_name);
946
947 /**
948 * __dev_alloc_name - allocate a name for a device
949 * @net: network namespace to allocate the device name in
950 * @name: name format string
951 * @buf: scratch buffer and result name string
952 *
953 * Passed a format string - eg "lt%d" it will try and find a suitable
954 * id. It scans list of devices to build up a free map, then chooses
955 * the first empty slot. The caller must hold the dev_base or rtnl lock
956 * while allocating the name and adding the device in order to avoid
957 * duplicates.
958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
959 * Returns the number of the unit assigned or a negative errno code.
960 */
961
962 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
963 {
964 int i = 0;
965 const char *p;
966 const int max_netdevices = 8*PAGE_SIZE;
967 unsigned long *inuse;
968 struct net_device *d;
969
970 p = strnchr(name, IFNAMSIZ-1, '%');
971 if (p) {
972 /*
973 * Verify the string as this thing may have come from
974 * the user. There must be either one "%d" and no other "%"
975 * characters.
976 */
977 if (p[1] != 'd' || strchr(p + 2, '%'))
978 return -EINVAL;
979
980 /* Use one page as a bit array of possible slots */
981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
982 if (!inuse)
983 return -ENOMEM;
984
985 for_each_netdev(net, d) {
986 if (!sscanf(d->name, name, &i))
987 continue;
988 if (i < 0 || i >= max_netdevices)
989 continue;
990
991 /* avoid cases where sscanf is not exact inverse of printf */
992 snprintf(buf, IFNAMSIZ, name, i);
993 if (!strncmp(buf, d->name, IFNAMSIZ))
994 set_bit(i, inuse);
995 }
996
997 i = find_first_zero_bit(inuse, max_netdevices);
998 free_page((unsigned long) inuse);
999 }
1000
1001 if (buf != name)
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!__dev_get_by_name(net, buf))
1004 return i;
1005
1006 /* It is possible to run out of possible slots
1007 * when the name is long and there isn't enough space left
1008 * for the digits, or if all bits are used.
1009 */
1010 return -ENFILE;
1011 }
1012
1013 /**
1014 * dev_alloc_name - allocate a name for a device
1015 * @dev: device
1016 * @name: name format string
1017 *
1018 * Passed a format string - eg "lt%d" it will try and find a suitable
1019 * id. It scans list of devices to build up a free map, then chooses
1020 * the first empty slot. The caller must hold the dev_base or rtnl lock
1021 * while allocating the name and adding the device in order to avoid
1022 * duplicates.
1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1024 * Returns the number of the unit assigned or a negative errno code.
1025 */
1026
1027 int dev_alloc_name(struct net_device *dev, const char *name)
1028 {
1029 char buf[IFNAMSIZ];
1030 struct net *net;
1031 int ret;
1032
1033 BUG_ON(!dev_net(dev));
1034 net = dev_net(dev);
1035 ret = __dev_alloc_name(net, name, buf);
1036 if (ret >= 0)
1037 strlcpy(dev->name, buf, IFNAMSIZ);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL(dev_alloc_name);
1041
1042 static int dev_alloc_name_ns(struct net *net,
1043 struct net_device *dev,
1044 const char *name)
1045 {
1046 char buf[IFNAMSIZ];
1047 int ret;
1048
1049 ret = __dev_alloc_name(net, name, buf);
1050 if (ret >= 0)
1051 strlcpy(dev->name, buf, IFNAMSIZ);
1052 return ret;
1053 }
1054
1055 static int dev_get_valid_name(struct net *net,
1056 struct net_device *dev,
1057 const char *name)
1058 {
1059 BUG_ON(!net);
1060
1061 if (!dev_valid_name(name))
1062 return -EINVAL;
1063
1064 if (strchr(name, '%'))
1065 return dev_alloc_name_ns(net, dev, name);
1066 else if (__dev_get_by_name(net, name))
1067 return -EEXIST;
1068 else if (dev->name != name)
1069 strlcpy(dev->name, name, IFNAMSIZ);
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * dev_change_name - change name of a device
1076 * @dev: device
1077 * @newname: name (or format string) must be at least IFNAMSIZ
1078 *
1079 * Change name of a device, can pass format strings "eth%d".
1080 * for wildcarding.
1081 */
1082 int dev_change_name(struct net_device *dev, const char *newname)
1083 {
1084 char oldname[IFNAMSIZ];
1085 int err = 0;
1086 int ret;
1087 struct net *net;
1088
1089 ASSERT_RTNL();
1090 BUG_ON(!dev_net(dev));
1091
1092 net = dev_net(dev);
1093 if (dev->flags & IFF_UP)
1094 return -EBUSY;
1095
1096 write_seqcount_begin(&devnet_rename_seq);
1097
1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1099 write_seqcount_end(&devnet_rename_seq);
1100 return 0;
1101 }
1102
1103 memcpy(oldname, dev->name, IFNAMSIZ);
1104
1105 err = dev_get_valid_name(net, dev, newname);
1106 if (err < 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return err;
1109 }
1110
1111 rollback:
1112 ret = device_rename(&dev->dev, dev->name);
1113 if (ret) {
1114 memcpy(dev->name, oldname, IFNAMSIZ);
1115 write_seqcount_end(&devnet_rename_seq);
1116 return ret;
1117 }
1118
1119 write_seqcount_end(&devnet_rename_seq);
1120
1121 write_lock_bh(&dev_base_lock);
1122 hlist_del_rcu(&dev->name_hlist);
1123 write_unlock_bh(&dev_base_lock);
1124
1125 synchronize_rcu();
1126
1127 write_lock_bh(&dev_base_lock);
1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1129 write_unlock_bh(&dev_base_lock);
1130
1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1132 ret = notifier_to_errno(ret);
1133
1134 if (ret) {
1135 /* err >= 0 after dev_alloc_name() or stores the first errno */
1136 if (err >= 0) {
1137 err = ret;
1138 write_seqcount_begin(&devnet_rename_seq);
1139 memcpy(dev->name, oldname, IFNAMSIZ);
1140 goto rollback;
1141 } else {
1142 pr_err("%s: name change rollback failed: %d\n",
1143 dev->name, ret);
1144 }
1145 }
1146
1147 return err;
1148 }
1149
1150 /**
1151 * dev_set_alias - change ifalias of a device
1152 * @dev: device
1153 * @alias: name up to IFALIASZ
1154 * @len: limit of bytes to copy from info
1155 *
1156 * Set ifalias for a device,
1157 */
1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1159 {
1160 char *new_ifalias;
1161
1162 ASSERT_RTNL();
1163
1164 if (len >= IFALIASZ)
1165 return -EINVAL;
1166
1167 if (!len) {
1168 kfree(dev->ifalias);
1169 dev->ifalias = NULL;
1170 return 0;
1171 }
1172
1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1174 if (!new_ifalias)
1175 return -ENOMEM;
1176 dev->ifalias = new_ifalias;
1177
1178 strlcpy(dev->ifalias, alias, len+1);
1179 return len;
1180 }
1181
1182
1183 /**
1184 * netdev_features_change - device changes features
1185 * @dev: device to cause notification
1186 *
1187 * Called to indicate a device has changed features.
1188 */
1189 void netdev_features_change(struct net_device *dev)
1190 {
1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1192 }
1193 EXPORT_SYMBOL(netdev_features_change);
1194
1195 /**
1196 * netdev_state_change - device changes state
1197 * @dev: device to cause notification
1198 *
1199 * Called to indicate a device has changed state. This function calls
1200 * the notifier chains for netdev_chain and sends a NEWLINK message
1201 * to the routing socket.
1202 */
1203 void netdev_state_change(struct net_device *dev)
1204 {
1205 if (dev->flags & IFF_UP) {
1206 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1208 }
1209 }
1210 EXPORT_SYMBOL(netdev_state_change);
1211
1212 /**
1213 * netdev_notify_peers - notify network peers about existence of @dev
1214 * @dev: network device
1215 *
1216 * Generate traffic such that interested network peers are aware of
1217 * @dev, such as by generating a gratuitous ARP. This may be used when
1218 * a device wants to inform the rest of the network about some sort of
1219 * reconfiguration such as a failover event or virtual machine
1220 * migration.
1221 */
1222 void netdev_notify_peers(struct net_device *dev)
1223 {
1224 rtnl_lock();
1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1226 rtnl_unlock();
1227 }
1228 EXPORT_SYMBOL(netdev_notify_peers);
1229
1230 static int __dev_open(struct net_device *dev)
1231 {
1232 const struct net_device_ops *ops = dev->netdev_ops;
1233 int ret;
1234
1235 ASSERT_RTNL();
1236
1237 if (!netif_device_present(dev))
1238 return -ENODEV;
1239
1240 /* Block netpoll from trying to do any rx path servicing.
1241 * If we don't do this there is a chance ndo_poll_controller
1242 * or ndo_poll may be running while we open the device
1243 */
1244 netpoll_rx_disable(dev);
1245
1246 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1247 ret = notifier_to_errno(ret);
1248 if (ret)
1249 return ret;
1250
1251 set_bit(__LINK_STATE_START, &dev->state);
1252
1253 if (ops->ndo_validate_addr)
1254 ret = ops->ndo_validate_addr(dev);
1255
1256 if (!ret && ops->ndo_open)
1257 ret = ops->ndo_open(dev);
1258
1259 netpoll_rx_enable(dev);
1260
1261 if (ret)
1262 clear_bit(__LINK_STATE_START, &dev->state);
1263 else {
1264 dev->flags |= IFF_UP;
1265 net_dmaengine_get();
1266 dev_set_rx_mode(dev);
1267 dev_activate(dev);
1268 add_device_randomness(dev->dev_addr, dev->addr_len);
1269 }
1270
1271 return ret;
1272 }
1273
1274 /**
1275 * dev_open - prepare an interface for use.
1276 * @dev: device to open
1277 *
1278 * Takes a device from down to up state. The device's private open
1279 * function is invoked and then the multicast lists are loaded. Finally
1280 * the device is moved into the up state and a %NETDEV_UP message is
1281 * sent to the netdev notifier chain.
1282 *
1283 * Calling this function on an active interface is a nop. On a failure
1284 * a negative errno code is returned.
1285 */
1286 int dev_open(struct net_device *dev)
1287 {
1288 int ret;
1289
1290 if (dev->flags & IFF_UP)
1291 return 0;
1292
1293 ret = __dev_open(dev);
1294 if (ret < 0)
1295 return ret;
1296
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1298 call_netdevice_notifiers(NETDEV_UP, dev);
1299
1300 return ret;
1301 }
1302 EXPORT_SYMBOL(dev_open);
1303
1304 static int __dev_close_many(struct list_head *head)
1305 {
1306 struct net_device *dev;
1307
1308 ASSERT_RTNL();
1309 might_sleep();
1310
1311 list_for_each_entry(dev, head, close_list) {
1312 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1313
1314 clear_bit(__LINK_STATE_START, &dev->state);
1315
1316 /* Synchronize to scheduled poll. We cannot touch poll list, it
1317 * can be even on different cpu. So just clear netif_running().
1318 *
1319 * dev->stop() will invoke napi_disable() on all of it's
1320 * napi_struct instances on this device.
1321 */
1322 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1323 }
1324
1325 dev_deactivate_many(head);
1326
1327 list_for_each_entry(dev, head, close_list) {
1328 const struct net_device_ops *ops = dev->netdev_ops;
1329
1330 /*
1331 * Call the device specific close. This cannot fail.
1332 * Only if device is UP
1333 *
1334 * We allow it to be called even after a DETACH hot-plug
1335 * event.
1336 */
1337 if (ops->ndo_stop)
1338 ops->ndo_stop(dev);
1339
1340 dev->flags &= ~IFF_UP;
1341 net_dmaengine_put();
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int __dev_close(struct net_device *dev)
1348 {
1349 int retval;
1350 LIST_HEAD(single);
1351
1352 /* Temporarily disable netpoll until the interface is down */
1353 netpoll_rx_disable(dev);
1354
1355 list_add(&dev->close_list, &single);
1356 retval = __dev_close_many(&single);
1357 list_del(&single);
1358
1359 netpoll_rx_enable(dev);
1360 return retval;
1361 }
1362
1363 static int dev_close_many(struct list_head *head)
1364 {
1365 struct net_device *dev, *tmp;
1366
1367 /* Remove the devices that don't need to be closed */
1368 list_for_each_entry_safe(dev, tmp, head, close_list)
1369 if (!(dev->flags & IFF_UP))
1370 list_del_init(&dev->close_list);
1371
1372 __dev_close_many(head);
1373
1374 list_for_each_entry_safe(dev, tmp, head, close_list) {
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_DOWN, dev);
1377 list_del_init(&dev->close_list);
1378 }
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * dev_close - shutdown an interface.
1385 * @dev: device to shutdown
1386 *
1387 * This function moves an active device into down state. A
1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 * chain.
1391 */
1392 int dev_close(struct net_device *dev)
1393 {
1394 if (dev->flags & IFF_UP) {
1395 LIST_HEAD(single);
1396
1397 /* Block netpoll rx while the interface is going down */
1398 netpoll_rx_disable(dev);
1399
1400 list_add(&dev->close_list, &single);
1401 dev_close_many(&single);
1402 list_del(&single);
1403
1404 netpoll_rx_enable(dev);
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409
1410
1411 /**
1412 * dev_disable_lro - disable Large Receive Offload on a device
1413 * @dev: device
1414 *
1415 * Disable Large Receive Offload (LRO) on a net device. Must be
1416 * called under RTNL. This is needed if received packets may be
1417 * forwarded to another interface.
1418 */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 /*
1422 * If we're trying to disable lro on a vlan device
1423 * use the underlying physical device instead
1424 */
1425 if (is_vlan_dev(dev))
1426 dev = vlan_dev_real_dev(dev);
1427
1428 /* the same for macvlan devices */
1429 if (netif_is_macvlan(dev))
1430 dev = macvlan_dev_real_dev(dev);
1431
1432 dev->wanted_features &= ~NETIF_F_LRO;
1433 netdev_update_features(dev);
1434
1435 if (unlikely(dev->features & NETIF_F_LRO))
1436 netdev_WARN(dev, "failed to disable LRO!\n");
1437 }
1438 EXPORT_SYMBOL(dev_disable_lro);
1439
1440 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1441 struct net_device *dev)
1442 {
1443 struct netdev_notifier_info info;
1444
1445 netdev_notifier_info_init(&info, dev);
1446 return nb->notifier_call(nb, val, &info);
1447 }
1448
1449 static int dev_boot_phase = 1;
1450
1451 /**
1452 * register_netdevice_notifier - register a network notifier block
1453 * @nb: notifier
1454 *
1455 * Register a notifier to be called when network device events occur.
1456 * The notifier passed is linked into the kernel structures and must
1457 * not be reused until it has been unregistered. A negative errno code
1458 * is returned on a failure.
1459 *
1460 * When registered all registration and up events are replayed
1461 * to the new notifier to allow device to have a race free
1462 * view of the network device list.
1463 */
1464
1465 int register_netdevice_notifier(struct notifier_block *nb)
1466 {
1467 struct net_device *dev;
1468 struct net_device *last;
1469 struct net *net;
1470 int err;
1471
1472 rtnl_lock();
1473 err = raw_notifier_chain_register(&netdev_chain, nb);
1474 if (err)
1475 goto unlock;
1476 if (dev_boot_phase)
1477 goto unlock;
1478 for_each_net(net) {
1479 for_each_netdev(net, dev) {
1480 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1481 err = notifier_to_errno(err);
1482 if (err)
1483 goto rollback;
1484
1485 if (!(dev->flags & IFF_UP))
1486 continue;
1487
1488 call_netdevice_notifier(nb, NETDEV_UP, dev);
1489 }
1490 }
1491
1492 unlock:
1493 rtnl_unlock();
1494 return err;
1495
1496 rollback:
1497 last = dev;
1498 for_each_net(net) {
1499 for_each_netdev(net, dev) {
1500 if (dev == last)
1501 goto outroll;
1502
1503 if (dev->flags & IFF_UP) {
1504 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1505 dev);
1506 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1507 }
1508 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1509 }
1510 }
1511
1512 outroll:
1513 raw_notifier_chain_unregister(&netdev_chain, nb);
1514 goto unlock;
1515 }
1516 EXPORT_SYMBOL(register_netdevice_notifier);
1517
1518 /**
1519 * unregister_netdevice_notifier - unregister a network notifier block
1520 * @nb: notifier
1521 *
1522 * Unregister a notifier previously registered by
1523 * register_netdevice_notifier(). The notifier is unlinked into the
1524 * kernel structures and may then be reused. A negative errno code
1525 * is returned on a failure.
1526 *
1527 * After unregistering unregister and down device events are synthesized
1528 * for all devices on the device list to the removed notifier to remove
1529 * the need for special case cleanup code.
1530 */
1531
1532 int unregister_netdevice_notifier(struct notifier_block *nb)
1533 {
1534 struct net_device *dev;
1535 struct net *net;
1536 int err;
1537
1538 rtnl_lock();
1539 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1540 if (err)
1541 goto unlock;
1542
1543 for_each_net(net) {
1544 for_each_netdev(net, dev) {
1545 if (dev->flags & IFF_UP) {
1546 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1547 dev);
1548 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1549 }
1550 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1551 }
1552 }
1553 unlock:
1554 rtnl_unlock();
1555 return err;
1556 }
1557 EXPORT_SYMBOL(unregister_netdevice_notifier);
1558
1559 /**
1560 * call_netdevice_notifiers_info - call all network notifier blocks
1561 * @val: value passed unmodified to notifier function
1562 * @dev: net_device pointer passed unmodified to notifier function
1563 * @info: notifier information data
1564 *
1565 * Call all network notifier blocks. Parameters and return value
1566 * are as for raw_notifier_call_chain().
1567 */
1568
1569 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1577
1578 /**
1579 * call_netdevice_notifiers - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 *
1583 * Call all network notifier blocks. Parameters and return value
1584 * are as for raw_notifier_call_chain().
1585 */
1586
1587 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1588 {
1589 struct netdev_notifier_info info;
1590
1591 return call_netdevice_notifiers_info(val, dev, &info);
1592 }
1593 EXPORT_SYMBOL(call_netdevice_notifiers);
1594
1595 static struct static_key netstamp_needed __read_mostly;
1596 #ifdef HAVE_JUMP_LABEL
1597 /* We are not allowed to call static_key_slow_dec() from irq context
1598 * If net_disable_timestamp() is called from irq context, defer the
1599 * static_key_slow_dec() calls.
1600 */
1601 static atomic_t netstamp_needed_deferred;
1602 #endif
1603
1604 void net_enable_timestamp(void)
1605 {
1606 #ifdef HAVE_JUMP_LABEL
1607 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1608
1609 if (deferred) {
1610 while (--deferred)
1611 static_key_slow_dec(&netstamp_needed);
1612 return;
1613 }
1614 #endif
1615 static_key_slow_inc(&netstamp_needed);
1616 }
1617 EXPORT_SYMBOL(net_enable_timestamp);
1618
1619 void net_disable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 if (in_interrupt()) {
1623 atomic_inc(&netstamp_needed_deferred);
1624 return;
1625 }
1626 #endif
1627 static_key_slow_dec(&netstamp_needed);
1628 }
1629 EXPORT_SYMBOL(net_disable_timestamp);
1630
1631 static inline void net_timestamp_set(struct sk_buff *skb)
1632 {
1633 skb->tstamp.tv64 = 0;
1634 if (static_key_false(&netstamp_needed))
1635 __net_timestamp(skb);
1636 }
1637
1638 #define net_timestamp_check(COND, SKB) \
1639 if (static_key_false(&netstamp_needed)) { \
1640 if ((COND) && !(SKB)->tstamp.tv64) \
1641 __net_timestamp(SKB); \
1642 } \
1643
1644 static inline bool is_skb_forwardable(struct net_device *dev,
1645 struct sk_buff *skb)
1646 {
1647 unsigned int len;
1648
1649 if (!(dev->flags & IFF_UP))
1650 return false;
1651
1652 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1653 if (skb->len <= len)
1654 return true;
1655
1656 /* if TSO is enabled, we don't care about the length as the packet
1657 * could be forwarded without being segmented before
1658 */
1659 if (skb_is_gso(skb))
1660 return true;
1661
1662 return false;
1663 }
1664
1665 /**
1666 * dev_forward_skb - loopback an skb to another netif
1667 *
1668 * @dev: destination network device
1669 * @skb: buffer to forward
1670 *
1671 * return values:
1672 * NET_RX_SUCCESS (no congestion)
1673 * NET_RX_DROP (packet was dropped, but freed)
1674 *
1675 * dev_forward_skb can be used for injecting an skb from the
1676 * start_xmit function of one device into the receive queue
1677 * of another device.
1678 *
1679 * The receiving device may be in another namespace, so
1680 * we have to clear all information in the skb that could
1681 * impact namespace isolation.
1682 */
1683 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1684 {
1685 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1686 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1687 atomic_long_inc(&dev->rx_dropped);
1688 kfree_skb(skb);
1689 return NET_RX_DROP;
1690 }
1691 }
1692
1693 if (unlikely(!is_skb_forwardable(dev, skb))) {
1694 atomic_long_inc(&dev->rx_dropped);
1695 kfree_skb(skb);
1696 return NET_RX_DROP;
1697 }
1698
1699 skb_scrub_packet(skb, true);
1700 skb->protocol = eth_type_trans(skb, dev);
1701
1702 return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 struct packet_type *pt_prev,
1708 struct net_device *orig_dev)
1709 {
1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 return -ENOMEM;
1712 atomic_inc(&skb->users);
1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 if (!ptype->af_packet_priv || !skb->sk)
1719 return false;
1720
1721 if (ptype->id_match)
1722 return ptype->id_match(ptype, skb->sk);
1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 return true;
1725
1726 return false;
1727 }
1728
1729 /*
1730 * Support routine. Sends outgoing frames to any network
1731 * taps currently in use.
1732 */
1733
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 struct packet_type *ptype;
1737 struct sk_buff *skb2 = NULL;
1738 struct packet_type *pt_prev = NULL;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 /* Never send packets back to the socket
1743 * they originated from - MvS (miquels@drinkel.ow.org)
1744 */
1745 if ((ptype->dev == dev || !ptype->dev) &&
1746 (!skb_loop_sk(ptype, skb))) {
1747 if (pt_prev) {
1748 deliver_skb(skb2, pt_prev, skb->dev);
1749 pt_prev = ptype;
1750 continue;
1751 }
1752
1753 skb2 = skb_clone(skb, GFP_ATOMIC);
1754 if (!skb2)
1755 break;
1756
1757 net_timestamp_set(skb2);
1758
1759 /* skb->nh should be correctly
1760 set by sender, so that the second statement is
1761 just protection against buggy protocols.
1762 */
1763 skb_reset_mac_header(skb2);
1764
1765 if (skb_network_header(skb2) < skb2->data ||
1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 ntohs(skb2->protocol),
1769 dev->name);
1770 skb_reset_network_header(skb2);
1771 }
1772
1773 skb2->transport_header = skb2->network_header;
1774 skb2->pkt_type = PACKET_OUTGOING;
1775 pt_prev = ptype;
1776 }
1777 }
1778 if (pt_prev)
1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 rcu_read_unlock();
1781 }
1782
1783 /**
1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785 * @dev: Network device
1786 * @txq: number of queues available
1787 *
1788 * If real_num_tx_queues is changed the tc mappings may no longer be
1789 * valid. To resolve this verify the tc mapping remains valid and if
1790 * not NULL the mapping. With no priorities mapping to this
1791 * offset/count pair it will no longer be used. In the worst case TC0
1792 * is invalid nothing can be done so disable priority mappings. If is
1793 * expected that drivers will fix this mapping if they can before
1794 * calling netif_set_real_num_tx_queues.
1795 */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 int i;
1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800
1801 /* If TC0 is invalidated disable TC mapping */
1802 if (tc->offset + tc->count > txq) {
1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 dev->num_tc = 0;
1805 return;
1806 }
1807
1808 /* Invalidated prio to tc mappings set to TC0 */
1809 for (i = 1; i < TC_BITMASK + 1; i++) {
1810 int q = netdev_get_prio_tc_map(dev, i);
1811
1812 tc = &dev->tc_to_txq[q];
1813 if (tc->offset + tc->count > txq) {
1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 i, q);
1816 netdev_set_prio_tc_map(dev, i, 0);
1817 }
1818 }
1819 }
1820
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P) \
1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *map = NULL;
1830 int pos;
1831
1832 if (dev_maps)
1833 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834
1835 for (pos = 0; map && pos < map->len; pos++) {
1836 if (map->queues[pos] == index) {
1837 if (map->len > 1) {
1838 map->queues[pos] = map->queues[--map->len];
1839 } else {
1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 kfree_rcu(map, rcu);
1842 map = NULL;
1843 }
1844 break;
1845 }
1846 }
1847
1848 return map;
1849 }
1850
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 struct xps_dev_maps *dev_maps;
1854 int cpu, i;
1855 bool active = false;
1856
1857 mutex_lock(&xps_map_mutex);
1858 dev_maps = xmap_dereference(dev->xps_maps);
1859
1860 if (!dev_maps)
1861 goto out_no_maps;
1862
1863 for_each_possible_cpu(cpu) {
1864 for (i = index; i < dev->num_tx_queues; i++) {
1865 if (!remove_xps_queue(dev_maps, cpu, i))
1866 break;
1867 }
1868 if (i == dev->num_tx_queues)
1869 active = true;
1870 }
1871
1872 if (!active) {
1873 RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 kfree_rcu(dev_maps, rcu);
1875 }
1876
1877 for (i = index; i < dev->num_tx_queues; i++)
1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 NUMA_NO_NODE);
1880
1881 out_no_maps:
1882 mutex_unlock(&xps_map_mutex);
1883 }
1884
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 int cpu, u16 index)
1887 {
1888 struct xps_map *new_map;
1889 int alloc_len = XPS_MIN_MAP_ALLOC;
1890 int i, pos;
1891
1892 for (pos = 0; map && pos < map->len; pos++) {
1893 if (map->queues[pos] != index)
1894 continue;
1895 return map;
1896 }
1897
1898 /* Need to add queue to this CPU's existing map */
1899 if (map) {
1900 if (pos < map->alloc_len)
1901 return map;
1902
1903 alloc_len = map->alloc_len * 2;
1904 }
1905
1906 /* Need to allocate new map to store queue on this CPU's map */
1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 cpu_to_node(cpu));
1909 if (!new_map)
1910 return NULL;
1911
1912 for (i = 0; i < pos; i++)
1913 new_map->queues[i] = map->queues[i];
1914 new_map->alloc_len = alloc_len;
1915 new_map->len = pos;
1916
1917 return new_map;
1918 }
1919
1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1921 u16 index)
1922 {
1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1924 struct xps_map *map, *new_map;
1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1926 int cpu, numa_node_id = -2;
1927 bool active = false;
1928
1929 mutex_lock(&xps_map_mutex);
1930
1931 dev_maps = xmap_dereference(dev->xps_maps);
1932
1933 /* allocate memory for queue storage */
1934 for_each_online_cpu(cpu) {
1935 if (!cpumask_test_cpu(cpu, mask))
1936 continue;
1937
1938 if (!new_dev_maps)
1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1940 if (!new_dev_maps) {
1941 mutex_unlock(&xps_map_mutex);
1942 return -ENOMEM;
1943 }
1944
1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1946 NULL;
1947
1948 map = expand_xps_map(map, cpu, index);
1949 if (!map)
1950 goto error;
1951
1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1953 }
1954
1955 if (!new_dev_maps)
1956 goto out_no_new_maps;
1957
1958 for_each_possible_cpu(cpu) {
1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1960 /* add queue to CPU maps */
1961 int pos = 0;
1962
1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1964 while ((pos < map->len) && (map->queues[pos] != index))
1965 pos++;
1966
1967 if (pos == map->len)
1968 map->queues[map->len++] = index;
1969 #ifdef CONFIG_NUMA
1970 if (numa_node_id == -2)
1971 numa_node_id = cpu_to_node(cpu);
1972 else if (numa_node_id != cpu_to_node(cpu))
1973 numa_node_id = -1;
1974 #endif
1975 } else if (dev_maps) {
1976 /* fill in the new device map from the old device map */
1977 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1979 }
1980
1981 }
1982
1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984
1985 /* Cleanup old maps */
1986 if (dev_maps) {
1987 for_each_possible_cpu(cpu) {
1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1990 if (map && map != new_map)
1991 kfree_rcu(map, rcu);
1992 }
1993
1994 kfree_rcu(dev_maps, rcu);
1995 }
1996
1997 dev_maps = new_dev_maps;
1998 active = true;
1999
2000 out_no_new_maps:
2001 /* update Tx queue numa node */
2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2003 (numa_node_id >= 0) ? numa_node_id :
2004 NUMA_NO_NODE);
2005
2006 if (!dev_maps)
2007 goto out_no_maps;
2008
2009 /* removes queue from unused CPUs */
2010 for_each_possible_cpu(cpu) {
2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2012 continue;
2013
2014 if (remove_xps_queue(dev_maps, cpu, index))
2015 active = true;
2016 }
2017
2018 /* free map if not active */
2019 if (!active) {
2020 RCU_INIT_POINTER(dev->xps_maps, NULL);
2021 kfree_rcu(dev_maps, rcu);
2022 }
2023
2024 out_no_maps:
2025 mutex_unlock(&xps_map_mutex);
2026
2027 return 0;
2028 error:
2029 /* remove any maps that we added */
2030 for_each_possible_cpu(cpu) {
2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2033 NULL;
2034 if (new_map && new_map != map)
2035 kfree(new_map);
2036 }
2037
2038 mutex_unlock(&xps_map_mutex);
2039
2040 kfree(new_dev_maps);
2041 return -ENOMEM;
2042 }
2043 EXPORT_SYMBOL(netif_set_xps_queue);
2044
2045 #endif
2046 /*
2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049 */
2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2051 {
2052 int rc;
2053
2054 if (txq < 1 || txq > dev->num_tx_queues)
2055 return -EINVAL;
2056
2057 if (dev->reg_state == NETREG_REGISTERED ||
2058 dev->reg_state == NETREG_UNREGISTERING) {
2059 ASSERT_RTNL();
2060
2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2062 txq);
2063 if (rc)
2064 return rc;
2065
2066 if (dev->num_tc)
2067 netif_setup_tc(dev, txq);
2068
2069 if (txq < dev->real_num_tx_queues) {
2070 qdisc_reset_all_tx_gt(dev, txq);
2071 #ifdef CONFIG_XPS
2072 netif_reset_xps_queues_gt(dev, txq);
2073 #endif
2074 }
2075 }
2076
2077 dev->real_num_tx_queues = txq;
2078 return 0;
2079 }
2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2081
2082 #ifdef CONFIG_RPS
2083 /**
2084 * netif_set_real_num_rx_queues - set actual number of RX queues used
2085 * @dev: Network device
2086 * @rxq: Actual number of RX queues
2087 *
2088 * This must be called either with the rtnl_lock held or before
2089 * registration of the net device. Returns 0 on success, or a
2090 * negative error code. If called before registration, it always
2091 * succeeds.
2092 */
2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2094 {
2095 int rc;
2096
2097 if (rxq < 1 || rxq > dev->num_rx_queues)
2098 return -EINVAL;
2099
2100 if (dev->reg_state == NETREG_REGISTERED) {
2101 ASSERT_RTNL();
2102
2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2104 rxq);
2105 if (rc)
2106 return rc;
2107 }
2108
2109 dev->real_num_rx_queues = rxq;
2110 return 0;
2111 }
2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2113 #endif
2114
2115 /**
2116 * netif_get_num_default_rss_queues - default number of RSS queues
2117 *
2118 * This routine should set an upper limit on the number of RSS queues
2119 * used by default by multiqueue devices.
2120 */
2121 int netif_get_num_default_rss_queues(void)
2122 {
2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124 }
2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126
2127 static inline void __netif_reschedule(struct Qdisc *q)
2128 {
2129 struct softnet_data *sd;
2130 unsigned long flags;
2131
2132 local_irq_save(flags);
2133 sd = &__get_cpu_var(softnet_data);
2134 q->next_sched = NULL;
2135 *sd->output_queue_tailp = q;
2136 sd->output_queue_tailp = &q->next_sched;
2137 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2138 local_irq_restore(flags);
2139 }
2140
2141 void __netif_schedule(struct Qdisc *q)
2142 {
2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2144 __netif_reschedule(q);
2145 }
2146 EXPORT_SYMBOL(__netif_schedule);
2147
2148 struct dev_kfree_skb_cb {
2149 enum skb_free_reason reason;
2150 };
2151
2152 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2153 {
2154 return (struct dev_kfree_skb_cb *)skb->cb;
2155 }
2156
2157 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2158 {
2159 unsigned long flags;
2160
2161 if (likely(atomic_read(&skb->users) == 1)) {
2162 smp_rmb();
2163 atomic_set(&skb->users, 0);
2164 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2165 return;
2166 }
2167 get_kfree_skb_cb(skb)->reason = reason;
2168 local_irq_save(flags);
2169 skb->next = __this_cpu_read(softnet_data.completion_queue);
2170 __this_cpu_write(softnet_data.completion_queue, skb);
2171 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2172 local_irq_restore(flags);
2173 }
2174 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2175
2176 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2177 {
2178 if (in_irq() || irqs_disabled())
2179 __dev_kfree_skb_irq(skb, reason);
2180 else
2181 dev_kfree_skb(skb);
2182 }
2183 EXPORT_SYMBOL(__dev_kfree_skb_any);
2184
2185
2186 /**
2187 * netif_device_detach - mark device as removed
2188 * @dev: network device
2189 *
2190 * Mark device as removed from system and therefore no longer available.
2191 */
2192 void netif_device_detach(struct net_device *dev)
2193 {
2194 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2195 netif_running(dev)) {
2196 netif_tx_stop_all_queues(dev);
2197 }
2198 }
2199 EXPORT_SYMBOL(netif_device_detach);
2200
2201 /**
2202 * netif_device_attach - mark device as attached
2203 * @dev: network device
2204 *
2205 * Mark device as attached from system and restart if needed.
2206 */
2207 void netif_device_attach(struct net_device *dev)
2208 {
2209 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2210 netif_running(dev)) {
2211 netif_tx_wake_all_queues(dev);
2212 __netdev_watchdog_up(dev);
2213 }
2214 }
2215 EXPORT_SYMBOL(netif_device_attach);
2216
2217 static void skb_warn_bad_offload(const struct sk_buff *skb)
2218 {
2219 static const netdev_features_t null_features = 0;
2220 struct net_device *dev = skb->dev;
2221 const char *driver = "";
2222
2223 if (!net_ratelimit())
2224 return;
2225
2226 if (dev && dev->dev.parent)
2227 driver = dev_driver_string(dev->dev.parent);
2228
2229 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2230 "gso_type=%d ip_summed=%d\n",
2231 driver, dev ? &dev->features : &null_features,
2232 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2233 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2234 skb_shinfo(skb)->gso_type, skb->ip_summed);
2235 }
2236
2237 /*
2238 * Invalidate hardware checksum when packet is to be mangled, and
2239 * complete checksum manually on outgoing path.
2240 */
2241 int skb_checksum_help(struct sk_buff *skb)
2242 {
2243 __wsum csum;
2244 int ret = 0, offset;
2245
2246 if (skb->ip_summed == CHECKSUM_COMPLETE)
2247 goto out_set_summed;
2248
2249 if (unlikely(skb_shinfo(skb)->gso_size)) {
2250 skb_warn_bad_offload(skb);
2251 return -EINVAL;
2252 }
2253
2254 /* Before computing a checksum, we should make sure no frag could
2255 * be modified by an external entity : checksum could be wrong.
2256 */
2257 if (skb_has_shared_frag(skb)) {
2258 ret = __skb_linearize(skb);
2259 if (ret)
2260 goto out;
2261 }
2262
2263 offset = skb_checksum_start_offset(skb);
2264 BUG_ON(offset >= skb_headlen(skb));
2265 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2266
2267 offset += skb->csum_offset;
2268 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2269
2270 if (skb_cloned(skb) &&
2271 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2272 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2273 if (ret)
2274 goto out;
2275 }
2276
2277 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2278 out_set_summed:
2279 skb->ip_summed = CHECKSUM_NONE;
2280 out:
2281 return ret;
2282 }
2283 EXPORT_SYMBOL(skb_checksum_help);
2284
2285 __be16 skb_network_protocol(struct sk_buff *skb)
2286 {
2287 __be16 type = skb->protocol;
2288 int vlan_depth = ETH_HLEN;
2289
2290 /* Tunnel gso handlers can set protocol to ethernet. */
2291 if (type == htons(ETH_P_TEB)) {
2292 struct ethhdr *eth;
2293
2294 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2295 return 0;
2296
2297 eth = (struct ethhdr *)skb_mac_header(skb);
2298 type = eth->h_proto;
2299 }
2300
2301 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2302 struct vlan_hdr *vh;
2303
2304 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2305 return 0;
2306
2307 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2308 type = vh->h_vlan_encapsulated_proto;
2309 vlan_depth += VLAN_HLEN;
2310 }
2311
2312 return type;
2313 }
2314
2315 /**
2316 * skb_mac_gso_segment - mac layer segmentation handler.
2317 * @skb: buffer to segment
2318 * @features: features for the output path (see dev->features)
2319 */
2320 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2321 netdev_features_t features)
2322 {
2323 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2324 struct packet_offload *ptype;
2325 __be16 type = skb_network_protocol(skb);
2326
2327 if (unlikely(!type))
2328 return ERR_PTR(-EINVAL);
2329
2330 __skb_pull(skb, skb->mac_len);
2331
2332 rcu_read_lock();
2333 list_for_each_entry_rcu(ptype, &offload_base, list) {
2334 if (ptype->type == type && ptype->callbacks.gso_segment) {
2335 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2336 int err;
2337
2338 err = ptype->callbacks.gso_send_check(skb);
2339 segs = ERR_PTR(err);
2340 if (err || skb_gso_ok(skb, features))
2341 break;
2342 __skb_push(skb, (skb->data -
2343 skb_network_header(skb)));
2344 }
2345 segs = ptype->callbacks.gso_segment(skb, features);
2346 break;
2347 }
2348 }
2349 rcu_read_unlock();
2350
2351 __skb_push(skb, skb->data - skb_mac_header(skb));
2352
2353 return segs;
2354 }
2355 EXPORT_SYMBOL(skb_mac_gso_segment);
2356
2357
2358 /* openvswitch calls this on rx path, so we need a different check.
2359 */
2360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2361 {
2362 if (tx_path)
2363 return skb->ip_summed != CHECKSUM_PARTIAL;
2364 else
2365 return skb->ip_summed == CHECKSUM_NONE;
2366 }
2367
2368 /**
2369 * __skb_gso_segment - Perform segmentation on skb.
2370 * @skb: buffer to segment
2371 * @features: features for the output path (see dev->features)
2372 * @tx_path: whether it is called in TX path
2373 *
2374 * This function segments the given skb and returns a list of segments.
2375 *
2376 * It may return NULL if the skb requires no segmentation. This is
2377 * only possible when GSO is used for verifying header integrity.
2378 */
2379 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2380 netdev_features_t features, bool tx_path)
2381 {
2382 if (unlikely(skb_needs_check(skb, tx_path))) {
2383 int err;
2384
2385 skb_warn_bad_offload(skb);
2386
2387 if (skb_header_cloned(skb) &&
2388 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2389 return ERR_PTR(err);
2390 }
2391
2392 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2393 SKB_GSO_CB(skb)->encap_level = 0;
2394
2395 skb_reset_mac_header(skb);
2396 skb_reset_mac_len(skb);
2397
2398 return skb_mac_gso_segment(skb, features);
2399 }
2400 EXPORT_SYMBOL(__skb_gso_segment);
2401
2402 /* Take action when hardware reception checksum errors are detected. */
2403 #ifdef CONFIG_BUG
2404 void netdev_rx_csum_fault(struct net_device *dev)
2405 {
2406 if (net_ratelimit()) {
2407 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2408 dump_stack();
2409 }
2410 }
2411 EXPORT_SYMBOL(netdev_rx_csum_fault);
2412 #endif
2413
2414 /* Actually, we should eliminate this check as soon as we know, that:
2415 * 1. IOMMU is present and allows to map all the memory.
2416 * 2. No high memory really exists on this machine.
2417 */
2418
2419 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2420 {
2421 #ifdef CONFIG_HIGHMEM
2422 int i;
2423 if (!(dev->features & NETIF_F_HIGHDMA)) {
2424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2426 if (PageHighMem(skb_frag_page(frag)))
2427 return 1;
2428 }
2429 }
2430
2431 if (PCI_DMA_BUS_IS_PHYS) {
2432 struct device *pdev = dev->dev.parent;
2433
2434 if (!pdev)
2435 return 0;
2436 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2437 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2438 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2439 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2440 return 1;
2441 }
2442 }
2443 #endif
2444 return 0;
2445 }
2446
2447 struct dev_gso_cb {
2448 void (*destructor)(struct sk_buff *skb);
2449 };
2450
2451 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2452
2453 static void dev_gso_skb_destructor(struct sk_buff *skb)
2454 {
2455 struct dev_gso_cb *cb;
2456
2457 do {
2458 struct sk_buff *nskb = skb->next;
2459
2460 skb->next = nskb->next;
2461 nskb->next = NULL;
2462 kfree_skb(nskb);
2463 } while (skb->next);
2464
2465 cb = DEV_GSO_CB(skb);
2466 if (cb->destructor)
2467 cb->destructor(skb);
2468 }
2469
2470 /**
2471 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2472 * @skb: buffer to segment
2473 * @features: device features as applicable to this skb
2474 *
2475 * This function segments the given skb and stores the list of segments
2476 * in skb->next.
2477 */
2478 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2479 {
2480 struct sk_buff *segs;
2481
2482 segs = skb_gso_segment(skb, features);
2483
2484 /* Verifying header integrity only. */
2485 if (!segs)
2486 return 0;
2487
2488 if (IS_ERR(segs))
2489 return PTR_ERR(segs);
2490
2491 skb->next = segs;
2492 DEV_GSO_CB(skb)->destructor = skb->destructor;
2493 skb->destructor = dev_gso_skb_destructor;
2494
2495 return 0;
2496 }
2497
2498 static netdev_features_t harmonize_features(struct sk_buff *skb,
2499 netdev_features_t features)
2500 {
2501 if (skb->ip_summed != CHECKSUM_NONE &&
2502 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2503 features &= ~NETIF_F_ALL_CSUM;
2504 } else if (illegal_highdma(skb->dev, skb)) {
2505 features &= ~NETIF_F_SG;
2506 }
2507
2508 return features;
2509 }
2510
2511 netdev_features_t netif_skb_features(struct sk_buff *skb)
2512 {
2513 __be16 protocol = skb->protocol;
2514 netdev_features_t features = skb->dev->features;
2515
2516 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2517 features &= ~NETIF_F_GSO_MASK;
2518
2519 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2520 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2521 protocol = veh->h_vlan_encapsulated_proto;
2522 } else if (!vlan_tx_tag_present(skb)) {
2523 return harmonize_features(skb, features);
2524 }
2525
2526 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2527 NETIF_F_HW_VLAN_STAG_TX);
2528
2529 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2530 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2531 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2532 NETIF_F_HW_VLAN_STAG_TX;
2533
2534 return harmonize_features(skb, features);
2535 }
2536 EXPORT_SYMBOL(netif_skb_features);
2537
2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2539 struct netdev_queue *txq, void *accel_priv)
2540 {
2541 const struct net_device_ops *ops = dev->netdev_ops;
2542 int rc = NETDEV_TX_OK;
2543 unsigned int skb_len;
2544
2545 if (likely(!skb->next)) {
2546 netdev_features_t features;
2547
2548 /*
2549 * If device doesn't need skb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(skb);
2554
2555 features = netif_skb_features(skb);
2556
2557 if (vlan_tx_tag_present(skb) &&
2558 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2559 skb = __vlan_put_tag(skb, skb->vlan_proto,
2560 vlan_tx_tag_get(skb));
2561 if (unlikely(!skb))
2562 goto out;
2563
2564 skb->vlan_tci = 0;
2565 }
2566
2567 /* If encapsulation offload request, verify we are testing
2568 * hardware encapsulation features instead of standard
2569 * features for the netdev
2570 */
2571 if (skb->encapsulation)
2572 features &= dev->hw_enc_features;
2573
2574 if (netif_needs_gso(skb, features)) {
2575 if (unlikely(dev_gso_segment(skb, features)))
2576 goto out_kfree_skb;
2577 if (skb->next)
2578 goto gso;
2579 } else {
2580 if (skb_needs_linearize(skb, features) &&
2581 __skb_linearize(skb))
2582 goto out_kfree_skb;
2583
2584 /* If packet is not checksummed and device does not
2585 * support checksumming for this protocol, complete
2586 * checksumming here.
2587 */
2588 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2589 if (skb->encapsulation)
2590 skb_set_inner_transport_header(skb,
2591 skb_checksum_start_offset(skb));
2592 else
2593 skb_set_transport_header(skb,
2594 skb_checksum_start_offset(skb));
2595 if (!(features & NETIF_F_ALL_CSUM) &&
2596 skb_checksum_help(skb))
2597 goto out_kfree_skb;
2598 }
2599 }
2600
2601 if (!list_empty(&ptype_all))
2602 dev_queue_xmit_nit(skb, dev);
2603
2604 skb_len = skb->len;
2605 if (accel_priv)
2606 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2607 else
2608 rc = ops->ndo_start_xmit(skb, dev);
2609
2610 trace_net_dev_xmit(skb, rc, dev, skb_len);
2611 if (rc == NETDEV_TX_OK && txq)
2612 txq_trans_update(txq);
2613 return rc;
2614 }
2615
2616 gso:
2617 do {
2618 struct sk_buff *nskb = skb->next;
2619
2620 skb->next = nskb->next;
2621 nskb->next = NULL;
2622
2623 if (!list_empty(&ptype_all))
2624 dev_queue_xmit_nit(nskb, dev);
2625
2626 skb_len = nskb->len;
2627 if (accel_priv)
2628 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2629 else
2630 rc = ops->ndo_start_xmit(nskb, dev);
2631 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2632 if (unlikely(rc != NETDEV_TX_OK)) {
2633 if (rc & ~NETDEV_TX_MASK)
2634 goto out_kfree_gso_skb;
2635 nskb->next = skb->next;
2636 skb->next = nskb;
2637 return rc;
2638 }
2639 txq_trans_update(txq);
2640 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2641 return NETDEV_TX_BUSY;
2642 } while (skb->next);
2643
2644 out_kfree_gso_skb:
2645 if (likely(skb->next == NULL)) {
2646 skb->destructor = DEV_GSO_CB(skb)->destructor;
2647 consume_skb(skb);
2648 return rc;
2649 }
2650 out_kfree_skb:
2651 kfree_skb(skb);
2652 out:
2653 return rc;
2654 }
2655 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2656
2657 static void qdisc_pkt_len_init(struct sk_buff *skb)
2658 {
2659 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2660
2661 qdisc_skb_cb(skb)->pkt_len = skb->len;
2662
2663 /* To get more precise estimation of bytes sent on wire,
2664 * we add to pkt_len the headers size of all segments
2665 */
2666 if (shinfo->gso_size) {
2667 unsigned int hdr_len;
2668 u16 gso_segs = shinfo->gso_segs;
2669
2670 /* mac layer + network layer */
2671 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2672
2673 /* + transport layer */
2674 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2675 hdr_len += tcp_hdrlen(skb);
2676 else
2677 hdr_len += sizeof(struct udphdr);
2678
2679 if (shinfo->gso_type & SKB_GSO_DODGY)
2680 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2681 shinfo->gso_size);
2682
2683 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2684 }
2685 }
2686
2687 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2688 struct net_device *dev,
2689 struct netdev_queue *txq)
2690 {
2691 spinlock_t *root_lock = qdisc_lock(q);
2692 bool contended;
2693 int rc;
2694
2695 qdisc_pkt_len_init(skb);
2696 qdisc_calculate_pkt_len(skb, q);
2697 /*
2698 * Heuristic to force contended enqueues to serialize on a
2699 * separate lock before trying to get qdisc main lock.
2700 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2701 * and dequeue packets faster.
2702 */
2703 contended = qdisc_is_running(q);
2704 if (unlikely(contended))
2705 spin_lock(&q->busylock);
2706
2707 spin_lock(root_lock);
2708 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2709 kfree_skb(skb);
2710 rc = NET_XMIT_DROP;
2711 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2712 qdisc_run_begin(q)) {
2713 /*
2714 * This is a work-conserving queue; there are no old skbs
2715 * waiting to be sent out; and the qdisc is not running -
2716 * xmit the skb directly.
2717 */
2718 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2719 skb_dst_force(skb);
2720
2721 qdisc_bstats_update(q, skb);
2722
2723 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2724 if (unlikely(contended)) {
2725 spin_unlock(&q->busylock);
2726 contended = false;
2727 }
2728 __qdisc_run(q);
2729 } else
2730 qdisc_run_end(q);
2731
2732 rc = NET_XMIT_SUCCESS;
2733 } else {
2734 skb_dst_force(skb);
2735 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2736 if (qdisc_run_begin(q)) {
2737 if (unlikely(contended)) {
2738 spin_unlock(&q->busylock);
2739 contended = false;
2740 }
2741 __qdisc_run(q);
2742 }
2743 }
2744 spin_unlock(root_lock);
2745 if (unlikely(contended))
2746 spin_unlock(&q->busylock);
2747 return rc;
2748 }
2749
2750 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2751 static void skb_update_prio(struct sk_buff *skb)
2752 {
2753 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2754
2755 if (!skb->priority && skb->sk && map) {
2756 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2757
2758 if (prioidx < map->priomap_len)
2759 skb->priority = map->priomap[prioidx];
2760 }
2761 }
2762 #else
2763 #define skb_update_prio(skb)
2764 #endif
2765
2766 static DEFINE_PER_CPU(int, xmit_recursion);
2767 #define RECURSION_LIMIT 10
2768
2769 /**
2770 * dev_loopback_xmit - loop back @skb
2771 * @skb: buffer to transmit
2772 */
2773 int dev_loopback_xmit(struct sk_buff *skb)
2774 {
2775 skb_reset_mac_header(skb);
2776 __skb_pull(skb, skb_network_offset(skb));
2777 skb->pkt_type = PACKET_LOOPBACK;
2778 skb->ip_summed = CHECKSUM_UNNECESSARY;
2779 WARN_ON(!skb_dst(skb));
2780 skb_dst_force(skb);
2781 netif_rx_ni(skb);
2782 return 0;
2783 }
2784 EXPORT_SYMBOL(dev_loopback_xmit);
2785
2786 /**
2787 * dev_queue_xmit - transmit a buffer
2788 * @skb: buffer to transmit
2789 *
2790 * Queue a buffer for transmission to a network device. The caller must
2791 * have set the device and priority and built the buffer before calling
2792 * this function. The function can be called from an interrupt.
2793 *
2794 * A negative errno code is returned on a failure. A success does not
2795 * guarantee the frame will be transmitted as it may be dropped due
2796 * to congestion or traffic shaping.
2797 *
2798 * -----------------------------------------------------------------------------------
2799 * I notice this method can also return errors from the queue disciplines,
2800 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2801 * be positive.
2802 *
2803 * Regardless of the return value, the skb is consumed, so it is currently
2804 * difficult to retry a send to this method. (You can bump the ref count
2805 * before sending to hold a reference for retry if you are careful.)
2806 *
2807 * When calling this method, interrupts MUST be enabled. This is because
2808 * the BH enable code must have IRQs enabled so that it will not deadlock.
2809 * --BLG
2810 */
2811 int dev_queue_xmit(struct sk_buff *skb)
2812 {
2813 struct net_device *dev = skb->dev;
2814 struct netdev_queue *txq;
2815 struct Qdisc *q;
2816 int rc = -ENOMEM;
2817
2818 skb_reset_mac_header(skb);
2819
2820 /* Disable soft irqs for various locks below. Also
2821 * stops preemption for RCU.
2822 */
2823 rcu_read_lock_bh();
2824
2825 skb_update_prio(skb);
2826
2827 txq = netdev_pick_tx(dev, skb);
2828 q = rcu_dereference_bh(txq->qdisc);
2829
2830 #ifdef CONFIG_NET_CLS_ACT
2831 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2832 #endif
2833 trace_net_dev_queue(skb);
2834 if (q->enqueue) {
2835 rc = __dev_xmit_skb(skb, q, dev, txq);
2836 goto out;
2837 }
2838
2839 /* The device has no queue. Common case for software devices:
2840 loopback, all the sorts of tunnels...
2841
2842 Really, it is unlikely that netif_tx_lock protection is necessary
2843 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2844 counters.)
2845 However, it is possible, that they rely on protection
2846 made by us here.
2847
2848 Check this and shot the lock. It is not prone from deadlocks.
2849 Either shot noqueue qdisc, it is even simpler 8)
2850 */
2851 if (dev->flags & IFF_UP) {
2852 int cpu = smp_processor_id(); /* ok because BHs are off */
2853
2854 if (txq->xmit_lock_owner != cpu) {
2855
2856 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2857 goto recursion_alert;
2858
2859 HARD_TX_LOCK(dev, txq, cpu);
2860
2861 if (!netif_xmit_stopped(txq)) {
2862 __this_cpu_inc(xmit_recursion);
2863 rc = dev_hard_start_xmit(skb, dev, txq, NULL);
2864 __this_cpu_dec(xmit_recursion);
2865 if (dev_xmit_complete(rc)) {
2866 HARD_TX_UNLOCK(dev, txq);
2867 goto out;
2868 }
2869 }
2870 HARD_TX_UNLOCK(dev, txq);
2871 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2872 dev->name);
2873 } else {
2874 /* Recursion is detected! It is possible,
2875 * unfortunately
2876 */
2877 recursion_alert:
2878 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2879 dev->name);
2880 }
2881 }
2882
2883 rc = -ENETDOWN;
2884 rcu_read_unlock_bh();
2885
2886 kfree_skb(skb);
2887 return rc;
2888 out:
2889 rcu_read_unlock_bh();
2890 return rc;
2891 }
2892 EXPORT_SYMBOL(dev_queue_xmit);
2893
2894
2895 /*=======================================================================
2896 Receiver routines
2897 =======================================================================*/
2898
2899 int netdev_max_backlog __read_mostly = 1000;
2900 EXPORT_SYMBOL(netdev_max_backlog);
2901
2902 int netdev_tstamp_prequeue __read_mostly = 1;
2903 int netdev_budget __read_mostly = 300;
2904 int weight_p __read_mostly = 64; /* old backlog weight */
2905
2906 /* Called with irq disabled */
2907 static inline void ____napi_schedule(struct softnet_data *sd,
2908 struct napi_struct *napi)
2909 {
2910 list_add_tail(&napi->poll_list, &sd->poll_list);
2911 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2912 }
2913
2914 #ifdef CONFIG_RPS
2915
2916 /* One global table that all flow-based protocols share. */
2917 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2918 EXPORT_SYMBOL(rps_sock_flow_table);
2919
2920 struct static_key rps_needed __read_mostly;
2921
2922 static struct rps_dev_flow *
2923 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2924 struct rps_dev_flow *rflow, u16 next_cpu)
2925 {
2926 if (next_cpu != RPS_NO_CPU) {
2927 #ifdef CONFIG_RFS_ACCEL
2928 struct netdev_rx_queue *rxqueue;
2929 struct rps_dev_flow_table *flow_table;
2930 struct rps_dev_flow *old_rflow;
2931 u32 flow_id;
2932 u16 rxq_index;
2933 int rc;
2934
2935 /* Should we steer this flow to a different hardware queue? */
2936 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2937 !(dev->features & NETIF_F_NTUPLE))
2938 goto out;
2939 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2940 if (rxq_index == skb_get_rx_queue(skb))
2941 goto out;
2942
2943 rxqueue = dev->_rx + rxq_index;
2944 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2945 if (!flow_table)
2946 goto out;
2947 flow_id = skb->rxhash & flow_table->mask;
2948 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2949 rxq_index, flow_id);
2950 if (rc < 0)
2951 goto out;
2952 old_rflow = rflow;
2953 rflow = &flow_table->flows[flow_id];
2954 rflow->filter = rc;
2955 if (old_rflow->filter == rflow->filter)
2956 old_rflow->filter = RPS_NO_FILTER;
2957 out:
2958 #endif
2959 rflow->last_qtail =
2960 per_cpu(softnet_data, next_cpu).input_queue_head;
2961 }
2962
2963 rflow->cpu = next_cpu;
2964 return rflow;
2965 }
2966
2967 /*
2968 * get_rps_cpu is called from netif_receive_skb and returns the target
2969 * CPU from the RPS map of the receiving queue for a given skb.
2970 * rcu_read_lock must be held on entry.
2971 */
2972 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2973 struct rps_dev_flow **rflowp)
2974 {
2975 struct netdev_rx_queue *rxqueue;
2976 struct rps_map *map;
2977 struct rps_dev_flow_table *flow_table;
2978 struct rps_sock_flow_table *sock_flow_table;
2979 int cpu = -1;
2980 u16 tcpu;
2981
2982 if (skb_rx_queue_recorded(skb)) {
2983 u16 index = skb_get_rx_queue(skb);
2984 if (unlikely(index >= dev->real_num_rx_queues)) {
2985 WARN_ONCE(dev->real_num_rx_queues > 1,
2986 "%s received packet on queue %u, but number "
2987 "of RX queues is %u\n",
2988 dev->name, index, dev->real_num_rx_queues);
2989 goto done;
2990 }
2991 rxqueue = dev->_rx + index;
2992 } else
2993 rxqueue = dev->_rx;
2994
2995 map = rcu_dereference(rxqueue->rps_map);
2996 if (map) {
2997 if (map->len == 1 &&
2998 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2999 tcpu = map->cpus[0];
3000 if (cpu_online(tcpu))
3001 cpu = tcpu;
3002 goto done;
3003 }
3004 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3005 goto done;
3006 }
3007
3008 skb_reset_network_header(skb);
3009 if (!skb_get_rxhash(skb))
3010 goto done;
3011
3012 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3013 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3014 if (flow_table && sock_flow_table) {
3015 u16 next_cpu;
3016 struct rps_dev_flow *rflow;
3017
3018 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3019 tcpu = rflow->cpu;
3020
3021 next_cpu = sock_flow_table->ents[skb->rxhash &
3022 sock_flow_table->mask];
3023
3024 /*
3025 * If the desired CPU (where last recvmsg was done) is
3026 * different from current CPU (one in the rx-queue flow
3027 * table entry), switch if one of the following holds:
3028 * - Current CPU is unset (equal to RPS_NO_CPU).
3029 * - Current CPU is offline.
3030 * - The current CPU's queue tail has advanced beyond the
3031 * last packet that was enqueued using this table entry.
3032 * This guarantees that all previous packets for the flow
3033 * have been dequeued, thus preserving in order delivery.
3034 */
3035 if (unlikely(tcpu != next_cpu) &&
3036 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3037 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3038 rflow->last_qtail)) >= 0)) {
3039 tcpu = next_cpu;
3040 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3041 }
3042
3043 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3044 *rflowp = rflow;
3045 cpu = tcpu;
3046 goto done;
3047 }
3048 }
3049
3050 if (map) {
3051 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3052
3053 if (cpu_online(tcpu)) {
3054 cpu = tcpu;
3055 goto done;
3056 }
3057 }
3058
3059 done:
3060 return cpu;
3061 }
3062
3063 #ifdef CONFIG_RFS_ACCEL
3064
3065 /**
3066 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3067 * @dev: Device on which the filter was set
3068 * @rxq_index: RX queue index
3069 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3070 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3071 *
3072 * Drivers that implement ndo_rx_flow_steer() should periodically call
3073 * this function for each installed filter and remove the filters for
3074 * which it returns %true.
3075 */
3076 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3077 u32 flow_id, u16 filter_id)
3078 {
3079 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3080 struct rps_dev_flow_table *flow_table;
3081 struct rps_dev_flow *rflow;
3082 bool expire = true;
3083 int cpu;
3084
3085 rcu_read_lock();
3086 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3087 if (flow_table && flow_id <= flow_table->mask) {
3088 rflow = &flow_table->flows[flow_id];
3089 cpu = ACCESS_ONCE(rflow->cpu);
3090 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3091 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3092 rflow->last_qtail) <
3093 (int)(10 * flow_table->mask)))
3094 expire = false;
3095 }
3096 rcu_read_unlock();
3097 return expire;
3098 }
3099 EXPORT_SYMBOL(rps_may_expire_flow);
3100
3101 #endif /* CONFIG_RFS_ACCEL */
3102
3103 /* Called from hardirq (IPI) context */
3104 static void rps_trigger_softirq(void *data)
3105 {
3106 struct softnet_data *sd = data;
3107
3108 ____napi_schedule(sd, &sd->backlog);
3109 sd->received_rps++;
3110 }
3111
3112 #endif /* CONFIG_RPS */
3113
3114 /*
3115 * Check if this softnet_data structure is another cpu one
3116 * If yes, queue it to our IPI list and return 1
3117 * If no, return 0
3118 */
3119 static int rps_ipi_queued(struct softnet_data *sd)
3120 {
3121 #ifdef CONFIG_RPS
3122 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3123
3124 if (sd != mysd) {
3125 sd->rps_ipi_next = mysd->rps_ipi_list;
3126 mysd->rps_ipi_list = sd;
3127
3128 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3129 return 1;
3130 }
3131 #endif /* CONFIG_RPS */
3132 return 0;
3133 }
3134
3135 #ifdef CONFIG_NET_FLOW_LIMIT
3136 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3137 #endif
3138
3139 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3140 {
3141 #ifdef CONFIG_NET_FLOW_LIMIT
3142 struct sd_flow_limit *fl;
3143 struct softnet_data *sd;
3144 unsigned int old_flow, new_flow;
3145
3146 if (qlen < (netdev_max_backlog >> 1))
3147 return false;
3148
3149 sd = &__get_cpu_var(softnet_data);
3150
3151 rcu_read_lock();
3152 fl = rcu_dereference(sd->flow_limit);
3153 if (fl) {
3154 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3155 old_flow = fl->history[fl->history_head];
3156 fl->history[fl->history_head] = new_flow;
3157
3158 fl->history_head++;
3159 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3160
3161 if (likely(fl->buckets[old_flow]))
3162 fl->buckets[old_flow]--;
3163
3164 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3165 fl->count++;
3166 rcu_read_unlock();
3167 return true;
3168 }
3169 }
3170 rcu_read_unlock();
3171 #endif
3172 return false;
3173 }
3174
3175 /*
3176 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3177 * queue (may be a remote CPU queue).
3178 */
3179 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3180 unsigned int *qtail)
3181 {
3182 struct softnet_data *sd;
3183 unsigned long flags;
3184 unsigned int qlen;
3185
3186 sd = &per_cpu(softnet_data, cpu);
3187
3188 local_irq_save(flags);
3189
3190 rps_lock(sd);
3191 qlen = skb_queue_len(&sd->input_pkt_queue);
3192 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3193 if (skb_queue_len(&sd->input_pkt_queue)) {
3194 enqueue:
3195 __skb_queue_tail(&sd->input_pkt_queue, skb);
3196 input_queue_tail_incr_save(sd, qtail);
3197 rps_unlock(sd);
3198 local_irq_restore(flags);
3199 return NET_RX_SUCCESS;
3200 }
3201
3202 /* Schedule NAPI for backlog device
3203 * We can use non atomic operation since we own the queue lock
3204 */
3205 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3206 if (!rps_ipi_queued(sd))
3207 ____napi_schedule(sd, &sd->backlog);
3208 }
3209 goto enqueue;
3210 }
3211
3212 sd->dropped++;
3213 rps_unlock(sd);
3214
3215 local_irq_restore(flags);
3216
3217 atomic_long_inc(&skb->dev->rx_dropped);
3218 kfree_skb(skb);
3219 return NET_RX_DROP;
3220 }
3221
3222 /**
3223 * netif_rx - post buffer to the network code
3224 * @skb: buffer to post
3225 *
3226 * This function receives a packet from a device driver and queues it for
3227 * the upper (protocol) levels to process. It always succeeds. The buffer
3228 * may be dropped during processing for congestion control or by the
3229 * protocol layers.
3230 *
3231 * return values:
3232 * NET_RX_SUCCESS (no congestion)
3233 * NET_RX_DROP (packet was dropped)
3234 *
3235 */
3236
3237 int netif_rx(struct sk_buff *skb)
3238 {
3239 int ret;
3240
3241 /* if netpoll wants it, pretend we never saw it */
3242 if (netpoll_rx(skb))
3243 return NET_RX_DROP;
3244
3245 net_timestamp_check(netdev_tstamp_prequeue, skb);
3246
3247 trace_netif_rx(skb);
3248 #ifdef CONFIG_RPS
3249 if (static_key_false(&rps_needed)) {
3250 struct rps_dev_flow voidflow, *rflow = &voidflow;
3251 int cpu;
3252
3253 preempt_disable();
3254 rcu_read_lock();
3255
3256 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3257 if (cpu < 0)
3258 cpu = smp_processor_id();
3259
3260 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3261
3262 rcu_read_unlock();
3263 preempt_enable();
3264 } else
3265 #endif
3266 {
3267 unsigned int qtail;
3268 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3269 put_cpu();
3270 }
3271 return ret;
3272 }
3273 EXPORT_SYMBOL(netif_rx);
3274
3275 int netif_rx_ni(struct sk_buff *skb)
3276 {
3277 int err;
3278
3279 preempt_disable();
3280 err = netif_rx(skb);
3281 if (local_softirq_pending())
3282 do_softirq();
3283 preempt_enable();
3284
3285 return err;
3286 }
3287 EXPORT_SYMBOL(netif_rx_ni);
3288
3289 static void net_tx_action(struct softirq_action *h)
3290 {
3291 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3292
3293 if (sd->completion_queue) {
3294 struct sk_buff *clist;
3295
3296 local_irq_disable();
3297 clist = sd->completion_queue;
3298 sd->completion_queue = NULL;
3299 local_irq_enable();
3300
3301 while (clist) {
3302 struct sk_buff *skb = clist;
3303 clist = clist->next;
3304
3305 WARN_ON(atomic_read(&skb->users));
3306 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3307 trace_consume_skb(skb);
3308 else
3309 trace_kfree_skb(skb, net_tx_action);
3310 __kfree_skb(skb);
3311 }
3312 }
3313
3314 if (sd->output_queue) {
3315 struct Qdisc *head;
3316
3317 local_irq_disable();
3318 head = sd->output_queue;
3319 sd->output_queue = NULL;
3320 sd->output_queue_tailp = &sd->output_queue;
3321 local_irq_enable();
3322
3323 while (head) {
3324 struct Qdisc *q = head;
3325 spinlock_t *root_lock;
3326
3327 head = head->next_sched;
3328
3329 root_lock = qdisc_lock(q);
3330 if (spin_trylock(root_lock)) {
3331 smp_mb__before_clear_bit();
3332 clear_bit(__QDISC_STATE_SCHED,
3333 &q->state);
3334 qdisc_run(q);
3335 spin_unlock(root_lock);
3336 } else {
3337 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3338 &q->state)) {
3339 __netif_reschedule(q);
3340 } else {
3341 smp_mb__before_clear_bit();
3342 clear_bit(__QDISC_STATE_SCHED,
3343 &q->state);
3344 }
3345 }
3346 }
3347 }
3348 }
3349
3350 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3351 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3352 /* This hook is defined here for ATM LANE */
3353 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3354 unsigned char *addr) __read_mostly;
3355 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3356 #endif
3357
3358 #ifdef CONFIG_NET_CLS_ACT
3359 /* TODO: Maybe we should just force sch_ingress to be compiled in
3360 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3361 * a compare and 2 stores extra right now if we dont have it on
3362 * but have CONFIG_NET_CLS_ACT
3363 * NOTE: This doesn't stop any functionality; if you dont have
3364 * the ingress scheduler, you just can't add policies on ingress.
3365 *
3366 */
3367 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3368 {
3369 struct net_device *dev = skb->dev;
3370 u32 ttl = G_TC_RTTL(skb->tc_verd);
3371 int result = TC_ACT_OK;
3372 struct Qdisc *q;
3373
3374 if (unlikely(MAX_RED_LOOP < ttl++)) {
3375 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3376 skb->skb_iif, dev->ifindex);
3377 return TC_ACT_SHOT;
3378 }
3379
3380 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3381 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3382
3383 q = rxq->qdisc;
3384 if (q != &noop_qdisc) {
3385 spin_lock(qdisc_lock(q));
3386 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3387 result = qdisc_enqueue_root(skb, q);
3388 spin_unlock(qdisc_lock(q));
3389 }
3390
3391 return result;
3392 }
3393
3394 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3395 struct packet_type **pt_prev,
3396 int *ret, struct net_device *orig_dev)
3397 {
3398 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3399
3400 if (!rxq || rxq->qdisc == &noop_qdisc)
3401 goto out;
3402
3403 if (*pt_prev) {
3404 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3405 *pt_prev = NULL;
3406 }
3407
3408 switch (ing_filter(skb, rxq)) {
3409 case TC_ACT_SHOT:
3410 case TC_ACT_STOLEN:
3411 kfree_skb(skb);
3412 return NULL;
3413 }
3414
3415 out:
3416 skb->tc_verd = 0;
3417 return skb;
3418 }
3419 #endif
3420
3421 /**
3422 * netdev_rx_handler_register - register receive handler
3423 * @dev: device to register a handler for
3424 * @rx_handler: receive handler to register
3425 * @rx_handler_data: data pointer that is used by rx handler
3426 *
3427 * Register a receive hander for a device. This handler will then be
3428 * called from __netif_receive_skb. A negative errno code is returned
3429 * on a failure.
3430 *
3431 * The caller must hold the rtnl_mutex.
3432 *
3433 * For a general description of rx_handler, see enum rx_handler_result.
3434 */
3435 int netdev_rx_handler_register(struct net_device *dev,
3436 rx_handler_func_t *rx_handler,
3437 void *rx_handler_data)
3438 {
3439 ASSERT_RTNL();
3440
3441 if (dev->rx_handler)
3442 return -EBUSY;
3443
3444 /* Note: rx_handler_data must be set before rx_handler */
3445 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3446 rcu_assign_pointer(dev->rx_handler, rx_handler);
3447
3448 return 0;
3449 }
3450 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3451
3452 /**
3453 * netdev_rx_handler_unregister - unregister receive handler
3454 * @dev: device to unregister a handler from
3455 *
3456 * Unregister a receive handler from a device.
3457 *
3458 * The caller must hold the rtnl_mutex.
3459 */
3460 void netdev_rx_handler_unregister(struct net_device *dev)
3461 {
3462
3463 ASSERT_RTNL();
3464 RCU_INIT_POINTER(dev->rx_handler, NULL);
3465 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3466 * section has a guarantee to see a non NULL rx_handler_data
3467 * as well.
3468 */
3469 synchronize_net();
3470 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3471 }
3472 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3473
3474 /*
3475 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3476 * the special handling of PFMEMALLOC skbs.
3477 */
3478 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3479 {
3480 switch (skb->protocol) {
3481 case __constant_htons(ETH_P_ARP):
3482 case __constant_htons(ETH_P_IP):
3483 case __constant_htons(ETH_P_IPV6):
3484 case __constant_htons(ETH_P_8021Q):
3485 case __constant_htons(ETH_P_8021AD):
3486 return true;
3487 default:
3488 return false;
3489 }
3490 }
3491
3492 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3493 {
3494 struct packet_type *ptype, *pt_prev;
3495 rx_handler_func_t *rx_handler;
3496 struct net_device *orig_dev;
3497 struct net_device *null_or_dev;
3498 bool deliver_exact = false;
3499 int ret = NET_RX_DROP;
3500 __be16 type;
3501
3502 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3503
3504 trace_netif_receive_skb(skb);
3505
3506 /* if we've gotten here through NAPI, check netpoll */
3507 if (netpoll_receive_skb(skb))
3508 goto out;
3509
3510 orig_dev = skb->dev;
3511
3512 skb_reset_network_header(skb);
3513 if (!skb_transport_header_was_set(skb))
3514 skb_reset_transport_header(skb);
3515 skb_reset_mac_len(skb);
3516
3517 pt_prev = NULL;
3518
3519 rcu_read_lock();
3520
3521 another_round:
3522 skb->skb_iif = skb->dev->ifindex;
3523
3524 __this_cpu_inc(softnet_data.processed);
3525
3526 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3527 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3528 skb = vlan_untag(skb);
3529 if (unlikely(!skb))
3530 goto unlock;
3531 }
3532
3533 #ifdef CONFIG_NET_CLS_ACT
3534 if (skb->tc_verd & TC_NCLS) {
3535 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3536 goto ncls;
3537 }
3538 #endif
3539
3540 if (pfmemalloc)
3541 goto skip_taps;
3542
3543 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3544 if (!ptype->dev || ptype->dev == skb->dev) {
3545 if (pt_prev)
3546 ret = deliver_skb(skb, pt_prev, orig_dev);
3547 pt_prev = ptype;
3548 }
3549 }
3550
3551 skip_taps:
3552 #ifdef CONFIG_NET_CLS_ACT
3553 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3554 if (!skb)
3555 goto unlock;
3556 ncls:
3557 #endif
3558
3559 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3560 goto drop;
3561
3562 if (vlan_tx_tag_present(skb)) {
3563 if (pt_prev) {
3564 ret = deliver_skb(skb, pt_prev, orig_dev);
3565 pt_prev = NULL;
3566 }
3567 if (vlan_do_receive(&skb))
3568 goto another_round;
3569 else if (unlikely(!skb))
3570 goto unlock;
3571 }
3572
3573 rx_handler = rcu_dereference(skb->dev->rx_handler);
3574 if (rx_handler) {
3575 if (pt_prev) {
3576 ret = deliver_skb(skb, pt_prev, orig_dev);
3577 pt_prev = NULL;
3578 }
3579 switch (rx_handler(&skb)) {
3580 case RX_HANDLER_CONSUMED:
3581 ret = NET_RX_SUCCESS;
3582 goto unlock;
3583 case RX_HANDLER_ANOTHER:
3584 goto another_round;
3585 case RX_HANDLER_EXACT:
3586 deliver_exact = true;
3587 case RX_HANDLER_PASS:
3588 break;
3589 default:
3590 BUG();
3591 }
3592 }
3593
3594 if (unlikely(vlan_tx_tag_present(skb))) {
3595 if (vlan_tx_tag_get_id(skb))
3596 skb->pkt_type = PACKET_OTHERHOST;
3597 /* Note: we might in the future use prio bits
3598 * and set skb->priority like in vlan_do_receive()
3599 * For the time being, just ignore Priority Code Point
3600 */
3601 skb->vlan_tci = 0;
3602 }
3603
3604 /* deliver only exact match when indicated */
3605 null_or_dev = deliver_exact ? skb->dev : NULL;
3606
3607 type = skb->protocol;
3608 list_for_each_entry_rcu(ptype,
3609 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3610 if (ptype->type == type &&
3611 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3612 ptype->dev == orig_dev)) {
3613 if (pt_prev)
3614 ret = deliver_skb(skb, pt_prev, orig_dev);
3615 pt_prev = ptype;
3616 }
3617 }
3618
3619 if (pt_prev) {
3620 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3621 goto drop;
3622 else
3623 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3624 } else {
3625 drop:
3626 atomic_long_inc(&skb->dev->rx_dropped);
3627 kfree_skb(skb);
3628 /* Jamal, now you will not able to escape explaining
3629 * me how you were going to use this. :-)
3630 */
3631 ret = NET_RX_DROP;
3632 }
3633
3634 unlock:
3635 rcu_read_unlock();
3636 out:
3637 return ret;
3638 }
3639
3640 static int __netif_receive_skb(struct sk_buff *skb)
3641 {
3642 int ret;
3643
3644 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3645 unsigned long pflags = current->flags;
3646
3647 /*
3648 * PFMEMALLOC skbs are special, they should
3649 * - be delivered to SOCK_MEMALLOC sockets only
3650 * - stay away from userspace
3651 * - have bounded memory usage
3652 *
3653 * Use PF_MEMALLOC as this saves us from propagating the allocation
3654 * context down to all allocation sites.
3655 */
3656 current->flags |= PF_MEMALLOC;
3657 ret = __netif_receive_skb_core(skb, true);
3658 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3659 } else
3660 ret = __netif_receive_skb_core(skb, false);
3661
3662 return ret;
3663 }
3664
3665 /**
3666 * netif_receive_skb - process receive buffer from network
3667 * @skb: buffer to process
3668 *
3669 * netif_receive_skb() is the main receive data processing function.
3670 * It always succeeds. The buffer may be dropped during processing
3671 * for congestion control or by the protocol layers.
3672 *
3673 * This function may only be called from softirq context and interrupts
3674 * should be enabled.
3675 *
3676 * Return values (usually ignored):
3677 * NET_RX_SUCCESS: no congestion
3678 * NET_RX_DROP: packet was dropped
3679 */
3680 int netif_receive_skb(struct sk_buff *skb)
3681 {
3682 net_timestamp_check(netdev_tstamp_prequeue, skb);
3683
3684 if (skb_defer_rx_timestamp(skb))
3685 return NET_RX_SUCCESS;
3686
3687 #ifdef CONFIG_RPS
3688 if (static_key_false(&rps_needed)) {
3689 struct rps_dev_flow voidflow, *rflow = &voidflow;
3690 int cpu, ret;
3691
3692 rcu_read_lock();
3693
3694 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3695
3696 if (cpu >= 0) {
3697 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3698 rcu_read_unlock();
3699 return ret;
3700 }
3701 rcu_read_unlock();
3702 }
3703 #endif
3704 return __netif_receive_skb(skb);
3705 }
3706 EXPORT_SYMBOL(netif_receive_skb);
3707
3708 /* Network device is going away, flush any packets still pending
3709 * Called with irqs disabled.
3710 */
3711 static void flush_backlog(void *arg)
3712 {
3713 struct net_device *dev = arg;
3714 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3715 struct sk_buff *skb, *tmp;
3716
3717 rps_lock(sd);
3718 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3719 if (skb->dev == dev) {
3720 __skb_unlink(skb, &sd->input_pkt_queue);
3721 kfree_skb(skb);
3722 input_queue_head_incr(sd);
3723 }
3724 }
3725 rps_unlock(sd);
3726
3727 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3728 if (skb->dev == dev) {
3729 __skb_unlink(skb, &sd->process_queue);
3730 kfree_skb(skb);
3731 input_queue_head_incr(sd);
3732 }
3733 }
3734 }
3735
3736 static int napi_gro_complete(struct sk_buff *skb)
3737 {
3738 struct packet_offload *ptype;
3739 __be16 type = skb->protocol;
3740 struct list_head *head = &offload_base;
3741 int err = -ENOENT;
3742
3743 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3744
3745 if (NAPI_GRO_CB(skb)->count == 1) {
3746 skb_shinfo(skb)->gso_size = 0;
3747 goto out;
3748 }
3749
3750 rcu_read_lock();
3751 list_for_each_entry_rcu(ptype, head, list) {
3752 if (ptype->type != type || !ptype->callbacks.gro_complete)
3753 continue;
3754
3755 err = ptype->callbacks.gro_complete(skb, 0);
3756 break;
3757 }
3758 rcu_read_unlock();
3759
3760 if (err) {
3761 WARN_ON(&ptype->list == head);
3762 kfree_skb(skb);
3763 return NET_RX_SUCCESS;
3764 }
3765
3766 out:
3767 return netif_receive_skb(skb);
3768 }
3769
3770 /* napi->gro_list contains packets ordered by age.
3771 * youngest packets at the head of it.
3772 * Complete skbs in reverse order to reduce latencies.
3773 */
3774 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3775 {
3776 struct sk_buff *skb, *prev = NULL;
3777
3778 /* scan list and build reverse chain */
3779 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3780 skb->prev = prev;
3781 prev = skb;
3782 }
3783
3784 for (skb = prev; skb; skb = prev) {
3785 skb->next = NULL;
3786
3787 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3788 return;
3789
3790 prev = skb->prev;
3791 napi_gro_complete(skb);
3792 napi->gro_count--;
3793 }
3794
3795 napi->gro_list = NULL;
3796 }
3797 EXPORT_SYMBOL(napi_gro_flush);
3798
3799 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3800 {
3801 struct sk_buff *p;
3802 unsigned int maclen = skb->dev->hard_header_len;
3803
3804 for (p = napi->gro_list; p; p = p->next) {
3805 unsigned long diffs;
3806
3807 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3808 diffs |= p->vlan_tci ^ skb->vlan_tci;
3809 if (maclen == ETH_HLEN)
3810 diffs |= compare_ether_header(skb_mac_header(p),
3811 skb_gro_mac_header(skb));
3812 else if (!diffs)
3813 diffs = memcmp(skb_mac_header(p),
3814 skb_gro_mac_header(skb),
3815 maclen);
3816 NAPI_GRO_CB(p)->same_flow = !diffs;
3817 NAPI_GRO_CB(p)->flush = 0;
3818 }
3819 }
3820
3821 static void skb_gro_reset_offset(struct sk_buff *skb)
3822 {
3823 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3824 const skb_frag_t *frag0 = &pinfo->frags[0];
3825
3826 NAPI_GRO_CB(skb)->data_offset = 0;
3827 NAPI_GRO_CB(skb)->frag0 = NULL;
3828 NAPI_GRO_CB(skb)->frag0_len = 0;
3829
3830 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3831 pinfo->nr_frags &&
3832 !PageHighMem(skb_frag_page(frag0))) {
3833 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3834 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3835 }
3836 }
3837
3838 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3839 {
3840 struct sk_buff **pp = NULL;
3841 struct packet_offload *ptype;
3842 __be16 type = skb->protocol;
3843 struct list_head *head = &offload_base;
3844 int same_flow;
3845 enum gro_result ret;
3846
3847 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3848 goto normal;
3849
3850 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3851 goto normal;
3852
3853 skb_gro_reset_offset(skb);
3854 gro_list_prepare(napi, skb);
3855
3856 rcu_read_lock();
3857 list_for_each_entry_rcu(ptype, head, list) {
3858 if (ptype->type != type || !ptype->callbacks.gro_receive)
3859 continue;
3860
3861 skb_set_network_header(skb, skb_gro_offset(skb));
3862 skb_reset_mac_len(skb);
3863 NAPI_GRO_CB(skb)->same_flow = 0;
3864 NAPI_GRO_CB(skb)->flush = 0;
3865 NAPI_GRO_CB(skb)->free = 0;
3866
3867 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3868 break;
3869 }
3870 rcu_read_unlock();
3871
3872 if (&ptype->list == head)
3873 goto normal;
3874
3875 same_flow = NAPI_GRO_CB(skb)->same_flow;
3876 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3877
3878 if (pp) {
3879 struct sk_buff *nskb = *pp;
3880
3881 *pp = nskb->next;
3882 nskb->next = NULL;
3883 napi_gro_complete(nskb);
3884 napi->gro_count--;
3885 }
3886
3887 if (same_flow)
3888 goto ok;
3889
3890 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3891 goto normal;
3892
3893 napi->gro_count++;
3894 NAPI_GRO_CB(skb)->count = 1;
3895 NAPI_GRO_CB(skb)->age = jiffies;
3896 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3897 skb->next = napi->gro_list;
3898 napi->gro_list = skb;
3899 ret = GRO_HELD;
3900
3901 pull:
3902 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3903 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3904
3905 BUG_ON(skb->end - skb->tail < grow);
3906
3907 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3908
3909 skb->tail += grow;
3910 skb->data_len -= grow;
3911
3912 skb_shinfo(skb)->frags[0].page_offset += grow;
3913 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3914
3915 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3916 skb_frag_unref(skb, 0);
3917 memmove(skb_shinfo(skb)->frags,
3918 skb_shinfo(skb)->frags + 1,
3919 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3920 }
3921 }
3922
3923 ok:
3924 return ret;
3925
3926 normal:
3927 ret = GRO_NORMAL;
3928 goto pull;
3929 }
3930
3931
3932 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3933 {
3934 switch (ret) {
3935 case GRO_NORMAL:
3936 if (netif_receive_skb(skb))
3937 ret = GRO_DROP;
3938 break;
3939
3940 case GRO_DROP:
3941 kfree_skb(skb);
3942 break;
3943
3944 case GRO_MERGED_FREE:
3945 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3946 kmem_cache_free(skbuff_head_cache, skb);
3947 else
3948 __kfree_skb(skb);
3949 break;
3950
3951 case GRO_HELD:
3952 case GRO_MERGED:
3953 break;
3954 }
3955
3956 return ret;
3957 }
3958
3959 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3960 {
3961 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3962 }
3963 EXPORT_SYMBOL(napi_gro_receive);
3964
3965 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3966 {
3967 __skb_pull(skb, skb_headlen(skb));
3968 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3969 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3970 skb->vlan_tci = 0;
3971 skb->dev = napi->dev;
3972 skb->skb_iif = 0;
3973
3974 napi->skb = skb;
3975 }
3976
3977 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3978 {
3979 struct sk_buff *skb = napi->skb;
3980
3981 if (!skb) {
3982 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3983 napi->skb = skb;
3984 }
3985 return skb;
3986 }
3987 EXPORT_SYMBOL(napi_get_frags);
3988
3989 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3990 gro_result_t ret)
3991 {
3992 switch (ret) {
3993 case GRO_NORMAL:
3994 if (netif_receive_skb(skb))
3995 ret = GRO_DROP;
3996 break;
3997
3998 case GRO_DROP:
3999 case GRO_MERGED_FREE:
4000 napi_reuse_skb(napi, skb);
4001 break;
4002
4003 case GRO_HELD:
4004 case GRO_MERGED:
4005 break;
4006 }
4007
4008 return ret;
4009 }
4010
4011 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4012 {
4013 struct sk_buff *skb = napi->skb;
4014
4015 napi->skb = NULL;
4016
4017 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4018 napi_reuse_skb(napi, skb);
4019 return NULL;
4020 }
4021 skb->protocol = eth_type_trans(skb, skb->dev);
4022
4023 return skb;
4024 }
4025
4026 gro_result_t napi_gro_frags(struct napi_struct *napi)
4027 {
4028 struct sk_buff *skb = napi_frags_skb(napi);
4029
4030 if (!skb)
4031 return GRO_DROP;
4032
4033 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4034 }
4035 EXPORT_SYMBOL(napi_gro_frags);
4036
4037 /*
4038 * net_rps_action sends any pending IPI's for rps.
4039 * Note: called with local irq disabled, but exits with local irq enabled.
4040 */
4041 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4042 {
4043 #ifdef CONFIG_RPS
4044 struct softnet_data *remsd = sd->rps_ipi_list;
4045
4046 if (remsd) {
4047 sd->rps_ipi_list = NULL;
4048
4049 local_irq_enable();
4050
4051 /* Send pending IPI's to kick RPS processing on remote cpus. */
4052 while (remsd) {
4053 struct softnet_data *next = remsd->rps_ipi_next;
4054
4055 if (cpu_online(remsd->cpu))
4056 __smp_call_function_single(remsd->cpu,
4057 &remsd->csd, 0);
4058 remsd = next;
4059 }
4060 } else
4061 #endif
4062 local_irq_enable();
4063 }
4064
4065 static int process_backlog(struct napi_struct *napi, int quota)
4066 {
4067 int work = 0;
4068 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4069
4070 #ifdef CONFIG_RPS
4071 /* Check if we have pending ipi, its better to send them now,
4072 * not waiting net_rx_action() end.
4073 */
4074 if (sd->rps_ipi_list) {
4075 local_irq_disable();
4076 net_rps_action_and_irq_enable(sd);
4077 }
4078 #endif
4079 napi->weight = weight_p;
4080 local_irq_disable();
4081 while (work < quota) {
4082 struct sk_buff *skb;
4083 unsigned int qlen;
4084
4085 while ((skb = __skb_dequeue(&sd->process_queue))) {
4086 local_irq_enable();
4087 __netif_receive_skb(skb);
4088 local_irq_disable();
4089 input_queue_head_incr(sd);
4090 if (++work >= quota) {
4091 local_irq_enable();
4092 return work;
4093 }
4094 }
4095
4096 rps_lock(sd);
4097 qlen = skb_queue_len(&sd->input_pkt_queue);
4098 if (qlen)
4099 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4100 &sd->process_queue);
4101
4102 if (qlen < quota - work) {
4103 /*
4104 * Inline a custom version of __napi_complete().
4105 * only current cpu owns and manipulates this napi,
4106 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4107 * we can use a plain write instead of clear_bit(),
4108 * and we dont need an smp_mb() memory barrier.
4109 */
4110 list_del(&napi->poll_list);
4111 napi->state = 0;
4112
4113 quota = work + qlen;
4114 }
4115 rps_unlock(sd);
4116 }
4117 local_irq_enable();
4118
4119 return work;
4120 }
4121
4122 /**
4123 * __napi_schedule - schedule for receive
4124 * @n: entry to schedule
4125 *
4126 * The entry's receive function will be scheduled to run
4127 */
4128 void __napi_schedule(struct napi_struct *n)
4129 {
4130 unsigned long flags;
4131
4132 local_irq_save(flags);
4133 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4134 local_irq_restore(flags);
4135 }
4136 EXPORT_SYMBOL(__napi_schedule);
4137
4138 void __napi_complete(struct napi_struct *n)
4139 {
4140 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4141 BUG_ON(n->gro_list);
4142
4143 list_del(&n->poll_list);
4144 smp_mb__before_clear_bit();
4145 clear_bit(NAPI_STATE_SCHED, &n->state);
4146 }
4147 EXPORT_SYMBOL(__napi_complete);
4148
4149 void napi_complete(struct napi_struct *n)
4150 {
4151 unsigned long flags;
4152
4153 /*
4154 * don't let napi dequeue from the cpu poll list
4155 * just in case its running on a different cpu
4156 */
4157 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4158 return;
4159
4160 napi_gro_flush(n, false);
4161 local_irq_save(flags);
4162 __napi_complete(n);
4163 local_irq_restore(flags);
4164 }
4165 EXPORT_SYMBOL(napi_complete);
4166
4167 /* must be called under rcu_read_lock(), as we dont take a reference */
4168 struct napi_struct *napi_by_id(unsigned int napi_id)
4169 {
4170 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4171 struct napi_struct *napi;
4172
4173 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4174 if (napi->napi_id == napi_id)
4175 return napi;
4176
4177 return NULL;
4178 }
4179 EXPORT_SYMBOL_GPL(napi_by_id);
4180
4181 void napi_hash_add(struct napi_struct *napi)
4182 {
4183 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4184
4185 spin_lock(&napi_hash_lock);
4186
4187 /* 0 is not a valid id, we also skip an id that is taken
4188 * we expect both events to be extremely rare
4189 */
4190 napi->napi_id = 0;
4191 while (!napi->napi_id) {
4192 napi->napi_id = ++napi_gen_id;
4193 if (napi_by_id(napi->napi_id))
4194 napi->napi_id = 0;
4195 }
4196
4197 hlist_add_head_rcu(&napi->napi_hash_node,
4198 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4199
4200 spin_unlock(&napi_hash_lock);
4201 }
4202 }
4203 EXPORT_SYMBOL_GPL(napi_hash_add);
4204
4205 /* Warning : caller is responsible to make sure rcu grace period
4206 * is respected before freeing memory containing @napi
4207 */
4208 void napi_hash_del(struct napi_struct *napi)
4209 {
4210 spin_lock(&napi_hash_lock);
4211
4212 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4213 hlist_del_rcu(&napi->napi_hash_node);
4214
4215 spin_unlock(&napi_hash_lock);
4216 }
4217 EXPORT_SYMBOL_GPL(napi_hash_del);
4218
4219 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4220 int (*poll)(struct napi_struct *, int), int weight)
4221 {
4222 INIT_LIST_HEAD(&napi->poll_list);
4223 napi->gro_count = 0;
4224 napi->gro_list = NULL;
4225 napi->skb = NULL;
4226 napi->poll = poll;
4227 if (weight > NAPI_POLL_WEIGHT)
4228 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4229 weight, dev->name);
4230 napi->weight = weight;
4231 list_add(&napi->dev_list, &dev->napi_list);
4232 napi->dev = dev;
4233 #ifdef CONFIG_NETPOLL
4234 spin_lock_init(&napi->poll_lock);
4235 napi->poll_owner = -1;
4236 #endif
4237 set_bit(NAPI_STATE_SCHED, &napi->state);
4238 }
4239 EXPORT_SYMBOL(netif_napi_add);
4240
4241 void netif_napi_del(struct napi_struct *napi)
4242 {
4243 struct sk_buff *skb, *next;
4244
4245 list_del_init(&napi->dev_list);
4246 napi_free_frags(napi);
4247
4248 for (skb = napi->gro_list; skb; skb = next) {
4249 next = skb->next;
4250 skb->next = NULL;
4251 kfree_skb(skb);
4252 }
4253
4254 napi->gro_list = NULL;
4255 napi->gro_count = 0;
4256 }
4257 EXPORT_SYMBOL(netif_napi_del);
4258
4259 static void net_rx_action(struct softirq_action *h)
4260 {
4261 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4262 unsigned long time_limit = jiffies + 2;
4263 int budget = netdev_budget;
4264 void *have;
4265
4266 local_irq_disable();
4267
4268 while (!list_empty(&sd->poll_list)) {
4269 struct napi_struct *n;
4270 int work, weight;
4271
4272 /* If softirq window is exhuasted then punt.
4273 * Allow this to run for 2 jiffies since which will allow
4274 * an average latency of 1.5/HZ.
4275 */
4276 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4277 goto softnet_break;
4278
4279 local_irq_enable();
4280
4281 /* Even though interrupts have been re-enabled, this
4282 * access is safe because interrupts can only add new
4283 * entries to the tail of this list, and only ->poll()
4284 * calls can remove this head entry from the list.
4285 */
4286 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4287
4288 have = netpoll_poll_lock(n);
4289
4290 weight = n->weight;
4291
4292 /* This NAPI_STATE_SCHED test is for avoiding a race
4293 * with netpoll's poll_napi(). Only the entity which
4294 * obtains the lock and sees NAPI_STATE_SCHED set will
4295 * actually make the ->poll() call. Therefore we avoid
4296 * accidentally calling ->poll() when NAPI is not scheduled.
4297 */
4298 work = 0;
4299 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4300 work = n->poll(n, weight);
4301 trace_napi_poll(n);
4302 }
4303
4304 WARN_ON_ONCE(work > weight);
4305
4306 budget -= work;
4307
4308 local_irq_disable();
4309
4310 /* Drivers must not modify the NAPI state if they
4311 * consume the entire weight. In such cases this code
4312 * still "owns" the NAPI instance and therefore can
4313 * move the instance around on the list at-will.
4314 */
4315 if (unlikely(work == weight)) {
4316 if (unlikely(napi_disable_pending(n))) {
4317 local_irq_enable();
4318 napi_complete(n);
4319 local_irq_disable();
4320 } else {
4321 if (n->gro_list) {
4322 /* flush too old packets
4323 * If HZ < 1000, flush all packets.
4324 */
4325 local_irq_enable();
4326 napi_gro_flush(n, HZ >= 1000);
4327 local_irq_disable();
4328 }
4329 list_move_tail(&n->poll_list, &sd->poll_list);
4330 }
4331 }
4332
4333 netpoll_poll_unlock(have);
4334 }
4335 out:
4336 net_rps_action_and_irq_enable(sd);
4337
4338 #ifdef CONFIG_NET_DMA
4339 /*
4340 * There may not be any more sk_buffs coming right now, so push
4341 * any pending DMA copies to hardware
4342 */
4343 dma_issue_pending_all();
4344 #endif
4345
4346 return;
4347
4348 softnet_break:
4349 sd->time_squeeze++;
4350 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4351 goto out;
4352 }
4353
4354 struct netdev_adjacent {
4355 struct net_device *dev;
4356
4357 /* upper master flag, there can only be one master device per list */
4358 bool master;
4359
4360 /* counter for the number of times this device was added to us */
4361 u16 ref_nr;
4362
4363 /* private field for the users */
4364 void *private;
4365
4366 struct list_head list;
4367 struct rcu_head rcu;
4368 };
4369
4370 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4371 struct net_device *adj_dev,
4372 struct list_head *adj_list)
4373 {
4374 struct netdev_adjacent *adj;
4375
4376 list_for_each_entry_rcu(adj, adj_list, list) {
4377 if (adj->dev == adj_dev)
4378 return adj;
4379 }
4380 return NULL;
4381 }
4382
4383 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4384 struct net_device *adj_dev,
4385 struct list_head *adj_list)
4386 {
4387 struct netdev_adjacent *adj;
4388
4389 list_for_each_entry(adj, adj_list, list) {
4390 if (adj->dev == adj_dev)
4391 return adj;
4392 }
4393 return NULL;
4394 }
4395
4396 /**
4397 * netdev_has_upper_dev - Check if device is linked to an upper device
4398 * @dev: device
4399 * @upper_dev: upper device to check
4400 *
4401 * Find out if a device is linked to specified upper device and return true
4402 * in case it is. Note that this checks only immediate upper device,
4403 * not through a complete stack of devices. The caller must hold the RTNL lock.
4404 */
4405 bool netdev_has_upper_dev(struct net_device *dev,
4406 struct net_device *upper_dev)
4407 {
4408 ASSERT_RTNL();
4409
4410 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4411 }
4412 EXPORT_SYMBOL(netdev_has_upper_dev);
4413
4414 /**
4415 * netdev_has_any_upper_dev - Check if device is linked to some device
4416 * @dev: device
4417 *
4418 * Find out if a device is linked to an upper device and return true in case
4419 * it is. The caller must hold the RTNL lock.
4420 */
4421 bool netdev_has_any_upper_dev(struct net_device *dev)
4422 {
4423 ASSERT_RTNL();
4424
4425 return !list_empty(&dev->all_adj_list.upper);
4426 }
4427 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4428
4429 /**
4430 * netdev_master_upper_dev_get - Get master upper device
4431 * @dev: device
4432 *
4433 * Find a master upper device and return pointer to it or NULL in case
4434 * it's not there. The caller must hold the RTNL lock.
4435 */
4436 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4437 {
4438 struct netdev_adjacent *upper;
4439
4440 ASSERT_RTNL();
4441
4442 if (list_empty(&dev->adj_list.upper))
4443 return NULL;
4444
4445 upper = list_first_entry(&dev->adj_list.upper,
4446 struct netdev_adjacent, list);
4447 if (likely(upper->master))
4448 return upper->dev;
4449 return NULL;
4450 }
4451 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4452
4453 void *netdev_adjacent_get_private(struct list_head *adj_list)
4454 {
4455 struct netdev_adjacent *adj;
4456
4457 adj = list_entry(adj_list, struct netdev_adjacent, list);
4458
4459 return adj->private;
4460 }
4461 EXPORT_SYMBOL(netdev_adjacent_get_private);
4462
4463 /**
4464 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4465 * @dev: device
4466 * @iter: list_head ** of the current position
4467 *
4468 * Gets the next device from the dev's upper list, starting from iter
4469 * position. The caller must hold RCU read lock.
4470 */
4471 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4472 struct list_head **iter)
4473 {
4474 struct netdev_adjacent *upper;
4475
4476 WARN_ON_ONCE(!rcu_read_lock_held());
4477
4478 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4479
4480 if (&upper->list == &dev->all_adj_list.upper)
4481 return NULL;
4482
4483 *iter = &upper->list;
4484
4485 return upper->dev;
4486 }
4487 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4488
4489 /**
4490 * netdev_lower_get_next_private - Get the next ->private from the
4491 * lower neighbour list
4492 * @dev: device
4493 * @iter: list_head ** of the current position
4494 *
4495 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4496 * list, starting from iter position. The caller must hold either hold the
4497 * RTNL lock or its own locking that guarantees that the neighbour lower
4498 * list will remain unchainged.
4499 */
4500 void *netdev_lower_get_next_private(struct net_device *dev,
4501 struct list_head **iter)
4502 {
4503 struct netdev_adjacent *lower;
4504
4505 lower = list_entry(*iter, struct netdev_adjacent, list);
4506
4507 if (&lower->list == &dev->adj_list.lower)
4508 return NULL;
4509
4510 if (iter)
4511 *iter = lower->list.next;
4512
4513 return lower->private;
4514 }
4515 EXPORT_SYMBOL(netdev_lower_get_next_private);
4516
4517 /**
4518 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4519 * lower neighbour list, RCU
4520 * variant
4521 * @dev: device
4522 * @iter: list_head ** of the current position
4523 *
4524 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4525 * list, starting from iter position. The caller must hold RCU read lock.
4526 */
4527 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4528 struct list_head **iter)
4529 {
4530 struct netdev_adjacent *lower;
4531
4532 WARN_ON_ONCE(!rcu_read_lock_held());
4533
4534 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4535
4536 if (&lower->list == &dev->adj_list.lower)
4537 return NULL;
4538
4539 if (iter)
4540 *iter = &lower->list;
4541
4542 return lower->private;
4543 }
4544 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4545
4546 /**
4547 * netdev_master_upper_dev_get_rcu - Get master upper device
4548 * @dev: device
4549 *
4550 * Find a master upper device and return pointer to it or NULL in case
4551 * it's not there. The caller must hold the RCU read lock.
4552 */
4553 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4554 {
4555 struct netdev_adjacent *upper;
4556
4557 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4558 struct netdev_adjacent, list);
4559 if (upper && likely(upper->master))
4560 return upper->dev;
4561 return NULL;
4562 }
4563 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4564
4565 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4566 struct net_device *adj_dev,
4567 struct list_head *dev_list,
4568 void *private, bool master)
4569 {
4570 struct netdev_adjacent *adj;
4571 char linkname[IFNAMSIZ+7];
4572 int ret;
4573
4574 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4575
4576 if (adj) {
4577 adj->ref_nr++;
4578 return 0;
4579 }
4580
4581 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4582 if (!adj)
4583 return -ENOMEM;
4584
4585 adj->dev = adj_dev;
4586 adj->master = master;
4587 adj->ref_nr = 1;
4588 adj->private = private;
4589 dev_hold(adj_dev);
4590
4591 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4592 adj_dev->name, dev->name, adj_dev->name);
4593
4594 if (dev_list == &dev->adj_list.lower) {
4595 sprintf(linkname, "lower_%s", adj_dev->name);
4596 ret = sysfs_create_link(&(dev->dev.kobj),
4597 &(adj_dev->dev.kobj), linkname);
4598 if (ret)
4599 goto free_adj;
4600 } else if (dev_list == &dev->adj_list.upper) {
4601 sprintf(linkname, "upper_%s", adj_dev->name);
4602 ret = sysfs_create_link(&(dev->dev.kobj),
4603 &(adj_dev->dev.kobj), linkname);
4604 if (ret)
4605 goto free_adj;
4606 }
4607
4608 /* Ensure that master link is always the first item in list. */
4609 if (master) {
4610 ret = sysfs_create_link(&(dev->dev.kobj),
4611 &(adj_dev->dev.kobj), "master");
4612 if (ret)
4613 goto remove_symlinks;
4614
4615 list_add_rcu(&adj->list, dev_list);
4616 } else {
4617 list_add_tail_rcu(&adj->list, dev_list);
4618 }
4619
4620 return 0;
4621
4622 remove_symlinks:
4623 if (dev_list == &dev->adj_list.lower) {
4624 sprintf(linkname, "lower_%s", adj_dev->name);
4625 sysfs_remove_link(&(dev->dev.kobj), linkname);
4626 } else if (dev_list == &dev->adj_list.upper) {
4627 sprintf(linkname, "upper_%s", adj_dev->name);
4628 sysfs_remove_link(&(dev->dev.kobj), linkname);
4629 }
4630
4631 free_adj:
4632 kfree(adj);
4633 dev_put(adj_dev);
4634
4635 return ret;
4636 }
4637
4638 void __netdev_adjacent_dev_remove(struct net_device *dev,
4639 struct net_device *adj_dev,
4640 struct list_head *dev_list)
4641 {
4642 struct netdev_adjacent *adj;
4643 char linkname[IFNAMSIZ+7];
4644
4645 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4646
4647 if (!adj) {
4648 pr_err("tried to remove device %s from %s\n",
4649 dev->name, adj_dev->name);
4650 BUG();
4651 }
4652
4653 if (adj->ref_nr > 1) {
4654 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4655 adj->ref_nr-1);
4656 adj->ref_nr--;
4657 return;
4658 }
4659
4660 if (adj->master)
4661 sysfs_remove_link(&(dev->dev.kobj), "master");
4662
4663 if (dev_list == &dev->adj_list.lower) {
4664 sprintf(linkname, "lower_%s", adj_dev->name);
4665 sysfs_remove_link(&(dev->dev.kobj), linkname);
4666 } else if (dev_list == &dev->adj_list.upper) {
4667 sprintf(linkname, "upper_%s", adj_dev->name);
4668 sysfs_remove_link(&(dev->dev.kobj), linkname);
4669 }
4670
4671 list_del_rcu(&adj->list);
4672 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4673 adj_dev->name, dev->name, adj_dev->name);
4674 dev_put(adj_dev);
4675 kfree_rcu(adj, rcu);
4676 }
4677
4678 int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4679 struct net_device *upper_dev,
4680 struct list_head *up_list,
4681 struct list_head *down_list,
4682 void *private, bool master)
4683 {
4684 int ret;
4685
4686 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4687 master);
4688 if (ret)
4689 return ret;
4690
4691 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4692 false);
4693 if (ret) {
4694 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4695 return ret;
4696 }
4697
4698 return 0;
4699 }
4700
4701 int __netdev_adjacent_dev_link(struct net_device *dev,
4702 struct net_device *upper_dev)
4703 {
4704 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4705 &dev->all_adj_list.upper,
4706 &upper_dev->all_adj_list.lower,
4707 NULL, false);
4708 }
4709
4710 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4711 struct net_device *upper_dev,
4712 struct list_head *up_list,
4713 struct list_head *down_list)
4714 {
4715 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4716 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4717 }
4718
4719 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4720 struct net_device *upper_dev)
4721 {
4722 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4723 &dev->all_adj_list.upper,
4724 &upper_dev->all_adj_list.lower);
4725 }
4726
4727 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4728 struct net_device *upper_dev,
4729 void *private, bool master)
4730 {
4731 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4732
4733 if (ret)
4734 return ret;
4735
4736 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4737 &dev->adj_list.upper,
4738 &upper_dev->adj_list.lower,
4739 private, master);
4740 if (ret) {
4741 __netdev_adjacent_dev_unlink(dev, upper_dev);
4742 return ret;
4743 }
4744
4745 return 0;
4746 }
4747
4748 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4749 struct net_device *upper_dev)
4750 {
4751 __netdev_adjacent_dev_unlink(dev, upper_dev);
4752 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4753 &dev->adj_list.upper,
4754 &upper_dev->adj_list.lower);
4755 }
4756
4757 static int __netdev_upper_dev_link(struct net_device *dev,
4758 struct net_device *upper_dev, bool master,
4759 void *private)
4760 {
4761 struct netdev_adjacent *i, *j, *to_i, *to_j;
4762 int ret = 0;
4763
4764 ASSERT_RTNL();
4765
4766 if (dev == upper_dev)
4767 return -EBUSY;
4768
4769 /* To prevent loops, check if dev is not upper device to upper_dev. */
4770 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4771 return -EBUSY;
4772
4773 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4774 return -EEXIST;
4775
4776 if (master && netdev_master_upper_dev_get(dev))
4777 return -EBUSY;
4778
4779 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4780 master);
4781 if (ret)
4782 return ret;
4783
4784 /* Now that we linked these devs, make all the upper_dev's
4785 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4786 * versa, and don't forget the devices itself. All of these
4787 * links are non-neighbours.
4788 */
4789 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4790 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4791 pr_debug("Interlinking %s with %s, non-neighbour\n",
4792 i->dev->name, j->dev->name);
4793 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4794 if (ret)
4795 goto rollback_mesh;
4796 }
4797 }
4798
4799 /* add dev to every upper_dev's upper device */
4800 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4801 pr_debug("linking %s's upper device %s with %s\n",
4802 upper_dev->name, i->dev->name, dev->name);
4803 ret = __netdev_adjacent_dev_link(dev, i->dev);
4804 if (ret)
4805 goto rollback_upper_mesh;
4806 }
4807
4808 /* add upper_dev to every dev's lower device */
4809 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4810 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4811 i->dev->name, upper_dev->name);
4812 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4813 if (ret)
4814 goto rollback_lower_mesh;
4815 }
4816
4817 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4818 return 0;
4819
4820 rollback_lower_mesh:
4821 to_i = i;
4822 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4823 if (i == to_i)
4824 break;
4825 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4826 }
4827
4828 i = NULL;
4829
4830 rollback_upper_mesh:
4831 to_i = i;
4832 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4833 if (i == to_i)
4834 break;
4835 __netdev_adjacent_dev_unlink(dev, i->dev);
4836 }
4837
4838 i = j = NULL;
4839
4840 rollback_mesh:
4841 to_i = i;
4842 to_j = j;
4843 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4844 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4845 if (i == to_i && j == to_j)
4846 break;
4847 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4848 }
4849 if (i == to_i)
4850 break;
4851 }
4852
4853 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4854
4855 return ret;
4856 }
4857
4858 /**
4859 * netdev_upper_dev_link - Add a link to the upper device
4860 * @dev: device
4861 * @upper_dev: new upper device
4862 *
4863 * Adds a link to device which is upper to this one. The caller must hold
4864 * the RTNL lock. On a failure a negative errno code is returned.
4865 * On success the reference counts are adjusted and the function
4866 * returns zero.
4867 */
4868 int netdev_upper_dev_link(struct net_device *dev,
4869 struct net_device *upper_dev)
4870 {
4871 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4872 }
4873 EXPORT_SYMBOL(netdev_upper_dev_link);
4874
4875 /**
4876 * netdev_master_upper_dev_link - Add a master link to the upper device
4877 * @dev: device
4878 * @upper_dev: new upper device
4879 *
4880 * Adds a link to device which is upper to this one. In this case, only
4881 * one master upper device can be linked, although other non-master devices
4882 * might be linked as well. The caller must hold the RTNL lock.
4883 * On a failure a negative errno code is returned. On success the reference
4884 * counts are adjusted and the function returns zero.
4885 */
4886 int netdev_master_upper_dev_link(struct net_device *dev,
4887 struct net_device *upper_dev)
4888 {
4889 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4890 }
4891 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4892
4893 int netdev_master_upper_dev_link_private(struct net_device *dev,
4894 struct net_device *upper_dev,
4895 void *private)
4896 {
4897 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4898 }
4899 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4900
4901 /**
4902 * netdev_upper_dev_unlink - Removes a link to upper device
4903 * @dev: device
4904 * @upper_dev: new upper device
4905 *
4906 * Removes a link to device which is upper to this one. The caller must hold
4907 * the RTNL lock.
4908 */
4909 void netdev_upper_dev_unlink(struct net_device *dev,
4910 struct net_device *upper_dev)
4911 {
4912 struct netdev_adjacent *i, *j;
4913 ASSERT_RTNL();
4914
4915 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4916
4917 /* Here is the tricky part. We must remove all dev's lower
4918 * devices from all upper_dev's upper devices and vice
4919 * versa, to maintain the graph relationship.
4920 */
4921 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4922 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4923 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4924
4925 /* remove also the devices itself from lower/upper device
4926 * list
4927 */
4928 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4929 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4930
4931 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4932 __netdev_adjacent_dev_unlink(dev, i->dev);
4933
4934 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4935 }
4936 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4937
4938 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4939 struct net_device *lower_dev)
4940 {
4941 struct netdev_adjacent *lower;
4942
4943 if (!lower_dev)
4944 return NULL;
4945 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4946 if (!lower)
4947 return NULL;
4948
4949 return lower->private;
4950 }
4951 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4952
4953 void *netdev_lower_dev_get_private(struct net_device *dev,
4954 struct net_device *lower_dev)
4955 {
4956 struct netdev_adjacent *lower;
4957
4958 if (!lower_dev)
4959 return NULL;
4960 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4961 if (!lower)
4962 return NULL;
4963
4964 return lower->private;
4965 }
4966 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4967
4968 static void dev_change_rx_flags(struct net_device *dev, int flags)
4969 {
4970 const struct net_device_ops *ops = dev->netdev_ops;
4971
4972 if (ops->ndo_change_rx_flags)
4973 ops->ndo_change_rx_flags(dev, flags);
4974 }
4975
4976 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
4977 {
4978 unsigned int old_flags = dev->flags;
4979 kuid_t uid;
4980 kgid_t gid;
4981
4982 ASSERT_RTNL();
4983
4984 dev->flags |= IFF_PROMISC;
4985 dev->promiscuity += inc;
4986 if (dev->promiscuity == 0) {
4987 /*
4988 * Avoid overflow.
4989 * If inc causes overflow, untouch promisc and return error.
4990 */
4991 if (inc < 0)
4992 dev->flags &= ~IFF_PROMISC;
4993 else {
4994 dev->promiscuity -= inc;
4995 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4996 dev->name);
4997 return -EOVERFLOW;
4998 }
4999 }
5000 if (dev->flags != old_flags) {
5001 pr_info("device %s %s promiscuous mode\n",
5002 dev->name,
5003 dev->flags & IFF_PROMISC ? "entered" : "left");
5004 if (audit_enabled) {
5005 current_uid_gid(&uid, &gid);
5006 audit_log(current->audit_context, GFP_ATOMIC,
5007 AUDIT_ANOM_PROMISCUOUS,
5008 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5009 dev->name, (dev->flags & IFF_PROMISC),
5010 (old_flags & IFF_PROMISC),
5011 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5012 from_kuid(&init_user_ns, uid),
5013 from_kgid(&init_user_ns, gid),
5014 audit_get_sessionid(current));
5015 }
5016
5017 dev_change_rx_flags(dev, IFF_PROMISC);
5018 }
5019 if (notify)
5020 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5021 return 0;
5022 }
5023
5024 /**
5025 * dev_set_promiscuity - update promiscuity count on a device
5026 * @dev: device
5027 * @inc: modifier
5028 *
5029 * Add or remove promiscuity from a device. While the count in the device
5030 * remains above zero the interface remains promiscuous. Once it hits zero
5031 * the device reverts back to normal filtering operation. A negative inc
5032 * value is used to drop promiscuity on the device.
5033 * Return 0 if successful or a negative errno code on error.
5034 */
5035 int dev_set_promiscuity(struct net_device *dev, int inc)
5036 {
5037 unsigned int old_flags = dev->flags;
5038 int err;
5039
5040 err = __dev_set_promiscuity(dev, inc, true);
5041 if (err < 0)
5042 return err;
5043 if (dev->flags != old_flags)
5044 dev_set_rx_mode(dev);
5045 return err;
5046 }
5047 EXPORT_SYMBOL(dev_set_promiscuity);
5048
5049 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5050 {
5051 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5052
5053 ASSERT_RTNL();
5054
5055 dev->flags |= IFF_ALLMULTI;
5056 dev->allmulti += inc;
5057 if (dev->allmulti == 0) {
5058 /*
5059 * Avoid overflow.
5060 * If inc causes overflow, untouch allmulti and return error.
5061 */
5062 if (inc < 0)
5063 dev->flags &= ~IFF_ALLMULTI;
5064 else {
5065 dev->allmulti -= inc;
5066 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5067 dev->name);
5068 return -EOVERFLOW;
5069 }
5070 }
5071 if (dev->flags ^ old_flags) {
5072 dev_change_rx_flags(dev, IFF_ALLMULTI);
5073 dev_set_rx_mode(dev);
5074 if (notify)
5075 __dev_notify_flags(dev, old_flags,
5076 dev->gflags ^ old_gflags);
5077 }
5078 return 0;
5079 }
5080
5081 /**
5082 * dev_set_allmulti - update allmulti count on a device
5083 * @dev: device
5084 * @inc: modifier
5085 *
5086 * Add or remove reception of all multicast frames to a device. While the
5087 * count in the device remains above zero the interface remains listening
5088 * to all interfaces. Once it hits zero the device reverts back to normal
5089 * filtering operation. A negative @inc value is used to drop the counter
5090 * when releasing a resource needing all multicasts.
5091 * Return 0 if successful or a negative errno code on error.
5092 */
5093
5094 int dev_set_allmulti(struct net_device *dev, int inc)
5095 {
5096 return __dev_set_allmulti(dev, inc, true);
5097 }
5098 EXPORT_SYMBOL(dev_set_allmulti);
5099
5100 /*
5101 * Upload unicast and multicast address lists to device and
5102 * configure RX filtering. When the device doesn't support unicast
5103 * filtering it is put in promiscuous mode while unicast addresses
5104 * are present.
5105 */
5106 void __dev_set_rx_mode(struct net_device *dev)
5107 {
5108 const struct net_device_ops *ops = dev->netdev_ops;
5109
5110 /* dev_open will call this function so the list will stay sane. */
5111 if (!(dev->flags&IFF_UP))
5112 return;
5113
5114 if (!netif_device_present(dev))
5115 return;
5116
5117 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5118 /* Unicast addresses changes may only happen under the rtnl,
5119 * therefore calling __dev_set_promiscuity here is safe.
5120 */
5121 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5122 __dev_set_promiscuity(dev, 1, false);
5123 dev->uc_promisc = true;
5124 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5125 __dev_set_promiscuity(dev, -1, false);
5126 dev->uc_promisc = false;
5127 }
5128 }
5129
5130 if (ops->ndo_set_rx_mode)
5131 ops->ndo_set_rx_mode(dev);
5132 }
5133
5134 void dev_set_rx_mode(struct net_device *dev)
5135 {
5136 netif_addr_lock_bh(dev);
5137 __dev_set_rx_mode(dev);
5138 netif_addr_unlock_bh(dev);
5139 }
5140
5141 /**
5142 * dev_get_flags - get flags reported to userspace
5143 * @dev: device
5144 *
5145 * Get the combination of flag bits exported through APIs to userspace.
5146 */
5147 unsigned int dev_get_flags(const struct net_device *dev)
5148 {
5149 unsigned int flags;
5150
5151 flags = (dev->flags & ~(IFF_PROMISC |
5152 IFF_ALLMULTI |
5153 IFF_RUNNING |
5154 IFF_LOWER_UP |
5155 IFF_DORMANT)) |
5156 (dev->gflags & (IFF_PROMISC |
5157 IFF_ALLMULTI));
5158
5159 if (netif_running(dev)) {
5160 if (netif_oper_up(dev))
5161 flags |= IFF_RUNNING;
5162 if (netif_carrier_ok(dev))
5163 flags |= IFF_LOWER_UP;
5164 if (netif_dormant(dev))
5165 flags |= IFF_DORMANT;
5166 }
5167
5168 return flags;
5169 }
5170 EXPORT_SYMBOL(dev_get_flags);
5171
5172 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5173 {
5174 unsigned int old_flags = dev->flags;
5175 int ret;
5176
5177 ASSERT_RTNL();
5178
5179 /*
5180 * Set the flags on our device.
5181 */
5182
5183 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5184 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5185 IFF_AUTOMEDIA)) |
5186 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5187 IFF_ALLMULTI));
5188
5189 /*
5190 * Load in the correct multicast list now the flags have changed.
5191 */
5192
5193 if ((old_flags ^ flags) & IFF_MULTICAST)
5194 dev_change_rx_flags(dev, IFF_MULTICAST);
5195
5196 dev_set_rx_mode(dev);
5197
5198 /*
5199 * Have we downed the interface. We handle IFF_UP ourselves
5200 * according to user attempts to set it, rather than blindly
5201 * setting it.
5202 */
5203
5204 ret = 0;
5205 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5206 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5207
5208 if (!ret)
5209 dev_set_rx_mode(dev);
5210 }
5211
5212 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5213 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5214 unsigned int old_flags = dev->flags;
5215
5216 dev->gflags ^= IFF_PROMISC;
5217
5218 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5219 if (dev->flags != old_flags)
5220 dev_set_rx_mode(dev);
5221 }
5222
5223 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5224 is important. Some (broken) drivers set IFF_PROMISC, when
5225 IFF_ALLMULTI is requested not asking us and not reporting.
5226 */
5227 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5228 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5229
5230 dev->gflags ^= IFF_ALLMULTI;
5231 __dev_set_allmulti(dev, inc, false);
5232 }
5233
5234 return ret;
5235 }
5236
5237 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5238 unsigned int gchanges)
5239 {
5240 unsigned int changes = dev->flags ^ old_flags;
5241
5242 if (gchanges)
5243 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5244
5245 if (changes & IFF_UP) {
5246 if (dev->flags & IFF_UP)
5247 call_netdevice_notifiers(NETDEV_UP, dev);
5248 else
5249 call_netdevice_notifiers(NETDEV_DOWN, dev);
5250 }
5251
5252 if (dev->flags & IFF_UP &&
5253 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5254 struct netdev_notifier_change_info change_info;
5255
5256 change_info.flags_changed = changes;
5257 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5258 &change_info.info);
5259 }
5260 }
5261
5262 /**
5263 * dev_change_flags - change device settings
5264 * @dev: device
5265 * @flags: device state flags
5266 *
5267 * Change settings on device based state flags. The flags are
5268 * in the userspace exported format.
5269 */
5270 int dev_change_flags(struct net_device *dev, unsigned int flags)
5271 {
5272 int ret;
5273 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5274
5275 ret = __dev_change_flags(dev, flags);
5276 if (ret < 0)
5277 return ret;
5278
5279 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5280 __dev_notify_flags(dev, old_flags, changes);
5281 return ret;
5282 }
5283 EXPORT_SYMBOL(dev_change_flags);
5284
5285 /**
5286 * dev_set_mtu - Change maximum transfer unit
5287 * @dev: device
5288 * @new_mtu: new transfer unit
5289 *
5290 * Change the maximum transfer size of the network device.
5291 */
5292 int dev_set_mtu(struct net_device *dev, int new_mtu)
5293 {
5294 const struct net_device_ops *ops = dev->netdev_ops;
5295 int err;
5296
5297 if (new_mtu == dev->mtu)
5298 return 0;
5299
5300 /* MTU must be positive. */
5301 if (new_mtu < 0)
5302 return -EINVAL;
5303
5304 if (!netif_device_present(dev))
5305 return -ENODEV;
5306
5307 err = 0;
5308 if (ops->ndo_change_mtu)
5309 err = ops->ndo_change_mtu(dev, new_mtu);
5310 else
5311 dev->mtu = new_mtu;
5312
5313 if (!err)
5314 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5315 return err;
5316 }
5317 EXPORT_SYMBOL(dev_set_mtu);
5318
5319 /**
5320 * dev_set_group - Change group this device belongs to
5321 * @dev: device
5322 * @new_group: group this device should belong to
5323 */
5324 void dev_set_group(struct net_device *dev, int new_group)
5325 {
5326 dev->group = new_group;
5327 }
5328 EXPORT_SYMBOL(dev_set_group);
5329
5330 /**
5331 * dev_set_mac_address - Change Media Access Control Address
5332 * @dev: device
5333 * @sa: new address
5334 *
5335 * Change the hardware (MAC) address of the device
5336 */
5337 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5338 {
5339 const struct net_device_ops *ops = dev->netdev_ops;
5340 int err;
5341
5342 if (!ops->ndo_set_mac_address)
5343 return -EOPNOTSUPP;
5344 if (sa->sa_family != dev->type)
5345 return -EINVAL;
5346 if (!netif_device_present(dev))
5347 return -ENODEV;
5348 err = ops->ndo_set_mac_address(dev, sa);
5349 if (err)
5350 return err;
5351 dev->addr_assign_type = NET_ADDR_SET;
5352 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5353 add_device_randomness(dev->dev_addr, dev->addr_len);
5354 return 0;
5355 }
5356 EXPORT_SYMBOL(dev_set_mac_address);
5357
5358 /**
5359 * dev_change_carrier - Change device carrier
5360 * @dev: device
5361 * @new_carrier: new value
5362 *
5363 * Change device carrier
5364 */
5365 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5366 {
5367 const struct net_device_ops *ops = dev->netdev_ops;
5368
5369 if (!ops->ndo_change_carrier)
5370 return -EOPNOTSUPP;
5371 if (!netif_device_present(dev))
5372 return -ENODEV;
5373 return ops->ndo_change_carrier(dev, new_carrier);
5374 }
5375 EXPORT_SYMBOL(dev_change_carrier);
5376
5377 /**
5378 * dev_get_phys_port_id - Get device physical port ID
5379 * @dev: device
5380 * @ppid: port ID
5381 *
5382 * Get device physical port ID
5383 */
5384 int dev_get_phys_port_id(struct net_device *dev,
5385 struct netdev_phys_port_id *ppid)
5386 {
5387 const struct net_device_ops *ops = dev->netdev_ops;
5388
5389 if (!ops->ndo_get_phys_port_id)
5390 return -EOPNOTSUPP;
5391 return ops->ndo_get_phys_port_id(dev, ppid);
5392 }
5393 EXPORT_SYMBOL(dev_get_phys_port_id);
5394
5395 /**
5396 * dev_new_index - allocate an ifindex
5397 * @net: the applicable net namespace
5398 *
5399 * Returns a suitable unique value for a new device interface
5400 * number. The caller must hold the rtnl semaphore or the
5401 * dev_base_lock to be sure it remains unique.
5402 */
5403 static int dev_new_index(struct net *net)
5404 {
5405 int ifindex = net->ifindex;
5406 for (;;) {
5407 if (++ifindex <= 0)
5408 ifindex = 1;
5409 if (!__dev_get_by_index(net, ifindex))
5410 return net->ifindex = ifindex;
5411 }
5412 }
5413
5414 /* Delayed registration/unregisteration */
5415 static LIST_HEAD(net_todo_list);
5416 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5417
5418 static void net_set_todo(struct net_device *dev)
5419 {
5420 list_add_tail(&dev->todo_list, &net_todo_list);
5421 dev_net(dev)->dev_unreg_count++;
5422 }
5423
5424 static void rollback_registered_many(struct list_head *head)
5425 {
5426 struct net_device *dev, *tmp;
5427 LIST_HEAD(close_head);
5428
5429 BUG_ON(dev_boot_phase);
5430 ASSERT_RTNL();
5431
5432 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5433 /* Some devices call without registering
5434 * for initialization unwind. Remove those
5435 * devices and proceed with the remaining.
5436 */
5437 if (dev->reg_state == NETREG_UNINITIALIZED) {
5438 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5439 dev->name, dev);
5440
5441 WARN_ON(1);
5442 list_del(&dev->unreg_list);
5443 continue;
5444 }
5445 dev->dismantle = true;
5446 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5447 }
5448
5449 /* If device is running, close it first. */
5450 list_for_each_entry(dev, head, unreg_list)
5451 list_add_tail(&dev->close_list, &close_head);
5452 dev_close_many(&close_head);
5453
5454 list_for_each_entry(dev, head, unreg_list) {
5455 /* And unlink it from device chain. */
5456 unlist_netdevice(dev);
5457
5458 dev->reg_state = NETREG_UNREGISTERING;
5459 }
5460
5461 synchronize_net();
5462
5463 list_for_each_entry(dev, head, unreg_list) {
5464 /* Shutdown queueing discipline. */
5465 dev_shutdown(dev);
5466
5467
5468 /* Notify protocols, that we are about to destroy
5469 this device. They should clean all the things.
5470 */
5471 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5472
5473 if (!dev->rtnl_link_ops ||
5474 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5475 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5476
5477 /*
5478 * Flush the unicast and multicast chains
5479 */
5480 dev_uc_flush(dev);
5481 dev_mc_flush(dev);
5482
5483 if (dev->netdev_ops->ndo_uninit)
5484 dev->netdev_ops->ndo_uninit(dev);
5485
5486 /* Notifier chain MUST detach us all upper devices. */
5487 WARN_ON(netdev_has_any_upper_dev(dev));
5488
5489 /* Remove entries from kobject tree */
5490 netdev_unregister_kobject(dev);
5491 #ifdef CONFIG_XPS
5492 /* Remove XPS queueing entries */
5493 netif_reset_xps_queues_gt(dev, 0);
5494 #endif
5495 }
5496
5497 synchronize_net();
5498
5499 list_for_each_entry(dev, head, unreg_list)
5500 dev_put(dev);
5501 }
5502
5503 static void rollback_registered(struct net_device *dev)
5504 {
5505 LIST_HEAD(single);
5506
5507 list_add(&dev->unreg_list, &single);
5508 rollback_registered_many(&single);
5509 list_del(&single);
5510 }
5511
5512 static netdev_features_t netdev_fix_features(struct net_device *dev,
5513 netdev_features_t features)
5514 {
5515 /* Fix illegal checksum combinations */
5516 if ((features & NETIF_F_HW_CSUM) &&
5517 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5518 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5519 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5520 }
5521
5522 /* TSO requires that SG is present as well. */
5523 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5524 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5525 features &= ~NETIF_F_ALL_TSO;
5526 }
5527
5528 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5529 !(features & NETIF_F_IP_CSUM)) {
5530 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5531 features &= ~NETIF_F_TSO;
5532 features &= ~NETIF_F_TSO_ECN;
5533 }
5534
5535 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5536 !(features & NETIF_F_IPV6_CSUM)) {
5537 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5538 features &= ~NETIF_F_TSO6;
5539 }
5540
5541 /* TSO ECN requires that TSO is present as well. */
5542 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5543 features &= ~NETIF_F_TSO_ECN;
5544
5545 /* Software GSO depends on SG. */
5546 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5547 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5548 features &= ~NETIF_F_GSO;
5549 }
5550
5551 /* UFO needs SG and checksumming */
5552 if (features & NETIF_F_UFO) {
5553 /* maybe split UFO into V4 and V6? */
5554 if (!((features & NETIF_F_GEN_CSUM) ||
5555 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5556 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5557 netdev_dbg(dev,
5558 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5559 features &= ~NETIF_F_UFO;
5560 }
5561
5562 if (!(features & NETIF_F_SG)) {
5563 netdev_dbg(dev,
5564 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5565 features &= ~NETIF_F_UFO;
5566 }
5567 }
5568
5569 return features;
5570 }
5571
5572 int __netdev_update_features(struct net_device *dev)
5573 {
5574 netdev_features_t features;
5575 int err = 0;
5576
5577 ASSERT_RTNL();
5578
5579 features = netdev_get_wanted_features(dev);
5580
5581 if (dev->netdev_ops->ndo_fix_features)
5582 features = dev->netdev_ops->ndo_fix_features(dev, features);
5583
5584 /* driver might be less strict about feature dependencies */
5585 features = netdev_fix_features(dev, features);
5586
5587 if (dev->features == features)
5588 return 0;
5589
5590 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5591 &dev->features, &features);
5592
5593 if (dev->netdev_ops->ndo_set_features)
5594 err = dev->netdev_ops->ndo_set_features(dev, features);
5595
5596 if (unlikely(err < 0)) {
5597 netdev_err(dev,
5598 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5599 err, &features, &dev->features);
5600 return -1;
5601 }
5602
5603 if (!err)
5604 dev->features = features;
5605
5606 return 1;
5607 }
5608
5609 /**
5610 * netdev_update_features - recalculate device features
5611 * @dev: the device to check
5612 *
5613 * Recalculate dev->features set and send notifications if it
5614 * has changed. Should be called after driver or hardware dependent
5615 * conditions might have changed that influence the features.
5616 */
5617 void netdev_update_features(struct net_device *dev)
5618 {
5619 if (__netdev_update_features(dev))
5620 netdev_features_change(dev);
5621 }
5622 EXPORT_SYMBOL(netdev_update_features);
5623
5624 /**
5625 * netdev_change_features - recalculate device features
5626 * @dev: the device to check
5627 *
5628 * Recalculate dev->features set and send notifications even
5629 * if they have not changed. Should be called instead of
5630 * netdev_update_features() if also dev->vlan_features might
5631 * have changed to allow the changes to be propagated to stacked
5632 * VLAN devices.
5633 */
5634 void netdev_change_features(struct net_device *dev)
5635 {
5636 __netdev_update_features(dev);
5637 netdev_features_change(dev);
5638 }
5639 EXPORT_SYMBOL(netdev_change_features);
5640
5641 /**
5642 * netif_stacked_transfer_operstate - transfer operstate
5643 * @rootdev: the root or lower level device to transfer state from
5644 * @dev: the device to transfer operstate to
5645 *
5646 * Transfer operational state from root to device. This is normally
5647 * called when a stacking relationship exists between the root
5648 * device and the device(a leaf device).
5649 */
5650 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5651 struct net_device *dev)
5652 {
5653 if (rootdev->operstate == IF_OPER_DORMANT)
5654 netif_dormant_on(dev);
5655 else
5656 netif_dormant_off(dev);
5657
5658 if (netif_carrier_ok(rootdev)) {
5659 if (!netif_carrier_ok(dev))
5660 netif_carrier_on(dev);
5661 } else {
5662 if (netif_carrier_ok(dev))
5663 netif_carrier_off(dev);
5664 }
5665 }
5666 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5667
5668 #ifdef CONFIG_RPS
5669 static int netif_alloc_rx_queues(struct net_device *dev)
5670 {
5671 unsigned int i, count = dev->num_rx_queues;
5672 struct netdev_rx_queue *rx;
5673
5674 BUG_ON(count < 1);
5675
5676 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5677 if (!rx)
5678 return -ENOMEM;
5679
5680 dev->_rx = rx;
5681
5682 for (i = 0; i < count; i++)
5683 rx[i].dev = dev;
5684 return 0;
5685 }
5686 #endif
5687
5688 static void netdev_init_one_queue(struct net_device *dev,
5689 struct netdev_queue *queue, void *_unused)
5690 {
5691 /* Initialize queue lock */
5692 spin_lock_init(&queue->_xmit_lock);
5693 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5694 queue->xmit_lock_owner = -1;
5695 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5696 queue->dev = dev;
5697 #ifdef CONFIG_BQL
5698 dql_init(&queue->dql, HZ);
5699 #endif
5700 }
5701
5702 static void netif_free_tx_queues(struct net_device *dev)
5703 {
5704 if (is_vmalloc_addr(dev->_tx))
5705 vfree(dev->_tx);
5706 else
5707 kfree(dev->_tx);
5708 }
5709
5710 static int netif_alloc_netdev_queues(struct net_device *dev)
5711 {
5712 unsigned int count = dev->num_tx_queues;
5713 struct netdev_queue *tx;
5714 size_t sz = count * sizeof(*tx);
5715
5716 BUG_ON(count < 1 || count > 0xffff);
5717
5718 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5719 if (!tx) {
5720 tx = vzalloc(sz);
5721 if (!tx)
5722 return -ENOMEM;
5723 }
5724 dev->_tx = tx;
5725
5726 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5727 spin_lock_init(&dev->tx_global_lock);
5728
5729 return 0;
5730 }
5731
5732 /**
5733 * register_netdevice - register a network device
5734 * @dev: device to register
5735 *
5736 * Take a completed network device structure and add it to the kernel
5737 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5738 * chain. 0 is returned on success. A negative errno code is returned
5739 * on a failure to set up the device, or if the name is a duplicate.
5740 *
5741 * Callers must hold the rtnl semaphore. You may want
5742 * register_netdev() instead of this.
5743 *
5744 * BUGS:
5745 * The locking appears insufficient to guarantee two parallel registers
5746 * will not get the same name.
5747 */
5748
5749 int register_netdevice(struct net_device *dev)
5750 {
5751 int ret;
5752 struct net *net = dev_net(dev);
5753
5754 BUG_ON(dev_boot_phase);
5755 ASSERT_RTNL();
5756
5757 might_sleep();
5758
5759 /* When net_device's are persistent, this will be fatal. */
5760 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5761 BUG_ON(!net);
5762
5763 spin_lock_init(&dev->addr_list_lock);
5764 netdev_set_addr_lockdep_class(dev);
5765
5766 dev->iflink = -1;
5767
5768 ret = dev_get_valid_name(net, dev, dev->name);
5769 if (ret < 0)
5770 goto out;
5771
5772 /* Init, if this function is available */
5773 if (dev->netdev_ops->ndo_init) {
5774 ret = dev->netdev_ops->ndo_init(dev);
5775 if (ret) {
5776 if (ret > 0)
5777 ret = -EIO;
5778 goto out;
5779 }
5780 }
5781
5782 if (((dev->hw_features | dev->features) &
5783 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5784 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5785 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5786 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5787 ret = -EINVAL;
5788 goto err_uninit;
5789 }
5790
5791 ret = -EBUSY;
5792 if (!dev->ifindex)
5793 dev->ifindex = dev_new_index(net);
5794 else if (__dev_get_by_index(net, dev->ifindex))
5795 goto err_uninit;
5796
5797 if (dev->iflink == -1)
5798 dev->iflink = dev->ifindex;
5799
5800 /* Transfer changeable features to wanted_features and enable
5801 * software offloads (GSO and GRO).
5802 */
5803 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5804 dev->features |= NETIF_F_SOFT_FEATURES;
5805 dev->wanted_features = dev->features & dev->hw_features;
5806
5807 /* Turn on no cache copy if HW is doing checksum */
5808 if (!(dev->flags & IFF_LOOPBACK)) {
5809 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5810 if (dev->features & NETIF_F_ALL_CSUM) {
5811 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5812 dev->features |= NETIF_F_NOCACHE_COPY;
5813 }
5814 }
5815
5816 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5817 */
5818 dev->vlan_features |= NETIF_F_HIGHDMA;
5819
5820 /* Make NETIF_F_SG inheritable to tunnel devices.
5821 */
5822 dev->hw_enc_features |= NETIF_F_SG;
5823
5824 /* Make NETIF_F_SG inheritable to MPLS.
5825 */
5826 dev->mpls_features |= NETIF_F_SG;
5827
5828 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5829 ret = notifier_to_errno(ret);
5830 if (ret)
5831 goto err_uninit;
5832
5833 ret = netdev_register_kobject(dev);
5834 if (ret)
5835 goto err_uninit;
5836 dev->reg_state = NETREG_REGISTERED;
5837
5838 __netdev_update_features(dev);
5839
5840 /*
5841 * Default initial state at registry is that the
5842 * device is present.
5843 */
5844
5845 set_bit(__LINK_STATE_PRESENT, &dev->state);
5846
5847 linkwatch_init_dev(dev);
5848
5849 dev_init_scheduler(dev);
5850 dev_hold(dev);
5851 list_netdevice(dev);
5852 add_device_randomness(dev->dev_addr, dev->addr_len);
5853
5854 /* If the device has permanent device address, driver should
5855 * set dev_addr and also addr_assign_type should be set to
5856 * NET_ADDR_PERM (default value).
5857 */
5858 if (dev->addr_assign_type == NET_ADDR_PERM)
5859 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5860
5861 /* Notify protocols, that a new device appeared. */
5862 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5863 ret = notifier_to_errno(ret);
5864 if (ret) {
5865 rollback_registered(dev);
5866 dev->reg_state = NETREG_UNREGISTERED;
5867 }
5868 /*
5869 * Prevent userspace races by waiting until the network
5870 * device is fully setup before sending notifications.
5871 */
5872 if (!dev->rtnl_link_ops ||
5873 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5874 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5875
5876 out:
5877 return ret;
5878
5879 err_uninit:
5880 if (dev->netdev_ops->ndo_uninit)
5881 dev->netdev_ops->ndo_uninit(dev);
5882 goto out;
5883 }
5884 EXPORT_SYMBOL(register_netdevice);
5885
5886 /**
5887 * init_dummy_netdev - init a dummy network device for NAPI
5888 * @dev: device to init
5889 *
5890 * This takes a network device structure and initialize the minimum
5891 * amount of fields so it can be used to schedule NAPI polls without
5892 * registering a full blown interface. This is to be used by drivers
5893 * that need to tie several hardware interfaces to a single NAPI
5894 * poll scheduler due to HW limitations.
5895 */
5896 int init_dummy_netdev(struct net_device *dev)
5897 {
5898 /* Clear everything. Note we don't initialize spinlocks
5899 * are they aren't supposed to be taken by any of the
5900 * NAPI code and this dummy netdev is supposed to be
5901 * only ever used for NAPI polls
5902 */
5903 memset(dev, 0, sizeof(struct net_device));
5904
5905 /* make sure we BUG if trying to hit standard
5906 * register/unregister code path
5907 */
5908 dev->reg_state = NETREG_DUMMY;
5909
5910 /* NAPI wants this */
5911 INIT_LIST_HEAD(&dev->napi_list);
5912
5913 /* a dummy interface is started by default */
5914 set_bit(__LINK_STATE_PRESENT, &dev->state);
5915 set_bit(__LINK_STATE_START, &dev->state);
5916
5917 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5918 * because users of this 'device' dont need to change
5919 * its refcount.
5920 */
5921
5922 return 0;
5923 }
5924 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5925
5926
5927 /**
5928 * register_netdev - register a network device
5929 * @dev: device to register
5930 *
5931 * Take a completed network device structure and add it to the kernel
5932 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5933 * chain. 0 is returned on success. A negative errno code is returned
5934 * on a failure to set up the device, or if the name is a duplicate.
5935 *
5936 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5937 * and expands the device name if you passed a format string to
5938 * alloc_netdev.
5939 */
5940 int register_netdev(struct net_device *dev)
5941 {
5942 int err;
5943
5944 rtnl_lock();
5945 err = register_netdevice(dev);
5946 rtnl_unlock();
5947 return err;
5948 }
5949 EXPORT_SYMBOL(register_netdev);
5950
5951 int netdev_refcnt_read(const struct net_device *dev)
5952 {
5953 int i, refcnt = 0;
5954
5955 for_each_possible_cpu(i)
5956 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5957 return refcnt;
5958 }
5959 EXPORT_SYMBOL(netdev_refcnt_read);
5960
5961 /**
5962 * netdev_wait_allrefs - wait until all references are gone.
5963 * @dev: target net_device
5964 *
5965 * This is called when unregistering network devices.
5966 *
5967 * Any protocol or device that holds a reference should register
5968 * for netdevice notification, and cleanup and put back the
5969 * reference if they receive an UNREGISTER event.
5970 * We can get stuck here if buggy protocols don't correctly
5971 * call dev_put.
5972 */
5973 static void netdev_wait_allrefs(struct net_device *dev)
5974 {
5975 unsigned long rebroadcast_time, warning_time;
5976 int refcnt;
5977
5978 linkwatch_forget_dev(dev);
5979
5980 rebroadcast_time = warning_time = jiffies;
5981 refcnt = netdev_refcnt_read(dev);
5982
5983 while (refcnt != 0) {
5984 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5985 rtnl_lock();
5986
5987 /* Rebroadcast unregister notification */
5988 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5989
5990 __rtnl_unlock();
5991 rcu_barrier();
5992 rtnl_lock();
5993
5994 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5995 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5996 &dev->state)) {
5997 /* We must not have linkwatch events
5998 * pending on unregister. If this
5999 * happens, we simply run the queue
6000 * unscheduled, resulting in a noop
6001 * for this device.
6002 */
6003 linkwatch_run_queue();
6004 }
6005
6006 __rtnl_unlock();
6007
6008 rebroadcast_time = jiffies;
6009 }
6010
6011 msleep(250);
6012
6013 refcnt = netdev_refcnt_read(dev);
6014
6015 if (time_after(jiffies, warning_time + 10 * HZ)) {
6016 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6017 dev->name, refcnt);
6018 warning_time = jiffies;
6019 }
6020 }
6021 }
6022
6023 /* The sequence is:
6024 *
6025 * rtnl_lock();
6026 * ...
6027 * register_netdevice(x1);
6028 * register_netdevice(x2);
6029 * ...
6030 * unregister_netdevice(y1);
6031 * unregister_netdevice(y2);
6032 * ...
6033 * rtnl_unlock();
6034 * free_netdev(y1);
6035 * free_netdev(y2);
6036 *
6037 * We are invoked by rtnl_unlock().
6038 * This allows us to deal with problems:
6039 * 1) We can delete sysfs objects which invoke hotplug
6040 * without deadlocking with linkwatch via keventd.
6041 * 2) Since we run with the RTNL semaphore not held, we can sleep
6042 * safely in order to wait for the netdev refcnt to drop to zero.
6043 *
6044 * We must not return until all unregister events added during
6045 * the interval the lock was held have been completed.
6046 */
6047 void netdev_run_todo(void)
6048 {
6049 struct list_head list;
6050
6051 /* Snapshot list, allow later requests */
6052 list_replace_init(&net_todo_list, &list);
6053
6054 __rtnl_unlock();
6055
6056
6057 /* Wait for rcu callbacks to finish before next phase */
6058 if (!list_empty(&list))
6059 rcu_barrier();
6060
6061 while (!list_empty(&list)) {
6062 struct net_device *dev
6063 = list_first_entry(&list, struct net_device, todo_list);
6064 list_del(&dev->todo_list);
6065
6066 rtnl_lock();
6067 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6068 __rtnl_unlock();
6069
6070 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6071 pr_err("network todo '%s' but state %d\n",
6072 dev->name, dev->reg_state);
6073 dump_stack();
6074 continue;
6075 }
6076
6077 dev->reg_state = NETREG_UNREGISTERED;
6078
6079 on_each_cpu(flush_backlog, dev, 1);
6080
6081 netdev_wait_allrefs(dev);
6082
6083 /* paranoia */
6084 BUG_ON(netdev_refcnt_read(dev));
6085 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6086 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6087 WARN_ON(dev->dn_ptr);
6088
6089 if (dev->destructor)
6090 dev->destructor(dev);
6091
6092 /* Report a network device has been unregistered */
6093 rtnl_lock();
6094 dev_net(dev)->dev_unreg_count--;
6095 __rtnl_unlock();
6096 wake_up(&netdev_unregistering_wq);
6097
6098 /* Free network device */
6099 kobject_put(&dev->dev.kobj);
6100 }
6101 }
6102
6103 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6104 * fields in the same order, with only the type differing.
6105 */
6106 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6107 const struct net_device_stats *netdev_stats)
6108 {
6109 #if BITS_PER_LONG == 64
6110 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6111 memcpy(stats64, netdev_stats, sizeof(*stats64));
6112 #else
6113 size_t i, n = sizeof(*stats64) / sizeof(u64);
6114 const unsigned long *src = (const unsigned long *)netdev_stats;
6115 u64 *dst = (u64 *)stats64;
6116
6117 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6118 sizeof(*stats64) / sizeof(u64));
6119 for (i = 0; i < n; i++)
6120 dst[i] = src[i];
6121 #endif
6122 }
6123 EXPORT_SYMBOL(netdev_stats_to_stats64);
6124
6125 /**
6126 * dev_get_stats - get network device statistics
6127 * @dev: device to get statistics from
6128 * @storage: place to store stats
6129 *
6130 * Get network statistics from device. Return @storage.
6131 * The device driver may provide its own method by setting
6132 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6133 * otherwise the internal statistics structure is used.
6134 */
6135 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6136 struct rtnl_link_stats64 *storage)
6137 {
6138 const struct net_device_ops *ops = dev->netdev_ops;
6139
6140 if (ops->ndo_get_stats64) {
6141 memset(storage, 0, sizeof(*storage));
6142 ops->ndo_get_stats64(dev, storage);
6143 } else if (ops->ndo_get_stats) {
6144 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6145 } else {
6146 netdev_stats_to_stats64(storage, &dev->stats);
6147 }
6148 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6149 return storage;
6150 }
6151 EXPORT_SYMBOL(dev_get_stats);
6152
6153 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6154 {
6155 struct netdev_queue *queue = dev_ingress_queue(dev);
6156
6157 #ifdef CONFIG_NET_CLS_ACT
6158 if (queue)
6159 return queue;
6160 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6161 if (!queue)
6162 return NULL;
6163 netdev_init_one_queue(dev, queue, NULL);
6164 queue->qdisc = &noop_qdisc;
6165 queue->qdisc_sleeping = &noop_qdisc;
6166 rcu_assign_pointer(dev->ingress_queue, queue);
6167 #endif
6168 return queue;
6169 }
6170
6171 static const struct ethtool_ops default_ethtool_ops;
6172
6173 void netdev_set_default_ethtool_ops(struct net_device *dev,
6174 const struct ethtool_ops *ops)
6175 {
6176 if (dev->ethtool_ops == &default_ethtool_ops)
6177 dev->ethtool_ops = ops;
6178 }
6179 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6180
6181 void netdev_freemem(struct net_device *dev)
6182 {
6183 char *addr = (char *)dev - dev->padded;
6184
6185 if (is_vmalloc_addr(addr))
6186 vfree(addr);
6187 else
6188 kfree(addr);
6189 }
6190
6191 /**
6192 * alloc_netdev_mqs - allocate network device
6193 * @sizeof_priv: size of private data to allocate space for
6194 * @name: device name format string
6195 * @setup: callback to initialize device
6196 * @txqs: the number of TX subqueues to allocate
6197 * @rxqs: the number of RX subqueues to allocate
6198 *
6199 * Allocates a struct net_device with private data area for driver use
6200 * and performs basic initialization. Also allocates subquue structs
6201 * for each queue on the device.
6202 */
6203 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6204 void (*setup)(struct net_device *),
6205 unsigned int txqs, unsigned int rxqs)
6206 {
6207 struct net_device *dev;
6208 size_t alloc_size;
6209 struct net_device *p;
6210
6211 BUG_ON(strlen(name) >= sizeof(dev->name));
6212
6213 if (txqs < 1) {
6214 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6215 return NULL;
6216 }
6217
6218 #ifdef CONFIG_RPS
6219 if (rxqs < 1) {
6220 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6221 return NULL;
6222 }
6223 #endif
6224
6225 alloc_size = sizeof(struct net_device);
6226 if (sizeof_priv) {
6227 /* ensure 32-byte alignment of private area */
6228 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6229 alloc_size += sizeof_priv;
6230 }
6231 /* ensure 32-byte alignment of whole construct */
6232 alloc_size += NETDEV_ALIGN - 1;
6233
6234 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6235 if (!p)
6236 p = vzalloc(alloc_size);
6237 if (!p)
6238 return NULL;
6239
6240 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6241 dev->padded = (char *)dev - (char *)p;
6242
6243 dev->pcpu_refcnt = alloc_percpu(int);
6244 if (!dev->pcpu_refcnt)
6245 goto free_dev;
6246
6247 if (dev_addr_init(dev))
6248 goto free_pcpu;
6249
6250 dev_mc_init(dev);
6251 dev_uc_init(dev);
6252
6253 dev_net_set(dev, &init_net);
6254
6255 dev->gso_max_size = GSO_MAX_SIZE;
6256 dev->gso_max_segs = GSO_MAX_SEGS;
6257
6258 INIT_LIST_HEAD(&dev->napi_list);
6259 INIT_LIST_HEAD(&dev->unreg_list);
6260 INIT_LIST_HEAD(&dev->close_list);
6261 INIT_LIST_HEAD(&dev->link_watch_list);
6262 INIT_LIST_HEAD(&dev->adj_list.upper);
6263 INIT_LIST_HEAD(&dev->adj_list.lower);
6264 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6265 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6266 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6267 setup(dev);
6268
6269 dev->num_tx_queues = txqs;
6270 dev->real_num_tx_queues = txqs;
6271 if (netif_alloc_netdev_queues(dev))
6272 goto free_all;
6273
6274 #ifdef CONFIG_RPS
6275 dev->num_rx_queues = rxqs;
6276 dev->real_num_rx_queues = rxqs;
6277 if (netif_alloc_rx_queues(dev))
6278 goto free_all;
6279 #endif
6280
6281 strcpy(dev->name, name);
6282 dev->group = INIT_NETDEV_GROUP;
6283 if (!dev->ethtool_ops)
6284 dev->ethtool_ops = &default_ethtool_ops;
6285 return dev;
6286
6287 free_all:
6288 free_netdev(dev);
6289 return NULL;
6290
6291 free_pcpu:
6292 free_percpu(dev->pcpu_refcnt);
6293 netif_free_tx_queues(dev);
6294 #ifdef CONFIG_RPS
6295 kfree(dev->_rx);
6296 #endif
6297
6298 free_dev:
6299 netdev_freemem(dev);
6300 return NULL;
6301 }
6302 EXPORT_SYMBOL(alloc_netdev_mqs);
6303
6304 /**
6305 * free_netdev - free network device
6306 * @dev: device
6307 *
6308 * This function does the last stage of destroying an allocated device
6309 * interface. The reference to the device object is released.
6310 * If this is the last reference then it will be freed.
6311 */
6312 void free_netdev(struct net_device *dev)
6313 {
6314 struct napi_struct *p, *n;
6315
6316 release_net(dev_net(dev));
6317
6318 netif_free_tx_queues(dev);
6319 #ifdef CONFIG_RPS
6320 kfree(dev->_rx);
6321 #endif
6322
6323 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6324
6325 /* Flush device addresses */
6326 dev_addr_flush(dev);
6327
6328 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6329 netif_napi_del(p);
6330
6331 free_percpu(dev->pcpu_refcnt);
6332 dev->pcpu_refcnt = NULL;
6333
6334 /* Compatibility with error handling in drivers */
6335 if (dev->reg_state == NETREG_UNINITIALIZED) {
6336 netdev_freemem(dev);
6337 return;
6338 }
6339
6340 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6341 dev->reg_state = NETREG_RELEASED;
6342
6343 /* will free via device release */
6344 put_device(&dev->dev);
6345 }
6346 EXPORT_SYMBOL(free_netdev);
6347
6348 /**
6349 * synchronize_net - Synchronize with packet receive processing
6350 *
6351 * Wait for packets currently being received to be done.
6352 * Does not block later packets from starting.
6353 */
6354 void synchronize_net(void)
6355 {
6356 might_sleep();
6357 if (rtnl_is_locked())
6358 synchronize_rcu_expedited();
6359 else
6360 synchronize_rcu();
6361 }
6362 EXPORT_SYMBOL(synchronize_net);
6363
6364 /**
6365 * unregister_netdevice_queue - remove device from the kernel
6366 * @dev: device
6367 * @head: list
6368 *
6369 * This function shuts down a device interface and removes it
6370 * from the kernel tables.
6371 * If head not NULL, device is queued to be unregistered later.
6372 *
6373 * Callers must hold the rtnl semaphore. You may want
6374 * unregister_netdev() instead of this.
6375 */
6376
6377 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6378 {
6379 ASSERT_RTNL();
6380
6381 if (head) {
6382 list_move_tail(&dev->unreg_list, head);
6383 } else {
6384 rollback_registered(dev);
6385 /* Finish processing unregister after unlock */
6386 net_set_todo(dev);
6387 }
6388 }
6389 EXPORT_SYMBOL(unregister_netdevice_queue);
6390
6391 /**
6392 * unregister_netdevice_many - unregister many devices
6393 * @head: list of devices
6394 */
6395 void unregister_netdevice_many(struct list_head *head)
6396 {
6397 struct net_device *dev;
6398
6399 if (!list_empty(head)) {
6400 rollback_registered_many(head);
6401 list_for_each_entry(dev, head, unreg_list)
6402 net_set_todo(dev);
6403 }
6404 }
6405 EXPORT_SYMBOL(unregister_netdevice_many);
6406
6407 /**
6408 * unregister_netdev - remove device from the kernel
6409 * @dev: device
6410 *
6411 * This function shuts down a device interface and removes it
6412 * from the kernel tables.
6413 *
6414 * This is just a wrapper for unregister_netdevice that takes
6415 * the rtnl semaphore. In general you want to use this and not
6416 * unregister_netdevice.
6417 */
6418 void unregister_netdev(struct net_device *dev)
6419 {
6420 rtnl_lock();
6421 unregister_netdevice(dev);
6422 rtnl_unlock();
6423 }
6424 EXPORT_SYMBOL(unregister_netdev);
6425
6426 /**
6427 * dev_change_net_namespace - move device to different nethost namespace
6428 * @dev: device
6429 * @net: network namespace
6430 * @pat: If not NULL name pattern to try if the current device name
6431 * is already taken in the destination network namespace.
6432 *
6433 * This function shuts down a device interface and moves it
6434 * to a new network namespace. On success 0 is returned, on
6435 * a failure a netagive errno code is returned.
6436 *
6437 * Callers must hold the rtnl semaphore.
6438 */
6439
6440 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6441 {
6442 int err;
6443
6444 ASSERT_RTNL();
6445
6446 /* Don't allow namespace local devices to be moved. */
6447 err = -EINVAL;
6448 if (dev->features & NETIF_F_NETNS_LOCAL)
6449 goto out;
6450
6451 /* Ensure the device has been registrered */
6452 if (dev->reg_state != NETREG_REGISTERED)
6453 goto out;
6454
6455 /* Get out if there is nothing todo */
6456 err = 0;
6457 if (net_eq(dev_net(dev), net))
6458 goto out;
6459
6460 /* Pick the destination device name, and ensure
6461 * we can use it in the destination network namespace.
6462 */
6463 err = -EEXIST;
6464 if (__dev_get_by_name(net, dev->name)) {
6465 /* We get here if we can't use the current device name */
6466 if (!pat)
6467 goto out;
6468 if (dev_get_valid_name(net, dev, pat) < 0)
6469 goto out;
6470 }
6471
6472 /*
6473 * And now a mini version of register_netdevice unregister_netdevice.
6474 */
6475
6476 /* If device is running close it first. */
6477 dev_close(dev);
6478
6479 /* And unlink it from device chain */
6480 err = -ENODEV;
6481 unlist_netdevice(dev);
6482
6483 synchronize_net();
6484
6485 /* Shutdown queueing discipline. */
6486 dev_shutdown(dev);
6487
6488 /* Notify protocols, that we are about to destroy
6489 this device. They should clean all the things.
6490
6491 Note that dev->reg_state stays at NETREG_REGISTERED.
6492 This is wanted because this way 8021q and macvlan know
6493 the device is just moving and can keep their slaves up.
6494 */
6495 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6496 rcu_barrier();
6497 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6498 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6499
6500 /*
6501 * Flush the unicast and multicast chains
6502 */
6503 dev_uc_flush(dev);
6504 dev_mc_flush(dev);
6505
6506 /* Send a netdev-removed uevent to the old namespace */
6507 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6508
6509 /* Actually switch the network namespace */
6510 dev_net_set(dev, net);
6511
6512 /* If there is an ifindex conflict assign a new one */
6513 if (__dev_get_by_index(net, dev->ifindex)) {
6514 int iflink = (dev->iflink == dev->ifindex);
6515 dev->ifindex = dev_new_index(net);
6516 if (iflink)
6517 dev->iflink = dev->ifindex;
6518 }
6519
6520 /* Send a netdev-add uevent to the new namespace */
6521 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6522
6523 /* Fixup kobjects */
6524 err = device_rename(&dev->dev, dev->name);
6525 WARN_ON(err);
6526
6527 /* Add the device back in the hashes */
6528 list_netdevice(dev);
6529
6530 /* Notify protocols, that a new device appeared. */
6531 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6532
6533 /*
6534 * Prevent userspace races by waiting until the network
6535 * device is fully setup before sending notifications.
6536 */
6537 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6538
6539 synchronize_net();
6540 err = 0;
6541 out:
6542 return err;
6543 }
6544 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6545
6546 static int dev_cpu_callback(struct notifier_block *nfb,
6547 unsigned long action,
6548 void *ocpu)
6549 {
6550 struct sk_buff **list_skb;
6551 struct sk_buff *skb;
6552 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6553 struct softnet_data *sd, *oldsd;
6554
6555 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6556 return NOTIFY_OK;
6557
6558 local_irq_disable();
6559 cpu = smp_processor_id();
6560 sd = &per_cpu(softnet_data, cpu);
6561 oldsd = &per_cpu(softnet_data, oldcpu);
6562
6563 /* Find end of our completion_queue. */
6564 list_skb = &sd->completion_queue;
6565 while (*list_skb)
6566 list_skb = &(*list_skb)->next;
6567 /* Append completion queue from offline CPU. */
6568 *list_skb = oldsd->completion_queue;
6569 oldsd->completion_queue = NULL;
6570
6571 /* Append output queue from offline CPU. */
6572 if (oldsd->output_queue) {
6573 *sd->output_queue_tailp = oldsd->output_queue;
6574 sd->output_queue_tailp = oldsd->output_queue_tailp;
6575 oldsd->output_queue = NULL;
6576 oldsd->output_queue_tailp = &oldsd->output_queue;
6577 }
6578 /* Append NAPI poll list from offline CPU. */
6579 if (!list_empty(&oldsd->poll_list)) {
6580 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6581 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6582 }
6583
6584 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6585 local_irq_enable();
6586
6587 /* Process offline CPU's input_pkt_queue */
6588 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6589 netif_rx(skb);
6590 input_queue_head_incr(oldsd);
6591 }
6592 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6593 netif_rx(skb);
6594 input_queue_head_incr(oldsd);
6595 }
6596
6597 return NOTIFY_OK;
6598 }
6599
6600
6601 /**
6602 * netdev_increment_features - increment feature set by one
6603 * @all: current feature set
6604 * @one: new feature set
6605 * @mask: mask feature set
6606 *
6607 * Computes a new feature set after adding a device with feature set
6608 * @one to the master device with current feature set @all. Will not
6609 * enable anything that is off in @mask. Returns the new feature set.
6610 */
6611 netdev_features_t netdev_increment_features(netdev_features_t all,
6612 netdev_features_t one, netdev_features_t mask)
6613 {
6614 if (mask & NETIF_F_GEN_CSUM)
6615 mask |= NETIF_F_ALL_CSUM;
6616 mask |= NETIF_F_VLAN_CHALLENGED;
6617
6618 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6619 all &= one | ~NETIF_F_ALL_FOR_ALL;
6620
6621 /* If one device supports hw checksumming, set for all. */
6622 if (all & NETIF_F_GEN_CSUM)
6623 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6624
6625 return all;
6626 }
6627 EXPORT_SYMBOL(netdev_increment_features);
6628
6629 static struct hlist_head * __net_init netdev_create_hash(void)
6630 {
6631 int i;
6632 struct hlist_head *hash;
6633
6634 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6635 if (hash != NULL)
6636 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6637 INIT_HLIST_HEAD(&hash[i]);
6638
6639 return hash;
6640 }
6641
6642 /* Initialize per network namespace state */
6643 static int __net_init netdev_init(struct net *net)
6644 {
6645 if (net != &init_net)
6646 INIT_LIST_HEAD(&net->dev_base_head);
6647
6648 net->dev_name_head = netdev_create_hash();
6649 if (net->dev_name_head == NULL)
6650 goto err_name;
6651
6652 net->dev_index_head = netdev_create_hash();
6653 if (net->dev_index_head == NULL)
6654 goto err_idx;
6655
6656 return 0;
6657
6658 err_idx:
6659 kfree(net->dev_name_head);
6660 err_name:
6661 return -ENOMEM;
6662 }
6663
6664 /**
6665 * netdev_drivername - network driver for the device
6666 * @dev: network device
6667 *
6668 * Determine network driver for device.
6669 */
6670 const char *netdev_drivername(const struct net_device *dev)
6671 {
6672 const struct device_driver *driver;
6673 const struct device *parent;
6674 const char *empty = "";
6675
6676 parent = dev->dev.parent;
6677 if (!parent)
6678 return empty;
6679
6680 driver = parent->driver;
6681 if (driver && driver->name)
6682 return driver->name;
6683 return empty;
6684 }
6685
6686 static int __netdev_printk(const char *level, const struct net_device *dev,
6687 struct va_format *vaf)
6688 {
6689 int r;
6690
6691 if (dev && dev->dev.parent) {
6692 r = dev_printk_emit(level[1] - '0',
6693 dev->dev.parent,
6694 "%s %s %s: %pV",
6695 dev_driver_string(dev->dev.parent),
6696 dev_name(dev->dev.parent),
6697 netdev_name(dev), vaf);
6698 } else if (dev) {
6699 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6700 } else {
6701 r = printk("%s(NULL net_device): %pV", level, vaf);
6702 }
6703
6704 return r;
6705 }
6706
6707 int netdev_printk(const char *level, const struct net_device *dev,
6708 const char *format, ...)
6709 {
6710 struct va_format vaf;
6711 va_list args;
6712 int r;
6713
6714 va_start(args, format);
6715
6716 vaf.fmt = format;
6717 vaf.va = &args;
6718
6719 r = __netdev_printk(level, dev, &vaf);
6720
6721 va_end(args);
6722
6723 return r;
6724 }
6725 EXPORT_SYMBOL(netdev_printk);
6726
6727 #define define_netdev_printk_level(func, level) \
6728 int func(const struct net_device *dev, const char *fmt, ...) \
6729 { \
6730 int r; \
6731 struct va_format vaf; \
6732 va_list args; \
6733 \
6734 va_start(args, fmt); \
6735 \
6736 vaf.fmt = fmt; \
6737 vaf.va = &args; \
6738 \
6739 r = __netdev_printk(level, dev, &vaf); \
6740 \
6741 va_end(args); \
6742 \
6743 return r; \
6744 } \
6745 EXPORT_SYMBOL(func);
6746
6747 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6748 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6749 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6750 define_netdev_printk_level(netdev_err, KERN_ERR);
6751 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6752 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6753 define_netdev_printk_level(netdev_info, KERN_INFO);
6754
6755 static void __net_exit netdev_exit(struct net *net)
6756 {
6757 kfree(net->dev_name_head);
6758 kfree(net->dev_index_head);
6759 }
6760
6761 static struct pernet_operations __net_initdata netdev_net_ops = {
6762 .init = netdev_init,
6763 .exit = netdev_exit,
6764 };
6765
6766 static void __net_exit default_device_exit(struct net *net)
6767 {
6768 struct net_device *dev, *aux;
6769 /*
6770 * Push all migratable network devices back to the
6771 * initial network namespace
6772 */
6773 rtnl_lock();
6774 for_each_netdev_safe(net, dev, aux) {
6775 int err;
6776 char fb_name[IFNAMSIZ];
6777
6778 /* Ignore unmoveable devices (i.e. loopback) */
6779 if (dev->features & NETIF_F_NETNS_LOCAL)
6780 continue;
6781
6782 /* Leave virtual devices for the generic cleanup */
6783 if (dev->rtnl_link_ops)
6784 continue;
6785
6786 /* Push remaining network devices to init_net */
6787 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6788 err = dev_change_net_namespace(dev, &init_net, fb_name);
6789 if (err) {
6790 pr_emerg("%s: failed to move %s to init_net: %d\n",
6791 __func__, dev->name, err);
6792 BUG();
6793 }
6794 }
6795 rtnl_unlock();
6796 }
6797
6798 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6799 {
6800 /* Return with the rtnl_lock held when there are no network
6801 * devices unregistering in any network namespace in net_list.
6802 */
6803 struct net *net;
6804 bool unregistering;
6805 DEFINE_WAIT(wait);
6806
6807 for (;;) {
6808 prepare_to_wait(&netdev_unregistering_wq, &wait,
6809 TASK_UNINTERRUPTIBLE);
6810 unregistering = false;
6811 rtnl_lock();
6812 list_for_each_entry(net, net_list, exit_list) {
6813 if (net->dev_unreg_count > 0) {
6814 unregistering = true;
6815 break;
6816 }
6817 }
6818 if (!unregistering)
6819 break;
6820 __rtnl_unlock();
6821 schedule();
6822 }
6823 finish_wait(&netdev_unregistering_wq, &wait);
6824 }
6825
6826 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6827 {
6828 /* At exit all network devices most be removed from a network
6829 * namespace. Do this in the reverse order of registration.
6830 * Do this across as many network namespaces as possible to
6831 * improve batching efficiency.
6832 */
6833 struct net_device *dev;
6834 struct net *net;
6835 LIST_HEAD(dev_kill_list);
6836
6837 /* To prevent network device cleanup code from dereferencing
6838 * loopback devices or network devices that have been freed
6839 * wait here for all pending unregistrations to complete,
6840 * before unregistring the loopback device and allowing the
6841 * network namespace be freed.
6842 *
6843 * The netdev todo list containing all network devices
6844 * unregistrations that happen in default_device_exit_batch
6845 * will run in the rtnl_unlock() at the end of
6846 * default_device_exit_batch.
6847 */
6848 rtnl_lock_unregistering(net_list);
6849 list_for_each_entry(net, net_list, exit_list) {
6850 for_each_netdev_reverse(net, dev) {
6851 if (dev->rtnl_link_ops)
6852 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6853 else
6854 unregister_netdevice_queue(dev, &dev_kill_list);
6855 }
6856 }
6857 unregister_netdevice_many(&dev_kill_list);
6858 list_del(&dev_kill_list);
6859 rtnl_unlock();
6860 }
6861
6862 static struct pernet_operations __net_initdata default_device_ops = {
6863 .exit = default_device_exit,
6864 .exit_batch = default_device_exit_batch,
6865 };
6866
6867 /*
6868 * Initialize the DEV module. At boot time this walks the device list and
6869 * unhooks any devices that fail to initialise (normally hardware not
6870 * present) and leaves us with a valid list of present and active devices.
6871 *
6872 */
6873
6874 /*
6875 * This is called single threaded during boot, so no need
6876 * to take the rtnl semaphore.
6877 */
6878 static int __init net_dev_init(void)
6879 {
6880 int i, rc = -ENOMEM;
6881
6882 BUG_ON(!dev_boot_phase);
6883
6884 if (dev_proc_init())
6885 goto out;
6886
6887 if (netdev_kobject_init())
6888 goto out;
6889
6890 INIT_LIST_HEAD(&ptype_all);
6891 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6892 INIT_LIST_HEAD(&ptype_base[i]);
6893
6894 INIT_LIST_HEAD(&offload_base);
6895
6896 if (register_pernet_subsys(&netdev_net_ops))
6897 goto out;
6898
6899 /*
6900 * Initialise the packet receive queues.
6901 */
6902
6903 for_each_possible_cpu(i) {
6904 struct softnet_data *sd = &per_cpu(softnet_data, i);
6905
6906 memset(sd, 0, sizeof(*sd));
6907 skb_queue_head_init(&sd->input_pkt_queue);
6908 skb_queue_head_init(&sd->process_queue);
6909 sd->completion_queue = NULL;
6910 INIT_LIST_HEAD(&sd->poll_list);
6911 sd->output_queue = NULL;
6912 sd->output_queue_tailp = &sd->output_queue;
6913 #ifdef CONFIG_RPS
6914 sd->csd.func = rps_trigger_softirq;
6915 sd->csd.info = sd;
6916 sd->csd.flags = 0;
6917 sd->cpu = i;
6918 #endif
6919
6920 sd->backlog.poll = process_backlog;
6921 sd->backlog.weight = weight_p;
6922 sd->backlog.gro_list = NULL;
6923 sd->backlog.gro_count = 0;
6924
6925 #ifdef CONFIG_NET_FLOW_LIMIT
6926 sd->flow_limit = NULL;
6927 #endif
6928 }
6929
6930 dev_boot_phase = 0;
6931
6932 /* The loopback device is special if any other network devices
6933 * is present in a network namespace the loopback device must
6934 * be present. Since we now dynamically allocate and free the
6935 * loopback device ensure this invariant is maintained by
6936 * keeping the loopback device as the first device on the
6937 * list of network devices. Ensuring the loopback devices
6938 * is the first device that appears and the last network device
6939 * that disappears.
6940 */
6941 if (register_pernet_device(&loopback_net_ops))
6942 goto out;
6943
6944 if (register_pernet_device(&default_device_ops))
6945 goto out;
6946
6947 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6948 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6949
6950 hotcpu_notifier(dev_cpu_callback, 0);
6951 dst_init();
6952 rc = 0;
6953 out:
6954 return rc;
6955 }
6956
6957 subsys_initcall(net_dev_init);
This page took 0.181432 seconds and 5 git commands to generate.