net offloading: Generalize netif_get_vlan_features().
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 */
757
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
760 {
761 struct net_device *dev;
762
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 struct net_device *dev;
775
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev, *ret = NULL;
788
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
795 }
796 rcu_read_unlock();
797 return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800
801 /**
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
806 *
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
810 */
811
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
814 {
815 struct net_device *dev, *ret;
816
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
822 }
823 }
824 return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827
828 /**
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
831 *
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
835 */
836 int dev_valid_name(const char *name)
837 {
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
844
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
849 }
850 return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853
854 /**
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
876
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
879 /*
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
883 */
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
886
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
891
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
897
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
902 }
903
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
906 }
907
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
912
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
916 */
917 return -ENFILE;
918 }
919
920 /**
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
924 *
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
932 */
933
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
939
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 struct net *net;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955
956 if (!dev_valid_name(name))
957 return -EINVAL;
958
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
965
966 return 0;
967 }
968
969 /**
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
973 *
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
976 */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
983
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
986
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
990
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
993
994 memcpy(oldname, dev->name, IFNAMSIZ);
995
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
999
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1005 }
1006
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1010
1011 synchronize_rcu();
1012
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1016
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1019
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1030 }
1031 }
1032
1033 return err;
1034 }
1035
1036 /**
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1041 *
1042 * Set ifalias for a device,
1043 */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 ASSERT_RTNL();
1047
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1050
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1055 }
1056 return 0;
1057 }
1058
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1062
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1065 }
1066
1067
1068 /**
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1071 *
1072 * Called to indicate a device has changed features.
1073 */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079
1080 /**
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1087 */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 }
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102
1103 /**
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1107 *
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1111 */
1112
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 struct net_device *dev;
1116
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1120
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1130
1131 ASSERT_RTNL();
1132
1133 /*
1134 * Is it even present?
1135 */
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1138
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Call device private open method
1146 */
1147 set_bit(__LINK_STATE_START, &dev->state);
1148
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1151
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1154
1155 /*
1156 * If it went open OK then:
1157 */
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 /*
1163 * Set the flags.
1164 */
1165 dev->flags |= IFF_UP;
1166
1167 /*
1168 * Enable NET_DMA
1169 */
1170 net_dmaengine_get();
1171
1172 /*
1173 * Initialize multicasting status
1174 */
1175 dev_set_rx_mode(dev);
1176
1177 /*
1178 * Wakeup transmit queue engine
1179 */
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 /*
1203 * Is it already up?
1204 */
1205 if (dev->flags & IFF_UP)
1206 return 0;
1207
1208 /*
1209 * Open device
1210 */
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1214
1215 /*
1216 * ... and announce new interface.
1217 */
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224
1225 static int __dev_close_many(struct list_head *head)
1226 {
1227 struct net_device *dev;
1228
1229 ASSERT_RTNL();
1230 might_sleep();
1231
1232 list_for_each_entry(dev, head, unreg_list) {
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list, it
1242 * can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 }
1249
1250 dev_deactivate_many(head);
1251
1252 list_for_each_entry(dev, head, unreg_list) {
1253 const struct net_device_ops *ops = dev->netdev_ops;
1254
1255 /*
1256 * Call the device specific close. This cannot fail.
1257 * Only if device is UP
1258 *
1259 * We allow it to be called even after a DETACH hot-plug
1260 * event.
1261 */
1262 if (ops->ndo_stop)
1263 ops->ndo_stop(dev);
1264
1265 /*
1266 * Device is now down.
1267 */
1268
1269 dev->flags &= ~IFF_UP;
1270
1271 /*
1272 * Shutdown NET_DMA
1273 */
1274 net_dmaengine_put();
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int __dev_close(struct net_device *dev)
1281 {
1282 LIST_HEAD(single);
1283
1284 list_add(&dev->unreg_list, &single);
1285 return __dev_close_many(&single);
1286 }
1287
1288 int dev_close_many(struct list_head *head)
1289 {
1290 struct net_device *dev, *tmp;
1291 LIST_HEAD(tmp_list);
1292
1293 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 if (!(dev->flags & IFF_UP))
1295 list_move(&dev->unreg_list, &tmp_list);
1296
1297 __dev_close_many(head);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 list_for_each_entry(dev, head, unreg_list) {
1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 }
1306
1307 /* rollback_registered_many needs the complete original list */
1308 list_splice(&tmp_list, head);
1309 return 0;
1310 }
1311
1312 /**
1313 * dev_close - shutdown an interface.
1314 * @dev: device to shutdown
1315 *
1316 * This function moves an active device into down state. A
1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319 * chain.
1320 */
1321 int dev_close(struct net_device *dev)
1322 {
1323 LIST_HEAD(single);
1324
1325 list_add(&dev->unreg_list, &single);
1326 dev_close_many(&single);
1327
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(dev_close);
1331
1332
1333 /**
1334 * dev_disable_lro - disable Large Receive Offload on a device
1335 * @dev: device
1336 *
1337 * Disable Large Receive Offload (LRO) on a net device. Must be
1338 * called under RTNL. This is needed if received packets may be
1339 * forwarded to another interface.
1340 */
1341 void dev_disable_lro(struct net_device *dev)
1342 {
1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 dev->ethtool_ops->set_flags) {
1345 u32 flags = dev->ethtool_ops->get_flags(dev);
1346 if (flags & ETH_FLAG_LRO) {
1347 flags &= ~ETH_FLAG_LRO;
1348 dev->ethtool_ops->set_flags(dev, flags);
1349 }
1350 }
1351 WARN_ON(dev->features & NETIF_F_LRO);
1352 }
1353 EXPORT_SYMBOL(dev_disable_lro);
1354
1355
1356 static int dev_boot_phase = 1;
1357
1358 /*
1359 * Device change register/unregister. These are not inline or static
1360 * as we export them to the world.
1361 */
1362
1363 /**
1364 * register_netdevice_notifier - register a network notifier block
1365 * @nb: notifier
1366 *
1367 * Register a notifier to be called when network device events occur.
1368 * The notifier passed is linked into the kernel structures and must
1369 * not be reused until it has been unregistered. A negative errno code
1370 * is returned on a failure.
1371 *
1372 * When registered all registration and up events are replayed
1373 * to the new notifier to allow device to have a race free
1374 * view of the network device list.
1375 */
1376
1377 int register_netdevice_notifier(struct notifier_block *nb)
1378 {
1379 struct net_device *dev;
1380 struct net_device *last;
1381 struct net *net;
1382 int err;
1383
1384 rtnl_lock();
1385 err = raw_notifier_chain_register(&netdev_chain, nb);
1386 if (err)
1387 goto unlock;
1388 if (dev_boot_phase)
1389 goto unlock;
1390 for_each_net(net) {
1391 for_each_netdev(net, dev) {
1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 err = notifier_to_errno(err);
1394 if (err)
1395 goto rollback;
1396
1397 if (!(dev->flags & IFF_UP))
1398 continue;
1399
1400 nb->notifier_call(nb, NETDEV_UP, dev);
1401 }
1402 }
1403
1404 unlock:
1405 rtnl_unlock();
1406 return err;
1407
1408 rollback:
1409 last = dev;
1410 for_each_net(net) {
1411 for_each_netdev(net, dev) {
1412 if (dev == last)
1413 break;
1414
1415 if (dev->flags & IFF_UP) {
1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 nb->notifier_call(nb, NETDEV_DOWN, dev);
1418 }
1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1421 }
1422 }
1423
1424 raw_notifier_chain_unregister(&netdev_chain, nb);
1425 goto unlock;
1426 }
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1428
1429 /**
1430 * unregister_netdevice_notifier - unregister a network notifier block
1431 * @nb: notifier
1432 *
1433 * Unregister a notifier previously registered by
1434 * register_netdevice_notifier(). The notifier is unlinked into the
1435 * kernel structures and may then be reused. A negative errno code
1436 * is returned on a failure.
1437 */
1438
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1440 {
1441 int err;
1442
1443 rtnl_lock();
1444 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 rtnl_unlock();
1446 return err;
1447 }
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449
1450 /**
1451 * call_netdevice_notifiers - call all network notifier blocks
1452 * @val: value passed unmodified to notifier function
1453 * @dev: net_device pointer passed unmodified to notifier function
1454 *
1455 * Call all network notifier blocks. Parameters and return value
1456 * are as for raw_notifier_call_chain().
1457 */
1458
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 {
1461 ASSERT_RTNL();
1462 return raw_notifier_call_chain(&netdev_chain, val, dev);
1463 }
1464
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1467
1468 void net_enable_timestamp(void)
1469 {
1470 atomic_inc(&netstamp_needed);
1471 }
1472 EXPORT_SYMBOL(net_enable_timestamp);
1473
1474 void net_disable_timestamp(void)
1475 {
1476 atomic_dec(&netstamp_needed);
1477 }
1478 EXPORT_SYMBOL(net_disable_timestamp);
1479
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1481 {
1482 if (atomic_read(&netstamp_needed))
1483 __net_timestamp(skb);
1484 else
1485 skb->tstamp.tv64 = 0;
1486 }
1487
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1489 {
1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 __net_timestamp(skb);
1492 }
1493
1494 /**
1495 * dev_forward_skb - loopback an skb to another netif
1496 *
1497 * @dev: destination network device
1498 * @skb: buffer to forward
1499 *
1500 * return values:
1501 * NET_RX_SUCCESS (no congestion)
1502 * NET_RX_DROP (packet was dropped, but freed)
1503 *
1504 * dev_forward_skb can be used for injecting an skb from the
1505 * start_xmit function of one device into the receive queue
1506 * of another device.
1507 *
1508 * The receiving device may be in another namespace, so
1509 * we have to clear all information in the skb that could
1510 * impact namespace isolation.
1511 */
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1513 {
1514 skb_orphan(skb);
1515 nf_reset(skb);
1516
1517 if (unlikely(!(dev->flags & IFF_UP) ||
1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 atomic_long_inc(&dev->rx_dropped);
1520 kfree_skb(skb);
1521 return NET_RX_DROP;
1522 }
1523 skb_set_dev(skb, dev);
1524 skb->tstamp.tv64 = 0;
1525 skb->pkt_type = PACKET_HOST;
1526 skb->protocol = eth_type_trans(skb, dev);
1527 return netif_rx(skb);
1528 }
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1530
1531 static inline int deliver_skb(struct sk_buff *skb,
1532 struct packet_type *pt_prev,
1533 struct net_device *orig_dev)
1534 {
1535 atomic_inc(&skb->users);
1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1537 }
1538
1539 /*
1540 * Support routine. Sends outgoing frames to any network
1541 * taps currently in use.
1542 */
1543
1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1545 {
1546 struct packet_type *ptype;
1547 struct sk_buff *skb2 = NULL;
1548 struct packet_type *pt_prev = NULL;
1549
1550 rcu_read_lock();
1551 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1552 /* Never send packets back to the socket
1553 * they originated from - MvS (miquels@drinkel.ow.org)
1554 */
1555 if ((ptype->dev == dev || !ptype->dev) &&
1556 (ptype->af_packet_priv == NULL ||
1557 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1558 if (pt_prev) {
1559 deliver_skb(skb2, pt_prev, skb->dev);
1560 pt_prev = ptype;
1561 continue;
1562 }
1563
1564 skb2 = skb_clone(skb, GFP_ATOMIC);
1565 if (!skb2)
1566 break;
1567
1568 net_timestamp_set(skb2);
1569
1570 /* skb->nh should be correctly
1571 set by sender, so that the second statement is
1572 just protection against buggy protocols.
1573 */
1574 skb_reset_mac_header(skb2);
1575
1576 if (skb_network_header(skb2) < skb2->data ||
1577 skb2->network_header > skb2->tail) {
1578 if (net_ratelimit())
1579 printk(KERN_CRIT "protocol %04x is "
1580 "buggy, dev %s\n",
1581 ntohs(skb2->protocol),
1582 dev->name);
1583 skb_reset_network_header(skb2);
1584 }
1585
1586 skb2->transport_header = skb2->network_header;
1587 skb2->pkt_type = PACKET_OUTGOING;
1588 pt_prev = ptype;
1589 }
1590 }
1591 if (pt_prev)
1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1593 rcu_read_unlock();
1594 }
1595
1596 /*
1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1599 */
1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1601 {
1602 int rc;
1603
1604 if (txq < 1 || txq > dev->num_tx_queues)
1605 return -EINVAL;
1606
1607 if (dev->reg_state == NETREG_REGISTERED) {
1608 ASSERT_RTNL();
1609
1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1611 txq);
1612 if (rc)
1613 return rc;
1614
1615 if (txq < dev->real_num_tx_queues)
1616 qdisc_reset_all_tx_gt(dev, txq);
1617 }
1618
1619 dev->real_num_tx_queues = txq;
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1623
1624 #ifdef CONFIG_RPS
1625 /**
1626 * netif_set_real_num_rx_queues - set actual number of RX queues used
1627 * @dev: Network device
1628 * @rxq: Actual number of RX queues
1629 *
1630 * This must be called either with the rtnl_lock held or before
1631 * registration of the net device. Returns 0 on success, or a
1632 * negative error code. If called before registration, it always
1633 * succeeds.
1634 */
1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1636 {
1637 int rc;
1638
1639 if (rxq < 1 || rxq > dev->num_rx_queues)
1640 return -EINVAL;
1641
1642 if (dev->reg_state == NETREG_REGISTERED) {
1643 ASSERT_RTNL();
1644
1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1646 rxq);
1647 if (rc)
1648 return rc;
1649 }
1650
1651 dev->real_num_rx_queues = rxq;
1652 return 0;
1653 }
1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1655 #endif
1656
1657 static inline void __netif_reschedule(struct Qdisc *q)
1658 {
1659 struct softnet_data *sd;
1660 unsigned long flags;
1661
1662 local_irq_save(flags);
1663 sd = &__get_cpu_var(softnet_data);
1664 q->next_sched = NULL;
1665 *sd->output_queue_tailp = q;
1666 sd->output_queue_tailp = &q->next_sched;
1667 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1668 local_irq_restore(flags);
1669 }
1670
1671 void __netif_schedule(struct Qdisc *q)
1672 {
1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1674 __netif_reschedule(q);
1675 }
1676 EXPORT_SYMBOL(__netif_schedule);
1677
1678 void dev_kfree_skb_irq(struct sk_buff *skb)
1679 {
1680 if (atomic_dec_and_test(&skb->users)) {
1681 struct softnet_data *sd;
1682 unsigned long flags;
1683
1684 local_irq_save(flags);
1685 sd = &__get_cpu_var(softnet_data);
1686 skb->next = sd->completion_queue;
1687 sd->completion_queue = skb;
1688 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1689 local_irq_restore(flags);
1690 }
1691 }
1692 EXPORT_SYMBOL(dev_kfree_skb_irq);
1693
1694 void dev_kfree_skb_any(struct sk_buff *skb)
1695 {
1696 if (in_irq() || irqs_disabled())
1697 dev_kfree_skb_irq(skb);
1698 else
1699 dev_kfree_skb(skb);
1700 }
1701 EXPORT_SYMBOL(dev_kfree_skb_any);
1702
1703
1704 /**
1705 * netif_device_detach - mark device as removed
1706 * @dev: network device
1707 *
1708 * Mark device as removed from system and therefore no longer available.
1709 */
1710 void netif_device_detach(struct net_device *dev)
1711 {
1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1713 netif_running(dev)) {
1714 netif_tx_stop_all_queues(dev);
1715 }
1716 }
1717 EXPORT_SYMBOL(netif_device_detach);
1718
1719 /**
1720 * netif_device_attach - mark device as attached
1721 * @dev: network device
1722 *
1723 * Mark device as attached from system and restart if needed.
1724 */
1725 void netif_device_attach(struct net_device *dev)
1726 {
1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1728 netif_running(dev)) {
1729 netif_tx_wake_all_queues(dev);
1730 __netdev_watchdog_up(dev);
1731 }
1732 }
1733 EXPORT_SYMBOL(netif_device_attach);
1734
1735 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1736 {
1737 return ((features & NETIF_F_GEN_CSUM) ||
1738 ((features & NETIF_F_V4_CSUM) &&
1739 protocol == htons(ETH_P_IP)) ||
1740 ((features & NETIF_F_V6_CSUM) &&
1741 protocol == htons(ETH_P_IPV6)) ||
1742 ((features & NETIF_F_FCOE_CRC) &&
1743 protocol == htons(ETH_P_FCOE)));
1744 }
1745
1746 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1747 {
1748 __be16 protocol = skb->protocol;
1749 int features = dev->features;
1750
1751 if (vlan_tx_tag_present(skb)) {
1752 features &= dev->vlan_features;
1753 } else if (protocol == htons(ETH_P_8021Q)) {
1754 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1755 protocol = veh->h_vlan_encapsulated_proto;
1756 features &= dev->vlan_features;
1757 }
1758
1759 return can_checksum_protocol(features, protocol);
1760 }
1761
1762 /**
1763 * skb_dev_set -- assign a new device to a buffer
1764 * @skb: buffer for the new device
1765 * @dev: network device
1766 *
1767 * If an skb is owned by a device already, we have to reset
1768 * all data private to the namespace a device belongs to
1769 * before assigning it a new device.
1770 */
1771 #ifdef CONFIG_NET_NS
1772 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1773 {
1774 skb_dst_drop(skb);
1775 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1776 secpath_reset(skb);
1777 nf_reset(skb);
1778 skb_init_secmark(skb);
1779 skb->mark = 0;
1780 skb->priority = 0;
1781 skb->nf_trace = 0;
1782 skb->ipvs_property = 0;
1783 #ifdef CONFIG_NET_SCHED
1784 skb->tc_index = 0;
1785 #endif
1786 }
1787 skb->dev = dev;
1788 }
1789 EXPORT_SYMBOL(skb_set_dev);
1790 #endif /* CONFIG_NET_NS */
1791
1792 /*
1793 * Invalidate hardware checksum when packet is to be mangled, and
1794 * complete checksum manually on outgoing path.
1795 */
1796 int skb_checksum_help(struct sk_buff *skb)
1797 {
1798 __wsum csum;
1799 int ret = 0, offset;
1800
1801 if (skb->ip_summed == CHECKSUM_COMPLETE)
1802 goto out_set_summed;
1803
1804 if (unlikely(skb_shinfo(skb)->gso_size)) {
1805 /* Let GSO fix up the checksum. */
1806 goto out_set_summed;
1807 }
1808
1809 offset = skb_checksum_start_offset(skb);
1810 BUG_ON(offset >= skb_headlen(skb));
1811 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1812
1813 offset += skb->csum_offset;
1814 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1815
1816 if (skb_cloned(skb) &&
1817 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1818 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1819 if (ret)
1820 goto out;
1821 }
1822
1823 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1824 out_set_summed:
1825 skb->ip_summed = CHECKSUM_NONE;
1826 out:
1827 return ret;
1828 }
1829 EXPORT_SYMBOL(skb_checksum_help);
1830
1831 /**
1832 * skb_gso_segment - Perform segmentation on skb.
1833 * @skb: buffer to segment
1834 * @features: features for the output path (see dev->features)
1835 *
1836 * This function segments the given skb and returns a list of segments.
1837 *
1838 * It may return NULL if the skb requires no segmentation. This is
1839 * only possible when GSO is used for verifying header integrity.
1840 */
1841 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1842 {
1843 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1844 struct packet_type *ptype;
1845 __be16 type = skb->protocol;
1846 int vlan_depth = ETH_HLEN;
1847 int err;
1848
1849 while (type == htons(ETH_P_8021Q)) {
1850 struct vlan_hdr *vh;
1851
1852 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1853 return ERR_PTR(-EINVAL);
1854
1855 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1856 type = vh->h_vlan_encapsulated_proto;
1857 vlan_depth += VLAN_HLEN;
1858 }
1859
1860 skb_reset_mac_header(skb);
1861 skb->mac_len = skb->network_header - skb->mac_header;
1862 __skb_pull(skb, skb->mac_len);
1863
1864 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1865 struct net_device *dev = skb->dev;
1866 struct ethtool_drvinfo info = {};
1867
1868 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1869 dev->ethtool_ops->get_drvinfo(dev, &info);
1870
1871 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1872 info.driver, dev ? dev->features : 0L,
1873 skb->sk ? skb->sk->sk_route_caps : 0L,
1874 skb->len, skb->data_len, skb->ip_summed);
1875
1876 if (skb_header_cloned(skb) &&
1877 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1878 return ERR_PTR(err);
1879 }
1880
1881 rcu_read_lock();
1882 list_for_each_entry_rcu(ptype,
1883 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1884 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1885 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1886 err = ptype->gso_send_check(skb);
1887 segs = ERR_PTR(err);
1888 if (err || skb_gso_ok(skb, features))
1889 break;
1890 __skb_push(skb, (skb->data -
1891 skb_network_header(skb)));
1892 }
1893 segs = ptype->gso_segment(skb, features);
1894 break;
1895 }
1896 }
1897 rcu_read_unlock();
1898
1899 __skb_push(skb, skb->data - skb_mac_header(skb));
1900
1901 return segs;
1902 }
1903 EXPORT_SYMBOL(skb_gso_segment);
1904
1905 /* Take action when hardware reception checksum errors are detected. */
1906 #ifdef CONFIG_BUG
1907 void netdev_rx_csum_fault(struct net_device *dev)
1908 {
1909 if (net_ratelimit()) {
1910 printk(KERN_ERR "%s: hw csum failure.\n",
1911 dev ? dev->name : "<unknown>");
1912 dump_stack();
1913 }
1914 }
1915 EXPORT_SYMBOL(netdev_rx_csum_fault);
1916 #endif
1917
1918 /* Actually, we should eliminate this check as soon as we know, that:
1919 * 1. IOMMU is present and allows to map all the memory.
1920 * 2. No high memory really exists on this machine.
1921 */
1922
1923 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1924 {
1925 #ifdef CONFIG_HIGHMEM
1926 int i;
1927 if (!(dev->features & NETIF_F_HIGHDMA)) {
1928 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1929 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1930 return 1;
1931 }
1932
1933 if (PCI_DMA_BUS_IS_PHYS) {
1934 struct device *pdev = dev->dev.parent;
1935
1936 if (!pdev)
1937 return 0;
1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1940 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1941 return 1;
1942 }
1943 }
1944 #endif
1945 return 0;
1946 }
1947
1948 struct dev_gso_cb {
1949 void (*destructor)(struct sk_buff *skb);
1950 };
1951
1952 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1953
1954 static void dev_gso_skb_destructor(struct sk_buff *skb)
1955 {
1956 struct dev_gso_cb *cb;
1957
1958 do {
1959 struct sk_buff *nskb = skb->next;
1960
1961 skb->next = nskb->next;
1962 nskb->next = NULL;
1963 kfree_skb(nskb);
1964 } while (skb->next);
1965
1966 cb = DEV_GSO_CB(skb);
1967 if (cb->destructor)
1968 cb->destructor(skb);
1969 }
1970
1971 /**
1972 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1973 * @skb: buffer to segment
1974 *
1975 * This function segments the given skb and stores the list of segments
1976 * in skb->next.
1977 */
1978 static int dev_gso_segment(struct sk_buff *skb)
1979 {
1980 struct net_device *dev = skb->dev;
1981 struct sk_buff *segs;
1982 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1983 NETIF_F_SG : 0);
1984
1985 segs = skb_gso_segment(skb, features);
1986
1987 /* Verifying header integrity only. */
1988 if (!segs)
1989 return 0;
1990
1991 if (IS_ERR(segs))
1992 return PTR_ERR(segs);
1993
1994 skb->next = segs;
1995 DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 skb->destructor = dev_gso_skb_destructor;
1997
1998 return 0;
1999 }
2000
2001 /*
2002 * Try to orphan skb early, right before transmission by the device.
2003 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2005 */
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2007 {
2008 struct sock *sk = skb->sk;
2009
2010 if (sk && !skb_shinfo(skb)->tx_flags) {
2011 /* skb_tx_hash() wont be able to get sk.
2012 * We copy sk_hash into skb->rxhash
2013 */
2014 if (!skb->rxhash)
2015 skb->rxhash = sk->sk_hash;
2016 skb_orphan(skb);
2017 }
2018 }
2019
2020 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2021 {
2022 if (!can_checksum_protocol(protocol, features)) {
2023 features &= ~NETIF_F_ALL_CSUM;
2024 features &= ~NETIF_F_SG;
2025 } else if (illegal_highdma(skb->dev, skb)) {
2026 features &= ~NETIF_F_SG;
2027 }
2028
2029 return features;
2030 }
2031
2032 int netif_skb_features(struct sk_buff *skb)
2033 {
2034 __be16 protocol = skb->protocol;
2035 int features = skb->dev->features;
2036
2037 if (protocol == htons(ETH_P_8021Q)) {
2038 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2039 protocol = veh->h_vlan_encapsulated_proto;
2040 } else if (!vlan_tx_tag_present(skb)) {
2041 return harmonize_features(skb, protocol, features);
2042 }
2043
2044 features &= skb->dev->vlan_features;
2045
2046 if (protocol != htons(ETH_P_8021Q)) {
2047 return harmonize_features(skb, protocol, features);
2048 } else {
2049 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2050 NETIF_F_GEN_CSUM;
2051 return harmonize_features(skb, protocol, features);
2052 }
2053 }
2054 EXPORT_SYMBOL(netif_skb_features);
2055
2056 /*
2057 * Returns true if either:
2058 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2059 * 2. skb is fragmented and the device does not support SG, or if
2060 * at least one of fragments is in highmem and device does not
2061 * support DMA from it.
2062 */
2063 static inline int skb_needs_linearize(struct sk_buff *skb,
2064 struct net_device *dev)
2065 {
2066 if (skb_is_nonlinear(skb)) {
2067 int features = dev->features;
2068
2069 if (vlan_tx_tag_present(skb))
2070 features &= dev->vlan_features;
2071
2072 return (skb_has_frag_list(skb) &&
2073 !(features & NETIF_F_FRAGLIST)) ||
2074 (skb_shinfo(skb)->nr_frags &&
2075 (!(features & NETIF_F_SG) ||
2076 illegal_highdma(dev, skb)));
2077 }
2078
2079 return 0;
2080 }
2081
2082 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2083 struct netdev_queue *txq)
2084 {
2085 const struct net_device_ops *ops = dev->netdev_ops;
2086 int rc = NETDEV_TX_OK;
2087
2088 if (likely(!skb->next)) {
2089 /*
2090 * If device doesnt need skb->dst, release it right now while
2091 * its hot in this cpu cache
2092 */
2093 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2094 skb_dst_drop(skb);
2095
2096 if (!list_empty(&ptype_all))
2097 dev_queue_xmit_nit(skb, dev);
2098
2099 skb_orphan_try(skb);
2100
2101 if (vlan_tx_tag_present(skb) &&
2102 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2103 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2104 if (unlikely(!skb))
2105 goto out;
2106
2107 skb->vlan_tci = 0;
2108 }
2109
2110 if (netif_needs_gso(dev, skb)) {
2111 if (unlikely(dev_gso_segment(skb)))
2112 goto out_kfree_skb;
2113 if (skb->next)
2114 goto gso;
2115 } else {
2116 if (skb_needs_linearize(skb, dev) &&
2117 __skb_linearize(skb))
2118 goto out_kfree_skb;
2119
2120 /* If packet is not checksummed and device does not
2121 * support checksumming for this protocol, complete
2122 * checksumming here.
2123 */
2124 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2125 skb_set_transport_header(skb,
2126 skb_checksum_start_offset(skb));
2127 if (!dev_can_checksum(dev, skb) &&
2128 skb_checksum_help(skb))
2129 goto out_kfree_skb;
2130 }
2131 }
2132
2133 rc = ops->ndo_start_xmit(skb, dev);
2134 trace_net_dev_xmit(skb, rc);
2135 if (rc == NETDEV_TX_OK)
2136 txq_trans_update(txq);
2137 return rc;
2138 }
2139
2140 gso:
2141 do {
2142 struct sk_buff *nskb = skb->next;
2143
2144 skb->next = nskb->next;
2145 nskb->next = NULL;
2146
2147 /*
2148 * If device doesnt need nskb->dst, release it right now while
2149 * its hot in this cpu cache
2150 */
2151 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2152 skb_dst_drop(nskb);
2153
2154 rc = ops->ndo_start_xmit(nskb, dev);
2155 trace_net_dev_xmit(nskb, rc);
2156 if (unlikely(rc != NETDEV_TX_OK)) {
2157 if (rc & ~NETDEV_TX_MASK)
2158 goto out_kfree_gso_skb;
2159 nskb->next = skb->next;
2160 skb->next = nskb;
2161 return rc;
2162 }
2163 txq_trans_update(txq);
2164 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2165 return NETDEV_TX_BUSY;
2166 } while (skb->next);
2167
2168 out_kfree_gso_skb:
2169 if (likely(skb->next == NULL))
2170 skb->destructor = DEV_GSO_CB(skb)->destructor;
2171 out_kfree_skb:
2172 kfree_skb(skb);
2173 out:
2174 return rc;
2175 }
2176
2177 static u32 hashrnd __read_mostly;
2178
2179 /*
2180 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2181 * to be used as a distribution range.
2182 */
2183 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2184 unsigned int num_tx_queues)
2185 {
2186 u32 hash;
2187
2188 if (skb_rx_queue_recorded(skb)) {
2189 hash = skb_get_rx_queue(skb);
2190 while (unlikely(hash >= num_tx_queues))
2191 hash -= num_tx_queues;
2192 return hash;
2193 }
2194
2195 if (skb->sk && skb->sk->sk_hash)
2196 hash = skb->sk->sk_hash;
2197 else
2198 hash = (__force u16) skb->protocol ^ skb->rxhash;
2199 hash = jhash_1word(hash, hashrnd);
2200
2201 return (u16) (((u64) hash * num_tx_queues) >> 32);
2202 }
2203 EXPORT_SYMBOL(__skb_tx_hash);
2204
2205 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2206 {
2207 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2208 if (net_ratelimit()) {
2209 pr_warning("%s selects TX queue %d, but "
2210 "real number of TX queues is %d\n",
2211 dev->name, queue_index, dev->real_num_tx_queues);
2212 }
2213 return 0;
2214 }
2215 return queue_index;
2216 }
2217
2218 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2219 {
2220 #ifdef CONFIG_XPS
2221 struct xps_dev_maps *dev_maps;
2222 struct xps_map *map;
2223 int queue_index = -1;
2224
2225 rcu_read_lock();
2226 dev_maps = rcu_dereference(dev->xps_maps);
2227 if (dev_maps) {
2228 map = rcu_dereference(
2229 dev_maps->cpu_map[raw_smp_processor_id()]);
2230 if (map) {
2231 if (map->len == 1)
2232 queue_index = map->queues[0];
2233 else {
2234 u32 hash;
2235 if (skb->sk && skb->sk->sk_hash)
2236 hash = skb->sk->sk_hash;
2237 else
2238 hash = (__force u16) skb->protocol ^
2239 skb->rxhash;
2240 hash = jhash_1word(hash, hashrnd);
2241 queue_index = map->queues[
2242 ((u64)hash * map->len) >> 32];
2243 }
2244 if (unlikely(queue_index >= dev->real_num_tx_queues))
2245 queue_index = -1;
2246 }
2247 }
2248 rcu_read_unlock();
2249
2250 return queue_index;
2251 #else
2252 return -1;
2253 #endif
2254 }
2255
2256 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2257 struct sk_buff *skb)
2258 {
2259 int queue_index;
2260 const struct net_device_ops *ops = dev->netdev_ops;
2261
2262 if (dev->real_num_tx_queues == 1)
2263 queue_index = 0;
2264 else if (ops->ndo_select_queue) {
2265 queue_index = ops->ndo_select_queue(dev, skb);
2266 queue_index = dev_cap_txqueue(dev, queue_index);
2267 } else {
2268 struct sock *sk = skb->sk;
2269 queue_index = sk_tx_queue_get(sk);
2270
2271 if (queue_index < 0 || skb->ooo_okay ||
2272 queue_index >= dev->real_num_tx_queues) {
2273 int old_index = queue_index;
2274
2275 queue_index = get_xps_queue(dev, skb);
2276 if (queue_index < 0)
2277 queue_index = skb_tx_hash(dev, skb);
2278
2279 if (queue_index != old_index && sk) {
2280 struct dst_entry *dst =
2281 rcu_dereference_check(sk->sk_dst_cache, 1);
2282
2283 if (dst && skb_dst(skb) == dst)
2284 sk_tx_queue_set(sk, queue_index);
2285 }
2286 }
2287 }
2288
2289 skb_set_queue_mapping(skb, queue_index);
2290 return netdev_get_tx_queue(dev, queue_index);
2291 }
2292
2293 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2294 struct net_device *dev,
2295 struct netdev_queue *txq)
2296 {
2297 spinlock_t *root_lock = qdisc_lock(q);
2298 bool contended = qdisc_is_running(q);
2299 int rc;
2300
2301 /*
2302 * Heuristic to force contended enqueues to serialize on a
2303 * separate lock before trying to get qdisc main lock.
2304 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2305 * and dequeue packets faster.
2306 */
2307 if (unlikely(contended))
2308 spin_lock(&q->busylock);
2309
2310 spin_lock(root_lock);
2311 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2312 kfree_skb(skb);
2313 rc = NET_XMIT_DROP;
2314 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2315 qdisc_run_begin(q)) {
2316 /*
2317 * This is a work-conserving queue; there are no old skbs
2318 * waiting to be sent out; and the qdisc is not running -
2319 * xmit the skb directly.
2320 */
2321 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2322 skb_dst_force(skb);
2323 __qdisc_update_bstats(q, skb->len);
2324 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2325 if (unlikely(contended)) {
2326 spin_unlock(&q->busylock);
2327 contended = false;
2328 }
2329 __qdisc_run(q);
2330 } else
2331 qdisc_run_end(q);
2332
2333 rc = NET_XMIT_SUCCESS;
2334 } else {
2335 skb_dst_force(skb);
2336 rc = qdisc_enqueue_root(skb, q);
2337 if (qdisc_run_begin(q)) {
2338 if (unlikely(contended)) {
2339 spin_unlock(&q->busylock);
2340 contended = false;
2341 }
2342 __qdisc_run(q);
2343 }
2344 }
2345 spin_unlock(root_lock);
2346 if (unlikely(contended))
2347 spin_unlock(&q->busylock);
2348 return rc;
2349 }
2350
2351 static DEFINE_PER_CPU(int, xmit_recursion);
2352 #define RECURSION_LIMIT 10
2353
2354 /**
2355 * dev_queue_xmit - transmit a buffer
2356 * @skb: buffer to transmit
2357 *
2358 * Queue a buffer for transmission to a network device. The caller must
2359 * have set the device and priority and built the buffer before calling
2360 * this function. The function can be called from an interrupt.
2361 *
2362 * A negative errno code is returned on a failure. A success does not
2363 * guarantee the frame will be transmitted as it may be dropped due
2364 * to congestion or traffic shaping.
2365 *
2366 * -----------------------------------------------------------------------------------
2367 * I notice this method can also return errors from the queue disciplines,
2368 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2369 * be positive.
2370 *
2371 * Regardless of the return value, the skb is consumed, so it is currently
2372 * difficult to retry a send to this method. (You can bump the ref count
2373 * before sending to hold a reference for retry if you are careful.)
2374 *
2375 * When calling this method, interrupts MUST be enabled. This is because
2376 * the BH enable code must have IRQs enabled so that it will not deadlock.
2377 * --BLG
2378 */
2379 int dev_queue_xmit(struct sk_buff *skb)
2380 {
2381 struct net_device *dev = skb->dev;
2382 struct netdev_queue *txq;
2383 struct Qdisc *q;
2384 int rc = -ENOMEM;
2385
2386 /* Disable soft irqs for various locks below. Also
2387 * stops preemption for RCU.
2388 */
2389 rcu_read_lock_bh();
2390
2391 txq = dev_pick_tx(dev, skb);
2392 q = rcu_dereference_bh(txq->qdisc);
2393
2394 #ifdef CONFIG_NET_CLS_ACT
2395 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2396 #endif
2397 trace_net_dev_queue(skb);
2398 if (q->enqueue) {
2399 rc = __dev_xmit_skb(skb, q, dev, txq);
2400 goto out;
2401 }
2402
2403 /* The device has no queue. Common case for software devices:
2404 loopback, all the sorts of tunnels...
2405
2406 Really, it is unlikely that netif_tx_lock protection is necessary
2407 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2408 counters.)
2409 However, it is possible, that they rely on protection
2410 made by us here.
2411
2412 Check this and shot the lock. It is not prone from deadlocks.
2413 Either shot noqueue qdisc, it is even simpler 8)
2414 */
2415 if (dev->flags & IFF_UP) {
2416 int cpu = smp_processor_id(); /* ok because BHs are off */
2417
2418 if (txq->xmit_lock_owner != cpu) {
2419
2420 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2421 goto recursion_alert;
2422
2423 HARD_TX_LOCK(dev, txq, cpu);
2424
2425 if (!netif_tx_queue_stopped(txq)) {
2426 __this_cpu_inc(xmit_recursion);
2427 rc = dev_hard_start_xmit(skb, dev, txq);
2428 __this_cpu_dec(xmit_recursion);
2429 if (dev_xmit_complete(rc)) {
2430 HARD_TX_UNLOCK(dev, txq);
2431 goto out;
2432 }
2433 }
2434 HARD_TX_UNLOCK(dev, txq);
2435 if (net_ratelimit())
2436 printk(KERN_CRIT "Virtual device %s asks to "
2437 "queue packet!\n", dev->name);
2438 } else {
2439 /* Recursion is detected! It is possible,
2440 * unfortunately
2441 */
2442 recursion_alert:
2443 if (net_ratelimit())
2444 printk(KERN_CRIT "Dead loop on virtual device "
2445 "%s, fix it urgently!\n", dev->name);
2446 }
2447 }
2448
2449 rc = -ENETDOWN;
2450 rcu_read_unlock_bh();
2451
2452 kfree_skb(skb);
2453 return rc;
2454 out:
2455 rcu_read_unlock_bh();
2456 return rc;
2457 }
2458 EXPORT_SYMBOL(dev_queue_xmit);
2459
2460
2461 /*=======================================================================
2462 Receiver routines
2463 =======================================================================*/
2464
2465 int netdev_max_backlog __read_mostly = 1000;
2466 int netdev_tstamp_prequeue __read_mostly = 1;
2467 int netdev_budget __read_mostly = 300;
2468 int weight_p __read_mostly = 64; /* old backlog weight */
2469
2470 /* Called with irq disabled */
2471 static inline void ____napi_schedule(struct softnet_data *sd,
2472 struct napi_struct *napi)
2473 {
2474 list_add_tail(&napi->poll_list, &sd->poll_list);
2475 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2476 }
2477
2478 /*
2479 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2480 * and src/dst port numbers. Returns a non-zero hash number on success
2481 * and 0 on failure.
2482 */
2483 __u32 __skb_get_rxhash(struct sk_buff *skb)
2484 {
2485 int nhoff, hash = 0, poff;
2486 struct ipv6hdr *ip6;
2487 struct iphdr *ip;
2488 u8 ip_proto;
2489 u32 addr1, addr2, ihl;
2490 union {
2491 u32 v32;
2492 u16 v16[2];
2493 } ports;
2494
2495 nhoff = skb_network_offset(skb);
2496
2497 switch (skb->protocol) {
2498 case __constant_htons(ETH_P_IP):
2499 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2500 goto done;
2501
2502 ip = (struct iphdr *) (skb->data + nhoff);
2503 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2504 ip_proto = 0;
2505 else
2506 ip_proto = ip->protocol;
2507 addr1 = (__force u32) ip->saddr;
2508 addr2 = (__force u32) ip->daddr;
2509 ihl = ip->ihl;
2510 break;
2511 case __constant_htons(ETH_P_IPV6):
2512 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2513 goto done;
2514
2515 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2516 ip_proto = ip6->nexthdr;
2517 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2518 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2519 ihl = (40 >> 2);
2520 break;
2521 default:
2522 goto done;
2523 }
2524
2525 ports.v32 = 0;
2526 poff = proto_ports_offset(ip_proto);
2527 if (poff >= 0) {
2528 nhoff += ihl * 4 + poff;
2529 if (pskb_may_pull(skb, nhoff + 4)) {
2530 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2531 if (ports.v16[1] < ports.v16[0])
2532 swap(ports.v16[0], ports.v16[1]);
2533 }
2534 }
2535
2536 /* get a consistent hash (same value on both flow directions) */
2537 if (addr2 < addr1)
2538 swap(addr1, addr2);
2539
2540 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2541 if (!hash)
2542 hash = 1;
2543
2544 done:
2545 return hash;
2546 }
2547 EXPORT_SYMBOL(__skb_get_rxhash);
2548
2549 #ifdef CONFIG_RPS
2550
2551 /* One global table that all flow-based protocols share. */
2552 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2553 EXPORT_SYMBOL(rps_sock_flow_table);
2554
2555 /*
2556 * get_rps_cpu is called from netif_receive_skb and returns the target
2557 * CPU from the RPS map of the receiving queue for a given skb.
2558 * rcu_read_lock must be held on entry.
2559 */
2560 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2561 struct rps_dev_flow **rflowp)
2562 {
2563 struct netdev_rx_queue *rxqueue;
2564 struct rps_map *map;
2565 struct rps_dev_flow_table *flow_table;
2566 struct rps_sock_flow_table *sock_flow_table;
2567 int cpu = -1;
2568 u16 tcpu;
2569
2570 if (skb_rx_queue_recorded(skb)) {
2571 u16 index = skb_get_rx_queue(skb);
2572 if (unlikely(index >= dev->real_num_rx_queues)) {
2573 WARN_ONCE(dev->real_num_rx_queues > 1,
2574 "%s received packet on queue %u, but number "
2575 "of RX queues is %u\n",
2576 dev->name, index, dev->real_num_rx_queues);
2577 goto done;
2578 }
2579 rxqueue = dev->_rx + index;
2580 } else
2581 rxqueue = dev->_rx;
2582
2583 map = rcu_dereference(rxqueue->rps_map);
2584 if (map) {
2585 if (map->len == 1) {
2586 tcpu = map->cpus[0];
2587 if (cpu_online(tcpu))
2588 cpu = tcpu;
2589 goto done;
2590 }
2591 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2592 goto done;
2593 }
2594
2595 skb_reset_network_header(skb);
2596 if (!skb_get_rxhash(skb))
2597 goto done;
2598
2599 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2600 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2601 if (flow_table && sock_flow_table) {
2602 u16 next_cpu;
2603 struct rps_dev_flow *rflow;
2604
2605 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2606 tcpu = rflow->cpu;
2607
2608 next_cpu = sock_flow_table->ents[skb->rxhash &
2609 sock_flow_table->mask];
2610
2611 /*
2612 * If the desired CPU (where last recvmsg was done) is
2613 * different from current CPU (one in the rx-queue flow
2614 * table entry), switch if one of the following holds:
2615 * - Current CPU is unset (equal to RPS_NO_CPU).
2616 * - Current CPU is offline.
2617 * - The current CPU's queue tail has advanced beyond the
2618 * last packet that was enqueued using this table entry.
2619 * This guarantees that all previous packets for the flow
2620 * have been dequeued, thus preserving in order delivery.
2621 */
2622 if (unlikely(tcpu != next_cpu) &&
2623 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2624 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2625 rflow->last_qtail)) >= 0)) {
2626 tcpu = rflow->cpu = next_cpu;
2627 if (tcpu != RPS_NO_CPU)
2628 rflow->last_qtail = per_cpu(softnet_data,
2629 tcpu).input_queue_head;
2630 }
2631 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2632 *rflowp = rflow;
2633 cpu = tcpu;
2634 goto done;
2635 }
2636 }
2637
2638 if (map) {
2639 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2640
2641 if (cpu_online(tcpu)) {
2642 cpu = tcpu;
2643 goto done;
2644 }
2645 }
2646
2647 done:
2648 return cpu;
2649 }
2650
2651 /* Called from hardirq (IPI) context */
2652 static void rps_trigger_softirq(void *data)
2653 {
2654 struct softnet_data *sd = data;
2655
2656 ____napi_schedule(sd, &sd->backlog);
2657 sd->received_rps++;
2658 }
2659
2660 #endif /* CONFIG_RPS */
2661
2662 /*
2663 * Check if this softnet_data structure is another cpu one
2664 * If yes, queue it to our IPI list and return 1
2665 * If no, return 0
2666 */
2667 static int rps_ipi_queued(struct softnet_data *sd)
2668 {
2669 #ifdef CONFIG_RPS
2670 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2671
2672 if (sd != mysd) {
2673 sd->rps_ipi_next = mysd->rps_ipi_list;
2674 mysd->rps_ipi_list = sd;
2675
2676 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2677 return 1;
2678 }
2679 #endif /* CONFIG_RPS */
2680 return 0;
2681 }
2682
2683 /*
2684 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2685 * queue (may be a remote CPU queue).
2686 */
2687 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2688 unsigned int *qtail)
2689 {
2690 struct softnet_data *sd;
2691 unsigned long flags;
2692
2693 sd = &per_cpu(softnet_data, cpu);
2694
2695 local_irq_save(flags);
2696
2697 rps_lock(sd);
2698 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2699 if (skb_queue_len(&sd->input_pkt_queue)) {
2700 enqueue:
2701 __skb_queue_tail(&sd->input_pkt_queue, skb);
2702 input_queue_tail_incr_save(sd, qtail);
2703 rps_unlock(sd);
2704 local_irq_restore(flags);
2705 return NET_RX_SUCCESS;
2706 }
2707
2708 /* Schedule NAPI for backlog device
2709 * We can use non atomic operation since we own the queue lock
2710 */
2711 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2712 if (!rps_ipi_queued(sd))
2713 ____napi_schedule(sd, &sd->backlog);
2714 }
2715 goto enqueue;
2716 }
2717
2718 sd->dropped++;
2719 rps_unlock(sd);
2720
2721 local_irq_restore(flags);
2722
2723 atomic_long_inc(&skb->dev->rx_dropped);
2724 kfree_skb(skb);
2725 return NET_RX_DROP;
2726 }
2727
2728 /**
2729 * netif_rx - post buffer to the network code
2730 * @skb: buffer to post
2731 *
2732 * This function receives a packet from a device driver and queues it for
2733 * the upper (protocol) levels to process. It always succeeds. The buffer
2734 * may be dropped during processing for congestion control or by the
2735 * protocol layers.
2736 *
2737 * return values:
2738 * NET_RX_SUCCESS (no congestion)
2739 * NET_RX_DROP (packet was dropped)
2740 *
2741 */
2742
2743 int netif_rx(struct sk_buff *skb)
2744 {
2745 int ret;
2746
2747 /* if netpoll wants it, pretend we never saw it */
2748 if (netpoll_rx(skb))
2749 return NET_RX_DROP;
2750
2751 if (netdev_tstamp_prequeue)
2752 net_timestamp_check(skb);
2753
2754 trace_netif_rx(skb);
2755 #ifdef CONFIG_RPS
2756 {
2757 struct rps_dev_flow voidflow, *rflow = &voidflow;
2758 int cpu;
2759
2760 preempt_disable();
2761 rcu_read_lock();
2762
2763 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2764 if (cpu < 0)
2765 cpu = smp_processor_id();
2766
2767 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2768
2769 rcu_read_unlock();
2770 preempt_enable();
2771 }
2772 #else
2773 {
2774 unsigned int qtail;
2775 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2776 put_cpu();
2777 }
2778 #endif
2779 return ret;
2780 }
2781 EXPORT_SYMBOL(netif_rx);
2782
2783 int netif_rx_ni(struct sk_buff *skb)
2784 {
2785 int err;
2786
2787 preempt_disable();
2788 err = netif_rx(skb);
2789 if (local_softirq_pending())
2790 do_softirq();
2791 preempt_enable();
2792
2793 return err;
2794 }
2795 EXPORT_SYMBOL(netif_rx_ni);
2796
2797 static void net_tx_action(struct softirq_action *h)
2798 {
2799 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2800
2801 if (sd->completion_queue) {
2802 struct sk_buff *clist;
2803
2804 local_irq_disable();
2805 clist = sd->completion_queue;
2806 sd->completion_queue = NULL;
2807 local_irq_enable();
2808
2809 while (clist) {
2810 struct sk_buff *skb = clist;
2811 clist = clist->next;
2812
2813 WARN_ON(atomic_read(&skb->users));
2814 trace_kfree_skb(skb, net_tx_action);
2815 __kfree_skb(skb);
2816 }
2817 }
2818
2819 if (sd->output_queue) {
2820 struct Qdisc *head;
2821
2822 local_irq_disable();
2823 head = sd->output_queue;
2824 sd->output_queue = NULL;
2825 sd->output_queue_tailp = &sd->output_queue;
2826 local_irq_enable();
2827
2828 while (head) {
2829 struct Qdisc *q = head;
2830 spinlock_t *root_lock;
2831
2832 head = head->next_sched;
2833
2834 root_lock = qdisc_lock(q);
2835 if (spin_trylock(root_lock)) {
2836 smp_mb__before_clear_bit();
2837 clear_bit(__QDISC_STATE_SCHED,
2838 &q->state);
2839 qdisc_run(q);
2840 spin_unlock(root_lock);
2841 } else {
2842 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2843 &q->state)) {
2844 __netif_reschedule(q);
2845 } else {
2846 smp_mb__before_clear_bit();
2847 clear_bit(__QDISC_STATE_SCHED,
2848 &q->state);
2849 }
2850 }
2851 }
2852 }
2853 }
2854
2855 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2856 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2857 /* This hook is defined here for ATM LANE */
2858 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2859 unsigned char *addr) __read_mostly;
2860 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2861 #endif
2862
2863 #ifdef CONFIG_NET_CLS_ACT
2864 /* TODO: Maybe we should just force sch_ingress to be compiled in
2865 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2866 * a compare and 2 stores extra right now if we dont have it on
2867 * but have CONFIG_NET_CLS_ACT
2868 * NOTE: This doesnt stop any functionality; if you dont have
2869 * the ingress scheduler, you just cant add policies on ingress.
2870 *
2871 */
2872 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2873 {
2874 struct net_device *dev = skb->dev;
2875 u32 ttl = G_TC_RTTL(skb->tc_verd);
2876 int result = TC_ACT_OK;
2877 struct Qdisc *q;
2878
2879 if (unlikely(MAX_RED_LOOP < ttl++)) {
2880 if (net_ratelimit())
2881 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2882 skb->skb_iif, dev->ifindex);
2883 return TC_ACT_SHOT;
2884 }
2885
2886 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2887 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2888
2889 q = rxq->qdisc;
2890 if (q != &noop_qdisc) {
2891 spin_lock(qdisc_lock(q));
2892 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2893 result = qdisc_enqueue_root(skb, q);
2894 spin_unlock(qdisc_lock(q));
2895 }
2896
2897 return result;
2898 }
2899
2900 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2901 struct packet_type **pt_prev,
2902 int *ret, struct net_device *orig_dev)
2903 {
2904 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2905
2906 if (!rxq || rxq->qdisc == &noop_qdisc)
2907 goto out;
2908
2909 if (*pt_prev) {
2910 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2911 *pt_prev = NULL;
2912 }
2913
2914 switch (ing_filter(skb, rxq)) {
2915 case TC_ACT_SHOT:
2916 case TC_ACT_STOLEN:
2917 kfree_skb(skb);
2918 return NULL;
2919 }
2920
2921 out:
2922 skb->tc_verd = 0;
2923 return skb;
2924 }
2925 #endif
2926
2927 /**
2928 * netdev_rx_handler_register - register receive handler
2929 * @dev: device to register a handler for
2930 * @rx_handler: receive handler to register
2931 * @rx_handler_data: data pointer that is used by rx handler
2932 *
2933 * Register a receive hander for a device. This handler will then be
2934 * called from __netif_receive_skb. A negative errno code is returned
2935 * on a failure.
2936 *
2937 * The caller must hold the rtnl_mutex.
2938 */
2939 int netdev_rx_handler_register(struct net_device *dev,
2940 rx_handler_func_t *rx_handler,
2941 void *rx_handler_data)
2942 {
2943 ASSERT_RTNL();
2944
2945 if (dev->rx_handler)
2946 return -EBUSY;
2947
2948 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2949 rcu_assign_pointer(dev->rx_handler, rx_handler);
2950
2951 return 0;
2952 }
2953 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2954
2955 /**
2956 * netdev_rx_handler_unregister - unregister receive handler
2957 * @dev: device to unregister a handler from
2958 *
2959 * Unregister a receive hander from a device.
2960 *
2961 * The caller must hold the rtnl_mutex.
2962 */
2963 void netdev_rx_handler_unregister(struct net_device *dev)
2964 {
2965
2966 ASSERT_RTNL();
2967 rcu_assign_pointer(dev->rx_handler, NULL);
2968 rcu_assign_pointer(dev->rx_handler_data, NULL);
2969 }
2970 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2971
2972 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2973 struct net_device *master)
2974 {
2975 if (skb->pkt_type == PACKET_HOST) {
2976 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2977
2978 memcpy(dest, master->dev_addr, ETH_ALEN);
2979 }
2980 }
2981
2982 /* On bonding slaves other than the currently active slave, suppress
2983 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2984 * ARP on active-backup slaves with arp_validate enabled.
2985 */
2986 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2987 {
2988 struct net_device *dev = skb->dev;
2989
2990 if (master->priv_flags & IFF_MASTER_ARPMON)
2991 dev->last_rx = jiffies;
2992
2993 if ((master->priv_flags & IFF_MASTER_ALB) &&
2994 (master->priv_flags & IFF_BRIDGE_PORT)) {
2995 /* Do address unmangle. The local destination address
2996 * will be always the one master has. Provides the right
2997 * functionality in a bridge.
2998 */
2999 skb_bond_set_mac_by_master(skb, master);
3000 }
3001
3002 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3003 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3004 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3005 return 0;
3006
3007 if (master->priv_flags & IFF_MASTER_ALB) {
3008 if (skb->pkt_type != PACKET_BROADCAST &&
3009 skb->pkt_type != PACKET_MULTICAST)
3010 return 0;
3011 }
3012 if (master->priv_flags & IFF_MASTER_8023AD &&
3013 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3014 return 0;
3015
3016 return 1;
3017 }
3018 return 0;
3019 }
3020 EXPORT_SYMBOL(__skb_bond_should_drop);
3021
3022 static int __netif_receive_skb(struct sk_buff *skb)
3023 {
3024 struct packet_type *ptype, *pt_prev;
3025 rx_handler_func_t *rx_handler;
3026 struct net_device *orig_dev;
3027 struct net_device *master;
3028 struct net_device *null_or_orig;
3029 struct net_device *orig_or_bond;
3030 int ret = NET_RX_DROP;
3031 __be16 type;
3032
3033 if (!netdev_tstamp_prequeue)
3034 net_timestamp_check(skb);
3035
3036 trace_netif_receive_skb(skb);
3037
3038 /* if we've gotten here through NAPI, check netpoll */
3039 if (netpoll_receive_skb(skb))
3040 return NET_RX_DROP;
3041
3042 if (!skb->skb_iif)
3043 skb->skb_iif = skb->dev->ifindex;
3044
3045 /*
3046 * bonding note: skbs received on inactive slaves should only
3047 * be delivered to pkt handlers that are exact matches. Also
3048 * the deliver_no_wcard flag will be set. If packet handlers
3049 * are sensitive to duplicate packets these skbs will need to
3050 * be dropped at the handler.
3051 */
3052 null_or_orig = NULL;
3053 orig_dev = skb->dev;
3054 master = ACCESS_ONCE(orig_dev->master);
3055 if (skb->deliver_no_wcard)
3056 null_or_orig = orig_dev;
3057 else if (master) {
3058 if (skb_bond_should_drop(skb, master)) {
3059 skb->deliver_no_wcard = 1;
3060 null_or_orig = orig_dev; /* deliver only exact match */
3061 } else
3062 skb->dev = master;
3063 }
3064
3065 __this_cpu_inc(softnet_data.processed);
3066 skb_reset_network_header(skb);
3067 skb_reset_transport_header(skb);
3068 skb->mac_len = skb->network_header - skb->mac_header;
3069
3070 pt_prev = NULL;
3071
3072 rcu_read_lock();
3073
3074 #ifdef CONFIG_NET_CLS_ACT
3075 if (skb->tc_verd & TC_NCLS) {
3076 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3077 goto ncls;
3078 }
3079 #endif
3080
3081 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3082 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3083 ptype->dev == orig_dev) {
3084 if (pt_prev)
3085 ret = deliver_skb(skb, pt_prev, orig_dev);
3086 pt_prev = ptype;
3087 }
3088 }
3089
3090 #ifdef CONFIG_NET_CLS_ACT
3091 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3092 if (!skb)
3093 goto out;
3094 ncls:
3095 #endif
3096
3097 /* Handle special case of bridge or macvlan */
3098 rx_handler = rcu_dereference(skb->dev->rx_handler);
3099 if (rx_handler) {
3100 if (pt_prev) {
3101 ret = deliver_skb(skb, pt_prev, orig_dev);
3102 pt_prev = NULL;
3103 }
3104 skb = rx_handler(skb);
3105 if (!skb)
3106 goto out;
3107 }
3108
3109 if (vlan_tx_tag_present(skb)) {
3110 if (pt_prev) {
3111 ret = deliver_skb(skb, pt_prev, orig_dev);
3112 pt_prev = NULL;
3113 }
3114 if (vlan_hwaccel_do_receive(&skb)) {
3115 ret = __netif_receive_skb(skb);
3116 goto out;
3117 } else if (unlikely(!skb))
3118 goto out;
3119 }
3120
3121 /*
3122 * Make sure frames received on VLAN interfaces stacked on
3123 * bonding interfaces still make their way to any base bonding
3124 * device that may have registered for a specific ptype. The
3125 * handler may have to adjust skb->dev and orig_dev.
3126 */
3127 orig_or_bond = orig_dev;
3128 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3129 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3130 orig_or_bond = vlan_dev_real_dev(skb->dev);
3131 }
3132
3133 type = skb->protocol;
3134 list_for_each_entry_rcu(ptype,
3135 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3136 if (ptype->type == type && (ptype->dev == null_or_orig ||
3137 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3138 ptype->dev == orig_or_bond)) {
3139 if (pt_prev)
3140 ret = deliver_skb(skb, pt_prev, orig_dev);
3141 pt_prev = ptype;
3142 }
3143 }
3144
3145 if (pt_prev) {
3146 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3147 } else {
3148 atomic_long_inc(&skb->dev->rx_dropped);
3149 kfree_skb(skb);
3150 /* Jamal, now you will not able to escape explaining
3151 * me how you were going to use this. :-)
3152 */
3153 ret = NET_RX_DROP;
3154 }
3155
3156 out:
3157 rcu_read_unlock();
3158 return ret;
3159 }
3160
3161 /**
3162 * netif_receive_skb - process receive buffer from network
3163 * @skb: buffer to process
3164 *
3165 * netif_receive_skb() is the main receive data processing function.
3166 * It always succeeds. The buffer may be dropped during processing
3167 * for congestion control or by the protocol layers.
3168 *
3169 * This function may only be called from softirq context and interrupts
3170 * should be enabled.
3171 *
3172 * Return values (usually ignored):
3173 * NET_RX_SUCCESS: no congestion
3174 * NET_RX_DROP: packet was dropped
3175 */
3176 int netif_receive_skb(struct sk_buff *skb)
3177 {
3178 if (netdev_tstamp_prequeue)
3179 net_timestamp_check(skb);
3180
3181 if (skb_defer_rx_timestamp(skb))
3182 return NET_RX_SUCCESS;
3183
3184 #ifdef CONFIG_RPS
3185 {
3186 struct rps_dev_flow voidflow, *rflow = &voidflow;
3187 int cpu, ret;
3188
3189 rcu_read_lock();
3190
3191 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3192
3193 if (cpu >= 0) {
3194 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3195 rcu_read_unlock();
3196 } else {
3197 rcu_read_unlock();
3198 ret = __netif_receive_skb(skb);
3199 }
3200
3201 return ret;
3202 }
3203 #else
3204 return __netif_receive_skb(skb);
3205 #endif
3206 }
3207 EXPORT_SYMBOL(netif_receive_skb);
3208
3209 /* Network device is going away, flush any packets still pending
3210 * Called with irqs disabled.
3211 */
3212 static void flush_backlog(void *arg)
3213 {
3214 struct net_device *dev = arg;
3215 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3216 struct sk_buff *skb, *tmp;
3217
3218 rps_lock(sd);
3219 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3220 if (skb->dev == dev) {
3221 __skb_unlink(skb, &sd->input_pkt_queue);
3222 kfree_skb(skb);
3223 input_queue_head_incr(sd);
3224 }
3225 }
3226 rps_unlock(sd);
3227
3228 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3229 if (skb->dev == dev) {
3230 __skb_unlink(skb, &sd->process_queue);
3231 kfree_skb(skb);
3232 input_queue_head_incr(sd);
3233 }
3234 }
3235 }
3236
3237 static int napi_gro_complete(struct sk_buff *skb)
3238 {
3239 struct packet_type *ptype;
3240 __be16 type = skb->protocol;
3241 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3242 int err = -ENOENT;
3243
3244 if (NAPI_GRO_CB(skb)->count == 1) {
3245 skb_shinfo(skb)->gso_size = 0;
3246 goto out;
3247 }
3248
3249 rcu_read_lock();
3250 list_for_each_entry_rcu(ptype, head, list) {
3251 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3252 continue;
3253
3254 err = ptype->gro_complete(skb);
3255 break;
3256 }
3257 rcu_read_unlock();
3258
3259 if (err) {
3260 WARN_ON(&ptype->list == head);
3261 kfree_skb(skb);
3262 return NET_RX_SUCCESS;
3263 }
3264
3265 out:
3266 return netif_receive_skb(skb);
3267 }
3268
3269 inline void napi_gro_flush(struct napi_struct *napi)
3270 {
3271 struct sk_buff *skb, *next;
3272
3273 for (skb = napi->gro_list; skb; skb = next) {
3274 next = skb->next;
3275 skb->next = NULL;
3276 napi_gro_complete(skb);
3277 }
3278
3279 napi->gro_count = 0;
3280 napi->gro_list = NULL;
3281 }
3282 EXPORT_SYMBOL(napi_gro_flush);
3283
3284 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3285 {
3286 struct sk_buff **pp = NULL;
3287 struct packet_type *ptype;
3288 __be16 type = skb->protocol;
3289 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3290 int same_flow;
3291 int mac_len;
3292 enum gro_result ret;
3293
3294 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3295 goto normal;
3296
3297 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3298 goto normal;
3299
3300 rcu_read_lock();
3301 list_for_each_entry_rcu(ptype, head, list) {
3302 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3303 continue;
3304
3305 skb_set_network_header(skb, skb_gro_offset(skb));
3306 mac_len = skb->network_header - skb->mac_header;
3307 skb->mac_len = mac_len;
3308 NAPI_GRO_CB(skb)->same_flow = 0;
3309 NAPI_GRO_CB(skb)->flush = 0;
3310 NAPI_GRO_CB(skb)->free = 0;
3311
3312 pp = ptype->gro_receive(&napi->gro_list, skb);
3313 break;
3314 }
3315 rcu_read_unlock();
3316
3317 if (&ptype->list == head)
3318 goto normal;
3319
3320 same_flow = NAPI_GRO_CB(skb)->same_flow;
3321 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3322
3323 if (pp) {
3324 struct sk_buff *nskb = *pp;
3325
3326 *pp = nskb->next;
3327 nskb->next = NULL;
3328 napi_gro_complete(nskb);
3329 napi->gro_count--;
3330 }
3331
3332 if (same_flow)
3333 goto ok;
3334
3335 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3336 goto normal;
3337
3338 napi->gro_count++;
3339 NAPI_GRO_CB(skb)->count = 1;
3340 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3341 skb->next = napi->gro_list;
3342 napi->gro_list = skb;
3343 ret = GRO_HELD;
3344
3345 pull:
3346 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3347 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3348
3349 BUG_ON(skb->end - skb->tail < grow);
3350
3351 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3352
3353 skb->tail += grow;
3354 skb->data_len -= grow;
3355
3356 skb_shinfo(skb)->frags[0].page_offset += grow;
3357 skb_shinfo(skb)->frags[0].size -= grow;
3358
3359 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3360 put_page(skb_shinfo(skb)->frags[0].page);
3361 memmove(skb_shinfo(skb)->frags,
3362 skb_shinfo(skb)->frags + 1,
3363 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3364 }
3365 }
3366
3367 ok:
3368 return ret;
3369
3370 normal:
3371 ret = GRO_NORMAL;
3372 goto pull;
3373 }
3374 EXPORT_SYMBOL(dev_gro_receive);
3375
3376 static inline gro_result_t
3377 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3378 {
3379 struct sk_buff *p;
3380
3381 for (p = napi->gro_list; p; p = p->next) {
3382 unsigned long diffs;
3383
3384 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3385 diffs |= p->vlan_tci ^ skb->vlan_tci;
3386 diffs |= compare_ether_header(skb_mac_header(p),
3387 skb_gro_mac_header(skb));
3388 NAPI_GRO_CB(p)->same_flow = !diffs;
3389 NAPI_GRO_CB(p)->flush = 0;
3390 }
3391
3392 return dev_gro_receive(napi, skb);
3393 }
3394
3395 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3396 {
3397 switch (ret) {
3398 case GRO_NORMAL:
3399 if (netif_receive_skb(skb))
3400 ret = GRO_DROP;
3401 break;
3402
3403 case GRO_DROP:
3404 case GRO_MERGED_FREE:
3405 kfree_skb(skb);
3406 break;
3407
3408 case GRO_HELD:
3409 case GRO_MERGED:
3410 break;
3411 }
3412
3413 return ret;
3414 }
3415 EXPORT_SYMBOL(napi_skb_finish);
3416
3417 void skb_gro_reset_offset(struct sk_buff *skb)
3418 {
3419 NAPI_GRO_CB(skb)->data_offset = 0;
3420 NAPI_GRO_CB(skb)->frag0 = NULL;
3421 NAPI_GRO_CB(skb)->frag0_len = 0;
3422
3423 if (skb->mac_header == skb->tail &&
3424 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3425 NAPI_GRO_CB(skb)->frag0 =
3426 page_address(skb_shinfo(skb)->frags[0].page) +
3427 skb_shinfo(skb)->frags[0].page_offset;
3428 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3429 }
3430 }
3431 EXPORT_SYMBOL(skb_gro_reset_offset);
3432
3433 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3434 {
3435 skb_gro_reset_offset(skb);
3436
3437 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3438 }
3439 EXPORT_SYMBOL(napi_gro_receive);
3440
3441 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3442 {
3443 __skb_pull(skb, skb_headlen(skb));
3444 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3445 skb->vlan_tci = 0;
3446
3447 napi->skb = skb;
3448 }
3449
3450 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3451 {
3452 struct sk_buff *skb = napi->skb;
3453
3454 if (!skb) {
3455 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3456 if (skb)
3457 napi->skb = skb;
3458 }
3459 return skb;
3460 }
3461 EXPORT_SYMBOL(napi_get_frags);
3462
3463 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3464 gro_result_t ret)
3465 {
3466 switch (ret) {
3467 case GRO_NORMAL:
3468 case GRO_HELD:
3469 skb->protocol = eth_type_trans(skb, skb->dev);
3470
3471 if (ret == GRO_HELD)
3472 skb_gro_pull(skb, -ETH_HLEN);
3473 else if (netif_receive_skb(skb))
3474 ret = GRO_DROP;
3475 break;
3476
3477 case GRO_DROP:
3478 case GRO_MERGED_FREE:
3479 napi_reuse_skb(napi, skb);
3480 break;
3481
3482 case GRO_MERGED:
3483 break;
3484 }
3485
3486 return ret;
3487 }
3488 EXPORT_SYMBOL(napi_frags_finish);
3489
3490 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3491 {
3492 struct sk_buff *skb = napi->skb;
3493 struct ethhdr *eth;
3494 unsigned int hlen;
3495 unsigned int off;
3496
3497 napi->skb = NULL;
3498
3499 skb_reset_mac_header(skb);
3500 skb_gro_reset_offset(skb);
3501
3502 off = skb_gro_offset(skb);
3503 hlen = off + sizeof(*eth);
3504 eth = skb_gro_header_fast(skb, off);
3505 if (skb_gro_header_hard(skb, hlen)) {
3506 eth = skb_gro_header_slow(skb, hlen, off);
3507 if (unlikely(!eth)) {
3508 napi_reuse_skb(napi, skb);
3509 skb = NULL;
3510 goto out;
3511 }
3512 }
3513
3514 skb_gro_pull(skb, sizeof(*eth));
3515
3516 /*
3517 * This works because the only protocols we care about don't require
3518 * special handling. We'll fix it up properly at the end.
3519 */
3520 skb->protocol = eth->h_proto;
3521
3522 out:
3523 return skb;
3524 }
3525 EXPORT_SYMBOL(napi_frags_skb);
3526
3527 gro_result_t napi_gro_frags(struct napi_struct *napi)
3528 {
3529 struct sk_buff *skb = napi_frags_skb(napi);
3530
3531 if (!skb)
3532 return GRO_DROP;
3533
3534 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3535 }
3536 EXPORT_SYMBOL(napi_gro_frags);
3537
3538 /*
3539 * net_rps_action sends any pending IPI's for rps.
3540 * Note: called with local irq disabled, but exits with local irq enabled.
3541 */
3542 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3543 {
3544 #ifdef CONFIG_RPS
3545 struct softnet_data *remsd = sd->rps_ipi_list;
3546
3547 if (remsd) {
3548 sd->rps_ipi_list = NULL;
3549
3550 local_irq_enable();
3551
3552 /* Send pending IPI's to kick RPS processing on remote cpus. */
3553 while (remsd) {
3554 struct softnet_data *next = remsd->rps_ipi_next;
3555
3556 if (cpu_online(remsd->cpu))
3557 __smp_call_function_single(remsd->cpu,
3558 &remsd->csd, 0);
3559 remsd = next;
3560 }
3561 } else
3562 #endif
3563 local_irq_enable();
3564 }
3565
3566 static int process_backlog(struct napi_struct *napi, int quota)
3567 {
3568 int work = 0;
3569 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3570
3571 #ifdef CONFIG_RPS
3572 /* Check if we have pending ipi, its better to send them now,
3573 * not waiting net_rx_action() end.
3574 */
3575 if (sd->rps_ipi_list) {
3576 local_irq_disable();
3577 net_rps_action_and_irq_enable(sd);
3578 }
3579 #endif
3580 napi->weight = weight_p;
3581 local_irq_disable();
3582 while (work < quota) {
3583 struct sk_buff *skb;
3584 unsigned int qlen;
3585
3586 while ((skb = __skb_dequeue(&sd->process_queue))) {
3587 local_irq_enable();
3588 __netif_receive_skb(skb);
3589 local_irq_disable();
3590 input_queue_head_incr(sd);
3591 if (++work >= quota) {
3592 local_irq_enable();
3593 return work;
3594 }
3595 }
3596
3597 rps_lock(sd);
3598 qlen = skb_queue_len(&sd->input_pkt_queue);
3599 if (qlen)
3600 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3601 &sd->process_queue);
3602
3603 if (qlen < quota - work) {
3604 /*
3605 * Inline a custom version of __napi_complete().
3606 * only current cpu owns and manipulates this napi,
3607 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3608 * we can use a plain write instead of clear_bit(),
3609 * and we dont need an smp_mb() memory barrier.
3610 */
3611 list_del(&napi->poll_list);
3612 napi->state = 0;
3613
3614 quota = work + qlen;
3615 }
3616 rps_unlock(sd);
3617 }
3618 local_irq_enable();
3619
3620 return work;
3621 }
3622
3623 /**
3624 * __napi_schedule - schedule for receive
3625 * @n: entry to schedule
3626 *
3627 * The entry's receive function will be scheduled to run
3628 */
3629 void __napi_schedule(struct napi_struct *n)
3630 {
3631 unsigned long flags;
3632
3633 local_irq_save(flags);
3634 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3635 local_irq_restore(flags);
3636 }
3637 EXPORT_SYMBOL(__napi_schedule);
3638
3639 void __napi_complete(struct napi_struct *n)
3640 {
3641 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3642 BUG_ON(n->gro_list);
3643
3644 list_del(&n->poll_list);
3645 smp_mb__before_clear_bit();
3646 clear_bit(NAPI_STATE_SCHED, &n->state);
3647 }
3648 EXPORT_SYMBOL(__napi_complete);
3649
3650 void napi_complete(struct napi_struct *n)
3651 {
3652 unsigned long flags;
3653
3654 /*
3655 * don't let napi dequeue from the cpu poll list
3656 * just in case its running on a different cpu
3657 */
3658 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3659 return;
3660
3661 napi_gro_flush(n);
3662 local_irq_save(flags);
3663 __napi_complete(n);
3664 local_irq_restore(flags);
3665 }
3666 EXPORT_SYMBOL(napi_complete);
3667
3668 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3669 int (*poll)(struct napi_struct *, int), int weight)
3670 {
3671 INIT_LIST_HEAD(&napi->poll_list);
3672 napi->gro_count = 0;
3673 napi->gro_list = NULL;
3674 napi->skb = NULL;
3675 napi->poll = poll;
3676 napi->weight = weight;
3677 list_add(&napi->dev_list, &dev->napi_list);
3678 napi->dev = dev;
3679 #ifdef CONFIG_NETPOLL
3680 spin_lock_init(&napi->poll_lock);
3681 napi->poll_owner = -1;
3682 #endif
3683 set_bit(NAPI_STATE_SCHED, &napi->state);
3684 }
3685 EXPORT_SYMBOL(netif_napi_add);
3686
3687 void netif_napi_del(struct napi_struct *napi)
3688 {
3689 struct sk_buff *skb, *next;
3690
3691 list_del_init(&napi->dev_list);
3692 napi_free_frags(napi);
3693
3694 for (skb = napi->gro_list; skb; skb = next) {
3695 next = skb->next;
3696 skb->next = NULL;
3697 kfree_skb(skb);
3698 }
3699
3700 napi->gro_list = NULL;
3701 napi->gro_count = 0;
3702 }
3703 EXPORT_SYMBOL(netif_napi_del);
3704
3705 static void net_rx_action(struct softirq_action *h)
3706 {
3707 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3708 unsigned long time_limit = jiffies + 2;
3709 int budget = netdev_budget;
3710 void *have;
3711
3712 local_irq_disable();
3713
3714 while (!list_empty(&sd->poll_list)) {
3715 struct napi_struct *n;
3716 int work, weight;
3717
3718 /* If softirq window is exhuasted then punt.
3719 * Allow this to run for 2 jiffies since which will allow
3720 * an average latency of 1.5/HZ.
3721 */
3722 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3723 goto softnet_break;
3724
3725 local_irq_enable();
3726
3727 /* Even though interrupts have been re-enabled, this
3728 * access is safe because interrupts can only add new
3729 * entries to the tail of this list, and only ->poll()
3730 * calls can remove this head entry from the list.
3731 */
3732 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3733
3734 have = netpoll_poll_lock(n);
3735
3736 weight = n->weight;
3737
3738 /* This NAPI_STATE_SCHED test is for avoiding a race
3739 * with netpoll's poll_napi(). Only the entity which
3740 * obtains the lock and sees NAPI_STATE_SCHED set will
3741 * actually make the ->poll() call. Therefore we avoid
3742 * accidently calling ->poll() when NAPI is not scheduled.
3743 */
3744 work = 0;
3745 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3746 work = n->poll(n, weight);
3747 trace_napi_poll(n);
3748 }
3749
3750 WARN_ON_ONCE(work > weight);
3751
3752 budget -= work;
3753
3754 local_irq_disable();
3755
3756 /* Drivers must not modify the NAPI state if they
3757 * consume the entire weight. In such cases this code
3758 * still "owns" the NAPI instance and therefore can
3759 * move the instance around on the list at-will.
3760 */
3761 if (unlikely(work == weight)) {
3762 if (unlikely(napi_disable_pending(n))) {
3763 local_irq_enable();
3764 napi_complete(n);
3765 local_irq_disable();
3766 } else
3767 list_move_tail(&n->poll_list, &sd->poll_list);
3768 }
3769
3770 netpoll_poll_unlock(have);
3771 }
3772 out:
3773 net_rps_action_and_irq_enable(sd);
3774
3775 #ifdef CONFIG_NET_DMA
3776 /*
3777 * There may not be any more sk_buffs coming right now, so push
3778 * any pending DMA copies to hardware
3779 */
3780 dma_issue_pending_all();
3781 #endif
3782
3783 return;
3784
3785 softnet_break:
3786 sd->time_squeeze++;
3787 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3788 goto out;
3789 }
3790
3791 static gifconf_func_t *gifconf_list[NPROTO];
3792
3793 /**
3794 * register_gifconf - register a SIOCGIF handler
3795 * @family: Address family
3796 * @gifconf: Function handler
3797 *
3798 * Register protocol dependent address dumping routines. The handler
3799 * that is passed must not be freed or reused until it has been replaced
3800 * by another handler.
3801 */
3802 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3803 {
3804 if (family >= NPROTO)
3805 return -EINVAL;
3806 gifconf_list[family] = gifconf;
3807 return 0;
3808 }
3809 EXPORT_SYMBOL(register_gifconf);
3810
3811
3812 /*
3813 * Map an interface index to its name (SIOCGIFNAME)
3814 */
3815
3816 /*
3817 * We need this ioctl for efficient implementation of the
3818 * if_indextoname() function required by the IPv6 API. Without
3819 * it, we would have to search all the interfaces to find a
3820 * match. --pb
3821 */
3822
3823 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3824 {
3825 struct net_device *dev;
3826 struct ifreq ifr;
3827
3828 /*
3829 * Fetch the caller's info block.
3830 */
3831
3832 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3833 return -EFAULT;
3834
3835 rcu_read_lock();
3836 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3837 if (!dev) {
3838 rcu_read_unlock();
3839 return -ENODEV;
3840 }
3841
3842 strcpy(ifr.ifr_name, dev->name);
3843 rcu_read_unlock();
3844
3845 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3846 return -EFAULT;
3847 return 0;
3848 }
3849
3850 /*
3851 * Perform a SIOCGIFCONF call. This structure will change
3852 * size eventually, and there is nothing I can do about it.
3853 * Thus we will need a 'compatibility mode'.
3854 */
3855
3856 static int dev_ifconf(struct net *net, char __user *arg)
3857 {
3858 struct ifconf ifc;
3859 struct net_device *dev;
3860 char __user *pos;
3861 int len;
3862 int total;
3863 int i;
3864
3865 /*
3866 * Fetch the caller's info block.
3867 */
3868
3869 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3870 return -EFAULT;
3871
3872 pos = ifc.ifc_buf;
3873 len = ifc.ifc_len;
3874
3875 /*
3876 * Loop over the interfaces, and write an info block for each.
3877 */
3878
3879 total = 0;
3880 for_each_netdev(net, dev) {
3881 for (i = 0; i < NPROTO; i++) {
3882 if (gifconf_list[i]) {
3883 int done;
3884 if (!pos)
3885 done = gifconf_list[i](dev, NULL, 0);
3886 else
3887 done = gifconf_list[i](dev, pos + total,
3888 len - total);
3889 if (done < 0)
3890 return -EFAULT;
3891 total += done;
3892 }
3893 }
3894 }
3895
3896 /*
3897 * All done. Write the updated control block back to the caller.
3898 */
3899 ifc.ifc_len = total;
3900
3901 /*
3902 * Both BSD and Solaris return 0 here, so we do too.
3903 */
3904 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3905 }
3906
3907 #ifdef CONFIG_PROC_FS
3908 /*
3909 * This is invoked by the /proc filesystem handler to display a device
3910 * in detail.
3911 */
3912 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3913 __acquires(RCU)
3914 {
3915 struct net *net = seq_file_net(seq);
3916 loff_t off;
3917 struct net_device *dev;
3918
3919 rcu_read_lock();
3920 if (!*pos)
3921 return SEQ_START_TOKEN;
3922
3923 off = 1;
3924 for_each_netdev_rcu(net, dev)
3925 if (off++ == *pos)
3926 return dev;
3927
3928 return NULL;
3929 }
3930
3931 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3932 {
3933 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3934 first_net_device(seq_file_net(seq)) :
3935 next_net_device((struct net_device *)v);
3936
3937 ++*pos;
3938 return rcu_dereference(dev);
3939 }
3940
3941 void dev_seq_stop(struct seq_file *seq, void *v)
3942 __releases(RCU)
3943 {
3944 rcu_read_unlock();
3945 }
3946
3947 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3948 {
3949 struct rtnl_link_stats64 temp;
3950 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3951
3952 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3953 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3954 dev->name, stats->rx_bytes, stats->rx_packets,
3955 stats->rx_errors,
3956 stats->rx_dropped + stats->rx_missed_errors,
3957 stats->rx_fifo_errors,
3958 stats->rx_length_errors + stats->rx_over_errors +
3959 stats->rx_crc_errors + stats->rx_frame_errors,
3960 stats->rx_compressed, stats->multicast,
3961 stats->tx_bytes, stats->tx_packets,
3962 stats->tx_errors, stats->tx_dropped,
3963 stats->tx_fifo_errors, stats->collisions,
3964 stats->tx_carrier_errors +
3965 stats->tx_aborted_errors +
3966 stats->tx_window_errors +
3967 stats->tx_heartbeat_errors,
3968 stats->tx_compressed);
3969 }
3970
3971 /*
3972 * Called from the PROCfs module. This now uses the new arbitrary sized
3973 * /proc/net interface to create /proc/net/dev
3974 */
3975 static int dev_seq_show(struct seq_file *seq, void *v)
3976 {
3977 if (v == SEQ_START_TOKEN)
3978 seq_puts(seq, "Inter-| Receive "
3979 " | Transmit\n"
3980 " face |bytes packets errs drop fifo frame "
3981 "compressed multicast|bytes packets errs "
3982 "drop fifo colls carrier compressed\n");
3983 else
3984 dev_seq_printf_stats(seq, v);
3985 return 0;
3986 }
3987
3988 static struct softnet_data *softnet_get_online(loff_t *pos)
3989 {
3990 struct softnet_data *sd = NULL;
3991
3992 while (*pos < nr_cpu_ids)
3993 if (cpu_online(*pos)) {
3994 sd = &per_cpu(softnet_data, *pos);
3995 break;
3996 } else
3997 ++*pos;
3998 return sd;
3999 }
4000
4001 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4002 {
4003 return softnet_get_online(pos);
4004 }
4005
4006 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4007 {
4008 ++*pos;
4009 return softnet_get_online(pos);
4010 }
4011
4012 static void softnet_seq_stop(struct seq_file *seq, void *v)
4013 {
4014 }
4015
4016 static int softnet_seq_show(struct seq_file *seq, void *v)
4017 {
4018 struct softnet_data *sd = v;
4019
4020 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4021 sd->processed, sd->dropped, sd->time_squeeze, 0,
4022 0, 0, 0, 0, /* was fastroute */
4023 sd->cpu_collision, sd->received_rps);
4024 return 0;
4025 }
4026
4027 static const struct seq_operations dev_seq_ops = {
4028 .start = dev_seq_start,
4029 .next = dev_seq_next,
4030 .stop = dev_seq_stop,
4031 .show = dev_seq_show,
4032 };
4033
4034 static int dev_seq_open(struct inode *inode, struct file *file)
4035 {
4036 return seq_open_net(inode, file, &dev_seq_ops,
4037 sizeof(struct seq_net_private));
4038 }
4039
4040 static const struct file_operations dev_seq_fops = {
4041 .owner = THIS_MODULE,
4042 .open = dev_seq_open,
4043 .read = seq_read,
4044 .llseek = seq_lseek,
4045 .release = seq_release_net,
4046 };
4047
4048 static const struct seq_operations softnet_seq_ops = {
4049 .start = softnet_seq_start,
4050 .next = softnet_seq_next,
4051 .stop = softnet_seq_stop,
4052 .show = softnet_seq_show,
4053 };
4054
4055 static int softnet_seq_open(struct inode *inode, struct file *file)
4056 {
4057 return seq_open(file, &softnet_seq_ops);
4058 }
4059
4060 static const struct file_operations softnet_seq_fops = {
4061 .owner = THIS_MODULE,
4062 .open = softnet_seq_open,
4063 .read = seq_read,
4064 .llseek = seq_lseek,
4065 .release = seq_release,
4066 };
4067
4068 static void *ptype_get_idx(loff_t pos)
4069 {
4070 struct packet_type *pt = NULL;
4071 loff_t i = 0;
4072 int t;
4073
4074 list_for_each_entry_rcu(pt, &ptype_all, list) {
4075 if (i == pos)
4076 return pt;
4077 ++i;
4078 }
4079
4080 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4081 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4082 if (i == pos)
4083 return pt;
4084 ++i;
4085 }
4086 }
4087 return NULL;
4088 }
4089
4090 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4091 __acquires(RCU)
4092 {
4093 rcu_read_lock();
4094 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4095 }
4096
4097 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4098 {
4099 struct packet_type *pt;
4100 struct list_head *nxt;
4101 int hash;
4102
4103 ++*pos;
4104 if (v == SEQ_START_TOKEN)
4105 return ptype_get_idx(0);
4106
4107 pt = v;
4108 nxt = pt->list.next;
4109 if (pt->type == htons(ETH_P_ALL)) {
4110 if (nxt != &ptype_all)
4111 goto found;
4112 hash = 0;
4113 nxt = ptype_base[0].next;
4114 } else
4115 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4116
4117 while (nxt == &ptype_base[hash]) {
4118 if (++hash >= PTYPE_HASH_SIZE)
4119 return NULL;
4120 nxt = ptype_base[hash].next;
4121 }
4122 found:
4123 return list_entry(nxt, struct packet_type, list);
4124 }
4125
4126 static void ptype_seq_stop(struct seq_file *seq, void *v)
4127 __releases(RCU)
4128 {
4129 rcu_read_unlock();
4130 }
4131
4132 static int ptype_seq_show(struct seq_file *seq, void *v)
4133 {
4134 struct packet_type *pt = v;
4135
4136 if (v == SEQ_START_TOKEN)
4137 seq_puts(seq, "Type Device Function\n");
4138 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4139 if (pt->type == htons(ETH_P_ALL))
4140 seq_puts(seq, "ALL ");
4141 else
4142 seq_printf(seq, "%04x", ntohs(pt->type));
4143
4144 seq_printf(seq, " %-8s %pF\n",
4145 pt->dev ? pt->dev->name : "", pt->func);
4146 }
4147
4148 return 0;
4149 }
4150
4151 static const struct seq_operations ptype_seq_ops = {
4152 .start = ptype_seq_start,
4153 .next = ptype_seq_next,
4154 .stop = ptype_seq_stop,
4155 .show = ptype_seq_show,
4156 };
4157
4158 static int ptype_seq_open(struct inode *inode, struct file *file)
4159 {
4160 return seq_open_net(inode, file, &ptype_seq_ops,
4161 sizeof(struct seq_net_private));
4162 }
4163
4164 static const struct file_operations ptype_seq_fops = {
4165 .owner = THIS_MODULE,
4166 .open = ptype_seq_open,
4167 .read = seq_read,
4168 .llseek = seq_lseek,
4169 .release = seq_release_net,
4170 };
4171
4172
4173 static int __net_init dev_proc_net_init(struct net *net)
4174 {
4175 int rc = -ENOMEM;
4176
4177 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4178 goto out;
4179 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4180 goto out_dev;
4181 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4182 goto out_softnet;
4183
4184 if (wext_proc_init(net))
4185 goto out_ptype;
4186 rc = 0;
4187 out:
4188 return rc;
4189 out_ptype:
4190 proc_net_remove(net, "ptype");
4191 out_softnet:
4192 proc_net_remove(net, "softnet_stat");
4193 out_dev:
4194 proc_net_remove(net, "dev");
4195 goto out;
4196 }
4197
4198 static void __net_exit dev_proc_net_exit(struct net *net)
4199 {
4200 wext_proc_exit(net);
4201
4202 proc_net_remove(net, "ptype");
4203 proc_net_remove(net, "softnet_stat");
4204 proc_net_remove(net, "dev");
4205 }
4206
4207 static struct pernet_operations __net_initdata dev_proc_ops = {
4208 .init = dev_proc_net_init,
4209 .exit = dev_proc_net_exit,
4210 };
4211
4212 static int __init dev_proc_init(void)
4213 {
4214 return register_pernet_subsys(&dev_proc_ops);
4215 }
4216 #else
4217 #define dev_proc_init() 0
4218 #endif /* CONFIG_PROC_FS */
4219
4220
4221 /**
4222 * netdev_set_master - set up master/slave pair
4223 * @slave: slave device
4224 * @master: new master device
4225 *
4226 * Changes the master device of the slave. Pass %NULL to break the
4227 * bonding. The caller must hold the RTNL semaphore. On a failure
4228 * a negative errno code is returned. On success the reference counts
4229 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4230 * function returns zero.
4231 */
4232 int netdev_set_master(struct net_device *slave, struct net_device *master)
4233 {
4234 struct net_device *old = slave->master;
4235
4236 ASSERT_RTNL();
4237
4238 if (master) {
4239 if (old)
4240 return -EBUSY;
4241 dev_hold(master);
4242 }
4243
4244 slave->master = master;
4245
4246 if (old) {
4247 synchronize_net();
4248 dev_put(old);
4249 }
4250 if (master)
4251 slave->flags |= IFF_SLAVE;
4252 else
4253 slave->flags &= ~IFF_SLAVE;
4254
4255 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4256 return 0;
4257 }
4258 EXPORT_SYMBOL(netdev_set_master);
4259
4260 static void dev_change_rx_flags(struct net_device *dev, int flags)
4261 {
4262 const struct net_device_ops *ops = dev->netdev_ops;
4263
4264 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4265 ops->ndo_change_rx_flags(dev, flags);
4266 }
4267
4268 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4269 {
4270 unsigned short old_flags = dev->flags;
4271 uid_t uid;
4272 gid_t gid;
4273
4274 ASSERT_RTNL();
4275
4276 dev->flags |= IFF_PROMISC;
4277 dev->promiscuity += inc;
4278 if (dev->promiscuity == 0) {
4279 /*
4280 * Avoid overflow.
4281 * If inc causes overflow, untouch promisc and return error.
4282 */
4283 if (inc < 0)
4284 dev->flags &= ~IFF_PROMISC;
4285 else {
4286 dev->promiscuity -= inc;
4287 printk(KERN_WARNING "%s: promiscuity touches roof, "
4288 "set promiscuity failed, promiscuity feature "
4289 "of device might be broken.\n", dev->name);
4290 return -EOVERFLOW;
4291 }
4292 }
4293 if (dev->flags != old_flags) {
4294 printk(KERN_INFO "device %s %s promiscuous mode\n",
4295 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4296 "left");
4297 if (audit_enabled) {
4298 current_uid_gid(&uid, &gid);
4299 audit_log(current->audit_context, GFP_ATOMIC,
4300 AUDIT_ANOM_PROMISCUOUS,
4301 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4302 dev->name, (dev->flags & IFF_PROMISC),
4303 (old_flags & IFF_PROMISC),
4304 audit_get_loginuid(current),
4305 uid, gid,
4306 audit_get_sessionid(current));
4307 }
4308
4309 dev_change_rx_flags(dev, IFF_PROMISC);
4310 }
4311 return 0;
4312 }
4313
4314 /**
4315 * dev_set_promiscuity - update promiscuity count on a device
4316 * @dev: device
4317 * @inc: modifier
4318 *
4319 * Add or remove promiscuity from a device. While the count in the device
4320 * remains above zero the interface remains promiscuous. Once it hits zero
4321 * the device reverts back to normal filtering operation. A negative inc
4322 * value is used to drop promiscuity on the device.
4323 * Return 0 if successful or a negative errno code on error.
4324 */
4325 int dev_set_promiscuity(struct net_device *dev, int inc)
4326 {
4327 unsigned short old_flags = dev->flags;
4328 int err;
4329
4330 err = __dev_set_promiscuity(dev, inc);
4331 if (err < 0)
4332 return err;
4333 if (dev->flags != old_flags)
4334 dev_set_rx_mode(dev);
4335 return err;
4336 }
4337 EXPORT_SYMBOL(dev_set_promiscuity);
4338
4339 /**
4340 * dev_set_allmulti - update allmulti count on a device
4341 * @dev: device
4342 * @inc: modifier
4343 *
4344 * Add or remove reception of all multicast frames to a device. While the
4345 * count in the device remains above zero the interface remains listening
4346 * to all interfaces. Once it hits zero the device reverts back to normal
4347 * filtering operation. A negative @inc value is used to drop the counter
4348 * when releasing a resource needing all multicasts.
4349 * Return 0 if successful or a negative errno code on error.
4350 */
4351
4352 int dev_set_allmulti(struct net_device *dev, int inc)
4353 {
4354 unsigned short old_flags = dev->flags;
4355
4356 ASSERT_RTNL();
4357
4358 dev->flags |= IFF_ALLMULTI;
4359 dev->allmulti += inc;
4360 if (dev->allmulti == 0) {
4361 /*
4362 * Avoid overflow.
4363 * If inc causes overflow, untouch allmulti and return error.
4364 */
4365 if (inc < 0)
4366 dev->flags &= ~IFF_ALLMULTI;
4367 else {
4368 dev->allmulti -= inc;
4369 printk(KERN_WARNING "%s: allmulti touches roof, "
4370 "set allmulti failed, allmulti feature of "
4371 "device might be broken.\n", dev->name);
4372 return -EOVERFLOW;
4373 }
4374 }
4375 if (dev->flags ^ old_flags) {
4376 dev_change_rx_flags(dev, IFF_ALLMULTI);
4377 dev_set_rx_mode(dev);
4378 }
4379 return 0;
4380 }
4381 EXPORT_SYMBOL(dev_set_allmulti);
4382
4383 /*
4384 * Upload unicast and multicast address lists to device and
4385 * configure RX filtering. When the device doesn't support unicast
4386 * filtering it is put in promiscuous mode while unicast addresses
4387 * are present.
4388 */
4389 void __dev_set_rx_mode(struct net_device *dev)
4390 {
4391 const struct net_device_ops *ops = dev->netdev_ops;
4392
4393 /* dev_open will call this function so the list will stay sane. */
4394 if (!(dev->flags&IFF_UP))
4395 return;
4396
4397 if (!netif_device_present(dev))
4398 return;
4399
4400 if (ops->ndo_set_rx_mode)
4401 ops->ndo_set_rx_mode(dev);
4402 else {
4403 /* Unicast addresses changes may only happen under the rtnl,
4404 * therefore calling __dev_set_promiscuity here is safe.
4405 */
4406 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4407 __dev_set_promiscuity(dev, 1);
4408 dev->uc_promisc = 1;
4409 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4410 __dev_set_promiscuity(dev, -1);
4411 dev->uc_promisc = 0;
4412 }
4413
4414 if (ops->ndo_set_multicast_list)
4415 ops->ndo_set_multicast_list(dev);
4416 }
4417 }
4418
4419 void dev_set_rx_mode(struct net_device *dev)
4420 {
4421 netif_addr_lock_bh(dev);
4422 __dev_set_rx_mode(dev);
4423 netif_addr_unlock_bh(dev);
4424 }
4425
4426 /**
4427 * dev_get_flags - get flags reported to userspace
4428 * @dev: device
4429 *
4430 * Get the combination of flag bits exported through APIs to userspace.
4431 */
4432 unsigned dev_get_flags(const struct net_device *dev)
4433 {
4434 unsigned flags;
4435
4436 flags = (dev->flags & ~(IFF_PROMISC |
4437 IFF_ALLMULTI |
4438 IFF_RUNNING |
4439 IFF_LOWER_UP |
4440 IFF_DORMANT)) |
4441 (dev->gflags & (IFF_PROMISC |
4442 IFF_ALLMULTI));
4443
4444 if (netif_running(dev)) {
4445 if (netif_oper_up(dev))
4446 flags |= IFF_RUNNING;
4447 if (netif_carrier_ok(dev))
4448 flags |= IFF_LOWER_UP;
4449 if (netif_dormant(dev))
4450 flags |= IFF_DORMANT;
4451 }
4452
4453 return flags;
4454 }
4455 EXPORT_SYMBOL(dev_get_flags);
4456
4457 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4458 {
4459 int old_flags = dev->flags;
4460 int ret;
4461
4462 ASSERT_RTNL();
4463
4464 /*
4465 * Set the flags on our device.
4466 */
4467
4468 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4469 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4470 IFF_AUTOMEDIA)) |
4471 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4472 IFF_ALLMULTI));
4473
4474 /*
4475 * Load in the correct multicast list now the flags have changed.
4476 */
4477
4478 if ((old_flags ^ flags) & IFF_MULTICAST)
4479 dev_change_rx_flags(dev, IFF_MULTICAST);
4480
4481 dev_set_rx_mode(dev);
4482
4483 /*
4484 * Have we downed the interface. We handle IFF_UP ourselves
4485 * according to user attempts to set it, rather than blindly
4486 * setting it.
4487 */
4488
4489 ret = 0;
4490 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4491 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4492
4493 if (!ret)
4494 dev_set_rx_mode(dev);
4495 }
4496
4497 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4498 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4499
4500 dev->gflags ^= IFF_PROMISC;
4501 dev_set_promiscuity(dev, inc);
4502 }
4503
4504 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4505 is important. Some (broken) drivers set IFF_PROMISC, when
4506 IFF_ALLMULTI is requested not asking us and not reporting.
4507 */
4508 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4509 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4510
4511 dev->gflags ^= IFF_ALLMULTI;
4512 dev_set_allmulti(dev, inc);
4513 }
4514
4515 return ret;
4516 }
4517
4518 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4519 {
4520 unsigned int changes = dev->flags ^ old_flags;
4521
4522 if (changes & IFF_UP) {
4523 if (dev->flags & IFF_UP)
4524 call_netdevice_notifiers(NETDEV_UP, dev);
4525 else
4526 call_netdevice_notifiers(NETDEV_DOWN, dev);
4527 }
4528
4529 if (dev->flags & IFF_UP &&
4530 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4531 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4532 }
4533
4534 /**
4535 * dev_change_flags - change device settings
4536 * @dev: device
4537 * @flags: device state flags
4538 *
4539 * Change settings on device based state flags. The flags are
4540 * in the userspace exported format.
4541 */
4542 int dev_change_flags(struct net_device *dev, unsigned flags)
4543 {
4544 int ret, changes;
4545 int old_flags = dev->flags;
4546
4547 ret = __dev_change_flags(dev, flags);
4548 if (ret < 0)
4549 return ret;
4550
4551 changes = old_flags ^ dev->flags;
4552 if (changes)
4553 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4554
4555 __dev_notify_flags(dev, old_flags);
4556 return ret;
4557 }
4558 EXPORT_SYMBOL(dev_change_flags);
4559
4560 /**
4561 * dev_set_mtu - Change maximum transfer unit
4562 * @dev: device
4563 * @new_mtu: new transfer unit
4564 *
4565 * Change the maximum transfer size of the network device.
4566 */
4567 int dev_set_mtu(struct net_device *dev, int new_mtu)
4568 {
4569 const struct net_device_ops *ops = dev->netdev_ops;
4570 int err;
4571
4572 if (new_mtu == dev->mtu)
4573 return 0;
4574
4575 /* MTU must be positive. */
4576 if (new_mtu < 0)
4577 return -EINVAL;
4578
4579 if (!netif_device_present(dev))
4580 return -ENODEV;
4581
4582 err = 0;
4583 if (ops->ndo_change_mtu)
4584 err = ops->ndo_change_mtu(dev, new_mtu);
4585 else
4586 dev->mtu = new_mtu;
4587
4588 if (!err && dev->flags & IFF_UP)
4589 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4590 return err;
4591 }
4592 EXPORT_SYMBOL(dev_set_mtu);
4593
4594 /**
4595 * dev_set_mac_address - Change Media Access Control Address
4596 * @dev: device
4597 * @sa: new address
4598 *
4599 * Change the hardware (MAC) address of the device
4600 */
4601 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4602 {
4603 const struct net_device_ops *ops = dev->netdev_ops;
4604 int err;
4605
4606 if (!ops->ndo_set_mac_address)
4607 return -EOPNOTSUPP;
4608 if (sa->sa_family != dev->type)
4609 return -EINVAL;
4610 if (!netif_device_present(dev))
4611 return -ENODEV;
4612 err = ops->ndo_set_mac_address(dev, sa);
4613 if (!err)
4614 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4615 return err;
4616 }
4617 EXPORT_SYMBOL(dev_set_mac_address);
4618
4619 /*
4620 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4621 */
4622 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4623 {
4624 int err;
4625 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4626
4627 if (!dev)
4628 return -ENODEV;
4629
4630 switch (cmd) {
4631 case SIOCGIFFLAGS: /* Get interface flags */
4632 ifr->ifr_flags = (short) dev_get_flags(dev);
4633 return 0;
4634
4635 case SIOCGIFMETRIC: /* Get the metric on the interface
4636 (currently unused) */
4637 ifr->ifr_metric = 0;
4638 return 0;
4639
4640 case SIOCGIFMTU: /* Get the MTU of a device */
4641 ifr->ifr_mtu = dev->mtu;
4642 return 0;
4643
4644 case SIOCGIFHWADDR:
4645 if (!dev->addr_len)
4646 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4647 else
4648 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4649 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4650 ifr->ifr_hwaddr.sa_family = dev->type;
4651 return 0;
4652
4653 case SIOCGIFSLAVE:
4654 err = -EINVAL;
4655 break;
4656
4657 case SIOCGIFMAP:
4658 ifr->ifr_map.mem_start = dev->mem_start;
4659 ifr->ifr_map.mem_end = dev->mem_end;
4660 ifr->ifr_map.base_addr = dev->base_addr;
4661 ifr->ifr_map.irq = dev->irq;
4662 ifr->ifr_map.dma = dev->dma;
4663 ifr->ifr_map.port = dev->if_port;
4664 return 0;
4665
4666 case SIOCGIFINDEX:
4667 ifr->ifr_ifindex = dev->ifindex;
4668 return 0;
4669
4670 case SIOCGIFTXQLEN:
4671 ifr->ifr_qlen = dev->tx_queue_len;
4672 return 0;
4673
4674 default:
4675 /* dev_ioctl() should ensure this case
4676 * is never reached
4677 */
4678 WARN_ON(1);
4679 err = -EINVAL;
4680 break;
4681
4682 }
4683 return err;
4684 }
4685
4686 /*
4687 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4688 */
4689 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4690 {
4691 int err;
4692 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4693 const struct net_device_ops *ops;
4694
4695 if (!dev)
4696 return -ENODEV;
4697
4698 ops = dev->netdev_ops;
4699
4700 switch (cmd) {
4701 case SIOCSIFFLAGS: /* Set interface flags */
4702 return dev_change_flags(dev, ifr->ifr_flags);
4703
4704 case SIOCSIFMETRIC: /* Set the metric on the interface
4705 (currently unused) */
4706 return -EOPNOTSUPP;
4707
4708 case SIOCSIFMTU: /* Set the MTU of a device */
4709 return dev_set_mtu(dev, ifr->ifr_mtu);
4710
4711 case SIOCSIFHWADDR:
4712 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4713
4714 case SIOCSIFHWBROADCAST:
4715 if (ifr->ifr_hwaddr.sa_family != dev->type)
4716 return -EINVAL;
4717 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4718 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4719 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4720 return 0;
4721
4722 case SIOCSIFMAP:
4723 if (ops->ndo_set_config) {
4724 if (!netif_device_present(dev))
4725 return -ENODEV;
4726 return ops->ndo_set_config(dev, &ifr->ifr_map);
4727 }
4728 return -EOPNOTSUPP;
4729
4730 case SIOCADDMULTI:
4731 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4732 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4733 return -EINVAL;
4734 if (!netif_device_present(dev))
4735 return -ENODEV;
4736 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4737
4738 case SIOCDELMULTI:
4739 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4740 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4741 return -EINVAL;
4742 if (!netif_device_present(dev))
4743 return -ENODEV;
4744 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4745
4746 case SIOCSIFTXQLEN:
4747 if (ifr->ifr_qlen < 0)
4748 return -EINVAL;
4749 dev->tx_queue_len = ifr->ifr_qlen;
4750 return 0;
4751
4752 case SIOCSIFNAME:
4753 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4754 return dev_change_name(dev, ifr->ifr_newname);
4755
4756 /*
4757 * Unknown or private ioctl
4758 */
4759 default:
4760 if ((cmd >= SIOCDEVPRIVATE &&
4761 cmd <= SIOCDEVPRIVATE + 15) ||
4762 cmd == SIOCBONDENSLAVE ||
4763 cmd == SIOCBONDRELEASE ||
4764 cmd == SIOCBONDSETHWADDR ||
4765 cmd == SIOCBONDSLAVEINFOQUERY ||
4766 cmd == SIOCBONDINFOQUERY ||
4767 cmd == SIOCBONDCHANGEACTIVE ||
4768 cmd == SIOCGMIIPHY ||
4769 cmd == SIOCGMIIREG ||
4770 cmd == SIOCSMIIREG ||
4771 cmd == SIOCBRADDIF ||
4772 cmd == SIOCBRDELIF ||
4773 cmd == SIOCSHWTSTAMP ||
4774 cmd == SIOCWANDEV) {
4775 err = -EOPNOTSUPP;
4776 if (ops->ndo_do_ioctl) {
4777 if (netif_device_present(dev))
4778 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4779 else
4780 err = -ENODEV;
4781 }
4782 } else
4783 err = -EINVAL;
4784
4785 }
4786 return err;
4787 }
4788
4789 /*
4790 * This function handles all "interface"-type I/O control requests. The actual
4791 * 'doing' part of this is dev_ifsioc above.
4792 */
4793
4794 /**
4795 * dev_ioctl - network device ioctl
4796 * @net: the applicable net namespace
4797 * @cmd: command to issue
4798 * @arg: pointer to a struct ifreq in user space
4799 *
4800 * Issue ioctl functions to devices. This is normally called by the
4801 * user space syscall interfaces but can sometimes be useful for
4802 * other purposes. The return value is the return from the syscall if
4803 * positive or a negative errno code on error.
4804 */
4805
4806 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4807 {
4808 struct ifreq ifr;
4809 int ret;
4810 char *colon;
4811
4812 /* One special case: SIOCGIFCONF takes ifconf argument
4813 and requires shared lock, because it sleeps writing
4814 to user space.
4815 */
4816
4817 if (cmd == SIOCGIFCONF) {
4818 rtnl_lock();
4819 ret = dev_ifconf(net, (char __user *) arg);
4820 rtnl_unlock();
4821 return ret;
4822 }
4823 if (cmd == SIOCGIFNAME)
4824 return dev_ifname(net, (struct ifreq __user *)arg);
4825
4826 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4827 return -EFAULT;
4828
4829 ifr.ifr_name[IFNAMSIZ-1] = 0;
4830
4831 colon = strchr(ifr.ifr_name, ':');
4832 if (colon)
4833 *colon = 0;
4834
4835 /*
4836 * See which interface the caller is talking about.
4837 */
4838
4839 switch (cmd) {
4840 /*
4841 * These ioctl calls:
4842 * - can be done by all.
4843 * - atomic and do not require locking.
4844 * - return a value
4845 */
4846 case SIOCGIFFLAGS:
4847 case SIOCGIFMETRIC:
4848 case SIOCGIFMTU:
4849 case SIOCGIFHWADDR:
4850 case SIOCGIFSLAVE:
4851 case SIOCGIFMAP:
4852 case SIOCGIFINDEX:
4853 case SIOCGIFTXQLEN:
4854 dev_load(net, ifr.ifr_name);
4855 rcu_read_lock();
4856 ret = dev_ifsioc_locked(net, &ifr, cmd);
4857 rcu_read_unlock();
4858 if (!ret) {
4859 if (colon)
4860 *colon = ':';
4861 if (copy_to_user(arg, &ifr,
4862 sizeof(struct ifreq)))
4863 ret = -EFAULT;
4864 }
4865 return ret;
4866
4867 case SIOCETHTOOL:
4868 dev_load(net, ifr.ifr_name);
4869 rtnl_lock();
4870 ret = dev_ethtool(net, &ifr);
4871 rtnl_unlock();
4872 if (!ret) {
4873 if (colon)
4874 *colon = ':';
4875 if (copy_to_user(arg, &ifr,
4876 sizeof(struct ifreq)))
4877 ret = -EFAULT;
4878 }
4879 return ret;
4880
4881 /*
4882 * These ioctl calls:
4883 * - require superuser power.
4884 * - require strict serialization.
4885 * - return a value
4886 */
4887 case SIOCGMIIPHY:
4888 case SIOCGMIIREG:
4889 case SIOCSIFNAME:
4890 if (!capable(CAP_NET_ADMIN))
4891 return -EPERM;
4892 dev_load(net, ifr.ifr_name);
4893 rtnl_lock();
4894 ret = dev_ifsioc(net, &ifr, cmd);
4895 rtnl_unlock();
4896 if (!ret) {
4897 if (colon)
4898 *colon = ':';
4899 if (copy_to_user(arg, &ifr,
4900 sizeof(struct ifreq)))
4901 ret = -EFAULT;
4902 }
4903 return ret;
4904
4905 /*
4906 * These ioctl calls:
4907 * - require superuser power.
4908 * - require strict serialization.
4909 * - do not return a value
4910 */
4911 case SIOCSIFFLAGS:
4912 case SIOCSIFMETRIC:
4913 case SIOCSIFMTU:
4914 case SIOCSIFMAP:
4915 case SIOCSIFHWADDR:
4916 case SIOCSIFSLAVE:
4917 case SIOCADDMULTI:
4918 case SIOCDELMULTI:
4919 case SIOCSIFHWBROADCAST:
4920 case SIOCSIFTXQLEN:
4921 case SIOCSMIIREG:
4922 case SIOCBONDENSLAVE:
4923 case SIOCBONDRELEASE:
4924 case SIOCBONDSETHWADDR:
4925 case SIOCBONDCHANGEACTIVE:
4926 case SIOCBRADDIF:
4927 case SIOCBRDELIF:
4928 case SIOCSHWTSTAMP:
4929 if (!capable(CAP_NET_ADMIN))
4930 return -EPERM;
4931 /* fall through */
4932 case SIOCBONDSLAVEINFOQUERY:
4933 case SIOCBONDINFOQUERY:
4934 dev_load(net, ifr.ifr_name);
4935 rtnl_lock();
4936 ret = dev_ifsioc(net, &ifr, cmd);
4937 rtnl_unlock();
4938 return ret;
4939
4940 case SIOCGIFMEM:
4941 /* Get the per device memory space. We can add this but
4942 * currently do not support it */
4943 case SIOCSIFMEM:
4944 /* Set the per device memory buffer space.
4945 * Not applicable in our case */
4946 case SIOCSIFLINK:
4947 return -EINVAL;
4948
4949 /*
4950 * Unknown or private ioctl.
4951 */
4952 default:
4953 if (cmd == SIOCWANDEV ||
4954 (cmd >= SIOCDEVPRIVATE &&
4955 cmd <= SIOCDEVPRIVATE + 15)) {
4956 dev_load(net, ifr.ifr_name);
4957 rtnl_lock();
4958 ret = dev_ifsioc(net, &ifr, cmd);
4959 rtnl_unlock();
4960 if (!ret && copy_to_user(arg, &ifr,
4961 sizeof(struct ifreq)))
4962 ret = -EFAULT;
4963 return ret;
4964 }
4965 /* Take care of Wireless Extensions */
4966 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4967 return wext_handle_ioctl(net, &ifr, cmd, arg);
4968 return -EINVAL;
4969 }
4970 }
4971
4972
4973 /**
4974 * dev_new_index - allocate an ifindex
4975 * @net: the applicable net namespace
4976 *
4977 * Returns a suitable unique value for a new device interface
4978 * number. The caller must hold the rtnl semaphore or the
4979 * dev_base_lock to be sure it remains unique.
4980 */
4981 static int dev_new_index(struct net *net)
4982 {
4983 static int ifindex;
4984 for (;;) {
4985 if (++ifindex <= 0)
4986 ifindex = 1;
4987 if (!__dev_get_by_index(net, ifindex))
4988 return ifindex;
4989 }
4990 }
4991
4992 /* Delayed registration/unregisteration */
4993 static LIST_HEAD(net_todo_list);
4994
4995 static void net_set_todo(struct net_device *dev)
4996 {
4997 list_add_tail(&dev->todo_list, &net_todo_list);
4998 }
4999
5000 static void rollback_registered_many(struct list_head *head)
5001 {
5002 struct net_device *dev, *tmp;
5003
5004 BUG_ON(dev_boot_phase);
5005 ASSERT_RTNL();
5006
5007 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5008 /* Some devices call without registering
5009 * for initialization unwind. Remove those
5010 * devices and proceed with the remaining.
5011 */
5012 if (dev->reg_state == NETREG_UNINITIALIZED) {
5013 pr_debug("unregister_netdevice: device %s/%p never "
5014 "was registered\n", dev->name, dev);
5015
5016 WARN_ON(1);
5017 list_del(&dev->unreg_list);
5018 continue;
5019 }
5020
5021 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5022 }
5023
5024 /* If device is running, close it first. */
5025 dev_close_many(head);
5026
5027 list_for_each_entry(dev, head, unreg_list) {
5028 /* And unlink it from device chain. */
5029 unlist_netdevice(dev);
5030
5031 dev->reg_state = NETREG_UNREGISTERING;
5032 }
5033
5034 synchronize_net();
5035
5036 list_for_each_entry(dev, head, unreg_list) {
5037 /* Shutdown queueing discipline. */
5038 dev_shutdown(dev);
5039
5040
5041 /* Notify protocols, that we are about to destroy
5042 this device. They should clean all the things.
5043 */
5044 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5045
5046 if (!dev->rtnl_link_ops ||
5047 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5048 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5049
5050 /*
5051 * Flush the unicast and multicast chains
5052 */
5053 dev_uc_flush(dev);
5054 dev_mc_flush(dev);
5055
5056 if (dev->netdev_ops->ndo_uninit)
5057 dev->netdev_ops->ndo_uninit(dev);
5058
5059 /* Notifier chain MUST detach us from master device. */
5060 WARN_ON(dev->master);
5061
5062 /* Remove entries from kobject tree */
5063 netdev_unregister_kobject(dev);
5064 }
5065
5066 /* Process any work delayed until the end of the batch */
5067 dev = list_first_entry(head, struct net_device, unreg_list);
5068 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5069
5070 rcu_barrier();
5071
5072 list_for_each_entry(dev, head, unreg_list)
5073 dev_put(dev);
5074 }
5075
5076 static void rollback_registered(struct net_device *dev)
5077 {
5078 LIST_HEAD(single);
5079
5080 list_add(&dev->unreg_list, &single);
5081 rollback_registered_many(&single);
5082 }
5083
5084 unsigned long netdev_fix_features(unsigned long features, const char *name)
5085 {
5086 /* Fix illegal SG+CSUM combinations. */
5087 if ((features & NETIF_F_SG) &&
5088 !(features & NETIF_F_ALL_CSUM)) {
5089 if (name)
5090 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5091 "checksum feature.\n", name);
5092 features &= ~NETIF_F_SG;
5093 }
5094
5095 /* TSO requires that SG is present as well. */
5096 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5097 if (name)
5098 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5099 "SG feature.\n", name);
5100 features &= ~NETIF_F_TSO;
5101 }
5102
5103 if (features & NETIF_F_UFO) {
5104 /* maybe split UFO into V4 and V6? */
5105 if (!((features & NETIF_F_GEN_CSUM) ||
5106 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5107 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5108 if (name)
5109 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5110 "since no checksum offload features.\n",
5111 name);
5112 features &= ~NETIF_F_UFO;
5113 }
5114
5115 if (!(features & NETIF_F_SG)) {
5116 if (name)
5117 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5118 "since no NETIF_F_SG feature.\n", name);
5119 features &= ~NETIF_F_UFO;
5120 }
5121 }
5122
5123 return features;
5124 }
5125 EXPORT_SYMBOL(netdev_fix_features);
5126
5127 /**
5128 * netif_stacked_transfer_operstate - transfer operstate
5129 * @rootdev: the root or lower level device to transfer state from
5130 * @dev: the device to transfer operstate to
5131 *
5132 * Transfer operational state from root to device. This is normally
5133 * called when a stacking relationship exists between the root
5134 * device and the device(a leaf device).
5135 */
5136 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5137 struct net_device *dev)
5138 {
5139 if (rootdev->operstate == IF_OPER_DORMANT)
5140 netif_dormant_on(dev);
5141 else
5142 netif_dormant_off(dev);
5143
5144 if (netif_carrier_ok(rootdev)) {
5145 if (!netif_carrier_ok(dev))
5146 netif_carrier_on(dev);
5147 } else {
5148 if (netif_carrier_ok(dev))
5149 netif_carrier_off(dev);
5150 }
5151 }
5152 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5153
5154 #ifdef CONFIG_RPS
5155 static int netif_alloc_rx_queues(struct net_device *dev)
5156 {
5157 unsigned int i, count = dev->num_rx_queues;
5158 struct netdev_rx_queue *rx;
5159
5160 BUG_ON(count < 1);
5161
5162 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5163 if (!rx) {
5164 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5165 return -ENOMEM;
5166 }
5167 dev->_rx = rx;
5168
5169 for (i = 0; i < count; i++)
5170 rx[i].dev = dev;
5171 return 0;
5172 }
5173 #endif
5174
5175 static void netdev_init_one_queue(struct net_device *dev,
5176 struct netdev_queue *queue, void *_unused)
5177 {
5178 /* Initialize queue lock */
5179 spin_lock_init(&queue->_xmit_lock);
5180 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5181 queue->xmit_lock_owner = -1;
5182 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5183 queue->dev = dev;
5184 }
5185
5186 static int netif_alloc_netdev_queues(struct net_device *dev)
5187 {
5188 unsigned int count = dev->num_tx_queues;
5189 struct netdev_queue *tx;
5190
5191 BUG_ON(count < 1);
5192
5193 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5194 if (!tx) {
5195 pr_err("netdev: Unable to allocate %u tx queues.\n",
5196 count);
5197 return -ENOMEM;
5198 }
5199 dev->_tx = tx;
5200
5201 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5202 spin_lock_init(&dev->tx_global_lock);
5203
5204 return 0;
5205 }
5206
5207 /**
5208 * register_netdevice - register a network device
5209 * @dev: device to register
5210 *
5211 * Take a completed network device structure and add it to the kernel
5212 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5213 * chain. 0 is returned on success. A negative errno code is returned
5214 * on a failure to set up the device, or if the name is a duplicate.
5215 *
5216 * Callers must hold the rtnl semaphore. You may want
5217 * register_netdev() instead of this.
5218 *
5219 * BUGS:
5220 * The locking appears insufficient to guarantee two parallel registers
5221 * will not get the same name.
5222 */
5223
5224 int register_netdevice(struct net_device *dev)
5225 {
5226 int ret;
5227 struct net *net = dev_net(dev);
5228
5229 BUG_ON(dev_boot_phase);
5230 ASSERT_RTNL();
5231
5232 might_sleep();
5233
5234 /* When net_device's are persistent, this will be fatal. */
5235 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5236 BUG_ON(!net);
5237
5238 spin_lock_init(&dev->addr_list_lock);
5239 netdev_set_addr_lockdep_class(dev);
5240
5241 dev->iflink = -1;
5242
5243 /* Init, if this function is available */
5244 if (dev->netdev_ops->ndo_init) {
5245 ret = dev->netdev_ops->ndo_init(dev);
5246 if (ret) {
5247 if (ret > 0)
5248 ret = -EIO;
5249 goto out;
5250 }
5251 }
5252
5253 ret = dev_get_valid_name(dev, dev->name, 0);
5254 if (ret)
5255 goto err_uninit;
5256
5257 dev->ifindex = dev_new_index(net);
5258 if (dev->iflink == -1)
5259 dev->iflink = dev->ifindex;
5260
5261 /* Fix illegal checksum combinations */
5262 if ((dev->features & NETIF_F_HW_CSUM) &&
5263 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5264 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5265 dev->name);
5266 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5267 }
5268
5269 if ((dev->features & NETIF_F_NO_CSUM) &&
5270 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5271 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5272 dev->name);
5273 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5274 }
5275
5276 dev->features = netdev_fix_features(dev->features, dev->name);
5277
5278 /* Enable software GSO if SG is supported. */
5279 if (dev->features & NETIF_F_SG)
5280 dev->features |= NETIF_F_GSO;
5281
5282 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5283 * vlan_dev_init() will do the dev->features check, so these features
5284 * are enabled only if supported by underlying device.
5285 */
5286 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5287
5288 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5289 ret = notifier_to_errno(ret);
5290 if (ret)
5291 goto err_uninit;
5292
5293 ret = netdev_register_kobject(dev);
5294 if (ret)
5295 goto err_uninit;
5296 dev->reg_state = NETREG_REGISTERED;
5297
5298 /*
5299 * Default initial state at registry is that the
5300 * device is present.
5301 */
5302
5303 set_bit(__LINK_STATE_PRESENT, &dev->state);
5304
5305 dev_init_scheduler(dev);
5306 dev_hold(dev);
5307 list_netdevice(dev);
5308
5309 /* Notify protocols, that a new device appeared. */
5310 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5311 ret = notifier_to_errno(ret);
5312 if (ret) {
5313 rollback_registered(dev);
5314 dev->reg_state = NETREG_UNREGISTERED;
5315 }
5316 /*
5317 * Prevent userspace races by waiting until the network
5318 * device is fully setup before sending notifications.
5319 */
5320 if (!dev->rtnl_link_ops ||
5321 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5322 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5323
5324 out:
5325 return ret;
5326
5327 err_uninit:
5328 if (dev->netdev_ops->ndo_uninit)
5329 dev->netdev_ops->ndo_uninit(dev);
5330 goto out;
5331 }
5332 EXPORT_SYMBOL(register_netdevice);
5333
5334 /**
5335 * init_dummy_netdev - init a dummy network device for NAPI
5336 * @dev: device to init
5337 *
5338 * This takes a network device structure and initialize the minimum
5339 * amount of fields so it can be used to schedule NAPI polls without
5340 * registering a full blown interface. This is to be used by drivers
5341 * that need to tie several hardware interfaces to a single NAPI
5342 * poll scheduler due to HW limitations.
5343 */
5344 int init_dummy_netdev(struct net_device *dev)
5345 {
5346 /* Clear everything. Note we don't initialize spinlocks
5347 * are they aren't supposed to be taken by any of the
5348 * NAPI code and this dummy netdev is supposed to be
5349 * only ever used for NAPI polls
5350 */
5351 memset(dev, 0, sizeof(struct net_device));
5352
5353 /* make sure we BUG if trying to hit standard
5354 * register/unregister code path
5355 */
5356 dev->reg_state = NETREG_DUMMY;
5357
5358 /* NAPI wants this */
5359 INIT_LIST_HEAD(&dev->napi_list);
5360
5361 /* a dummy interface is started by default */
5362 set_bit(__LINK_STATE_PRESENT, &dev->state);
5363 set_bit(__LINK_STATE_START, &dev->state);
5364
5365 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5366 * because users of this 'device' dont need to change
5367 * its refcount.
5368 */
5369
5370 return 0;
5371 }
5372 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5373
5374
5375 /**
5376 * register_netdev - register a network device
5377 * @dev: device to register
5378 *
5379 * Take a completed network device structure and add it to the kernel
5380 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5381 * chain. 0 is returned on success. A negative errno code is returned
5382 * on a failure to set up the device, or if the name is a duplicate.
5383 *
5384 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5385 * and expands the device name if you passed a format string to
5386 * alloc_netdev.
5387 */
5388 int register_netdev(struct net_device *dev)
5389 {
5390 int err;
5391
5392 rtnl_lock();
5393
5394 /*
5395 * If the name is a format string the caller wants us to do a
5396 * name allocation.
5397 */
5398 if (strchr(dev->name, '%')) {
5399 err = dev_alloc_name(dev, dev->name);
5400 if (err < 0)
5401 goto out;
5402 }
5403
5404 err = register_netdevice(dev);
5405 out:
5406 rtnl_unlock();
5407 return err;
5408 }
5409 EXPORT_SYMBOL(register_netdev);
5410
5411 int netdev_refcnt_read(const struct net_device *dev)
5412 {
5413 int i, refcnt = 0;
5414
5415 for_each_possible_cpu(i)
5416 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5417 return refcnt;
5418 }
5419 EXPORT_SYMBOL(netdev_refcnt_read);
5420
5421 /*
5422 * netdev_wait_allrefs - wait until all references are gone.
5423 *
5424 * This is called when unregistering network devices.
5425 *
5426 * Any protocol or device that holds a reference should register
5427 * for netdevice notification, and cleanup and put back the
5428 * reference if they receive an UNREGISTER event.
5429 * We can get stuck here if buggy protocols don't correctly
5430 * call dev_put.
5431 */
5432 static void netdev_wait_allrefs(struct net_device *dev)
5433 {
5434 unsigned long rebroadcast_time, warning_time;
5435 int refcnt;
5436
5437 linkwatch_forget_dev(dev);
5438
5439 rebroadcast_time = warning_time = jiffies;
5440 refcnt = netdev_refcnt_read(dev);
5441
5442 while (refcnt != 0) {
5443 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5444 rtnl_lock();
5445
5446 /* Rebroadcast unregister notification */
5447 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5448 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5449 * should have already handle it the first time */
5450
5451 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5452 &dev->state)) {
5453 /* We must not have linkwatch events
5454 * pending on unregister. If this
5455 * happens, we simply run the queue
5456 * unscheduled, resulting in a noop
5457 * for this device.
5458 */
5459 linkwatch_run_queue();
5460 }
5461
5462 __rtnl_unlock();
5463
5464 rebroadcast_time = jiffies;
5465 }
5466
5467 msleep(250);
5468
5469 refcnt = netdev_refcnt_read(dev);
5470
5471 if (time_after(jiffies, warning_time + 10 * HZ)) {
5472 printk(KERN_EMERG "unregister_netdevice: "
5473 "waiting for %s to become free. Usage "
5474 "count = %d\n",
5475 dev->name, refcnt);
5476 warning_time = jiffies;
5477 }
5478 }
5479 }
5480
5481 /* The sequence is:
5482 *
5483 * rtnl_lock();
5484 * ...
5485 * register_netdevice(x1);
5486 * register_netdevice(x2);
5487 * ...
5488 * unregister_netdevice(y1);
5489 * unregister_netdevice(y2);
5490 * ...
5491 * rtnl_unlock();
5492 * free_netdev(y1);
5493 * free_netdev(y2);
5494 *
5495 * We are invoked by rtnl_unlock().
5496 * This allows us to deal with problems:
5497 * 1) We can delete sysfs objects which invoke hotplug
5498 * without deadlocking with linkwatch via keventd.
5499 * 2) Since we run with the RTNL semaphore not held, we can sleep
5500 * safely in order to wait for the netdev refcnt to drop to zero.
5501 *
5502 * We must not return until all unregister events added during
5503 * the interval the lock was held have been completed.
5504 */
5505 void netdev_run_todo(void)
5506 {
5507 struct list_head list;
5508
5509 /* Snapshot list, allow later requests */
5510 list_replace_init(&net_todo_list, &list);
5511
5512 __rtnl_unlock();
5513
5514 while (!list_empty(&list)) {
5515 struct net_device *dev
5516 = list_first_entry(&list, struct net_device, todo_list);
5517 list_del(&dev->todo_list);
5518
5519 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5520 printk(KERN_ERR "network todo '%s' but state %d\n",
5521 dev->name, dev->reg_state);
5522 dump_stack();
5523 continue;
5524 }
5525
5526 dev->reg_state = NETREG_UNREGISTERED;
5527
5528 on_each_cpu(flush_backlog, dev, 1);
5529
5530 netdev_wait_allrefs(dev);
5531
5532 /* paranoia */
5533 BUG_ON(netdev_refcnt_read(dev));
5534 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5535 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5536 WARN_ON(dev->dn_ptr);
5537
5538 if (dev->destructor)
5539 dev->destructor(dev);
5540
5541 /* Free network device */
5542 kobject_put(&dev->dev.kobj);
5543 }
5544 }
5545
5546 /**
5547 * dev_txq_stats_fold - fold tx_queues stats
5548 * @dev: device to get statistics from
5549 * @stats: struct rtnl_link_stats64 to hold results
5550 */
5551 void dev_txq_stats_fold(const struct net_device *dev,
5552 struct rtnl_link_stats64 *stats)
5553 {
5554 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5555 unsigned int i;
5556 struct netdev_queue *txq;
5557
5558 for (i = 0; i < dev->num_tx_queues; i++) {
5559 txq = netdev_get_tx_queue(dev, i);
5560 spin_lock_bh(&txq->_xmit_lock);
5561 tx_bytes += txq->tx_bytes;
5562 tx_packets += txq->tx_packets;
5563 tx_dropped += txq->tx_dropped;
5564 spin_unlock_bh(&txq->_xmit_lock);
5565 }
5566 if (tx_bytes || tx_packets || tx_dropped) {
5567 stats->tx_bytes = tx_bytes;
5568 stats->tx_packets = tx_packets;
5569 stats->tx_dropped = tx_dropped;
5570 }
5571 }
5572 EXPORT_SYMBOL(dev_txq_stats_fold);
5573
5574 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5575 * fields in the same order, with only the type differing.
5576 */
5577 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5578 const struct net_device_stats *netdev_stats)
5579 {
5580 #if BITS_PER_LONG == 64
5581 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5582 memcpy(stats64, netdev_stats, sizeof(*stats64));
5583 #else
5584 size_t i, n = sizeof(*stats64) / sizeof(u64);
5585 const unsigned long *src = (const unsigned long *)netdev_stats;
5586 u64 *dst = (u64 *)stats64;
5587
5588 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5589 sizeof(*stats64) / sizeof(u64));
5590 for (i = 0; i < n; i++)
5591 dst[i] = src[i];
5592 #endif
5593 }
5594
5595 /**
5596 * dev_get_stats - get network device statistics
5597 * @dev: device to get statistics from
5598 * @storage: place to store stats
5599 *
5600 * Get network statistics from device. Return @storage.
5601 * The device driver may provide its own method by setting
5602 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5603 * otherwise the internal statistics structure is used.
5604 */
5605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5606 struct rtnl_link_stats64 *storage)
5607 {
5608 const struct net_device_ops *ops = dev->netdev_ops;
5609
5610 if (ops->ndo_get_stats64) {
5611 memset(storage, 0, sizeof(*storage));
5612 ops->ndo_get_stats64(dev, storage);
5613 } else if (ops->ndo_get_stats) {
5614 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5615 } else {
5616 netdev_stats_to_stats64(storage, &dev->stats);
5617 dev_txq_stats_fold(dev, storage);
5618 }
5619 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5620 return storage;
5621 }
5622 EXPORT_SYMBOL(dev_get_stats);
5623
5624 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5625 {
5626 struct netdev_queue *queue = dev_ingress_queue(dev);
5627
5628 #ifdef CONFIG_NET_CLS_ACT
5629 if (queue)
5630 return queue;
5631 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5632 if (!queue)
5633 return NULL;
5634 netdev_init_one_queue(dev, queue, NULL);
5635 queue->qdisc = &noop_qdisc;
5636 queue->qdisc_sleeping = &noop_qdisc;
5637 rcu_assign_pointer(dev->ingress_queue, queue);
5638 #endif
5639 return queue;
5640 }
5641
5642 /**
5643 * alloc_netdev_mq - allocate network device
5644 * @sizeof_priv: size of private data to allocate space for
5645 * @name: device name format string
5646 * @setup: callback to initialize device
5647 * @queue_count: the number of subqueues to allocate
5648 *
5649 * Allocates a struct net_device with private data area for driver use
5650 * and performs basic initialization. Also allocates subquue structs
5651 * for each queue on the device at the end of the netdevice.
5652 */
5653 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5654 void (*setup)(struct net_device *), unsigned int queue_count)
5655 {
5656 struct net_device *dev;
5657 size_t alloc_size;
5658 struct net_device *p;
5659
5660 BUG_ON(strlen(name) >= sizeof(dev->name));
5661
5662 if (queue_count < 1) {
5663 pr_err("alloc_netdev: Unable to allocate device "
5664 "with zero queues.\n");
5665 return NULL;
5666 }
5667
5668 alloc_size = sizeof(struct net_device);
5669 if (sizeof_priv) {
5670 /* ensure 32-byte alignment of private area */
5671 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5672 alloc_size += sizeof_priv;
5673 }
5674 /* ensure 32-byte alignment of whole construct */
5675 alloc_size += NETDEV_ALIGN - 1;
5676
5677 p = kzalloc(alloc_size, GFP_KERNEL);
5678 if (!p) {
5679 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5680 return NULL;
5681 }
5682
5683 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5684 dev->padded = (char *)dev - (char *)p;
5685
5686 dev->pcpu_refcnt = alloc_percpu(int);
5687 if (!dev->pcpu_refcnt)
5688 goto free_p;
5689
5690 if (dev_addr_init(dev))
5691 goto free_pcpu;
5692
5693 dev_mc_init(dev);
5694 dev_uc_init(dev);
5695
5696 dev_net_set(dev, &init_net);
5697
5698 dev->num_tx_queues = queue_count;
5699 dev->real_num_tx_queues = queue_count;
5700 if (netif_alloc_netdev_queues(dev))
5701 goto free_pcpu;
5702
5703 #ifdef CONFIG_RPS
5704 dev->num_rx_queues = queue_count;
5705 dev->real_num_rx_queues = queue_count;
5706 if (netif_alloc_rx_queues(dev))
5707 goto free_pcpu;
5708 #endif
5709
5710 dev->gso_max_size = GSO_MAX_SIZE;
5711
5712 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5713 dev->ethtool_ntuple_list.count = 0;
5714 INIT_LIST_HEAD(&dev->napi_list);
5715 INIT_LIST_HEAD(&dev->unreg_list);
5716 INIT_LIST_HEAD(&dev->link_watch_list);
5717 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5718 setup(dev);
5719 strcpy(dev->name, name);
5720 return dev;
5721
5722 free_pcpu:
5723 free_percpu(dev->pcpu_refcnt);
5724 kfree(dev->_tx);
5725 #ifdef CONFIG_RPS
5726 kfree(dev->_rx);
5727 #endif
5728
5729 free_p:
5730 kfree(p);
5731 return NULL;
5732 }
5733 EXPORT_SYMBOL(alloc_netdev_mq);
5734
5735 /**
5736 * free_netdev - free network device
5737 * @dev: device
5738 *
5739 * This function does the last stage of destroying an allocated device
5740 * interface. The reference to the device object is released.
5741 * If this is the last reference then it will be freed.
5742 */
5743 void free_netdev(struct net_device *dev)
5744 {
5745 struct napi_struct *p, *n;
5746
5747 release_net(dev_net(dev));
5748
5749 kfree(dev->_tx);
5750 #ifdef CONFIG_RPS
5751 kfree(dev->_rx);
5752 #endif
5753
5754 kfree(rcu_dereference_raw(dev->ingress_queue));
5755
5756 /* Flush device addresses */
5757 dev_addr_flush(dev);
5758
5759 /* Clear ethtool n-tuple list */
5760 ethtool_ntuple_flush(dev);
5761
5762 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5763 netif_napi_del(p);
5764
5765 free_percpu(dev->pcpu_refcnt);
5766 dev->pcpu_refcnt = NULL;
5767
5768 /* Compatibility with error handling in drivers */
5769 if (dev->reg_state == NETREG_UNINITIALIZED) {
5770 kfree((char *)dev - dev->padded);
5771 return;
5772 }
5773
5774 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5775 dev->reg_state = NETREG_RELEASED;
5776
5777 /* will free via device release */
5778 put_device(&dev->dev);
5779 }
5780 EXPORT_SYMBOL(free_netdev);
5781
5782 /**
5783 * synchronize_net - Synchronize with packet receive processing
5784 *
5785 * Wait for packets currently being received to be done.
5786 * Does not block later packets from starting.
5787 */
5788 void synchronize_net(void)
5789 {
5790 might_sleep();
5791 synchronize_rcu();
5792 }
5793 EXPORT_SYMBOL(synchronize_net);
5794
5795 /**
5796 * unregister_netdevice_queue - remove device from the kernel
5797 * @dev: device
5798 * @head: list
5799 *
5800 * This function shuts down a device interface and removes it
5801 * from the kernel tables.
5802 * If head not NULL, device is queued to be unregistered later.
5803 *
5804 * Callers must hold the rtnl semaphore. You may want
5805 * unregister_netdev() instead of this.
5806 */
5807
5808 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5809 {
5810 ASSERT_RTNL();
5811
5812 if (head) {
5813 list_move_tail(&dev->unreg_list, head);
5814 } else {
5815 rollback_registered(dev);
5816 /* Finish processing unregister after unlock */
5817 net_set_todo(dev);
5818 }
5819 }
5820 EXPORT_SYMBOL(unregister_netdevice_queue);
5821
5822 /**
5823 * unregister_netdevice_many - unregister many devices
5824 * @head: list of devices
5825 */
5826 void unregister_netdevice_many(struct list_head *head)
5827 {
5828 struct net_device *dev;
5829
5830 if (!list_empty(head)) {
5831 rollback_registered_many(head);
5832 list_for_each_entry(dev, head, unreg_list)
5833 net_set_todo(dev);
5834 }
5835 }
5836 EXPORT_SYMBOL(unregister_netdevice_many);
5837
5838 /**
5839 * unregister_netdev - remove device from the kernel
5840 * @dev: device
5841 *
5842 * This function shuts down a device interface and removes it
5843 * from the kernel tables.
5844 *
5845 * This is just a wrapper for unregister_netdevice that takes
5846 * the rtnl semaphore. In general you want to use this and not
5847 * unregister_netdevice.
5848 */
5849 void unregister_netdev(struct net_device *dev)
5850 {
5851 rtnl_lock();
5852 unregister_netdevice(dev);
5853 rtnl_unlock();
5854 }
5855 EXPORT_SYMBOL(unregister_netdev);
5856
5857 /**
5858 * dev_change_net_namespace - move device to different nethost namespace
5859 * @dev: device
5860 * @net: network namespace
5861 * @pat: If not NULL name pattern to try if the current device name
5862 * is already taken in the destination network namespace.
5863 *
5864 * This function shuts down a device interface and moves it
5865 * to a new network namespace. On success 0 is returned, on
5866 * a failure a netagive errno code is returned.
5867 *
5868 * Callers must hold the rtnl semaphore.
5869 */
5870
5871 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5872 {
5873 int err;
5874
5875 ASSERT_RTNL();
5876
5877 /* Don't allow namespace local devices to be moved. */
5878 err = -EINVAL;
5879 if (dev->features & NETIF_F_NETNS_LOCAL)
5880 goto out;
5881
5882 /* Ensure the device has been registrered */
5883 err = -EINVAL;
5884 if (dev->reg_state != NETREG_REGISTERED)
5885 goto out;
5886
5887 /* Get out if there is nothing todo */
5888 err = 0;
5889 if (net_eq(dev_net(dev), net))
5890 goto out;
5891
5892 /* Pick the destination device name, and ensure
5893 * we can use it in the destination network namespace.
5894 */
5895 err = -EEXIST;
5896 if (__dev_get_by_name(net, dev->name)) {
5897 /* We get here if we can't use the current device name */
5898 if (!pat)
5899 goto out;
5900 if (dev_get_valid_name(dev, pat, 1))
5901 goto out;
5902 }
5903
5904 /*
5905 * And now a mini version of register_netdevice unregister_netdevice.
5906 */
5907
5908 /* If device is running close it first. */
5909 dev_close(dev);
5910
5911 /* And unlink it from device chain */
5912 err = -ENODEV;
5913 unlist_netdevice(dev);
5914
5915 synchronize_net();
5916
5917 /* Shutdown queueing discipline. */
5918 dev_shutdown(dev);
5919
5920 /* Notify protocols, that we are about to destroy
5921 this device. They should clean all the things.
5922
5923 Note that dev->reg_state stays at NETREG_REGISTERED.
5924 This is wanted because this way 8021q and macvlan know
5925 the device is just moving and can keep their slaves up.
5926 */
5927 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5928 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5929
5930 /*
5931 * Flush the unicast and multicast chains
5932 */
5933 dev_uc_flush(dev);
5934 dev_mc_flush(dev);
5935
5936 /* Actually switch the network namespace */
5937 dev_net_set(dev, net);
5938
5939 /* If there is an ifindex conflict assign a new one */
5940 if (__dev_get_by_index(net, dev->ifindex)) {
5941 int iflink = (dev->iflink == dev->ifindex);
5942 dev->ifindex = dev_new_index(net);
5943 if (iflink)
5944 dev->iflink = dev->ifindex;
5945 }
5946
5947 /* Fixup kobjects */
5948 err = device_rename(&dev->dev, dev->name);
5949 WARN_ON(err);
5950
5951 /* Add the device back in the hashes */
5952 list_netdevice(dev);
5953
5954 /* Notify protocols, that a new device appeared. */
5955 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5956
5957 /*
5958 * Prevent userspace races by waiting until the network
5959 * device is fully setup before sending notifications.
5960 */
5961 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5962
5963 synchronize_net();
5964 err = 0;
5965 out:
5966 return err;
5967 }
5968 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5969
5970 static int dev_cpu_callback(struct notifier_block *nfb,
5971 unsigned long action,
5972 void *ocpu)
5973 {
5974 struct sk_buff **list_skb;
5975 struct sk_buff *skb;
5976 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5977 struct softnet_data *sd, *oldsd;
5978
5979 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5980 return NOTIFY_OK;
5981
5982 local_irq_disable();
5983 cpu = smp_processor_id();
5984 sd = &per_cpu(softnet_data, cpu);
5985 oldsd = &per_cpu(softnet_data, oldcpu);
5986
5987 /* Find end of our completion_queue. */
5988 list_skb = &sd->completion_queue;
5989 while (*list_skb)
5990 list_skb = &(*list_skb)->next;
5991 /* Append completion queue from offline CPU. */
5992 *list_skb = oldsd->completion_queue;
5993 oldsd->completion_queue = NULL;
5994
5995 /* Append output queue from offline CPU. */
5996 if (oldsd->output_queue) {
5997 *sd->output_queue_tailp = oldsd->output_queue;
5998 sd->output_queue_tailp = oldsd->output_queue_tailp;
5999 oldsd->output_queue = NULL;
6000 oldsd->output_queue_tailp = &oldsd->output_queue;
6001 }
6002
6003 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6004 local_irq_enable();
6005
6006 /* Process offline CPU's input_pkt_queue */
6007 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6008 netif_rx(skb);
6009 input_queue_head_incr(oldsd);
6010 }
6011 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6012 netif_rx(skb);
6013 input_queue_head_incr(oldsd);
6014 }
6015
6016 return NOTIFY_OK;
6017 }
6018
6019
6020 /**
6021 * netdev_increment_features - increment feature set by one
6022 * @all: current feature set
6023 * @one: new feature set
6024 * @mask: mask feature set
6025 *
6026 * Computes a new feature set after adding a device with feature set
6027 * @one to the master device with current feature set @all. Will not
6028 * enable anything that is off in @mask. Returns the new feature set.
6029 */
6030 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6031 unsigned long mask)
6032 {
6033 /* If device needs checksumming, downgrade to it. */
6034 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6035 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6036 else if (mask & NETIF_F_ALL_CSUM) {
6037 /* If one device supports v4/v6 checksumming, set for all. */
6038 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6039 !(all & NETIF_F_GEN_CSUM)) {
6040 all &= ~NETIF_F_ALL_CSUM;
6041 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6042 }
6043
6044 /* If one device supports hw checksumming, set for all. */
6045 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6046 all &= ~NETIF_F_ALL_CSUM;
6047 all |= NETIF_F_HW_CSUM;
6048 }
6049 }
6050
6051 one |= NETIF_F_ALL_CSUM;
6052
6053 one |= all & NETIF_F_ONE_FOR_ALL;
6054 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6055 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6056
6057 return all;
6058 }
6059 EXPORT_SYMBOL(netdev_increment_features);
6060
6061 static struct hlist_head *netdev_create_hash(void)
6062 {
6063 int i;
6064 struct hlist_head *hash;
6065
6066 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6067 if (hash != NULL)
6068 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6069 INIT_HLIST_HEAD(&hash[i]);
6070
6071 return hash;
6072 }
6073
6074 /* Initialize per network namespace state */
6075 static int __net_init netdev_init(struct net *net)
6076 {
6077 INIT_LIST_HEAD(&net->dev_base_head);
6078
6079 net->dev_name_head = netdev_create_hash();
6080 if (net->dev_name_head == NULL)
6081 goto err_name;
6082
6083 net->dev_index_head = netdev_create_hash();
6084 if (net->dev_index_head == NULL)
6085 goto err_idx;
6086
6087 return 0;
6088
6089 err_idx:
6090 kfree(net->dev_name_head);
6091 err_name:
6092 return -ENOMEM;
6093 }
6094
6095 /**
6096 * netdev_drivername - network driver for the device
6097 * @dev: network device
6098 * @buffer: buffer for resulting name
6099 * @len: size of buffer
6100 *
6101 * Determine network driver for device.
6102 */
6103 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6104 {
6105 const struct device_driver *driver;
6106 const struct device *parent;
6107
6108 if (len <= 0 || !buffer)
6109 return buffer;
6110 buffer[0] = 0;
6111
6112 parent = dev->dev.parent;
6113
6114 if (!parent)
6115 return buffer;
6116
6117 driver = parent->driver;
6118 if (driver && driver->name)
6119 strlcpy(buffer, driver->name, len);
6120 return buffer;
6121 }
6122
6123 static int __netdev_printk(const char *level, const struct net_device *dev,
6124 struct va_format *vaf)
6125 {
6126 int r;
6127
6128 if (dev && dev->dev.parent)
6129 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6130 netdev_name(dev), vaf);
6131 else if (dev)
6132 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6133 else
6134 r = printk("%s(NULL net_device): %pV", level, vaf);
6135
6136 return r;
6137 }
6138
6139 int netdev_printk(const char *level, const struct net_device *dev,
6140 const char *format, ...)
6141 {
6142 struct va_format vaf;
6143 va_list args;
6144 int r;
6145
6146 va_start(args, format);
6147
6148 vaf.fmt = format;
6149 vaf.va = &args;
6150
6151 r = __netdev_printk(level, dev, &vaf);
6152 va_end(args);
6153
6154 return r;
6155 }
6156 EXPORT_SYMBOL(netdev_printk);
6157
6158 #define define_netdev_printk_level(func, level) \
6159 int func(const struct net_device *dev, const char *fmt, ...) \
6160 { \
6161 int r; \
6162 struct va_format vaf; \
6163 va_list args; \
6164 \
6165 va_start(args, fmt); \
6166 \
6167 vaf.fmt = fmt; \
6168 vaf.va = &args; \
6169 \
6170 r = __netdev_printk(level, dev, &vaf); \
6171 va_end(args); \
6172 \
6173 return r; \
6174 } \
6175 EXPORT_SYMBOL(func);
6176
6177 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6178 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6179 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6180 define_netdev_printk_level(netdev_err, KERN_ERR);
6181 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6182 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6183 define_netdev_printk_level(netdev_info, KERN_INFO);
6184
6185 static void __net_exit netdev_exit(struct net *net)
6186 {
6187 kfree(net->dev_name_head);
6188 kfree(net->dev_index_head);
6189 }
6190
6191 static struct pernet_operations __net_initdata netdev_net_ops = {
6192 .init = netdev_init,
6193 .exit = netdev_exit,
6194 };
6195
6196 static void __net_exit default_device_exit(struct net *net)
6197 {
6198 struct net_device *dev, *aux;
6199 /*
6200 * Push all migratable network devices back to the
6201 * initial network namespace
6202 */
6203 rtnl_lock();
6204 for_each_netdev_safe(net, dev, aux) {
6205 int err;
6206 char fb_name[IFNAMSIZ];
6207
6208 /* Ignore unmoveable devices (i.e. loopback) */
6209 if (dev->features & NETIF_F_NETNS_LOCAL)
6210 continue;
6211
6212 /* Leave virtual devices for the generic cleanup */
6213 if (dev->rtnl_link_ops)
6214 continue;
6215
6216 /* Push remaing network devices to init_net */
6217 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6218 err = dev_change_net_namespace(dev, &init_net, fb_name);
6219 if (err) {
6220 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6221 __func__, dev->name, err);
6222 BUG();
6223 }
6224 }
6225 rtnl_unlock();
6226 }
6227
6228 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6229 {
6230 /* At exit all network devices most be removed from a network
6231 * namespace. Do this in the reverse order of registeration.
6232 * Do this across as many network namespaces as possible to
6233 * improve batching efficiency.
6234 */
6235 struct net_device *dev;
6236 struct net *net;
6237 LIST_HEAD(dev_kill_list);
6238
6239 rtnl_lock();
6240 list_for_each_entry(net, net_list, exit_list) {
6241 for_each_netdev_reverse(net, dev) {
6242 if (dev->rtnl_link_ops)
6243 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6244 else
6245 unregister_netdevice_queue(dev, &dev_kill_list);
6246 }
6247 }
6248 unregister_netdevice_many(&dev_kill_list);
6249 rtnl_unlock();
6250 }
6251
6252 static struct pernet_operations __net_initdata default_device_ops = {
6253 .exit = default_device_exit,
6254 .exit_batch = default_device_exit_batch,
6255 };
6256
6257 /*
6258 * Initialize the DEV module. At boot time this walks the device list and
6259 * unhooks any devices that fail to initialise (normally hardware not
6260 * present) and leaves us with a valid list of present and active devices.
6261 *
6262 */
6263
6264 /*
6265 * This is called single threaded during boot, so no need
6266 * to take the rtnl semaphore.
6267 */
6268 static int __init net_dev_init(void)
6269 {
6270 int i, rc = -ENOMEM;
6271
6272 BUG_ON(!dev_boot_phase);
6273
6274 if (dev_proc_init())
6275 goto out;
6276
6277 if (netdev_kobject_init())
6278 goto out;
6279
6280 INIT_LIST_HEAD(&ptype_all);
6281 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6282 INIT_LIST_HEAD(&ptype_base[i]);
6283
6284 if (register_pernet_subsys(&netdev_net_ops))
6285 goto out;
6286
6287 /*
6288 * Initialise the packet receive queues.
6289 */
6290
6291 for_each_possible_cpu(i) {
6292 struct softnet_data *sd = &per_cpu(softnet_data, i);
6293
6294 memset(sd, 0, sizeof(*sd));
6295 skb_queue_head_init(&sd->input_pkt_queue);
6296 skb_queue_head_init(&sd->process_queue);
6297 sd->completion_queue = NULL;
6298 INIT_LIST_HEAD(&sd->poll_list);
6299 sd->output_queue = NULL;
6300 sd->output_queue_tailp = &sd->output_queue;
6301 #ifdef CONFIG_RPS
6302 sd->csd.func = rps_trigger_softirq;
6303 sd->csd.info = sd;
6304 sd->csd.flags = 0;
6305 sd->cpu = i;
6306 #endif
6307
6308 sd->backlog.poll = process_backlog;
6309 sd->backlog.weight = weight_p;
6310 sd->backlog.gro_list = NULL;
6311 sd->backlog.gro_count = 0;
6312 }
6313
6314 dev_boot_phase = 0;
6315
6316 /* The loopback device is special if any other network devices
6317 * is present in a network namespace the loopback device must
6318 * be present. Since we now dynamically allocate and free the
6319 * loopback device ensure this invariant is maintained by
6320 * keeping the loopback device as the first device on the
6321 * list of network devices. Ensuring the loopback devices
6322 * is the first device that appears and the last network device
6323 * that disappears.
6324 */
6325 if (register_pernet_device(&loopback_net_ops))
6326 goto out;
6327
6328 if (register_pernet_device(&default_device_ops))
6329 goto out;
6330
6331 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6332 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6333
6334 hotcpu_notifier(dev_cpu_callback, 0);
6335 dst_init();
6336 dev_mcast_init();
6337 rc = 0;
6338 out:
6339 return rc;
6340 }
6341
6342 subsys_initcall(net_dev_init);
6343
6344 static int __init initialize_hashrnd(void)
6345 {
6346 get_random_bytes(&hashrnd, sizeof(hashrnd));
6347 return 0;
6348 }
6349
6350 late_initcall_sync(initialize_hashrnd);
6351
This page took 0.159607 seconds and 5 git commands to generate.