ae75f25ac0a5d0af7b3f60a328a6f005d552b9f6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 /*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
175
176 /*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
211 {
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228 static void unlist_netdevice(struct net_device *dev)
229 {
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327 }
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331 {
332 }
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 }
336 #endif
337
338 /*******************************************************************************
339
340 Protocol management and registration routines
341
342 *******************************************************************************/
343
344 /*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360 /**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373 void dev_add_pack(struct packet_type *pt)
374 {
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385 }
386 EXPORT_SYMBOL(dev_add_pack);
387
388 /**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401 void __dev_remove_pack(struct packet_type *pt)
402 {
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446 /******************************************************************************
447
448 Device Boot-time Settings Routines
449
450 *******************************************************************************/
451
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455 /**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 {
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480 }
481
482 /**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491 int netdev_boot_setup_check(struct net_device *dev)
492 {
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511 /**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521 unsigned long netdev_boot_base(const char *prefix, int unit)
522 {
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540 }
541
542 /*
543 * Saves at boot time configured settings for any netdevice.
544 */
545 int __init netdev_boot_setup(char *str)
546 {
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567 }
568
569 __setup("netdev=", netdev_boot_setup);
570
571 /*******************************************************************************
572
573 Device Interface Subroutines
574
575 *******************************************************************************/
576
577 /**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 {
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600 }
601 EXPORT_SYMBOL(__dev_get_by_name);
602
603 /**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629 /**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 {
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651 }
652 EXPORT_SYMBOL(dev_get_by_name);
653
654 /**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_index);
679
680 /**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 {
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706 /**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_index);
729
730 /**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 {
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(dev_getbyhwaddr);
759
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786 /**
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
800 {
801 struct net_device *dev, *ret;
802
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
810 }
811 }
812 rcu_read_unlock();
813 return ret;
814 }
815 EXPORT_SYMBOL(dev_get_by_flags);
816
817 /**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
824 */
825 int dev_valid_name(const char *name)
826 {
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
840 }
841 EXPORT_SYMBOL(dev_valid_name);
842
843 /**
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859 {
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
880
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907 }
908
909 /**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923 int dev_alloc_name(struct net_device *dev, const char *name)
924 {
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935 }
936 EXPORT_SYMBOL(dev_alloc_name);
937
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940 {
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952 }
953
954 /**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
962 int dev_change_name(struct net_device *dev, const char *newname)
963 {
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
968
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
971
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
984
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
995 }
996
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1006
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1020 }
1021 }
1022
1023 return err;
1024 }
1025
1026 /**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1031 *
1032 * Set ifalias for a device,
1033 */
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035 {
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055 }
1056
1057
1058 /**
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064 void netdev_features_change(struct net_device *dev)
1065 {
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1067 }
1068 EXPORT_SYMBOL(netdev_features_change);
1069
1070 /**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078 void netdev_state_change(struct net_device *dev)
1079 {
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084 }
1085 EXPORT_SYMBOL(netdev_state_change);
1086
1087 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1088 {
1089 call_netdevice_notifiers(event, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_bonding_change);
1092
1093 /**
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
1103 void dev_load(struct net *net, const char *name)
1104 {
1105 struct net_device *dev;
1106
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1110
1111 if (!dev && capable(CAP_NET_ADMIN))
1112 request_module("%s", name);
1113 }
1114 EXPORT_SYMBOL(dev_load);
1115
1116 /**
1117 * dev_open - prepare an interface for use.
1118 * @dev: device to open
1119 *
1120 * Takes a device from down to up state. The device's private open
1121 * function is invoked and then the multicast lists are loaded. Finally
1122 * the device is moved into the up state and a %NETDEV_UP message is
1123 * sent to the netdev notifier chain.
1124 *
1125 * Calling this function on an active interface is a nop. On a failure
1126 * a negative errno code is returned.
1127 */
1128 int dev_open(struct net_device *dev)
1129 {
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it already up?
1137 */
1138
1139 if (dev->flags & IFF_UP)
1140 return 0;
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190
1191 /*
1192 * ... and announce new interface.
1193 */
1194 call_netdevice_notifiers(NETDEV_UP, dev);
1195 }
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 /**
1202 * dev_close - shutdown an interface.
1203 * @dev: device to shutdown
1204 *
1205 * This function moves an active device into down state. A
1206 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1207 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1208 * chain.
1209 */
1210 int dev_close(struct net_device *dev)
1211 {
1212 const struct net_device_ops *ops = dev->netdev_ops;
1213 ASSERT_RTNL();
1214
1215 might_sleep();
1216
1217 if (!(dev->flags & IFF_UP))
1218 return 0;
1219
1220 /*
1221 * Tell people we are going down, so that they can
1222 * prepare to death, when device is still operating.
1223 */
1224 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1225
1226 clear_bit(__LINK_STATE_START, &dev->state);
1227
1228 /* Synchronize to scheduled poll. We cannot touch poll list,
1229 * it can be even on different cpu. So just clear netif_running().
1230 *
1231 * dev->stop() will invoke napi_disable() on all of it's
1232 * napi_struct instances on this device.
1233 */
1234 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235
1236 dev_deactivate(dev);
1237
1238 /*
1239 * Call the device specific close. This cannot fail.
1240 * Only if device is UP
1241 *
1242 * We allow it to be called even after a DETACH hot-plug
1243 * event.
1244 */
1245 if (ops->ndo_stop)
1246 ops->ndo_stop(dev);
1247
1248 /*
1249 * Device is now down.
1250 */
1251
1252 dev->flags &= ~IFF_UP;
1253
1254 /*
1255 * Tell people we are down
1256 */
1257 call_netdevice_notifiers(NETDEV_DOWN, dev);
1258
1259 /*
1260 * Shutdown NET_DMA
1261 */
1262 net_dmaengine_put();
1263
1264 return 0;
1265 }
1266 EXPORT_SYMBOL(dev_close);
1267
1268
1269 /**
1270 * dev_disable_lro - disable Large Receive Offload on a device
1271 * @dev: device
1272 *
1273 * Disable Large Receive Offload (LRO) on a net device. Must be
1274 * called under RTNL. This is needed if received packets may be
1275 * forwarded to another interface.
1276 */
1277 void dev_disable_lro(struct net_device *dev)
1278 {
1279 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1280 dev->ethtool_ops->set_flags) {
1281 u32 flags = dev->ethtool_ops->get_flags(dev);
1282 if (flags & ETH_FLAG_LRO) {
1283 flags &= ~ETH_FLAG_LRO;
1284 dev->ethtool_ops->set_flags(dev, flags);
1285 }
1286 }
1287 WARN_ON(dev->features & NETIF_F_LRO);
1288 }
1289 EXPORT_SYMBOL(dev_disable_lro);
1290
1291
1292 static int dev_boot_phase = 1;
1293
1294 /*
1295 * Device change register/unregister. These are not inline or static
1296 * as we export them to the world.
1297 */
1298
1299 /**
1300 * register_netdevice_notifier - register a network notifier block
1301 * @nb: notifier
1302 *
1303 * Register a notifier to be called when network device events occur.
1304 * The notifier passed is linked into the kernel structures and must
1305 * not be reused until it has been unregistered. A negative errno code
1306 * is returned on a failure.
1307 *
1308 * When registered all registration and up events are replayed
1309 * to the new notifier to allow device to have a race free
1310 * view of the network device list.
1311 */
1312
1313 int register_netdevice_notifier(struct notifier_block *nb)
1314 {
1315 struct net_device *dev;
1316 struct net_device *last;
1317 struct net *net;
1318 int err;
1319
1320 rtnl_lock();
1321 err = raw_notifier_chain_register(&netdev_chain, nb);
1322 if (err)
1323 goto unlock;
1324 if (dev_boot_phase)
1325 goto unlock;
1326 for_each_net(net) {
1327 for_each_netdev(net, dev) {
1328 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1329 err = notifier_to_errno(err);
1330 if (err)
1331 goto rollback;
1332
1333 if (!(dev->flags & IFF_UP))
1334 continue;
1335
1336 nb->notifier_call(nb, NETDEV_UP, dev);
1337 }
1338 }
1339
1340 unlock:
1341 rtnl_unlock();
1342 return err;
1343
1344 rollback:
1345 last = dev;
1346 for_each_net(net) {
1347 for_each_netdev(net, dev) {
1348 if (dev == last)
1349 break;
1350
1351 if (dev->flags & IFF_UP) {
1352 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1353 nb->notifier_call(nb, NETDEV_DOWN, dev);
1354 }
1355 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1356 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1357 }
1358 }
1359
1360 raw_notifier_chain_unregister(&netdev_chain, nb);
1361 goto unlock;
1362 }
1363 EXPORT_SYMBOL(register_netdevice_notifier);
1364
1365 /**
1366 * unregister_netdevice_notifier - unregister a network notifier block
1367 * @nb: notifier
1368 *
1369 * Unregister a notifier previously registered by
1370 * register_netdevice_notifier(). The notifier is unlinked into the
1371 * kernel structures and may then be reused. A negative errno code
1372 * is returned on a failure.
1373 */
1374
1375 int unregister_netdevice_notifier(struct notifier_block *nb)
1376 {
1377 int err;
1378
1379 rtnl_lock();
1380 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1381 rtnl_unlock();
1382 return err;
1383 }
1384 EXPORT_SYMBOL(unregister_netdevice_notifier);
1385
1386 /**
1387 * call_netdevice_notifiers - call all network notifier blocks
1388 * @val: value passed unmodified to notifier function
1389 * @dev: net_device pointer passed unmodified to notifier function
1390 *
1391 * Call all network notifier blocks. Parameters and return value
1392 * are as for raw_notifier_call_chain().
1393 */
1394
1395 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1396 {
1397 return raw_notifier_call_chain(&netdev_chain, val, dev);
1398 }
1399
1400 /* When > 0 there are consumers of rx skb time stamps */
1401 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1402
1403 void net_enable_timestamp(void)
1404 {
1405 atomic_inc(&netstamp_needed);
1406 }
1407 EXPORT_SYMBOL(net_enable_timestamp);
1408
1409 void net_disable_timestamp(void)
1410 {
1411 atomic_dec(&netstamp_needed);
1412 }
1413 EXPORT_SYMBOL(net_disable_timestamp);
1414
1415 static inline void net_timestamp(struct sk_buff *skb)
1416 {
1417 if (atomic_read(&netstamp_needed))
1418 __net_timestamp(skb);
1419 else
1420 skb->tstamp.tv64 = 0;
1421 }
1422
1423 /**
1424 * dev_forward_skb - loopback an skb to another netif
1425 *
1426 * @dev: destination network device
1427 * @skb: buffer to forward
1428 *
1429 * return values:
1430 * NET_RX_SUCCESS (no congestion)
1431 * NET_RX_DROP (packet was dropped)
1432 *
1433 * dev_forward_skb can be used for injecting an skb from the
1434 * start_xmit function of one device into the receive queue
1435 * of another device.
1436 *
1437 * The receiving device may be in another namespace, so
1438 * we have to clear all information in the skb that could
1439 * impact namespace isolation.
1440 */
1441 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1442 {
1443 skb_orphan(skb);
1444
1445 if (!(dev->flags & IFF_UP))
1446 return NET_RX_DROP;
1447
1448 if (skb->len > (dev->mtu + dev->hard_header_len))
1449 return NET_RX_DROP;
1450
1451 skb_set_dev(skb, dev);
1452 skb->tstamp.tv64 = 0;
1453 skb->pkt_type = PACKET_HOST;
1454 skb->protocol = eth_type_trans(skb, dev);
1455 return netif_rx(skb);
1456 }
1457 EXPORT_SYMBOL_GPL(dev_forward_skb);
1458
1459 /*
1460 * Support routine. Sends outgoing frames to any network
1461 * taps currently in use.
1462 */
1463
1464 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1465 {
1466 struct packet_type *ptype;
1467
1468 #ifdef CONFIG_NET_CLS_ACT
1469 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1470 net_timestamp(skb);
1471 #else
1472 net_timestamp(skb);
1473 #endif
1474
1475 rcu_read_lock();
1476 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1477 /* Never send packets back to the socket
1478 * they originated from - MvS (miquels@drinkel.ow.org)
1479 */
1480 if ((ptype->dev == dev || !ptype->dev) &&
1481 (ptype->af_packet_priv == NULL ||
1482 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1483 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1484 if (!skb2)
1485 break;
1486
1487 /* skb->nh should be correctly
1488 set by sender, so that the second statement is
1489 just protection against buggy protocols.
1490 */
1491 skb_reset_mac_header(skb2);
1492
1493 if (skb_network_header(skb2) < skb2->data ||
1494 skb2->network_header > skb2->tail) {
1495 if (net_ratelimit())
1496 printk(KERN_CRIT "protocol %04x is "
1497 "buggy, dev %s\n",
1498 skb2->protocol, dev->name);
1499 skb_reset_network_header(skb2);
1500 }
1501
1502 skb2->transport_header = skb2->network_header;
1503 skb2->pkt_type = PACKET_OUTGOING;
1504 ptype->func(skb2, skb->dev, ptype, skb->dev);
1505 }
1506 }
1507 rcu_read_unlock();
1508 }
1509
1510
1511 static inline void __netif_reschedule(struct Qdisc *q)
1512 {
1513 struct softnet_data *sd;
1514 unsigned long flags;
1515
1516 local_irq_save(flags);
1517 sd = &__get_cpu_var(softnet_data);
1518 q->next_sched = sd->output_queue;
1519 sd->output_queue = q;
1520 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1521 local_irq_restore(flags);
1522 }
1523
1524 void __netif_schedule(struct Qdisc *q)
1525 {
1526 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1527 __netif_reschedule(q);
1528 }
1529 EXPORT_SYMBOL(__netif_schedule);
1530
1531 void dev_kfree_skb_irq(struct sk_buff *skb)
1532 {
1533 if (atomic_dec_and_test(&skb->users)) {
1534 struct softnet_data *sd;
1535 unsigned long flags;
1536
1537 local_irq_save(flags);
1538 sd = &__get_cpu_var(softnet_data);
1539 skb->next = sd->completion_queue;
1540 sd->completion_queue = skb;
1541 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1542 local_irq_restore(flags);
1543 }
1544 }
1545 EXPORT_SYMBOL(dev_kfree_skb_irq);
1546
1547 void dev_kfree_skb_any(struct sk_buff *skb)
1548 {
1549 if (in_irq() || irqs_disabled())
1550 dev_kfree_skb_irq(skb);
1551 else
1552 dev_kfree_skb(skb);
1553 }
1554 EXPORT_SYMBOL(dev_kfree_skb_any);
1555
1556
1557 /**
1558 * netif_device_detach - mark device as removed
1559 * @dev: network device
1560 *
1561 * Mark device as removed from system and therefore no longer available.
1562 */
1563 void netif_device_detach(struct net_device *dev)
1564 {
1565 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1566 netif_running(dev)) {
1567 netif_tx_stop_all_queues(dev);
1568 }
1569 }
1570 EXPORT_SYMBOL(netif_device_detach);
1571
1572 /**
1573 * netif_device_attach - mark device as attached
1574 * @dev: network device
1575 *
1576 * Mark device as attached from system and restart if needed.
1577 */
1578 void netif_device_attach(struct net_device *dev)
1579 {
1580 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1581 netif_running(dev)) {
1582 netif_tx_wake_all_queues(dev);
1583 __netdev_watchdog_up(dev);
1584 }
1585 }
1586 EXPORT_SYMBOL(netif_device_attach);
1587
1588 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1589 {
1590 return ((features & NETIF_F_GEN_CSUM) ||
1591 ((features & NETIF_F_IP_CSUM) &&
1592 protocol == htons(ETH_P_IP)) ||
1593 ((features & NETIF_F_IPV6_CSUM) &&
1594 protocol == htons(ETH_P_IPV6)) ||
1595 ((features & NETIF_F_FCOE_CRC) &&
1596 protocol == htons(ETH_P_FCOE)));
1597 }
1598
1599 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1600 {
1601 if (can_checksum_protocol(dev->features, skb->protocol))
1602 return true;
1603
1604 if (skb->protocol == htons(ETH_P_8021Q)) {
1605 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1606 if (can_checksum_protocol(dev->features & dev->vlan_features,
1607 veh->h_vlan_encapsulated_proto))
1608 return true;
1609 }
1610
1611 return false;
1612 }
1613
1614 /**
1615 * skb_dev_set -- assign a new device to a buffer
1616 * @skb: buffer for the new device
1617 * @dev: network device
1618 *
1619 * If an skb is owned by a device already, we have to reset
1620 * all data private to the namespace a device belongs to
1621 * before assigning it a new device.
1622 */
1623 #ifdef CONFIG_NET_NS
1624 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1625 {
1626 skb_dst_drop(skb);
1627 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1628 secpath_reset(skb);
1629 nf_reset(skb);
1630 skb_init_secmark(skb);
1631 skb->mark = 0;
1632 skb->priority = 0;
1633 skb->nf_trace = 0;
1634 skb->ipvs_property = 0;
1635 #ifdef CONFIG_NET_SCHED
1636 skb->tc_index = 0;
1637 #endif
1638 }
1639 skb->dev = dev;
1640 }
1641 EXPORT_SYMBOL(skb_set_dev);
1642 #endif /* CONFIG_NET_NS */
1643
1644 /*
1645 * Invalidate hardware checksum when packet is to be mangled, and
1646 * complete checksum manually on outgoing path.
1647 */
1648 int skb_checksum_help(struct sk_buff *skb)
1649 {
1650 __wsum csum;
1651 int ret = 0, offset;
1652
1653 if (skb->ip_summed == CHECKSUM_COMPLETE)
1654 goto out_set_summed;
1655
1656 if (unlikely(skb_shinfo(skb)->gso_size)) {
1657 /* Let GSO fix up the checksum. */
1658 goto out_set_summed;
1659 }
1660
1661 offset = skb->csum_start - skb_headroom(skb);
1662 BUG_ON(offset >= skb_headlen(skb));
1663 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1664
1665 offset += skb->csum_offset;
1666 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1667
1668 if (skb_cloned(skb) &&
1669 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1670 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1671 if (ret)
1672 goto out;
1673 }
1674
1675 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1676 out_set_summed:
1677 skb->ip_summed = CHECKSUM_NONE;
1678 out:
1679 return ret;
1680 }
1681 EXPORT_SYMBOL(skb_checksum_help);
1682
1683 /**
1684 * skb_gso_segment - Perform segmentation on skb.
1685 * @skb: buffer to segment
1686 * @features: features for the output path (see dev->features)
1687 *
1688 * This function segments the given skb and returns a list of segments.
1689 *
1690 * It may return NULL if the skb requires no segmentation. This is
1691 * only possible when GSO is used for verifying header integrity.
1692 */
1693 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1694 {
1695 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1696 struct packet_type *ptype;
1697 __be16 type = skb->protocol;
1698 int err;
1699
1700 skb_reset_mac_header(skb);
1701 skb->mac_len = skb->network_header - skb->mac_header;
1702 __skb_pull(skb, skb->mac_len);
1703
1704 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1705 struct net_device *dev = skb->dev;
1706 struct ethtool_drvinfo info = {};
1707
1708 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1709 dev->ethtool_ops->get_drvinfo(dev, &info);
1710
1711 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1712 "ip_summed=%d",
1713 info.driver, dev ? dev->features : 0L,
1714 skb->sk ? skb->sk->sk_route_caps : 0L,
1715 skb->len, skb->data_len, skb->ip_summed);
1716
1717 if (skb_header_cloned(skb) &&
1718 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1719 return ERR_PTR(err);
1720 }
1721
1722 rcu_read_lock();
1723 list_for_each_entry_rcu(ptype,
1724 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1725 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 err = ptype->gso_send_check(skb);
1728 segs = ERR_PTR(err);
1729 if (err || skb_gso_ok(skb, features))
1730 break;
1731 __skb_push(skb, (skb->data -
1732 skb_network_header(skb)));
1733 }
1734 segs = ptype->gso_segment(skb, features);
1735 break;
1736 }
1737 }
1738 rcu_read_unlock();
1739
1740 __skb_push(skb, skb->data - skb_mac_header(skb));
1741
1742 return segs;
1743 }
1744 EXPORT_SYMBOL(skb_gso_segment);
1745
1746 /* Take action when hardware reception checksum errors are detected. */
1747 #ifdef CONFIG_BUG
1748 void netdev_rx_csum_fault(struct net_device *dev)
1749 {
1750 if (net_ratelimit()) {
1751 printk(KERN_ERR "%s: hw csum failure.\n",
1752 dev ? dev->name : "<unknown>");
1753 dump_stack();
1754 }
1755 }
1756 EXPORT_SYMBOL(netdev_rx_csum_fault);
1757 #endif
1758
1759 /* Actually, we should eliminate this check as soon as we know, that:
1760 * 1. IOMMU is present and allows to map all the memory.
1761 * 2. No high memory really exists on this machine.
1762 */
1763
1764 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1765 {
1766 #ifdef CONFIG_HIGHMEM
1767 int i;
1768
1769 if (dev->features & NETIF_F_HIGHDMA)
1770 return 0;
1771
1772 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1773 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1774 return 1;
1775
1776 #endif
1777 return 0;
1778 }
1779
1780 struct dev_gso_cb {
1781 void (*destructor)(struct sk_buff *skb);
1782 };
1783
1784 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1785
1786 static void dev_gso_skb_destructor(struct sk_buff *skb)
1787 {
1788 struct dev_gso_cb *cb;
1789
1790 do {
1791 struct sk_buff *nskb = skb->next;
1792
1793 skb->next = nskb->next;
1794 nskb->next = NULL;
1795 kfree_skb(nskb);
1796 } while (skb->next);
1797
1798 cb = DEV_GSO_CB(skb);
1799 if (cb->destructor)
1800 cb->destructor(skb);
1801 }
1802
1803 /**
1804 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1805 * @skb: buffer to segment
1806 *
1807 * This function segments the given skb and stores the list of segments
1808 * in skb->next.
1809 */
1810 static int dev_gso_segment(struct sk_buff *skb)
1811 {
1812 struct net_device *dev = skb->dev;
1813 struct sk_buff *segs;
1814 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1815 NETIF_F_SG : 0);
1816
1817 segs = skb_gso_segment(skb, features);
1818
1819 /* Verifying header integrity only. */
1820 if (!segs)
1821 return 0;
1822
1823 if (IS_ERR(segs))
1824 return PTR_ERR(segs);
1825
1826 skb->next = segs;
1827 DEV_GSO_CB(skb)->destructor = skb->destructor;
1828 skb->destructor = dev_gso_skb_destructor;
1829
1830 return 0;
1831 }
1832
1833 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1834 struct netdev_queue *txq)
1835 {
1836 const struct net_device_ops *ops = dev->netdev_ops;
1837 int rc = NETDEV_TX_OK;
1838
1839 if (likely(!skb->next)) {
1840 if (!list_empty(&ptype_all))
1841 dev_queue_xmit_nit(skb, dev);
1842
1843 if (netif_needs_gso(dev, skb)) {
1844 if (unlikely(dev_gso_segment(skb)))
1845 goto out_kfree_skb;
1846 if (skb->next)
1847 goto gso;
1848 }
1849
1850 /*
1851 * If device doesnt need skb->dst, release it right now while
1852 * its hot in this cpu cache
1853 */
1854 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1855 skb_dst_drop(skb);
1856
1857 rc = ops->ndo_start_xmit(skb, dev);
1858 if (rc == NETDEV_TX_OK)
1859 txq_trans_update(txq);
1860 /*
1861 * TODO: if skb_orphan() was called by
1862 * dev->hard_start_xmit() (for example, the unmodified
1863 * igb driver does that; bnx2 doesn't), then
1864 * skb_tx_software_timestamp() will be unable to send
1865 * back the time stamp.
1866 *
1867 * How can this be prevented? Always create another
1868 * reference to the socket before calling
1869 * dev->hard_start_xmit()? Prevent that skb_orphan()
1870 * does anything in dev->hard_start_xmit() by clearing
1871 * the skb destructor before the call and restoring it
1872 * afterwards, then doing the skb_orphan() ourselves?
1873 */
1874 return rc;
1875 }
1876
1877 gso:
1878 do {
1879 struct sk_buff *nskb = skb->next;
1880
1881 skb->next = nskb->next;
1882 nskb->next = NULL;
1883
1884 /*
1885 * If device doesnt need nskb->dst, release it right now while
1886 * its hot in this cpu cache
1887 */
1888 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1889 skb_dst_drop(nskb);
1890
1891 rc = ops->ndo_start_xmit(nskb, dev);
1892 if (unlikely(rc != NETDEV_TX_OK)) {
1893 if (rc & ~NETDEV_TX_MASK)
1894 goto out_kfree_gso_skb;
1895 nskb->next = skb->next;
1896 skb->next = nskb;
1897 return rc;
1898 }
1899 txq_trans_update(txq);
1900 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1901 return NETDEV_TX_BUSY;
1902 } while (skb->next);
1903
1904 out_kfree_gso_skb:
1905 if (likely(skb->next == NULL))
1906 skb->destructor = DEV_GSO_CB(skb)->destructor;
1907 out_kfree_skb:
1908 kfree_skb(skb);
1909 return rc;
1910 }
1911
1912 static u32 skb_tx_hashrnd;
1913
1914 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1915 {
1916 u32 hash;
1917
1918 if (skb_rx_queue_recorded(skb)) {
1919 hash = skb_get_rx_queue(skb);
1920 while (unlikely(hash >= dev->real_num_tx_queues))
1921 hash -= dev->real_num_tx_queues;
1922 return hash;
1923 }
1924
1925 if (skb->sk && skb->sk->sk_hash)
1926 hash = skb->sk->sk_hash;
1927 else
1928 hash = skb->protocol;
1929
1930 hash = jhash_1word(hash, skb_tx_hashrnd);
1931
1932 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1933 }
1934 EXPORT_SYMBOL(skb_tx_hash);
1935
1936 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1937 {
1938 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1939 if (net_ratelimit()) {
1940 WARN(1, "%s selects TX queue %d, but "
1941 "real number of TX queues is %d\n",
1942 dev->name, queue_index,
1943 dev->real_num_tx_queues);
1944 }
1945 return 0;
1946 }
1947 return queue_index;
1948 }
1949
1950 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1951 struct sk_buff *skb)
1952 {
1953 u16 queue_index;
1954 struct sock *sk = skb->sk;
1955
1956 if (sk_tx_queue_recorded(sk)) {
1957 queue_index = sk_tx_queue_get(sk);
1958 } else {
1959 const struct net_device_ops *ops = dev->netdev_ops;
1960
1961 if (ops->ndo_select_queue) {
1962 queue_index = ops->ndo_select_queue(dev, skb);
1963 queue_index = dev_cap_txqueue(dev, queue_index);
1964 } else {
1965 queue_index = 0;
1966 if (dev->real_num_tx_queues > 1)
1967 queue_index = skb_tx_hash(dev, skb);
1968
1969 if (sk && sk->sk_dst_cache)
1970 sk_tx_queue_set(sk, queue_index);
1971 }
1972 }
1973
1974 skb_set_queue_mapping(skb, queue_index);
1975 return netdev_get_tx_queue(dev, queue_index);
1976 }
1977
1978 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1979 struct net_device *dev,
1980 struct netdev_queue *txq)
1981 {
1982 spinlock_t *root_lock = qdisc_lock(q);
1983 int rc;
1984
1985 spin_lock(root_lock);
1986 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1987 kfree_skb(skb);
1988 rc = NET_XMIT_DROP;
1989 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1990 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1991 /*
1992 * This is a work-conserving queue; there are no old skbs
1993 * waiting to be sent out; and the qdisc is not running -
1994 * xmit the skb directly.
1995 */
1996 __qdisc_update_bstats(q, skb->len);
1997 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1998 __qdisc_run(q);
1999 else
2000 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2001
2002 rc = NET_XMIT_SUCCESS;
2003 } else {
2004 rc = qdisc_enqueue_root(skb, q);
2005 qdisc_run(q);
2006 }
2007 spin_unlock(root_lock);
2008
2009 return rc;
2010 }
2011
2012 /*
2013 * Returns true if either:
2014 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2015 * 2. skb is fragmented and the device does not support SG, or if
2016 * at least one of fragments is in highmem and device does not
2017 * support DMA from it.
2018 */
2019 static inline int skb_needs_linearize(struct sk_buff *skb,
2020 struct net_device *dev)
2021 {
2022 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2023 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2024 illegal_highdma(dev, skb)));
2025 }
2026
2027 /**
2028 * dev_queue_xmit - transmit a buffer
2029 * @skb: buffer to transmit
2030 *
2031 * Queue a buffer for transmission to a network device. The caller must
2032 * have set the device and priority and built the buffer before calling
2033 * this function. The function can be called from an interrupt.
2034 *
2035 * A negative errno code is returned on a failure. A success does not
2036 * guarantee the frame will be transmitted as it may be dropped due
2037 * to congestion or traffic shaping.
2038 *
2039 * -----------------------------------------------------------------------------------
2040 * I notice this method can also return errors from the queue disciplines,
2041 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2042 * be positive.
2043 *
2044 * Regardless of the return value, the skb is consumed, so it is currently
2045 * difficult to retry a send to this method. (You can bump the ref count
2046 * before sending to hold a reference for retry if you are careful.)
2047 *
2048 * When calling this method, interrupts MUST be enabled. This is because
2049 * the BH enable code must have IRQs enabled so that it will not deadlock.
2050 * --BLG
2051 */
2052 int dev_queue_xmit(struct sk_buff *skb)
2053 {
2054 struct net_device *dev = skb->dev;
2055 struct netdev_queue *txq;
2056 struct Qdisc *q;
2057 int rc = -ENOMEM;
2058
2059 /* GSO will handle the following emulations directly. */
2060 if (netif_needs_gso(dev, skb))
2061 goto gso;
2062
2063 /* Convert a paged skb to linear, if required */
2064 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2065 goto out_kfree_skb;
2066
2067 /* If packet is not checksummed and device does not support
2068 * checksumming for this protocol, complete checksumming here.
2069 */
2070 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2071 skb_set_transport_header(skb, skb->csum_start -
2072 skb_headroom(skb));
2073 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2074 goto out_kfree_skb;
2075 }
2076
2077 gso:
2078 /* Disable soft irqs for various locks below. Also
2079 * stops preemption for RCU.
2080 */
2081 rcu_read_lock_bh();
2082
2083 txq = dev_pick_tx(dev, skb);
2084 q = rcu_dereference(txq->qdisc);
2085
2086 #ifdef CONFIG_NET_CLS_ACT
2087 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2088 #endif
2089 if (q->enqueue) {
2090 rc = __dev_xmit_skb(skb, q, dev, txq);
2091 goto out;
2092 }
2093
2094 /* The device has no queue. Common case for software devices:
2095 loopback, all the sorts of tunnels...
2096
2097 Really, it is unlikely that netif_tx_lock protection is necessary
2098 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2099 counters.)
2100 However, it is possible, that they rely on protection
2101 made by us here.
2102
2103 Check this and shot the lock. It is not prone from deadlocks.
2104 Either shot noqueue qdisc, it is even simpler 8)
2105 */
2106 if (dev->flags & IFF_UP) {
2107 int cpu = smp_processor_id(); /* ok because BHs are off */
2108
2109 if (txq->xmit_lock_owner != cpu) {
2110
2111 HARD_TX_LOCK(dev, txq, cpu);
2112
2113 if (!netif_tx_queue_stopped(txq)) {
2114 rc = dev_hard_start_xmit(skb, dev, txq);
2115 if (dev_xmit_complete(rc)) {
2116 HARD_TX_UNLOCK(dev, txq);
2117 goto out;
2118 }
2119 }
2120 HARD_TX_UNLOCK(dev, txq);
2121 if (net_ratelimit())
2122 printk(KERN_CRIT "Virtual device %s asks to "
2123 "queue packet!\n", dev->name);
2124 } else {
2125 /* Recursion is detected! It is possible,
2126 * unfortunately */
2127 if (net_ratelimit())
2128 printk(KERN_CRIT "Dead loop on virtual device "
2129 "%s, fix it urgently!\n", dev->name);
2130 }
2131 }
2132
2133 rc = -ENETDOWN;
2134 rcu_read_unlock_bh();
2135
2136 out_kfree_skb:
2137 kfree_skb(skb);
2138 return rc;
2139 out:
2140 rcu_read_unlock_bh();
2141 return rc;
2142 }
2143 EXPORT_SYMBOL(dev_queue_xmit);
2144
2145
2146 /*=======================================================================
2147 Receiver routines
2148 =======================================================================*/
2149
2150 int netdev_max_backlog __read_mostly = 1000;
2151 int netdev_budget __read_mostly = 300;
2152 int weight_p __read_mostly = 64; /* old backlog weight */
2153
2154 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2155
2156
2157 /**
2158 * netif_rx - post buffer to the network code
2159 * @skb: buffer to post
2160 *
2161 * This function receives a packet from a device driver and queues it for
2162 * the upper (protocol) levels to process. It always succeeds. The buffer
2163 * may be dropped during processing for congestion control or by the
2164 * protocol layers.
2165 *
2166 * return values:
2167 * NET_RX_SUCCESS (no congestion)
2168 * NET_RX_DROP (packet was dropped)
2169 *
2170 */
2171
2172 int netif_rx(struct sk_buff *skb)
2173 {
2174 struct softnet_data *queue;
2175 unsigned long flags;
2176
2177 /* if netpoll wants it, pretend we never saw it */
2178 if (netpoll_rx(skb))
2179 return NET_RX_DROP;
2180
2181 if (!skb->tstamp.tv64)
2182 net_timestamp(skb);
2183
2184 /*
2185 * The code is rearranged so that the path is the most
2186 * short when CPU is congested, but is still operating.
2187 */
2188 local_irq_save(flags);
2189 queue = &__get_cpu_var(softnet_data);
2190
2191 __get_cpu_var(netdev_rx_stat).total++;
2192 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2193 if (queue->input_pkt_queue.qlen) {
2194 enqueue:
2195 __skb_queue_tail(&queue->input_pkt_queue, skb);
2196 local_irq_restore(flags);
2197 return NET_RX_SUCCESS;
2198 }
2199
2200 napi_schedule(&queue->backlog);
2201 goto enqueue;
2202 }
2203
2204 __get_cpu_var(netdev_rx_stat).dropped++;
2205 local_irq_restore(flags);
2206
2207 kfree_skb(skb);
2208 return NET_RX_DROP;
2209 }
2210 EXPORT_SYMBOL(netif_rx);
2211
2212 int netif_rx_ni(struct sk_buff *skb)
2213 {
2214 int err;
2215
2216 preempt_disable();
2217 err = netif_rx(skb);
2218 if (local_softirq_pending())
2219 do_softirq();
2220 preempt_enable();
2221
2222 return err;
2223 }
2224 EXPORT_SYMBOL(netif_rx_ni);
2225
2226 static void net_tx_action(struct softirq_action *h)
2227 {
2228 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2229
2230 if (sd->completion_queue) {
2231 struct sk_buff *clist;
2232
2233 local_irq_disable();
2234 clist = sd->completion_queue;
2235 sd->completion_queue = NULL;
2236 local_irq_enable();
2237
2238 while (clist) {
2239 struct sk_buff *skb = clist;
2240 clist = clist->next;
2241
2242 WARN_ON(atomic_read(&skb->users));
2243 __kfree_skb(skb);
2244 }
2245 }
2246
2247 if (sd->output_queue) {
2248 struct Qdisc *head;
2249
2250 local_irq_disable();
2251 head = sd->output_queue;
2252 sd->output_queue = NULL;
2253 local_irq_enable();
2254
2255 while (head) {
2256 struct Qdisc *q = head;
2257 spinlock_t *root_lock;
2258
2259 head = head->next_sched;
2260
2261 root_lock = qdisc_lock(q);
2262 if (spin_trylock(root_lock)) {
2263 smp_mb__before_clear_bit();
2264 clear_bit(__QDISC_STATE_SCHED,
2265 &q->state);
2266 qdisc_run(q);
2267 spin_unlock(root_lock);
2268 } else {
2269 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2270 &q->state)) {
2271 __netif_reschedule(q);
2272 } else {
2273 smp_mb__before_clear_bit();
2274 clear_bit(__QDISC_STATE_SCHED,
2275 &q->state);
2276 }
2277 }
2278 }
2279 }
2280 }
2281
2282 static inline int deliver_skb(struct sk_buff *skb,
2283 struct packet_type *pt_prev,
2284 struct net_device *orig_dev)
2285 {
2286 atomic_inc(&skb->users);
2287 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2288 }
2289
2290 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2291
2292 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2293 /* This hook is defined here for ATM LANE */
2294 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2295 unsigned char *addr) __read_mostly;
2296 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2297 #endif
2298
2299 /*
2300 * If bridge module is loaded call bridging hook.
2301 * returns NULL if packet was consumed.
2302 */
2303 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2304 struct sk_buff *skb) __read_mostly;
2305 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2306
2307 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2308 struct packet_type **pt_prev, int *ret,
2309 struct net_device *orig_dev)
2310 {
2311 struct net_bridge_port *port;
2312
2313 if (skb->pkt_type == PACKET_LOOPBACK ||
2314 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2315 return skb;
2316
2317 if (*pt_prev) {
2318 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2319 *pt_prev = NULL;
2320 }
2321
2322 return br_handle_frame_hook(port, skb);
2323 }
2324 #else
2325 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2326 #endif
2327
2328 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2329 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2330 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2331
2332 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2333 struct packet_type **pt_prev,
2334 int *ret,
2335 struct net_device *orig_dev)
2336 {
2337 if (skb->dev->macvlan_port == NULL)
2338 return skb;
2339
2340 if (*pt_prev) {
2341 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2342 *pt_prev = NULL;
2343 }
2344 return macvlan_handle_frame_hook(skb);
2345 }
2346 #else
2347 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2348 #endif
2349
2350 #ifdef CONFIG_NET_CLS_ACT
2351 /* TODO: Maybe we should just force sch_ingress to be compiled in
2352 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2353 * a compare and 2 stores extra right now if we dont have it on
2354 * but have CONFIG_NET_CLS_ACT
2355 * NOTE: This doesnt stop any functionality; if you dont have
2356 * the ingress scheduler, you just cant add policies on ingress.
2357 *
2358 */
2359 static int ing_filter(struct sk_buff *skb)
2360 {
2361 struct net_device *dev = skb->dev;
2362 u32 ttl = G_TC_RTTL(skb->tc_verd);
2363 struct netdev_queue *rxq;
2364 int result = TC_ACT_OK;
2365 struct Qdisc *q;
2366
2367 if (MAX_RED_LOOP < ttl++) {
2368 printk(KERN_WARNING
2369 "Redir loop detected Dropping packet (%d->%d)\n",
2370 skb->skb_iif, dev->ifindex);
2371 return TC_ACT_SHOT;
2372 }
2373
2374 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2375 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2376
2377 rxq = &dev->rx_queue;
2378
2379 q = rxq->qdisc;
2380 if (q != &noop_qdisc) {
2381 spin_lock(qdisc_lock(q));
2382 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2383 result = qdisc_enqueue_root(skb, q);
2384 spin_unlock(qdisc_lock(q));
2385 }
2386
2387 return result;
2388 }
2389
2390 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2391 struct packet_type **pt_prev,
2392 int *ret, struct net_device *orig_dev)
2393 {
2394 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2395 goto out;
2396
2397 if (*pt_prev) {
2398 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2399 *pt_prev = NULL;
2400 } else {
2401 /* Huh? Why does turning on AF_PACKET affect this? */
2402 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2403 }
2404
2405 switch (ing_filter(skb)) {
2406 case TC_ACT_SHOT:
2407 case TC_ACT_STOLEN:
2408 kfree_skb(skb);
2409 return NULL;
2410 }
2411
2412 out:
2413 skb->tc_verd = 0;
2414 return skb;
2415 }
2416 #endif
2417
2418 /*
2419 * netif_nit_deliver - deliver received packets to network taps
2420 * @skb: buffer
2421 *
2422 * This function is used to deliver incoming packets to network
2423 * taps. It should be used when the normal netif_receive_skb path
2424 * is bypassed, for example because of VLAN acceleration.
2425 */
2426 void netif_nit_deliver(struct sk_buff *skb)
2427 {
2428 struct packet_type *ptype;
2429
2430 if (list_empty(&ptype_all))
2431 return;
2432
2433 skb_reset_network_header(skb);
2434 skb_reset_transport_header(skb);
2435 skb->mac_len = skb->network_header - skb->mac_header;
2436
2437 rcu_read_lock();
2438 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2439 if (!ptype->dev || ptype->dev == skb->dev)
2440 deliver_skb(skb, ptype, skb->dev);
2441 }
2442 rcu_read_unlock();
2443 }
2444
2445 /**
2446 * netif_receive_skb - process receive buffer from network
2447 * @skb: buffer to process
2448 *
2449 * netif_receive_skb() is the main receive data processing function.
2450 * It always succeeds. The buffer may be dropped during processing
2451 * for congestion control or by the protocol layers.
2452 *
2453 * This function may only be called from softirq context and interrupts
2454 * should be enabled.
2455 *
2456 * Return values (usually ignored):
2457 * NET_RX_SUCCESS: no congestion
2458 * NET_RX_DROP: packet was dropped
2459 */
2460 int netif_receive_skb(struct sk_buff *skb)
2461 {
2462 struct packet_type *ptype, *pt_prev;
2463 struct net_device *orig_dev;
2464 struct net_device *null_or_orig;
2465 struct net_device *null_or_bond;
2466 int ret = NET_RX_DROP;
2467 __be16 type;
2468
2469 if (!skb->tstamp.tv64)
2470 net_timestamp(skb);
2471
2472 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2473 return NET_RX_SUCCESS;
2474
2475 /* if we've gotten here through NAPI, check netpoll */
2476 if (netpoll_receive_skb(skb))
2477 return NET_RX_DROP;
2478
2479 if (!skb->skb_iif)
2480 skb->skb_iif = skb->dev->ifindex;
2481
2482 null_or_orig = NULL;
2483 orig_dev = skb->dev;
2484 if (orig_dev->master) {
2485 if (skb_bond_should_drop(skb))
2486 null_or_orig = orig_dev; /* deliver only exact match */
2487 else
2488 skb->dev = orig_dev->master;
2489 }
2490
2491 __get_cpu_var(netdev_rx_stat).total++;
2492
2493 skb_reset_network_header(skb);
2494 skb_reset_transport_header(skb);
2495 skb->mac_len = skb->network_header - skb->mac_header;
2496
2497 pt_prev = NULL;
2498
2499 rcu_read_lock();
2500
2501 #ifdef CONFIG_NET_CLS_ACT
2502 if (skb->tc_verd & TC_NCLS) {
2503 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2504 goto ncls;
2505 }
2506 #endif
2507
2508 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2509 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2510 ptype->dev == orig_dev) {
2511 if (pt_prev)
2512 ret = deliver_skb(skb, pt_prev, orig_dev);
2513 pt_prev = ptype;
2514 }
2515 }
2516
2517 #ifdef CONFIG_NET_CLS_ACT
2518 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2519 if (!skb)
2520 goto out;
2521 ncls:
2522 #endif
2523
2524 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2525 if (!skb)
2526 goto out;
2527 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2528 if (!skb)
2529 goto out;
2530
2531 /*
2532 * Make sure frames received on VLAN interfaces stacked on
2533 * bonding interfaces still make their way to any base bonding
2534 * device that may have registered for a specific ptype. The
2535 * handler may have to adjust skb->dev and orig_dev.
2536 */
2537 null_or_bond = NULL;
2538 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2539 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2540 null_or_bond = vlan_dev_real_dev(skb->dev);
2541 }
2542
2543 type = skb->protocol;
2544 list_for_each_entry_rcu(ptype,
2545 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2546 if (ptype->type == type && (ptype->dev == null_or_orig ||
2547 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2548 ptype->dev == null_or_bond)) {
2549 if (pt_prev)
2550 ret = deliver_skb(skb, pt_prev, orig_dev);
2551 pt_prev = ptype;
2552 }
2553 }
2554
2555 if (pt_prev) {
2556 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2557 } else {
2558 kfree_skb(skb);
2559 /* Jamal, now you will not able to escape explaining
2560 * me how you were going to use this. :-)
2561 */
2562 ret = NET_RX_DROP;
2563 }
2564
2565 out:
2566 rcu_read_unlock();
2567 return ret;
2568 }
2569 EXPORT_SYMBOL(netif_receive_skb);
2570
2571 /* Network device is going away, flush any packets still pending */
2572 static void flush_backlog(void *arg)
2573 {
2574 struct net_device *dev = arg;
2575 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2576 struct sk_buff *skb, *tmp;
2577
2578 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2579 if (skb->dev == dev) {
2580 __skb_unlink(skb, &queue->input_pkt_queue);
2581 kfree_skb(skb);
2582 }
2583 }
2584
2585 static int napi_gro_complete(struct sk_buff *skb)
2586 {
2587 struct packet_type *ptype;
2588 __be16 type = skb->protocol;
2589 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2590 int err = -ENOENT;
2591
2592 if (NAPI_GRO_CB(skb)->count == 1) {
2593 skb_shinfo(skb)->gso_size = 0;
2594 goto out;
2595 }
2596
2597 rcu_read_lock();
2598 list_for_each_entry_rcu(ptype, head, list) {
2599 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2600 continue;
2601
2602 err = ptype->gro_complete(skb);
2603 break;
2604 }
2605 rcu_read_unlock();
2606
2607 if (err) {
2608 WARN_ON(&ptype->list == head);
2609 kfree_skb(skb);
2610 return NET_RX_SUCCESS;
2611 }
2612
2613 out:
2614 return netif_receive_skb(skb);
2615 }
2616
2617 static void napi_gro_flush(struct napi_struct *napi)
2618 {
2619 struct sk_buff *skb, *next;
2620
2621 for (skb = napi->gro_list; skb; skb = next) {
2622 next = skb->next;
2623 skb->next = NULL;
2624 napi_gro_complete(skb);
2625 }
2626
2627 napi->gro_count = 0;
2628 napi->gro_list = NULL;
2629 }
2630
2631 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2632 {
2633 struct sk_buff **pp = NULL;
2634 struct packet_type *ptype;
2635 __be16 type = skb->protocol;
2636 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2637 int same_flow;
2638 int mac_len;
2639 enum gro_result ret;
2640
2641 if (!(skb->dev->features & NETIF_F_GRO))
2642 goto normal;
2643
2644 if (skb_is_gso(skb) || skb_has_frags(skb))
2645 goto normal;
2646
2647 rcu_read_lock();
2648 list_for_each_entry_rcu(ptype, head, list) {
2649 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2650 continue;
2651
2652 skb_set_network_header(skb, skb_gro_offset(skb));
2653 mac_len = skb->network_header - skb->mac_header;
2654 skb->mac_len = mac_len;
2655 NAPI_GRO_CB(skb)->same_flow = 0;
2656 NAPI_GRO_CB(skb)->flush = 0;
2657 NAPI_GRO_CB(skb)->free = 0;
2658
2659 pp = ptype->gro_receive(&napi->gro_list, skb);
2660 break;
2661 }
2662 rcu_read_unlock();
2663
2664 if (&ptype->list == head)
2665 goto normal;
2666
2667 same_flow = NAPI_GRO_CB(skb)->same_flow;
2668 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2669
2670 if (pp) {
2671 struct sk_buff *nskb = *pp;
2672
2673 *pp = nskb->next;
2674 nskb->next = NULL;
2675 napi_gro_complete(nskb);
2676 napi->gro_count--;
2677 }
2678
2679 if (same_flow)
2680 goto ok;
2681
2682 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2683 goto normal;
2684
2685 napi->gro_count++;
2686 NAPI_GRO_CB(skb)->count = 1;
2687 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2688 skb->next = napi->gro_list;
2689 napi->gro_list = skb;
2690 ret = GRO_HELD;
2691
2692 pull:
2693 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2694 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2695
2696 BUG_ON(skb->end - skb->tail < grow);
2697
2698 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2699
2700 skb->tail += grow;
2701 skb->data_len -= grow;
2702
2703 skb_shinfo(skb)->frags[0].page_offset += grow;
2704 skb_shinfo(skb)->frags[0].size -= grow;
2705
2706 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2707 put_page(skb_shinfo(skb)->frags[0].page);
2708 memmove(skb_shinfo(skb)->frags,
2709 skb_shinfo(skb)->frags + 1,
2710 --skb_shinfo(skb)->nr_frags);
2711 }
2712 }
2713
2714 ok:
2715 return ret;
2716
2717 normal:
2718 ret = GRO_NORMAL;
2719 goto pull;
2720 }
2721 EXPORT_SYMBOL(dev_gro_receive);
2722
2723 static gro_result_t
2724 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2725 {
2726 struct sk_buff *p;
2727
2728 if (netpoll_rx_on(skb))
2729 return GRO_NORMAL;
2730
2731 for (p = napi->gro_list; p; p = p->next) {
2732 NAPI_GRO_CB(p)->same_flow =
2733 (p->dev == skb->dev) &&
2734 !compare_ether_header(skb_mac_header(p),
2735 skb_gro_mac_header(skb));
2736 NAPI_GRO_CB(p)->flush = 0;
2737 }
2738
2739 return dev_gro_receive(napi, skb);
2740 }
2741
2742 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2743 {
2744 switch (ret) {
2745 case GRO_NORMAL:
2746 if (netif_receive_skb(skb))
2747 ret = GRO_DROP;
2748 break;
2749
2750 case GRO_DROP:
2751 case GRO_MERGED_FREE:
2752 kfree_skb(skb);
2753 break;
2754
2755 case GRO_HELD:
2756 case GRO_MERGED:
2757 break;
2758 }
2759
2760 return ret;
2761 }
2762 EXPORT_SYMBOL(napi_skb_finish);
2763
2764 void skb_gro_reset_offset(struct sk_buff *skb)
2765 {
2766 NAPI_GRO_CB(skb)->data_offset = 0;
2767 NAPI_GRO_CB(skb)->frag0 = NULL;
2768 NAPI_GRO_CB(skb)->frag0_len = 0;
2769
2770 if (skb->mac_header == skb->tail &&
2771 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2772 NAPI_GRO_CB(skb)->frag0 =
2773 page_address(skb_shinfo(skb)->frags[0].page) +
2774 skb_shinfo(skb)->frags[0].page_offset;
2775 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2776 }
2777 }
2778 EXPORT_SYMBOL(skb_gro_reset_offset);
2779
2780 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2781 {
2782 skb_gro_reset_offset(skb);
2783
2784 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2785 }
2786 EXPORT_SYMBOL(napi_gro_receive);
2787
2788 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2789 {
2790 __skb_pull(skb, skb_headlen(skb));
2791 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2792
2793 napi->skb = skb;
2794 }
2795 EXPORT_SYMBOL(napi_reuse_skb);
2796
2797 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2798 {
2799 struct sk_buff *skb = napi->skb;
2800
2801 if (!skb) {
2802 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2803 if (skb)
2804 napi->skb = skb;
2805 }
2806 return skb;
2807 }
2808 EXPORT_SYMBOL(napi_get_frags);
2809
2810 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2811 gro_result_t ret)
2812 {
2813 switch (ret) {
2814 case GRO_NORMAL:
2815 case GRO_HELD:
2816 skb->protocol = eth_type_trans(skb, napi->dev);
2817
2818 if (ret == GRO_HELD)
2819 skb_gro_pull(skb, -ETH_HLEN);
2820 else if (netif_receive_skb(skb))
2821 ret = GRO_DROP;
2822 break;
2823
2824 case GRO_DROP:
2825 case GRO_MERGED_FREE:
2826 napi_reuse_skb(napi, skb);
2827 break;
2828
2829 case GRO_MERGED:
2830 break;
2831 }
2832
2833 return ret;
2834 }
2835 EXPORT_SYMBOL(napi_frags_finish);
2836
2837 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2838 {
2839 struct sk_buff *skb = napi->skb;
2840 struct ethhdr *eth;
2841 unsigned int hlen;
2842 unsigned int off;
2843
2844 napi->skb = NULL;
2845
2846 skb_reset_mac_header(skb);
2847 skb_gro_reset_offset(skb);
2848
2849 off = skb_gro_offset(skb);
2850 hlen = off + sizeof(*eth);
2851 eth = skb_gro_header_fast(skb, off);
2852 if (skb_gro_header_hard(skb, hlen)) {
2853 eth = skb_gro_header_slow(skb, hlen, off);
2854 if (unlikely(!eth)) {
2855 napi_reuse_skb(napi, skb);
2856 skb = NULL;
2857 goto out;
2858 }
2859 }
2860
2861 skb_gro_pull(skb, sizeof(*eth));
2862
2863 /*
2864 * This works because the only protocols we care about don't require
2865 * special handling. We'll fix it up properly at the end.
2866 */
2867 skb->protocol = eth->h_proto;
2868
2869 out:
2870 return skb;
2871 }
2872 EXPORT_SYMBOL(napi_frags_skb);
2873
2874 gro_result_t napi_gro_frags(struct napi_struct *napi)
2875 {
2876 struct sk_buff *skb = napi_frags_skb(napi);
2877
2878 if (!skb)
2879 return GRO_DROP;
2880
2881 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2882 }
2883 EXPORT_SYMBOL(napi_gro_frags);
2884
2885 static int process_backlog(struct napi_struct *napi, int quota)
2886 {
2887 int work = 0;
2888 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2889 unsigned long start_time = jiffies;
2890
2891 napi->weight = weight_p;
2892 do {
2893 struct sk_buff *skb;
2894
2895 local_irq_disable();
2896 skb = __skb_dequeue(&queue->input_pkt_queue);
2897 if (!skb) {
2898 __napi_complete(napi);
2899 local_irq_enable();
2900 break;
2901 }
2902 local_irq_enable();
2903
2904 netif_receive_skb(skb);
2905 } while (++work < quota && jiffies == start_time);
2906
2907 return work;
2908 }
2909
2910 /**
2911 * __napi_schedule - schedule for receive
2912 * @n: entry to schedule
2913 *
2914 * The entry's receive function will be scheduled to run
2915 */
2916 void __napi_schedule(struct napi_struct *n)
2917 {
2918 unsigned long flags;
2919
2920 local_irq_save(flags);
2921 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2922 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2923 local_irq_restore(flags);
2924 }
2925 EXPORT_SYMBOL(__napi_schedule);
2926
2927 void __napi_complete(struct napi_struct *n)
2928 {
2929 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2930 BUG_ON(n->gro_list);
2931
2932 list_del(&n->poll_list);
2933 smp_mb__before_clear_bit();
2934 clear_bit(NAPI_STATE_SCHED, &n->state);
2935 }
2936 EXPORT_SYMBOL(__napi_complete);
2937
2938 void napi_complete(struct napi_struct *n)
2939 {
2940 unsigned long flags;
2941
2942 /*
2943 * don't let napi dequeue from the cpu poll list
2944 * just in case its running on a different cpu
2945 */
2946 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2947 return;
2948
2949 napi_gro_flush(n);
2950 local_irq_save(flags);
2951 __napi_complete(n);
2952 local_irq_restore(flags);
2953 }
2954 EXPORT_SYMBOL(napi_complete);
2955
2956 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2957 int (*poll)(struct napi_struct *, int), int weight)
2958 {
2959 INIT_LIST_HEAD(&napi->poll_list);
2960 napi->gro_count = 0;
2961 napi->gro_list = NULL;
2962 napi->skb = NULL;
2963 napi->poll = poll;
2964 napi->weight = weight;
2965 list_add(&napi->dev_list, &dev->napi_list);
2966 napi->dev = dev;
2967 #ifdef CONFIG_NETPOLL
2968 spin_lock_init(&napi->poll_lock);
2969 napi->poll_owner = -1;
2970 #endif
2971 set_bit(NAPI_STATE_SCHED, &napi->state);
2972 }
2973 EXPORT_SYMBOL(netif_napi_add);
2974
2975 void netif_napi_del(struct napi_struct *napi)
2976 {
2977 struct sk_buff *skb, *next;
2978
2979 list_del_init(&napi->dev_list);
2980 napi_free_frags(napi);
2981
2982 for (skb = napi->gro_list; skb; skb = next) {
2983 next = skb->next;
2984 skb->next = NULL;
2985 kfree_skb(skb);
2986 }
2987
2988 napi->gro_list = NULL;
2989 napi->gro_count = 0;
2990 }
2991 EXPORT_SYMBOL(netif_napi_del);
2992
2993
2994 static void net_rx_action(struct softirq_action *h)
2995 {
2996 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2997 unsigned long time_limit = jiffies + 2;
2998 int budget = netdev_budget;
2999 void *have;
3000
3001 local_irq_disable();
3002
3003 while (!list_empty(list)) {
3004 struct napi_struct *n;
3005 int work, weight;
3006
3007 /* If softirq window is exhuasted then punt.
3008 * Allow this to run for 2 jiffies since which will allow
3009 * an average latency of 1.5/HZ.
3010 */
3011 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3012 goto softnet_break;
3013
3014 local_irq_enable();
3015
3016 /* Even though interrupts have been re-enabled, this
3017 * access is safe because interrupts can only add new
3018 * entries to the tail of this list, and only ->poll()
3019 * calls can remove this head entry from the list.
3020 */
3021 n = list_entry(list->next, struct napi_struct, poll_list);
3022
3023 have = netpoll_poll_lock(n);
3024
3025 weight = n->weight;
3026
3027 /* This NAPI_STATE_SCHED test is for avoiding a race
3028 * with netpoll's poll_napi(). Only the entity which
3029 * obtains the lock and sees NAPI_STATE_SCHED set will
3030 * actually make the ->poll() call. Therefore we avoid
3031 * accidently calling ->poll() when NAPI is not scheduled.
3032 */
3033 work = 0;
3034 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3035 work = n->poll(n, weight);
3036 trace_napi_poll(n);
3037 }
3038
3039 WARN_ON_ONCE(work > weight);
3040
3041 budget -= work;
3042
3043 local_irq_disable();
3044
3045 /* Drivers must not modify the NAPI state if they
3046 * consume the entire weight. In such cases this code
3047 * still "owns" the NAPI instance and therefore can
3048 * move the instance around on the list at-will.
3049 */
3050 if (unlikely(work == weight)) {
3051 if (unlikely(napi_disable_pending(n))) {
3052 local_irq_enable();
3053 napi_complete(n);
3054 local_irq_disable();
3055 } else
3056 list_move_tail(&n->poll_list, list);
3057 }
3058
3059 netpoll_poll_unlock(have);
3060 }
3061 out:
3062 local_irq_enable();
3063
3064 #ifdef CONFIG_NET_DMA
3065 /*
3066 * There may not be any more sk_buffs coming right now, so push
3067 * any pending DMA copies to hardware
3068 */
3069 dma_issue_pending_all();
3070 #endif
3071
3072 return;
3073
3074 softnet_break:
3075 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3076 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3077 goto out;
3078 }
3079
3080 static gifconf_func_t *gifconf_list[NPROTO];
3081
3082 /**
3083 * register_gifconf - register a SIOCGIF handler
3084 * @family: Address family
3085 * @gifconf: Function handler
3086 *
3087 * Register protocol dependent address dumping routines. The handler
3088 * that is passed must not be freed or reused until it has been replaced
3089 * by another handler.
3090 */
3091 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3092 {
3093 if (family >= NPROTO)
3094 return -EINVAL;
3095 gifconf_list[family] = gifconf;
3096 return 0;
3097 }
3098 EXPORT_SYMBOL(register_gifconf);
3099
3100
3101 /*
3102 * Map an interface index to its name (SIOCGIFNAME)
3103 */
3104
3105 /*
3106 * We need this ioctl for efficient implementation of the
3107 * if_indextoname() function required by the IPv6 API. Without
3108 * it, we would have to search all the interfaces to find a
3109 * match. --pb
3110 */
3111
3112 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3113 {
3114 struct net_device *dev;
3115 struct ifreq ifr;
3116
3117 /*
3118 * Fetch the caller's info block.
3119 */
3120
3121 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3122 return -EFAULT;
3123
3124 rcu_read_lock();
3125 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3126 if (!dev) {
3127 rcu_read_unlock();
3128 return -ENODEV;
3129 }
3130
3131 strcpy(ifr.ifr_name, dev->name);
3132 rcu_read_unlock();
3133
3134 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3135 return -EFAULT;
3136 return 0;
3137 }
3138
3139 /*
3140 * Perform a SIOCGIFCONF call. This structure will change
3141 * size eventually, and there is nothing I can do about it.
3142 * Thus we will need a 'compatibility mode'.
3143 */
3144
3145 static int dev_ifconf(struct net *net, char __user *arg)
3146 {
3147 struct ifconf ifc;
3148 struct net_device *dev;
3149 char __user *pos;
3150 int len;
3151 int total;
3152 int i;
3153
3154 /*
3155 * Fetch the caller's info block.
3156 */
3157
3158 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3159 return -EFAULT;
3160
3161 pos = ifc.ifc_buf;
3162 len = ifc.ifc_len;
3163
3164 /*
3165 * Loop over the interfaces, and write an info block for each.
3166 */
3167
3168 total = 0;
3169 for_each_netdev(net, dev) {
3170 for (i = 0; i < NPROTO; i++) {
3171 if (gifconf_list[i]) {
3172 int done;
3173 if (!pos)
3174 done = gifconf_list[i](dev, NULL, 0);
3175 else
3176 done = gifconf_list[i](dev, pos + total,
3177 len - total);
3178 if (done < 0)
3179 return -EFAULT;
3180 total += done;
3181 }
3182 }
3183 }
3184
3185 /*
3186 * All done. Write the updated control block back to the caller.
3187 */
3188 ifc.ifc_len = total;
3189
3190 /*
3191 * Both BSD and Solaris return 0 here, so we do too.
3192 */
3193 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3194 }
3195
3196 #ifdef CONFIG_PROC_FS
3197 /*
3198 * This is invoked by the /proc filesystem handler to display a device
3199 * in detail.
3200 */
3201 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3202 __acquires(RCU)
3203 {
3204 struct net *net = seq_file_net(seq);
3205 loff_t off;
3206 struct net_device *dev;
3207
3208 rcu_read_lock();
3209 if (!*pos)
3210 return SEQ_START_TOKEN;
3211
3212 off = 1;
3213 for_each_netdev_rcu(net, dev)
3214 if (off++ == *pos)
3215 return dev;
3216
3217 return NULL;
3218 }
3219
3220 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3221 {
3222 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3223 first_net_device(seq_file_net(seq)) :
3224 next_net_device((struct net_device *)v);
3225
3226 ++*pos;
3227 return rcu_dereference(dev);
3228 }
3229
3230 void dev_seq_stop(struct seq_file *seq, void *v)
3231 __releases(RCU)
3232 {
3233 rcu_read_unlock();
3234 }
3235
3236 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3237 {
3238 const struct net_device_stats *stats = dev_get_stats(dev);
3239
3240 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3241 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3242 dev->name, stats->rx_bytes, stats->rx_packets,
3243 stats->rx_errors,
3244 stats->rx_dropped + stats->rx_missed_errors,
3245 stats->rx_fifo_errors,
3246 stats->rx_length_errors + stats->rx_over_errors +
3247 stats->rx_crc_errors + stats->rx_frame_errors,
3248 stats->rx_compressed, stats->multicast,
3249 stats->tx_bytes, stats->tx_packets,
3250 stats->tx_errors, stats->tx_dropped,
3251 stats->tx_fifo_errors, stats->collisions,
3252 stats->tx_carrier_errors +
3253 stats->tx_aborted_errors +
3254 stats->tx_window_errors +
3255 stats->tx_heartbeat_errors,
3256 stats->tx_compressed);
3257 }
3258
3259 /*
3260 * Called from the PROCfs module. This now uses the new arbitrary sized
3261 * /proc/net interface to create /proc/net/dev
3262 */
3263 static int dev_seq_show(struct seq_file *seq, void *v)
3264 {
3265 if (v == SEQ_START_TOKEN)
3266 seq_puts(seq, "Inter-| Receive "
3267 " | Transmit\n"
3268 " face |bytes packets errs drop fifo frame "
3269 "compressed multicast|bytes packets errs "
3270 "drop fifo colls carrier compressed\n");
3271 else
3272 dev_seq_printf_stats(seq, v);
3273 return 0;
3274 }
3275
3276 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3277 {
3278 struct netif_rx_stats *rc = NULL;
3279
3280 while (*pos < nr_cpu_ids)
3281 if (cpu_online(*pos)) {
3282 rc = &per_cpu(netdev_rx_stat, *pos);
3283 break;
3284 } else
3285 ++*pos;
3286 return rc;
3287 }
3288
3289 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3290 {
3291 return softnet_get_online(pos);
3292 }
3293
3294 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3295 {
3296 ++*pos;
3297 return softnet_get_online(pos);
3298 }
3299
3300 static void softnet_seq_stop(struct seq_file *seq, void *v)
3301 {
3302 }
3303
3304 static int softnet_seq_show(struct seq_file *seq, void *v)
3305 {
3306 struct netif_rx_stats *s = v;
3307
3308 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3309 s->total, s->dropped, s->time_squeeze, 0,
3310 0, 0, 0, 0, /* was fastroute */
3311 s->cpu_collision);
3312 return 0;
3313 }
3314
3315 static const struct seq_operations dev_seq_ops = {
3316 .start = dev_seq_start,
3317 .next = dev_seq_next,
3318 .stop = dev_seq_stop,
3319 .show = dev_seq_show,
3320 };
3321
3322 static int dev_seq_open(struct inode *inode, struct file *file)
3323 {
3324 return seq_open_net(inode, file, &dev_seq_ops,
3325 sizeof(struct seq_net_private));
3326 }
3327
3328 static const struct file_operations dev_seq_fops = {
3329 .owner = THIS_MODULE,
3330 .open = dev_seq_open,
3331 .read = seq_read,
3332 .llseek = seq_lseek,
3333 .release = seq_release_net,
3334 };
3335
3336 static const struct seq_operations softnet_seq_ops = {
3337 .start = softnet_seq_start,
3338 .next = softnet_seq_next,
3339 .stop = softnet_seq_stop,
3340 .show = softnet_seq_show,
3341 };
3342
3343 static int softnet_seq_open(struct inode *inode, struct file *file)
3344 {
3345 return seq_open(file, &softnet_seq_ops);
3346 }
3347
3348 static const struct file_operations softnet_seq_fops = {
3349 .owner = THIS_MODULE,
3350 .open = softnet_seq_open,
3351 .read = seq_read,
3352 .llseek = seq_lseek,
3353 .release = seq_release,
3354 };
3355
3356 static void *ptype_get_idx(loff_t pos)
3357 {
3358 struct packet_type *pt = NULL;
3359 loff_t i = 0;
3360 int t;
3361
3362 list_for_each_entry_rcu(pt, &ptype_all, list) {
3363 if (i == pos)
3364 return pt;
3365 ++i;
3366 }
3367
3368 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3369 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3370 if (i == pos)
3371 return pt;
3372 ++i;
3373 }
3374 }
3375 return NULL;
3376 }
3377
3378 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3379 __acquires(RCU)
3380 {
3381 rcu_read_lock();
3382 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3383 }
3384
3385 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3386 {
3387 struct packet_type *pt;
3388 struct list_head *nxt;
3389 int hash;
3390
3391 ++*pos;
3392 if (v == SEQ_START_TOKEN)
3393 return ptype_get_idx(0);
3394
3395 pt = v;
3396 nxt = pt->list.next;
3397 if (pt->type == htons(ETH_P_ALL)) {
3398 if (nxt != &ptype_all)
3399 goto found;
3400 hash = 0;
3401 nxt = ptype_base[0].next;
3402 } else
3403 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3404
3405 while (nxt == &ptype_base[hash]) {
3406 if (++hash >= PTYPE_HASH_SIZE)
3407 return NULL;
3408 nxt = ptype_base[hash].next;
3409 }
3410 found:
3411 return list_entry(nxt, struct packet_type, list);
3412 }
3413
3414 static void ptype_seq_stop(struct seq_file *seq, void *v)
3415 __releases(RCU)
3416 {
3417 rcu_read_unlock();
3418 }
3419
3420 static int ptype_seq_show(struct seq_file *seq, void *v)
3421 {
3422 struct packet_type *pt = v;
3423
3424 if (v == SEQ_START_TOKEN)
3425 seq_puts(seq, "Type Device Function\n");
3426 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3427 if (pt->type == htons(ETH_P_ALL))
3428 seq_puts(seq, "ALL ");
3429 else
3430 seq_printf(seq, "%04x", ntohs(pt->type));
3431
3432 seq_printf(seq, " %-8s %pF\n",
3433 pt->dev ? pt->dev->name : "", pt->func);
3434 }
3435
3436 return 0;
3437 }
3438
3439 static const struct seq_operations ptype_seq_ops = {
3440 .start = ptype_seq_start,
3441 .next = ptype_seq_next,
3442 .stop = ptype_seq_stop,
3443 .show = ptype_seq_show,
3444 };
3445
3446 static int ptype_seq_open(struct inode *inode, struct file *file)
3447 {
3448 return seq_open_net(inode, file, &ptype_seq_ops,
3449 sizeof(struct seq_net_private));
3450 }
3451
3452 static const struct file_operations ptype_seq_fops = {
3453 .owner = THIS_MODULE,
3454 .open = ptype_seq_open,
3455 .read = seq_read,
3456 .llseek = seq_lseek,
3457 .release = seq_release_net,
3458 };
3459
3460
3461 static int __net_init dev_proc_net_init(struct net *net)
3462 {
3463 int rc = -ENOMEM;
3464
3465 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3466 goto out;
3467 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3468 goto out_dev;
3469 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3470 goto out_softnet;
3471
3472 if (wext_proc_init(net))
3473 goto out_ptype;
3474 rc = 0;
3475 out:
3476 return rc;
3477 out_ptype:
3478 proc_net_remove(net, "ptype");
3479 out_softnet:
3480 proc_net_remove(net, "softnet_stat");
3481 out_dev:
3482 proc_net_remove(net, "dev");
3483 goto out;
3484 }
3485
3486 static void __net_exit dev_proc_net_exit(struct net *net)
3487 {
3488 wext_proc_exit(net);
3489
3490 proc_net_remove(net, "ptype");
3491 proc_net_remove(net, "softnet_stat");
3492 proc_net_remove(net, "dev");
3493 }
3494
3495 static struct pernet_operations __net_initdata dev_proc_ops = {
3496 .init = dev_proc_net_init,
3497 .exit = dev_proc_net_exit,
3498 };
3499
3500 static int __init dev_proc_init(void)
3501 {
3502 return register_pernet_subsys(&dev_proc_ops);
3503 }
3504 #else
3505 #define dev_proc_init() 0
3506 #endif /* CONFIG_PROC_FS */
3507
3508
3509 /**
3510 * netdev_set_master - set up master/slave pair
3511 * @slave: slave device
3512 * @master: new master device
3513 *
3514 * Changes the master device of the slave. Pass %NULL to break the
3515 * bonding. The caller must hold the RTNL semaphore. On a failure
3516 * a negative errno code is returned. On success the reference counts
3517 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3518 * function returns zero.
3519 */
3520 int netdev_set_master(struct net_device *slave, struct net_device *master)
3521 {
3522 struct net_device *old = slave->master;
3523
3524 ASSERT_RTNL();
3525
3526 if (master) {
3527 if (old)
3528 return -EBUSY;
3529 dev_hold(master);
3530 }
3531
3532 slave->master = master;
3533
3534 synchronize_net();
3535
3536 if (old)
3537 dev_put(old);
3538
3539 if (master)
3540 slave->flags |= IFF_SLAVE;
3541 else
3542 slave->flags &= ~IFF_SLAVE;
3543
3544 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3545 return 0;
3546 }
3547 EXPORT_SYMBOL(netdev_set_master);
3548
3549 static void dev_change_rx_flags(struct net_device *dev, int flags)
3550 {
3551 const struct net_device_ops *ops = dev->netdev_ops;
3552
3553 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3554 ops->ndo_change_rx_flags(dev, flags);
3555 }
3556
3557 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3558 {
3559 unsigned short old_flags = dev->flags;
3560 uid_t uid;
3561 gid_t gid;
3562
3563 ASSERT_RTNL();
3564
3565 dev->flags |= IFF_PROMISC;
3566 dev->promiscuity += inc;
3567 if (dev->promiscuity == 0) {
3568 /*
3569 * Avoid overflow.
3570 * If inc causes overflow, untouch promisc and return error.
3571 */
3572 if (inc < 0)
3573 dev->flags &= ~IFF_PROMISC;
3574 else {
3575 dev->promiscuity -= inc;
3576 printk(KERN_WARNING "%s: promiscuity touches roof, "
3577 "set promiscuity failed, promiscuity feature "
3578 "of device might be broken.\n", dev->name);
3579 return -EOVERFLOW;
3580 }
3581 }
3582 if (dev->flags != old_flags) {
3583 printk(KERN_INFO "device %s %s promiscuous mode\n",
3584 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3585 "left");
3586 if (audit_enabled) {
3587 current_uid_gid(&uid, &gid);
3588 audit_log(current->audit_context, GFP_ATOMIC,
3589 AUDIT_ANOM_PROMISCUOUS,
3590 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3591 dev->name, (dev->flags & IFF_PROMISC),
3592 (old_flags & IFF_PROMISC),
3593 audit_get_loginuid(current),
3594 uid, gid,
3595 audit_get_sessionid(current));
3596 }
3597
3598 dev_change_rx_flags(dev, IFF_PROMISC);
3599 }
3600 return 0;
3601 }
3602
3603 /**
3604 * dev_set_promiscuity - update promiscuity count on a device
3605 * @dev: device
3606 * @inc: modifier
3607 *
3608 * Add or remove promiscuity from a device. While the count in the device
3609 * remains above zero the interface remains promiscuous. Once it hits zero
3610 * the device reverts back to normal filtering operation. A negative inc
3611 * value is used to drop promiscuity on the device.
3612 * Return 0 if successful or a negative errno code on error.
3613 */
3614 int dev_set_promiscuity(struct net_device *dev, int inc)
3615 {
3616 unsigned short old_flags = dev->flags;
3617 int err;
3618
3619 err = __dev_set_promiscuity(dev, inc);
3620 if (err < 0)
3621 return err;
3622 if (dev->flags != old_flags)
3623 dev_set_rx_mode(dev);
3624 return err;
3625 }
3626 EXPORT_SYMBOL(dev_set_promiscuity);
3627
3628 /**
3629 * dev_set_allmulti - update allmulti count on a device
3630 * @dev: device
3631 * @inc: modifier
3632 *
3633 * Add or remove reception of all multicast frames to a device. While the
3634 * count in the device remains above zero the interface remains listening
3635 * to all interfaces. Once it hits zero the device reverts back to normal
3636 * filtering operation. A negative @inc value is used to drop the counter
3637 * when releasing a resource needing all multicasts.
3638 * Return 0 if successful or a negative errno code on error.
3639 */
3640
3641 int dev_set_allmulti(struct net_device *dev, int inc)
3642 {
3643 unsigned short old_flags = dev->flags;
3644
3645 ASSERT_RTNL();
3646
3647 dev->flags |= IFF_ALLMULTI;
3648 dev->allmulti += inc;
3649 if (dev->allmulti == 0) {
3650 /*
3651 * Avoid overflow.
3652 * If inc causes overflow, untouch allmulti and return error.
3653 */
3654 if (inc < 0)
3655 dev->flags &= ~IFF_ALLMULTI;
3656 else {
3657 dev->allmulti -= inc;
3658 printk(KERN_WARNING "%s: allmulti touches roof, "
3659 "set allmulti failed, allmulti feature of "
3660 "device might be broken.\n", dev->name);
3661 return -EOVERFLOW;
3662 }
3663 }
3664 if (dev->flags ^ old_flags) {
3665 dev_change_rx_flags(dev, IFF_ALLMULTI);
3666 dev_set_rx_mode(dev);
3667 }
3668 return 0;
3669 }
3670 EXPORT_SYMBOL(dev_set_allmulti);
3671
3672 /*
3673 * Upload unicast and multicast address lists to device and
3674 * configure RX filtering. When the device doesn't support unicast
3675 * filtering it is put in promiscuous mode while unicast addresses
3676 * are present.
3677 */
3678 void __dev_set_rx_mode(struct net_device *dev)
3679 {
3680 const struct net_device_ops *ops = dev->netdev_ops;
3681
3682 /* dev_open will call this function so the list will stay sane. */
3683 if (!(dev->flags&IFF_UP))
3684 return;
3685
3686 if (!netif_device_present(dev))
3687 return;
3688
3689 if (ops->ndo_set_rx_mode)
3690 ops->ndo_set_rx_mode(dev);
3691 else {
3692 /* Unicast addresses changes may only happen under the rtnl,
3693 * therefore calling __dev_set_promiscuity here is safe.
3694 */
3695 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3696 __dev_set_promiscuity(dev, 1);
3697 dev->uc_promisc = 1;
3698 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3699 __dev_set_promiscuity(dev, -1);
3700 dev->uc_promisc = 0;
3701 }
3702
3703 if (ops->ndo_set_multicast_list)
3704 ops->ndo_set_multicast_list(dev);
3705 }
3706 }
3707
3708 void dev_set_rx_mode(struct net_device *dev)
3709 {
3710 netif_addr_lock_bh(dev);
3711 __dev_set_rx_mode(dev);
3712 netif_addr_unlock_bh(dev);
3713 }
3714
3715 /* hw addresses list handling functions */
3716
3717 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3718 int addr_len, unsigned char addr_type)
3719 {
3720 struct netdev_hw_addr *ha;
3721 int alloc_size;
3722
3723 if (addr_len > MAX_ADDR_LEN)
3724 return -EINVAL;
3725
3726 list_for_each_entry(ha, &list->list, list) {
3727 if (!memcmp(ha->addr, addr, addr_len) &&
3728 ha->type == addr_type) {
3729 ha->refcount++;
3730 return 0;
3731 }
3732 }
3733
3734
3735 alloc_size = sizeof(*ha);
3736 if (alloc_size < L1_CACHE_BYTES)
3737 alloc_size = L1_CACHE_BYTES;
3738 ha = kmalloc(alloc_size, GFP_ATOMIC);
3739 if (!ha)
3740 return -ENOMEM;
3741 memcpy(ha->addr, addr, addr_len);
3742 ha->type = addr_type;
3743 ha->refcount = 1;
3744 ha->synced = false;
3745 list_add_tail_rcu(&ha->list, &list->list);
3746 list->count++;
3747 return 0;
3748 }
3749
3750 static void ha_rcu_free(struct rcu_head *head)
3751 {
3752 struct netdev_hw_addr *ha;
3753
3754 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3755 kfree(ha);
3756 }
3757
3758 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3759 int addr_len, unsigned char addr_type)
3760 {
3761 struct netdev_hw_addr *ha;
3762
3763 list_for_each_entry(ha, &list->list, list) {
3764 if (!memcmp(ha->addr, addr, addr_len) &&
3765 (ha->type == addr_type || !addr_type)) {
3766 if (--ha->refcount)
3767 return 0;
3768 list_del_rcu(&ha->list);
3769 call_rcu(&ha->rcu_head, ha_rcu_free);
3770 list->count--;
3771 return 0;
3772 }
3773 }
3774 return -ENOENT;
3775 }
3776
3777 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3778 struct netdev_hw_addr_list *from_list,
3779 int addr_len,
3780 unsigned char addr_type)
3781 {
3782 int err;
3783 struct netdev_hw_addr *ha, *ha2;
3784 unsigned char type;
3785
3786 list_for_each_entry(ha, &from_list->list, list) {
3787 type = addr_type ? addr_type : ha->type;
3788 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3789 if (err)
3790 goto unroll;
3791 }
3792 return 0;
3793
3794 unroll:
3795 list_for_each_entry(ha2, &from_list->list, list) {
3796 if (ha2 == ha)
3797 break;
3798 type = addr_type ? addr_type : ha2->type;
3799 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3800 }
3801 return err;
3802 }
3803
3804 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3805 struct netdev_hw_addr_list *from_list,
3806 int addr_len,
3807 unsigned char addr_type)
3808 {
3809 struct netdev_hw_addr *ha;
3810 unsigned char type;
3811
3812 list_for_each_entry(ha, &from_list->list, list) {
3813 type = addr_type ? addr_type : ha->type;
3814 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3815 }
3816 }
3817
3818 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3819 struct netdev_hw_addr_list *from_list,
3820 int addr_len)
3821 {
3822 int err = 0;
3823 struct netdev_hw_addr *ha, *tmp;
3824
3825 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3826 if (!ha->synced) {
3827 err = __hw_addr_add(to_list, ha->addr,
3828 addr_len, ha->type);
3829 if (err)
3830 break;
3831 ha->synced = true;
3832 ha->refcount++;
3833 } else if (ha->refcount == 1) {
3834 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3835 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3836 }
3837 }
3838 return err;
3839 }
3840
3841 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3842 struct netdev_hw_addr_list *from_list,
3843 int addr_len)
3844 {
3845 struct netdev_hw_addr *ha, *tmp;
3846
3847 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3848 if (ha->synced) {
3849 __hw_addr_del(to_list, ha->addr,
3850 addr_len, ha->type);
3851 ha->synced = false;
3852 __hw_addr_del(from_list, ha->addr,
3853 addr_len, ha->type);
3854 }
3855 }
3856 }
3857
3858 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3859 {
3860 struct netdev_hw_addr *ha, *tmp;
3861
3862 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3863 list_del_rcu(&ha->list);
3864 call_rcu(&ha->rcu_head, ha_rcu_free);
3865 }
3866 list->count = 0;
3867 }
3868
3869 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3870 {
3871 INIT_LIST_HEAD(&list->list);
3872 list->count = 0;
3873 }
3874
3875 /* Device addresses handling functions */
3876
3877 static void dev_addr_flush(struct net_device *dev)
3878 {
3879 /* rtnl_mutex must be held here */
3880
3881 __hw_addr_flush(&dev->dev_addrs);
3882 dev->dev_addr = NULL;
3883 }
3884
3885 static int dev_addr_init(struct net_device *dev)
3886 {
3887 unsigned char addr[MAX_ADDR_LEN];
3888 struct netdev_hw_addr *ha;
3889 int err;
3890
3891 /* rtnl_mutex must be held here */
3892
3893 __hw_addr_init(&dev->dev_addrs);
3894 memset(addr, 0, sizeof(addr));
3895 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3896 NETDEV_HW_ADDR_T_LAN);
3897 if (!err) {
3898 /*
3899 * Get the first (previously created) address from the list
3900 * and set dev_addr pointer to this location.
3901 */
3902 ha = list_first_entry(&dev->dev_addrs.list,
3903 struct netdev_hw_addr, list);
3904 dev->dev_addr = ha->addr;
3905 }
3906 return err;
3907 }
3908
3909 /**
3910 * dev_addr_add - Add a device address
3911 * @dev: device
3912 * @addr: address to add
3913 * @addr_type: address type
3914 *
3915 * Add a device address to the device or increase the reference count if
3916 * it already exists.
3917 *
3918 * The caller must hold the rtnl_mutex.
3919 */
3920 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3921 unsigned char addr_type)
3922 {
3923 int err;
3924
3925 ASSERT_RTNL();
3926
3927 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3928 if (!err)
3929 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3930 return err;
3931 }
3932 EXPORT_SYMBOL(dev_addr_add);
3933
3934 /**
3935 * dev_addr_del - Release a device address.
3936 * @dev: device
3937 * @addr: address to delete
3938 * @addr_type: address type
3939 *
3940 * Release reference to a device address and remove it from the device
3941 * if the reference count drops to zero.
3942 *
3943 * The caller must hold the rtnl_mutex.
3944 */
3945 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3946 unsigned char addr_type)
3947 {
3948 int err;
3949 struct netdev_hw_addr *ha;
3950
3951 ASSERT_RTNL();
3952
3953 /*
3954 * We can not remove the first address from the list because
3955 * dev->dev_addr points to that.
3956 */
3957 ha = list_first_entry(&dev->dev_addrs.list,
3958 struct netdev_hw_addr, list);
3959 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3960 return -ENOENT;
3961
3962 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3963 addr_type);
3964 if (!err)
3965 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3966 return err;
3967 }
3968 EXPORT_SYMBOL(dev_addr_del);
3969
3970 /**
3971 * dev_addr_add_multiple - Add device addresses from another device
3972 * @to_dev: device to which addresses will be added
3973 * @from_dev: device from which addresses will be added
3974 * @addr_type: address type - 0 means type will be used from from_dev
3975 *
3976 * Add device addresses of the one device to another.
3977 **
3978 * The caller must hold the rtnl_mutex.
3979 */
3980 int dev_addr_add_multiple(struct net_device *to_dev,
3981 struct net_device *from_dev,
3982 unsigned char addr_type)
3983 {
3984 int err;
3985
3986 ASSERT_RTNL();
3987
3988 if (from_dev->addr_len != to_dev->addr_len)
3989 return -EINVAL;
3990 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3991 to_dev->addr_len, addr_type);
3992 if (!err)
3993 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3994 return err;
3995 }
3996 EXPORT_SYMBOL(dev_addr_add_multiple);
3997
3998 /**
3999 * dev_addr_del_multiple - Delete device addresses by another device
4000 * @to_dev: device where the addresses will be deleted
4001 * @from_dev: device by which addresses the addresses will be deleted
4002 * @addr_type: address type - 0 means type will used from from_dev
4003 *
4004 * Deletes addresses in to device by the list of addresses in from device.
4005 *
4006 * The caller must hold the rtnl_mutex.
4007 */
4008 int dev_addr_del_multiple(struct net_device *to_dev,
4009 struct net_device *from_dev,
4010 unsigned char addr_type)
4011 {
4012 ASSERT_RTNL();
4013
4014 if (from_dev->addr_len != to_dev->addr_len)
4015 return -EINVAL;
4016 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4017 to_dev->addr_len, addr_type);
4018 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4019 return 0;
4020 }
4021 EXPORT_SYMBOL(dev_addr_del_multiple);
4022
4023 /* multicast addresses handling functions */
4024
4025 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4026 void *addr, int alen, int glbl)
4027 {
4028 struct dev_addr_list *da;
4029
4030 for (; (da = *list) != NULL; list = &da->next) {
4031 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4032 alen == da->da_addrlen) {
4033 if (glbl) {
4034 int old_glbl = da->da_gusers;
4035 da->da_gusers = 0;
4036 if (old_glbl == 0)
4037 break;
4038 }
4039 if (--da->da_users)
4040 return 0;
4041
4042 *list = da->next;
4043 kfree(da);
4044 (*count)--;
4045 return 0;
4046 }
4047 }
4048 return -ENOENT;
4049 }
4050
4051 int __dev_addr_add(struct dev_addr_list **list, int *count,
4052 void *addr, int alen, int glbl)
4053 {
4054 struct dev_addr_list *da;
4055
4056 for (da = *list; da != NULL; da = da->next) {
4057 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4058 da->da_addrlen == alen) {
4059 if (glbl) {
4060 int old_glbl = da->da_gusers;
4061 da->da_gusers = 1;
4062 if (old_glbl)
4063 return 0;
4064 }
4065 da->da_users++;
4066 return 0;
4067 }
4068 }
4069
4070 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4071 if (da == NULL)
4072 return -ENOMEM;
4073 memcpy(da->da_addr, addr, alen);
4074 da->da_addrlen = alen;
4075 da->da_users = 1;
4076 da->da_gusers = glbl ? 1 : 0;
4077 da->next = *list;
4078 *list = da;
4079 (*count)++;
4080 return 0;
4081 }
4082
4083 /**
4084 * dev_unicast_delete - Release secondary unicast address.
4085 * @dev: device
4086 * @addr: address to delete
4087 *
4088 * Release reference to a secondary unicast address and remove it
4089 * from the device if the reference count drops to zero.
4090 *
4091 * The caller must hold the rtnl_mutex.
4092 */
4093 int dev_unicast_delete(struct net_device *dev, void *addr)
4094 {
4095 int err;
4096
4097 ASSERT_RTNL();
4098
4099 netif_addr_lock_bh(dev);
4100 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4101 NETDEV_HW_ADDR_T_UNICAST);
4102 if (!err)
4103 __dev_set_rx_mode(dev);
4104 netif_addr_unlock_bh(dev);
4105 return err;
4106 }
4107 EXPORT_SYMBOL(dev_unicast_delete);
4108
4109 /**
4110 * dev_unicast_add - add a secondary unicast address
4111 * @dev: device
4112 * @addr: address to add
4113 *
4114 * Add a secondary unicast address to the device or increase
4115 * the reference count if it already exists.
4116 *
4117 * The caller must hold the rtnl_mutex.
4118 */
4119 int dev_unicast_add(struct net_device *dev, void *addr)
4120 {
4121 int err;
4122
4123 ASSERT_RTNL();
4124
4125 netif_addr_lock_bh(dev);
4126 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4127 NETDEV_HW_ADDR_T_UNICAST);
4128 if (!err)
4129 __dev_set_rx_mode(dev);
4130 netif_addr_unlock_bh(dev);
4131 return err;
4132 }
4133 EXPORT_SYMBOL(dev_unicast_add);
4134
4135 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4136 struct dev_addr_list **from, int *from_count)
4137 {
4138 struct dev_addr_list *da, *next;
4139 int err = 0;
4140
4141 da = *from;
4142 while (da != NULL) {
4143 next = da->next;
4144 if (!da->da_synced) {
4145 err = __dev_addr_add(to, to_count,
4146 da->da_addr, da->da_addrlen, 0);
4147 if (err < 0)
4148 break;
4149 da->da_synced = 1;
4150 da->da_users++;
4151 } else if (da->da_users == 1) {
4152 __dev_addr_delete(to, to_count,
4153 da->da_addr, da->da_addrlen, 0);
4154 __dev_addr_delete(from, from_count,
4155 da->da_addr, da->da_addrlen, 0);
4156 }
4157 da = next;
4158 }
4159 return err;
4160 }
4161 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4162
4163 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4164 struct dev_addr_list **from, int *from_count)
4165 {
4166 struct dev_addr_list *da, *next;
4167
4168 da = *from;
4169 while (da != NULL) {
4170 next = da->next;
4171 if (da->da_synced) {
4172 __dev_addr_delete(to, to_count,
4173 da->da_addr, da->da_addrlen, 0);
4174 da->da_synced = 0;
4175 __dev_addr_delete(from, from_count,
4176 da->da_addr, da->da_addrlen, 0);
4177 }
4178 da = next;
4179 }
4180 }
4181 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4182
4183 /**
4184 * dev_unicast_sync - Synchronize device's unicast list to another device
4185 * @to: destination device
4186 * @from: source device
4187 *
4188 * Add newly added addresses to the destination device and release
4189 * addresses that have no users left. The source device must be
4190 * locked by netif_tx_lock_bh.
4191 *
4192 * This function is intended to be called from the dev->set_rx_mode
4193 * function of layered software devices.
4194 */
4195 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4196 {
4197 int err = 0;
4198
4199 if (to->addr_len != from->addr_len)
4200 return -EINVAL;
4201
4202 netif_addr_lock_bh(to);
4203 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4204 if (!err)
4205 __dev_set_rx_mode(to);
4206 netif_addr_unlock_bh(to);
4207 return err;
4208 }
4209 EXPORT_SYMBOL(dev_unicast_sync);
4210
4211 /**
4212 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4213 * @to: destination device
4214 * @from: source device
4215 *
4216 * Remove all addresses that were added to the destination device by
4217 * dev_unicast_sync(). This function is intended to be called from the
4218 * dev->stop function of layered software devices.
4219 */
4220 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4221 {
4222 if (to->addr_len != from->addr_len)
4223 return;
4224
4225 netif_addr_lock_bh(from);
4226 netif_addr_lock(to);
4227 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4228 __dev_set_rx_mode(to);
4229 netif_addr_unlock(to);
4230 netif_addr_unlock_bh(from);
4231 }
4232 EXPORT_SYMBOL(dev_unicast_unsync);
4233
4234 static void dev_unicast_flush(struct net_device *dev)
4235 {
4236 netif_addr_lock_bh(dev);
4237 __hw_addr_flush(&dev->uc);
4238 netif_addr_unlock_bh(dev);
4239 }
4240
4241 static void dev_unicast_init(struct net_device *dev)
4242 {
4243 __hw_addr_init(&dev->uc);
4244 }
4245
4246
4247 static void __dev_addr_discard(struct dev_addr_list **list)
4248 {
4249 struct dev_addr_list *tmp;
4250
4251 while (*list != NULL) {
4252 tmp = *list;
4253 *list = tmp->next;
4254 if (tmp->da_users > tmp->da_gusers)
4255 printk("__dev_addr_discard: address leakage! "
4256 "da_users=%d\n", tmp->da_users);
4257 kfree(tmp);
4258 }
4259 }
4260
4261 static void dev_addr_discard(struct net_device *dev)
4262 {
4263 netif_addr_lock_bh(dev);
4264
4265 __dev_addr_discard(&dev->mc_list);
4266 dev->mc_count = 0;
4267
4268 netif_addr_unlock_bh(dev);
4269 }
4270
4271 /**
4272 * dev_get_flags - get flags reported to userspace
4273 * @dev: device
4274 *
4275 * Get the combination of flag bits exported through APIs to userspace.
4276 */
4277 unsigned dev_get_flags(const struct net_device *dev)
4278 {
4279 unsigned flags;
4280
4281 flags = (dev->flags & ~(IFF_PROMISC |
4282 IFF_ALLMULTI |
4283 IFF_RUNNING |
4284 IFF_LOWER_UP |
4285 IFF_DORMANT)) |
4286 (dev->gflags & (IFF_PROMISC |
4287 IFF_ALLMULTI));
4288
4289 if (netif_running(dev)) {
4290 if (netif_oper_up(dev))
4291 flags |= IFF_RUNNING;
4292 if (netif_carrier_ok(dev))
4293 flags |= IFF_LOWER_UP;
4294 if (netif_dormant(dev))
4295 flags |= IFF_DORMANT;
4296 }
4297
4298 return flags;
4299 }
4300 EXPORT_SYMBOL(dev_get_flags);
4301
4302 /**
4303 * dev_change_flags - change device settings
4304 * @dev: device
4305 * @flags: device state flags
4306 *
4307 * Change settings on device based state flags. The flags are
4308 * in the userspace exported format.
4309 */
4310 int dev_change_flags(struct net_device *dev, unsigned flags)
4311 {
4312 int ret, changes;
4313 int old_flags = dev->flags;
4314
4315 ASSERT_RTNL();
4316
4317 /*
4318 * Set the flags on our device.
4319 */
4320
4321 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4322 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4323 IFF_AUTOMEDIA)) |
4324 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4325 IFF_ALLMULTI));
4326
4327 /*
4328 * Load in the correct multicast list now the flags have changed.
4329 */
4330
4331 if ((old_flags ^ flags) & IFF_MULTICAST)
4332 dev_change_rx_flags(dev, IFF_MULTICAST);
4333
4334 dev_set_rx_mode(dev);
4335
4336 /*
4337 * Have we downed the interface. We handle IFF_UP ourselves
4338 * according to user attempts to set it, rather than blindly
4339 * setting it.
4340 */
4341
4342 ret = 0;
4343 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4344 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4345
4346 if (!ret)
4347 dev_set_rx_mode(dev);
4348 }
4349
4350 if (dev->flags & IFF_UP &&
4351 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4352 IFF_VOLATILE)))
4353 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4354
4355 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4356 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4357
4358 dev->gflags ^= IFF_PROMISC;
4359 dev_set_promiscuity(dev, inc);
4360 }
4361
4362 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4363 is important. Some (broken) drivers set IFF_PROMISC, when
4364 IFF_ALLMULTI is requested not asking us and not reporting.
4365 */
4366 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4367 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4368
4369 dev->gflags ^= IFF_ALLMULTI;
4370 dev_set_allmulti(dev, inc);
4371 }
4372
4373 /* Exclude state transition flags, already notified */
4374 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4375 if (changes)
4376 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4377
4378 return ret;
4379 }
4380 EXPORT_SYMBOL(dev_change_flags);
4381
4382 /**
4383 * dev_set_mtu - Change maximum transfer unit
4384 * @dev: device
4385 * @new_mtu: new transfer unit
4386 *
4387 * Change the maximum transfer size of the network device.
4388 */
4389 int dev_set_mtu(struct net_device *dev, int new_mtu)
4390 {
4391 const struct net_device_ops *ops = dev->netdev_ops;
4392 int err;
4393
4394 if (new_mtu == dev->mtu)
4395 return 0;
4396
4397 /* MTU must be positive. */
4398 if (new_mtu < 0)
4399 return -EINVAL;
4400
4401 if (!netif_device_present(dev))
4402 return -ENODEV;
4403
4404 err = 0;
4405 if (ops->ndo_change_mtu)
4406 err = ops->ndo_change_mtu(dev, new_mtu);
4407 else
4408 dev->mtu = new_mtu;
4409
4410 if (!err && dev->flags & IFF_UP)
4411 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4412 return err;
4413 }
4414 EXPORT_SYMBOL(dev_set_mtu);
4415
4416 /**
4417 * dev_set_mac_address - Change Media Access Control Address
4418 * @dev: device
4419 * @sa: new address
4420 *
4421 * Change the hardware (MAC) address of the device
4422 */
4423 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4424 {
4425 const struct net_device_ops *ops = dev->netdev_ops;
4426 int err;
4427
4428 if (!ops->ndo_set_mac_address)
4429 return -EOPNOTSUPP;
4430 if (sa->sa_family != dev->type)
4431 return -EINVAL;
4432 if (!netif_device_present(dev))
4433 return -ENODEV;
4434 err = ops->ndo_set_mac_address(dev, sa);
4435 if (!err)
4436 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4437 return err;
4438 }
4439 EXPORT_SYMBOL(dev_set_mac_address);
4440
4441 /*
4442 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4443 */
4444 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4445 {
4446 int err;
4447 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4448
4449 if (!dev)
4450 return -ENODEV;
4451
4452 switch (cmd) {
4453 case SIOCGIFFLAGS: /* Get interface flags */
4454 ifr->ifr_flags = (short) dev_get_flags(dev);
4455 return 0;
4456
4457 case SIOCGIFMETRIC: /* Get the metric on the interface
4458 (currently unused) */
4459 ifr->ifr_metric = 0;
4460 return 0;
4461
4462 case SIOCGIFMTU: /* Get the MTU of a device */
4463 ifr->ifr_mtu = dev->mtu;
4464 return 0;
4465
4466 case SIOCGIFHWADDR:
4467 if (!dev->addr_len)
4468 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4469 else
4470 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4471 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4472 ifr->ifr_hwaddr.sa_family = dev->type;
4473 return 0;
4474
4475 case SIOCGIFSLAVE:
4476 err = -EINVAL;
4477 break;
4478
4479 case SIOCGIFMAP:
4480 ifr->ifr_map.mem_start = dev->mem_start;
4481 ifr->ifr_map.mem_end = dev->mem_end;
4482 ifr->ifr_map.base_addr = dev->base_addr;
4483 ifr->ifr_map.irq = dev->irq;
4484 ifr->ifr_map.dma = dev->dma;
4485 ifr->ifr_map.port = dev->if_port;
4486 return 0;
4487
4488 case SIOCGIFINDEX:
4489 ifr->ifr_ifindex = dev->ifindex;
4490 return 0;
4491
4492 case SIOCGIFTXQLEN:
4493 ifr->ifr_qlen = dev->tx_queue_len;
4494 return 0;
4495
4496 default:
4497 /* dev_ioctl() should ensure this case
4498 * is never reached
4499 */
4500 WARN_ON(1);
4501 err = -EINVAL;
4502 break;
4503
4504 }
4505 return err;
4506 }
4507
4508 /*
4509 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4510 */
4511 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4512 {
4513 int err;
4514 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4515 const struct net_device_ops *ops;
4516
4517 if (!dev)
4518 return -ENODEV;
4519
4520 ops = dev->netdev_ops;
4521
4522 switch (cmd) {
4523 case SIOCSIFFLAGS: /* Set interface flags */
4524 return dev_change_flags(dev, ifr->ifr_flags);
4525
4526 case SIOCSIFMETRIC: /* Set the metric on the interface
4527 (currently unused) */
4528 return -EOPNOTSUPP;
4529
4530 case SIOCSIFMTU: /* Set the MTU of a device */
4531 return dev_set_mtu(dev, ifr->ifr_mtu);
4532
4533 case SIOCSIFHWADDR:
4534 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4535
4536 case SIOCSIFHWBROADCAST:
4537 if (ifr->ifr_hwaddr.sa_family != dev->type)
4538 return -EINVAL;
4539 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4540 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4541 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4542 return 0;
4543
4544 case SIOCSIFMAP:
4545 if (ops->ndo_set_config) {
4546 if (!netif_device_present(dev))
4547 return -ENODEV;
4548 return ops->ndo_set_config(dev, &ifr->ifr_map);
4549 }
4550 return -EOPNOTSUPP;
4551
4552 case SIOCADDMULTI:
4553 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4554 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4555 return -EINVAL;
4556 if (!netif_device_present(dev))
4557 return -ENODEV;
4558 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4559 dev->addr_len, 1);
4560
4561 case SIOCDELMULTI:
4562 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4563 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4564 return -EINVAL;
4565 if (!netif_device_present(dev))
4566 return -ENODEV;
4567 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4568 dev->addr_len, 1);
4569
4570 case SIOCSIFTXQLEN:
4571 if (ifr->ifr_qlen < 0)
4572 return -EINVAL;
4573 dev->tx_queue_len = ifr->ifr_qlen;
4574 return 0;
4575
4576 case SIOCSIFNAME:
4577 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4578 return dev_change_name(dev, ifr->ifr_newname);
4579
4580 /*
4581 * Unknown or private ioctl
4582 */
4583 default:
4584 if ((cmd >= SIOCDEVPRIVATE &&
4585 cmd <= SIOCDEVPRIVATE + 15) ||
4586 cmd == SIOCBONDENSLAVE ||
4587 cmd == SIOCBONDRELEASE ||
4588 cmd == SIOCBONDSETHWADDR ||
4589 cmd == SIOCBONDSLAVEINFOQUERY ||
4590 cmd == SIOCBONDINFOQUERY ||
4591 cmd == SIOCBONDCHANGEACTIVE ||
4592 cmd == SIOCGMIIPHY ||
4593 cmd == SIOCGMIIREG ||
4594 cmd == SIOCSMIIREG ||
4595 cmd == SIOCBRADDIF ||
4596 cmd == SIOCBRDELIF ||
4597 cmd == SIOCSHWTSTAMP ||
4598 cmd == SIOCWANDEV) {
4599 err = -EOPNOTSUPP;
4600 if (ops->ndo_do_ioctl) {
4601 if (netif_device_present(dev))
4602 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4603 else
4604 err = -ENODEV;
4605 }
4606 } else
4607 err = -EINVAL;
4608
4609 }
4610 return err;
4611 }
4612
4613 /*
4614 * This function handles all "interface"-type I/O control requests. The actual
4615 * 'doing' part of this is dev_ifsioc above.
4616 */
4617
4618 /**
4619 * dev_ioctl - network device ioctl
4620 * @net: the applicable net namespace
4621 * @cmd: command to issue
4622 * @arg: pointer to a struct ifreq in user space
4623 *
4624 * Issue ioctl functions to devices. This is normally called by the
4625 * user space syscall interfaces but can sometimes be useful for
4626 * other purposes. The return value is the return from the syscall if
4627 * positive or a negative errno code on error.
4628 */
4629
4630 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4631 {
4632 struct ifreq ifr;
4633 int ret;
4634 char *colon;
4635
4636 /* One special case: SIOCGIFCONF takes ifconf argument
4637 and requires shared lock, because it sleeps writing
4638 to user space.
4639 */
4640
4641 if (cmd == SIOCGIFCONF) {
4642 rtnl_lock();
4643 ret = dev_ifconf(net, (char __user *) arg);
4644 rtnl_unlock();
4645 return ret;
4646 }
4647 if (cmd == SIOCGIFNAME)
4648 return dev_ifname(net, (struct ifreq __user *)arg);
4649
4650 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4651 return -EFAULT;
4652
4653 ifr.ifr_name[IFNAMSIZ-1] = 0;
4654
4655 colon = strchr(ifr.ifr_name, ':');
4656 if (colon)
4657 *colon = 0;
4658
4659 /*
4660 * See which interface the caller is talking about.
4661 */
4662
4663 switch (cmd) {
4664 /*
4665 * These ioctl calls:
4666 * - can be done by all.
4667 * - atomic and do not require locking.
4668 * - return a value
4669 */
4670 case SIOCGIFFLAGS:
4671 case SIOCGIFMETRIC:
4672 case SIOCGIFMTU:
4673 case SIOCGIFHWADDR:
4674 case SIOCGIFSLAVE:
4675 case SIOCGIFMAP:
4676 case SIOCGIFINDEX:
4677 case SIOCGIFTXQLEN:
4678 dev_load(net, ifr.ifr_name);
4679 rcu_read_lock();
4680 ret = dev_ifsioc_locked(net, &ifr, cmd);
4681 rcu_read_unlock();
4682 if (!ret) {
4683 if (colon)
4684 *colon = ':';
4685 if (copy_to_user(arg, &ifr,
4686 sizeof(struct ifreq)))
4687 ret = -EFAULT;
4688 }
4689 return ret;
4690
4691 case SIOCETHTOOL:
4692 dev_load(net, ifr.ifr_name);
4693 rtnl_lock();
4694 ret = dev_ethtool(net, &ifr);
4695 rtnl_unlock();
4696 if (!ret) {
4697 if (colon)
4698 *colon = ':';
4699 if (copy_to_user(arg, &ifr,
4700 sizeof(struct ifreq)))
4701 ret = -EFAULT;
4702 }
4703 return ret;
4704
4705 /*
4706 * These ioctl calls:
4707 * - require superuser power.
4708 * - require strict serialization.
4709 * - return a value
4710 */
4711 case SIOCGMIIPHY:
4712 case SIOCGMIIREG:
4713 case SIOCSIFNAME:
4714 if (!capable(CAP_NET_ADMIN))
4715 return -EPERM;
4716 dev_load(net, ifr.ifr_name);
4717 rtnl_lock();
4718 ret = dev_ifsioc(net, &ifr, cmd);
4719 rtnl_unlock();
4720 if (!ret) {
4721 if (colon)
4722 *colon = ':';
4723 if (copy_to_user(arg, &ifr,
4724 sizeof(struct ifreq)))
4725 ret = -EFAULT;
4726 }
4727 return ret;
4728
4729 /*
4730 * These ioctl calls:
4731 * - require superuser power.
4732 * - require strict serialization.
4733 * - do not return a value
4734 */
4735 case SIOCSIFFLAGS:
4736 case SIOCSIFMETRIC:
4737 case SIOCSIFMTU:
4738 case SIOCSIFMAP:
4739 case SIOCSIFHWADDR:
4740 case SIOCSIFSLAVE:
4741 case SIOCADDMULTI:
4742 case SIOCDELMULTI:
4743 case SIOCSIFHWBROADCAST:
4744 case SIOCSIFTXQLEN:
4745 case SIOCSMIIREG:
4746 case SIOCBONDENSLAVE:
4747 case SIOCBONDRELEASE:
4748 case SIOCBONDSETHWADDR:
4749 case SIOCBONDCHANGEACTIVE:
4750 case SIOCBRADDIF:
4751 case SIOCBRDELIF:
4752 case SIOCSHWTSTAMP:
4753 if (!capable(CAP_NET_ADMIN))
4754 return -EPERM;
4755 /* fall through */
4756 case SIOCBONDSLAVEINFOQUERY:
4757 case SIOCBONDINFOQUERY:
4758 dev_load(net, ifr.ifr_name);
4759 rtnl_lock();
4760 ret = dev_ifsioc(net, &ifr, cmd);
4761 rtnl_unlock();
4762 return ret;
4763
4764 case SIOCGIFMEM:
4765 /* Get the per device memory space. We can add this but
4766 * currently do not support it */
4767 case SIOCSIFMEM:
4768 /* Set the per device memory buffer space.
4769 * Not applicable in our case */
4770 case SIOCSIFLINK:
4771 return -EINVAL;
4772
4773 /*
4774 * Unknown or private ioctl.
4775 */
4776 default:
4777 if (cmd == SIOCWANDEV ||
4778 (cmd >= SIOCDEVPRIVATE &&
4779 cmd <= SIOCDEVPRIVATE + 15)) {
4780 dev_load(net, ifr.ifr_name);
4781 rtnl_lock();
4782 ret = dev_ifsioc(net, &ifr, cmd);
4783 rtnl_unlock();
4784 if (!ret && copy_to_user(arg, &ifr,
4785 sizeof(struct ifreq)))
4786 ret = -EFAULT;
4787 return ret;
4788 }
4789 /* Take care of Wireless Extensions */
4790 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4791 return wext_handle_ioctl(net, &ifr, cmd, arg);
4792 return -EINVAL;
4793 }
4794 }
4795
4796
4797 /**
4798 * dev_new_index - allocate an ifindex
4799 * @net: the applicable net namespace
4800 *
4801 * Returns a suitable unique value for a new device interface
4802 * number. The caller must hold the rtnl semaphore or the
4803 * dev_base_lock to be sure it remains unique.
4804 */
4805 static int dev_new_index(struct net *net)
4806 {
4807 static int ifindex;
4808 for (;;) {
4809 if (++ifindex <= 0)
4810 ifindex = 1;
4811 if (!__dev_get_by_index(net, ifindex))
4812 return ifindex;
4813 }
4814 }
4815
4816 /* Delayed registration/unregisteration */
4817 static LIST_HEAD(net_todo_list);
4818
4819 static void net_set_todo(struct net_device *dev)
4820 {
4821 list_add_tail(&dev->todo_list, &net_todo_list);
4822 }
4823
4824 static void rollback_registered_many(struct list_head *head)
4825 {
4826 struct net_device *dev, *tmp;
4827
4828 BUG_ON(dev_boot_phase);
4829 ASSERT_RTNL();
4830
4831 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4832 /* Some devices call without registering
4833 * for initialization unwind. Remove those
4834 * devices and proceed with the remaining.
4835 */
4836 if (dev->reg_state == NETREG_UNINITIALIZED) {
4837 pr_debug("unregister_netdevice: device %s/%p never "
4838 "was registered\n", dev->name, dev);
4839
4840 WARN_ON(1);
4841 list_del(&dev->unreg_list);
4842 continue;
4843 }
4844
4845 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4846
4847 /* If device is running, close it first. */
4848 dev_close(dev);
4849
4850 /* And unlink it from device chain. */
4851 unlist_netdevice(dev);
4852
4853 dev->reg_state = NETREG_UNREGISTERING;
4854 }
4855
4856 synchronize_net();
4857
4858 list_for_each_entry(dev, head, unreg_list) {
4859 /* Shutdown queueing discipline. */
4860 dev_shutdown(dev);
4861
4862
4863 /* Notify protocols, that we are about to destroy
4864 this device. They should clean all the things.
4865 */
4866 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4867
4868 /*
4869 * Flush the unicast and multicast chains
4870 */
4871 dev_unicast_flush(dev);
4872 dev_addr_discard(dev);
4873
4874 if (dev->netdev_ops->ndo_uninit)
4875 dev->netdev_ops->ndo_uninit(dev);
4876
4877 /* Notifier chain MUST detach us from master device. */
4878 WARN_ON(dev->master);
4879
4880 /* Remove entries from kobject tree */
4881 netdev_unregister_kobject(dev);
4882 }
4883
4884 /* Process any work delayed until the end of the batch */
4885 dev = list_entry(head->next, struct net_device, unreg_list);
4886 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4887
4888 synchronize_net();
4889
4890 list_for_each_entry(dev, head, unreg_list)
4891 dev_put(dev);
4892 }
4893
4894 static void rollback_registered(struct net_device *dev)
4895 {
4896 LIST_HEAD(single);
4897
4898 list_add(&dev->unreg_list, &single);
4899 rollback_registered_many(&single);
4900 }
4901
4902 static void __netdev_init_queue_locks_one(struct net_device *dev,
4903 struct netdev_queue *dev_queue,
4904 void *_unused)
4905 {
4906 spin_lock_init(&dev_queue->_xmit_lock);
4907 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4908 dev_queue->xmit_lock_owner = -1;
4909 }
4910
4911 static void netdev_init_queue_locks(struct net_device *dev)
4912 {
4913 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4914 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4915 }
4916
4917 unsigned long netdev_fix_features(unsigned long features, const char *name)
4918 {
4919 /* Fix illegal SG+CSUM combinations. */
4920 if ((features & NETIF_F_SG) &&
4921 !(features & NETIF_F_ALL_CSUM)) {
4922 if (name)
4923 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4924 "checksum feature.\n", name);
4925 features &= ~NETIF_F_SG;
4926 }
4927
4928 /* TSO requires that SG is present as well. */
4929 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4930 if (name)
4931 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4932 "SG feature.\n", name);
4933 features &= ~NETIF_F_TSO;
4934 }
4935
4936 if (features & NETIF_F_UFO) {
4937 if (!(features & NETIF_F_GEN_CSUM)) {
4938 if (name)
4939 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4940 "since no NETIF_F_HW_CSUM feature.\n",
4941 name);
4942 features &= ~NETIF_F_UFO;
4943 }
4944
4945 if (!(features & NETIF_F_SG)) {
4946 if (name)
4947 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4948 "since no NETIF_F_SG feature.\n", name);
4949 features &= ~NETIF_F_UFO;
4950 }
4951 }
4952
4953 return features;
4954 }
4955 EXPORT_SYMBOL(netdev_fix_features);
4956
4957 /**
4958 * netif_stacked_transfer_operstate - transfer operstate
4959 * @rootdev: the root or lower level device to transfer state from
4960 * @dev: the device to transfer operstate to
4961 *
4962 * Transfer operational state from root to device. This is normally
4963 * called when a stacking relationship exists between the root
4964 * device and the device(a leaf device).
4965 */
4966 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4967 struct net_device *dev)
4968 {
4969 if (rootdev->operstate == IF_OPER_DORMANT)
4970 netif_dormant_on(dev);
4971 else
4972 netif_dormant_off(dev);
4973
4974 if (netif_carrier_ok(rootdev)) {
4975 if (!netif_carrier_ok(dev))
4976 netif_carrier_on(dev);
4977 } else {
4978 if (netif_carrier_ok(dev))
4979 netif_carrier_off(dev);
4980 }
4981 }
4982 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4983
4984 /**
4985 * register_netdevice - register a network device
4986 * @dev: device to register
4987 *
4988 * Take a completed network device structure and add it to the kernel
4989 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4990 * chain. 0 is returned on success. A negative errno code is returned
4991 * on a failure to set up the device, or if the name is a duplicate.
4992 *
4993 * Callers must hold the rtnl semaphore. You may want
4994 * register_netdev() instead of this.
4995 *
4996 * BUGS:
4997 * The locking appears insufficient to guarantee two parallel registers
4998 * will not get the same name.
4999 */
5000
5001 int register_netdevice(struct net_device *dev)
5002 {
5003 int ret;
5004 struct net *net = dev_net(dev);
5005
5006 BUG_ON(dev_boot_phase);
5007 ASSERT_RTNL();
5008
5009 might_sleep();
5010
5011 /* When net_device's are persistent, this will be fatal. */
5012 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5013 BUG_ON(!net);
5014
5015 spin_lock_init(&dev->addr_list_lock);
5016 netdev_set_addr_lockdep_class(dev);
5017 netdev_init_queue_locks(dev);
5018
5019 dev->iflink = -1;
5020
5021 /* Init, if this function is available */
5022 if (dev->netdev_ops->ndo_init) {
5023 ret = dev->netdev_ops->ndo_init(dev);
5024 if (ret) {
5025 if (ret > 0)
5026 ret = -EIO;
5027 goto out;
5028 }
5029 }
5030
5031 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5032 if (ret)
5033 goto err_uninit;
5034
5035 dev->ifindex = dev_new_index(net);
5036 if (dev->iflink == -1)
5037 dev->iflink = dev->ifindex;
5038
5039 /* Fix illegal checksum combinations */
5040 if ((dev->features & NETIF_F_HW_CSUM) &&
5041 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5042 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5043 dev->name);
5044 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5045 }
5046
5047 if ((dev->features & NETIF_F_NO_CSUM) &&
5048 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5049 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5050 dev->name);
5051 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5052 }
5053
5054 dev->features = netdev_fix_features(dev->features, dev->name);
5055
5056 /* Enable software GSO if SG is supported. */
5057 if (dev->features & NETIF_F_SG)
5058 dev->features |= NETIF_F_GSO;
5059
5060 netdev_initialize_kobject(dev);
5061
5062 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5063 ret = notifier_to_errno(ret);
5064 if (ret)
5065 goto err_uninit;
5066
5067 ret = netdev_register_kobject(dev);
5068 if (ret)
5069 goto err_uninit;
5070 dev->reg_state = NETREG_REGISTERED;
5071
5072 /*
5073 * Default initial state at registry is that the
5074 * device is present.
5075 */
5076
5077 set_bit(__LINK_STATE_PRESENT, &dev->state);
5078
5079 dev_init_scheduler(dev);
5080 dev_hold(dev);
5081 list_netdevice(dev);
5082
5083 /* Notify protocols, that a new device appeared. */
5084 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5085 ret = notifier_to_errno(ret);
5086 if (ret) {
5087 rollback_registered(dev);
5088 dev->reg_state = NETREG_UNREGISTERED;
5089 }
5090 /*
5091 * Prevent userspace races by waiting until the network
5092 * device is fully setup before sending notifications.
5093 */
5094 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5095
5096 out:
5097 return ret;
5098
5099 err_uninit:
5100 if (dev->netdev_ops->ndo_uninit)
5101 dev->netdev_ops->ndo_uninit(dev);
5102 goto out;
5103 }
5104 EXPORT_SYMBOL(register_netdevice);
5105
5106 /**
5107 * init_dummy_netdev - init a dummy network device for NAPI
5108 * @dev: device to init
5109 *
5110 * This takes a network device structure and initialize the minimum
5111 * amount of fields so it can be used to schedule NAPI polls without
5112 * registering a full blown interface. This is to be used by drivers
5113 * that need to tie several hardware interfaces to a single NAPI
5114 * poll scheduler due to HW limitations.
5115 */
5116 int init_dummy_netdev(struct net_device *dev)
5117 {
5118 /* Clear everything. Note we don't initialize spinlocks
5119 * are they aren't supposed to be taken by any of the
5120 * NAPI code and this dummy netdev is supposed to be
5121 * only ever used for NAPI polls
5122 */
5123 memset(dev, 0, sizeof(struct net_device));
5124
5125 /* make sure we BUG if trying to hit standard
5126 * register/unregister code path
5127 */
5128 dev->reg_state = NETREG_DUMMY;
5129
5130 /* initialize the ref count */
5131 atomic_set(&dev->refcnt, 1);
5132
5133 /* NAPI wants this */
5134 INIT_LIST_HEAD(&dev->napi_list);
5135
5136 /* a dummy interface is started by default */
5137 set_bit(__LINK_STATE_PRESENT, &dev->state);
5138 set_bit(__LINK_STATE_START, &dev->state);
5139
5140 return 0;
5141 }
5142 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5143
5144
5145 /**
5146 * register_netdev - register a network device
5147 * @dev: device to register
5148 *
5149 * Take a completed network device structure and add it to the kernel
5150 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5151 * chain. 0 is returned on success. A negative errno code is returned
5152 * on a failure to set up the device, or if the name is a duplicate.
5153 *
5154 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5155 * and expands the device name if you passed a format string to
5156 * alloc_netdev.
5157 */
5158 int register_netdev(struct net_device *dev)
5159 {
5160 int err;
5161
5162 rtnl_lock();
5163
5164 /*
5165 * If the name is a format string the caller wants us to do a
5166 * name allocation.
5167 */
5168 if (strchr(dev->name, '%')) {
5169 err = dev_alloc_name(dev, dev->name);
5170 if (err < 0)
5171 goto out;
5172 }
5173
5174 err = register_netdevice(dev);
5175 out:
5176 rtnl_unlock();
5177 return err;
5178 }
5179 EXPORT_SYMBOL(register_netdev);
5180
5181 /*
5182 * netdev_wait_allrefs - wait until all references are gone.
5183 *
5184 * This is called when unregistering network devices.
5185 *
5186 * Any protocol or device that holds a reference should register
5187 * for netdevice notification, and cleanup and put back the
5188 * reference if they receive an UNREGISTER event.
5189 * We can get stuck here if buggy protocols don't correctly
5190 * call dev_put.
5191 */
5192 static void netdev_wait_allrefs(struct net_device *dev)
5193 {
5194 unsigned long rebroadcast_time, warning_time;
5195
5196 linkwatch_forget_dev(dev);
5197
5198 rebroadcast_time = warning_time = jiffies;
5199 while (atomic_read(&dev->refcnt) != 0) {
5200 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5201 rtnl_lock();
5202
5203 /* Rebroadcast unregister notification */
5204 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5205 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5206 * should have already handle it the first time */
5207
5208 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5209 &dev->state)) {
5210 /* We must not have linkwatch events
5211 * pending on unregister. If this
5212 * happens, we simply run the queue
5213 * unscheduled, resulting in a noop
5214 * for this device.
5215 */
5216 linkwatch_run_queue();
5217 }
5218
5219 __rtnl_unlock();
5220
5221 rebroadcast_time = jiffies;
5222 }
5223
5224 msleep(250);
5225
5226 if (time_after(jiffies, warning_time + 10 * HZ)) {
5227 printk(KERN_EMERG "unregister_netdevice: "
5228 "waiting for %s to become free. Usage "
5229 "count = %d\n",
5230 dev->name, atomic_read(&dev->refcnt));
5231 warning_time = jiffies;
5232 }
5233 }
5234 }
5235
5236 /* The sequence is:
5237 *
5238 * rtnl_lock();
5239 * ...
5240 * register_netdevice(x1);
5241 * register_netdevice(x2);
5242 * ...
5243 * unregister_netdevice(y1);
5244 * unregister_netdevice(y2);
5245 * ...
5246 * rtnl_unlock();
5247 * free_netdev(y1);
5248 * free_netdev(y2);
5249 *
5250 * We are invoked by rtnl_unlock().
5251 * This allows us to deal with problems:
5252 * 1) We can delete sysfs objects which invoke hotplug
5253 * without deadlocking with linkwatch via keventd.
5254 * 2) Since we run with the RTNL semaphore not held, we can sleep
5255 * safely in order to wait for the netdev refcnt to drop to zero.
5256 *
5257 * We must not return until all unregister events added during
5258 * the interval the lock was held have been completed.
5259 */
5260 void netdev_run_todo(void)
5261 {
5262 struct list_head list;
5263
5264 /* Snapshot list, allow later requests */
5265 list_replace_init(&net_todo_list, &list);
5266
5267 __rtnl_unlock();
5268
5269 while (!list_empty(&list)) {
5270 struct net_device *dev
5271 = list_entry(list.next, struct net_device, todo_list);
5272 list_del(&dev->todo_list);
5273
5274 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5275 printk(KERN_ERR "network todo '%s' but state %d\n",
5276 dev->name, dev->reg_state);
5277 dump_stack();
5278 continue;
5279 }
5280
5281 dev->reg_state = NETREG_UNREGISTERED;
5282
5283 on_each_cpu(flush_backlog, dev, 1);
5284
5285 netdev_wait_allrefs(dev);
5286
5287 /* paranoia */
5288 BUG_ON(atomic_read(&dev->refcnt));
5289 WARN_ON(dev->ip_ptr);
5290 WARN_ON(dev->ip6_ptr);
5291 WARN_ON(dev->dn_ptr);
5292
5293 if (dev->destructor)
5294 dev->destructor(dev);
5295
5296 /* Free network device */
5297 kobject_put(&dev->dev.kobj);
5298 }
5299 }
5300
5301 /**
5302 * dev_txq_stats_fold - fold tx_queues stats
5303 * @dev: device to get statistics from
5304 * @stats: struct net_device_stats to hold results
5305 */
5306 void dev_txq_stats_fold(const struct net_device *dev,
5307 struct net_device_stats *stats)
5308 {
5309 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5310 unsigned int i;
5311 struct netdev_queue *txq;
5312
5313 for (i = 0; i < dev->num_tx_queues; i++) {
5314 txq = netdev_get_tx_queue(dev, i);
5315 tx_bytes += txq->tx_bytes;
5316 tx_packets += txq->tx_packets;
5317 tx_dropped += txq->tx_dropped;
5318 }
5319 if (tx_bytes || tx_packets || tx_dropped) {
5320 stats->tx_bytes = tx_bytes;
5321 stats->tx_packets = tx_packets;
5322 stats->tx_dropped = tx_dropped;
5323 }
5324 }
5325 EXPORT_SYMBOL(dev_txq_stats_fold);
5326
5327 /**
5328 * dev_get_stats - get network device statistics
5329 * @dev: device to get statistics from
5330 *
5331 * Get network statistics from device. The device driver may provide
5332 * its own method by setting dev->netdev_ops->get_stats; otherwise
5333 * the internal statistics structure is used.
5334 */
5335 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5336 {
5337 const struct net_device_ops *ops = dev->netdev_ops;
5338
5339 if (ops->ndo_get_stats)
5340 return ops->ndo_get_stats(dev);
5341
5342 dev_txq_stats_fold(dev, &dev->stats);
5343 return &dev->stats;
5344 }
5345 EXPORT_SYMBOL(dev_get_stats);
5346
5347 static void netdev_init_one_queue(struct net_device *dev,
5348 struct netdev_queue *queue,
5349 void *_unused)
5350 {
5351 queue->dev = dev;
5352 }
5353
5354 static void netdev_init_queues(struct net_device *dev)
5355 {
5356 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5357 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5358 spin_lock_init(&dev->tx_global_lock);
5359 }
5360
5361 /**
5362 * alloc_netdev_mq - allocate network device
5363 * @sizeof_priv: size of private data to allocate space for
5364 * @name: device name format string
5365 * @setup: callback to initialize device
5366 * @queue_count: the number of subqueues to allocate
5367 *
5368 * Allocates a struct net_device with private data area for driver use
5369 * and performs basic initialization. Also allocates subquue structs
5370 * for each queue on the device at the end of the netdevice.
5371 */
5372 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5373 void (*setup)(struct net_device *), unsigned int queue_count)
5374 {
5375 struct netdev_queue *tx;
5376 struct net_device *dev;
5377 size_t alloc_size;
5378 struct net_device *p;
5379
5380 BUG_ON(strlen(name) >= sizeof(dev->name));
5381
5382 alloc_size = sizeof(struct net_device);
5383 if (sizeof_priv) {
5384 /* ensure 32-byte alignment of private area */
5385 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5386 alloc_size += sizeof_priv;
5387 }
5388 /* ensure 32-byte alignment of whole construct */
5389 alloc_size += NETDEV_ALIGN - 1;
5390
5391 p = kzalloc(alloc_size, GFP_KERNEL);
5392 if (!p) {
5393 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5394 return NULL;
5395 }
5396
5397 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5398 if (!tx) {
5399 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5400 "tx qdiscs.\n");
5401 goto free_p;
5402 }
5403
5404 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5405 dev->padded = (char *)dev - (char *)p;
5406
5407 if (dev_addr_init(dev))
5408 goto free_tx;
5409
5410 dev_unicast_init(dev);
5411
5412 dev_net_set(dev, &init_net);
5413
5414 dev->_tx = tx;
5415 dev->num_tx_queues = queue_count;
5416 dev->real_num_tx_queues = queue_count;
5417
5418 dev->gso_max_size = GSO_MAX_SIZE;
5419
5420 netdev_init_queues(dev);
5421
5422 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5423 dev->ethtool_ntuple_list.count = 0;
5424 INIT_LIST_HEAD(&dev->napi_list);
5425 INIT_LIST_HEAD(&dev->unreg_list);
5426 INIT_LIST_HEAD(&dev->link_watch_list);
5427 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5428 setup(dev);
5429 strcpy(dev->name, name);
5430 return dev;
5431
5432 free_tx:
5433 kfree(tx);
5434
5435 free_p:
5436 kfree(p);
5437 return NULL;
5438 }
5439 EXPORT_SYMBOL(alloc_netdev_mq);
5440
5441 /**
5442 * free_netdev - free network device
5443 * @dev: device
5444 *
5445 * This function does the last stage of destroying an allocated device
5446 * interface. The reference to the device object is released.
5447 * If this is the last reference then it will be freed.
5448 */
5449 void free_netdev(struct net_device *dev)
5450 {
5451 struct napi_struct *p, *n;
5452
5453 release_net(dev_net(dev));
5454
5455 kfree(dev->_tx);
5456
5457 /* Flush device addresses */
5458 dev_addr_flush(dev);
5459
5460 /* Clear ethtool n-tuple list */
5461 ethtool_ntuple_flush(dev);
5462
5463 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5464 netif_napi_del(p);
5465
5466 /* Compatibility with error handling in drivers */
5467 if (dev->reg_state == NETREG_UNINITIALIZED) {
5468 kfree((char *)dev - dev->padded);
5469 return;
5470 }
5471
5472 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5473 dev->reg_state = NETREG_RELEASED;
5474
5475 /* will free via device release */
5476 put_device(&dev->dev);
5477 }
5478 EXPORT_SYMBOL(free_netdev);
5479
5480 /**
5481 * synchronize_net - Synchronize with packet receive processing
5482 *
5483 * Wait for packets currently being received to be done.
5484 * Does not block later packets from starting.
5485 */
5486 void synchronize_net(void)
5487 {
5488 might_sleep();
5489 synchronize_rcu();
5490 }
5491 EXPORT_SYMBOL(synchronize_net);
5492
5493 /**
5494 * unregister_netdevice_queue - remove device from the kernel
5495 * @dev: device
5496 * @head: list
5497 *
5498 * This function shuts down a device interface and removes it
5499 * from the kernel tables.
5500 * If head not NULL, device is queued to be unregistered later.
5501 *
5502 * Callers must hold the rtnl semaphore. You may want
5503 * unregister_netdev() instead of this.
5504 */
5505
5506 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5507 {
5508 ASSERT_RTNL();
5509
5510 if (head) {
5511 list_move_tail(&dev->unreg_list, head);
5512 } else {
5513 rollback_registered(dev);
5514 /* Finish processing unregister after unlock */
5515 net_set_todo(dev);
5516 }
5517 }
5518 EXPORT_SYMBOL(unregister_netdevice_queue);
5519
5520 /**
5521 * unregister_netdevice_many - unregister many devices
5522 * @head: list of devices
5523 */
5524 void unregister_netdevice_many(struct list_head *head)
5525 {
5526 struct net_device *dev;
5527
5528 if (!list_empty(head)) {
5529 rollback_registered_many(head);
5530 list_for_each_entry(dev, head, unreg_list)
5531 net_set_todo(dev);
5532 }
5533 }
5534 EXPORT_SYMBOL(unregister_netdevice_many);
5535
5536 /**
5537 * unregister_netdev - remove device from the kernel
5538 * @dev: device
5539 *
5540 * This function shuts down a device interface and removes it
5541 * from the kernel tables.
5542 *
5543 * This is just a wrapper for unregister_netdevice that takes
5544 * the rtnl semaphore. In general you want to use this and not
5545 * unregister_netdevice.
5546 */
5547 void unregister_netdev(struct net_device *dev)
5548 {
5549 rtnl_lock();
5550 unregister_netdevice(dev);
5551 rtnl_unlock();
5552 }
5553 EXPORT_SYMBOL(unregister_netdev);
5554
5555 /**
5556 * dev_change_net_namespace - move device to different nethost namespace
5557 * @dev: device
5558 * @net: network namespace
5559 * @pat: If not NULL name pattern to try if the current device name
5560 * is already taken in the destination network namespace.
5561 *
5562 * This function shuts down a device interface and moves it
5563 * to a new network namespace. On success 0 is returned, on
5564 * a failure a netagive errno code is returned.
5565 *
5566 * Callers must hold the rtnl semaphore.
5567 */
5568
5569 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5570 {
5571 int err;
5572
5573 ASSERT_RTNL();
5574
5575 /* Don't allow namespace local devices to be moved. */
5576 err = -EINVAL;
5577 if (dev->features & NETIF_F_NETNS_LOCAL)
5578 goto out;
5579
5580 #ifdef CONFIG_SYSFS
5581 /* Don't allow real devices to be moved when sysfs
5582 * is enabled.
5583 */
5584 err = -EINVAL;
5585 if (dev->dev.parent)
5586 goto out;
5587 #endif
5588
5589 /* Ensure the device has been registrered */
5590 err = -EINVAL;
5591 if (dev->reg_state != NETREG_REGISTERED)
5592 goto out;
5593
5594 /* Get out if there is nothing todo */
5595 err = 0;
5596 if (net_eq(dev_net(dev), net))
5597 goto out;
5598
5599 /* Pick the destination device name, and ensure
5600 * we can use it in the destination network namespace.
5601 */
5602 err = -EEXIST;
5603 if (__dev_get_by_name(net, dev->name)) {
5604 /* We get here if we can't use the current device name */
5605 if (!pat)
5606 goto out;
5607 if (dev_get_valid_name(net, pat, dev->name, 1))
5608 goto out;
5609 }
5610
5611 /*
5612 * And now a mini version of register_netdevice unregister_netdevice.
5613 */
5614
5615 /* If device is running close it first. */
5616 dev_close(dev);
5617
5618 /* And unlink it from device chain */
5619 err = -ENODEV;
5620 unlist_netdevice(dev);
5621
5622 synchronize_net();
5623
5624 /* Shutdown queueing discipline. */
5625 dev_shutdown(dev);
5626
5627 /* Notify protocols, that we are about to destroy
5628 this device. They should clean all the things.
5629 */
5630 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5631 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5632
5633 /*
5634 * Flush the unicast and multicast chains
5635 */
5636 dev_unicast_flush(dev);
5637 dev_addr_discard(dev);
5638
5639 netdev_unregister_kobject(dev);
5640
5641 /* Actually switch the network namespace */
5642 dev_net_set(dev, net);
5643
5644 /* If there is an ifindex conflict assign a new one */
5645 if (__dev_get_by_index(net, dev->ifindex)) {
5646 int iflink = (dev->iflink == dev->ifindex);
5647 dev->ifindex = dev_new_index(net);
5648 if (iflink)
5649 dev->iflink = dev->ifindex;
5650 }
5651
5652 /* Fixup kobjects */
5653 err = netdev_register_kobject(dev);
5654 WARN_ON(err);
5655
5656 /* Add the device back in the hashes */
5657 list_netdevice(dev);
5658
5659 /* Notify protocols, that a new device appeared. */
5660 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5661
5662 /*
5663 * Prevent userspace races by waiting until the network
5664 * device is fully setup before sending notifications.
5665 */
5666 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5667
5668 synchronize_net();
5669 err = 0;
5670 out:
5671 return err;
5672 }
5673 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5674
5675 static int dev_cpu_callback(struct notifier_block *nfb,
5676 unsigned long action,
5677 void *ocpu)
5678 {
5679 struct sk_buff **list_skb;
5680 struct Qdisc **list_net;
5681 struct sk_buff *skb;
5682 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5683 struct softnet_data *sd, *oldsd;
5684
5685 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5686 return NOTIFY_OK;
5687
5688 local_irq_disable();
5689 cpu = smp_processor_id();
5690 sd = &per_cpu(softnet_data, cpu);
5691 oldsd = &per_cpu(softnet_data, oldcpu);
5692
5693 /* Find end of our completion_queue. */
5694 list_skb = &sd->completion_queue;
5695 while (*list_skb)
5696 list_skb = &(*list_skb)->next;
5697 /* Append completion queue from offline CPU. */
5698 *list_skb = oldsd->completion_queue;
5699 oldsd->completion_queue = NULL;
5700
5701 /* Find end of our output_queue. */
5702 list_net = &sd->output_queue;
5703 while (*list_net)
5704 list_net = &(*list_net)->next_sched;
5705 /* Append output queue from offline CPU. */
5706 *list_net = oldsd->output_queue;
5707 oldsd->output_queue = NULL;
5708
5709 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5710 local_irq_enable();
5711
5712 /* Process offline CPU's input_pkt_queue */
5713 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5714 netif_rx(skb);
5715
5716 return NOTIFY_OK;
5717 }
5718
5719
5720 /**
5721 * netdev_increment_features - increment feature set by one
5722 * @all: current feature set
5723 * @one: new feature set
5724 * @mask: mask feature set
5725 *
5726 * Computes a new feature set after adding a device with feature set
5727 * @one to the master device with current feature set @all. Will not
5728 * enable anything that is off in @mask. Returns the new feature set.
5729 */
5730 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5731 unsigned long mask)
5732 {
5733 /* If device needs checksumming, downgrade to it. */
5734 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5735 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5736 else if (mask & NETIF_F_ALL_CSUM) {
5737 /* If one device supports v4/v6 checksumming, set for all. */
5738 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5739 !(all & NETIF_F_GEN_CSUM)) {
5740 all &= ~NETIF_F_ALL_CSUM;
5741 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5742 }
5743
5744 /* If one device supports hw checksumming, set for all. */
5745 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5746 all &= ~NETIF_F_ALL_CSUM;
5747 all |= NETIF_F_HW_CSUM;
5748 }
5749 }
5750
5751 one |= NETIF_F_ALL_CSUM;
5752
5753 one |= all & NETIF_F_ONE_FOR_ALL;
5754 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5755 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5756
5757 return all;
5758 }
5759 EXPORT_SYMBOL(netdev_increment_features);
5760
5761 static struct hlist_head *netdev_create_hash(void)
5762 {
5763 int i;
5764 struct hlist_head *hash;
5765
5766 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5767 if (hash != NULL)
5768 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5769 INIT_HLIST_HEAD(&hash[i]);
5770
5771 return hash;
5772 }
5773
5774 /* Initialize per network namespace state */
5775 static int __net_init netdev_init(struct net *net)
5776 {
5777 INIT_LIST_HEAD(&net->dev_base_head);
5778
5779 net->dev_name_head = netdev_create_hash();
5780 if (net->dev_name_head == NULL)
5781 goto err_name;
5782
5783 net->dev_index_head = netdev_create_hash();
5784 if (net->dev_index_head == NULL)
5785 goto err_idx;
5786
5787 return 0;
5788
5789 err_idx:
5790 kfree(net->dev_name_head);
5791 err_name:
5792 return -ENOMEM;
5793 }
5794
5795 /**
5796 * netdev_drivername - network driver for the device
5797 * @dev: network device
5798 * @buffer: buffer for resulting name
5799 * @len: size of buffer
5800 *
5801 * Determine network driver for device.
5802 */
5803 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5804 {
5805 const struct device_driver *driver;
5806 const struct device *parent;
5807
5808 if (len <= 0 || !buffer)
5809 return buffer;
5810 buffer[0] = 0;
5811
5812 parent = dev->dev.parent;
5813
5814 if (!parent)
5815 return buffer;
5816
5817 driver = parent->driver;
5818 if (driver && driver->name)
5819 strlcpy(buffer, driver->name, len);
5820 return buffer;
5821 }
5822
5823 static void __net_exit netdev_exit(struct net *net)
5824 {
5825 kfree(net->dev_name_head);
5826 kfree(net->dev_index_head);
5827 }
5828
5829 static struct pernet_operations __net_initdata netdev_net_ops = {
5830 .init = netdev_init,
5831 .exit = netdev_exit,
5832 };
5833
5834 static void __net_exit default_device_exit(struct net *net)
5835 {
5836 struct net_device *dev, *aux;
5837 /*
5838 * Push all migratable network devices back to the
5839 * initial network namespace
5840 */
5841 rtnl_lock();
5842 for_each_netdev_safe(net, dev, aux) {
5843 int err;
5844 char fb_name[IFNAMSIZ];
5845
5846 /* Ignore unmoveable devices (i.e. loopback) */
5847 if (dev->features & NETIF_F_NETNS_LOCAL)
5848 continue;
5849
5850 /* Leave virtual devices for the generic cleanup */
5851 if (dev->rtnl_link_ops)
5852 continue;
5853
5854 /* Push remaing network devices to init_net */
5855 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5856 err = dev_change_net_namespace(dev, &init_net, fb_name);
5857 if (err) {
5858 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5859 __func__, dev->name, err);
5860 BUG();
5861 }
5862 }
5863 rtnl_unlock();
5864 }
5865
5866 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5867 {
5868 /* At exit all network devices most be removed from a network
5869 * namespace. Do this in the reverse order of registeration.
5870 * Do this across as many network namespaces as possible to
5871 * improve batching efficiency.
5872 */
5873 struct net_device *dev;
5874 struct net *net;
5875 LIST_HEAD(dev_kill_list);
5876
5877 rtnl_lock();
5878 list_for_each_entry(net, net_list, exit_list) {
5879 for_each_netdev_reverse(net, dev) {
5880 if (dev->rtnl_link_ops)
5881 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5882 else
5883 unregister_netdevice_queue(dev, &dev_kill_list);
5884 }
5885 }
5886 unregister_netdevice_many(&dev_kill_list);
5887 rtnl_unlock();
5888 }
5889
5890 static struct pernet_operations __net_initdata default_device_ops = {
5891 .exit = default_device_exit,
5892 .exit_batch = default_device_exit_batch,
5893 };
5894
5895 /*
5896 * Initialize the DEV module. At boot time this walks the device list and
5897 * unhooks any devices that fail to initialise (normally hardware not
5898 * present) and leaves us with a valid list of present and active devices.
5899 *
5900 */
5901
5902 /*
5903 * This is called single threaded during boot, so no need
5904 * to take the rtnl semaphore.
5905 */
5906 static int __init net_dev_init(void)
5907 {
5908 int i, rc = -ENOMEM;
5909
5910 BUG_ON(!dev_boot_phase);
5911
5912 if (dev_proc_init())
5913 goto out;
5914
5915 if (netdev_kobject_init())
5916 goto out;
5917
5918 INIT_LIST_HEAD(&ptype_all);
5919 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5920 INIT_LIST_HEAD(&ptype_base[i]);
5921
5922 if (register_pernet_subsys(&netdev_net_ops))
5923 goto out;
5924
5925 /*
5926 * Initialise the packet receive queues.
5927 */
5928
5929 for_each_possible_cpu(i) {
5930 struct softnet_data *queue;
5931
5932 queue = &per_cpu(softnet_data, i);
5933 skb_queue_head_init(&queue->input_pkt_queue);
5934 queue->completion_queue = NULL;
5935 INIT_LIST_HEAD(&queue->poll_list);
5936
5937 queue->backlog.poll = process_backlog;
5938 queue->backlog.weight = weight_p;
5939 queue->backlog.gro_list = NULL;
5940 queue->backlog.gro_count = 0;
5941 }
5942
5943 dev_boot_phase = 0;
5944
5945 /* The loopback device is special if any other network devices
5946 * is present in a network namespace the loopback device must
5947 * be present. Since we now dynamically allocate and free the
5948 * loopback device ensure this invariant is maintained by
5949 * keeping the loopback device as the first device on the
5950 * list of network devices. Ensuring the loopback devices
5951 * is the first device that appears and the last network device
5952 * that disappears.
5953 */
5954 if (register_pernet_device(&loopback_net_ops))
5955 goto out;
5956
5957 if (register_pernet_device(&default_device_ops))
5958 goto out;
5959
5960 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5961 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5962
5963 hotcpu_notifier(dev_cpu_callback, 0);
5964 dst_init();
5965 dev_mcast_init();
5966 rc = 0;
5967 out:
5968 return rc;
5969 }
5970
5971 subsys_initcall(net_dev_init);
5972
5973 static int __init initialize_hashrnd(void)
5974 {
5975 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5976 return 0;
5977 }
5978
5979 late_initcall_sync(initialize_hashrnd);
5980
This page took 0.155635 seconds and 5 git commands to generate.