net: add address assign type "SET"
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static DEFINE_SPINLOCK(offload_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly; /* Taps */
182 static struct list_head offload_base __read_mostly;
183
184 /*
185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * semaphore.
187 *
188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
189 *
190 * Writers must hold the rtnl semaphore while they loop through the
191 * dev_base_head list, and hold dev_base_lock for writing when they do the
192 * actual updates. This allows pure readers to access the list even
193 * while a writer is preparing to update it.
194 *
195 * To put it another way, dev_base_lock is held for writing only to
196 * protect against pure readers; the rtnl semaphore provides the
197 * protection against other writers.
198 *
199 * See, for example usages, register_netdevice() and
200 * unregister_netdevice(), which must be called with the rtnl
201 * semaphore held.
202 */
203 DEFINE_RWLOCK(dev_base_lock);
204 EXPORT_SYMBOL(dev_base_lock);
205
206 seqcount_t devnet_rename_seq;
207
208 static inline void dev_base_seq_inc(struct net *net)
209 {
210 while (++net->dev_base_seq == 0);
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216
217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 /* Device list insertion */
240 static int list_netdevice(struct net_device *dev)
241 {
242 struct net *net = dev_net(dev);
243
244 ASSERT_RTNL();
245
246 write_lock_bh(&dev_base_lock);
247 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
248 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
249 hlist_add_head_rcu(&dev->index_hlist,
250 dev_index_hash(net, dev->ifindex));
251 write_unlock_bh(&dev_base_lock);
252
253 dev_base_seq_inc(net);
254
255 return 0;
256 }
257
258 /* Device list removal
259 * caller must respect a RCU grace period before freeing/reusing dev
260 */
261 static void unlist_netdevice(struct net_device *dev)
262 {
263 ASSERT_RTNL();
264
265 /* Unlink dev from the device chain */
266 write_lock_bh(&dev_base_lock);
267 list_del_rcu(&dev->dev_list);
268 hlist_del_rcu(&dev->name_hlist);
269 hlist_del_rcu(&dev->index_hlist);
270 write_unlock_bh(&dev_base_lock);
271
272 dev_base_seq_inc(dev_net(dev));
273 }
274
275 /*
276 * Our notifier list
277 */
278
279 static RAW_NOTIFIER_HEAD(netdev_chain);
280
281 /*
282 * Device drivers call our routines to queue packets here. We empty the
283 * queue in the local softnet handler.
284 */
285
286 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
287 EXPORT_PER_CPU_SYMBOL(softnet_data);
288
289 #ifdef CONFIG_LOCKDEP
290 /*
291 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
292 * according to dev->type
293 */
294 static const unsigned short netdev_lock_type[] =
295 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
296 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
297 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
298 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
299 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
300 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
301 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
302 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
303 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
304 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
305 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
306 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
307 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
308 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
309 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
310
311 static const char *const netdev_lock_name[] =
312 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
313 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
314 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
315 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
316 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
317 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
318 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
319 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
320 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
321 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
322 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
323 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
324 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
325 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
326 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
327
328 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
329 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
330
331 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
332 {
333 int i;
334
335 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
336 if (netdev_lock_type[i] == dev_type)
337 return i;
338 /* the last key is used by default */
339 return ARRAY_SIZE(netdev_lock_type) - 1;
340 }
341
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344 {
345 int i;
346
347 i = netdev_lock_pos(dev_type);
348 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
349 netdev_lock_name[i]);
350 }
351
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 int i;
355
356 i = netdev_lock_pos(dev->type);
357 lockdep_set_class_and_name(&dev->addr_list_lock,
358 &netdev_addr_lock_key[i],
359 netdev_lock_name[i]);
360 }
361 #else
362 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
363 unsigned short dev_type)
364 {
365 }
366 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
367 {
368 }
369 #endif
370
371 /*******************************************************************************
372
373 Protocol management and registration routines
374
375 *******************************************************************************/
376
377 /*
378 * Add a protocol ID to the list. Now that the input handler is
379 * smarter we can dispense with all the messy stuff that used to be
380 * here.
381 *
382 * BEWARE!!! Protocol handlers, mangling input packets,
383 * MUST BE last in hash buckets and checking protocol handlers
384 * MUST start from promiscuous ptype_all chain in net_bh.
385 * It is true now, do not change it.
386 * Explanation follows: if protocol handler, mangling packet, will
387 * be the first on list, it is not able to sense, that packet
388 * is cloned and should be copied-on-write, so that it will
389 * change it and subsequent readers will get broken packet.
390 * --ANK (980803)
391 */
392
393 static inline struct list_head *ptype_head(const struct packet_type *pt)
394 {
395 if (pt->type == htons(ETH_P_ALL))
396 return &ptype_all;
397 else
398 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399 }
400
401 /**
402 * dev_add_pack - add packet handler
403 * @pt: packet type declaration
404 *
405 * Add a protocol handler to the networking stack. The passed &packet_type
406 * is linked into kernel lists and may not be freed until it has been
407 * removed from the kernel lists.
408 *
409 * This call does not sleep therefore it can not
410 * guarantee all CPU's that are in middle of receiving packets
411 * will see the new packet type (until the next received packet).
412 */
413
414 void dev_add_pack(struct packet_type *pt)
415 {
416 struct list_head *head = ptype_head(pt);
417
418 spin_lock(&ptype_lock);
419 list_add_rcu(&pt->list, head);
420 spin_unlock(&ptype_lock);
421 }
422 EXPORT_SYMBOL(dev_add_pack);
423
424 /**
425 * __dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
427 *
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
432 *
433 * The packet type might still be in use by receivers
434 * and must not be freed until after all the CPU's have gone
435 * through a quiescent state.
436 */
437 void __dev_remove_pack(struct packet_type *pt)
438 {
439 struct list_head *head = ptype_head(pt);
440 struct packet_type *pt1;
441
442 spin_lock(&ptype_lock);
443
444 list_for_each_entry(pt1, head, list) {
445 if (pt == pt1) {
446 list_del_rcu(&pt->list);
447 goto out;
448 }
449 }
450
451 pr_warn("dev_remove_pack: %p not found\n", pt);
452 out:
453 spin_unlock(&ptype_lock);
454 }
455 EXPORT_SYMBOL(__dev_remove_pack);
456
457 /**
458 * dev_remove_pack - remove packet handler
459 * @pt: packet type declaration
460 *
461 * Remove a protocol handler that was previously added to the kernel
462 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
463 * from the kernel lists and can be freed or reused once this function
464 * returns.
465 *
466 * This call sleeps to guarantee that no CPU is looking at the packet
467 * type after return.
468 */
469 void dev_remove_pack(struct packet_type *pt)
470 {
471 __dev_remove_pack(pt);
472
473 synchronize_net();
474 }
475 EXPORT_SYMBOL(dev_remove_pack);
476
477
478 /**
479 * dev_add_offload - register offload handlers
480 * @po: protocol offload declaration
481 *
482 * Add protocol offload handlers to the networking stack. The passed
483 * &proto_offload is linked into kernel lists and may not be freed until
484 * it has been removed from the kernel lists.
485 *
486 * This call does not sleep therefore it can not
487 * guarantee all CPU's that are in middle of receiving packets
488 * will see the new offload handlers (until the next received packet).
489 */
490 void dev_add_offload(struct packet_offload *po)
491 {
492 struct list_head *head = &offload_base;
493
494 spin_lock(&offload_lock);
495 list_add_rcu(&po->list, head);
496 spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499
500 /**
501 * __dev_remove_offload - remove offload handler
502 * @po: packet offload declaration
503 *
504 * Remove a protocol offload handler that was previously added to the
505 * kernel offload handlers by dev_add_offload(). The passed &offload_type
506 * is removed from the kernel lists and can be freed or reused once this
507 * function returns.
508 *
509 * The packet type might still be in use by receivers
510 * and must not be freed until after all the CPU's have gone
511 * through a quiescent state.
512 */
513 void __dev_remove_offload(struct packet_offload *po)
514 {
515 struct list_head *head = &offload_base;
516 struct packet_offload *po1;
517
518 spin_lock(&offload_lock);
519
520 list_for_each_entry(po1, head, list) {
521 if (po == po1) {
522 list_del_rcu(&po->list);
523 goto out;
524 }
525 }
526
527 pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529 spin_unlock(&offload_lock);
530 }
531 EXPORT_SYMBOL(__dev_remove_offload);
532
533 /**
534 * dev_remove_offload - remove packet offload handler
535 * @po: packet offload declaration
536 *
537 * Remove a packet offload handler that was previously added to the kernel
538 * offload handlers by dev_add_offload(). The passed &offload_type is
539 * removed from the kernel lists and can be freed or reused once this
540 * function returns.
541 *
542 * This call sleeps to guarantee that no CPU is looking at the packet
543 * type after return.
544 */
545 void dev_remove_offload(struct packet_offload *po)
546 {
547 __dev_remove_offload(po);
548
549 synchronize_net();
550 }
551 EXPORT_SYMBOL(dev_remove_offload);
552
553 /******************************************************************************
554
555 Device Boot-time Settings Routines
556
557 *******************************************************************************/
558
559 /* Boot time configuration table */
560 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
561
562 /**
563 * netdev_boot_setup_add - add new setup entry
564 * @name: name of the device
565 * @map: configured settings for the device
566 *
567 * Adds new setup entry to the dev_boot_setup list. The function
568 * returns 0 on error and 1 on success. This is a generic routine to
569 * all netdevices.
570 */
571 static int netdev_boot_setup_add(char *name, struct ifmap *map)
572 {
573 struct netdev_boot_setup *s;
574 int i;
575
576 s = dev_boot_setup;
577 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
578 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
579 memset(s[i].name, 0, sizeof(s[i].name));
580 strlcpy(s[i].name, name, IFNAMSIZ);
581 memcpy(&s[i].map, map, sizeof(s[i].map));
582 break;
583 }
584 }
585
586 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
587 }
588
589 /**
590 * netdev_boot_setup_check - check boot time settings
591 * @dev: the netdevice
592 *
593 * Check boot time settings for the device.
594 * The found settings are set for the device to be used
595 * later in the device probing.
596 * Returns 0 if no settings found, 1 if they are.
597 */
598 int netdev_boot_setup_check(struct net_device *dev)
599 {
600 struct netdev_boot_setup *s = dev_boot_setup;
601 int i;
602
603 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
604 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
605 !strcmp(dev->name, s[i].name)) {
606 dev->irq = s[i].map.irq;
607 dev->base_addr = s[i].map.base_addr;
608 dev->mem_start = s[i].map.mem_start;
609 dev->mem_end = s[i].map.mem_end;
610 return 1;
611 }
612 }
613 return 0;
614 }
615 EXPORT_SYMBOL(netdev_boot_setup_check);
616
617
618 /**
619 * netdev_boot_base - get address from boot time settings
620 * @prefix: prefix for network device
621 * @unit: id for network device
622 *
623 * Check boot time settings for the base address of device.
624 * The found settings are set for the device to be used
625 * later in the device probing.
626 * Returns 0 if no settings found.
627 */
628 unsigned long netdev_boot_base(const char *prefix, int unit)
629 {
630 const struct netdev_boot_setup *s = dev_boot_setup;
631 char name[IFNAMSIZ];
632 int i;
633
634 sprintf(name, "%s%d", prefix, unit);
635
636 /*
637 * If device already registered then return base of 1
638 * to indicate not to probe for this interface
639 */
640 if (__dev_get_by_name(&init_net, name))
641 return 1;
642
643 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
644 if (!strcmp(name, s[i].name))
645 return s[i].map.base_addr;
646 return 0;
647 }
648
649 /*
650 * Saves at boot time configured settings for any netdevice.
651 */
652 int __init netdev_boot_setup(char *str)
653 {
654 int ints[5];
655 struct ifmap map;
656
657 str = get_options(str, ARRAY_SIZE(ints), ints);
658 if (!str || !*str)
659 return 0;
660
661 /* Save settings */
662 memset(&map, 0, sizeof(map));
663 if (ints[0] > 0)
664 map.irq = ints[1];
665 if (ints[0] > 1)
666 map.base_addr = ints[2];
667 if (ints[0] > 2)
668 map.mem_start = ints[3];
669 if (ints[0] > 3)
670 map.mem_end = ints[4];
671
672 /* Add new entry to the list */
673 return netdev_boot_setup_add(str, &map);
674 }
675
676 __setup("netdev=", netdev_boot_setup);
677
678 /*******************************************************************************
679
680 Device Interface Subroutines
681
682 *******************************************************************************/
683
684 /**
685 * __dev_get_by_name - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 struct hlist_node *p;
699 struct net_device *dev;
700 struct hlist_head *head = dev_name_hash(net, name);
701
702 hlist_for_each_entry(dev, p, head, name_hlist)
703 if (!strncmp(dev->name, name, IFNAMSIZ))
704 return dev;
705
706 return NULL;
707 }
708 EXPORT_SYMBOL(__dev_get_by_name);
709
710 /**
711 * dev_get_by_name_rcu - find a device by its name
712 * @net: the applicable net namespace
713 * @name: name to find
714 *
715 * Find an interface by name.
716 * If the name is found a pointer to the device is returned.
717 * If the name is not found then %NULL is returned.
718 * The reference counters are not incremented so the caller must be
719 * careful with locks. The caller must hold RCU lock.
720 */
721
722 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
723 {
724 struct hlist_node *p;
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
727
728 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(dev_get_by_name_rcu);
735
736 /**
737 * dev_get_by_name - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name. This can be called from any
742 * context and does its own locking. The returned handle has
743 * the usage count incremented and the caller must use dev_put() to
744 * release it when it is no longer needed. %NULL is returned if no
745 * matching device is found.
746 */
747
748 struct net_device *dev_get_by_name(struct net *net, const char *name)
749 {
750 struct net_device *dev;
751
752 rcu_read_lock();
753 dev = dev_get_by_name_rcu(net, name);
754 if (dev)
755 dev_hold(dev);
756 rcu_read_unlock();
757 return dev;
758 }
759 EXPORT_SYMBOL(dev_get_by_name);
760
761 /**
762 * __dev_get_by_index - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
765 *
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold either the RTNL semaphore
770 * or @dev_base_lock.
771 */
772
773 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
774 {
775 struct hlist_node *p;
776 struct net_device *dev;
777 struct hlist_head *head = dev_index_hash(net, ifindex);
778
779 hlist_for_each_entry(dev, p, head, index_hlist)
780 if (dev->ifindex == ifindex)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_get_by_index);
786
787 /**
788 * dev_get_by_index_rcu - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold RCU lock.
796 */
797
798 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
799 {
800 struct hlist_node *p;
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809 }
810 EXPORT_SYMBOL(dev_get_by_index_rcu);
811
812
813 /**
814 * dev_get_by_index - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns NULL if the device
819 * is not found or a pointer to the device. The device returned has
820 * had a reference added and the pointer is safe until the user calls
821 * dev_put to indicate they have finished with it.
822 */
823
824 struct net_device *dev_get_by_index(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (dev)
831 dev_hold(dev);
832 rcu_read_unlock();
833 return dev;
834 }
835 EXPORT_SYMBOL(dev_get_by_index);
836
837 /**
838 * dev_getbyhwaddr_rcu - find a device by its hardware address
839 * @net: the applicable net namespace
840 * @type: media type of device
841 * @ha: hardware address
842 *
843 * Search for an interface by MAC address. Returns NULL if the device
844 * is not found or a pointer to the device.
845 * The caller must hold RCU or RTNL.
846 * The returned device has not had its ref count increased
847 * and the caller must therefore be careful about locking
848 *
849 */
850
851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
852 const char *ha)
853 {
854 struct net_device *dev;
855
856 for_each_netdev_rcu(net, dev)
857 if (dev->type == type &&
858 !memcmp(dev->dev_addr, ha, dev->addr_len))
859 return dev;
860
861 return NULL;
862 }
863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
864
865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
866 {
867 struct net_device *dev;
868
869 ASSERT_RTNL();
870 for_each_netdev(net, dev)
871 if (dev->type == type)
872 return dev;
873
874 return NULL;
875 }
876 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
877
878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
879 {
880 struct net_device *dev, *ret = NULL;
881
882 rcu_read_lock();
883 for_each_netdev_rcu(net, dev)
884 if (dev->type == type) {
885 dev_hold(dev);
886 ret = dev;
887 break;
888 }
889 rcu_read_unlock();
890 return ret;
891 }
892 EXPORT_SYMBOL(dev_getfirstbyhwtype);
893
894 /**
895 * dev_get_by_flags_rcu - find any device with given flags
896 * @net: the applicable net namespace
897 * @if_flags: IFF_* values
898 * @mask: bitmask of bits in if_flags to check
899 *
900 * Search for any interface with the given flags. Returns NULL if a device
901 * is not found or a pointer to the device. Must be called inside
902 * rcu_read_lock(), and result refcount is unchanged.
903 */
904
905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
906 unsigned short mask)
907 {
908 struct net_device *dev, *ret;
909
910 ret = NULL;
911 for_each_netdev_rcu(net, dev) {
912 if (((dev->flags ^ if_flags) & mask) == 0) {
913 ret = dev;
914 break;
915 }
916 }
917 return ret;
918 }
919 EXPORT_SYMBOL(dev_get_by_flags_rcu);
920
921 /**
922 * dev_valid_name - check if name is okay for network device
923 * @name: name string
924 *
925 * Network device names need to be valid file names to
926 * to allow sysfs to work. We also disallow any kind of
927 * whitespace.
928 */
929 bool dev_valid_name(const char *name)
930 {
931 if (*name == '\0')
932 return false;
933 if (strlen(name) >= IFNAMSIZ)
934 return false;
935 if (!strcmp(name, ".") || !strcmp(name, ".."))
936 return false;
937
938 while (*name) {
939 if (*name == '/' || isspace(*name))
940 return false;
941 name++;
942 }
943 return true;
944 }
945 EXPORT_SYMBOL(dev_valid_name);
946
947 /**
948 * __dev_alloc_name - allocate a name for a device
949 * @net: network namespace to allocate the device name in
950 * @name: name format string
951 * @buf: scratch buffer and result name string
952 *
953 * Passed a format string - eg "lt%d" it will try and find a suitable
954 * id. It scans list of devices to build up a free map, then chooses
955 * the first empty slot. The caller must hold the dev_base or rtnl lock
956 * while allocating the name and adding the device in order to avoid
957 * duplicates.
958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
959 * Returns the number of the unit assigned or a negative errno code.
960 */
961
962 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
963 {
964 int i = 0;
965 const char *p;
966 const int max_netdevices = 8*PAGE_SIZE;
967 unsigned long *inuse;
968 struct net_device *d;
969
970 p = strnchr(name, IFNAMSIZ-1, '%');
971 if (p) {
972 /*
973 * Verify the string as this thing may have come from
974 * the user. There must be either one "%d" and no other "%"
975 * characters.
976 */
977 if (p[1] != 'd' || strchr(p + 2, '%'))
978 return -EINVAL;
979
980 /* Use one page as a bit array of possible slots */
981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
982 if (!inuse)
983 return -ENOMEM;
984
985 for_each_netdev(net, d) {
986 if (!sscanf(d->name, name, &i))
987 continue;
988 if (i < 0 || i >= max_netdevices)
989 continue;
990
991 /* avoid cases where sscanf is not exact inverse of printf */
992 snprintf(buf, IFNAMSIZ, name, i);
993 if (!strncmp(buf, d->name, IFNAMSIZ))
994 set_bit(i, inuse);
995 }
996
997 i = find_first_zero_bit(inuse, max_netdevices);
998 free_page((unsigned long) inuse);
999 }
1000
1001 if (buf != name)
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!__dev_get_by_name(net, buf))
1004 return i;
1005
1006 /* It is possible to run out of possible slots
1007 * when the name is long and there isn't enough space left
1008 * for the digits, or if all bits are used.
1009 */
1010 return -ENFILE;
1011 }
1012
1013 /**
1014 * dev_alloc_name - allocate a name for a device
1015 * @dev: device
1016 * @name: name format string
1017 *
1018 * Passed a format string - eg "lt%d" it will try and find a suitable
1019 * id. It scans list of devices to build up a free map, then chooses
1020 * the first empty slot. The caller must hold the dev_base or rtnl lock
1021 * while allocating the name and adding the device in order to avoid
1022 * duplicates.
1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1024 * Returns the number of the unit assigned or a negative errno code.
1025 */
1026
1027 int dev_alloc_name(struct net_device *dev, const char *name)
1028 {
1029 char buf[IFNAMSIZ];
1030 struct net *net;
1031 int ret;
1032
1033 BUG_ON(!dev_net(dev));
1034 net = dev_net(dev);
1035 ret = __dev_alloc_name(net, name, buf);
1036 if (ret >= 0)
1037 strlcpy(dev->name, buf, IFNAMSIZ);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL(dev_alloc_name);
1041
1042 static int dev_alloc_name_ns(struct net *net,
1043 struct net_device *dev,
1044 const char *name)
1045 {
1046 char buf[IFNAMSIZ];
1047 int ret;
1048
1049 ret = __dev_alloc_name(net, name, buf);
1050 if (ret >= 0)
1051 strlcpy(dev->name, buf, IFNAMSIZ);
1052 return ret;
1053 }
1054
1055 static int dev_get_valid_name(struct net *net,
1056 struct net_device *dev,
1057 const char *name)
1058 {
1059 BUG_ON(!net);
1060
1061 if (!dev_valid_name(name))
1062 return -EINVAL;
1063
1064 if (strchr(name, '%'))
1065 return dev_alloc_name_ns(net, dev, name);
1066 else if (__dev_get_by_name(net, name))
1067 return -EEXIST;
1068 else if (dev->name != name)
1069 strlcpy(dev->name, name, IFNAMSIZ);
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * dev_change_name - change name of a device
1076 * @dev: device
1077 * @newname: name (or format string) must be at least IFNAMSIZ
1078 *
1079 * Change name of a device, can pass format strings "eth%d".
1080 * for wildcarding.
1081 */
1082 int dev_change_name(struct net_device *dev, const char *newname)
1083 {
1084 char oldname[IFNAMSIZ];
1085 int err = 0;
1086 int ret;
1087 struct net *net;
1088
1089 ASSERT_RTNL();
1090 BUG_ON(!dev_net(dev));
1091
1092 net = dev_net(dev);
1093 if (dev->flags & IFF_UP)
1094 return -EBUSY;
1095
1096 write_seqcount_begin(&devnet_rename_seq);
1097
1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1099 write_seqcount_end(&devnet_rename_seq);
1100 return 0;
1101 }
1102
1103 memcpy(oldname, dev->name, IFNAMSIZ);
1104
1105 err = dev_get_valid_name(net, dev, newname);
1106 if (err < 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return err;
1109 }
1110
1111 rollback:
1112 ret = device_rename(&dev->dev, dev->name);
1113 if (ret) {
1114 memcpy(dev->name, oldname, IFNAMSIZ);
1115 write_seqcount_end(&devnet_rename_seq);
1116 return ret;
1117 }
1118
1119 write_seqcount_end(&devnet_rename_seq);
1120
1121 write_lock_bh(&dev_base_lock);
1122 hlist_del_rcu(&dev->name_hlist);
1123 write_unlock_bh(&dev_base_lock);
1124
1125 synchronize_rcu();
1126
1127 write_lock_bh(&dev_base_lock);
1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1129 write_unlock_bh(&dev_base_lock);
1130
1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1132 ret = notifier_to_errno(ret);
1133
1134 if (ret) {
1135 /* err >= 0 after dev_alloc_name() or stores the first errno */
1136 if (err >= 0) {
1137 err = ret;
1138 write_seqcount_begin(&devnet_rename_seq);
1139 memcpy(dev->name, oldname, IFNAMSIZ);
1140 goto rollback;
1141 } else {
1142 pr_err("%s: name change rollback failed: %d\n",
1143 dev->name, ret);
1144 }
1145 }
1146
1147 return err;
1148 }
1149
1150 /**
1151 * dev_set_alias - change ifalias of a device
1152 * @dev: device
1153 * @alias: name up to IFALIASZ
1154 * @len: limit of bytes to copy from info
1155 *
1156 * Set ifalias for a device,
1157 */
1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1159 {
1160 char *new_ifalias;
1161
1162 ASSERT_RTNL();
1163
1164 if (len >= IFALIASZ)
1165 return -EINVAL;
1166
1167 if (!len) {
1168 kfree(dev->ifalias);
1169 dev->ifalias = NULL;
1170 return 0;
1171 }
1172
1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1174 if (!new_ifalias)
1175 return -ENOMEM;
1176 dev->ifalias = new_ifalias;
1177
1178 strlcpy(dev->ifalias, alias, len+1);
1179 return len;
1180 }
1181
1182
1183 /**
1184 * netdev_features_change - device changes features
1185 * @dev: device to cause notification
1186 *
1187 * Called to indicate a device has changed features.
1188 */
1189 void netdev_features_change(struct net_device *dev)
1190 {
1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1192 }
1193 EXPORT_SYMBOL(netdev_features_change);
1194
1195 /**
1196 * netdev_state_change - device changes state
1197 * @dev: device to cause notification
1198 *
1199 * Called to indicate a device has changed state. This function calls
1200 * the notifier chains for netdev_chain and sends a NEWLINK message
1201 * to the routing socket.
1202 */
1203 void netdev_state_change(struct net_device *dev)
1204 {
1205 if (dev->flags & IFF_UP) {
1206 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1208 }
1209 }
1210 EXPORT_SYMBOL(netdev_state_change);
1211
1212 /**
1213 * netdev_notify_peers - notify network peers about existence of @dev
1214 * @dev: network device
1215 *
1216 * Generate traffic such that interested network peers are aware of
1217 * @dev, such as by generating a gratuitous ARP. This may be used when
1218 * a device wants to inform the rest of the network about some sort of
1219 * reconfiguration such as a failover event or virtual machine
1220 * migration.
1221 */
1222 void netdev_notify_peers(struct net_device *dev)
1223 {
1224 rtnl_lock();
1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1226 rtnl_unlock();
1227 }
1228 EXPORT_SYMBOL(netdev_notify_peers);
1229
1230 /**
1231 * dev_load - load a network module
1232 * @net: the applicable net namespace
1233 * @name: name of interface
1234 *
1235 * If a network interface is not present and the process has suitable
1236 * privileges this function loads the module. If module loading is not
1237 * available in this kernel then it becomes a nop.
1238 */
1239
1240 void dev_load(struct net *net, const char *name)
1241 {
1242 struct net_device *dev;
1243 int no_module;
1244
1245 rcu_read_lock();
1246 dev = dev_get_by_name_rcu(net, name);
1247 rcu_read_unlock();
1248
1249 no_module = !dev;
1250 if (no_module && capable(CAP_NET_ADMIN))
1251 no_module = request_module("netdev-%s", name);
1252 if (no_module && capable(CAP_SYS_MODULE)) {
1253 if (!request_module("%s", name))
1254 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1255 name);
1256 }
1257 }
1258 EXPORT_SYMBOL(dev_load);
1259
1260 static int __dev_open(struct net_device *dev)
1261 {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263 int ret;
1264
1265 ASSERT_RTNL();
1266
1267 if (!netif_device_present(dev))
1268 return -ENODEV;
1269
1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 ret = notifier_to_errno(ret);
1272 if (ret)
1273 return ret;
1274
1275 set_bit(__LINK_STATE_START, &dev->state);
1276
1277 if (ops->ndo_validate_addr)
1278 ret = ops->ndo_validate_addr(dev);
1279
1280 if (!ret && ops->ndo_open)
1281 ret = ops->ndo_open(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 net_dmaengine_get();
1288 dev_set_rx_mode(dev);
1289 dev_activate(dev);
1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1291 }
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1299 *
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1307 */
1308 int dev_open(struct net_device *dev)
1309 {
1310 int ret;
1311
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev;
1329
1330 ASSERT_RTNL();
1331 might_sleep();
1332
1333 list_for_each_entry(dev, head, unreg_list) {
1334 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1335
1336 clear_bit(__LINK_STATE_START, &dev->state);
1337
1338 /* Synchronize to scheduled poll. We cannot touch poll list, it
1339 * can be even on different cpu. So just clear netif_running().
1340 *
1341 * dev->stop() will invoke napi_disable() on all of it's
1342 * napi_struct instances on this device.
1343 */
1344 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1345 }
1346
1347 dev_deactivate_many(head);
1348
1349 list_for_each_entry(dev, head, unreg_list) {
1350 const struct net_device_ops *ops = dev->netdev_ops;
1351
1352 /*
1353 * Call the device specific close. This cannot fail.
1354 * Only if device is UP
1355 *
1356 * We allow it to be called even after a DETACH hot-plug
1357 * event.
1358 */
1359 if (ops->ndo_stop)
1360 ops->ndo_stop(dev);
1361
1362 dev->flags &= ~IFF_UP;
1363 net_dmaengine_put();
1364 }
1365
1366 return 0;
1367 }
1368
1369 static int __dev_close(struct net_device *dev)
1370 {
1371 int retval;
1372 LIST_HEAD(single);
1373
1374 list_add(&dev->unreg_list, &single);
1375 retval = __dev_close_many(&single);
1376 list_del(&single);
1377 return retval;
1378 }
1379
1380 static int dev_close_many(struct list_head *head)
1381 {
1382 struct net_device *dev, *tmp;
1383 LIST_HEAD(tmp_list);
1384
1385 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1386 if (!(dev->flags & IFF_UP))
1387 list_move(&dev->unreg_list, &tmp_list);
1388
1389 __dev_close_many(head);
1390
1391 list_for_each_entry(dev, head, unreg_list) {
1392 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1393 call_netdevice_notifiers(NETDEV_DOWN, dev);
1394 }
1395
1396 /* rollback_registered_many needs the complete original list */
1397 list_splice(&tmp_list, head);
1398 return 0;
1399 }
1400
1401 /**
1402 * dev_close - shutdown an interface.
1403 * @dev: device to shutdown
1404 *
1405 * This function moves an active device into down state. A
1406 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1407 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1408 * chain.
1409 */
1410 int dev_close(struct net_device *dev)
1411 {
1412 if (dev->flags & IFF_UP) {
1413 LIST_HEAD(single);
1414
1415 list_add(&dev->unreg_list, &single);
1416 dev_close_many(&single);
1417 list_del(&single);
1418 }
1419 return 0;
1420 }
1421 EXPORT_SYMBOL(dev_close);
1422
1423
1424 /**
1425 * dev_disable_lro - disable Large Receive Offload on a device
1426 * @dev: device
1427 *
1428 * Disable Large Receive Offload (LRO) on a net device. Must be
1429 * called under RTNL. This is needed if received packets may be
1430 * forwarded to another interface.
1431 */
1432 void dev_disable_lro(struct net_device *dev)
1433 {
1434 /*
1435 * If we're trying to disable lro on a vlan device
1436 * use the underlying physical device instead
1437 */
1438 if (is_vlan_dev(dev))
1439 dev = vlan_dev_real_dev(dev);
1440
1441 dev->wanted_features &= ~NETIF_F_LRO;
1442 netdev_update_features(dev);
1443
1444 if (unlikely(dev->features & NETIF_F_LRO))
1445 netdev_WARN(dev, "failed to disable LRO!\n");
1446 }
1447 EXPORT_SYMBOL(dev_disable_lro);
1448
1449
1450 static int dev_boot_phase = 1;
1451
1452 /**
1453 * register_netdevice_notifier - register a network notifier block
1454 * @nb: notifier
1455 *
1456 * Register a notifier to be called when network device events occur.
1457 * The notifier passed is linked into the kernel structures and must
1458 * not be reused until it has been unregistered. A negative errno code
1459 * is returned on a failure.
1460 *
1461 * When registered all registration and up events are replayed
1462 * to the new notifier to allow device to have a race free
1463 * view of the network device list.
1464 */
1465
1466 int register_netdevice_notifier(struct notifier_block *nb)
1467 {
1468 struct net_device *dev;
1469 struct net_device *last;
1470 struct net *net;
1471 int err;
1472
1473 rtnl_lock();
1474 err = raw_notifier_chain_register(&netdev_chain, nb);
1475 if (err)
1476 goto unlock;
1477 if (dev_boot_phase)
1478 goto unlock;
1479 for_each_net(net) {
1480 for_each_netdev(net, dev) {
1481 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1482 err = notifier_to_errno(err);
1483 if (err)
1484 goto rollback;
1485
1486 if (!(dev->flags & IFF_UP))
1487 continue;
1488
1489 nb->notifier_call(nb, NETDEV_UP, dev);
1490 }
1491 }
1492
1493 unlock:
1494 rtnl_unlock();
1495 return err;
1496
1497 rollback:
1498 last = dev;
1499 for_each_net(net) {
1500 for_each_netdev(net, dev) {
1501 if (dev == last)
1502 goto outroll;
1503
1504 if (dev->flags & IFF_UP) {
1505 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1506 nb->notifier_call(nb, NETDEV_DOWN, dev);
1507 }
1508 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1509 }
1510 }
1511
1512 outroll:
1513 raw_notifier_chain_unregister(&netdev_chain, nb);
1514 goto unlock;
1515 }
1516 EXPORT_SYMBOL(register_netdevice_notifier);
1517
1518 /**
1519 * unregister_netdevice_notifier - unregister a network notifier block
1520 * @nb: notifier
1521 *
1522 * Unregister a notifier previously registered by
1523 * register_netdevice_notifier(). The notifier is unlinked into the
1524 * kernel structures and may then be reused. A negative errno code
1525 * is returned on a failure.
1526 *
1527 * After unregistering unregister and down device events are synthesized
1528 * for all devices on the device list to the removed notifier to remove
1529 * the need for special case cleanup code.
1530 */
1531
1532 int unregister_netdevice_notifier(struct notifier_block *nb)
1533 {
1534 struct net_device *dev;
1535 struct net *net;
1536 int err;
1537
1538 rtnl_lock();
1539 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1540 if (err)
1541 goto unlock;
1542
1543 for_each_net(net) {
1544 for_each_netdev(net, dev) {
1545 if (dev->flags & IFF_UP) {
1546 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1547 nb->notifier_call(nb, NETDEV_DOWN, dev);
1548 }
1549 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559 * call_netdevice_notifiers - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 *
1563 * Call all network notifier blocks. Parameters and return value
1564 * are as for raw_notifier_call_chain().
1565 */
1566
1567 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1568 {
1569 ASSERT_RTNL();
1570 return raw_notifier_call_chain(&netdev_chain, val, dev);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers);
1573
1574 static struct static_key netstamp_needed __read_mostly;
1575 #ifdef HAVE_JUMP_LABEL
1576 /* We are not allowed to call static_key_slow_dec() from irq context
1577 * If net_disable_timestamp() is called from irq context, defer the
1578 * static_key_slow_dec() calls.
1579 */
1580 static atomic_t netstamp_needed_deferred;
1581 #endif
1582
1583 void net_enable_timestamp(void)
1584 {
1585 #ifdef HAVE_JUMP_LABEL
1586 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1587
1588 if (deferred) {
1589 while (--deferred)
1590 static_key_slow_dec(&netstamp_needed);
1591 return;
1592 }
1593 #endif
1594 WARN_ON(in_interrupt());
1595 static_key_slow_inc(&netstamp_needed);
1596 }
1597 EXPORT_SYMBOL(net_enable_timestamp);
1598
1599 void net_disable_timestamp(void)
1600 {
1601 #ifdef HAVE_JUMP_LABEL
1602 if (in_interrupt()) {
1603 atomic_inc(&netstamp_needed_deferred);
1604 return;
1605 }
1606 #endif
1607 static_key_slow_dec(&netstamp_needed);
1608 }
1609 EXPORT_SYMBOL(net_disable_timestamp);
1610
1611 static inline void net_timestamp_set(struct sk_buff *skb)
1612 {
1613 skb->tstamp.tv64 = 0;
1614 if (static_key_false(&netstamp_needed))
1615 __net_timestamp(skb);
1616 }
1617
1618 #define net_timestamp_check(COND, SKB) \
1619 if (static_key_false(&netstamp_needed)) { \
1620 if ((COND) && !(SKB)->tstamp.tv64) \
1621 __net_timestamp(SKB); \
1622 } \
1623
1624 static int net_hwtstamp_validate(struct ifreq *ifr)
1625 {
1626 struct hwtstamp_config cfg;
1627 enum hwtstamp_tx_types tx_type;
1628 enum hwtstamp_rx_filters rx_filter;
1629 int tx_type_valid = 0;
1630 int rx_filter_valid = 0;
1631
1632 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1633 return -EFAULT;
1634
1635 if (cfg.flags) /* reserved for future extensions */
1636 return -EINVAL;
1637
1638 tx_type = cfg.tx_type;
1639 rx_filter = cfg.rx_filter;
1640
1641 switch (tx_type) {
1642 case HWTSTAMP_TX_OFF:
1643 case HWTSTAMP_TX_ON:
1644 case HWTSTAMP_TX_ONESTEP_SYNC:
1645 tx_type_valid = 1;
1646 break;
1647 }
1648
1649 switch (rx_filter) {
1650 case HWTSTAMP_FILTER_NONE:
1651 case HWTSTAMP_FILTER_ALL:
1652 case HWTSTAMP_FILTER_SOME:
1653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1654 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1655 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1656 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1657 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1658 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1659 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1660 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1661 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1662 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1663 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1664 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1665 rx_filter_valid = 1;
1666 break;
1667 }
1668
1669 if (!tx_type_valid || !rx_filter_valid)
1670 return -ERANGE;
1671
1672 return 0;
1673 }
1674
1675 static inline bool is_skb_forwardable(struct net_device *dev,
1676 struct sk_buff *skb)
1677 {
1678 unsigned int len;
1679
1680 if (!(dev->flags & IFF_UP))
1681 return false;
1682
1683 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1684 if (skb->len <= len)
1685 return true;
1686
1687 /* if TSO is enabled, we don't care about the length as the packet
1688 * could be forwarded without being segmented before
1689 */
1690 if (skb_is_gso(skb))
1691 return true;
1692
1693 return false;
1694 }
1695
1696 /**
1697 * dev_forward_skb - loopback an skb to another netif
1698 *
1699 * @dev: destination network device
1700 * @skb: buffer to forward
1701 *
1702 * return values:
1703 * NET_RX_SUCCESS (no congestion)
1704 * NET_RX_DROP (packet was dropped, but freed)
1705 *
1706 * dev_forward_skb can be used for injecting an skb from the
1707 * start_xmit function of one device into the receive queue
1708 * of another device.
1709 *
1710 * The receiving device may be in another namespace, so
1711 * we have to clear all information in the skb that could
1712 * impact namespace isolation.
1713 */
1714 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1715 {
1716 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1717 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1718 atomic_long_inc(&dev->rx_dropped);
1719 kfree_skb(skb);
1720 return NET_RX_DROP;
1721 }
1722 }
1723
1724 skb_orphan(skb);
1725 nf_reset(skb);
1726
1727 if (unlikely(!is_skb_forwardable(dev, skb))) {
1728 atomic_long_inc(&dev->rx_dropped);
1729 kfree_skb(skb);
1730 return NET_RX_DROP;
1731 }
1732 skb->skb_iif = 0;
1733 skb->dev = dev;
1734 skb_dst_drop(skb);
1735 skb->tstamp.tv64 = 0;
1736 skb->pkt_type = PACKET_HOST;
1737 skb->protocol = eth_type_trans(skb, dev);
1738 skb->mark = 0;
1739 secpath_reset(skb);
1740 nf_reset(skb);
1741 return netif_rx(skb);
1742 }
1743 EXPORT_SYMBOL_GPL(dev_forward_skb);
1744
1745 static inline int deliver_skb(struct sk_buff *skb,
1746 struct packet_type *pt_prev,
1747 struct net_device *orig_dev)
1748 {
1749 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1750 return -ENOMEM;
1751 atomic_inc(&skb->users);
1752 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1753 }
1754
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757 if (!ptype->af_packet_priv || !skb->sk)
1758 return false;
1759
1760 if (ptype->id_match)
1761 return ptype->id_match(ptype, skb->sk);
1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 return true;
1764
1765 return false;
1766 }
1767
1768 /*
1769 * Support routine. Sends outgoing frames to any network
1770 * taps currently in use.
1771 */
1772
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 struct packet_type *ptype;
1776 struct sk_buff *skb2 = NULL;
1777 struct packet_type *pt_prev = NULL;
1778
1779 rcu_read_lock();
1780 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1781 /* Never send packets back to the socket
1782 * they originated from - MvS (miquels@drinkel.ow.org)
1783 */
1784 if ((ptype->dev == dev || !ptype->dev) &&
1785 (!skb_loop_sk(ptype, skb))) {
1786 if (pt_prev) {
1787 deliver_skb(skb2, pt_prev, skb->dev);
1788 pt_prev = ptype;
1789 continue;
1790 }
1791
1792 skb2 = skb_clone(skb, GFP_ATOMIC);
1793 if (!skb2)
1794 break;
1795
1796 net_timestamp_set(skb2);
1797
1798 /* skb->nh should be correctly
1799 set by sender, so that the second statement is
1800 just protection against buggy protocols.
1801 */
1802 skb_reset_mac_header(skb2);
1803
1804 if (skb_network_header(skb2) < skb2->data ||
1805 skb2->network_header > skb2->tail) {
1806 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1807 ntohs(skb2->protocol),
1808 dev->name);
1809 skb_reset_network_header(skb2);
1810 }
1811
1812 skb2->transport_header = skb2->network_header;
1813 skb2->pkt_type = PACKET_OUTGOING;
1814 pt_prev = ptype;
1815 }
1816 }
1817 if (pt_prev)
1818 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1819 rcu_read_unlock();
1820 }
1821
1822 /**
1823 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1824 * @dev: Network device
1825 * @txq: number of queues available
1826 *
1827 * If real_num_tx_queues is changed the tc mappings may no longer be
1828 * valid. To resolve this verify the tc mapping remains valid and if
1829 * not NULL the mapping. With no priorities mapping to this
1830 * offset/count pair it will no longer be used. In the worst case TC0
1831 * is invalid nothing can be done so disable priority mappings. If is
1832 * expected that drivers will fix this mapping if they can before
1833 * calling netif_set_real_num_tx_queues.
1834 */
1835 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1836 {
1837 int i;
1838 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1839
1840 /* If TC0 is invalidated disable TC mapping */
1841 if (tc->offset + tc->count > txq) {
1842 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1843 dev->num_tc = 0;
1844 return;
1845 }
1846
1847 /* Invalidated prio to tc mappings set to TC0 */
1848 for (i = 1; i < TC_BITMASK + 1; i++) {
1849 int q = netdev_get_prio_tc_map(dev, i);
1850
1851 tc = &dev->tc_to_txq[q];
1852 if (tc->offset + tc->count > txq) {
1853 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1854 i, q);
1855 netdev_set_prio_tc_map(dev, i, 0);
1856 }
1857 }
1858 }
1859
1860 /*
1861 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1862 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1863 */
1864 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1865 {
1866 int rc;
1867
1868 if (txq < 1 || txq > dev->num_tx_queues)
1869 return -EINVAL;
1870
1871 if (dev->reg_state == NETREG_REGISTERED ||
1872 dev->reg_state == NETREG_UNREGISTERING) {
1873 ASSERT_RTNL();
1874
1875 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1876 txq);
1877 if (rc)
1878 return rc;
1879
1880 if (dev->num_tc)
1881 netif_setup_tc(dev, txq);
1882
1883 if (txq < dev->real_num_tx_queues)
1884 qdisc_reset_all_tx_gt(dev, txq);
1885 }
1886
1887 dev->real_num_tx_queues = txq;
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1891
1892 #ifdef CONFIG_RPS
1893 /**
1894 * netif_set_real_num_rx_queues - set actual number of RX queues used
1895 * @dev: Network device
1896 * @rxq: Actual number of RX queues
1897 *
1898 * This must be called either with the rtnl_lock held or before
1899 * registration of the net device. Returns 0 on success, or a
1900 * negative error code. If called before registration, it always
1901 * succeeds.
1902 */
1903 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1904 {
1905 int rc;
1906
1907 if (rxq < 1 || rxq > dev->num_rx_queues)
1908 return -EINVAL;
1909
1910 if (dev->reg_state == NETREG_REGISTERED) {
1911 ASSERT_RTNL();
1912
1913 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1914 rxq);
1915 if (rc)
1916 return rc;
1917 }
1918
1919 dev->real_num_rx_queues = rxq;
1920 return 0;
1921 }
1922 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1923 #endif
1924
1925 /**
1926 * netif_get_num_default_rss_queues - default number of RSS queues
1927 *
1928 * This routine should set an upper limit on the number of RSS queues
1929 * used by default by multiqueue devices.
1930 */
1931 int netif_get_num_default_rss_queues(void)
1932 {
1933 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1934 }
1935 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1936
1937 static inline void __netif_reschedule(struct Qdisc *q)
1938 {
1939 struct softnet_data *sd;
1940 unsigned long flags;
1941
1942 local_irq_save(flags);
1943 sd = &__get_cpu_var(softnet_data);
1944 q->next_sched = NULL;
1945 *sd->output_queue_tailp = q;
1946 sd->output_queue_tailp = &q->next_sched;
1947 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1948 local_irq_restore(flags);
1949 }
1950
1951 void __netif_schedule(struct Qdisc *q)
1952 {
1953 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1954 __netif_reschedule(q);
1955 }
1956 EXPORT_SYMBOL(__netif_schedule);
1957
1958 void dev_kfree_skb_irq(struct sk_buff *skb)
1959 {
1960 if (atomic_dec_and_test(&skb->users)) {
1961 struct softnet_data *sd;
1962 unsigned long flags;
1963
1964 local_irq_save(flags);
1965 sd = &__get_cpu_var(softnet_data);
1966 skb->next = sd->completion_queue;
1967 sd->completion_queue = skb;
1968 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1969 local_irq_restore(flags);
1970 }
1971 }
1972 EXPORT_SYMBOL(dev_kfree_skb_irq);
1973
1974 void dev_kfree_skb_any(struct sk_buff *skb)
1975 {
1976 if (in_irq() || irqs_disabled())
1977 dev_kfree_skb_irq(skb);
1978 else
1979 dev_kfree_skb(skb);
1980 }
1981 EXPORT_SYMBOL(dev_kfree_skb_any);
1982
1983
1984 /**
1985 * netif_device_detach - mark device as removed
1986 * @dev: network device
1987 *
1988 * Mark device as removed from system and therefore no longer available.
1989 */
1990 void netif_device_detach(struct net_device *dev)
1991 {
1992 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1993 netif_running(dev)) {
1994 netif_tx_stop_all_queues(dev);
1995 }
1996 }
1997 EXPORT_SYMBOL(netif_device_detach);
1998
1999 /**
2000 * netif_device_attach - mark device as attached
2001 * @dev: network device
2002 *
2003 * Mark device as attached from system and restart if needed.
2004 */
2005 void netif_device_attach(struct net_device *dev)
2006 {
2007 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2008 netif_running(dev)) {
2009 netif_tx_wake_all_queues(dev);
2010 __netdev_watchdog_up(dev);
2011 }
2012 }
2013 EXPORT_SYMBOL(netif_device_attach);
2014
2015 static void skb_warn_bad_offload(const struct sk_buff *skb)
2016 {
2017 static const netdev_features_t null_features = 0;
2018 struct net_device *dev = skb->dev;
2019 const char *driver = "";
2020
2021 if (dev && dev->dev.parent)
2022 driver = dev_driver_string(dev->dev.parent);
2023
2024 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2025 "gso_type=%d ip_summed=%d\n",
2026 driver, dev ? &dev->features : &null_features,
2027 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2028 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2029 skb_shinfo(skb)->gso_type, skb->ip_summed);
2030 }
2031
2032 /*
2033 * Invalidate hardware checksum when packet is to be mangled, and
2034 * complete checksum manually on outgoing path.
2035 */
2036 int skb_checksum_help(struct sk_buff *skb)
2037 {
2038 __wsum csum;
2039 int ret = 0, offset;
2040
2041 if (skb->ip_summed == CHECKSUM_COMPLETE)
2042 goto out_set_summed;
2043
2044 if (unlikely(skb_shinfo(skb)->gso_size)) {
2045 skb_warn_bad_offload(skb);
2046 return -EINVAL;
2047 }
2048
2049 offset = skb_checksum_start_offset(skb);
2050 BUG_ON(offset >= skb_headlen(skb));
2051 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2052
2053 offset += skb->csum_offset;
2054 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2055
2056 if (skb_cloned(skb) &&
2057 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2058 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2059 if (ret)
2060 goto out;
2061 }
2062
2063 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2064 out_set_summed:
2065 skb->ip_summed = CHECKSUM_NONE;
2066 out:
2067 return ret;
2068 }
2069 EXPORT_SYMBOL(skb_checksum_help);
2070
2071 /**
2072 * skb_gso_segment - Perform segmentation on skb.
2073 * @skb: buffer to segment
2074 * @features: features for the output path (see dev->features)
2075 *
2076 * This function segments the given skb and returns a list of segments.
2077 *
2078 * It may return NULL if the skb requires no segmentation. This is
2079 * only possible when GSO is used for verifying header integrity.
2080 */
2081 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2082 netdev_features_t features)
2083 {
2084 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2085 struct packet_offload *ptype;
2086 __be16 type = skb->protocol;
2087 int vlan_depth = ETH_HLEN;
2088 int err;
2089
2090 while (type == htons(ETH_P_8021Q)) {
2091 struct vlan_hdr *vh;
2092
2093 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2094 return ERR_PTR(-EINVAL);
2095
2096 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2097 type = vh->h_vlan_encapsulated_proto;
2098 vlan_depth += VLAN_HLEN;
2099 }
2100
2101 skb_reset_mac_header(skb);
2102 skb->mac_len = skb->network_header - skb->mac_header;
2103 __skb_pull(skb, skb->mac_len);
2104
2105 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2106 skb_warn_bad_offload(skb);
2107
2108 if (skb_header_cloned(skb) &&
2109 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2110 return ERR_PTR(err);
2111 }
2112
2113 rcu_read_lock();
2114 list_for_each_entry_rcu(ptype, &offload_base, list) {
2115 if (ptype->type == type && ptype->callbacks.gso_segment) {
2116 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2117 err = ptype->callbacks.gso_send_check(skb);
2118 segs = ERR_PTR(err);
2119 if (err || skb_gso_ok(skb, features))
2120 break;
2121 __skb_push(skb, (skb->data -
2122 skb_network_header(skb)));
2123 }
2124 segs = ptype->callbacks.gso_segment(skb, features);
2125 break;
2126 }
2127 }
2128 rcu_read_unlock();
2129
2130 __skb_push(skb, skb->data - skb_mac_header(skb));
2131
2132 return segs;
2133 }
2134 EXPORT_SYMBOL(skb_gso_segment);
2135
2136 /* Take action when hardware reception checksum errors are detected. */
2137 #ifdef CONFIG_BUG
2138 void netdev_rx_csum_fault(struct net_device *dev)
2139 {
2140 if (net_ratelimit()) {
2141 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2142 dump_stack();
2143 }
2144 }
2145 EXPORT_SYMBOL(netdev_rx_csum_fault);
2146 #endif
2147
2148 /* Actually, we should eliminate this check as soon as we know, that:
2149 * 1. IOMMU is present and allows to map all the memory.
2150 * 2. No high memory really exists on this machine.
2151 */
2152
2153 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2154 {
2155 #ifdef CONFIG_HIGHMEM
2156 int i;
2157 if (!(dev->features & NETIF_F_HIGHDMA)) {
2158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2159 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2160 if (PageHighMem(skb_frag_page(frag)))
2161 return 1;
2162 }
2163 }
2164
2165 if (PCI_DMA_BUS_IS_PHYS) {
2166 struct device *pdev = dev->dev.parent;
2167
2168 if (!pdev)
2169 return 0;
2170 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2171 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2172 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2173 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2174 return 1;
2175 }
2176 }
2177 #endif
2178 return 0;
2179 }
2180
2181 struct dev_gso_cb {
2182 void (*destructor)(struct sk_buff *skb);
2183 };
2184
2185 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2186
2187 static void dev_gso_skb_destructor(struct sk_buff *skb)
2188 {
2189 struct dev_gso_cb *cb;
2190
2191 do {
2192 struct sk_buff *nskb = skb->next;
2193
2194 skb->next = nskb->next;
2195 nskb->next = NULL;
2196 kfree_skb(nskb);
2197 } while (skb->next);
2198
2199 cb = DEV_GSO_CB(skb);
2200 if (cb->destructor)
2201 cb->destructor(skb);
2202 }
2203
2204 /**
2205 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2206 * @skb: buffer to segment
2207 * @features: device features as applicable to this skb
2208 *
2209 * This function segments the given skb and stores the list of segments
2210 * in skb->next.
2211 */
2212 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2213 {
2214 struct sk_buff *segs;
2215
2216 segs = skb_gso_segment(skb, features);
2217
2218 /* Verifying header integrity only. */
2219 if (!segs)
2220 return 0;
2221
2222 if (IS_ERR(segs))
2223 return PTR_ERR(segs);
2224
2225 skb->next = segs;
2226 DEV_GSO_CB(skb)->destructor = skb->destructor;
2227 skb->destructor = dev_gso_skb_destructor;
2228
2229 return 0;
2230 }
2231
2232 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2233 {
2234 return ((features & NETIF_F_GEN_CSUM) ||
2235 ((features & NETIF_F_V4_CSUM) &&
2236 protocol == htons(ETH_P_IP)) ||
2237 ((features & NETIF_F_V6_CSUM) &&
2238 protocol == htons(ETH_P_IPV6)) ||
2239 ((features & NETIF_F_FCOE_CRC) &&
2240 protocol == htons(ETH_P_FCOE)));
2241 }
2242
2243 static netdev_features_t harmonize_features(struct sk_buff *skb,
2244 __be16 protocol, netdev_features_t features)
2245 {
2246 if (skb->ip_summed != CHECKSUM_NONE &&
2247 !can_checksum_protocol(features, protocol)) {
2248 features &= ~NETIF_F_ALL_CSUM;
2249 features &= ~NETIF_F_SG;
2250 } else if (illegal_highdma(skb->dev, skb)) {
2251 features &= ~NETIF_F_SG;
2252 }
2253
2254 return features;
2255 }
2256
2257 netdev_features_t netif_skb_features(struct sk_buff *skb)
2258 {
2259 __be16 protocol = skb->protocol;
2260 netdev_features_t features = skb->dev->features;
2261
2262 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2263 features &= ~NETIF_F_GSO_MASK;
2264
2265 if (protocol == htons(ETH_P_8021Q)) {
2266 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2267 protocol = veh->h_vlan_encapsulated_proto;
2268 } else if (!vlan_tx_tag_present(skb)) {
2269 return harmonize_features(skb, protocol, features);
2270 }
2271
2272 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2273
2274 if (protocol != htons(ETH_P_8021Q)) {
2275 return harmonize_features(skb, protocol, features);
2276 } else {
2277 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2278 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2279 return harmonize_features(skb, protocol, features);
2280 }
2281 }
2282 EXPORT_SYMBOL(netif_skb_features);
2283
2284 /*
2285 * Returns true if either:
2286 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2287 * 2. skb is fragmented and the device does not support SG.
2288 */
2289 static inline int skb_needs_linearize(struct sk_buff *skb,
2290 int features)
2291 {
2292 return skb_is_nonlinear(skb) &&
2293 ((skb_has_frag_list(skb) &&
2294 !(features & NETIF_F_FRAGLIST)) ||
2295 (skb_shinfo(skb)->nr_frags &&
2296 !(features & NETIF_F_SG)));
2297 }
2298
2299 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2300 struct netdev_queue *txq)
2301 {
2302 const struct net_device_ops *ops = dev->netdev_ops;
2303 int rc = NETDEV_TX_OK;
2304 unsigned int skb_len;
2305
2306 if (likely(!skb->next)) {
2307 netdev_features_t features;
2308
2309 /*
2310 * If device doesn't need skb->dst, release it right now while
2311 * its hot in this cpu cache
2312 */
2313 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2314 skb_dst_drop(skb);
2315
2316 features = netif_skb_features(skb);
2317
2318 if (vlan_tx_tag_present(skb) &&
2319 !(features & NETIF_F_HW_VLAN_TX)) {
2320 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2321 if (unlikely(!skb))
2322 goto out;
2323
2324 skb->vlan_tci = 0;
2325 }
2326
2327 /* If encapsulation offload request, verify we are testing
2328 * hardware encapsulation features instead of standard
2329 * features for the netdev
2330 */
2331 if (skb->encapsulation)
2332 features &= dev->hw_enc_features;
2333
2334 if (netif_needs_gso(skb, features)) {
2335 if (unlikely(dev_gso_segment(skb, features)))
2336 goto out_kfree_skb;
2337 if (skb->next)
2338 goto gso;
2339 } else {
2340 if (skb_needs_linearize(skb, features) &&
2341 __skb_linearize(skb))
2342 goto out_kfree_skb;
2343
2344 /* If packet is not checksummed and device does not
2345 * support checksumming for this protocol, complete
2346 * checksumming here.
2347 */
2348 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2349 if (skb->encapsulation)
2350 skb_set_inner_transport_header(skb,
2351 skb_checksum_start_offset(skb));
2352 else
2353 skb_set_transport_header(skb,
2354 skb_checksum_start_offset(skb));
2355 if (!(features & NETIF_F_ALL_CSUM) &&
2356 skb_checksum_help(skb))
2357 goto out_kfree_skb;
2358 }
2359 }
2360
2361 if (!list_empty(&ptype_all))
2362 dev_queue_xmit_nit(skb, dev);
2363
2364 skb_len = skb->len;
2365 rc = ops->ndo_start_xmit(skb, dev);
2366 trace_net_dev_xmit(skb, rc, dev, skb_len);
2367 if (rc == NETDEV_TX_OK)
2368 txq_trans_update(txq);
2369 return rc;
2370 }
2371
2372 gso:
2373 do {
2374 struct sk_buff *nskb = skb->next;
2375
2376 skb->next = nskb->next;
2377 nskb->next = NULL;
2378
2379 /*
2380 * If device doesn't need nskb->dst, release it right now while
2381 * its hot in this cpu cache
2382 */
2383 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2384 skb_dst_drop(nskb);
2385
2386 if (!list_empty(&ptype_all))
2387 dev_queue_xmit_nit(nskb, dev);
2388
2389 skb_len = nskb->len;
2390 rc = ops->ndo_start_xmit(nskb, dev);
2391 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2392 if (unlikely(rc != NETDEV_TX_OK)) {
2393 if (rc & ~NETDEV_TX_MASK)
2394 goto out_kfree_gso_skb;
2395 nskb->next = skb->next;
2396 skb->next = nskb;
2397 return rc;
2398 }
2399 txq_trans_update(txq);
2400 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2401 return NETDEV_TX_BUSY;
2402 } while (skb->next);
2403
2404 out_kfree_gso_skb:
2405 if (likely(skb->next == NULL))
2406 skb->destructor = DEV_GSO_CB(skb)->destructor;
2407 out_kfree_skb:
2408 kfree_skb(skb);
2409 out:
2410 return rc;
2411 }
2412
2413 static u32 hashrnd __read_mostly;
2414
2415 /*
2416 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2417 * to be used as a distribution range.
2418 */
2419 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2420 unsigned int num_tx_queues)
2421 {
2422 u32 hash;
2423 u16 qoffset = 0;
2424 u16 qcount = num_tx_queues;
2425
2426 if (skb_rx_queue_recorded(skb)) {
2427 hash = skb_get_rx_queue(skb);
2428 while (unlikely(hash >= num_tx_queues))
2429 hash -= num_tx_queues;
2430 return hash;
2431 }
2432
2433 if (dev->num_tc) {
2434 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2435 qoffset = dev->tc_to_txq[tc].offset;
2436 qcount = dev->tc_to_txq[tc].count;
2437 }
2438
2439 if (skb->sk && skb->sk->sk_hash)
2440 hash = skb->sk->sk_hash;
2441 else
2442 hash = (__force u16) skb->protocol;
2443 hash = jhash_1word(hash, hashrnd);
2444
2445 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2446 }
2447 EXPORT_SYMBOL(__skb_tx_hash);
2448
2449 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2450 {
2451 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2452 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2453 dev->name, queue_index,
2454 dev->real_num_tx_queues);
2455 return 0;
2456 }
2457 return queue_index;
2458 }
2459
2460 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_XPS
2463 struct xps_dev_maps *dev_maps;
2464 struct xps_map *map;
2465 int queue_index = -1;
2466
2467 rcu_read_lock();
2468 dev_maps = rcu_dereference(dev->xps_maps);
2469 if (dev_maps) {
2470 map = rcu_dereference(
2471 dev_maps->cpu_map[raw_smp_processor_id()]);
2472 if (map) {
2473 if (map->len == 1)
2474 queue_index = map->queues[0];
2475 else {
2476 u32 hash;
2477 if (skb->sk && skb->sk->sk_hash)
2478 hash = skb->sk->sk_hash;
2479 else
2480 hash = (__force u16) skb->protocol ^
2481 skb->rxhash;
2482 hash = jhash_1word(hash, hashrnd);
2483 queue_index = map->queues[
2484 ((u64)hash * map->len) >> 32];
2485 }
2486 if (unlikely(queue_index >= dev->real_num_tx_queues))
2487 queue_index = -1;
2488 }
2489 }
2490 rcu_read_unlock();
2491
2492 return queue_index;
2493 #else
2494 return -1;
2495 #endif
2496 }
2497
2498 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2499 struct sk_buff *skb)
2500 {
2501 int queue_index;
2502 const struct net_device_ops *ops = dev->netdev_ops;
2503
2504 if (dev->real_num_tx_queues == 1)
2505 queue_index = 0;
2506 else if (ops->ndo_select_queue) {
2507 queue_index = ops->ndo_select_queue(dev, skb);
2508 queue_index = dev_cap_txqueue(dev, queue_index);
2509 } else {
2510 struct sock *sk = skb->sk;
2511 queue_index = sk_tx_queue_get(sk);
2512
2513 if (queue_index < 0 || skb->ooo_okay ||
2514 queue_index >= dev->real_num_tx_queues) {
2515 int old_index = queue_index;
2516
2517 queue_index = get_xps_queue(dev, skb);
2518 if (queue_index < 0)
2519 queue_index = skb_tx_hash(dev, skb);
2520
2521 if (queue_index != old_index && sk) {
2522 struct dst_entry *dst =
2523 rcu_dereference_check(sk->sk_dst_cache, 1);
2524
2525 if (dst && skb_dst(skb) == dst)
2526 sk_tx_queue_set(sk, queue_index);
2527 }
2528 }
2529 }
2530
2531 skb_set_queue_mapping(skb, queue_index);
2532 return netdev_get_tx_queue(dev, queue_index);
2533 }
2534
2535 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2536 struct net_device *dev,
2537 struct netdev_queue *txq)
2538 {
2539 spinlock_t *root_lock = qdisc_lock(q);
2540 bool contended;
2541 int rc;
2542
2543 qdisc_skb_cb(skb)->pkt_len = skb->len;
2544 qdisc_calculate_pkt_len(skb, q);
2545 /*
2546 * Heuristic to force contended enqueues to serialize on a
2547 * separate lock before trying to get qdisc main lock.
2548 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2549 * and dequeue packets faster.
2550 */
2551 contended = qdisc_is_running(q);
2552 if (unlikely(contended))
2553 spin_lock(&q->busylock);
2554
2555 spin_lock(root_lock);
2556 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2557 kfree_skb(skb);
2558 rc = NET_XMIT_DROP;
2559 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2560 qdisc_run_begin(q)) {
2561 /*
2562 * This is a work-conserving queue; there are no old skbs
2563 * waiting to be sent out; and the qdisc is not running -
2564 * xmit the skb directly.
2565 */
2566 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2567 skb_dst_force(skb);
2568
2569 qdisc_bstats_update(q, skb);
2570
2571 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2572 if (unlikely(contended)) {
2573 spin_unlock(&q->busylock);
2574 contended = false;
2575 }
2576 __qdisc_run(q);
2577 } else
2578 qdisc_run_end(q);
2579
2580 rc = NET_XMIT_SUCCESS;
2581 } else {
2582 skb_dst_force(skb);
2583 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2584 if (qdisc_run_begin(q)) {
2585 if (unlikely(contended)) {
2586 spin_unlock(&q->busylock);
2587 contended = false;
2588 }
2589 __qdisc_run(q);
2590 }
2591 }
2592 spin_unlock(root_lock);
2593 if (unlikely(contended))
2594 spin_unlock(&q->busylock);
2595 return rc;
2596 }
2597
2598 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2599 static void skb_update_prio(struct sk_buff *skb)
2600 {
2601 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2602
2603 if (!skb->priority && skb->sk && map) {
2604 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2605
2606 if (prioidx < map->priomap_len)
2607 skb->priority = map->priomap[prioidx];
2608 }
2609 }
2610 #else
2611 #define skb_update_prio(skb)
2612 #endif
2613
2614 static DEFINE_PER_CPU(int, xmit_recursion);
2615 #define RECURSION_LIMIT 10
2616
2617 /**
2618 * dev_loopback_xmit - loop back @skb
2619 * @skb: buffer to transmit
2620 */
2621 int dev_loopback_xmit(struct sk_buff *skb)
2622 {
2623 skb_reset_mac_header(skb);
2624 __skb_pull(skb, skb_network_offset(skb));
2625 skb->pkt_type = PACKET_LOOPBACK;
2626 skb->ip_summed = CHECKSUM_UNNECESSARY;
2627 WARN_ON(!skb_dst(skb));
2628 skb_dst_force(skb);
2629 netif_rx_ni(skb);
2630 return 0;
2631 }
2632 EXPORT_SYMBOL(dev_loopback_xmit);
2633
2634 /**
2635 * dev_queue_xmit - transmit a buffer
2636 * @skb: buffer to transmit
2637 *
2638 * Queue a buffer for transmission to a network device. The caller must
2639 * have set the device and priority and built the buffer before calling
2640 * this function. The function can be called from an interrupt.
2641 *
2642 * A negative errno code is returned on a failure. A success does not
2643 * guarantee the frame will be transmitted as it may be dropped due
2644 * to congestion or traffic shaping.
2645 *
2646 * -----------------------------------------------------------------------------------
2647 * I notice this method can also return errors from the queue disciplines,
2648 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2649 * be positive.
2650 *
2651 * Regardless of the return value, the skb is consumed, so it is currently
2652 * difficult to retry a send to this method. (You can bump the ref count
2653 * before sending to hold a reference for retry if you are careful.)
2654 *
2655 * When calling this method, interrupts MUST be enabled. This is because
2656 * the BH enable code must have IRQs enabled so that it will not deadlock.
2657 * --BLG
2658 */
2659 int dev_queue_xmit(struct sk_buff *skb)
2660 {
2661 struct net_device *dev = skb->dev;
2662 struct netdev_queue *txq;
2663 struct Qdisc *q;
2664 int rc = -ENOMEM;
2665
2666 /* Disable soft irqs for various locks below. Also
2667 * stops preemption for RCU.
2668 */
2669 rcu_read_lock_bh();
2670
2671 skb_update_prio(skb);
2672
2673 txq = netdev_pick_tx(dev, skb);
2674 q = rcu_dereference_bh(txq->qdisc);
2675
2676 #ifdef CONFIG_NET_CLS_ACT
2677 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2678 #endif
2679 trace_net_dev_queue(skb);
2680 if (q->enqueue) {
2681 rc = __dev_xmit_skb(skb, q, dev, txq);
2682 goto out;
2683 }
2684
2685 /* The device has no queue. Common case for software devices:
2686 loopback, all the sorts of tunnels...
2687
2688 Really, it is unlikely that netif_tx_lock protection is necessary
2689 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2690 counters.)
2691 However, it is possible, that they rely on protection
2692 made by us here.
2693
2694 Check this and shot the lock. It is not prone from deadlocks.
2695 Either shot noqueue qdisc, it is even simpler 8)
2696 */
2697 if (dev->flags & IFF_UP) {
2698 int cpu = smp_processor_id(); /* ok because BHs are off */
2699
2700 if (txq->xmit_lock_owner != cpu) {
2701
2702 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2703 goto recursion_alert;
2704
2705 HARD_TX_LOCK(dev, txq, cpu);
2706
2707 if (!netif_xmit_stopped(txq)) {
2708 __this_cpu_inc(xmit_recursion);
2709 rc = dev_hard_start_xmit(skb, dev, txq);
2710 __this_cpu_dec(xmit_recursion);
2711 if (dev_xmit_complete(rc)) {
2712 HARD_TX_UNLOCK(dev, txq);
2713 goto out;
2714 }
2715 }
2716 HARD_TX_UNLOCK(dev, txq);
2717 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2718 dev->name);
2719 } else {
2720 /* Recursion is detected! It is possible,
2721 * unfortunately
2722 */
2723 recursion_alert:
2724 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2725 dev->name);
2726 }
2727 }
2728
2729 rc = -ENETDOWN;
2730 rcu_read_unlock_bh();
2731
2732 kfree_skb(skb);
2733 return rc;
2734 out:
2735 rcu_read_unlock_bh();
2736 return rc;
2737 }
2738 EXPORT_SYMBOL(dev_queue_xmit);
2739
2740
2741 /*=======================================================================
2742 Receiver routines
2743 =======================================================================*/
2744
2745 int netdev_max_backlog __read_mostly = 1000;
2746 EXPORT_SYMBOL(netdev_max_backlog);
2747
2748 int netdev_tstamp_prequeue __read_mostly = 1;
2749 int netdev_budget __read_mostly = 300;
2750 int weight_p __read_mostly = 64; /* old backlog weight */
2751
2752 /* Called with irq disabled */
2753 static inline void ____napi_schedule(struct softnet_data *sd,
2754 struct napi_struct *napi)
2755 {
2756 list_add_tail(&napi->poll_list, &sd->poll_list);
2757 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2758 }
2759
2760 /*
2761 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2762 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2763 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2764 * if hash is a canonical 4-tuple hash over transport ports.
2765 */
2766 void __skb_get_rxhash(struct sk_buff *skb)
2767 {
2768 struct flow_keys keys;
2769 u32 hash;
2770
2771 if (!skb_flow_dissect(skb, &keys))
2772 return;
2773
2774 if (keys.ports)
2775 skb->l4_rxhash = 1;
2776
2777 /* get a consistent hash (same value on both flow directions) */
2778 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2779 (((__force u32)keys.dst == (__force u32)keys.src) &&
2780 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2781 swap(keys.dst, keys.src);
2782 swap(keys.port16[0], keys.port16[1]);
2783 }
2784
2785 hash = jhash_3words((__force u32)keys.dst,
2786 (__force u32)keys.src,
2787 (__force u32)keys.ports, hashrnd);
2788 if (!hash)
2789 hash = 1;
2790
2791 skb->rxhash = hash;
2792 }
2793 EXPORT_SYMBOL(__skb_get_rxhash);
2794
2795 #ifdef CONFIG_RPS
2796
2797 /* One global table that all flow-based protocols share. */
2798 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2799 EXPORT_SYMBOL(rps_sock_flow_table);
2800
2801 struct static_key rps_needed __read_mostly;
2802
2803 static struct rps_dev_flow *
2804 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2805 struct rps_dev_flow *rflow, u16 next_cpu)
2806 {
2807 if (next_cpu != RPS_NO_CPU) {
2808 #ifdef CONFIG_RFS_ACCEL
2809 struct netdev_rx_queue *rxqueue;
2810 struct rps_dev_flow_table *flow_table;
2811 struct rps_dev_flow *old_rflow;
2812 u32 flow_id;
2813 u16 rxq_index;
2814 int rc;
2815
2816 /* Should we steer this flow to a different hardware queue? */
2817 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2818 !(dev->features & NETIF_F_NTUPLE))
2819 goto out;
2820 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2821 if (rxq_index == skb_get_rx_queue(skb))
2822 goto out;
2823
2824 rxqueue = dev->_rx + rxq_index;
2825 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2826 if (!flow_table)
2827 goto out;
2828 flow_id = skb->rxhash & flow_table->mask;
2829 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2830 rxq_index, flow_id);
2831 if (rc < 0)
2832 goto out;
2833 old_rflow = rflow;
2834 rflow = &flow_table->flows[flow_id];
2835 rflow->filter = rc;
2836 if (old_rflow->filter == rflow->filter)
2837 old_rflow->filter = RPS_NO_FILTER;
2838 out:
2839 #endif
2840 rflow->last_qtail =
2841 per_cpu(softnet_data, next_cpu).input_queue_head;
2842 }
2843
2844 rflow->cpu = next_cpu;
2845 return rflow;
2846 }
2847
2848 /*
2849 * get_rps_cpu is called from netif_receive_skb and returns the target
2850 * CPU from the RPS map of the receiving queue for a given skb.
2851 * rcu_read_lock must be held on entry.
2852 */
2853 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2854 struct rps_dev_flow **rflowp)
2855 {
2856 struct netdev_rx_queue *rxqueue;
2857 struct rps_map *map;
2858 struct rps_dev_flow_table *flow_table;
2859 struct rps_sock_flow_table *sock_flow_table;
2860 int cpu = -1;
2861 u16 tcpu;
2862
2863 if (skb_rx_queue_recorded(skb)) {
2864 u16 index = skb_get_rx_queue(skb);
2865 if (unlikely(index >= dev->real_num_rx_queues)) {
2866 WARN_ONCE(dev->real_num_rx_queues > 1,
2867 "%s received packet on queue %u, but number "
2868 "of RX queues is %u\n",
2869 dev->name, index, dev->real_num_rx_queues);
2870 goto done;
2871 }
2872 rxqueue = dev->_rx + index;
2873 } else
2874 rxqueue = dev->_rx;
2875
2876 map = rcu_dereference(rxqueue->rps_map);
2877 if (map) {
2878 if (map->len == 1 &&
2879 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2880 tcpu = map->cpus[0];
2881 if (cpu_online(tcpu))
2882 cpu = tcpu;
2883 goto done;
2884 }
2885 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2886 goto done;
2887 }
2888
2889 skb_reset_network_header(skb);
2890 if (!skb_get_rxhash(skb))
2891 goto done;
2892
2893 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2894 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2895 if (flow_table && sock_flow_table) {
2896 u16 next_cpu;
2897 struct rps_dev_flow *rflow;
2898
2899 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2900 tcpu = rflow->cpu;
2901
2902 next_cpu = sock_flow_table->ents[skb->rxhash &
2903 sock_flow_table->mask];
2904
2905 /*
2906 * If the desired CPU (where last recvmsg was done) is
2907 * different from current CPU (one in the rx-queue flow
2908 * table entry), switch if one of the following holds:
2909 * - Current CPU is unset (equal to RPS_NO_CPU).
2910 * - Current CPU is offline.
2911 * - The current CPU's queue tail has advanced beyond the
2912 * last packet that was enqueued using this table entry.
2913 * This guarantees that all previous packets for the flow
2914 * have been dequeued, thus preserving in order delivery.
2915 */
2916 if (unlikely(tcpu != next_cpu) &&
2917 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2918 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2919 rflow->last_qtail)) >= 0)) {
2920 tcpu = next_cpu;
2921 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2922 }
2923
2924 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2925 *rflowp = rflow;
2926 cpu = tcpu;
2927 goto done;
2928 }
2929 }
2930
2931 if (map) {
2932 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2933
2934 if (cpu_online(tcpu)) {
2935 cpu = tcpu;
2936 goto done;
2937 }
2938 }
2939
2940 done:
2941 return cpu;
2942 }
2943
2944 #ifdef CONFIG_RFS_ACCEL
2945
2946 /**
2947 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2948 * @dev: Device on which the filter was set
2949 * @rxq_index: RX queue index
2950 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2951 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2952 *
2953 * Drivers that implement ndo_rx_flow_steer() should periodically call
2954 * this function for each installed filter and remove the filters for
2955 * which it returns %true.
2956 */
2957 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2958 u32 flow_id, u16 filter_id)
2959 {
2960 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2961 struct rps_dev_flow_table *flow_table;
2962 struct rps_dev_flow *rflow;
2963 bool expire = true;
2964 int cpu;
2965
2966 rcu_read_lock();
2967 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2968 if (flow_table && flow_id <= flow_table->mask) {
2969 rflow = &flow_table->flows[flow_id];
2970 cpu = ACCESS_ONCE(rflow->cpu);
2971 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2972 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2973 rflow->last_qtail) <
2974 (int)(10 * flow_table->mask)))
2975 expire = false;
2976 }
2977 rcu_read_unlock();
2978 return expire;
2979 }
2980 EXPORT_SYMBOL(rps_may_expire_flow);
2981
2982 #endif /* CONFIG_RFS_ACCEL */
2983
2984 /* Called from hardirq (IPI) context */
2985 static void rps_trigger_softirq(void *data)
2986 {
2987 struct softnet_data *sd = data;
2988
2989 ____napi_schedule(sd, &sd->backlog);
2990 sd->received_rps++;
2991 }
2992
2993 #endif /* CONFIG_RPS */
2994
2995 /*
2996 * Check if this softnet_data structure is another cpu one
2997 * If yes, queue it to our IPI list and return 1
2998 * If no, return 0
2999 */
3000 static int rps_ipi_queued(struct softnet_data *sd)
3001 {
3002 #ifdef CONFIG_RPS
3003 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3004
3005 if (sd != mysd) {
3006 sd->rps_ipi_next = mysd->rps_ipi_list;
3007 mysd->rps_ipi_list = sd;
3008
3009 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3010 return 1;
3011 }
3012 #endif /* CONFIG_RPS */
3013 return 0;
3014 }
3015
3016 /*
3017 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3018 * queue (may be a remote CPU queue).
3019 */
3020 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3021 unsigned int *qtail)
3022 {
3023 struct softnet_data *sd;
3024 unsigned long flags;
3025
3026 sd = &per_cpu(softnet_data, cpu);
3027
3028 local_irq_save(flags);
3029
3030 rps_lock(sd);
3031 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3032 if (skb_queue_len(&sd->input_pkt_queue)) {
3033 enqueue:
3034 __skb_queue_tail(&sd->input_pkt_queue, skb);
3035 input_queue_tail_incr_save(sd, qtail);
3036 rps_unlock(sd);
3037 local_irq_restore(flags);
3038 return NET_RX_SUCCESS;
3039 }
3040
3041 /* Schedule NAPI for backlog device
3042 * We can use non atomic operation since we own the queue lock
3043 */
3044 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3045 if (!rps_ipi_queued(sd))
3046 ____napi_schedule(sd, &sd->backlog);
3047 }
3048 goto enqueue;
3049 }
3050
3051 sd->dropped++;
3052 rps_unlock(sd);
3053
3054 local_irq_restore(flags);
3055
3056 atomic_long_inc(&skb->dev->rx_dropped);
3057 kfree_skb(skb);
3058 return NET_RX_DROP;
3059 }
3060
3061 /**
3062 * netif_rx - post buffer to the network code
3063 * @skb: buffer to post
3064 *
3065 * This function receives a packet from a device driver and queues it for
3066 * the upper (protocol) levels to process. It always succeeds. The buffer
3067 * may be dropped during processing for congestion control or by the
3068 * protocol layers.
3069 *
3070 * return values:
3071 * NET_RX_SUCCESS (no congestion)
3072 * NET_RX_DROP (packet was dropped)
3073 *
3074 */
3075
3076 int netif_rx(struct sk_buff *skb)
3077 {
3078 int ret;
3079
3080 /* if netpoll wants it, pretend we never saw it */
3081 if (netpoll_rx(skb))
3082 return NET_RX_DROP;
3083
3084 net_timestamp_check(netdev_tstamp_prequeue, skb);
3085
3086 trace_netif_rx(skb);
3087 #ifdef CONFIG_RPS
3088 if (static_key_false(&rps_needed)) {
3089 struct rps_dev_flow voidflow, *rflow = &voidflow;
3090 int cpu;
3091
3092 preempt_disable();
3093 rcu_read_lock();
3094
3095 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3096 if (cpu < 0)
3097 cpu = smp_processor_id();
3098
3099 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3100
3101 rcu_read_unlock();
3102 preempt_enable();
3103 } else
3104 #endif
3105 {
3106 unsigned int qtail;
3107 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3108 put_cpu();
3109 }
3110 return ret;
3111 }
3112 EXPORT_SYMBOL(netif_rx);
3113
3114 int netif_rx_ni(struct sk_buff *skb)
3115 {
3116 int err;
3117
3118 preempt_disable();
3119 err = netif_rx(skb);
3120 if (local_softirq_pending())
3121 do_softirq();
3122 preempt_enable();
3123
3124 return err;
3125 }
3126 EXPORT_SYMBOL(netif_rx_ni);
3127
3128 static void net_tx_action(struct softirq_action *h)
3129 {
3130 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3131
3132 if (sd->completion_queue) {
3133 struct sk_buff *clist;
3134
3135 local_irq_disable();
3136 clist = sd->completion_queue;
3137 sd->completion_queue = NULL;
3138 local_irq_enable();
3139
3140 while (clist) {
3141 struct sk_buff *skb = clist;
3142 clist = clist->next;
3143
3144 WARN_ON(atomic_read(&skb->users));
3145 trace_kfree_skb(skb, net_tx_action);
3146 __kfree_skb(skb);
3147 }
3148 }
3149
3150 if (sd->output_queue) {
3151 struct Qdisc *head;
3152
3153 local_irq_disable();
3154 head = sd->output_queue;
3155 sd->output_queue = NULL;
3156 sd->output_queue_tailp = &sd->output_queue;
3157 local_irq_enable();
3158
3159 while (head) {
3160 struct Qdisc *q = head;
3161 spinlock_t *root_lock;
3162
3163 head = head->next_sched;
3164
3165 root_lock = qdisc_lock(q);
3166 if (spin_trylock(root_lock)) {
3167 smp_mb__before_clear_bit();
3168 clear_bit(__QDISC_STATE_SCHED,
3169 &q->state);
3170 qdisc_run(q);
3171 spin_unlock(root_lock);
3172 } else {
3173 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3174 &q->state)) {
3175 __netif_reschedule(q);
3176 } else {
3177 smp_mb__before_clear_bit();
3178 clear_bit(__QDISC_STATE_SCHED,
3179 &q->state);
3180 }
3181 }
3182 }
3183 }
3184 }
3185
3186 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3187 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3188 /* This hook is defined here for ATM LANE */
3189 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3190 unsigned char *addr) __read_mostly;
3191 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3192 #endif
3193
3194 #ifdef CONFIG_NET_CLS_ACT
3195 /* TODO: Maybe we should just force sch_ingress to be compiled in
3196 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3197 * a compare and 2 stores extra right now if we dont have it on
3198 * but have CONFIG_NET_CLS_ACT
3199 * NOTE: This doesn't stop any functionality; if you dont have
3200 * the ingress scheduler, you just can't add policies on ingress.
3201 *
3202 */
3203 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3204 {
3205 struct net_device *dev = skb->dev;
3206 u32 ttl = G_TC_RTTL(skb->tc_verd);
3207 int result = TC_ACT_OK;
3208 struct Qdisc *q;
3209
3210 if (unlikely(MAX_RED_LOOP < ttl++)) {
3211 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3212 skb->skb_iif, dev->ifindex);
3213 return TC_ACT_SHOT;
3214 }
3215
3216 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3217 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3218
3219 q = rxq->qdisc;
3220 if (q != &noop_qdisc) {
3221 spin_lock(qdisc_lock(q));
3222 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3223 result = qdisc_enqueue_root(skb, q);
3224 spin_unlock(qdisc_lock(q));
3225 }
3226
3227 return result;
3228 }
3229
3230 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3231 struct packet_type **pt_prev,
3232 int *ret, struct net_device *orig_dev)
3233 {
3234 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3235
3236 if (!rxq || rxq->qdisc == &noop_qdisc)
3237 goto out;
3238
3239 if (*pt_prev) {
3240 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3241 *pt_prev = NULL;
3242 }
3243
3244 switch (ing_filter(skb, rxq)) {
3245 case TC_ACT_SHOT:
3246 case TC_ACT_STOLEN:
3247 kfree_skb(skb);
3248 return NULL;
3249 }
3250
3251 out:
3252 skb->tc_verd = 0;
3253 return skb;
3254 }
3255 #endif
3256
3257 /**
3258 * netdev_rx_handler_register - register receive handler
3259 * @dev: device to register a handler for
3260 * @rx_handler: receive handler to register
3261 * @rx_handler_data: data pointer that is used by rx handler
3262 *
3263 * Register a receive hander for a device. This handler will then be
3264 * called from __netif_receive_skb. A negative errno code is returned
3265 * on a failure.
3266 *
3267 * The caller must hold the rtnl_mutex.
3268 *
3269 * For a general description of rx_handler, see enum rx_handler_result.
3270 */
3271 int netdev_rx_handler_register(struct net_device *dev,
3272 rx_handler_func_t *rx_handler,
3273 void *rx_handler_data)
3274 {
3275 ASSERT_RTNL();
3276
3277 if (dev->rx_handler)
3278 return -EBUSY;
3279
3280 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3281 rcu_assign_pointer(dev->rx_handler, rx_handler);
3282
3283 return 0;
3284 }
3285 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3286
3287 /**
3288 * netdev_rx_handler_unregister - unregister receive handler
3289 * @dev: device to unregister a handler from
3290 *
3291 * Unregister a receive hander from a device.
3292 *
3293 * The caller must hold the rtnl_mutex.
3294 */
3295 void netdev_rx_handler_unregister(struct net_device *dev)
3296 {
3297
3298 ASSERT_RTNL();
3299 RCU_INIT_POINTER(dev->rx_handler, NULL);
3300 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3301 }
3302 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3303
3304 /*
3305 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3306 * the special handling of PFMEMALLOC skbs.
3307 */
3308 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3309 {
3310 switch (skb->protocol) {
3311 case __constant_htons(ETH_P_ARP):
3312 case __constant_htons(ETH_P_IP):
3313 case __constant_htons(ETH_P_IPV6):
3314 case __constant_htons(ETH_P_8021Q):
3315 return true;
3316 default:
3317 return false;
3318 }
3319 }
3320
3321 static int __netif_receive_skb(struct sk_buff *skb)
3322 {
3323 struct packet_type *ptype, *pt_prev;
3324 rx_handler_func_t *rx_handler;
3325 struct net_device *orig_dev;
3326 struct net_device *null_or_dev;
3327 bool deliver_exact = false;
3328 int ret = NET_RX_DROP;
3329 __be16 type;
3330 unsigned long pflags = current->flags;
3331
3332 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3333
3334 trace_netif_receive_skb(skb);
3335
3336 /*
3337 * PFMEMALLOC skbs are special, they should
3338 * - be delivered to SOCK_MEMALLOC sockets only
3339 * - stay away from userspace
3340 * - have bounded memory usage
3341 *
3342 * Use PF_MEMALLOC as this saves us from propagating the allocation
3343 * context down to all allocation sites.
3344 */
3345 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3346 current->flags |= PF_MEMALLOC;
3347
3348 /* if we've gotten here through NAPI, check netpoll */
3349 if (netpoll_receive_skb(skb))
3350 goto out;
3351
3352 orig_dev = skb->dev;
3353
3354 skb_reset_network_header(skb);
3355 skb_reset_transport_header(skb);
3356 skb_reset_mac_len(skb);
3357
3358 pt_prev = NULL;
3359
3360 rcu_read_lock();
3361
3362 another_round:
3363 skb->skb_iif = skb->dev->ifindex;
3364
3365 __this_cpu_inc(softnet_data.processed);
3366
3367 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3368 skb = vlan_untag(skb);
3369 if (unlikely(!skb))
3370 goto unlock;
3371 }
3372
3373 #ifdef CONFIG_NET_CLS_ACT
3374 if (skb->tc_verd & TC_NCLS) {
3375 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3376 goto ncls;
3377 }
3378 #endif
3379
3380 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3381 goto skip_taps;
3382
3383 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3384 if (!ptype->dev || ptype->dev == skb->dev) {
3385 if (pt_prev)
3386 ret = deliver_skb(skb, pt_prev, orig_dev);
3387 pt_prev = ptype;
3388 }
3389 }
3390
3391 skip_taps:
3392 #ifdef CONFIG_NET_CLS_ACT
3393 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3394 if (!skb)
3395 goto unlock;
3396 ncls:
3397 #endif
3398
3399 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3400 && !skb_pfmemalloc_protocol(skb))
3401 goto drop;
3402
3403 if (vlan_tx_tag_present(skb)) {
3404 if (pt_prev) {
3405 ret = deliver_skb(skb, pt_prev, orig_dev);
3406 pt_prev = NULL;
3407 }
3408 if (vlan_do_receive(&skb))
3409 goto another_round;
3410 else if (unlikely(!skb))
3411 goto unlock;
3412 }
3413
3414 rx_handler = rcu_dereference(skb->dev->rx_handler);
3415 if (rx_handler) {
3416 if (pt_prev) {
3417 ret = deliver_skb(skb, pt_prev, orig_dev);
3418 pt_prev = NULL;
3419 }
3420 switch (rx_handler(&skb)) {
3421 case RX_HANDLER_CONSUMED:
3422 goto unlock;
3423 case RX_HANDLER_ANOTHER:
3424 goto another_round;
3425 case RX_HANDLER_EXACT:
3426 deliver_exact = true;
3427 case RX_HANDLER_PASS:
3428 break;
3429 default:
3430 BUG();
3431 }
3432 }
3433
3434 if (vlan_tx_nonzero_tag_present(skb))
3435 skb->pkt_type = PACKET_OTHERHOST;
3436
3437 /* deliver only exact match when indicated */
3438 null_or_dev = deliver_exact ? skb->dev : NULL;
3439
3440 type = skb->protocol;
3441 list_for_each_entry_rcu(ptype,
3442 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3443 if (ptype->type == type &&
3444 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3445 ptype->dev == orig_dev)) {
3446 if (pt_prev)
3447 ret = deliver_skb(skb, pt_prev, orig_dev);
3448 pt_prev = ptype;
3449 }
3450 }
3451
3452 if (pt_prev) {
3453 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3454 goto drop;
3455 else
3456 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3457 } else {
3458 drop:
3459 atomic_long_inc(&skb->dev->rx_dropped);
3460 kfree_skb(skb);
3461 /* Jamal, now you will not able to escape explaining
3462 * me how you were going to use this. :-)
3463 */
3464 ret = NET_RX_DROP;
3465 }
3466
3467 unlock:
3468 rcu_read_unlock();
3469 out:
3470 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3471 return ret;
3472 }
3473
3474 /**
3475 * netif_receive_skb - process receive buffer from network
3476 * @skb: buffer to process
3477 *
3478 * netif_receive_skb() is the main receive data processing function.
3479 * It always succeeds. The buffer may be dropped during processing
3480 * for congestion control or by the protocol layers.
3481 *
3482 * This function may only be called from softirq context and interrupts
3483 * should be enabled.
3484 *
3485 * Return values (usually ignored):
3486 * NET_RX_SUCCESS: no congestion
3487 * NET_RX_DROP: packet was dropped
3488 */
3489 int netif_receive_skb(struct sk_buff *skb)
3490 {
3491 net_timestamp_check(netdev_tstamp_prequeue, skb);
3492
3493 if (skb_defer_rx_timestamp(skb))
3494 return NET_RX_SUCCESS;
3495
3496 #ifdef CONFIG_RPS
3497 if (static_key_false(&rps_needed)) {
3498 struct rps_dev_flow voidflow, *rflow = &voidflow;
3499 int cpu, ret;
3500
3501 rcu_read_lock();
3502
3503 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3504
3505 if (cpu >= 0) {
3506 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3507 rcu_read_unlock();
3508 return ret;
3509 }
3510 rcu_read_unlock();
3511 }
3512 #endif
3513 return __netif_receive_skb(skb);
3514 }
3515 EXPORT_SYMBOL(netif_receive_skb);
3516
3517 /* Network device is going away, flush any packets still pending
3518 * Called with irqs disabled.
3519 */
3520 static void flush_backlog(void *arg)
3521 {
3522 struct net_device *dev = arg;
3523 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3524 struct sk_buff *skb, *tmp;
3525
3526 rps_lock(sd);
3527 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3528 if (skb->dev == dev) {
3529 __skb_unlink(skb, &sd->input_pkt_queue);
3530 kfree_skb(skb);
3531 input_queue_head_incr(sd);
3532 }
3533 }
3534 rps_unlock(sd);
3535
3536 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3537 if (skb->dev == dev) {
3538 __skb_unlink(skb, &sd->process_queue);
3539 kfree_skb(skb);
3540 input_queue_head_incr(sd);
3541 }
3542 }
3543 }
3544
3545 static int napi_gro_complete(struct sk_buff *skb)
3546 {
3547 struct packet_offload *ptype;
3548 __be16 type = skb->protocol;
3549 struct list_head *head = &offload_base;
3550 int err = -ENOENT;
3551
3552 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3553
3554 if (NAPI_GRO_CB(skb)->count == 1) {
3555 skb_shinfo(skb)->gso_size = 0;
3556 goto out;
3557 }
3558
3559 rcu_read_lock();
3560 list_for_each_entry_rcu(ptype, head, list) {
3561 if (ptype->type != type || !ptype->callbacks.gro_complete)
3562 continue;
3563
3564 err = ptype->callbacks.gro_complete(skb);
3565 break;
3566 }
3567 rcu_read_unlock();
3568
3569 if (err) {
3570 WARN_ON(&ptype->list == head);
3571 kfree_skb(skb);
3572 return NET_RX_SUCCESS;
3573 }
3574
3575 out:
3576 return netif_receive_skb(skb);
3577 }
3578
3579 /* napi->gro_list contains packets ordered by age.
3580 * youngest packets at the head of it.
3581 * Complete skbs in reverse order to reduce latencies.
3582 */
3583 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3584 {
3585 struct sk_buff *skb, *prev = NULL;
3586
3587 /* scan list and build reverse chain */
3588 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3589 skb->prev = prev;
3590 prev = skb;
3591 }
3592
3593 for (skb = prev; skb; skb = prev) {
3594 skb->next = NULL;
3595
3596 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3597 return;
3598
3599 prev = skb->prev;
3600 napi_gro_complete(skb);
3601 napi->gro_count--;
3602 }
3603
3604 napi->gro_list = NULL;
3605 }
3606 EXPORT_SYMBOL(napi_gro_flush);
3607
3608 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3609 {
3610 struct sk_buff *p;
3611 unsigned int maclen = skb->dev->hard_header_len;
3612
3613 for (p = napi->gro_list; p; p = p->next) {
3614 unsigned long diffs;
3615
3616 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3617 diffs |= p->vlan_tci ^ skb->vlan_tci;
3618 if (maclen == ETH_HLEN)
3619 diffs |= compare_ether_header(skb_mac_header(p),
3620 skb_gro_mac_header(skb));
3621 else if (!diffs)
3622 diffs = memcmp(skb_mac_header(p),
3623 skb_gro_mac_header(skb),
3624 maclen);
3625 NAPI_GRO_CB(p)->same_flow = !diffs;
3626 NAPI_GRO_CB(p)->flush = 0;
3627 }
3628 }
3629
3630 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3631 {
3632 struct sk_buff **pp = NULL;
3633 struct packet_offload *ptype;
3634 __be16 type = skb->protocol;
3635 struct list_head *head = &offload_base;
3636 int same_flow;
3637 int mac_len;
3638 enum gro_result ret;
3639
3640 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3641 goto normal;
3642
3643 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3644 goto normal;
3645
3646 gro_list_prepare(napi, skb);
3647
3648 rcu_read_lock();
3649 list_for_each_entry_rcu(ptype, head, list) {
3650 if (ptype->type != type || !ptype->callbacks.gro_receive)
3651 continue;
3652
3653 skb_set_network_header(skb, skb_gro_offset(skb));
3654 mac_len = skb->network_header - skb->mac_header;
3655 skb->mac_len = mac_len;
3656 NAPI_GRO_CB(skb)->same_flow = 0;
3657 NAPI_GRO_CB(skb)->flush = 0;
3658 NAPI_GRO_CB(skb)->free = 0;
3659
3660 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3661 break;
3662 }
3663 rcu_read_unlock();
3664
3665 if (&ptype->list == head)
3666 goto normal;
3667
3668 same_flow = NAPI_GRO_CB(skb)->same_flow;
3669 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3670
3671 if (pp) {
3672 struct sk_buff *nskb = *pp;
3673
3674 *pp = nskb->next;
3675 nskb->next = NULL;
3676 napi_gro_complete(nskb);
3677 napi->gro_count--;
3678 }
3679
3680 if (same_flow)
3681 goto ok;
3682
3683 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3684 goto normal;
3685
3686 napi->gro_count++;
3687 NAPI_GRO_CB(skb)->count = 1;
3688 NAPI_GRO_CB(skb)->age = jiffies;
3689 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3690 skb->next = napi->gro_list;
3691 napi->gro_list = skb;
3692 ret = GRO_HELD;
3693
3694 pull:
3695 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3696 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3697
3698 BUG_ON(skb->end - skb->tail < grow);
3699
3700 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3701
3702 skb->tail += grow;
3703 skb->data_len -= grow;
3704
3705 skb_shinfo(skb)->frags[0].page_offset += grow;
3706 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3707
3708 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3709 skb_frag_unref(skb, 0);
3710 memmove(skb_shinfo(skb)->frags,
3711 skb_shinfo(skb)->frags + 1,
3712 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3713 }
3714 }
3715
3716 ok:
3717 return ret;
3718
3719 normal:
3720 ret = GRO_NORMAL;
3721 goto pull;
3722 }
3723
3724
3725 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3726 {
3727 switch (ret) {
3728 case GRO_NORMAL:
3729 if (netif_receive_skb(skb))
3730 ret = GRO_DROP;
3731 break;
3732
3733 case GRO_DROP:
3734 kfree_skb(skb);
3735 break;
3736
3737 case GRO_MERGED_FREE:
3738 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3739 kmem_cache_free(skbuff_head_cache, skb);
3740 else
3741 __kfree_skb(skb);
3742 break;
3743
3744 case GRO_HELD:
3745 case GRO_MERGED:
3746 break;
3747 }
3748
3749 return ret;
3750 }
3751
3752 static void skb_gro_reset_offset(struct sk_buff *skb)
3753 {
3754 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3755 const skb_frag_t *frag0 = &pinfo->frags[0];
3756
3757 NAPI_GRO_CB(skb)->data_offset = 0;
3758 NAPI_GRO_CB(skb)->frag0 = NULL;
3759 NAPI_GRO_CB(skb)->frag0_len = 0;
3760
3761 if (skb->mac_header == skb->tail &&
3762 pinfo->nr_frags &&
3763 !PageHighMem(skb_frag_page(frag0))) {
3764 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3765 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3766 }
3767 }
3768
3769 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3770 {
3771 skb_gro_reset_offset(skb);
3772
3773 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3774 }
3775 EXPORT_SYMBOL(napi_gro_receive);
3776
3777 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3778 {
3779 __skb_pull(skb, skb_headlen(skb));
3780 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3781 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3782 skb->vlan_tci = 0;
3783 skb->dev = napi->dev;
3784 skb->skb_iif = 0;
3785
3786 napi->skb = skb;
3787 }
3788
3789 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3790 {
3791 struct sk_buff *skb = napi->skb;
3792
3793 if (!skb) {
3794 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3795 if (skb)
3796 napi->skb = skb;
3797 }
3798 return skb;
3799 }
3800 EXPORT_SYMBOL(napi_get_frags);
3801
3802 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3803 gro_result_t ret)
3804 {
3805 switch (ret) {
3806 case GRO_NORMAL:
3807 case GRO_HELD:
3808 skb->protocol = eth_type_trans(skb, skb->dev);
3809
3810 if (ret == GRO_HELD)
3811 skb_gro_pull(skb, -ETH_HLEN);
3812 else if (netif_receive_skb(skb))
3813 ret = GRO_DROP;
3814 break;
3815
3816 case GRO_DROP:
3817 case GRO_MERGED_FREE:
3818 napi_reuse_skb(napi, skb);
3819 break;
3820
3821 case GRO_MERGED:
3822 break;
3823 }
3824
3825 return ret;
3826 }
3827
3828 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3829 {
3830 struct sk_buff *skb = napi->skb;
3831 struct ethhdr *eth;
3832 unsigned int hlen;
3833 unsigned int off;
3834
3835 napi->skb = NULL;
3836
3837 skb_reset_mac_header(skb);
3838 skb_gro_reset_offset(skb);
3839
3840 off = skb_gro_offset(skb);
3841 hlen = off + sizeof(*eth);
3842 eth = skb_gro_header_fast(skb, off);
3843 if (skb_gro_header_hard(skb, hlen)) {
3844 eth = skb_gro_header_slow(skb, hlen, off);
3845 if (unlikely(!eth)) {
3846 napi_reuse_skb(napi, skb);
3847 skb = NULL;
3848 goto out;
3849 }
3850 }
3851
3852 skb_gro_pull(skb, sizeof(*eth));
3853
3854 /*
3855 * This works because the only protocols we care about don't require
3856 * special handling. We'll fix it up properly at the end.
3857 */
3858 skb->protocol = eth->h_proto;
3859
3860 out:
3861 return skb;
3862 }
3863
3864 gro_result_t napi_gro_frags(struct napi_struct *napi)
3865 {
3866 struct sk_buff *skb = napi_frags_skb(napi);
3867
3868 if (!skb)
3869 return GRO_DROP;
3870
3871 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3872 }
3873 EXPORT_SYMBOL(napi_gro_frags);
3874
3875 /*
3876 * net_rps_action sends any pending IPI's for rps.
3877 * Note: called with local irq disabled, but exits with local irq enabled.
3878 */
3879 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3880 {
3881 #ifdef CONFIG_RPS
3882 struct softnet_data *remsd = sd->rps_ipi_list;
3883
3884 if (remsd) {
3885 sd->rps_ipi_list = NULL;
3886
3887 local_irq_enable();
3888
3889 /* Send pending IPI's to kick RPS processing on remote cpus. */
3890 while (remsd) {
3891 struct softnet_data *next = remsd->rps_ipi_next;
3892
3893 if (cpu_online(remsd->cpu))
3894 __smp_call_function_single(remsd->cpu,
3895 &remsd->csd, 0);
3896 remsd = next;
3897 }
3898 } else
3899 #endif
3900 local_irq_enable();
3901 }
3902
3903 static int process_backlog(struct napi_struct *napi, int quota)
3904 {
3905 int work = 0;
3906 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3907
3908 #ifdef CONFIG_RPS
3909 /* Check if we have pending ipi, its better to send them now,
3910 * not waiting net_rx_action() end.
3911 */
3912 if (sd->rps_ipi_list) {
3913 local_irq_disable();
3914 net_rps_action_and_irq_enable(sd);
3915 }
3916 #endif
3917 napi->weight = weight_p;
3918 local_irq_disable();
3919 while (work < quota) {
3920 struct sk_buff *skb;
3921 unsigned int qlen;
3922
3923 while ((skb = __skb_dequeue(&sd->process_queue))) {
3924 local_irq_enable();
3925 __netif_receive_skb(skb);
3926 local_irq_disable();
3927 input_queue_head_incr(sd);
3928 if (++work >= quota) {
3929 local_irq_enable();
3930 return work;
3931 }
3932 }
3933
3934 rps_lock(sd);
3935 qlen = skb_queue_len(&sd->input_pkt_queue);
3936 if (qlen)
3937 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3938 &sd->process_queue);
3939
3940 if (qlen < quota - work) {
3941 /*
3942 * Inline a custom version of __napi_complete().
3943 * only current cpu owns and manipulates this napi,
3944 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3945 * we can use a plain write instead of clear_bit(),
3946 * and we dont need an smp_mb() memory barrier.
3947 */
3948 list_del(&napi->poll_list);
3949 napi->state = 0;
3950
3951 quota = work + qlen;
3952 }
3953 rps_unlock(sd);
3954 }
3955 local_irq_enable();
3956
3957 return work;
3958 }
3959
3960 /**
3961 * __napi_schedule - schedule for receive
3962 * @n: entry to schedule
3963 *
3964 * The entry's receive function will be scheduled to run
3965 */
3966 void __napi_schedule(struct napi_struct *n)
3967 {
3968 unsigned long flags;
3969
3970 local_irq_save(flags);
3971 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3972 local_irq_restore(flags);
3973 }
3974 EXPORT_SYMBOL(__napi_schedule);
3975
3976 void __napi_complete(struct napi_struct *n)
3977 {
3978 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3979 BUG_ON(n->gro_list);
3980
3981 list_del(&n->poll_list);
3982 smp_mb__before_clear_bit();
3983 clear_bit(NAPI_STATE_SCHED, &n->state);
3984 }
3985 EXPORT_SYMBOL(__napi_complete);
3986
3987 void napi_complete(struct napi_struct *n)
3988 {
3989 unsigned long flags;
3990
3991 /*
3992 * don't let napi dequeue from the cpu poll list
3993 * just in case its running on a different cpu
3994 */
3995 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3996 return;
3997
3998 napi_gro_flush(n, false);
3999 local_irq_save(flags);
4000 __napi_complete(n);
4001 local_irq_restore(flags);
4002 }
4003 EXPORT_SYMBOL(napi_complete);
4004
4005 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4006 int (*poll)(struct napi_struct *, int), int weight)
4007 {
4008 INIT_LIST_HEAD(&napi->poll_list);
4009 napi->gro_count = 0;
4010 napi->gro_list = NULL;
4011 napi->skb = NULL;
4012 napi->poll = poll;
4013 napi->weight = weight;
4014 list_add(&napi->dev_list, &dev->napi_list);
4015 napi->dev = dev;
4016 #ifdef CONFIG_NETPOLL
4017 spin_lock_init(&napi->poll_lock);
4018 napi->poll_owner = -1;
4019 #endif
4020 set_bit(NAPI_STATE_SCHED, &napi->state);
4021 }
4022 EXPORT_SYMBOL(netif_napi_add);
4023
4024 void netif_napi_del(struct napi_struct *napi)
4025 {
4026 struct sk_buff *skb, *next;
4027
4028 list_del_init(&napi->dev_list);
4029 napi_free_frags(napi);
4030
4031 for (skb = napi->gro_list; skb; skb = next) {
4032 next = skb->next;
4033 skb->next = NULL;
4034 kfree_skb(skb);
4035 }
4036
4037 napi->gro_list = NULL;
4038 napi->gro_count = 0;
4039 }
4040 EXPORT_SYMBOL(netif_napi_del);
4041
4042 static void net_rx_action(struct softirq_action *h)
4043 {
4044 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4045 unsigned long time_limit = jiffies + 2;
4046 int budget = netdev_budget;
4047 void *have;
4048
4049 local_irq_disable();
4050
4051 while (!list_empty(&sd->poll_list)) {
4052 struct napi_struct *n;
4053 int work, weight;
4054
4055 /* If softirq window is exhuasted then punt.
4056 * Allow this to run for 2 jiffies since which will allow
4057 * an average latency of 1.5/HZ.
4058 */
4059 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4060 goto softnet_break;
4061
4062 local_irq_enable();
4063
4064 /* Even though interrupts have been re-enabled, this
4065 * access is safe because interrupts can only add new
4066 * entries to the tail of this list, and only ->poll()
4067 * calls can remove this head entry from the list.
4068 */
4069 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4070
4071 have = netpoll_poll_lock(n);
4072
4073 weight = n->weight;
4074
4075 /* This NAPI_STATE_SCHED test is for avoiding a race
4076 * with netpoll's poll_napi(). Only the entity which
4077 * obtains the lock and sees NAPI_STATE_SCHED set will
4078 * actually make the ->poll() call. Therefore we avoid
4079 * accidentally calling ->poll() when NAPI is not scheduled.
4080 */
4081 work = 0;
4082 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4083 work = n->poll(n, weight);
4084 trace_napi_poll(n);
4085 }
4086
4087 WARN_ON_ONCE(work > weight);
4088
4089 budget -= work;
4090
4091 local_irq_disable();
4092
4093 /* Drivers must not modify the NAPI state if they
4094 * consume the entire weight. In such cases this code
4095 * still "owns" the NAPI instance and therefore can
4096 * move the instance around on the list at-will.
4097 */
4098 if (unlikely(work == weight)) {
4099 if (unlikely(napi_disable_pending(n))) {
4100 local_irq_enable();
4101 napi_complete(n);
4102 local_irq_disable();
4103 } else {
4104 if (n->gro_list) {
4105 /* flush too old packets
4106 * If HZ < 1000, flush all packets.
4107 */
4108 local_irq_enable();
4109 napi_gro_flush(n, HZ >= 1000);
4110 local_irq_disable();
4111 }
4112 list_move_tail(&n->poll_list, &sd->poll_list);
4113 }
4114 }
4115
4116 netpoll_poll_unlock(have);
4117 }
4118 out:
4119 net_rps_action_and_irq_enable(sd);
4120
4121 #ifdef CONFIG_NET_DMA
4122 /*
4123 * There may not be any more sk_buffs coming right now, so push
4124 * any pending DMA copies to hardware
4125 */
4126 dma_issue_pending_all();
4127 #endif
4128
4129 return;
4130
4131 softnet_break:
4132 sd->time_squeeze++;
4133 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4134 goto out;
4135 }
4136
4137 static gifconf_func_t *gifconf_list[NPROTO];
4138
4139 /**
4140 * register_gifconf - register a SIOCGIF handler
4141 * @family: Address family
4142 * @gifconf: Function handler
4143 *
4144 * Register protocol dependent address dumping routines. The handler
4145 * that is passed must not be freed or reused until it has been replaced
4146 * by another handler.
4147 */
4148 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4149 {
4150 if (family >= NPROTO)
4151 return -EINVAL;
4152 gifconf_list[family] = gifconf;
4153 return 0;
4154 }
4155 EXPORT_SYMBOL(register_gifconf);
4156
4157
4158 /*
4159 * Map an interface index to its name (SIOCGIFNAME)
4160 */
4161
4162 /*
4163 * We need this ioctl for efficient implementation of the
4164 * if_indextoname() function required by the IPv6 API. Without
4165 * it, we would have to search all the interfaces to find a
4166 * match. --pb
4167 */
4168
4169 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4170 {
4171 struct net_device *dev;
4172 struct ifreq ifr;
4173 unsigned seq;
4174
4175 /*
4176 * Fetch the caller's info block.
4177 */
4178
4179 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4180 return -EFAULT;
4181
4182 retry:
4183 seq = read_seqcount_begin(&devnet_rename_seq);
4184 rcu_read_lock();
4185 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4186 if (!dev) {
4187 rcu_read_unlock();
4188 return -ENODEV;
4189 }
4190
4191 strcpy(ifr.ifr_name, dev->name);
4192 rcu_read_unlock();
4193 if (read_seqcount_retry(&devnet_rename_seq, seq))
4194 goto retry;
4195
4196 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4197 return -EFAULT;
4198 return 0;
4199 }
4200
4201 /*
4202 * Perform a SIOCGIFCONF call. This structure will change
4203 * size eventually, and there is nothing I can do about it.
4204 * Thus we will need a 'compatibility mode'.
4205 */
4206
4207 static int dev_ifconf(struct net *net, char __user *arg)
4208 {
4209 struct ifconf ifc;
4210 struct net_device *dev;
4211 char __user *pos;
4212 int len;
4213 int total;
4214 int i;
4215
4216 /*
4217 * Fetch the caller's info block.
4218 */
4219
4220 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4221 return -EFAULT;
4222
4223 pos = ifc.ifc_buf;
4224 len = ifc.ifc_len;
4225
4226 /*
4227 * Loop over the interfaces, and write an info block for each.
4228 */
4229
4230 total = 0;
4231 for_each_netdev(net, dev) {
4232 for (i = 0; i < NPROTO; i++) {
4233 if (gifconf_list[i]) {
4234 int done;
4235 if (!pos)
4236 done = gifconf_list[i](dev, NULL, 0);
4237 else
4238 done = gifconf_list[i](dev, pos + total,
4239 len - total);
4240 if (done < 0)
4241 return -EFAULT;
4242 total += done;
4243 }
4244 }
4245 }
4246
4247 /*
4248 * All done. Write the updated control block back to the caller.
4249 */
4250 ifc.ifc_len = total;
4251
4252 /*
4253 * Both BSD and Solaris return 0 here, so we do too.
4254 */
4255 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4256 }
4257
4258 #ifdef CONFIG_PROC_FS
4259
4260 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4261
4262 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4263 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4264 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4265
4266 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4267 {
4268 struct net *net = seq_file_net(seq);
4269 struct net_device *dev;
4270 struct hlist_node *p;
4271 struct hlist_head *h;
4272 unsigned int count = 0, offset = get_offset(*pos);
4273
4274 h = &net->dev_name_head[get_bucket(*pos)];
4275 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4276 if (++count == offset)
4277 return dev;
4278 }
4279
4280 return NULL;
4281 }
4282
4283 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4284 {
4285 struct net_device *dev;
4286 unsigned int bucket;
4287
4288 do {
4289 dev = dev_from_same_bucket(seq, pos);
4290 if (dev)
4291 return dev;
4292
4293 bucket = get_bucket(*pos) + 1;
4294 *pos = set_bucket_offset(bucket, 1);
4295 } while (bucket < NETDEV_HASHENTRIES);
4296
4297 return NULL;
4298 }
4299
4300 /*
4301 * This is invoked by the /proc filesystem handler to display a device
4302 * in detail.
4303 */
4304 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4305 __acquires(RCU)
4306 {
4307 rcu_read_lock();
4308 if (!*pos)
4309 return SEQ_START_TOKEN;
4310
4311 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4312 return NULL;
4313
4314 return dev_from_bucket(seq, pos);
4315 }
4316
4317 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4318 {
4319 ++*pos;
4320 return dev_from_bucket(seq, pos);
4321 }
4322
4323 void dev_seq_stop(struct seq_file *seq, void *v)
4324 __releases(RCU)
4325 {
4326 rcu_read_unlock();
4327 }
4328
4329 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4330 {
4331 struct rtnl_link_stats64 temp;
4332 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4333
4334 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4335 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4336 dev->name, stats->rx_bytes, stats->rx_packets,
4337 stats->rx_errors,
4338 stats->rx_dropped + stats->rx_missed_errors,
4339 stats->rx_fifo_errors,
4340 stats->rx_length_errors + stats->rx_over_errors +
4341 stats->rx_crc_errors + stats->rx_frame_errors,
4342 stats->rx_compressed, stats->multicast,
4343 stats->tx_bytes, stats->tx_packets,
4344 stats->tx_errors, stats->tx_dropped,
4345 stats->tx_fifo_errors, stats->collisions,
4346 stats->tx_carrier_errors +
4347 stats->tx_aborted_errors +
4348 stats->tx_window_errors +
4349 stats->tx_heartbeat_errors,
4350 stats->tx_compressed);
4351 }
4352
4353 /*
4354 * Called from the PROCfs module. This now uses the new arbitrary sized
4355 * /proc/net interface to create /proc/net/dev
4356 */
4357 static int dev_seq_show(struct seq_file *seq, void *v)
4358 {
4359 if (v == SEQ_START_TOKEN)
4360 seq_puts(seq, "Inter-| Receive "
4361 " | Transmit\n"
4362 " face |bytes packets errs drop fifo frame "
4363 "compressed multicast|bytes packets errs "
4364 "drop fifo colls carrier compressed\n");
4365 else
4366 dev_seq_printf_stats(seq, v);
4367 return 0;
4368 }
4369
4370 static struct softnet_data *softnet_get_online(loff_t *pos)
4371 {
4372 struct softnet_data *sd = NULL;
4373
4374 while (*pos < nr_cpu_ids)
4375 if (cpu_online(*pos)) {
4376 sd = &per_cpu(softnet_data, *pos);
4377 break;
4378 } else
4379 ++*pos;
4380 return sd;
4381 }
4382
4383 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4384 {
4385 return softnet_get_online(pos);
4386 }
4387
4388 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4389 {
4390 ++*pos;
4391 return softnet_get_online(pos);
4392 }
4393
4394 static void softnet_seq_stop(struct seq_file *seq, void *v)
4395 {
4396 }
4397
4398 static int softnet_seq_show(struct seq_file *seq, void *v)
4399 {
4400 struct softnet_data *sd = v;
4401
4402 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4403 sd->processed, sd->dropped, sd->time_squeeze, 0,
4404 0, 0, 0, 0, /* was fastroute */
4405 sd->cpu_collision, sd->received_rps);
4406 return 0;
4407 }
4408
4409 static const struct seq_operations dev_seq_ops = {
4410 .start = dev_seq_start,
4411 .next = dev_seq_next,
4412 .stop = dev_seq_stop,
4413 .show = dev_seq_show,
4414 };
4415
4416 static int dev_seq_open(struct inode *inode, struct file *file)
4417 {
4418 return seq_open_net(inode, file, &dev_seq_ops,
4419 sizeof(struct seq_net_private));
4420 }
4421
4422 static const struct file_operations dev_seq_fops = {
4423 .owner = THIS_MODULE,
4424 .open = dev_seq_open,
4425 .read = seq_read,
4426 .llseek = seq_lseek,
4427 .release = seq_release_net,
4428 };
4429
4430 static const struct seq_operations softnet_seq_ops = {
4431 .start = softnet_seq_start,
4432 .next = softnet_seq_next,
4433 .stop = softnet_seq_stop,
4434 .show = softnet_seq_show,
4435 };
4436
4437 static int softnet_seq_open(struct inode *inode, struct file *file)
4438 {
4439 return seq_open(file, &softnet_seq_ops);
4440 }
4441
4442 static const struct file_operations softnet_seq_fops = {
4443 .owner = THIS_MODULE,
4444 .open = softnet_seq_open,
4445 .read = seq_read,
4446 .llseek = seq_lseek,
4447 .release = seq_release,
4448 };
4449
4450 static void *ptype_get_idx(loff_t pos)
4451 {
4452 struct packet_type *pt = NULL;
4453 loff_t i = 0;
4454 int t;
4455
4456 list_for_each_entry_rcu(pt, &ptype_all, list) {
4457 if (i == pos)
4458 return pt;
4459 ++i;
4460 }
4461
4462 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4463 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4464 if (i == pos)
4465 return pt;
4466 ++i;
4467 }
4468 }
4469 return NULL;
4470 }
4471
4472 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4473 __acquires(RCU)
4474 {
4475 rcu_read_lock();
4476 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4477 }
4478
4479 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4480 {
4481 struct packet_type *pt;
4482 struct list_head *nxt;
4483 int hash;
4484
4485 ++*pos;
4486 if (v == SEQ_START_TOKEN)
4487 return ptype_get_idx(0);
4488
4489 pt = v;
4490 nxt = pt->list.next;
4491 if (pt->type == htons(ETH_P_ALL)) {
4492 if (nxt != &ptype_all)
4493 goto found;
4494 hash = 0;
4495 nxt = ptype_base[0].next;
4496 } else
4497 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4498
4499 while (nxt == &ptype_base[hash]) {
4500 if (++hash >= PTYPE_HASH_SIZE)
4501 return NULL;
4502 nxt = ptype_base[hash].next;
4503 }
4504 found:
4505 return list_entry(nxt, struct packet_type, list);
4506 }
4507
4508 static void ptype_seq_stop(struct seq_file *seq, void *v)
4509 __releases(RCU)
4510 {
4511 rcu_read_unlock();
4512 }
4513
4514 static int ptype_seq_show(struct seq_file *seq, void *v)
4515 {
4516 struct packet_type *pt = v;
4517
4518 if (v == SEQ_START_TOKEN)
4519 seq_puts(seq, "Type Device Function\n");
4520 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4521 if (pt->type == htons(ETH_P_ALL))
4522 seq_puts(seq, "ALL ");
4523 else
4524 seq_printf(seq, "%04x", ntohs(pt->type));
4525
4526 seq_printf(seq, " %-8s %pF\n",
4527 pt->dev ? pt->dev->name : "", pt->func);
4528 }
4529
4530 return 0;
4531 }
4532
4533 static const struct seq_operations ptype_seq_ops = {
4534 .start = ptype_seq_start,
4535 .next = ptype_seq_next,
4536 .stop = ptype_seq_stop,
4537 .show = ptype_seq_show,
4538 };
4539
4540 static int ptype_seq_open(struct inode *inode, struct file *file)
4541 {
4542 return seq_open_net(inode, file, &ptype_seq_ops,
4543 sizeof(struct seq_net_private));
4544 }
4545
4546 static const struct file_operations ptype_seq_fops = {
4547 .owner = THIS_MODULE,
4548 .open = ptype_seq_open,
4549 .read = seq_read,
4550 .llseek = seq_lseek,
4551 .release = seq_release_net,
4552 };
4553
4554
4555 static int __net_init dev_proc_net_init(struct net *net)
4556 {
4557 int rc = -ENOMEM;
4558
4559 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4560 goto out;
4561 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4562 goto out_dev;
4563 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4564 goto out_softnet;
4565
4566 if (wext_proc_init(net))
4567 goto out_ptype;
4568 rc = 0;
4569 out:
4570 return rc;
4571 out_ptype:
4572 proc_net_remove(net, "ptype");
4573 out_softnet:
4574 proc_net_remove(net, "softnet_stat");
4575 out_dev:
4576 proc_net_remove(net, "dev");
4577 goto out;
4578 }
4579
4580 static void __net_exit dev_proc_net_exit(struct net *net)
4581 {
4582 wext_proc_exit(net);
4583
4584 proc_net_remove(net, "ptype");
4585 proc_net_remove(net, "softnet_stat");
4586 proc_net_remove(net, "dev");
4587 }
4588
4589 static struct pernet_operations __net_initdata dev_proc_ops = {
4590 .init = dev_proc_net_init,
4591 .exit = dev_proc_net_exit,
4592 };
4593
4594 static int __init dev_proc_init(void)
4595 {
4596 return register_pernet_subsys(&dev_proc_ops);
4597 }
4598 #else
4599 #define dev_proc_init() 0
4600 #endif /* CONFIG_PROC_FS */
4601
4602
4603 /**
4604 * netdev_set_master - set up master pointer
4605 * @slave: slave device
4606 * @master: new master device
4607 *
4608 * Changes the master device of the slave. Pass %NULL to break the
4609 * bonding. The caller must hold the RTNL semaphore. On a failure
4610 * a negative errno code is returned. On success the reference counts
4611 * are adjusted and the function returns zero.
4612 */
4613 int netdev_set_master(struct net_device *slave, struct net_device *master)
4614 {
4615 struct net_device *old = slave->master;
4616
4617 ASSERT_RTNL();
4618
4619 if (master) {
4620 if (old)
4621 return -EBUSY;
4622 dev_hold(master);
4623 }
4624
4625 slave->master = master;
4626
4627 if (old)
4628 dev_put(old);
4629 return 0;
4630 }
4631 EXPORT_SYMBOL(netdev_set_master);
4632
4633 /**
4634 * netdev_set_bond_master - set up bonding master/slave pair
4635 * @slave: slave device
4636 * @master: new master device
4637 *
4638 * Changes the master device of the slave. Pass %NULL to break the
4639 * bonding. The caller must hold the RTNL semaphore. On a failure
4640 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4641 * to the routing socket and the function returns zero.
4642 */
4643 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4644 {
4645 int err;
4646
4647 ASSERT_RTNL();
4648
4649 err = netdev_set_master(slave, master);
4650 if (err)
4651 return err;
4652 if (master)
4653 slave->flags |= IFF_SLAVE;
4654 else
4655 slave->flags &= ~IFF_SLAVE;
4656
4657 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4658 return 0;
4659 }
4660 EXPORT_SYMBOL(netdev_set_bond_master);
4661
4662 static void dev_change_rx_flags(struct net_device *dev, int flags)
4663 {
4664 const struct net_device_ops *ops = dev->netdev_ops;
4665
4666 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4667 ops->ndo_change_rx_flags(dev, flags);
4668 }
4669
4670 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4671 {
4672 unsigned int old_flags = dev->flags;
4673 kuid_t uid;
4674 kgid_t gid;
4675
4676 ASSERT_RTNL();
4677
4678 dev->flags |= IFF_PROMISC;
4679 dev->promiscuity += inc;
4680 if (dev->promiscuity == 0) {
4681 /*
4682 * Avoid overflow.
4683 * If inc causes overflow, untouch promisc and return error.
4684 */
4685 if (inc < 0)
4686 dev->flags &= ~IFF_PROMISC;
4687 else {
4688 dev->promiscuity -= inc;
4689 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4690 dev->name);
4691 return -EOVERFLOW;
4692 }
4693 }
4694 if (dev->flags != old_flags) {
4695 pr_info("device %s %s promiscuous mode\n",
4696 dev->name,
4697 dev->flags & IFF_PROMISC ? "entered" : "left");
4698 if (audit_enabled) {
4699 current_uid_gid(&uid, &gid);
4700 audit_log(current->audit_context, GFP_ATOMIC,
4701 AUDIT_ANOM_PROMISCUOUS,
4702 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4703 dev->name, (dev->flags & IFF_PROMISC),
4704 (old_flags & IFF_PROMISC),
4705 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4706 from_kuid(&init_user_ns, uid),
4707 from_kgid(&init_user_ns, gid),
4708 audit_get_sessionid(current));
4709 }
4710
4711 dev_change_rx_flags(dev, IFF_PROMISC);
4712 }
4713 return 0;
4714 }
4715
4716 /**
4717 * dev_set_promiscuity - update promiscuity count on a device
4718 * @dev: device
4719 * @inc: modifier
4720 *
4721 * Add or remove promiscuity from a device. While the count in the device
4722 * remains above zero the interface remains promiscuous. Once it hits zero
4723 * the device reverts back to normal filtering operation. A negative inc
4724 * value is used to drop promiscuity on the device.
4725 * Return 0 if successful or a negative errno code on error.
4726 */
4727 int dev_set_promiscuity(struct net_device *dev, int inc)
4728 {
4729 unsigned int old_flags = dev->flags;
4730 int err;
4731
4732 err = __dev_set_promiscuity(dev, inc);
4733 if (err < 0)
4734 return err;
4735 if (dev->flags != old_flags)
4736 dev_set_rx_mode(dev);
4737 return err;
4738 }
4739 EXPORT_SYMBOL(dev_set_promiscuity);
4740
4741 /**
4742 * dev_set_allmulti - update allmulti count on a device
4743 * @dev: device
4744 * @inc: modifier
4745 *
4746 * Add or remove reception of all multicast frames to a device. While the
4747 * count in the device remains above zero the interface remains listening
4748 * to all interfaces. Once it hits zero the device reverts back to normal
4749 * filtering operation. A negative @inc value is used to drop the counter
4750 * when releasing a resource needing all multicasts.
4751 * Return 0 if successful or a negative errno code on error.
4752 */
4753
4754 int dev_set_allmulti(struct net_device *dev, int inc)
4755 {
4756 unsigned int old_flags = dev->flags;
4757
4758 ASSERT_RTNL();
4759
4760 dev->flags |= IFF_ALLMULTI;
4761 dev->allmulti += inc;
4762 if (dev->allmulti == 0) {
4763 /*
4764 * Avoid overflow.
4765 * If inc causes overflow, untouch allmulti and return error.
4766 */
4767 if (inc < 0)
4768 dev->flags &= ~IFF_ALLMULTI;
4769 else {
4770 dev->allmulti -= inc;
4771 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4772 dev->name);
4773 return -EOVERFLOW;
4774 }
4775 }
4776 if (dev->flags ^ old_flags) {
4777 dev_change_rx_flags(dev, IFF_ALLMULTI);
4778 dev_set_rx_mode(dev);
4779 }
4780 return 0;
4781 }
4782 EXPORT_SYMBOL(dev_set_allmulti);
4783
4784 /*
4785 * Upload unicast and multicast address lists to device and
4786 * configure RX filtering. When the device doesn't support unicast
4787 * filtering it is put in promiscuous mode while unicast addresses
4788 * are present.
4789 */
4790 void __dev_set_rx_mode(struct net_device *dev)
4791 {
4792 const struct net_device_ops *ops = dev->netdev_ops;
4793
4794 /* dev_open will call this function so the list will stay sane. */
4795 if (!(dev->flags&IFF_UP))
4796 return;
4797
4798 if (!netif_device_present(dev))
4799 return;
4800
4801 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4802 /* Unicast addresses changes may only happen under the rtnl,
4803 * therefore calling __dev_set_promiscuity here is safe.
4804 */
4805 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4806 __dev_set_promiscuity(dev, 1);
4807 dev->uc_promisc = true;
4808 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4809 __dev_set_promiscuity(dev, -1);
4810 dev->uc_promisc = false;
4811 }
4812 }
4813
4814 if (ops->ndo_set_rx_mode)
4815 ops->ndo_set_rx_mode(dev);
4816 }
4817
4818 void dev_set_rx_mode(struct net_device *dev)
4819 {
4820 netif_addr_lock_bh(dev);
4821 __dev_set_rx_mode(dev);
4822 netif_addr_unlock_bh(dev);
4823 }
4824
4825 /**
4826 * dev_get_flags - get flags reported to userspace
4827 * @dev: device
4828 *
4829 * Get the combination of flag bits exported through APIs to userspace.
4830 */
4831 unsigned int dev_get_flags(const struct net_device *dev)
4832 {
4833 unsigned int flags;
4834
4835 flags = (dev->flags & ~(IFF_PROMISC |
4836 IFF_ALLMULTI |
4837 IFF_RUNNING |
4838 IFF_LOWER_UP |
4839 IFF_DORMANT)) |
4840 (dev->gflags & (IFF_PROMISC |
4841 IFF_ALLMULTI));
4842
4843 if (netif_running(dev)) {
4844 if (netif_oper_up(dev))
4845 flags |= IFF_RUNNING;
4846 if (netif_carrier_ok(dev))
4847 flags |= IFF_LOWER_UP;
4848 if (netif_dormant(dev))
4849 flags |= IFF_DORMANT;
4850 }
4851
4852 return flags;
4853 }
4854 EXPORT_SYMBOL(dev_get_flags);
4855
4856 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4857 {
4858 unsigned int old_flags = dev->flags;
4859 int ret;
4860
4861 ASSERT_RTNL();
4862
4863 /*
4864 * Set the flags on our device.
4865 */
4866
4867 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4868 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4869 IFF_AUTOMEDIA)) |
4870 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4871 IFF_ALLMULTI));
4872
4873 /*
4874 * Load in the correct multicast list now the flags have changed.
4875 */
4876
4877 if ((old_flags ^ flags) & IFF_MULTICAST)
4878 dev_change_rx_flags(dev, IFF_MULTICAST);
4879
4880 dev_set_rx_mode(dev);
4881
4882 /*
4883 * Have we downed the interface. We handle IFF_UP ourselves
4884 * according to user attempts to set it, rather than blindly
4885 * setting it.
4886 */
4887
4888 ret = 0;
4889 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4890 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4891
4892 if (!ret)
4893 dev_set_rx_mode(dev);
4894 }
4895
4896 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4897 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4898
4899 dev->gflags ^= IFF_PROMISC;
4900 dev_set_promiscuity(dev, inc);
4901 }
4902
4903 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4904 is important. Some (broken) drivers set IFF_PROMISC, when
4905 IFF_ALLMULTI is requested not asking us and not reporting.
4906 */
4907 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4908 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4909
4910 dev->gflags ^= IFF_ALLMULTI;
4911 dev_set_allmulti(dev, inc);
4912 }
4913
4914 return ret;
4915 }
4916
4917 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4918 {
4919 unsigned int changes = dev->flags ^ old_flags;
4920
4921 if (changes & IFF_UP) {
4922 if (dev->flags & IFF_UP)
4923 call_netdevice_notifiers(NETDEV_UP, dev);
4924 else
4925 call_netdevice_notifiers(NETDEV_DOWN, dev);
4926 }
4927
4928 if (dev->flags & IFF_UP &&
4929 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4930 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4931 }
4932
4933 /**
4934 * dev_change_flags - change device settings
4935 * @dev: device
4936 * @flags: device state flags
4937 *
4938 * Change settings on device based state flags. The flags are
4939 * in the userspace exported format.
4940 */
4941 int dev_change_flags(struct net_device *dev, unsigned int flags)
4942 {
4943 int ret;
4944 unsigned int changes, old_flags = dev->flags;
4945
4946 ret = __dev_change_flags(dev, flags);
4947 if (ret < 0)
4948 return ret;
4949
4950 changes = old_flags ^ dev->flags;
4951 if (changes)
4952 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4953
4954 __dev_notify_flags(dev, old_flags);
4955 return ret;
4956 }
4957 EXPORT_SYMBOL(dev_change_flags);
4958
4959 /**
4960 * dev_set_mtu - Change maximum transfer unit
4961 * @dev: device
4962 * @new_mtu: new transfer unit
4963 *
4964 * Change the maximum transfer size of the network device.
4965 */
4966 int dev_set_mtu(struct net_device *dev, int new_mtu)
4967 {
4968 const struct net_device_ops *ops = dev->netdev_ops;
4969 int err;
4970
4971 if (new_mtu == dev->mtu)
4972 return 0;
4973
4974 /* MTU must be positive. */
4975 if (new_mtu < 0)
4976 return -EINVAL;
4977
4978 if (!netif_device_present(dev))
4979 return -ENODEV;
4980
4981 err = 0;
4982 if (ops->ndo_change_mtu)
4983 err = ops->ndo_change_mtu(dev, new_mtu);
4984 else
4985 dev->mtu = new_mtu;
4986
4987 if (!err)
4988 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4989 return err;
4990 }
4991 EXPORT_SYMBOL(dev_set_mtu);
4992
4993 /**
4994 * dev_set_group - Change group this device belongs to
4995 * @dev: device
4996 * @new_group: group this device should belong to
4997 */
4998 void dev_set_group(struct net_device *dev, int new_group)
4999 {
5000 dev->group = new_group;
5001 }
5002 EXPORT_SYMBOL(dev_set_group);
5003
5004 /**
5005 * dev_set_mac_address - Change Media Access Control Address
5006 * @dev: device
5007 * @sa: new address
5008 *
5009 * Change the hardware (MAC) address of the device
5010 */
5011 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5012 {
5013 const struct net_device_ops *ops = dev->netdev_ops;
5014 int err;
5015
5016 if (!ops->ndo_set_mac_address)
5017 return -EOPNOTSUPP;
5018 if (sa->sa_family != dev->type)
5019 return -EINVAL;
5020 if (!netif_device_present(dev))
5021 return -ENODEV;
5022 err = ops->ndo_set_mac_address(dev, sa);
5023 if (err)
5024 return err;
5025 dev->addr_assign_type = NET_ADDR_SET;
5026 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5027 add_device_randomness(dev->dev_addr, dev->addr_len);
5028 return 0;
5029 }
5030 EXPORT_SYMBOL(dev_set_mac_address);
5031
5032 /**
5033 * dev_change_carrier - Change device carrier
5034 * @dev: device
5035 * @new_carries: new value
5036 *
5037 * Change device carrier
5038 */
5039 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5040 {
5041 const struct net_device_ops *ops = dev->netdev_ops;
5042
5043 if (!ops->ndo_change_carrier)
5044 return -EOPNOTSUPP;
5045 if (!netif_device_present(dev))
5046 return -ENODEV;
5047 return ops->ndo_change_carrier(dev, new_carrier);
5048 }
5049 EXPORT_SYMBOL(dev_change_carrier);
5050
5051 /*
5052 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
5053 */
5054 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
5055 {
5056 int err;
5057 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
5058
5059 if (!dev)
5060 return -ENODEV;
5061
5062 switch (cmd) {
5063 case SIOCGIFFLAGS: /* Get interface flags */
5064 ifr->ifr_flags = (short) dev_get_flags(dev);
5065 return 0;
5066
5067 case SIOCGIFMETRIC: /* Get the metric on the interface
5068 (currently unused) */
5069 ifr->ifr_metric = 0;
5070 return 0;
5071
5072 case SIOCGIFMTU: /* Get the MTU of a device */
5073 ifr->ifr_mtu = dev->mtu;
5074 return 0;
5075
5076 case SIOCGIFHWADDR:
5077 if (!dev->addr_len)
5078 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
5079 else
5080 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
5081 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5082 ifr->ifr_hwaddr.sa_family = dev->type;
5083 return 0;
5084
5085 case SIOCGIFSLAVE:
5086 err = -EINVAL;
5087 break;
5088
5089 case SIOCGIFMAP:
5090 ifr->ifr_map.mem_start = dev->mem_start;
5091 ifr->ifr_map.mem_end = dev->mem_end;
5092 ifr->ifr_map.base_addr = dev->base_addr;
5093 ifr->ifr_map.irq = dev->irq;
5094 ifr->ifr_map.dma = dev->dma;
5095 ifr->ifr_map.port = dev->if_port;
5096 return 0;
5097
5098 case SIOCGIFINDEX:
5099 ifr->ifr_ifindex = dev->ifindex;
5100 return 0;
5101
5102 case SIOCGIFTXQLEN:
5103 ifr->ifr_qlen = dev->tx_queue_len;
5104 return 0;
5105
5106 default:
5107 /* dev_ioctl() should ensure this case
5108 * is never reached
5109 */
5110 WARN_ON(1);
5111 err = -ENOTTY;
5112 break;
5113
5114 }
5115 return err;
5116 }
5117
5118 /*
5119 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
5120 */
5121 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5122 {
5123 int err;
5124 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5125 const struct net_device_ops *ops;
5126
5127 if (!dev)
5128 return -ENODEV;
5129
5130 ops = dev->netdev_ops;
5131
5132 switch (cmd) {
5133 case SIOCSIFFLAGS: /* Set interface flags */
5134 return dev_change_flags(dev, ifr->ifr_flags);
5135
5136 case SIOCSIFMETRIC: /* Set the metric on the interface
5137 (currently unused) */
5138 return -EOPNOTSUPP;
5139
5140 case SIOCSIFMTU: /* Set the MTU of a device */
5141 return dev_set_mtu(dev, ifr->ifr_mtu);
5142
5143 case SIOCSIFHWADDR:
5144 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5145
5146 case SIOCSIFHWBROADCAST:
5147 if (ifr->ifr_hwaddr.sa_family != dev->type)
5148 return -EINVAL;
5149 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5150 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5151 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5152 return 0;
5153
5154 case SIOCSIFMAP:
5155 if (ops->ndo_set_config) {
5156 if (!netif_device_present(dev))
5157 return -ENODEV;
5158 return ops->ndo_set_config(dev, &ifr->ifr_map);
5159 }
5160 return -EOPNOTSUPP;
5161
5162 case SIOCADDMULTI:
5163 if (!ops->ndo_set_rx_mode ||
5164 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5165 return -EINVAL;
5166 if (!netif_device_present(dev))
5167 return -ENODEV;
5168 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5169
5170 case SIOCDELMULTI:
5171 if (!ops->ndo_set_rx_mode ||
5172 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5173 return -EINVAL;
5174 if (!netif_device_present(dev))
5175 return -ENODEV;
5176 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5177
5178 case SIOCSIFTXQLEN:
5179 if (ifr->ifr_qlen < 0)
5180 return -EINVAL;
5181 dev->tx_queue_len = ifr->ifr_qlen;
5182 return 0;
5183
5184 case SIOCSIFNAME:
5185 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5186 return dev_change_name(dev, ifr->ifr_newname);
5187
5188 case SIOCSHWTSTAMP:
5189 err = net_hwtstamp_validate(ifr);
5190 if (err)
5191 return err;
5192 /* fall through */
5193
5194 /*
5195 * Unknown or private ioctl
5196 */
5197 default:
5198 if ((cmd >= SIOCDEVPRIVATE &&
5199 cmd <= SIOCDEVPRIVATE + 15) ||
5200 cmd == SIOCBONDENSLAVE ||
5201 cmd == SIOCBONDRELEASE ||
5202 cmd == SIOCBONDSETHWADDR ||
5203 cmd == SIOCBONDSLAVEINFOQUERY ||
5204 cmd == SIOCBONDINFOQUERY ||
5205 cmd == SIOCBONDCHANGEACTIVE ||
5206 cmd == SIOCGMIIPHY ||
5207 cmd == SIOCGMIIREG ||
5208 cmd == SIOCSMIIREG ||
5209 cmd == SIOCBRADDIF ||
5210 cmd == SIOCBRDELIF ||
5211 cmd == SIOCSHWTSTAMP ||
5212 cmd == SIOCWANDEV) {
5213 err = -EOPNOTSUPP;
5214 if (ops->ndo_do_ioctl) {
5215 if (netif_device_present(dev))
5216 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5217 else
5218 err = -ENODEV;
5219 }
5220 } else
5221 err = -EINVAL;
5222
5223 }
5224 return err;
5225 }
5226
5227 /*
5228 * This function handles all "interface"-type I/O control requests. The actual
5229 * 'doing' part of this is dev_ifsioc above.
5230 */
5231
5232 /**
5233 * dev_ioctl - network device ioctl
5234 * @net: the applicable net namespace
5235 * @cmd: command to issue
5236 * @arg: pointer to a struct ifreq in user space
5237 *
5238 * Issue ioctl functions to devices. This is normally called by the
5239 * user space syscall interfaces but can sometimes be useful for
5240 * other purposes. The return value is the return from the syscall if
5241 * positive or a negative errno code on error.
5242 */
5243
5244 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5245 {
5246 struct ifreq ifr;
5247 int ret;
5248 char *colon;
5249
5250 /* One special case: SIOCGIFCONF takes ifconf argument
5251 and requires shared lock, because it sleeps writing
5252 to user space.
5253 */
5254
5255 if (cmd == SIOCGIFCONF) {
5256 rtnl_lock();
5257 ret = dev_ifconf(net, (char __user *) arg);
5258 rtnl_unlock();
5259 return ret;
5260 }
5261 if (cmd == SIOCGIFNAME)
5262 return dev_ifname(net, (struct ifreq __user *)arg);
5263
5264 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5265 return -EFAULT;
5266
5267 ifr.ifr_name[IFNAMSIZ-1] = 0;
5268
5269 colon = strchr(ifr.ifr_name, ':');
5270 if (colon)
5271 *colon = 0;
5272
5273 /*
5274 * See which interface the caller is talking about.
5275 */
5276
5277 switch (cmd) {
5278 /*
5279 * These ioctl calls:
5280 * - can be done by all.
5281 * - atomic and do not require locking.
5282 * - return a value
5283 */
5284 case SIOCGIFFLAGS:
5285 case SIOCGIFMETRIC:
5286 case SIOCGIFMTU:
5287 case SIOCGIFHWADDR:
5288 case SIOCGIFSLAVE:
5289 case SIOCGIFMAP:
5290 case SIOCGIFINDEX:
5291 case SIOCGIFTXQLEN:
5292 dev_load(net, ifr.ifr_name);
5293 rcu_read_lock();
5294 ret = dev_ifsioc_locked(net, &ifr, cmd);
5295 rcu_read_unlock();
5296 if (!ret) {
5297 if (colon)
5298 *colon = ':';
5299 if (copy_to_user(arg, &ifr,
5300 sizeof(struct ifreq)))
5301 ret = -EFAULT;
5302 }
5303 return ret;
5304
5305 case SIOCETHTOOL:
5306 dev_load(net, ifr.ifr_name);
5307 rtnl_lock();
5308 ret = dev_ethtool(net, &ifr);
5309 rtnl_unlock();
5310 if (!ret) {
5311 if (colon)
5312 *colon = ':';
5313 if (copy_to_user(arg, &ifr,
5314 sizeof(struct ifreq)))
5315 ret = -EFAULT;
5316 }
5317 return ret;
5318
5319 /*
5320 * These ioctl calls:
5321 * - require superuser power.
5322 * - require strict serialization.
5323 * - return a value
5324 */
5325 case SIOCGMIIPHY:
5326 case SIOCGMIIREG:
5327 case SIOCSIFNAME:
5328 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5329 return -EPERM;
5330 dev_load(net, ifr.ifr_name);
5331 rtnl_lock();
5332 ret = dev_ifsioc(net, &ifr, cmd);
5333 rtnl_unlock();
5334 if (!ret) {
5335 if (colon)
5336 *colon = ':';
5337 if (copy_to_user(arg, &ifr,
5338 sizeof(struct ifreq)))
5339 ret = -EFAULT;
5340 }
5341 return ret;
5342
5343 /*
5344 * These ioctl calls:
5345 * - require superuser power.
5346 * - require strict serialization.
5347 * - do not return a value
5348 */
5349 case SIOCSIFMAP:
5350 case SIOCSIFTXQLEN:
5351 if (!capable(CAP_NET_ADMIN))
5352 return -EPERM;
5353 /* fall through */
5354 /*
5355 * These ioctl calls:
5356 * - require local superuser power.
5357 * - require strict serialization.
5358 * - do not return a value
5359 */
5360 case SIOCSIFFLAGS:
5361 case SIOCSIFMETRIC:
5362 case SIOCSIFMTU:
5363 case SIOCSIFHWADDR:
5364 case SIOCSIFSLAVE:
5365 case SIOCADDMULTI:
5366 case SIOCDELMULTI:
5367 case SIOCSIFHWBROADCAST:
5368 case SIOCSMIIREG:
5369 case SIOCBONDENSLAVE:
5370 case SIOCBONDRELEASE:
5371 case SIOCBONDSETHWADDR:
5372 case SIOCBONDCHANGEACTIVE:
5373 case SIOCBRADDIF:
5374 case SIOCBRDELIF:
5375 case SIOCSHWTSTAMP:
5376 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5377 return -EPERM;
5378 /* fall through */
5379 case SIOCBONDSLAVEINFOQUERY:
5380 case SIOCBONDINFOQUERY:
5381 dev_load(net, ifr.ifr_name);
5382 rtnl_lock();
5383 ret = dev_ifsioc(net, &ifr, cmd);
5384 rtnl_unlock();
5385 return ret;
5386
5387 case SIOCGIFMEM:
5388 /* Get the per device memory space. We can add this but
5389 * currently do not support it */
5390 case SIOCSIFMEM:
5391 /* Set the per device memory buffer space.
5392 * Not applicable in our case */
5393 case SIOCSIFLINK:
5394 return -ENOTTY;
5395
5396 /*
5397 * Unknown or private ioctl.
5398 */
5399 default:
5400 if (cmd == SIOCWANDEV ||
5401 (cmd >= SIOCDEVPRIVATE &&
5402 cmd <= SIOCDEVPRIVATE + 15)) {
5403 dev_load(net, ifr.ifr_name);
5404 rtnl_lock();
5405 ret = dev_ifsioc(net, &ifr, cmd);
5406 rtnl_unlock();
5407 if (!ret && copy_to_user(arg, &ifr,
5408 sizeof(struct ifreq)))
5409 ret = -EFAULT;
5410 return ret;
5411 }
5412 /* Take care of Wireless Extensions */
5413 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5414 return wext_handle_ioctl(net, &ifr, cmd, arg);
5415 return -ENOTTY;
5416 }
5417 }
5418
5419
5420 /**
5421 * dev_new_index - allocate an ifindex
5422 * @net: the applicable net namespace
5423 *
5424 * Returns a suitable unique value for a new device interface
5425 * number. The caller must hold the rtnl semaphore or the
5426 * dev_base_lock to be sure it remains unique.
5427 */
5428 static int dev_new_index(struct net *net)
5429 {
5430 int ifindex = net->ifindex;
5431 for (;;) {
5432 if (++ifindex <= 0)
5433 ifindex = 1;
5434 if (!__dev_get_by_index(net, ifindex))
5435 return net->ifindex = ifindex;
5436 }
5437 }
5438
5439 /* Delayed registration/unregisteration */
5440 static LIST_HEAD(net_todo_list);
5441
5442 static void net_set_todo(struct net_device *dev)
5443 {
5444 list_add_tail(&dev->todo_list, &net_todo_list);
5445 }
5446
5447 static void rollback_registered_many(struct list_head *head)
5448 {
5449 struct net_device *dev, *tmp;
5450
5451 BUG_ON(dev_boot_phase);
5452 ASSERT_RTNL();
5453
5454 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5455 /* Some devices call without registering
5456 * for initialization unwind. Remove those
5457 * devices and proceed with the remaining.
5458 */
5459 if (dev->reg_state == NETREG_UNINITIALIZED) {
5460 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5461 dev->name, dev);
5462
5463 WARN_ON(1);
5464 list_del(&dev->unreg_list);
5465 continue;
5466 }
5467 dev->dismantle = true;
5468 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5469 }
5470
5471 /* If device is running, close it first. */
5472 dev_close_many(head);
5473
5474 list_for_each_entry(dev, head, unreg_list) {
5475 /* And unlink it from device chain. */
5476 unlist_netdevice(dev);
5477
5478 dev->reg_state = NETREG_UNREGISTERING;
5479 }
5480
5481 synchronize_net();
5482
5483 list_for_each_entry(dev, head, unreg_list) {
5484 /* Shutdown queueing discipline. */
5485 dev_shutdown(dev);
5486
5487
5488 /* Notify protocols, that we are about to destroy
5489 this device. They should clean all the things.
5490 */
5491 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5492
5493 if (!dev->rtnl_link_ops ||
5494 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5495 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5496
5497 /*
5498 * Flush the unicast and multicast chains
5499 */
5500 dev_uc_flush(dev);
5501 dev_mc_flush(dev);
5502
5503 if (dev->netdev_ops->ndo_uninit)
5504 dev->netdev_ops->ndo_uninit(dev);
5505
5506 /* Notifier chain MUST detach us from master device. */
5507 WARN_ON(dev->master);
5508
5509 /* Remove entries from kobject tree */
5510 netdev_unregister_kobject(dev);
5511 }
5512
5513 synchronize_net();
5514
5515 list_for_each_entry(dev, head, unreg_list)
5516 dev_put(dev);
5517 }
5518
5519 static void rollback_registered(struct net_device *dev)
5520 {
5521 LIST_HEAD(single);
5522
5523 list_add(&dev->unreg_list, &single);
5524 rollback_registered_many(&single);
5525 list_del(&single);
5526 }
5527
5528 static netdev_features_t netdev_fix_features(struct net_device *dev,
5529 netdev_features_t features)
5530 {
5531 /* Fix illegal checksum combinations */
5532 if ((features & NETIF_F_HW_CSUM) &&
5533 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5534 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5535 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5536 }
5537
5538 /* Fix illegal SG+CSUM combinations. */
5539 if ((features & NETIF_F_SG) &&
5540 !(features & NETIF_F_ALL_CSUM)) {
5541 netdev_dbg(dev,
5542 "Dropping NETIF_F_SG since no checksum feature.\n");
5543 features &= ~NETIF_F_SG;
5544 }
5545
5546 /* TSO requires that SG is present as well. */
5547 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5548 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5549 features &= ~NETIF_F_ALL_TSO;
5550 }
5551
5552 /* TSO ECN requires that TSO is present as well. */
5553 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5554 features &= ~NETIF_F_TSO_ECN;
5555
5556 /* Software GSO depends on SG. */
5557 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5558 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5559 features &= ~NETIF_F_GSO;
5560 }
5561
5562 /* UFO needs SG and checksumming */
5563 if (features & NETIF_F_UFO) {
5564 /* maybe split UFO into V4 and V6? */
5565 if (!((features & NETIF_F_GEN_CSUM) ||
5566 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5567 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5568 netdev_dbg(dev,
5569 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5570 features &= ~NETIF_F_UFO;
5571 }
5572
5573 if (!(features & NETIF_F_SG)) {
5574 netdev_dbg(dev,
5575 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5576 features &= ~NETIF_F_UFO;
5577 }
5578 }
5579
5580 return features;
5581 }
5582
5583 int __netdev_update_features(struct net_device *dev)
5584 {
5585 netdev_features_t features;
5586 int err = 0;
5587
5588 ASSERT_RTNL();
5589
5590 features = netdev_get_wanted_features(dev);
5591
5592 if (dev->netdev_ops->ndo_fix_features)
5593 features = dev->netdev_ops->ndo_fix_features(dev, features);
5594
5595 /* driver might be less strict about feature dependencies */
5596 features = netdev_fix_features(dev, features);
5597
5598 if (dev->features == features)
5599 return 0;
5600
5601 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5602 &dev->features, &features);
5603
5604 if (dev->netdev_ops->ndo_set_features)
5605 err = dev->netdev_ops->ndo_set_features(dev, features);
5606
5607 if (unlikely(err < 0)) {
5608 netdev_err(dev,
5609 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5610 err, &features, &dev->features);
5611 return -1;
5612 }
5613
5614 if (!err)
5615 dev->features = features;
5616
5617 return 1;
5618 }
5619
5620 /**
5621 * netdev_update_features - recalculate device features
5622 * @dev: the device to check
5623 *
5624 * Recalculate dev->features set and send notifications if it
5625 * has changed. Should be called after driver or hardware dependent
5626 * conditions might have changed that influence the features.
5627 */
5628 void netdev_update_features(struct net_device *dev)
5629 {
5630 if (__netdev_update_features(dev))
5631 netdev_features_change(dev);
5632 }
5633 EXPORT_SYMBOL(netdev_update_features);
5634
5635 /**
5636 * netdev_change_features - recalculate device features
5637 * @dev: the device to check
5638 *
5639 * Recalculate dev->features set and send notifications even
5640 * if they have not changed. Should be called instead of
5641 * netdev_update_features() if also dev->vlan_features might
5642 * have changed to allow the changes to be propagated to stacked
5643 * VLAN devices.
5644 */
5645 void netdev_change_features(struct net_device *dev)
5646 {
5647 __netdev_update_features(dev);
5648 netdev_features_change(dev);
5649 }
5650 EXPORT_SYMBOL(netdev_change_features);
5651
5652 /**
5653 * netif_stacked_transfer_operstate - transfer operstate
5654 * @rootdev: the root or lower level device to transfer state from
5655 * @dev: the device to transfer operstate to
5656 *
5657 * Transfer operational state from root to device. This is normally
5658 * called when a stacking relationship exists between the root
5659 * device and the device(a leaf device).
5660 */
5661 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5662 struct net_device *dev)
5663 {
5664 if (rootdev->operstate == IF_OPER_DORMANT)
5665 netif_dormant_on(dev);
5666 else
5667 netif_dormant_off(dev);
5668
5669 if (netif_carrier_ok(rootdev)) {
5670 if (!netif_carrier_ok(dev))
5671 netif_carrier_on(dev);
5672 } else {
5673 if (netif_carrier_ok(dev))
5674 netif_carrier_off(dev);
5675 }
5676 }
5677 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5678
5679 #ifdef CONFIG_RPS
5680 static int netif_alloc_rx_queues(struct net_device *dev)
5681 {
5682 unsigned int i, count = dev->num_rx_queues;
5683 struct netdev_rx_queue *rx;
5684
5685 BUG_ON(count < 1);
5686
5687 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5688 if (!rx) {
5689 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5690 return -ENOMEM;
5691 }
5692 dev->_rx = rx;
5693
5694 for (i = 0; i < count; i++)
5695 rx[i].dev = dev;
5696 return 0;
5697 }
5698 #endif
5699
5700 static void netdev_init_one_queue(struct net_device *dev,
5701 struct netdev_queue *queue, void *_unused)
5702 {
5703 /* Initialize queue lock */
5704 spin_lock_init(&queue->_xmit_lock);
5705 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5706 queue->xmit_lock_owner = -1;
5707 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5708 queue->dev = dev;
5709 #ifdef CONFIG_BQL
5710 dql_init(&queue->dql, HZ);
5711 #endif
5712 }
5713
5714 static int netif_alloc_netdev_queues(struct net_device *dev)
5715 {
5716 unsigned int count = dev->num_tx_queues;
5717 struct netdev_queue *tx;
5718
5719 BUG_ON(count < 1);
5720
5721 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5722 if (!tx) {
5723 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5724 return -ENOMEM;
5725 }
5726 dev->_tx = tx;
5727
5728 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5729 spin_lock_init(&dev->tx_global_lock);
5730
5731 return 0;
5732 }
5733
5734 /**
5735 * register_netdevice - register a network device
5736 * @dev: device to register
5737 *
5738 * Take a completed network device structure and add it to the kernel
5739 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5740 * chain. 0 is returned on success. A negative errno code is returned
5741 * on a failure to set up the device, or if the name is a duplicate.
5742 *
5743 * Callers must hold the rtnl semaphore. You may want
5744 * register_netdev() instead of this.
5745 *
5746 * BUGS:
5747 * The locking appears insufficient to guarantee two parallel registers
5748 * will not get the same name.
5749 */
5750
5751 int register_netdevice(struct net_device *dev)
5752 {
5753 int ret;
5754 struct net *net = dev_net(dev);
5755
5756 BUG_ON(dev_boot_phase);
5757 ASSERT_RTNL();
5758
5759 might_sleep();
5760
5761 /* When net_device's are persistent, this will be fatal. */
5762 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5763 BUG_ON(!net);
5764
5765 spin_lock_init(&dev->addr_list_lock);
5766 netdev_set_addr_lockdep_class(dev);
5767
5768 dev->iflink = -1;
5769
5770 ret = dev_get_valid_name(net, dev, dev->name);
5771 if (ret < 0)
5772 goto out;
5773
5774 /* Init, if this function is available */
5775 if (dev->netdev_ops->ndo_init) {
5776 ret = dev->netdev_ops->ndo_init(dev);
5777 if (ret) {
5778 if (ret > 0)
5779 ret = -EIO;
5780 goto out;
5781 }
5782 }
5783
5784 ret = -EBUSY;
5785 if (!dev->ifindex)
5786 dev->ifindex = dev_new_index(net);
5787 else if (__dev_get_by_index(net, dev->ifindex))
5788 goto err_uninit;
5789
5790 if (dev->iflink == -1)
5791 dev->iflink = dev->ifindex;
5792
5793 /* Transfer changeable features to wanted_features and enable
5794 * software offloads (GSO and GRO).
5795 */
5796 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5797 dev->features |= NETIF_F_SOFT_FEATURES;
5798 dev->wanted_features = dev->features & dev->hw_features;
5799
5800 /* Turn on no cache copy if HW is doing checksum */
5801 if (!(dev->flags & IFF_LOOPBACK)) {
5802 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5803 if (dev->features & NETIF_F_ALL_CSUM) {
5804 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5805 dev->features |= NETIF_F_NOCACHE_COPY;
5806 }
5807 }
5808
5809 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5810 */
5811 dev->vlan_features |= NETIF_F_HIGHDMA;
5812
5813 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5814 ret = notifier_to_errno(ret);
5815 if (ret)
5816 goto err_uninit;
5817
5818 ret = netdev_register_kobject(dev);
5819 if (ret)
5820 goto err_uninit;
5821 dev->reg_state = NETREG_REGISTERED;
5822
5823 __netdev_update_features(dev);
5824
5825 /*
5826 * Default initial state at registry is that the
5827 * device is present.
5828 */
5829
5830 set_bit(__LINK_STATE_PRESENT, &dev->state);
5831
5832 linkwatch_init_dev(dev);
5833
5834 dev_init_scheduler(dev);
5835 dev_hold(dev);
5836 list_netdevice(dev);
5837 add_device_randomness(dev->dev_addr, dev->addr_len);
5838
5839 /* Notify protocols, that a new device appeared. */
5840 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5841 ret = notifier_to_errno(ret);
5842 if (ret) {
5843 rollback_registered(dev);
5844 dev->reg_state = NETREG_UNREGISTERED;
5845 }
5846 /*
5847 * Prevent userspace races by waiting until the network
5848 * device is fully setup before sending notifications.
5849 */
5850 if (!dev->rtnl_link_ops ||
5851 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5852 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5853
5854 out:
5855 return ret;
5856
5857 err_uninit:
5858 if (dev->netdev_ops->ndo_uninit)
5859 dev->netdev_ops->ndo_uninit(dev);
5860 goto out;
5861 }
5862 EXPORT_SYMBOL(register_netdevice);
5863
5864 /**
5865 * init_dummy_netdev - init a dummy network device for NAPI
5866 * @dev: device to init
5867 *
5868 * This takes a network device structure and initialize the minimum
5869 * amount of fields so it can be used to schedule NAPI polls without
5870 * registering a full blown interface. This is to be used by drivers
5871 * that need to tie several hardware interfaces to a single NAPI
5872 * poll scheduler due to HW limitations.
5873 */
5874 int init_dummy_netdev(struct net_device *dev)
5875 {
5876 /* Clear everything. Note we don't initialize spinlocks
5877 * are they aren't supposed to be taken by any of the
5878 * NAPI code and this dummy netdev is supposed to be
5879 * only ever used for NAPI polls
5880 */
5881 memset(dev, 0, sizeof(struct net_device));
5882
5883 /* make sure we BUG if trying to hit standard
5884 * register/unregister code path
5885 */
5886 dev->reg_state = NETREG_DUMMY;
5887
5888 /* NAPI wants this */
5889 INIT_LIST_HEAD(&dev->napi_list);
5890
5891 /* a dummy interface is started by default */
5892 set_bit(__LINK_STATE_PRESENT, &dev->state);
5893 set_bit(__LINK_STATE_START, &dev->state);
5894
5895 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5896 * because users of this 'device' dont need to change
5897 * its refcount.
5898 */
5899
5900 return 0;
5901 }
5902 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5903
5904
5905 /**
5906 * register_netdev - register a network device
5907 * @dev: device to register
5908 *
5909 * Take a completed network device structure and add it to the kernel
5910 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5911 * chain. 0 is returned on success. A negative errno code is returned
5912 * on a failure to set up the device, or if the name is a duplicate.
5913 *
5914 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5915 * and expands the device name if you passed a format string to
5916 * alloc_netdev.
5917 */
5918 int register_netdev(struct net_device *dev)
5919 {
5920 int err;
5921
5922 rtnl_lock();
5923 err = register_netdevice(dev);
5924 rtnl_unlock();
5925 return err;
5926 }
5927 EXPORT_SYMBOL(register_netdev);
5928
5929 int netdev_refcnt_read(const struct net_device *dev)
5930 {
5931 int i, refcnt = 0;
5932
5933 for_each_possible_cpu(i)
5934 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5935 return refcnt;
5936 }
5937 EXPORT_SYMBOL(netdev_refcnt_read);
5938
5939 /**
5940 * netdev_wait_allrefs - wait until all references are gone.
5941 * @dev: target net_device
5942 *
5943 * This is called when unregistering network devices.
5944 *
5945 * Any protocol or device that holds a reference should register
5946 * for netdevice notification, and cleanup and put back the
5947 * reference if they receive an UNREGISTER event.
5948 * We can get stuck here if buggy protocols don't correctly
5949 * call dev_put.
5950 */
5951 static void netdev_wait_allrefs(struct net_device *dev)
5952 {
5953 unsigned long rebroadcast_time, warning_time;
5954 int refcnt;
5955
5956 linkwatch_forget_dev(dev);
5957
5958 rebroadcast_time = warning_time = jiffies;
5959 refcnt = netdev_refcnt_read(dev);
5960
5961 while (refcnt != 0) {
5962 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5963 rtnl_lock();
5964
5965 /* Rebroadcast unregister notification */
5966 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5967
5968 __rtnl_unlock();
5969 rcu_barrier();
5970 rtnl_lock();
5971
5972 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5973 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5974 &dev->state)) {
5975 /* We must not have linkwatch events
5976 * pending on unregister. If this
5977 * happens, we simply run the queue
5978 * unscheduled, resulting in a noop
5979 * for this device.
5980 */
5981 linkwatch_run_queue();
5982 }
5983
5984 __rtnl_unlock();
5985
5986 rebroadcast_time = jiffies;
5987 }
5988
5989 msleep(250);
5990
5991 refcnt = netdev_refcnt_read(dev);
5992
5993 if (time_after(jiffies, warning_time + 10 * HZ)) {
5994 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5995 dev->name, refcnt);
5996 warning_time = jiffies;
5997 }
5998 }
5999 }
6000
6001 /* The sequence is:
6002 *
6003 * rtnl_lock();
6004 * ...
6005 * register_netdevice(x1);
6006 * register_netdevice(x2);
6007 * ...
6008 * unregister_netdevice(y1);
6009 * unregister_netdevice(y2);
6010 * ...
6011 * rtnl_unlock();
6012 * free_netdev(y1);
6013 * free_netdev(y2);
6014 *
6015 * We are invoked by rtnl_unlock().
6016 * This allows us to deal with problems:
6017 * 1) We can delete sysfs objects which invoke hotplug
6018 * without deadlocking with linkwatch via keventd.
6019 * 2) Since we run with the RTNL semaphore not held, we can sleep
6020 * safely in order to wait for the netdev refcnt to drop to zero.
6021 *
6022 * We must not return until all unregister events added during
6023 * the interval the lock was held have been completed.
6024 */
6025 void netdev_run_todo(void)
6026 {
6027 struct list_head list;
6028
6029 /* Snapshot list, allow later requests */
6030 list_replace_init(&net_todo_list, &list);
6031
6032 __rtnl_unlock();
6033
6034
6035 /* Wait for rcu callbacks to finish before next phase */
6036 if (!list_empty(&list))
6037 rcu_barrier();
6038
6039 while (!list_empty(&list)) {
6040 struct net_device *dev
6041 = list_first_entry(&list, struct net_device, todo_list);
6042 list_del(&dev->todo_list);
6043
6044 rtnl_lock();
6045 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6046 __rtnl_unlock();
6047
6048 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6049 pr_err("network todo '%s' but state %d\n",
6050 dev->name, dev->reg_state);
6051 dump_stack();
6052 continue;
6053 }
6054
6055 dev->reg_state = NETREG_UNREGISTERED;
6056
6057 on_each_cpu(flush_backlog, dev, 1);
6058
6059 netdev_wait_allrefs(dev);
6060
6061 /* paranoia */
6062 BUG_ON(netdev_refcnt_read(dev));
6063 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6064 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6065 WARN_ON(dev->dn_ptr);
6066
6067 if (dev->destructor)
6068 dev->destructor(dev);
6069
6070 /* Free network device */
6071 kobject_put(&dev->dev.kobj);
6072 }
6073 }
6074
6075 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6076 * fields in the same order, with only the type differing.
6077 */
6078 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6079 const struct net_device_stats *netdev_stats)
6080 {
6081 #if BITS_PER_LONG == 64
6082 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6083 memcpy(stats64, netdev_stats, sizeof(*stats64));
6084 #else
6085 size_t i, n = sizeof(*stats64) / sizeof(u64);
6086 const unsigned long *src = (const unsigned long *)netdev_stats;
6087 u64 *dst = (u64 *)stats64;
6088
6089 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6090 sizeof(*stats64) / sizeof(u64));
6091 for (i = 0; i < n; i++)
6092 dst[i] = src[i];
6093 #endif
6094 }
6095 EXPORT_SYMBOL(netdev_stats_to_stats64);
6096
6097 /**
6098 * dev_get_stats - get network device statistics
6099 * @dev: device to get statistics from
6100 * @storage: place to store stats
6101 *
6102 * Get network statistics from device. Return @storage.
6103 * The device driver may provide its own method by setting
6104 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6105 * otherwise the internal statistics structure is used.
6106 */
6107 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6108 struct rtnl_link_stats64 *storage)
6109 {
6110 const struct net_device_ops *ops = dev->netdev_ops;
6111
6112 if (ops->ndo_get_stats64) {
6113 memset(storage, 0, sizeof(*storage));
6114 ops->ndo_get_stats64(dev, storage);
6115 } else if (ops->ndo_get_stats) {
6116 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6117 } else {
6118 netdev_stats_to_stats64(storage, &dev->stats);
6119 }
6120 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6121 return storage;
6122 }
6123 EXPORT_SYMBOL(dev_get_stats);
6124
6125 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6126 {
6127 struct netdev_queue *queue = dev_ingress_queue(dev);
6128
6129 #ifdef CONFIG_NET_CLS_ACT
6130 if (queue)
6131 return queue;
6132 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6133 if (!queue)
6134 return NULL;
6135 netdev_init_one_queue(dev, queue, NULL);
6136 queue->qdisc = &noop_qdisc;
6137 queue->qdisc_sleeping = &noop_qdisc;
6138 rcu_assign_pointer(dev->ingress_queue, queue);
6139 #endif
6140 return queue;
6141 }
6142
6143 static const struct ethtool_ops default_ethtool_ops;
6144
6145 /**
6146 * alloc_netdev_mqs - allocate network device
6147 * @sizeof_priv: size of private data to allocate space for
6148 * @name: device name format string
6149 * @setup: callback to initialize device
6150 * @txqs: the number of TX subqueues to allocate
6151 * @rxqs: the number of RX subqueues to allocate
6152 *
6153 * Allocates a struct net_device with private data area for driver use
6154 * and performs basic initialization. Also allocates subquue structs
6155 * for each queue on the device.
6156 */
6157 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6158 void (*setup)(struct net_device *),
6159 unsigned int txqs, unsigned int rxqs)
6160 {
6161 struct net_device *dev;
6162 size_t alloc_size;
6163 struct net_device *p;
6164
6165 BUG_ON(strlen(name) >= sizeof(dev->name));
6166
6167 if (txqs < 1) {
6168 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6169 return NULL;
6170 }
6171
6172 #ifdef CONFIG_RPS
6173 if (rxqs < 1) {
6174 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6175 return NULL;
6176 }
6177 #endif
6178
6179 alloc_size = sizeof(struct net_device);
6180 if (sizeof_priv) {
6181 /* ensure 32-byte alignment of private area */
6182 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6183 alloc_size += sizeof_priv;
6184 }
6185 /* ensure 32-byte alignment of whole construct */
6186 alloc_size += NETDEV_ALIGN - 1;
6187
6188 p = kzalloc(alloc_size, GFP_KERNEL);
6189 if (!p) {
6190 pr_err("alloc_netdev: Unable to allocate device\n");
6191 return NULL;
6192 }
6193
6194 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6195 dev->padded = (char *)dev - (char *)p;
6196
6197 dev->pcpu_refcnt = alloc_percpu(int);
6198 if (!dev->pcpu_refcnt)
6199 goto free_p;
6200
6201 if (dev_addr_init(dev))
6202 goto free_pcpu;
6203
6204 dev_mc_init(dev);
6205 dev_uc_init(dev);
6206
6207 dev_net_set(dev, &init_net);
6208
6209 dev->gso_max_size = GSO_MAX_SIZE;
6210 dev->gso_max_segs = GSO_MAX_SEGS;
6211
6212 INIT_LIST_HEAD(&dev->napi_list);
6213 INIT_LIST_HEAD(&dev->unreg_list);
6214 INIT_LIST_HEAD(&dev->link_watch_list);
6215 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6216 setup(dev);
6217
6218 dev->num_tx_queues = txqs;
6219 dev->real_num_tx_queues = txqs;
6220 if (netif_alloc_netdev_queues(dev))
6221 goto free_all;
6222
6223 #ifdef CONFIG_RPS
6224 dev->num_rx_queues = rxqs;
6225 dev->real_num_rx_queues = rxqs;
6226 if (netif_alloc_rx_queues(dev))
6227 goto free_all;
6228 #endif
6229
6230 strcpy(dev->name, name);
6231 dev->group = INIT_NETDEV_GROUP;
6232 if (!dev->ethtool_ops)
6233 dev->ethtool_ops = &default_ethtool_ops;
6234 return dev;
6235
6236 free_all:
6237 free_netdev(dev);
6238 return NULL;
6239
6240 free_pcpu:
6241 free_percpu(dev->pcpu_refcnt);
6242 kfree(dev->_tx);
6243 #ifdef CONFIG_RPS
6244 kfree(dev->_rx);
6245 #endif
6246
6247 free_p:
6248 kfree(p);
6249 return NULL;
6250 }
6251 EXPORT_SYMBOL(alloc_netdev_mqs);
6252
6253 /**
6254 * free_netdev - free network device
6255 * @dev: device
6256 *
6257 * This function does the last stage of destroying an allocated device
6258 * interface. The reference to the device object is released.
6259 * If this is the last reference then it will be freed.
6260 */
6261 void free_netdev(struct net_device *dev)
6262 {
6263 struct napi_struct *p, *n;
6264
6265 release_net(dev_net(dev));
6266
6267 kfree(dev->_tx);
6268 #ifdef CONFIG_RPS
6269 kfree(dev->_rx);
6270 #endif
6271
6272 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6273
6274 /* Flush device addresses */
6275 dev_addr_flush(dev);
6276
6277 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6278 netif_napi_del(p);
6279
6280 free_percpu(dev->pcpu_refcnt);
6281 dev->pcpu_refcnt = NULL;
6282
6283 /* Compatibility with error handling in drivers */
6284 if (dev->reg_state == NETREG_UNINITIALIZED) {
6285 kfree((char *)dev - dev->padded);
6286 return;
6287 }
6288
6289 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6290 dev->reg_state = NETREG_RELEASED;
6291
6292 /* will free via device release */
6293 put_device(&dev->dev);
6294 }
6295 EXPORT_SYMBOL(free_netdev);
6296
6297 /**
6298 * synchronize_net - Synchronize with packet receive processing
6299 *
6300 * Wait for packets currently being received to be done.
6301 * Does not block later packets from starting.
6302 */
6303 void synchronize_net(void)
6304 {
6305 might_sleep();
6306 if (rtnl_is_locked())
6307 synchronize_rcu_expedited();
6308 else
6309 synchronize_rcu();
6310 }
6311 EXPORT_SYMBOL(synchronize_net);
6312
6313 /**
6314 * unregister_netdevice_queue - remove device from the kernel
6315 * @dev: device
6316 * @head: list
6317 *
6318 * This function shuts down a device interface and removes it
6319 * from the kernel tables.
6320 * If head not NULL, device is queued to be unregistered later.
6321 *
6322 * Callers must hold the rtnl semaphore. You may want
6323 * unregister_netdev() instead of this.
6324 */
6325
6326 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6327 {
6328 ASSERT_RTNL();
6329
6330 if (head) {
6331 list_move_tail(&dev->unreg_list, head);
6332 } else {
6333 rollback_registered(dev);
6334 /* Finish processing unregister after unlock */
6335 net_set_todo(dev);
6336 }
6337 }
6338 EXPORT_SYMBOL(unregister_netdevice_queue);
6339
6340 /**
6341 * unregister_netdevice_many - unregister many devices
6342 * @head: list of devices
6343 */
6344 void unregister_netdevice_many(struct list_head *head)
6345 {
6346 struct net_device *dev;
6347
6348 if (!list_empty(head)) {
6349 rollback_registered_many(head);
6350 list_for_each_entry(dev, head, unreg_list)
6351 net_set_todo(dev);
6352 }
6353 }
6354 EXPORT_SYMBOL(unregister_netdevice_many);
6355
6356 /**
6357 * unregister_netdev - remove device from the kernel
6358 * @dev: device
6359 *
6360 * This function shuts down a device interface and removes it
6361 * from the kernel tables.
6362 *
6363 * This is just a wrapper for unregister_netdevice that takes
6364 * the rtnl semaphore. In general you want to use this and not
6365 * unregister_netdevice.
6366 */
6367 void unregister_netdev(struct net_device *dev)
6368 {
6369 rtnl_lock();
6370 unregister_netdevice(dev);
6371 rtnl_unlock();
6372 }
6373 EXPORT_SYMBOL(unregister_netdev);
6374
6375 /**
6376 * dev_change_net_namespace - move device to different nethost namespace
6377 * @dev: device
6378 * @net: network namespace
6379 * @pat: If not NULL name pattern to try if the current device name
6380 * is already taken in the destination network namespace.
6381 *
6382 * This function shuts down a device interface and moves it
6383 * to a new network namespace. On success 0 is returned, on
6384 * a failure a netagive errno code is returned.
6385 *
6386 * Callers must hold the rtnl semaphore.
6387 */
6388
6389 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6390 {
6391 int err;
6392
6393 ASSERT_RTNL();
6394
6395 /* Don't allow namespace local devices to be moved. */
6396 err = -EINVAL;
6397 if (dev->features & NETIF_F_NETNS_LOCAL)
6398 goto out;
6399
6400 /* Ensure the device has been registrered */
6401 if (dev->reg_state != NETREG_REGISTERED)
6402 goto out;
6403
6404 /* Get out if there is nothing todo */
6405 err = 0;
6406 if (net_eq(dev_net(dev), net))
6407 goto out;
6408
6409 /* Pick the destination device name, and ensure
6410 * we can use it in the destination network namespace.
6411 */
6412 err = -EEXIST;
6413 if (__dev_get_by_name(net, dev->name)) {
6414 /* We get here if we can't use the current device name */
6415 if (!pat)
6416 goto out;
6417 if (dev_get_valid_name(net, dev, pat) < 0)
6418 goto out;
6419 }
6420
6421 /*
6422 * And now a mini version of register_netdevice unregister_netdevice.
6423 */
6424
6425 /* If device is running close it first. */
6426 dev_close(dev);
6427
6428 /* And unlink it from device chain */
6429 err = -ENODEV;
6430 unlist_netdevice(dev);
6431
6432 synchronize_net();
6433
6434 /* Shutdown queueing discipline. */
6435 dev_shutdown(dev);
6436
6437 /* Notify protocols, that we are about to destroy
6438 this device. They should clean all the things.
6439
6440 Note that dev->reg_state stays at NETREG_REGISTERED.
6441 This is wanted because this way 8021q and macvlan know
6442 the device is just moving and can keep their slaves up.
6443 */
6444 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6445 rcu_barrier();
6446 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6447 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6448
6449 /*
6450 * Flush the unicast and multicast chains
6451 */
6452 dev_uc_flush(dev);
6453 dev_mc_flush(dev);
6454
6455 /* Send a netdev-removed uevent to the old namespace */
6456 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6457
6458 /* Actually switch the network namespace */
6459 dev_net_set(dev, net);
6460
6461 /* If there is an ifindex conflict assign a new one */
6462 if (__dev_get_by_index(net, dev->ifindex)) {
6463 int iflink = (dev->iflink == dev->ifindex);
6464 dev->ifindex = dev_new_index(net);
6465 if (iflink)
6466 dev->iflink = dev->ifindex;
6467 }
6468
6469 /* Send a netdev-add uevent to the new namespace */
6470 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6471
6472 /* Fixup kobjects */
6473 err = device_rename(&dev->dev, dev->name);
6474 WARN_ON(err);
6475
6476 /* Add the device back in the hashes */
6477 list_netdevice(dev);
6478
6479 /* Notify protocols, that a new device appeared. */
6480 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6481
6482 /*
6483 * Prevent userspace races by waiting until the network
6484 * device is fully setup before sending notifications.
6485 */
6486 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6487
6488 synchronize_net();
6489 err = 0;
6490 out:
6491 return err;
6492 }
6493 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6494
6495 static int dev_cpu_callback(struct notifier_block *nfb,
6496 unsigned long action,
6497 void *ocpu)
6498 {
6499 struct sk_buff **list_skb;
6500 struct sk_buff *skb;
6501 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6502 struct softnet_data *sd, *oldsd;
6503
6504 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6505 return NOTIFY_OK;
6506
6507 local_irq_disable();
6508 cpu = smp_processor_id();
6509 sd = &per_cpu(softnet_data, cpu);
6510 oldsd = &per_cpu(softnet_data, oldcpu);
6511
6512 /* Find end of our completion_queue. */
6513 list_skb = &sd->completion_queue;
6514 while (*list_skb)
6515 list_skb = &(*list_skb)->next;
6516 /* Append completion queue from offline CPU. */
6517 *list_skb = oldsd->completion_queue;
6518 oldsd->completion_queue = NULL;
6519
6520 /* Append output queue from offline CPU. */
6521 if (oldsd->output_queue) {
6522 *sd->output_queue_tailp = oldsd->output_queue;
6523 sd->output_queue_tailp = oldsd->output_queue_tailp;
6524 oldsd->output_queue = NULL;
6525 oldsd->output_queue_tailp = &oldsd->output_queue;
6526 }
6527 /* Append NAPI poll list from offline CPU. */
6528 if (!list_empty(&oldsd->poll_list)) {
6529 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6530 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6531 }
6532
6533 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6534 local_irq_enable();
6535
6536 /* Process offline CPU's input_pkt_queue */
6537 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6538 netif_rx(skb);
6539 input_queue_head_incr(oldsd);
6540 }
6541 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6542 netif_rx(skb);
6543 input_queue_head_incr(oldsd);
6544 }
6545
6546 return NOTIFY_OK;
6547 }
6548
6549
6550 /**
6551 * netdev_increment_features - increment feature set by one
6552 * @all: current feature set
6553 * @one: new feature set
6554 * @mask: mask feature set
6555 *
6556 * Computes a new feature set after adding a device with feature set
6557 * @one to the master device with current feature set @all. Will not
6558 * enable anything that is off in @mask. Returns the new feature set.
6559 */
6560 netdev_features_t netdev_increment_features(netdev_features_t all,
6561 netdev_features_t one, netdev_features_t mask)
6562 {
6563 if (mask & NETIF_F_GEN_CSUM)
6564 mask |= NETIF_F_ALL_CSUM;
6565 mask |= NETIF_F_VLAN_CHALLENGED;
6566
6567 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6568 all &= one | ~NETIF_F_ALL_FOR_ALL;
6569
6570 /* If one device supports hw checksumming, set for all. */
6571 if (all & NETIF_F_GEN_CSUM)
6572 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6573
6574 return all;
6575 }
6576 EXPORT_SYMBOL(netdev_increment_features);
6577
6578 static struct hlist_head *netdev_create_hash(void)
6579 {
6580 int i;
6581 struct hlist_head *hash;
6582
6583 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6584 if (hash != NULL)
6585 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6586 INIT_HLIST_HEAD(&hash[i]);
6587
6588 return hash;
6589 }
6590
6591 /* Initialize per network namespace state */
6592 static int __net_init netdev_init(struct net *net)
6593 {
6594 if (net != &init_net)
6595 INIT_LIST_HEAD(&net->dev_base_head);
6596
6597 net->dev_name_head = netdev_create_hash();
6598 if (net->dev_name_head == NULL)
6599 goto err_name;
6600
6601 net->dev_index_head = netdev_create_hash();
6602 if (net->dev_index_head == NULL)
6603 goto err_idx;
6604
6605 return 0;
6606
6607 err_idx:
6608 kfree(net->dev_name_head);
6609 err_name:
6610 return -ENOMEM;
6611 }
6612
6613 /**
6614 * netdev_drivername - network driver for the device
6615 * @dev: network device
6616 *
6617 * Determine network driver for device.
6618 */
6619 const char *netdev_drivername(const struct net_device *dev)
6620 {
6621 const struct device_driver *driver;
6622 const struct device *parent;
6623 const char *empty = "";
6624
6625 parent = dev->dev.parent;
6626 if (!parent)
6627 return empty;
6628
6629 driver = parent->driver;
6630 if (driver && driver->name)
6631 return driver->name;
6632 return empty;
6633 }
6634
6635 static int __netdev_printk(const char *level, const struct net_device *dev,
6636 struct va_format *vaf)
6637 {
6638 int r;
6639
6640 if (dev && dev->dev.parent) {
6641 r = dev_printk_emit(level[1] - '0',
6642 dev->dev.parent,
6643 "%s %s %s: %pV",
6644 dev_driver_string(dev->dev.parent),
6645 dev_name(dev->dev.parent),
6646 netdev_name(dev), vaf);
6647 } else if (dev) {
6648 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6649 } else {
6650 r = printk("%s(NULL net_device): %pV", level, vaf);
6651 }
6652
6653 return r;
6654 }
6655
6656 int netdev_printk(const char *level, const struct net_device *dev,
6657 const char *format, ...)
6658 {
6659 struct va_format vaf;
6660 va_list args;
6661 int r;
6662
6663 va_start(args, format);
6664
6665 vaf.fmt = format;
6666 vaf.va = &args;
6667
6668 r = __netdev_printk(level, dev, &vaf);
6669
6670 va_end(args);
6671
6672 return r;
6673 }
6674 EXPORT_SYMBOL(netdev_printk);
6675
6676 #define define_netdev_printk_level(func, level) \
6677 int func(const struct net_device *dev, const char *fmt, ...) \
6678 { \
6679 int r; \
6680 struct va_format vaf; \
6681 va_list args; \
6682 \
6683 va_start(args, fmt); \
6684 \
6685 vaf.fmt = fmt; \
6686 vaf.va = &args; \
6687 \
6688 r = __netdev_printk(level, dev, &vaf); \
6689 \
6690 va_end(args); \
6691 \
6692 return r; \
6693 } \
6694 EXPORT_SYMBOL(func);
6695
6696 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6697 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6698 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6699 define_netdev_printk_level(netdev_err, KERN_ERR);
6700 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6701 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6702 define_netdev_printk_level(netdev_info, KERN_INFO);
6703
6704 static void __net_exit netdev_exit(struct net *net)
6705 {
6706 kfree(net->dev_name_head);
6707 kfree(net->dev_index_head);
6708 }
6709
6710 static struct pernet_operations __net_initdata netdev_net_ops = {
6711 .init = netdev_init,
6712 .exit = netdev_exit,
6713 };
6714
6715 static void __net_exit default_device_exit(struct net *net)
6716 {
6717 struct net_device *dev, *aux;
6718 /*
6719 * Push all migratable network devices back to the
6720 * initial network namespace
6721 */
6722 rtnl_lock();
6723 for_each_netdev_safe(net, dev, aux) {
6724 int err;
6725 char fb_name[IFNAMSIZ];
6726
6727 /* Ignore unmoveable devices (i.e. loopback) */
6728 if (dev->features & NETIF_F_NETNS_LOCAL)
6729 continue;
6730
6731 /* Leave virtual devices for the generic cleanup */
6732 if (dev->rtnl_link_ops)
6733 continue;
6734
6735 /* Push remaining network devices to init_net */
6736 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6737 err = dev_change_net_namespace(dev, &init_net, fb_name);
6738 if (err) {
6739 pr_emerg("%s: failed to move %s to init_net: %d\n",
6740 __func__, dev->name, err);
6741 BUG();
6742 }
6743 }
6744 rtnl_unlock();
6745 }
6746
6747 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6748 {
6749 /* At exit all network devices most be removed from a network
6750 * namespace. Do this in the reverse order of registration.
6751 * Do this across as many network namespaces as possible to
6752 * improve batching efficiency.
6753 */
6754 struct net_device *dev;
6755 struct net *net;
6756 LIST_HEAD(dev_kill_list);
6757
6758 rtnl_lock();
6759 list_for_each_entry(net, net_list, exit_list) {
6760 for_each_netdev_reverse(net, dev) {
6761 if (dev->rtnl_link_ops)
6762 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6763 else
6764 unregister_netdevice_queue(dev, &dev_kill_list);
6765 }
6766 }
6767 unregister_netdevice_many(&dev_kill_list);
6768 list_del(&dev_kill_list);
6769 rtnl_unlock();
6770 }
6771
6772 static struct pernet_operations __net_initdata default_device_ops = {
6773 .exit = default_device_exit,
6774 .exit_batch = default_device_exit_batch,
6775 };
6776
6777 /*
6778 * Initialize the DEV module. At boot time this walks the device list and
6779 * unhooks any devices that fail to initialise (normally hardware not
6780 * present) and leaves us with a valid list of present and active devices.
6781 *
6782 */
6783
6784 /*
6785 * This is called single threaded during boot, so no need
6786 * to take the rtnl semaphore.
6787 */
6788 static int __init net_dev_init(void)
6789 {
6790 int i, rc = -ENOMEM;
6791
6792 BUG_ON(!dev_boot_phase);
6793
6794 if (dev_proc_init())
6795 goto out;
6796
6797 if (netdev_kobject_init())
6798 goto out;
6799
6800 INIT_LIST_HEAD(&ptype_all);
6801 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6802 INIT_LIST_HEAD(&ptype_base[i]);
6803
6804 INIT_LIST_HEAD(&offload_base);
6805
6806 if (register_pernet_subsys(&netdev_net_ops))
6807 goto out;
6808
6809 /*
6810 * Initialise the packet receive queues.
6811 */
6812
6813 for_each_possible_cpu(i) {
6814 struct softnet_data *sd = &per_cpu(softnet_data, i);
6815
6816 memset(sd, 0, sizeof(*sd));
6817 skb_queue_head_init(&sd->input_pkt_queue);
6818 skb_queue_head_init(&sd->process_queue);
6819 sd->completion_queue = NULL;
6820 INIT_LIST_HEAD(&sd->poll_list);
6821 sd->output_queue = NULL;
6822 sd->output_queue_tailp = &sd->output_queue;
6823 #ifdef CONFIG_RPS
6824 sd->csd.func = rps_trigger_softirq;
6825 sd->csd.info = sd;
6826 sd->csd.flags = 0;
6827 sd->cpu = i;
6828 #endif
6829
6830 sd->backlog.poll = process_backlog;
6831 sd->backlog.weight = weight_p;
6832 sd->backlog.gro_list = NULL;
6833 sd->backlog.gro_count = 0;
6834 }
6835
6836 dev_boot_phase = 0;
6837
6838 /* The loopback device is special if any other network devices
6839 * is present in a network namespace the loopback device must
6840 * be present. Since we now dynamically allocate and free the
6841 * loopback device ensure this invariant is maintained by
6842 * keeping the loopback device as the first device on the
6843 * list of network devices. Ensuring the loopback devices
6844 * is the first device that appears and the last network device
6845 * that disappears.
6846 */
6847 if (register_pernet_device(&loopback_net_ops))
6848 goto out;
6849
6850 if (register_pernet_device(&default_device_ops))
6851 goto out;
6852
6853 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6854 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6855
6856 hotcpu_notifier(dev_cpu_callback, 0);
6857 dst_init();
6858 dev_mcast_init();
6859 rc = 0;
6860 out:
6861 return rc;
6862 }
6863
6864 subsys_initcall(net_dev_init);
6865
6866 static int __init initialize_hashrnd(void)
6867 {
6868 get_random_bytes(&hashrnd, sizeof(hashrnd));
6869 return 0;
6870 }
6871
6872 late_initcall_sync(initialize_hashrnd);
6873
This page took 0.174102 seconds and 5 git commands to generate.