Merge remote-tracking branch 'mips/mips-for-linux-next'
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
163
164 /*
165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166 * semaphore.
167 *
168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
171 * dev_base_head list, and hold dev_base_lock for writing when they do the
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 else
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 struct packet_offload *elem;
478
479 spin_lock(&offload_lock);
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
485 spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
507 spin_lock(&offload_lock);
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 spin_unlock(&offload_lock);
519 }
520
521 /**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 __dev_remove_offload(po);
536
537 synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543 Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
568 strlcpy(s[i].name, name, IFNAMSIZ);
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 !strcmp(dev->name, s[i].name)) {
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
628 if (__dev_get_by_name(&init_net, name))
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635 }
636
637 /*
638 * Saves at boot time configured settings for any netdevice.
639 */
640 int __init netdev_boot_setup(char *str)
641 {
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668 Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
685 return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716 * __dev_get_by_name - find a device by its name
717 * @net: the applicable net namespace
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
731
732 hlist_for_each_entry(dev, head, name_hlist)
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
735
736 return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
757 hlist_for_each_entry_rcu(dev, head, name_hlist)
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766 * dev_get_by_name - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791 * __dev_get_by_index - find a device by its ifindex
792 * @net: the applicable net namespace
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
806
807 hlist_for_each_entry(dev, head, index_hlist)
808 if (dev->ifindex == ifindex)
809 return dev;
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
831 hlist_for_each_entry_rcu(dev, head, index_hlist)
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841 * dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 struct net_device *dev;
854
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
857 if (dev)
858 dev_hold(dev);
859 rcu_read_unlock();
860 return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 struct net_device *dev;
877 unsigned int seq;
878
879 retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896 }
897
898 /**
899 * dev_getbyhwaddr_rcu - find a device by its hardware address
900 * @net: the applicable net namespace
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
907 * The returned device has not had its ref count increased
908 * and the caller must therefore be careful about locking
909 *
910 */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
914 {
915 struct net_device *dev;
916
917 for_each_netdev_rcu(net, dev)
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
920 return dev;
921
922 return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 struct net_device *dev;
929
930 ASSERT_RTNL();
931 for_each_netdev(net, dev)
932 if (dev->type == type)
933 return dev;
934
935 return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 struct net_device *dev, *ret = NULL;
942
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956 * __dev_get_by_flags - find any device with given flags
957 * @net: the applicable net namespace
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
962 * is not found or a pointer to the device. Must be called inside
963 * rtnl_lock(), and result refcount is unchanged.
964 */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
968 {
969 struct net_device *dev, *ret;
970
971 ASSERT_RTNL();
972
973 ret = NULL;
974 for_each_netdev(net, dev) {
975 if (((dev->flags ^ if_flags) & mask) == 0) {
976 ret = dev;
977 break;
978 }
979 }
980 return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
991 */
992 bool dev_valid_name(const char *name)
993 {
994 if (*name == '\0')
995 return false;
996 if (strlen(name) >= IFNAMSIZ)
997 return false;
998 if (!strcmp(name, ".") || !strcmp(name, ".."))
999 return false;
1000
1001 while (*name) {
1002 if (*name == '/' || *name == ':' || isspace(*name))
1003 return false;
1004 name++;
1005 }
1006 return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1013 * @name: name format string
1014 * @buf: scratch buffer and result name string
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1023 */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 int i = 0;
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
1030 unsigned long *inuse;
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 if (!inuse)
1046 return -ENOMEM;
1047
1048 for_each_netdev(net, d) {
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
1055 snprintf(buf, IFNAMSIZ, name, i);
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
1066 if (!__dev_get_by_name(net, buf))
1067 return i;
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074 }
1075
1076 /**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
1108 {
1109 char buf[IFNAMSIZ];
1110 int ret;
1111
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121 {
1122 BUG_ON(!net);
1123
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1127 if (strchr(name, '%'))
1128 return dev_alloc_name_ns(net, dev, name);
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 unsigned char old_assign_type;
1148 char oldname[IFNAMSIZ];
1149 int err = 0;
1150 int ret;
1151 struct net *net;
1152
1153 ASSERT_RTNL();
1154 BUG_ON(!dev_net(dev));
1155
1156 net = dev_net(dev);
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
1160 write_seqcount_begin(&devnet_rename_seq);
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 write_seqcount_end(&devnet_rename_seq);
1164 return 0;
1165 }
1166
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169 err = dev_get_valid_name(net, dev, newname);
1170 if (err < 0) {
1171 write_seqcount_end(&devnet_rename_seq);
1172 return err;
1173 }
1174
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
1185 dev->name_assign_type = old_assign_type;
1186 write_seqcount_end(&devnet_rename_seq);
1187 return ret;
1188 }
1189
1190 write_seqcount_end(&devnet_rename_seq);
1191
1192 netdev_adjacent_rename_links(dev, oldname);
1193
1194 write_lock_bh(&dev_base_lock);
1195 hlist_del_rcu(&dev->name_hlist);
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 write_unlock_bh(&dev_base_lock);
1203
1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
1210 err = ret;
1211 write_seqcount_begin(&devnet_rename_seq);
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 memcpy(oldname, newname, IFNAMSIZ);
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
1216 goto rollback;
1217 } else {
1218 pr_err("%s: name change rollback failed: %d\n",
1219 dev->name, ret);
1220 }
1221 }
1222
1223 return err;
1224 }
1225
1226 /**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
1230 * @len: limit of bytes to copy from info
1231 *
1232 * Set ifalias for a device,
1233 */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 char *new_ifalias;
1237
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
1243 if (!len) {
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
1246 return 0;
1247 }
1248
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
1251 return -ENOMEM;
1252 dev->ifalias = new_ifalias;
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256 }
1257
1258
1259 /**
1260 * netdev_features_change - device changes features
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 if (dev->flags & IFF_UP) {
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 const struct net_device_ops *ops = dev->netdev_ops;
1313 int ret;
1314
1315 ASSERT_RTNL();
1316
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
1324 netpoll_poll_disable(dev);
1325
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1331 set_bit(__LINK_STATE_START, &dev->state);
1332
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
1335
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1338
1339 netpoll_poll_enable(dev);
1340
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1344 dev->flags |= IFF_UP;
1345 dev_set_rx_mode(dev);
1346 dev_activate(dev);
1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1348 }
1349
1350 return ret;
1351 }
1352
1353 /**
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1356 *
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1364 */
1365 int dev_open(struct net_device *dev)
1366 {
1367 int ret;
1368
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 struct net_device *dev;
1386
1387 ASSERT_RTNL();
1388 might_sleep();
1389
1390 list_for_each_entry(dev, head, close_list) {
1391 /* Temporarily disable netpoll until the interface is down */
1392 netpoll_poll_disable(dev);
1393
1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
1404 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 }
1406
1407 dev_deactivate_many(head);
1408
1409 list_for_each_entry(dev, head, close_list) {
1410 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
1422 dev->flags &= ~IFF_UP;
1423 netpoll_poll_enable(dev);
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 int retval;
1432 LIST_HEAD(single);
1433
1434 list_add(&dev->close_list, &single);
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
1437
1438 return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 struct net_device *dev, *tmp;
1444
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
1447 if (!(dev->flags & IFF_UP))
1448 list_del_init(&dev->close_list);
1449
1450 __dev_close_many(head);
1451
1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 if (unlink)
1456 list_del_init(&dev->close_list);
1457 }
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472 int dev_close(struct net_device *dev)
1473 {
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1476
1477 list_add(&dev->close_list, &single);
1478 dev_close_many(&single, true);
1479 list_del(&single);
1480 }
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
1498
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
1501
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512 {
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
1531 * to the new notifier to allow device to have a race free
1532 * view of the network device list.
1533 */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 struct net_device *dev;
1538 struct net_device *last;
1539 struct net *net;
1540 int err;
1541
1542 rtnl_lock();
1543 err = raw_notifier_chain_register(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1557
1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 }
1560 }
1561
1562 unlock:
1563 rtnl_unlock();
1564 return err;
1565
1566 rollback:
1567 last = dev;
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
1571 goto outroll;
1572
1573 if (dev->flags & IFF_UP) {
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 }
1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 }
1580 }
1581
1582 outroll:
1583 raw_notifier_chain_unregister(&netdev_chain, nb);
1584 goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1600 */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 struct net_device *dev;
1605 struct net *net;
1606 int err;
1607
1608 rtnl_lock();
1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 }
1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 }
1622 }
1623 unlock:
1624 rtnl_unlock();
1625 return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
1642 {
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
1651 * @dev: net_device pointer passed unmodified to notifier function
1652 *
1653 * Call all network notifier blocks. Parameters and return value
1654 * are as for raw_notifier_call_chain().
1655 */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670 static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676 static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686 static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692 static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700 * If net_disable_timestamp() is called from irq context, defer the
1701 * static_key_slow_dec() calls.
1702 */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
1713 static_key_slow_dec(&netstamp_needed);
1714 return;
1715 }
1716 #endif
1717 static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728 #endif
1729 static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 skb->tstamp.tv64 = 0;
1736 if (static_key_false(&netstamp_needed))
1737 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB) \
1741 if (static_key_false(&netstamp_needed)) { \
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
1777 skb->priority = 0;
1778 skb->protocol = eth_type_trans(skb, dev);
1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781 return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
1793 * NET_RX_DROP (packet was dropped, but freed)
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812 {
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
1821 struct net_device *orig_dev,
1822 __be16 type,
1823 struct list_head *ptype_list)
1824 {
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
1831 deliver_skb(skb, pt_prev, orig_dev);
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 if (!ptype->af_packet_priv || !skb->sk)
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848 }
1849
1850 /*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 struct packet_type *ptype;
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
1860 struct list_head *ptype_list = &ptype_all;
1861
1862 rcu_read_lock();
1863 again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
1870
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1876
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
1881
1882 net_timestamp_set(skb2);
1883
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1896 }
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1906 }
1907 out_unlock:
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
1959 {
1960 struct xps_map *map = NULL;
1961 int pos;
1962
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
1975 break;
1976 }
1977 }
1978
1979 return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 struct xps_dev_maps *dev_maps;
1985 int cpu, i;
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
2000 active = true;
2001 }
2002
2003 if (!active) {
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
2012 out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018 {
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
2053 {
2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 struct xps_map *map, *new_map;
2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
2073 return -ENOMEM;
2074 }
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
2089 for_each_possible_cpu(cpu) {
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
2105 #endif
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 }
2111
2112 }
2113
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116 /* Cleanup old maps */
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
2124
2125 kfree_rcu(dev_maps, rcu);
2126 }
2127
2128 dev_maps = new_dev_maps;
2129 active = true;
2130
2131 out_no_new_maps:
2132 /* update Tx queue numa node */
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155 out_no_maps:
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159 error:
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
2169 mutex_unlock(&xps_map_mutex);
2170
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 int rc;
2184
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
2187
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
2190 ASSERT_RTNL();
2191
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
2194 if (rc)
2195 return rc;
2196
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
2200 if (txq < dev->real_num_tx_queues) {
2201 qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 }
2206 }
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
2221 * negative error code. If called before registration, it always
2222 * succeeds.
2223 */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 int rc;
2227
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 struct softnet_data *sd;
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
2265 sd = this_cpu_ptr(&softnet_data);
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 unsigned long flags;
2339
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
2345 }
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 if (in_irq() || irqs_disabled())
2358 __dev_kfree_skb_irq(skb, reason);
2359 else
2360 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
2375 netif_tx_stop_all_queues(dev);
2376 }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
2390 netif_tx_wake_all_queues(dev);
2391 __netdev_watchdog_up(dev);
2392 }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402 {
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 static const netdev_features_t null_features;
2427 struct net_device *dev = skb->dev;
2428 const char *name = "";
2429
2430 if (!net_ratelimit())
2431 return;
2432
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
2441 name, dev ? &dev->features : &null_features,
2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 __wsum csum;
2454 int ret = 0, offset;
2455
2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
2462 }
2463
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
2473 offset = skb_checksum_start_offset(skb);
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520 {
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585 ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622 need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625 cant_help:
2626 return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 __be16 type = skb->protocol;
2633
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
2645 return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655 {
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
2664 __skb_pull(skb, vlan_depth);
2665
2666 rcu_read_lock();
2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 segs = ptype->callbacks.gso_segment(skb, features);
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
2675 __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677 return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683 */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704 */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707 {
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
2715 return ERR_PTR(err);
2716 }
2717
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 if (net_ratelimit()) {
2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 dump_stack();
2751 }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 int i;
2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
2769 return 1;
2770 }
2771 }
2772
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
2775
2776 if (!pdev)
2777 return 0;
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
2785 #endif
2786 return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796 {
2797 if (eth_p_mpls(type))
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806 {
2807 return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 netdev_features_t features)
2813 {
2814 int tmp;
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
2819
2820 if (skb->ip_summed != CHECKSUM_NONE &&
2821 !can_checksum_protocol(features, type)) {
2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 } else if (illegal_highdma(skb->dev, skb)) {
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833 {
2834 return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841 {
2842 return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848 {
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 struct net_device *dev = skb->dev;
2880 netdev_features_t features = dev->features;
2881
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
2884
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
2897
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
2901 else
2902 features &= dflt_features_check(skb, dev, features);
2903
2904 return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 struct netdev_queue *txq, bool more)
2910 {
2911 unsigned int len;
2912 int rc;
2913
2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 dev_queue_xmit_nit(skb, dev);
2916
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
2919 rc = netdev_start_xmit(skb, dev, txq, more);
2920 trace_net_dev_xmit(skb, rc, dev, len);
2921
2922 return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
2927 {
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
2930
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
2933
2934 skb->next = NULL;
2935 rc = xmit_one(skb, dev, txq, next != NULL);
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
2940
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
2945 }
2946 }
2947
2948 out:
2949 *ret = rc;
2950 return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
2955 {
2956 if (skb_vlan_tag_present(skb) &&
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
2959 return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 netdev_features_t features;
2965
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
2970
2971 if (netif_needs_gso(skb, features)) {
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
2975 if (IS_ERR(segs)) {
2976 goto out_kfree_skb;
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
2980 }
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
2985
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
2997 if (!(features & NETIF_F_CSUM_MASK) &&
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
3000 }
3001 }
3002
3003 return skb;
3004
3005 out_kfree_skb:
3006 kfree_skb(skb);
3007 out_null:
3008 atomic_long_inc(&dev->tx_dropped);
3009 return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 struct sk_buff *next, *head = NULL, *tail;
3015
3016 for (; skb != NULL; skb = next) {
3017 next = skb->next;
3018 skb->next = NULL;
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
3023 skb = validate_xmit_skb(skb, dev);
3024 if (!skb)
3025 continue;
3026
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
3035 }
3036 return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
3049 unsigned int hdr_len;
3050 u16 gso_segs = shinfo->gso_segs;
3051
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072 {
3073 spinlock_t *root_lock = qdisc_lock(q);
3074 struct sk_buff *to_free = NULL;
3075 bool contended;
3076 int rc;
3077
3078 qdisc_calculate_pkt_len(skb, q);
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
3082 * This permits qdisc->running owner to get the lock more
3083 * often and dequeue packets faster.
3084 */
3085 contended = qdisc_is_running(q);
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 __qdisc_drop(skb, &to_free);
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 qdisc_run_begin(q)) {
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
3100
3101 qdisc_bstats_update(q, skb);
3102
3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
3108 __qdisc_run(q);
3109 } else
3110 qdisc_run_end(q);
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
3122 }
3123 spin_unlock(root_lock);
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
3128 return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136 if (!skb->priority && skb->sk && map) {
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152 * dev_loopback_xmit - loop back @skb
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
3155 * @skb: buffer to transmit
3156 */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
3198 consume_skb(skb);
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238 #else
3239 return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
3255 sk_fullsock(sk) &&
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268 {
3269 int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295 * __dev_queue_xmit - transmit a buffer
3296 * @skb: buffer to transmit
3297 * @accel_priv: private data used for L2 forwarding offload
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 struct net_device *dev = skb->dev;
3323 struct netdev_queue *txq;
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
3327 skb_reset_mac_header(skb);
3328
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
3334 */
3335 rcu_read_lock_bh();
3336
3337 skb_update_prio(skb);
3338
3339 qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348 # endif
3349 #endif
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
3358 #ifdef CONFIG_NET_SWITCHDEV
3359 /* Don't forward if offload device already forwarded */
3360 if (skb->offload_fwd_mark &&
3361 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362 consume_skb(skb);
3363 rc = NET_XMIT_SUCCESS;
3364 goto out;
3365 }
3366 #endif
3367
3368 txq = netdev_pick_tx(dev, skb, accel_priv);
3369 q = rcu_dereference_bh(txq->qdisc);
3370
3371 trace_net_dev_queue(skb);
3372 if (q->enqueue) {
3373 rc = __dev_xmit_skb(skb, q, dev, txq);
3374 goto out;
3375 }
3376
3377 /* The device has no queue. Common case for software devices:
3378 loopback, all the sorts of tunnels...
3379
3380 Really, it is unlikely that netif_tx_lock protection is necessary
3381 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3382 counters.)
3383 However, it is possible, that they rely on protection
3384 made by us here.
3385
3386 Check this and shot the lock. It is not prone from deadlocks.
3387 Either shot noqueue qdisc, it is even simpler 8)
3388 */
3389 if (dev->flags & IFF_UP) {
3390 int cpu = smp_processor_id(); /* ok because BHs are off */
3391
3392 if (txq->xmit_lock_owner != cpu) {
3393 if (unlikely(__this_cpu_read(xmit_recursion) >
3394 XMIT_RECURSION_LIMIT))
3395 goto recursion_alert;
3396
3397 skb = validate_xmit_skb(skb, dev);
3398 if (!skb)
3399 goto out;
3400
3401 HARD_TX_LOCK(dev, txq, cpu);
3402
3403 if (!netif_xmit_stopped(txq)) {
3404 __this_cpu_inc(xmit_recursion);
3405 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3406 __this_cpu_dec(xmit_recursion);
3407 if (dev_xmit_complete(rc)) {
3408 HARD_TX_UNLOCK(dev, txq);
3409 goto out;
3410 }
3411 }
3412 HARD_TX_UNLOCK(dev, txq);
3413 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414 dev->name);
3415 } else {
3416 /* Recursion is detected! It is possible,
3417 * unfortunately
3418 */
3419 recursion_alert:
3420 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421 dev->name);
3422 }
3423 }
3424
3425 rc = -ENETDOWN;
3426 rcu_read_unlock_bh();
3427
3428 atomic_long_inc(&dev->tx_dropped);
3429 kfree_skb_list(skb);
3430 return rc;
3431 out:
3432 rcu_read_unlock_bh();
3433 return rc;
3434 }
3435
3436 int dev_queue_xmit(struct sk_buff *skb)
3437 {
3438 return __dev_queue_xmit(skb, NULL);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit);
3441
3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443 {
3444 return __dev_queue_xmit(skb, accel_priv);
3445 }
3446 EXPORT_SYMBOL(dev_queue_xmit_accel);
3447
3448
3449 /*=======================================================================
3450 Receiver routines
3451 =======================================================================*/
3452
3453 int netdev_max_backlog __read_mostly = 1000;
3454 EXPORT_SYMBOL(netdev_max_backlog);
3455
3456 int netdev_tstamp_prequeue __read_mostly = 1;
3457 int netdev_budget __read_mostly = 300;
3458 int weight_p __read_mostly = 64; /* old backlog weight */
3459
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3463 {
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467
3468 #ifdef CONFIG_RPS
3469
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478
3479 static struct rps_dev_flow *
3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481 struct rps_dev_flow *rflow, u16 next_cpu)
3482 {
3483 if (next_cpu < nr_cpu_ids) {
3484 #ifdef CONFIG_RFS_ACCEL
3485 struct netdev_rx_queue *rxqueue;
3486 struct rps_dev_flow_table *flow_table;
3487 struct rps_dev_flow *old_rflow;
3488 u32 flow_id;
3489 u16 rxq_index;
3490 int rc;
3491
3492 /* Should we steer this flow to a different hardware queue? */
3493 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494 !(dev->features & NETIF_F_NTUPLE))
3495 goto out;
3496 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497 if (rxq_index == skb_get_rx_queue(skb))
3498 goto out;
3499
3500 rxqueue = dev->_rx + rxq_index;
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 if (!flow_table)
3503 goto out;
3504 flow_id = skb_get_hash(skb) & flow_table->mask;
3505 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506 rxq_index, flow_id);
3507 if (rc < 0)
3508 goto out;
3509 old_rflow = rflow;
3510 rflow = &flow_table->flows[flow_id];
3511 rflow->filter = rc;
3512 if (old_rflow->filter == rflow->filter)
3513 old_rflow->filter = RPS_NO_FILTER;
3514 out:
3515 #endif
3516 rflow->last_qtail =
3517 per_cpu(softnet_data, next_cpu).input_queue_head;
3518 }
3519
3520 rflow->cpu = next_cpu;
3521 return rflow;
3522 }
3523
3524 /*
3525 * get_rps_cpu is called from netif_receive_skb and returns the target
3526 * CPU from the RPS map of the receiving queue for a given skb.
3527 * rcu_read_lock must be held on entry.
3528 */
3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530 struct rps_dev_flow **rflowp)
3531 {
3532 const struct rps_sock_flow_table *sock_flow_table;
3533 struct netdev_rx_queue *rxqueue = dev->_rx;
3534 struct rps_dev_flow_table *flow_table;
3535 struct rps_map *map;
3536 int cpu = -1;
3537 u32 tcpu;
3538 u32 hash;
3539
3540 if (skb_rx_queue_recorded(skb)) {
3541 u16 index = skb_get_rx_queue(skb);
3542
3543 if (unlikely(index >= dev->real_num_rx_queues)) {
3544 WARN_ONCE(dev->real_num_rx_queues > 1,
3545 "%s received packet on queue %u, but number "
3546 "of RX queues is %u\n",
3547 dev->name, index, dev->real_num_rx_queues);
3548 goto done;
3549 }
3550 rxqueue += index;
3551 }
3552
3553 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554
3555 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3556 map = rcu_dereference(rxqueue->rps_map);
3557 if (!flow_table && !map)
3558 goto done;
3559
3560 skb_reset_network_header(skb);
3561 hash = skb_get_hash(skb);
3562 if (!hash)
3563 goto done;
3564
3565 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566 if (flow_table && sock_flow_table) {
3567 struct rps_dev_flow *rflow;
3568 u32 next_cpu;
3569 u32 ident;
3570
3571 /* First check into global flow table if there is a match */
3572 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573 if ((ident ^ hash) & ~rps_cpu_mask)
3574 goto try_rps;
3575
3576 next_cpu = ident & rps_cpu_mask;
3577
3578 /* OK, now we know there is a match,
3579 * we can look at the local (per receive queue) flow table
3580 */
3581 rflow = &flow_table->flows[hash & flow_table->mask];
3582 tcpu = rflow->cpu;
3583
3584 /*
3585 * If the desired CPU (where last recvmsg was done) is
3586 * different from current CPU (one in the rx-queue flow
3587 * table entry), switch if one of the following holds:
3588 * - Current CPU is unset (>= nr_cpu_ids).
3589 * - Current CPU is offline.
3590 * - The current CPU's queue tail has advanced beyond the
3591 * last packet that was enqueued using this table entry.
3592 * This guarantees that all previous packets for the flow
3593 * have been dequeued, thus preserving in order delivery.
3594 */
3595 if (unlikely(tcpu != next_cpu) &&
3596 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3597 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3598 rflow->last_qtail)) >= 0)) {
3599 tcpu = next_cpu;
3600 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3601 }
3602
3603 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3604 *rflowp = rflow;
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610 try_rps:
3611
3612 if (map) {
3613 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3614 if (cpu_online(tcpu)) {
3615 cpu = tcpu;
3616 goto done;
3617 }
3618 }
3619
3620 done:
3621 return cpu;
3622 }
3623
3624 #ifdef CONFIG_RFS_ACCEL
3625
3626 /**
3627 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628 * @dev: Device on which the filter was set
3629 * @rxq_index: RX queue index
3630 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632 *
3633 * Drivers that implement ndo_rx_flow_steer() should periodically call
3634 * this function for each installed filter and remove the filters for
3635 * which it returns %true.
3636 */
3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638 u32 flow_id, u16 filter_id)
3639 {
3640 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641 struct rps_dev_flow_table *flow_table;
3642 struct rps_dev_flow *rflow;
3643 bool expire = true;
3644 unsigned int cpu;
3645
3646 rcu_read_lock();
3647 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648 if (flow_table && flow_id <= flow_table->mask) {
3649 rflow = &flow_table->flows[flow_id];
3650 cpu = ACCESS_ONCE(rflow->cpu);
3651 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3652 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653 rflow->last_qtail) <
3654 (int)(10 * flow_table->mask)))
3655 expire = false;
3656 }
3657 rcu_read_unlock();
3658 return expire;
3659 }
3660 EXPORT_SYMBOL(rps_may_expire_flow);
3661
3662 #endif /* CONFIG_RFS_ACCEL */
3663
3664 /* Called from hardirq (IPI) context */
3665 static void rps_trigger_softirq(void *data)
3666 {
3667 struct softnet_data *sd = data;
3668
3669 ____napi_schedule(sd, &sd->backlog);
3670 sd->received_rps++;
3671 }
3672
3673 #endif /* CONFIG_RPS */
3674
3675 /*
3676 * Check if this softnet_data structure is another cpu one
3677 * If yes, queue it to our IPI list and return 1
3678 * If no, return 0
3679 */
3680 static int rps_ipi_queued(struct softnet_data *sd)
3681 {
3682 #ifdef CONFIG_RPS
3683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3684
3685 if (sd != mysd) {
3686 sd->rps_ipi_next = mysd->rps_ipi_list;
3687 mysd->rps_ipi_list = sd;
3688
3689 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690 return 1;
3691 }
3692 #endif /* CONFIG_RPS */
3693 return 0;
3694 }
3695
3696 #ifdef CONFIG_NET_FLOW_LIMIT
3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698 #endif
3699
3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701 {
3702 #ifdef CONFIG_NET_FLOW_LIMIT
3703 struct sd_flow_limit *fl;
3704 struct softnet_data *sd;
3705 unsigned int old_flow, new_flow;
3706
3707 if (qlen < (netdev_max_backlog >> 1))
3708 return false;
3709
3710 sd = this_cpu_ptr(&softnet_data);
3711
3712 rcu_read_lock();
3713 fl = rcu_dereference(sd->flow_limit);
3714 if (fl) {
3715 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3716 old_flow = fl->history[fl->history_head];
3717 fl->history[fl->history_head] = new_flow;
3718
3719 fl->history_head++;
3720 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721
3722 if (likely(fl->buckets[old_flow]))
3723 fl->buckets[old_flow]--;
3724
3725 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726 fl->count++;
3727 rcu_read_unlock();
3728 return true;
3729 }
3730 }
3731 rcu_read_unlock();
3732 #endif
3733 return false;
3734 }
3735
3736 /*
3737 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738 * queue (may be a remote CPU queue).
3739 */
3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741 unsigned int *qtail)
3742 {
3743 struct softnet_data *sd;
3744 unsigned long flags;
3745 unsigned int qlen;
3746
3747 sd = &per_cpu(softnet_data, cpu);
3748
3749 local_irq_save(flags);
3750
3751 rps_lock(sd);
3752 if (!netif_running(skb->dev))
3753 goto drop;
3754 qlen = skb_queue_len(&sd->input_pkt_queue);
3755 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3756 if (qlen) {
3757 enqueue:
3758 __skb_queue_tail(&sd->input_pkt_queue, skb);
3759 input_queue_tail_incr_save(sd, qtail);
3760 rps_unlock(sd);
3761 local_irq_restore(flags);
3762 return NET_RX_SUCCESS;
3763 }
3764
3765 /* Schedule NAPI for backlog device
3766 * We can use non atomic operation since we own the queue lock
3767 */
3768 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3769 if (!rps_ipi_queued(sd))
3770 ____napi_schedule(sd, &sd->backlog);
3771 }
3772 goto enqueue;
3773 }
3774
3775 drop:
3776 sd->dropped++;
3777 rps_unlock(sd);
3778
3779 local_irq_restore(flags);
3780
3781 atomic_long_inc(&skb->dev->rx_dropped);
3782 kfree_skb(skb);
3783 return NET_RX_DROP;
3784 }
3785
3786 static int netif_rx_internal(struct sk_buff *skb)
3787 {
3788 int ret;
3789
3790 net_timestamp_check(netdev_tstamp_prequeue, skb);
3791
3792 trace_netif_rx(skb);
3793 #ifdef CONFIG_RPS
3794 if (static_key_false(&rps_needed)) {
3795 struct rps_dev_flow voidflow, *rflow = &voidflow;
3796 int cpu;
3797
3798 preempt_disable();
3799 rcu_read_lock();
3800
3801 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3802 if (cpu < 0)
3803 cpu = smp_processor_id();
3804
3805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806
3807 rcu_read_unlock();
3808 preempt_enable();
3809 } else
3810 #endif
3811 {
3812 unsigned int qtail;
3813 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814 put_cpu();
3815 }
3816 return ret;
3817 }
3818
3819 /**
3820 * netif_rx - post buffer to the network code
3821 * @skb: buffer to post
3822 *
3823 * This function receives a packet from a device driver and queues it for
3824 * the upper (protocol) levels to process. It always succeeds. The buffer
3825 * may be dropped during processing for congestion control or by the
3826 * protocol layers.
3827 *
3828 * return values:
3829 * NET_RX_SUCCESS (no congestion)
3830 * NET_RX_DROP (packet was dropped)
3831 *
3832 */
3833
3834 int netif_rx(struct sk_buff *skb)
3835 {
3836 trace_netif_rx_entry(skb);
3837
3838 return netif_rx_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_rx);
3841
3842 int netif_rx_ni(struct sk_buff *skb)
3843 {
3844 int err;
3845
3846 trace_netif_rx_ni_entry(skb);
3847
3848 preempt_disable();
3849 err = netif_rx_internal(skb);
3850 if (local_softirq_pending())
3851 do_softirq();
3852 preempt_enable();
3853
3854 return err;
3855 }
3856 EXPORT_SYMBOL(netif_rx_ni);
3857
3858 static void net_tx_action(struct softirq_action *h)
3859 {
3860 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3861
3862 if (sd->completion_queue) {
3863 struct sk_buff *clist;
3864
3865 local_irq_disable();
3866 clist = sd->completion_queue;
3867 sd->completion_queue = NULL;
3868 local_irq_enable();
3869
3870 while (clist) {
3871 struct sk_buff *skb = clist;
3872 clist = clist->next;
3873
3874 WARN_ON(atomic_read(&skb->users));
3875 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876 trace_consume_skb(skb);
3877 else
3878 trace_kfree_skb(skb, net_tx_action);
3879
3880 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881 __kfree_skb(skb);
3882 else
3883 __kfree_skb_defer(skb);
3884 }
3885
3886 __kfree_skb_flush();
3887 }
3888
3889 if (sd->output_queue) {
3890 struct Qdisc *head;
3891
3892 local_irq_disable();
3893 head = sd->output_queue;
3894 sd->output_queue = NULL;
3895 sd->output_queue_tailp = &sd->output_queue;
3896 local_irq_enable();
3897
3898 while (head) {
3899 struct Qdisc *q = head;
3900 spinlock_t *root_lock;
3901
3902 head = head->next_sched;
3903
3904 root_lock = qdisc_lock(q);
3905 spin_lock(root_lock);
3906 /* We need to make sure head->next_sched is read
3907 * before clearing __QDISC_STATE_SCHED
3908 */
3909 smp_mb__before_atomic();
3910 clear_bit(__QDISC_STATE_SCHED, &q->state);
3911 qdisc_run(q);
3912 spin_unlock(root_lock);
3913 }
3914 }
3915 }
3916
3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3919 /* This hook is defined here for ATM LANE */
3920 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921 unsigned char *addr) __read_mostly;
3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3923 #endif
3924
3925 static inline struct sk_buff *
3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927 struct net_device *orig_dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931 struct tcf_result cl_res;
3932
3933 /* If there's at least one ingress present somewhere (so
3934 * we get here via enabled static key), remaining devices
3935 * that are not configured with an ingress qdisc will bail
3936 * out here.
3937 */
3938 if (!cl)
3939 return skb;
3940 if (*pt_prev) {
3941 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3942 *pt_prev = NULL;
3943 }
3944
3945 qdisc_skb_cb(skb)->pkt_len = skb->len;
3946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3947 qdisc_bstats_cpu_update(cl->q, skb);
3948
3949 switch (tc_classify(skb, cl, &cl_res, false)) {
3950 case TC_ACT_OK:
3951 case TC_ACT_RECLASSIFY:
3952 skb->tc_index = TC_H_MIN(cl_res.classid);
3953 break;
3954 case TC_ACT_SHOT:
3955 qdisc_qstats_cpu_drop(cl->q);
3956 kfree_skb(skb);
3957 return NULL;
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
3960 consume_skb(skb);
3961 return NULL;
3962 case TC_ACT_REDIRECT:
3963 /* skb_mac_header check was done by cls/act_bpf, so
3964 * we can safely push the L2 header back before
3965 * redirecting to another netdev
3966 */
3967 __skb_push(skb, skb->mac_len);
3968 skb_do_redirect(skb);
3969 return NULL;
3970 default:
3971 break;
3972 }
3973 #endif /* CONFIG_NET_CLS_ACT */
3974 return skb;
3975 }
3976
3977 /**
3978 * netdev_is_rx_handler_busy - check if receive handler is registered
3979 * @dev: device to check
3980 *
3981 * Check if a receive handler is already registered for a given device.
3982 * Return true if there one.
3983 *
3984 * The caller must hold the rtnl_mutex.
3985 */
3986 bool netdev_is_rx_handler_busy(struct net_device *dev)
3987 {
3988 ASSERT_RTNL();
3989 return dev && rtnl_dereference(dev->rx_handler);
3990 }
3991 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3992
3993 /**
3994 * netdev_rx_handler_register - register receive handler
3995 * @dev: device to register a handler for
3996 * @rx_handler: receive handler to register
3997 * @rx_handler_data: data pointer that is used by rx handler
3998 *
3999 * Register a receive handler for a device. This handler will then be
4000 * called from __netif_receive_skb. A negative errno code is returned
4001 * on a failure.
4002 *
4003 * The caller must hold the rtnl_mutex.
4004 *
4005 * For a general description of rx_handler, see enum rx_handler_result.
4006 */
4007 int netdev_rx_handler_register(struct net_device *dev,
4008 rx_handler_func_t *rx_handler,
4009 void *rx_handler_data)
4010 {
4011 ASSERT_RTNL();
4012
4013 if (dev->rx_handler)
4014 return -EBUSY;
4015
4016 /* Note: rx_handler_data must be set before rx_handler */
4017 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4018 rcu_assign_pointer(dev->rx_handler, rx_handler);
4019
4020 return 0;
4021 }
4022 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4023
4024 /**
4025 * netdev_rx_handler_unregister - unregister receive handler
4026 * @dev: device to unregister a handler from
4027 *
4028 * Unregister a receive handler from a device.
4029 *
4030 * The caller must hold the rtnl_mutex.
4031 */
4032 void netdev_rx_handler_unregister(struct net_device *dev)
4033 {
4034
4035 ASSERT_RTNL();
4036 RCU_INIT_POINTER(dev->rx_handler, NULL);
4037 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038 * section has a guarantee to see a non NULL rx_handler_data
4039 * as well.
4040 */
4041 synchronize_net();
4042 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4043 }
4044 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4045
4046 /*
4047 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048 * the special handling of PFMEMALLOC skbs.
4049 */
4050 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4051 {
4052 switch (skb->protocol) {
4053 case htons(ETH_P_ARP):
4054 case htons(ETH_P_IP):
4055 case htons(ETH_P_IPV6):
4056 case htons(ETH_P_8021Q):
4057 case htons(ETH_P_8021AD):
4058 return true;
4059 default:
4060 return false;
4061 }
4062 }
4063
4064 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065 int *ret, struct net_device *orig_dev)
4066 {
4067 #ifdef CONFIG_NETFILTER_INGRESS
4068 if (nf_hook_ingress_active(skb)) {
4069 if (*pt_prev) {
4070 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4071 *pt_prev = NULL;
4072 }
4073
4074 return nf_hook_ingress(skb);
4075 }
4076 #endif /* CONFIG_NETFILTER_INGRESS */
4077 return 0;
4078 }
4079
4080 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4081 {
4082 struct packet_type *ptype, *pt_prev;
4083 rx_handler_func_t *rx_handler;
4084 struct net_device *orig_dev;
4085 bool deliver_exact = false;
4086 int ret = NET_RX_DROP;
4087 __be16 type;
4088
4089 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4090
4091 trace_netif_receive_skb(skb);
4092
4093 orig_dev = skb->dev;
4094
4095 skb_reset_network_header(skb);
4096 if (!skb_transport_header_was_set(skb))
4097 skb_reset_transport_header(skb);
4098 skb_reset_mac_len(skb);
4099
4100 pt_prev = NULL;
4101
4102 another_round:
4103 skb->skb_iif = skb->dev->ifindex;
4104
4105 __this_cpu_inc(softnet_data.processed);
4106
4107 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4108 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4109 skb = skb_vlan_untag(skb);
4110 if (unlikely(!skb))
4111 goto out;
4112 }
4113
4114 #ifdef CONFIG_NET_CLS_ACT
4115 if (skb->tc_verd & TC_NCLS) {
4116 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4117 goto ncls;
4118 }
4119 #endif
4120
4121 if (pfmemalloc)
4122 goto skip_taps;
4123
4124 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4125 if (pt_prev)
4126 ret = deliver_skb(skb, pt_prev, orig_dev);
4127 pt_prev = ptype;
4128 }
4129
4130 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4131 if (pt_prev)
4132 ret = deliver_skb(skb, pt_prev, orig_dev);
4133 pt_prev = ptype;
4134 }
4135
4136 skip_taps:
4137 #ifdef CONFIG_NET_INGRESS
4138 if (static_key_false(&ingress_needed)) {
4139 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4140 if (!skb)
4141 goto out;
4142
4143 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4144 goto out;
4145 }
4146 #endif
4147 #ifdef CONFIG_NET_CLS_ACT
4148 skb->tc_verd = 0;
4149 ncls:
4150 #endif
4151 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152 goto drop;
4153
4154 if (skb_vlan_tag_present(skb)) {
4155 if (pt_prev) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4157 pt_prev = NULL;
4158 }
4159 if (vlan_do_receive(&skb))
4160 goto another_round;
4161 else if (unlikely(!skb))
4162 goto out;
4163 }
4164
4165 rx_handler = rcu_dereference(skb->dev->rx_handler);
4166 if (rx_handler) {
4167 if (pt_prev) {
4168 ret = deliver_skb(skb, pt_prev, orig_dev);
4169 pt_prev = NULL;
4170 }
4171 switch (rx_handler(&skb)) {
4172 case RX_HANDLER_CONSUMED:
4173 ret = NET_RX_SUCCESS;
4174 goto out;
4175 case RX_HANDLER_ANOTHER:
4176 goto another_round;
4177 case RX_HANDLER_EXACT:
4178 deliver_exact = true;
4179 case RX_HANDLER_PASS:
4180 break;
4181 default:
4182 BUG();
4183 }
4184 }
4185
4186 if (unlikely(skb_vlan_tag_present(skb))) {
4187 if (skb_vlan_tag_get_id(skb))
4188 skb->pkt_type = PACKET_OTHERHOST;
4189 /* Note: we might in the future use prio bits
4190 * and set skb->priority like in vlan_do_receive()
4191 * For the time being, just ignore Priority Code Point
4192 */
4193 skb->vlan_tci = 0;
4194 }
4195
4196 type = skb->protocol;
4197
4198 /* deliver only exact match when indicated */
4199 if (likely(!deliver_exact)) {
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &ptype_base[ntohs(type) &
4202 PTYPE_HASH_MASK]);
4203 }
4204
4205 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206 &orig_dev->ptype_specific);
4207
4208 if (unlikely(skb->dev != orig_dev)) {
4209 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210 &skb->dev->ptype_specific);
4211 }
4212
4213 if (pt_prev) {
4214 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215 goto drop;
4216 else
4217 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218 } else {
4219 drop:
4220 if (!deliver_exact)
4221 atomic_long_inc(&skb->dev->rx_dropped);
4222 else
4223 atomic_long_inc(&skb->dev->rx_nohandler);
4224 kfree_skb(skb);
4225 /* Jamal, now you will not able to escape explaining
4226 * me how you were going to use this. :-)
4227 */
4228 ret = NET_RX_DROP;
4229 }
4230
4231 out:
4232 return ret;
4233 }
4234
4235 static int __netif_receive_skb(struct sk_buff *skb)
4236 {
4237 int ret;
4238
4239 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240 unsigned long pflags = current->flags;
4241
4242 /*
4243 * PFMEMALLOC skbs are special, they should
4244 * - be delivered to SOCK_MEMALLOC sockets only
4245 * - stay away from userspace
4246 * - have bounded memory usage
4247 *
4248 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249 * context down to all allocation sites.
4250 */
4251 current->flags |= PF_MEMALLOC;
4252 ret = __netif_receive_skb_core(skb, true);
4253 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4254 } else
4255 ret = __netif_receive_skb_core(skb, false);
4256
4257 return ret;
4258 }
4259
4260 static int netif_receive_skb_internal(struct sk_buff *skb)
4261 {
4262 int ret;
4263
4264 net_timestamp_check(netdev_tstamp_prequeue, skb);
4265
4266 if (skb_defer_rx_timestamp(skb))
4267 return NET_RX_SUCCESS;
4268
4269 rcu_read_lock();
4270
4271 #ifdef CONFIG_RPS
4272 if (static_key_false(&rps_needed)) {
4273 struct rps_dev_flow voidflow, *rflow = &voidflow;
4274 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4275
4276 if (cpu >= 0) {
4277 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4278 rcu_read_unlock();
4279 return ret;
4280 }
4281 }
4282 #endif
4283 ret = __netif_receive_skb(skb);
4284 rcu_read_unlock();
4285 return ret;
4286 }
4287
4288 /**
4289 * netif_receive_skb - process receive buffer from network
4290 * @skb: buffer to process
4291 *
4292 * netif_receive_skb() is the main receive data processing function.
4293 * It always succeeds. The buffer may be dropped during processing
4294 * for congestion control or by the protocol layers.
4295 *
4296 * This function may only be called from softirq context and interrupts
4297 * should be enabled.
4298 *
4299 * Return values (usually ignored):
4300 * NET_RX_SUCCESS: no congestion
4301 * NET_RX_DROP: packet was dropped
4302 */
4303 int netif_receive_skb(struct sk_buff *skb)
4304 {
4305 trace_netif_receive_skb_entry(skb);
4306
4307 return netif_receive_skb_internal(skb);
4308 }
4309 EXPORT_SYMBOL(netif_receive_skb);
4310
4311 /* Network device is going away, flush any packets still pending
4312 * Called with irqs disabled.
4313 */
4314 static void flush_backlog(void *arg)
4315 {
4316 struct net_device *dev = arg;
4317 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4318 struct sk_buff *skb, *tmp;
4319
4320 rps_lock(sd);
4321 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4322 if (skb->dev == dev) {
4323 __skb_unlink(skb, &sd->input_pkt_queue);
4324 kfree_skb(skb);
4325 input_queue_head_incr(sd);
4326 }
4327 }
4328 rps_unlock(sd);
4329
4330 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4331 if (skb->dev == dev) {
4332 __skb_unlink(skb, &sd->process_queue);
4333 kfree_skb(skb);
4334 input_queue_head_incr(sd);
4335 }
4336 }
4337 }
4338
4339 static int napi_gro_complete(struct sk_buff *skb)
4340 {
4341 struct packet_offload *ptype;
4342 __be16 type = skb->protocol;
4343 struct list_head *head = &offload_base;
4344 int err = -ENOENT;
4345
4346 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4347
4348 if (NAPI_GRO_CB(skb)->count == 1) {
4349 skb_shinfo(skb)->gso_size = 0;
4350 goto out;
4351 }
4352
4353 rcu_read_lock();
4354 list_for_each_entry_rcu(ptype, head, list) {
4355 if (ptype->type != type || !ptype->callbacks.gro_complete)
4356 continue;
4357
4358 err = ptype->callbacks.gro_complete(skb, 0);
4359 break;
4360 }
4361 rcu_read_unlock();
4362
4363 if (err) {
4364 WARN_ON(&ptype->list == head);
4365 kfree_skb(skb);
4366 return NET_RX_SUCCESS;
4367 }
4368
4369 out:
4370 return netif_receive_skb_internal(skb);
4371 }
4372
4373 /* napi->gro_list contains packets ordered by age.
4374 * youngest packets at the head of it.
4375 * Complete skbs in reverse order to reduce latencies.
4376 */
4377 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4378 {
4379 struct sk_buff *skb, *prev = NULL;
4380
4381 /* scan list and build reverse chain */
4382 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4383 skb->prev = prev;
4384 prev = skb;
4385 }
4386
4387 for (skb = prev; skb; skb = prev) {
4388 skb->next = NULL;
4389
4390 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4391 return;
4392
4393 prev = skb->prev;
4394 napi_gro_complete(skb);
4395 napi->gro_count--;
4396 }
4397
4398 napi->gro_list = NULL;
4399 }
4400 EXPORT_SYMBOL(napi_gro_flush);
4401
4402 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4403 {
4404 struct sk_buff *p;
4405 unsigned int maclen = skb->dev->hard_header_len;
4406 u32 hash = skb_get_hash_raw(skb);
4407
4408 for (p = napi->gro_list; p; p = p->next) {
4409 unsigned long diffs;
4410
4411 NAPI_GRO_CB(p)->flush = 0;
4412
4413 if (hash != skb_get_hash_raw(p)) {
4414 NAPI_GRO_CB(p)->same_flow = 0;
4415 continue;
4416 }
4417
4418 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4419 diffs |= p->vlan_tci ^ skb->vlan_tci;
4420 diffs |= skb_metadata_dst_cmp(p, skb);
4421 if (maclen == ETH_HLEN)
4422 diffs |= compare_ether_header(skb_mac_header(p),
4423 skb_mac_header(skb));
4424 else if (!diffs)
4425 diffs = memcmp(skb_mac_header(p),
4426 skb_mac_header(skb),
4427 maclen);
4428 NAPI_GRO_CB(p)->same_flow = !diffs;
4429 }
4430 }
4431
4432 static void skb_gro_reset_offset(struct sk_buff *skb)
4433 {
4434 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4435 const skb_frag_t *frag0 = &pinfo->frags[0];
4436
4437 NAPI_GRO_CB(skb)->data_offset = 0;
4438 NAPI_GRO_CB(skb)->frag0 = NULL;
4439 NAPI_GRO_CB(skb)->frag0_len = 0;
4440
4441 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4442 pinfo->nr_frags &&
4443 !PageHighMem(skb_frag_page(frag0))) {
4444 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4445 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4446 }
4447 }
4448
4449 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4450 {
4451 struct skb_shared_info *pinfo = skb_shinfo(skb);
4452
4453 BUG_ON(skb->end - skb->tail < grow);
4454
4455 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4456
4457 skb->data_len -= grow;
4458 skb->tail += grow;
4459
4460 pinfo->frags[0].page_offset += grow;
4461 skb_frag_size_sub(&pinfo->frags[0], grow);
4462
4463 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4464 skb_frag_unref(skb, 0);
4465 memmove(pinfo->frags, pinfo->frags + 1,
4466 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4467 }
4468 }
4469
4470 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4471 {
4472 struct sk_buff **pp = NULL;
4473 struct packet_offload *ptype;
4474 __be16 type = skb->protocol;
4475 struct list_head *head = &offload_base;
4476 int same_flow;
4477 enum gro_result ret;
4478 int grow;
4479
4480 if (!(skb->dev->features & NETIF_F_GRO))
4481 goto normal;
4482
4483 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4484 goto normal;
4485
4486 gro_list_prepare(napi, skb);
4487
4488 rcu_read_lock();
4489 list_for_each_entry_rcu(ptype, head, list) {
4490 if (ptype->type != type || !ptype->callbacks.gro_receive)
4491 continue;
4492
4493 skb_set_network_header(skb, skb_gro_offset(skb));
4494 skb_reset_mac_len(skb);
4495 NAPI_GRO_CB(skb)->same_flow = 0;
4496 NAPI_GRO_CB(skb)->flush = 0;
4497 NAPI_GRO_CB(skb)->free = 0;
4498 NAPI_GRO_CB(skb)->encap_mark = 0;
4499 NAPI_GRO_CB(skb)->is_fou = 0;
4500 NAPI_GRO_CB(skb)->is_atomic = 1;
4501 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4502
4503 /* Setup for GRO checksum validation */
4504 switch (skb->ip_summed) {
4505 case CHECKSUM_COMPLETE:
4506 NAPI_GRO_CB(skb)->csum = skb->csum;
4507 NAPI_GRO_CB(skb)->csum_valid = 1;
4508 NAPI_GRO_CB(skb)->csum_cnt = 0;
4509 break;
4510 case CHECKSUM_UNNECESSARY:
4511 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512 NAPI_GRO_CB(skb)->csum_valid = 0;
4513 break;
4514 default:
4515 NAPI_GRO_CB(skb)->csum_cnt = 0;
4516 NAPI_GRO_CB(skb)->csum_valid = 0;
4517 }
4518
4519 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4520 break;
4521 }
4522 rcu_read_unlock();
4523
4524 if (&ptype->list == head)
4525 goto normal;
4526
4527 same_flow = NAPI_GRO_CB(skb)->same_flow;
4528 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4529
4530 if (pp) {
4531 struct sk_buff *nskb = *pp;
4532
4533 *pp = nskb->next;
4534 nskb->next = NULL;
4535 napi_gro_complete(nskb);
4536 napi->gro_count--;
4537 }
4538
4539 if (same_flow)
4540 goto ok;
4541
4542 if (NAPI_GRO_CB(skb)->flush)
4543 goto normal;
4544
4545 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546 struct sk_buff *nskb = napi->gro_list;
4547
4548 /* locate the end of the list to select the 'oldest' flow */
4549 while (nskb->next) {
4550 pp = &nskb->next;
4551 nskb = *pp;
4552 }
4553 *pp = NULL;
4554 nskb->next = NULL;
4555 napi_gro_complete(nskb);
4556 } else {
4557 napi->gro_count++;
4558 }
4559 NAPI_GRO_CB(skb)->count = 1;
4560 NAPI_GRO_CB(skb)->age = jiffies;
4561 NAPI_GRO_CB(skb)->last = skb;
4562 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4563 skb->next = napi->gro_list;
4564 napi->gro_list = skb;
4565 ret = GRO_HELD;
4566
4567 pull:
4568 grow = skb_gro_offset(skb) - skb_headlen(skb);
4569 if (grow > 0)
4570 gro_pull_from_frag0(skb, grow);
4571 ok:
4572 return ret;
4573
4574 normal:
4575 ret = GRO_NORMAL;
4576 goto pull;
4577 }
4578
4579 struct packet_offload *gro_find_receive_by_type(__be16 type)
4580 {
4581 struct list_head *offload_head = &offload_base;
4582 struct packet_offload *ptype;
4583
4584 list_for_each_entry_rcu(ptype, offload_head, list) {
4585 if (ptype->type != type || !ptype->callbacks.gro_receive)
4586 continue;
4587 return ptype;
4588 }
4589 return NULL;
4590 }
4591 EXPORT_SYMBOL(gro_find_receive_by_type);
4592
4593 struct packet_offload *gro_find_complete_by_type(__be16 type)
4594 {
4595 struct list_head *offload_head = &offload_base;
4596 struct packet_offload *ptype;
4597
4598 list_for_each_entry_rcu(ptype, offload_head, list) {
4599 if (ptype->type != type || !ptype->callbacks.gro_complete)
4600 continue;
4601 return ptype;
4602 }
4603 return NULL;
4604 }
4605 EXPORT_SYMBOL(gro_find_complete_by_type);
4606
4607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4608 {
4609 switch (ret) {
4610 case GRO_NORMAL:
4611 if (netif_receive_skb_internal(skb))
4612 ret = GRO_DROP;
4613 break;
4614
4615 case GRO_DROP:
4616 kfree_skb(skb);
4617 break;
4618
4619 case GRO_MERGED_FREE:
4620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4621 skb_dst_drop(skb);
4622 kmem_cache_free(skbuff_head_cache, skb);
4623 } else {
4624 __kfree_skb(skb);
4625 }
4626 break;
4627
4628 case GRO_HELD:
4629 case GRO_MERGED:
4630 break;
4631 }
4632
4633 return ret;
4634 }
4635
4636 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4637 {
4638 skb_mark_napi_id(skb, napi);
4639 trace_napi_gro_receive_entry(skb);
4640
4641 skb_gro_reset_offset(skb);
4642
4643 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4644 }
4645 EXPORT_SYMBOL(napi_gro_receive);
4646
4647 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4648 {
4649 if (unlikely(skb->pfmemalloc)) {
4650 consume_skb(skb);
4651 return;
4652 }
4653 __skb_pull(skb, skb_headlen(skb));
4654 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4656 skb->vlan_tci = 0;
4657 skb->dev = napi->dev;
4658 skb->skb_iif = 0;
4659 skb->encapsulation = 0;
4660 skb_shinfo(skb)->gso_type = 0;
4661 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4662
4663 napi->skb = skb;
4664 }
4665
4666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4667 {
4668 struct sk_buff *skb = napi->skb;
4669
4670 if (!skb) {
4671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4672 if (skb) {
4673 napi->skb = skb;
4674 skb_mark_napi_id(skb, napi);
4675 }
4676 }
4677 return skb;
4678 }
4679 EXPORT_SYMBOL(napi_get_frags);
4680
4681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682 struct sk_buff *skb,
4683 gro_result_t ret)
4684 {
4685 switch (ret) {
4686 case GRO_NORMAL:
4687 case GRO_HELD:
4688 __skb_push(skb, ETH_HLEN);
4689 skb->protocol = eth_type_trans(skb, skb->dev);
4690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4691 ret = GRO_DROP;
4692 break;
4693
4694 case GRO_DROP:
4695 case GRO_MERGED_FREE:
4696 napi_reuse_skb(napi, skb);
4697 break;
4698
4699 case GRO_MERGED:
4700 break;
4701 }
4702
4703 return ret;
4704 }
4705
4706 /* Upper GRO stack assumes network header starts at gro_offset=0
4707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708 * We copy ethernet header into skb->data to have a common layout.
4709 */
4710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4711 {
4712 struct sk_buff *skb = napi->skb;
4713 const struct ethhdr *eth;
4714 unsigned int hlen = sizeof(*eth);
4715
4716 napi->skb = NULL;
4717
4718 skb_reset_mac_header(skb);
4719 skb_gro_reset_offset(skb);
4720
4721 eth = skb_gro_header_fast(skb, 0);
4722 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723 eth = skb_gro_header_slow(skb, hlen, 0);
4724 if (unlikely(!eth)) {
4725 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726 __func__, napi->dev->name);
4727 napi_reuse_skb(napi, skb);
4728 return NULL;
4729 }
4730 } else {
4731 gro_pull_from_frag0(skb, hlen);
4732 NAPI_GRO_CB(skb)->frag0 += hlen;
4733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4734 }
4735 __skb_pull(skb, hlen);
4736
4737 /*
4738 * This works because the only protocols we care about don't require
4739 * special handling.
4740 * We'll fix it up properly in napi_frags_finish()
4741 */
4742 skb->protocol = eth->h_proto;
4743
4744 return skb;
4745 }
4746
4747 gro_result_t napi_gro_frags(struct napi_struct *napi)
4748 {
4749 struct sk_buff *skb = napi_frags_skb(napi);
4750
4751 if (!skb)
4752 return GRO_DROP;
4753
4754 trace_napi_gro_frags_entry(skb);
4755
4756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4757 }
4758 EXPORT_SYMBOL(napi_gro_frags);
4759
4760 /* Compute the checksum from gro_offset and return the folded value
4761 * after adding in any pseudo checksum.
4762 */
4763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4764 {
4765 __wsum wsum;
4766 __sum16 sum;
4767
4768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4769
4770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4772 if (likely(!sum)) {
4773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774 !skb->csum_complete_sw)
4775 netdev_rx_csum_fault(skb->dev);
4776 }
4777
4778 NAPI_GRO_CB(skb)->csum = wsum;
4779 NAPI_GRO_CB(skb)->csum_valid = 1;
4780
4781 return sum;
4782 }
4783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784
4785 /*
4786 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4787 * Note: called with local irq disabled, but exits with local irq enabled.
4788 */
4789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790 {
4791 #ifdef CONFIG_RPS
4792 struct softnet_data *remsd = sd->rps_ipi_list;
4793
4794 if (remsd) {
4795 sd->rps_ipi_list = NULL;
4796
4797 local_irq_enable();
4798
4799 /* Send pending IPI's to kick RPS processing on remote cpus. */
4800 while (remsd) {
4801 struct softnet_data *next = remsd->rps_ipi_next;
4802
4803 if (cpu_online(remsd->cpu))
4804 smp_call_function_single_async(remsd->cpu,
4805 &remsd->csd);
4806 remsd = next;
4807 }
4808 } else
4809 #endif
4810 local_irq_enable();
4811 }
4812
4813 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814 {
4815 #ifdef CONFIG_RPS
4816 return sd->rps_ipi_list != NULL;
4817 #else
4818 return false;
4819 #endif
4820 }
4821
4822 static int process_backlog(struct napi_struct *napi, int quota)
4823 {
4824 int work = 0;
4825 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4826
4827 /* Check if we have pending ipi, its better to send them now,
4828 * not waiting net_rx_action() end.
4829 */
4830 if (sd_has_rps_ipi_waiting(sd)) {
4831 local_irq_disable();
4832 net_rps_action_and_irq_enable(sd);
4833 }
4834
4835 napi->weight = weight_p;
4836 local_irq_disable();
4837 while (1) {
4838 struct sk_buff *skb;
4839
4840 while ((skb = __skb_dequeue(&sd->process_queue))) {
4841 rcu_read_lock();
4842 local_irq_enable();
4843 __netif_receive_skb(skb);
4844 rcu_read_unlock();
4845 local_irq_disable();
4846 input_queue_head_incr(sd);
4847 if (++work >= quota) {
4848 local_irq_enable();
4849 return work;
4850 }
4851 }
4852
4853 rps_lock(sd);
4854 if (skb_queue_empty(&sd->input_pkt_queue)) {
4855 /*
4856 * Inline a custom version of __napi_complete().
4857 * only current cpu owns and manipulates this napi,
4858 * and NAPI_STATE_SCHED is the only possible flag set
4859 * on backlog.
4860 * We can use a plain write instead of clear_bit(),
4861 * and we dont need an smp_mb() memory barrier.
4862 */
4863 napi->state = 0;
4864 rps_unlock(sd);
4865
4866 break;
4867 }
4868
4869 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4870 &sd->process_queue);
4871 rps_unlock(sd);
4872 }
4873 local_irq_enable();
4874
4875 return work;
4876 }
4877
4878 /**
4879 * __napi_schedule - schedule for receive
4880 * @n: entry to schedule
4881 *
4882 * The entry's receive function will be scheduled to run.
4883 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4884 */
4885 void __napi_schedule(struct napi_struct *n)
4886 {
4887 unsigned long flags;
4888
4889 local_irq_save(flags);
4890 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4891 local_irq_restore(flags);
4892 }
4893 EXPORT_SYMBOL(__napi_schedule);
4894
4895 /**
4896 * __napi_schedule_irqoff - schedule for receive
4897 * @n: entry to schedule
4898 *
4899 * Variant of __napi_schedule() assuming hard irqs are masked
4900 */
4901 void __napi_schedule_irqoff(struct napi_struct *n)
4902 {
4903 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904 }
4905 EXPORT_SYMBOL(__napi_schedule_irqoff);
4906
4907 void __napi_complete(struct napi_struct *n)
4908 {
4909 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4910
4911 list_del_init(&n->poll_list);
4912 smp_mb__before_atomic();
4913 clear_bit(NAPI_STATE_SCHED, &n->state);
4914 }
4915 EXPORT_SYMBOL(__napi_complete);
4916
4917 void napi_complete_done(struct napi_struct *n, int work_done)
4918 {
4919 unsigned long flags;
4920
4921 /*
4922 * don't let napi dequeue from the cpu poll list
4923 * just in case its running on a different cpu
4924 */
4925 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4926 return;
4927
4928 if (n->gro_list) {
4929 unsigned long timeout = 0;
4930
4931 if (work_done)
4932 timeout = n->dev->gro_flush_timeout;
4933
4934 if (timeout)
4935 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4936 HRTIMER_MODE_REL_PINNED);
4937 else
4938 napi_gro_flush(n, false);
4939 }
4940 if (likely(list_empty(&n->poll_list))) {
4941 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4942 } else {
4943 /* If n->poll_list is not empty, we need to mask irqs */
4944 local_irq_save(flags);
4945 __napi_complete(n);
4946 local_irq_restore(flags);
4947 }
4948 }
4949 EXPORT_SYMBOL(napi_complete_done);
4950
4951 /* must be called under rcu_read_lock(), as we dont take a reference */
4952 static struct napi_struct *napi_by_id(unsigned int napi_id)
4953 {
4954 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4955 struct napi_struct *napi;
4956
4957 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4958 if (napi->napi_id == napi_id)
4959 return napi;
4960
4961 return NULL;
4962 }
4963
4964 #if defined(CONFIG_NET_RX_BUSY_POLL)
4965 #define BUSY_POLL_BUDGET 8
4966 bool sk_busy_loop(struct sock *sk, int nonblock)
4967 {
4968 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4969 int (*busy_poll)(struct napi_struct *dev);
4970 struct napi_struct *napi;
4971 int rc = false;
4972
4973 rcu_read_lock();
4974
4975 napi = napi_by_id(sk->sk_napi_id);
4976 if (!napi)
4977 goto out;
4978
4979 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4980 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4981
4982 do {
4983 rc = 0;
4984 local_bh_disable();
4985 if (busy_poll) {
4986 rc = busy_poll(napi);
4987 } else if (napi_schedule_prep(napi)) {
4988 void *have = netpoll_poll_lock(napi);
4989
4990 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4991 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4992 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4993 if (rc == BUSY_POLL_BUDGET) {
4994 napi_complete_done(napi, rc);
4995 napi_schedule(napi);
4996 }
4997 }
4998 netpoll_poll_unlock(have);
4999 }
5000 if (rc > 0)
5001 __NET_ADD_STATS(sock_net(sk),
5002 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5003 local_bh_enable();
5004
5005 if (rc == LL_FLUSH_FAILED)
5006 break; /* permanent failure */
5007
5008 cpu_relax();
5009 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5010 !need_resched() && !busy_loop_timeout(end_time));
5011
5012 rc = !skb_queue_empty(&sk->sk_receive_queue);
5013 out:
5014 rcu_read_unlock();
5015 return rc;
5016 }
5017 EXPORT_SYMBOL(sk_busy_loop);
5018
5019 #endif /* CONFIG_NET_RX_BUSY_POLL */
5020
5021 void napi_hash_add(struct napi_struct *napi)
5022 {
5023 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5024 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5025 return;
5026
5027 spin_lock(&napi_hash_lock);
5028
5029 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5030 do {
5031 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5032 napi_gen_id = NR_CPUS + 1;
5033 } while (napi_by_id(napi_gen_id));
5034 napi->napi_id = napi_gen_id;
5035
5036 hlist_add_head_rcu(&napi->napi_hash_node,
5037 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5038
5039 spin_unlock(&napi_hash_lock);
5040 }
5041 EXPORT_SYMBOL_GPL(napi_hash_add);
5042
5043 /* Warning : caller is responsible to make sure rcu grace period
5044 * is respected before freeing memory containing @napi
5045 */
5046 bool napi_hash_del(struct napi_struct *napi)
5047 {
5048 bool rcu_sync_needed = false;
5049
5050 spin_lock(&napi_hash_lock);
5051
5052 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5053 rcu_sync_needed = true;
5054 hlist_del_rcu(&napi->napi_hash_node);
5055 }
5056 spin_unlock(&napi_hash_lock);
5057 return rcu_sync_needed;
5058 }
5059 EXPORT_SYMBOL_GPL(napi_hash_del);
5060
5061 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5062 {
5063 struct napi_struct *napi;
5064
5065 napi = container_of(timer, struct napi_struct, timer);
5066 if (napi->gro_list)
5067 napi_schedule(napi);
5068
5069 return HRTIMER_NORESTART;
5070 }
5071
5072 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5073 int (*poll)(struct napi_struct *, int), int weight)
5074 {
5075 INIT_LIST_HEAD(&napi->poll_list);
5076 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5077 napi->timer.function = napi_watchdog;
5078 napi->gro_count = 0;
5079 napi->gro_list = NULL;
5080 napi->skb = NULL;
5081 napi->poll = poll;
5082 if (weight > NAPI_POLL_WEIGHT)
5083 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5084 weight, dev->name);
5085 napi->weight = weight;
5086 list_add(&napi->dev_list, &dev->napi_list);
5087 napi->dev = dev;
5088 #ifdef CONFIG_NETPOLL
5089 spin_lock_init(&napi->poll_lock);
5090 napi->poll_owner = -1;
5091 #endif
5092 set_bit(NAPI_STATE_SCHED, &napi->state);
5093 napi_hash_add(napi);
5094 }
5095 EXPORT_SYMBOL(netif_napi_add);
5096
5097 void napi_disable(struct napi_struct *n)
5098 {
5099 might_sleep();
5100 set_bit(NAPI_STATE_DISABLE, &n->state);
5101
5102 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5103 msleep(1);
5104 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5105 msleep(1);
5106
5107 hrtimer_cancel(&n->timer);
5108
5109 clear_bit(NAPI_STATE_DISABLE, &n->state);
5110 }
5111 EXPORT_SYMBOL(napi_disable);
5112
5113 /* Must be called in process context */
5114 void netif_napi_del(struct napi_struct *napi)
5115 {
5116 might_sleep();
5117 if (napi_hash_del(napi))
5118 synchronize_net();
5119 list_del_init(&napi->dev_list);
5120 napi_free_frags(napi);
5121
5122 kfree_skb_list(napi->gro_list);
5123 napi->gro_list = NULL;
5124 napi->gro_count = 0;
5125 }
5126 EXPORT_SYMBOL(netif_napi_del);
5127
5128 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5129 {
5130 void *have;
5131 int work, weight;
5132
5133 list_del_init(&n->poll_list);
5134
5135 have = netpoll_poll_lock(n);
5136
5137 weight = n->weight;
5138
5139 /* This NAPI_STATE_SCHED test is for avoiding a race
5140 * with netpoll's poll_napi(). Only the entity which
5141 * obtains the lock and sees NAPI_STATE_SCHED set will
5142 * actually make the ->poll() call. Therefore we avoid
5143 * accidentally calling ->poll() when NAPI is not scheduled.
5144 */
5145 work = 0;
5146 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5147 work = n->poll(n, weight);
5148 trace_napi_poll(n, work, weight);
5149 }
5150
5151 WARN_ON_ONCE(work > weight);
5152
5153 if (likely(work < weight))
5154 goto out_unlock;
5155
5156 /* Drivers must not modify the NAPI state if they
5157 * consume the entire weight. In such cases this code
5158 * still "owns" the NAPI instance and therefore can
5159 * move the instance around on the list at-will.
5160 */
5161 if (unlikely(napi_disable_pending(n))) {
5162 napi_complete(n);
5163 goto out_unlock;
5164 }
5165
5166 if (n->gro_list) {
5167 /* flush too old packets
5168 * If HZ < 1000, flush all packets.
5169 */
5170 napi_gro_flush(n, HZ >= 1000);
5171 }
5172
5173 /* Some drivers may have called napi_schedule
5174 * prior to exhausting their budget.
5175 */
5176 if (unlikely(!list_empty(&n->poll_list))) {
5177 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5178 n->dev ? n->dev->name : "backlog");
5179 goto out_unlock;
5180 }
5181
5182 list_add_tail(&n->poll_list, repoll);
5183
5184 out_unlock:
5185 netpoll_poll_unlock(have);
5186
5187 return work;
5188 }
5189
5190 static void net_rx_action(struct softirq_action *h)
5191 {
5192 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5193 unsigned long time_limit = jiffies + 2;
5194 int budget = netdev_budget;
5195 LIST_HEAD(list);
5196 LIST_HEAD(repoll);
5197
5198 local_irq_disable();
5199 list_splice_init(&sd->poll_list, &list);
5200 local_irq_enable();
5201
5202 for (;;) {
5203 struct napi_struct *n;
5204
5205 if (list_empty(&list)) {
5206 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5207 return;
5208 break;
5209 }
5210
5211 n = list_first_entry(&list, struct napi_struct, poll_list);
5212 budget -= napi_poll(n, &repoll);
5213
5214 /* If softirq window is exhausted then punt.
5215 * Allow this to run for 2 jiffies since which will allow
5216 * an average latency of 1.5/HZ.
5217 */
5218 if (unlikely(budget <= 0 ||
5219 time_after_eq(jiffies, time_limit))) {
5220 sd->time_squeeze++;
5221 break;
5222 }
5223 }
5224
5225 __kfree_skb_flush();
5226 local_irq_disable();
5227
5228 list_splice_tail_init(&sd->poll_list, &list);
5229 list_splice_tail(&repoll, &list);
5230 list_splice(&list, &sd->poll_list);
5231 if (!list_empty(&sd->poll_list))
5232 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5233
5234 net_rps_action_and_irq_enable(sd);
5235 }
5236
5237 struct netdev_adjacent {
5238 struct net_device *dev;
5239
5240 /* upper master flag, there can only be one master device per list */
5241 bool master;
5242
5243 /* counter for the number of times this device was added to us */
5244 u16 ref_nr;
5245
5246 /* private field for the users */
5247 void *private;
5248
5249 struct list_head list;
5250 struct rcu_head rcu;
5251 };
5252
5253 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5254 struct list_head *adj_list)
5255 {
5256 struct netdev_adjacent *adj;
5257
5258 list_for_each_entry(adj, adj_list, list) {
5259 if (adj->dev == adj_dev)
5260 return adj;
5261 }
5262 return NULL;
5263 }
5264
5265 /**
5266 * netdev_has_upper_dev - Check if device is linked to an upper device
5267 * @dev: device
5268 * @upper_dev: upper device to check
5269 *
5270 * Find out if a device is linked to specified upper device and return true
5271 * in case it is. Note that this checks only immediate upper device,
5272 * not through a complete stack of devices. The caller must hold the RTNL lock.
5273 */
5274 bool netdev_has_upper_dev(struct net_device *dev,
5275 struct net_device *upper_dev)
5276 {
5277 ASSERT_RTNL();
5278
5279 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5280 }
5281 EXPORT_SYMBOL(netdev_has_upper_dev);
5282
5283 /**
5284 * netdev_has_any_upper_dev - Check if device is linked to some device
5285 * @dev: device
5286 *
5287 * Find out if a device is linked to an upper device and return true in case
5288 * it is. The caller must hold the RTNL lock.
5289 */
5290 static bool netdev_has_any_upper_dev(struct net_device *dev)
5291 {
5292 ASSERT_RTNL();
5293
5294 return !list_empty(&dev->all_adj_list.upper);
5295 }
5296
5297 /**
5298 * netdev_master_upper_dev_get - Get master upper device
5299 * @dev: device
5300 *
5301 * Find a master upper device and return pointer to it or NULL in case
5302 * it's not there. The caller must hold the RTNL lock.
5303 */
5304 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5305 {
5306 struct netdev_adjacent *upper;
5307
5308 ASSERT_RTNL();
5309
5310 if (list_empty(&dev->adj_list.upper))
5311 return NULL;
5312
5313 upper = list_first_entry(&dev->adj_list.upper,
5314 struct netdev_adjacent, list);
5315 if (likely(upper->master))
5316 return upper->dev;
5317 return NULL;
5318 }
5319 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5320
5321 void *netdev_adjacent_get_private(struct list_head *adj_list)
5322 {
5323 struct netdev_adjacent *adj;
5324
5325 adj = list_entry(adj_list, struct netdev_adjacent, list);
5326
5327 return adj->private;
5328 }
5329 EXPORT_SYMBOL(netdev_adjacent_get_private);
5330
5331 /**
5332 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5333 * @dev: device
5334 * @iter: list_head ** of the current position
5335 *
5336 * Gets the next device from the dev's upper list, starting from iter
5337 * position. The caller must hold RCU read lock.
5338 */
5339 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5340 struct list_head **iter)
5341 {
5342 struct netdev_adjacent *upper;
5343
5344 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5345
5346 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5347
5348 if (&upper->list == &dev->adj_list.upper)
5349 return NULL;
5350
5351 *iter = &upper->list;
5352
5353 return upper->dev;
5354 }
5355 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5356
5357 /**
5358 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5359 * @dev: device
5360 * @iter: list_head ** of the current position
5361 *
5362 * Gets the next device from the dev's upper list, starting from iter
5363 * position. The caller must hold RCU read lock.
5364 */
5365 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5366 struct list_head **iter)
5367 {
5368 struct netdev_adjacent *upper;
5369
5370 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5371
5372 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5373
5374 if (&upper->list == &dev->all_adj_list.upper)
5375 return NULL;
5376
5377 *iter = &upper->list;
5378
5379 return upper->dev;
5380 }
5381 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5382
5383 /**
5384 * netdev_lower_get_next_private - Get the next ->private from the
5385 * lower neighbour list
5386 * @dev: device
5387 * @iter: list_head ** of the current position
5388 *
5389 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5390 * list, starting from iter position. The caller must hold either hold the
5391 * RTNL lock or its own locking that guarantees that the neighbour lower
5392 * list will remain unchanged.
5393 */
5394 void *netdev_lower_get_next_private(struct net_device *dev,
5395 struct list_head **iter)
5396 {
5397 struct netdev_adjacent *lower;
5398
5399 lower = list_entry(*iter, struct netdev_adjacent, list);
5400
5401 if (&lower->list == &dev->adj_list.lower)
5402 return NULL;
5403
5404 *iter = lower->list.next;
5405
5406 return lower->private;
5407 }
5408 EXPORT_SYMBOL(netdev_lower_get_next_private);
5409
5410 /**
5411 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5412 * lower neighbour list, RCU
5413 * variant
5414 * @dev: device
5415 * @iter: list_head ** of the current position
5416 *
5417 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5418 * list, starting from iter position. The caller must hold RCU read lock.
5419 */
5420 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5421 struct list_head **iter)
5422 {
5423 struct netdev_adjacent *lower;
5424
5425 WARN_ON_ONCE(!rcu_read_lock_held());
5426
5427 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5428
5429 if (&lower->list == &dev->adj_list.lower)
5430 return NULL;
5431
5432 *iter = &lower->list;
5433
5434 return lower->private;
5435 }
5436 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5437
5438 /**
5439 * netdev_lower_get_next - Get the next device from the lower neighbour
5440 * list
5441 * @dev: device
5442 * @iter: list_head ** of the current position
5443 *
5444 * Gets the next netdev_adjacent from the dev's lower neighbour
5445 * list, starting from iter position. The caller must hold RTNL lock or
5446 * its own locking that guarantees that the neighbour lower
5447 * list will remain unchanged.
5448 */
5449 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5450 {
5451 struct netdev_adjacent *lower;
5452
5453 lower = list_entry(*iter, struct netdev_adjacent, list);
5454
5455 if (&lower->list == &dev->adj_list.lower)
5456 return NULL;
5457
5458 *iter = lower->list.next;
5459
5460 return lower->dev;
5461 }
5462 EXPORT_SYMBOL(netdev_lower_get_next);
5463
5464 /**
5465 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5466 * @dev: device
5467 * @iter: list_head ** of the current position
5468 *
5469 * Gets the next netdev_adjacent from the dev's all lower neighbour
5470 * list, starting from iter position. The caller must hold RTNL lock or
5471 * its own locking that guarantees that the neighbour all lower
5472 * list will remain unchanged.
5473 */
5474 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5475 {
5476 struct netdev_adjacent *lower;
5477
5478 lower = list_entry(*iter, struct netdev_adjacent, list);
5479
5480 if (&lower->list == &dev->all_adj_list.lower)
5481 return NULL;
5482
5483 *iter = lower->list.next;
5484
5485 return lower->dev;
5486 }
5487 EXPORT_SYMBOL(netdev_all_lower_get_next);
5488
5489 /**
5490 * netdev_all_lower_get_next_rcu - Get the next device from all
5491 * lower neighbour list, RCU variant
5492 * @dev: device
5493 * @iter: list_head ** of the current position
5494 *
5495 * Gets the next netdev_adjacent from the dev's all lower neighbour
5496 * list, starting from iter position. The caller must hold RCU read lock.
5497 */
5498 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5499 struct list_head **iter)
5500 {
5501 struct netdev_adjacent *lower;
5502
5503 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5504 struct netdev_adjacent, list);
5505
5506 return lower ? lower->dev : NULL;
5507 }
5508 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5509
5510 /**
5511 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5512 * lower neighbour list, RCU
5513 * variant
5514 * @dev: device
5515 *
5516 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5517 * list. The caller must hold RCU read lock.
5518 */
5519 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5520 {
5521 struct netdev_adjacent *lower;
5522
5523 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5524 struct netdev_adjacent, list);
5525 if (lower)
5526 return lower->private;
5527 return NULL;
5528 }
5529 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5530
5531 /**
5532 * netdev_master_upper_dev_get_rcu - Get master upper device
5533 * @dev: device
5534 *
5535 * Find a master upper device and return pointer to it or NULL in case
5536 * it's not there. The caller must hold the RCU read lock.
5537 */
5538 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5539 {
5540 struct netdev_adjacent *upper;
5541
5542 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5543 struct netdev_adjacent, list);
5544 if (upper && likely(upper->master))
5545 return upper->dev;
5546 return NULL;
5547 }
5548 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5549
5550 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5551 struct net_device *adj_dev,
5552 struct list_head *dev_list)
5553 {
5554 char linkname[IFNAMSIZ+7];
5555 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5556 "upper_%s" : "lower_%s", adj_dev->name);
5557 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5558 linkname);
5559 }
5560 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5561 char *name,
5562 struct list_head *dev_list)
5563 {
5564 char linkname[IFNAMSIZ+7];
5565 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5566 "upper_%s" : "lower_%s", name);
5567 sysfs_remove_link(&(dev->dev.kobj), linkname);
5568 }
5569
5570 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5571 struct net_device *adj_dev,
5572 struct list_head *dev_list)
5573 {
5574 return (dev_list == &dev->adj_list.upper ||
5575 dev_list == &dev->adj_list.lower) &&
5576 net_eq(dev_net(dev), dev_net(adj_dev));
5577 }
5578
5579 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5580 struct net_device *adj_dev,
5581 struct list_head *dev_list,
5582 void *private, bool master)
5583 {
5584 struct netdev_adjacent *adj;
5585 int ret;
5586
5587 adj = __netdev_find_adj(adj_dev, dev_list);
5588
5589 if (adj) {
5590 adj->ref_nr++;
5591 return 0;
5592 }
5593
5594 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5595 if (!adj)
5596 return -ENOMEM;
5597
5598 adj->dev = adj_dev;
5599 adj->master = master;
5600 adj->ref_nr = 1;
5601 adj->private = private;
5602 dev_hold(adj_dev);
5603
5604 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5605 adj_dev->name, dev->name, adj_dev->name);
5606
5607 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5608 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5609 if (ret)
5610 goto free_adj;
5611 }
5612
5613 /* Ensure that master link is always the first item in list. */
5614 if (master) {
5615 ret = sysfs_create_link(&(dev->dev.kobj),
5616 &(adj_dev->dev.kobj), "master");
5617 if (ret)
5618 goto remove_symlinks;
5619
5620 list_add_rcu(&adj->list, dev_list);
5621 } else {
5622 list_add_tail_rcu(&adj->list, dev_list);
5623 }
5624
5625 return 0;
5626
5627 remove_symlinks:
5628 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5629 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5630 free_adj:
5631 kfree(adj);
5632 dev_put(adj_dev);
5633
5634 return ret;
5635 }
5636
5637 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5638 struct net_device *adj_dev,
5639 struct list_head *dev_list)
5640 {
5641 struct netdev_adjacent *adj;
5642
5643 adj = __netdev_find_adj(adj_dev, dev_list);
5644
5645 if (!adj) {
5646 pr_err("tried to remove device %s from %s\n",
5647 dev->name, adj_dev->name);
5648 BUG();
5649 }
5650
5651 if (adj->ref_nr > 1) {
5652 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5653 adj->ref_nr-1);
5654 adj->ref_nr--;
5655 return;
5656 }
5657
5658 if (adj->master)
5659 sysfs_remove_link(&(dev->dev.kobj), "master");
5660
5661 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5662 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5663
5664 list_del_rcu(&adj->list);
5665 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5666 adj_dev->name, dev->name, adj_dev->name);
5667 dev_put(adj_dev);
5668 kfree_rcu(adj, rcu);
5669 }
5670
5671 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5672 struct net_device *upper_dev,
5673 struct list_head *up_list,
5674 struct list_head *down_list,
5675 void *private, bool master)
5676 {
5677 int ret;
5678
5679 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5680 master);
5681 if (ret)
5682 return ret;
5683
5684 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5685 false);
5686 if (ret) {
5687 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5688 return ret;
5689 }
5690
5691 return 0;
5692 }
5693
5694 static int __netdev_adjacent_dev_link(struct net_device *dev,
5695 struct net_device *upper_dev)
5696 {
5697 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5698 &dev->all_adj_list.upper,
5699 &upper_dev->all_adj_list.lower,
5700 NULL, false);
5701 }
5702
5703 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5704 struct net_device *upper_dev,
5705 struct list_head *up_list,
5706 struct list_head *down_list)
5707 {
5708 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5709 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5710 }
5711
5712 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5713 struct net_device *upper_dev)
5714 {
5715 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5716 &dev->all_adj_list.upper,
5717 &upper_dev->all_adj_list.lower);
5718 }
5719
5720 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5721 struct net_device *upper_dev,
5722 void *private, bool master)
5723 {
5724 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5725
5726 if (ret)
5727 return ret;
5728
5729 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5730 &dev->adj_list.upper,
5731 &upper_dev->adj_list.lower,
5732 private, master);
5733 if (ret) {
5734 __netdev_adjacent_dev_unlink(dev, upper_dev);
5735 return ret;
5736 }
5737
5738 return 0;
5739 }
5740
5741 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5742 struct net_device *upper_dev)
5743 {
5744 __netdev_adjacent_dev_unlink(dev, upper_dev);
5745 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5746 &dev->adj_list.upper,
5747 &upper_dev->adj_list.lower);
5748 }
5749
5750 static int __netdev_upper_dev_link(struct net_device *dev,
5751 struct net_device *upper_dev, bool master,
5752 void *upper_priv, void *upper_info)
5753 {
5754 struct netdev_notifier_changeupper_info changeupper_info;
5755 struct netdev_adjacent *i, *j, *to_i, *to_j;
5756 int ret = 0;
5757
5758 ASSERT_RTNL();
5759
5760 if (dev == upper_dev)
5761 return -EBUSY;
5762
5763 /* To prevent loops, check if dev is not upper device to upper_dev. */
5764 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5765 return -EBUSY;
5766
5767 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5768 return -EEXIST;
5769
5770 if (master && netdev_master_upper_dev_get(dev))
5771 return -EBUSY;
5772
5773 changeupper_info.upper_dev = upper_dev;
5774 changeupper_info.master = master;
5775 changeupper_info.linking = true;
5776 changeupper_info.upper_info = upper_info;
5777
5778 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5779 &changeupper_info.info);
5780 ret = notifier_to_errno(ret);
5781 if (ret)
5782 return ret;
5783
5784 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5785 master);
5786 if (ret)
5787 return ret;
5788
5789 /* Now that we linked these devs, make all the upper_dev's
5790 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5791 * versa, and don't forget the devices itself. All of these
5792 * links are non-neighbours.
5793 */
5794 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5795 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5796 pr_debug("Interlinking %s with %s, non-neighbour\n",
5797 i->dev->name, j->dev->name);
5798 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5799 if (ret)
5800 goto rollback_mesh;
5801 }
5802 }
5803
5804 /* add dev to every upper_dev's upper device */
5805 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5806 pr_debug("linking %s's upper device %s with %s\n",
5807 upper_dev->name, i->dev->name, dev->name);
5808 ret = __netdev_adjacent_dev_link(dev, i->dev);
5809 if (ret)
5810 goto rollback_upper_mesh;
5811 }
5812
5813 /* add upper_dev to every dev's lower device */
5814 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5815 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5816 i->dev->name, upper_dev->name);
5817 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5818 if (ret)
5819 goto rollback_lower_mesh;
5820 }
5821
5822 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5823 &changeupper_info.info);
5824 ret = notifier_to_errno(ret);
5825 if (ret)
5826 goto rollback_lower_mesh;
5827
5828 return 0;
5829
5830 rollback_lower_mesh:
5831 to_i = i;
5832 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5833 if (i == to_i)
5834 break;
5835 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5836 }
5837
5838 i = NULL;
5839
5840 rollback_upper_mesh:
5841 to_i = i;
5842 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5843 if (i == to_i)
5844 break;
5845 __netdev_adjacent_dev_unlink(dev, i->dev);
5846 }
5847
5848 i = j = NULL;
5849
5850 rollback_mesh:
5851 to_i = i;
5852 to_j = j;
5853 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5854 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5855 if (i == to_i && j == to_j)
5856 break;
5857 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5858 }
5859 if (i == to_i)
5860 break;
5861 }
5862
5863 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5864
5865 return ret;
5866 }
5867
5868 /**
5869 * netdev_upper_dev_link - Add a link to the upper device
5870 * @dev: device
5871 * @upper_dev: new upper device
5872 *
5873 * Adds a link to device which is upper to this one. The caller must hold
5874 * the RTNL lock. On a failure a negative errno code is returned.
5875 * On success the reference counts are adjusted and the function
5876 * returns zero.
5877 */
5878 int netdev_upper_dev_link(struct net_device *dev,
5879 struct net_device *upper_dev)
5880 {
5881 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5882 }
5883 EXPORT_SYMBOL(netdev_upper_dev_link);
5884
5885 /**
5886 * netdev_master_upper_dev_link - Add a master link to the upper device
5887 * @dev: device
5888 * @upper_dev: new upper device
5889 * @upper_priv: upper device private
5890 * @upper_info: upper info to be passed down via notifier
5891 *
5892 * Adds a link to device which is upper to this one. In this case, only
5893 * one master upper device can be linked, although other non-master devices
5894 * might be linked as well. The caller must hold the RTNL lock.
5895 * On a failure a negative errno code is returned. On success the reference
5896 * counts are adjusted and the function returns zero.
5897 */
5898 int netdev_master_upper_dev_link(struct net_device *dev,
5899 struct net_device *upper_dev,
5900 void *upper_priv, void *upper_info)
5901 {
5902 return __netdev_upper_dev_link(dev, upper_dev, true,
5903 upper_priv, upper_info);
5904 }
5905 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5906
5907 /**
5908 * netdev_upper_dev_unlink - Removes a link to upper device
5909 * @dev: device
5910 * @upper_dev: new upper device
5911 *
5912 * Removes a link to device which is upper to this one. The caller must hold
5913 * the RTNL lock.
5914 */
5915 void netdev_upper_dev_unlink(struct net_device *dev,
5916 struct net_device *upper_dev)
5917 {
5918 struct netdev_notifier_changeupper_info changeupper_info;
5919 struct netdev_adjacent *i, *j;
5920 ASSERT_RTNL();
5921
5922 changeupper_info.upper_dev = upper_dev;
5923 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5924 changeupper_info.linking = false;
5925
5926 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5927 &changeupper_info.info);
5928
5929 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5930
5931 /* Here is the tricky part. We must remove all dev's lower
5932 * devices from all upper_dev's upper devices and vice
5933 * versa, to maintain the graph relationship.
5934 */
5935 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5936 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5937 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5938
5939 /* remove also the devices itself from lower/upper device
5940 * list
5941 */
5942 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5943 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5944
5945 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5946 __netdev_adjacent_dev_unlink(dev, i->dev);
5947
5948 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5949 &changeupper_info.info);
5950 }
5951 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5952
5953 /**
5954 * netdev_bonding_info_change - Dispatch event about slave change
5955 * @dev: device
5956 * @bonding_info: info to dispatch
5957 *
5958 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5959 * The caller must hold the RTNL lock.
5960 */
5961 void netdev_bonding_info_change(struct net_device *dev,
5962 struct netdev_bonding_info *bonding_info)
5963 {
5964 struct netdev_notifier_bonding_info info;
5965
5966 memcpy(&info.bonding_info, bonding_info,
5967 sizeof(struct netdev_bonding_info));
5968 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5969 &info.info);
5970 }
5971 EXPORT_SYMBOL(netdev_bonding_info_change);
5972
5973 static void netdev_adjacent_add_links(struct net_device *dev)
5974 {
5975 struct netdev_adjacent *iter;
5976
5977 struct net *net = dev_net(dev);
5978
5979 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5980 if (!net_eq(net, dev_net(iter->dev)))
5981 continue;
5982 netdev_adjacent_sysfs_add(iter->dev, dev,
5983 &iter->dev->adj_list.lower);
5984 netdev_adjacent_sysfs_add(dev, iter->dev,
5985 &dev->adj_list.upper);
5986 }
5987
5988 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5989 if (!net_eq(net, dev_net(iter->dev)))
5990 continue;
5991 netdev_adjacent_sysfs_add(iter->dev, dev,
5992 &iter->dev->adj_list.upper);
5993 netdev_adjacent_sysfs_add(dev, iter->dev,
5994 &dev->adj_list.lower);
5995 }
5996 }
5997
5998 static void netdev_adjacent_del_links(struct net_device *dev)
5999 {
6000 struct netdev_adjacent *iter;
6001
6002 struct net *net = dev_net(dev);
6003
6004 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6005 if (!net_eq(net, dev_net(iter->dev)))
6006 continue;
6007 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6008 &iter->dev->adj_list.lower);
6009 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6010 &dev->adj_list.upper);
6011 }
6012
6013 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6014 if (!net_eq(net, dev_net(iter->dev)))
6015 continue;
6016 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6017 &iter->dev->adj_list.upper);
6018 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6019 &dev->adj_list.lower);
6020 }
6021 }
6022
6023 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6024 {
6025 struct netdev_adjacent *iter;
6026
6027 struct net *net = dev_net(dev);
6028
6029 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6030 if (!net_eq(net, dev_net(iter->dev)))
6031 continue;
6032 netdev_adjacent_sysfs_del(iter->dev, oldname,
6033 &iter->dev->adj_list.lower);
6034 netdev_adjacent_sysfs_add(iter->dev, dev,
6035 &iter->dev->adj_list.lower);
6036 }
6037
6038 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6039 if (!net_eq(net, dev_net(iter->dev)))
6040 continue;
6041 netdev_adjacent_sysfs_del(iter->dev, oldname,
6042 &iter->dev->adj_list.upper);
6043 netdev_adjacent_sysfs_add(iter->dev, dev,
6044 &iter->dev->adj_list.upper);
6045 }
6046 }
6047
6048 void *netdev_lower_dev_get_private(struct net_device *dev,
6049 struct net_device *lower_dev)
6050 {
6051 struct netdev_adjacent *lower;
6052
6053 if (!lower_dev)
6054 return NULL;
6055 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6056 if (!lower)
6057 return NULL;
6058
6059 return lower->private;
6060 }
6061 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6062
6063
6064 int dev_get_nest_level(struct net_device *dev)
6065 {
6066 struct net_device *lower = NULL;
6067 struct list_head *iter;
6068 int max_nest = -1;
6069 int nest;
6070
6071 ASSERT_RTNL();
6072
6073 netdev_for_each_lower_dev(dev, lower, iter) {
6074 nest = dev_get_nest_level(lower);
6075 if (max_nest < nest)
6076 max_nest = nest;
6077 }
6078
6079 return max_nest + 1;
6080 }
6081 EXPORT_SYMBOL(dev_get_nest_level);
6082
6083 /**
6084 * netdev_lower_change - Dispatch event about lower device state change
6085 * @lower_dev: device
6086 * @lower_state_info: state to dispatch
6087 *
6088 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6089 * The caller must hold the RTNL lock.
6090 */
6091 void netdev_lower_state_changed(struct net_device *lower_dev,
6092 void *lower_state_info)
6093 {
6094 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6095
6096 ASSERT_RTNL();
6097 changelowerstate_info.lower_state_info = lower_state_info;
6098 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6099 &changelowerstate_info.info);
6100 }
6101 EXPORT_SYMBOL(netdev_lower_state_changed);
6102
6103 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6104 struct neighbour *n)
6105 {
6106 struct net_device *lower_dev, *stop_dev;
6107 struct list_head *iter;
6108 int err;
6109
6110 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6112 continue;
6113 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6114 if (err) {
6115 stop_dev = lower_dev;
6116 goto rollback;
6117 }
6118 }
6119 return 0;
6120
6121 rollback:
6122 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6123 if (lower_dev == stop_dev)
6124 break;
6125 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6126 continue;
6127 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6128 }
6129 return err;
6130 }
6131 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6132
6133 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6134 struct neighbour *n)
6135 {
6136 struct net_device *lower_dev;
6137 struct list_head *iter;
6138
6139 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6140 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6141 continue;
6142 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6143 }
6144 }
6145 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6146
6147 static void dev_change_rx_flags(struct net_device *dev, int flags)
6148 {
6149 const struct net_device_ops *ops = dev->netdev_ops;
6150
6151 if (ops->ndo_change_rx_flags)
6152 ops->ndo_change_rx_flags(dev, flags);
6153 }
6154
6155 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6156 {
6157 unsigned int old_flags = dev->flags;
6158 kuid_t uid;
6159 kgid_t gid;
6160
6161 ASSERT_RTNL();
6162
6163 dev->flags |= IFF_PROMISC;
6164 dev->promiscuity += inc;
6165 if (dev->promiscuity == 0) {
6166 /*
6167 * Avoid overflow.
6168 * If inc causes overflow, untouch promisc and return error.
6169 */
6170 if (inc < 0)
6171 dev->flags &= ~IFF_PROMISC;
6172 else {
6173 dev->promiscuity -= inc;
6174 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6175 dev->name);
6176 return -EOVERFLOW;
6177 }
6178 }
6179 if (dev->flags != old_flags) {
6180 pr_info("device %s %s promiscuous mode\n",
6181 dev->name,
6182 dev->flags & IFF_PROMISC ? "entered" : "left");
6183 if (audit_enabled) {
6184 current_uid_gid(&uid, &gid);
6185 audit_log(current->audit_context, GFP_ATOMIC,
6186 AUDIT_ANOM_PROMISCUOUS,
6187 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6188 dev->name, (dev->flags & IFF_PROMISC),
6189 (old_flags & IFF_PROMISC),
6190 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6191 from_kuid(&init_user_ns, uid),
6192 from_kgid(&init_user_ns, gid),
6193 audit_get_sessionid(current));
6194 }
6195
6196 dev_change_rx_flags(dev, IFF_PROMISC);
6197 }
6198 if (notify)
6199 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6200 return 0;
6201 }
6202
6203 /**
6204 * dev_set_promiscuity - update promiscuity count on a device
6205 * @dev: device
6206 * @inc: modifier
6207 *
6208 * Add or remove promiscuity from a device. While the count in the device
6209 * remains above zero the interface remains promiscuous. Once it hits zero
6210 * the device reverts back to normal filtering operation. A negative inc
6211 * value is used to drop promiscuity on the device.
6212 * Return 0 if successful or a negative errno code on error.
6213 */
6214 int dev_set_promiscuity(struct net_device *dev, int inc)
6215 {
6216 unsigned int old_flags = dev->flags;
6217 int err;
6218
6219 err = __dev_set_promiscuity(dev, inc, true);
6220 if (err < 0)
6221 return err;
6222 if (dev->flags != old_flags)
6223 dev_set_rx_mode(dev);
6224 return err;
6225 }
6226 EXPORT_SYMBOL(dev_set_promiscuity);
6227
6228 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6229 {
6230 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6231
6232 ASSERT_RTNL();
6233
6234 dev->flags |= IFF_ALLMULTI;
6235 dev->allmulti += inc;
6236 if (dev->allmulti == 0) {
6237 /*
6238 * Avoid overflow.
6239 * If inc causes overflow, untouch allmulti and return error.
6240 */
6241 if (inc < 0)
6242 dev->flags &= ~IFF_ALLMULTI;
6243 else {
6244 dev->allmulti -= inc;
6245 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6246 dev->name);
6247 return -EOVERFLOW;
6248 }
6249 }
6250 if (dev->flags ^ old_flags) {
6251 dev_change_rx_flags(dev, IFF_ALLMULTI);
6252 dev_set_rx_mode(dev);
6253 if (notify)
6254 __dev_notify_flags(dev, old_flags,
6255 dev->gflags ^ old_gflags);
6256 }
6257 return 0;
6258 }
6259
6260 /**
6261 * dev_set_allmulti - update allmulti count on a device
6262 * @dev: device
6263 * @inc: modifier
6264 *
6265 * Add or remove reception of all multicast frames to a device. While the
6266 * count in the device remains above zero the interface remains listening
6267 * to all interfaces. Once it hits zero the device reverts back to normal
6268 * filtering operation. A negative @inc value is used to drop the counter
6269 * when releasing a resource needing all multicasts.
6270 * Return 0 if successful or a negative errno code on error.
6271 */
6272
6273 int dev_set_allmulti(struct net_device *dev, int inc)
6274 {
6275 return __dev_set_allmulti(dev, inc, true);
6276 }
6277 EXPORT_SYMBOL(dev_set_allmulti);
6278
6279 /*
6280 * Upload unicast and multicast address lists to device and
6281 * configure RX filtering. When the device doesn't support unicast
6282 * filtering it is put in promiscuous mode while unicast addresses
6283 * are present.
6284 */
6285 void __dev_set_rx_mode(struct net_device *dev)
6286 {
6287 const struct net_device_ops *ops = dev->netdev_ops;
6288
6289 /* dev_open will call this function so the list will stay sane. */
6290 if (!(dev->flags&IFF_UP))
6291 return;
6292
6293 if (!netif_device_present(dev))
6294 return;
6295
6296 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6297 /* Unicast addresses changes may only happen under the rtnl,
6298 * therefore calling __dev_set_promiscuity here is safe.
6299 */
6300 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6301 __dev_set_promiscuity(dev, 1, false);
6302 dev->uc_promisc = true;
6303 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6304 __dev_set_promiscuity(dev, -1, false);
6305 dev->uc_promisc = false;
6306 }
6307 }
6308
6309 if (ops->ndo_set_rx_mode)
6310 ops->ndo_set_rx_mode(dev);
6311 }
6312
6313 void dev_set_rx_mode(struct net_device *dev)
6314 {
6315 netif_addr_lock_bh(dev);
6316 __dev_set_rx_mode(dev);
6317 netif_addr_unlock_bh(dev);
6318 }
6319
6320 /**
6321 * dev_get_flags - get flags reported to userspace
6322 * @dev: device
6323 *
6324 * Get the combination of flag bits exported through APIs to userspace.
6325 */
6326 unsigned int dev_get_flags(const struct net_device *dev)
6327 {
6328 unsigned int flags;
6329
6330 flags = (dev->flags & ~(IFF_PROMISC |
6331 IFF_ALLMULTI |
6332 IFF_RUNNING |
6333 IFF_LOWER_UP |
6334 IFF_DORMANT)) |
6335 (dev->gflags & (IFF_PROMISC |
6336 IFF_ALLMULTI));
6337
6338 if (netif_running(dev)) {
6339 if (netif_oper_up(dev))
6340 flags |= IFF_RUNNING;
6341 if (netif_carrier_ok(dev))
6342 flags |= IFF_LOWER_UP;
6343 if (netif_dormant(dev))
6344 flags |= IFF_DORMANT;
6345 }
6346
6347 return flags;
6348 }
6349 EXPORT_SYMBOL(dev_get_flags);
6350
6351 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6352 {
6353 unsigned int old_flags = dev->flags;
6354 int ret;
6355
6356 ASSERT_RTNL();
6357
6358 /*
6359 * Set the flags on our device.
6360 */
6361
6362 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6363 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6364 IFF_AUTOMEDIA)) |
6365 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6366 IFF_ALLMULTI));
6367
6368 /*
6369 * Load in the correct multicast list now the flags have changed.
6370 */
6371
6372 if ((old_flags ^ flags) & IFF_MULTICAST)
6373 dev_change_rx_flags(dev, IFF_MULTICAST);
6374
6375 dev_set_rx_mode(dev);
6376
6377 /*
6378 * Have we downed the interface. We handle IFF_UP ourselves
6379 * according to user attempts to set it, rather than blindly
6380 * setting it.
6381 */
6382
6383 ret = 0;
6384 if ((old_flags ^ flags) & IFF_UP)
6385 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6386
6387 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6388 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6389 unsigned int old_flags = dev->flags;
6390
6391 dev->gflags ^= IFF_PROMISC;
6392
6393 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6394 if (dev->flags != old_flags)
6395 dev_set_rx_mode(dev);
6396 }
6397
6398 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6399 is important. Some (broken) drivers set IFF_PROMISC, when
6400 IFF_ALLMULTI is requested not asking us and not reporting.
6401 */
6402 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6403 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6404
6405 dev->gflags ^= IFF_ALLMULTI;
6406 __dev_set_allmulti(dev, inc, false);
6407 }
6408
6409 return ret;
6410 }
6411
6412 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6413 unsigned int gchanges)
6414 {
6415 unsigned int changes = dev->flags ^ old_flags;
6416
6417 if (gchanges)
6418 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6419
6420 if (changes & IFF_UP) {
6421 if (dev->flags & IFF_UP)
6422 call_netdevice_notifiers(NETDEV_UP, dev);
6423 else
6424 call_netdevice_notifiers(NETDEV_DOWN, dev);
6425 }
6426
6427 if (dev->flags & IFF_UP &&
6428 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6429 struct netdev_notifier_change_info change_info;
6430
6431 change_info.flags_changed = changes;
6432 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6433 &change_info.info);
6434 }
6435 }
6436
6437 /**
6438 * dev_change_flags - change device settings
6439 * @dev: device
6440 * @flags: device state flags
6441 *
6442 * Change settings on device based state flags. The flags are
6443 * in the userspace exported format.
6444 */
6445 int dev_change_flags(struct net_device *dev, unsigned int flags)
6446 {
6447 int ret;
6448 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6449
6450 ret = __dev_change_flags(dev, flags);
6451 if (ret < 0)
6452 return ret;
6453
6454 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6455 __dev_notify_flags(dev, old_flags, changes);
6456 return ret;
6457 }
6458 EXPORT_SYMBOL(dev_change_flags);
6459
6460 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6461 {
6462 const struct net_device_ops *ops = dev->netdev_ops;
6463
6464 if (ops->ndo_change_mtu)
6465 return ops->ndo_change_mtu(dev, new_mtu);
6466
6467 dev->mtu = new_mtu;
6468 return 0;
6469 }
6470
6471 /**
6472 * dev_set_mtu - Change maximum transfer unit
6473 * @dev: device
6474 * @new_mtu: new transfer unit
6475 *
6476 * Change the maximum transfer size of the network device.
6477 */
6478 int dev_set_mtu(struct net_device *dev, int new_mtu)
6479 {
6480 int err, orig_mtu;
6481
6482 if (new_mtu == dev->mtu)
6483 return 0;
6484
6485 /* MTU must be positive. */
6486 if (new_mtu < 0)
6487 return -EINVAL;
6488
6489 if (!netif_device_present(dev))
6490 return -ENODEV;
6491
6492 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6493 err = notifier_to_errno(err);
6494 if (err)
6495 return err;
6496
6497 orig_mtu = dev->mtu;
6498 err = __dev_set_mtu(dev, new_mtu);
6499
6500 if (!err) {
6501 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6502 err = notifier_to_errno(err);
6503 if (err) {
6504 /* setting mtu back and notifying everyone again,
6505 * so that they have a chance to revert changes.
6506 */
6507 __dev_set_mtu(dev, orig_mtu);
6508 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6509 }
6510 }
6511 return err;
6512 }
6513 EXPORT_SYMBOL(dev_set_mtu);
6514
6515 /**
6516 * dev_set_group - Change group this device belongs to
6517 * @dev: device
6518 * @new_group: group this device should belong to
6519 */
6520 void dev_set_group(struct net_device *dev, int new_group)
6521 {
6522 dev->group = new_group;
6523 }
6524 EXPORT_SYMBOL(dev_set_group);
6525
6526 /**
6527 * dev_set_mac_address - Change Media Access Control Address
6528 * @dev: device
6529 * @sa: new address
6530 *
6531 * Change the hardware (MAC) address of the device
6532 */
6533 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6534 {
6535 const struct net_device_ops *ops = dev->netdev_ops;
6536 int err;
6537
6538 if (!ops->ndo_set_mac_address)
6539 return -EOPNOTSUPP;
6540 if (sa->sa_family != dev->type)
6541 return -EINVAL;
6542 if (!netif_device_present(dev))
6543 return -ENODEV;
6544 err = ops->ndo_set_mac_address(dev, sa);
6545 if (err)
6546 return err;
6547 dev->addr_assign_type = NET_ADDR_SET;
6548 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6549 add_device_randomness(dev->dev_addr, dev->addr_len);
6550 return 0;
6551 }
6552 EXPORT_SYMBOL(dev_set_mac_address);
6553
6554 /**
6555 * dev_change_carrier - Change device carrier
6556 * @dev: device
6557 * @new_carrier: new value
6558 *
6559 * Change device carrier
6560 */
6561 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6562 {
6563 const struct net_device_ops *ops = dev->netdev_ops;
6564
6565 if (!ops->ndo_change_carrier)
6566 return -EOPNOTSUPP;
6567 if (!netif_device_present(dev))
6568 return -ENODEV;
6569 return ops->ndo_change_carrier(dev, new_carrier);
6570 }
6571 EXPORT_SYMBOL(dev_change_carrier);
6572
6573 /**
6574 * dev_get_phys_port_id - Get device physical port ID
6575 * @dev: device
6576 * @ppid: port ID
6577 *
6578 * Get device physical port ID
6579 */
6580 int dev_get_phys_port_id(struct net_device *dev,
6581 struct netdev_phys_item_id *ppid)
6582 {
6583 const struct net_device_ops *ops = dev->netdev_ops;
6584
6585 if (!ops->ndo_get_phys_port_id)
6586 return -EOPNOTSUPP;
6587 return ops->ndo_get_phys_port_id(dev, ppid);
6588 }
6589 EXPORT_SYMBOL(dev_get_phys_port_id);
6590
6591 /**
6592 * dev_get_phys_port_name - Get device physical port name
6593 * @dev: device
6594 * @name: port name
6595 * @len: limit of bytes to copy to name
6596 *
6597 * Get device physical port name
6598 */
6599 int dev_get_phys_port_name(struct net_device *dev,
6600 char *name, size_t len)
6601 {
6602 const struct net_device_ops *ops = dev->netdev_ops;
6603
6604 if (!ops->ndo_get_phys_port_name)
6605 return -EOPNOTSUPP;
6606 return ops->ndo_get_phys_port_name(dev, name, len);
6607 }
6608 EXPORT_SYMBOL(dev_get_phys_port_name);
6609
6610 /**
6611 * dev_change_proto_down - update protocol port state information
6612 * @dev: device
6613 * @proto_down: new value
6614 *
6615 * This info can be used by switch drivers to set the phys state of the
6616 * port.
6617 */
6618 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6619 {
6620 const struct net_device_ops *ops = dev->netdev_ops;
6621
6622 if (!ops->ndo_change_proto_down)
6623 return -EOPNOTSUPP;
6624 if (!netif_device_present(dev))
6625 return -ENODEV;
6626 return ops->ndo_change_proto_down(dev, proto_down);
6627 }
6628 EXPORT_SYMBOL(dev_change_proto_down);
6629
6630 /**
6631 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6632 * @dev: device
6633 * @fd: new program fd or negative value to clear
6634 *
6635 * Set or clear a bpf program for a device
6636 */
6637 int dev_change_xdp_fd(struct net_device *dev, int fd)
6638 {
6639 const struct net_device_ops *ops = dev->netdev_ops;
6640 struct bpf_prog *prog = NULL;
6641 struct netdev_xdp xdp = {};
6642 int err;
6643
6644 if (!ops->ndo_xdp)
6645 return -EOPNOTSUPP;
6646 if (fd >= 0) {
6647 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6648 if (IS_ERR(prog))
6649 return PTR_ERR(prog);
6650 }
6651
6652 xdp.command = XDP_SETUP_PROG;
6653 xdp.prog = prog;
6654 err = ops->ndo_xdp(dev, &xdp);
6655 if (err < 0 && prog)
6656 bpf_prog_put(prog);
6657
6658 return err;
6659 }
6660 EXPORT_SYMBOL(dev_change_xdp_fd);
6661
6662 /**
6663 * dev_new_index - allocate an ifindex
6664 * @net: the applicable net namespace
6665 *
6666 * Returns a suitable unique value for a new device interface
6667 * number. The caller must hold the rtnl semaphore or the
6668 * dev_base_lock to be sure it remains unique.
6669 */
6670 static int dev_new_index(struct net *net)
6671 {
6672 int ifindex = net->ifindex;
6673 for (;;) {
6674 if (++ifindex <= 0)
6675 ifindex = 1;
6676 if (!__dev_get_by_index(net, ifindex))
6677 return net->ifindex = ifindex;
6678 }
6679 }
6680
6681 /* Delayed registration/unregisteration */
6682 static LIST_HEAD(net_todo_list);
6683 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6684
6685 static void net_set_todo(struct net_device *dev)
6686 {
6687 list_add_tail(&dev->todo_list, &net_todo_list);
6688 dev_net(dev)->dev_unreg_count++;
6689 }
6690
6691 static void rollback_registered_many(struct list_head *head)
6692 {
6693 struct net_device *dev, *tmp;
6694 LIST_HEAD(close_head);
6695
6696 BUG_ON(dev_boot_phase);
6697 ASSERT_RTNL();
6698
6699 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6700 /* Some devices call without registering
6701 * for initialization unwind. Remove those
6702 * devices and proceed with the remaining.
6703 */
6704 if (dev->reg_state == NETREG_UNINITIALIZED) {
6705 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6706 dev->name, dev);
6707
6708 WARN_ON(1);
6709 list_del(&dev->unreg_list);
6710 continue;
6711 }
6712 dev->dismantle = true;
6713 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6714 }
6715
6716 /* If device is running, close it first. */
6717 list_for_each_entry(dev, head, unreg_list)
6718 list_add_tail(&dev->close_list, &close_head);
6719 dev_close_many(&close_head, true);
6720
6721 list_for_each_entry(dev, head, unreg_list) {
6722 /* And unlink it from device chain. */
6723 unlist_netdevice(dev);
6724
6725 dev->reg_state = NETREG_UNREGISTERING;
6726 on_each_cpu(flush_backlog, dev, 1);
6727 }
6728
6729 synchronize_net();
6730
6731 list_for_each_entry(dev, head, unreg_list) {
6732 struct sk_buff *skb = NULL;
6733
6734 /* Shutdown queueing discipline. */
6735 dev_shutdown(dev);
6736
6737
6738 /* Notify protocols, that we are about to destroy
6739 this device. They should clean all the things.
6740 */
6741 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6742
6743 if (!dev->rtnl_link_ops ||
6744 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6745 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6746 GFP_KERNEL);
6747
6748 /*
6749 * Flush the unicast and multicast chains
6750 */
6751 dev_uc_flush(dev);
6752 dev_mc_flush(dev);
6753
6754 if (dev->netdev_ops->ndo_uninit)
6755 dev->netdev_ops->ndo_uninit(dev);
6756
6757 if (skb)
6758 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6759
6760 /* Notifier chain MUST detach us all upper devices. */
6761 WARN_ON(netdev_has_any_upper_dev(dev));
6762
6763 /* Remove entries from kobject tree */
6764 netdev_unregister_kobject(dev);
6765 #ifdef CONFIG_XPS
6766 /* Remove XPS queueing entries */
6767 netif_reset_xps_queues_gt(dev, 0);
6768 #endif
6769 }
6770
6771 synchronize_net();
6772
6773 list_for_each_entry(dev, head, unreg_list)
6774 dev_put(dev);
6775 }
6776
6777 static void rollback_registered(struct net_device *dev)
6778 {
6779 LIST_HEAD(single);
6780
6781 list_add(&dev->unreg_list, &single);
6782 rollback_registered_many(&single);
6783 list_del(&single);
6784 }
6785
6786 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6787 struct net_device *upper, netdev_features_t features)
6788 {
6789 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6790 netdev_features_t feature;
6791 int feature_bit;
6792
6793 for_each_netdev_feature(&upper_disables, feature_bit) {
6794 feature = __NETIF_F_BIT(feature_bit);
6795 if (!(upper->wanted_features & feature)
6796 && (features & feature)) {
6797 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6798 &feature, upper->name);
6799 features &= ~feature;
6800 }
6801 }
6802
6803 return features;
6804 }
6805
6806 static void netdev_sync_lower_features(struct net_device *upper,
6807 struct net_device *lower, netdev_features_t features)
6808 {
6809 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6810 netdev_features_t feature;
6811 int feature_bit;
6812
6813 for_each_netdev_feature(&upper_disables, feature_bit) {
6814 feature = __NETIF_F_BIT(feature_bit);
6815 if (!(features & feature) && (lower->features & feature)) {
6816 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6817 &feature, lower->name);
6818 lower->wanted_features &= ~feature;
6819 netdev_update_features(lower);
6820
6821 if (unlikely(lower->features & feature))
6822 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6823 &feature, lower->name);
6824 }
6825 }
6826 }
6827
6828 static netdev_features_t netdev_fix_features(struct net_device *dev,
6829 netdev_features_t features)
6830 {
6831 /* Fix illegal checksum combinations */
6832 if ((features & NETIF_F_HW_CSUM) &&
6833 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6834 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6835 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6836 }
6837
6838 /* TSO requires that SG is present as well. */
6839 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6840 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6841 features &= ~NETIF_F_ALL_TSO;
6842 }
6843
6844 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6845 !(features & NETIF_F_IP_CSUM)) {
6846 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6847 features &= ~NETIF_F_TSO;
6848 features &= ~NETIF_F_TSO_ECN;
6849 }
6850
6851 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6852 !(features & NETIF_F_IPV6_CSUM)) {
6853 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6854 features &= ~NETIF_F_TSO6;
6855 }
6856
6857 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6858 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6859 features &= ~NETIF_F_TSO_MANGLEID;
6860
6861 /* TSO ECN requires that TSO is present as well. */
6862 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6863 features &= ~NETIF_F_TSO_ECN;
6864
6865 /* Software GSO depends on SG. */
6866 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6867 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6868 features &= ~NETIF_F_GSO;
6869 }
6870
6871 /* UFO needs SG and checksumming */
6872 if (features & NETIF_F_UFO) {
6873 /* maybe split UFO into V4 and V6? */
6874 if (!(features & NETIF_F_HW_CSUM) &&
6875 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6876 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6877 netdev_dbg(dev,
6878 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6879 features &= ~NETIF_F_UFO;
6880 }
6881
6882 if (!(features & NETIF_F_SG)) {
6883 netdev_dbg(dev,
6884 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6885 features &= ~NETIF_F_UFO;
6886 }
6887 }
6888
6889 /* GSO partial features require GSO partial be set */
6890 if ((features & dev->gso_partial_features) &&
6891 !(features & NETIF_F_GSO_PARTIAL)) {
6892 netdev_dbg(dev,
6893 "Dropping partially supported GSO features since no GSO partial.\n");
6894 features &= ~dev->gso_partial_features;
6895 }
6896
6897 #ifdef CONFIG_NET_RX_BUSY_POLL
6898 if (dev->netdev_ops->ndo_busy_poll)
6899 features |= NETIF_F_BUSY_POLL;
6900 else
6901 #endif
6902 features &= ~NETIF_F_BUSY_POLL;
6903
6904 return features;
6905 }
6906
6907 int __netdev_update_features(struct net_device *dev)
6908 {
6909 struct net_device *upper, *lower;
6910 netdev_features_t features;
6911 struct list_head *iter;
6912 int err = -1;
6913
6914 ASSERT_RTNL();
6915
6916 features = netdev_get_wanted_features(dev);
6917
6918 if (dev->netdev_ops->ndo_fix_features)
6919 features = dev->netdev_ops->ndo_fix_features(dev, features);
6920
6921 /* driver might be less strict about feature dependencies */
6922 features = netdev_fix_features(dev, features);
6923
6924 /* some features can't be enabled if they're off an an upper device */
6925 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6926 features = netdev_sync_upper_features(dev, upper, features);
6927
6928 if (dev->features == features)
6929 goto sync_lower;
6930
6931 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6932 &dev->features, &features);
6933
6934 if (dev->netdev_ops->ndo_set_features)
6935 err = dev->netdev_ops->ndo_set_features(dev, features);
6936 else
6937 err = 0;
6938
6939 if (unlikely(err < 0)) {
6940 netdev_err(dev,
6941 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6942 err, &features, &dev->features);
6943 /* return non-0 since some features might have changed and
6944 * it's better to fire a spurious notification than miss it
6945 */
6946 return -1;
6947 }
6948
6949 sync_lower:
6950 /* some features must be disabled on lower devices when disabled
6951 * on an upper device (think: bonding master or bridge)
6952 */
6953 netdev_for_each_lower_dev(dev, lower, iter)
6954 netdev_sync_lower_features(dev, lower, features);
6955
6956 if (!err)
6957 dev->features = features;
6958
6959 return err < 0 ? 0 : 1;
6960 }
6961
6962 /**
6963 * netdev_update_features - recalculate device features
6964 * @dev: the device to check
6965 *
6966 * Recalculate dev->features set and send notifications if it
6967 * has changed. Should be called after driver or hardware dependent
6968 * conditions might have changed that influence the features.
6969 */
6970 void netdev_update_features(struct net_device *dev)
6971 {
6972 if (__netdev_update_features(dev))
6973 netdev_features_change(dev);
6974 }
6975 EXPORT_SYMBOL(netdev_update_features);
6976
6977 /**
6978 * netdev_change_features - recalculate device features
6979 * @dev: the device to check
6980 *
6981 * Recalculate dev->features set and send notifications even
6982 * if they have not changed. Should be called instead of
6983 * netdev_update_features() if also dev->vlan_features might
6984 * have changed to allow the changes to be propagated to stacked
6985 * VLAN devices.
6986 */
6987 void netdev_change_features(struct net_device *dev)
6988 {
6989 __netdev_update_features(dev);
6990 netdev_features_change(dev);
6991 }
6992 EXPORT_SYMBOL(netdev_change_features);
6993
6994 /**
6995 * netif_stacked_transfer_operstate - transfer operstate
6996 * @rootdev: the root or lower level device to transfer state from
6997 * @dev: the device to transfer operstate to
6998 *
6999 * Transfer operational state from root to device. This is normally
7000 * called when a stacking relationship exists between the root
7001 * device and the device(a leaf device).
7002 */
7003 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7004 struct net_device *dev)
7005 {
7006 if (rootdev->operstate == IF_OPER_DORMANT)
7007 netif_dormant_on(dev);
7008 else
7009 netif_dormant_off(dev);
7010
7011 if (netif_carrier_ok(rootdev)) {
7012 if (!netif_carrier_ok(dev))
7013 netif_carrier_on(dev);
7014 } else {
7015 if (netif_carrier_ok(dev))
7016 netif_carrier_off(dev);
7017 }
7018 }
7019 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7020
7021 #ifdef CONFIG_SYSFS
7022 static int netif_alloc_rx_queues(struct net_device *dev)
7023 {
7024 unsigned int i, count = dev->num_rx_queues;
7025 struct netdev_rx_queue *rx;
7026 size_t sz = count * sizeof(*rx);
7027
7028 BUG_ON(count < 1);
7029
7030 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7031 if (!rx) {
7032 rx = vzalloc(sz);
7033 if (!rx)
7034 return -ENOMEM;
7035 }
7036 dev->_rx = rx;
7037
7038 for (i = 0; i < count; i++)
7039 rx[i].dev = dev;
7040 return 0;
7041 }
7042 #endif
7043
7044 static void netdev_init_one_queue(struct net_device *dev,
7045 struct netdev_queue *queue, void *_unused)
7046 {
7047 /* Initialize queue lock */
7048 spin_lock_init(&queue->_xmit_lock);
7049 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7050 queue->xmit_lock_owner = -1;
7051 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7052 queue->dev = dev;
7053 #ifdef CONFIG_BQL
7054 dql_init(&queue->dql, HZ);
7055 #endif
7056 }
7057
7058 static void netif_free_tx_queues(struct net_device *dev)
7059 {
7060 kvfree(dev->_tx);
7061 }
7062
7063 static int netif_alloc_netdev_queues(struct net_device *dev)
7064 {
7065 unsigned int count = dev->num_tx_queues;
7066 struct netdev_queue *tx;
7067 size_t sz = count * sizeof(*tx);
7068
7069 if (count < 1 || count > 0xffff)
7070 return -EINVAL;
7071
7072 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7073 if (!tx) {
7074 tx = vzalloc(sz);
7075 if (!tx)
7076 return -ENOMEM;
7077 }
7078 dev->_tx = tx;
7079
7080 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7081 spin_lock_init(&dev->tx_global_lock);
7082
7083 return 0;
7084 }
7085
7086 void netif_tx_stop_all_queues(struct net_device *dev)
7087 {
7088 unsigned int i;
7089
7090 for (i = 0; i < dev->num_tx_queues; i++) {
7091 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7092 netif_tx_stop_queue(txq);
7093 }
7094 }
7095 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7096
7097 /**
7098 * register_netdevice - register a network device
7099 * @dev: device to register
7100 *
7101 * Take a completed network device structure and add it to the kernel
7102 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7103 * chain. 0 is returned on success. A negative errno code is returned
7104 * on a failure to set up the device, or if the name is a duplicate.
7105 *
7106 * Callers must hold the rtnl semaphore. You may want
7107 * register_netdev() instead of this.
7108 *
7109 * BUGS:
7110 * The locking appears insufficient to guarantee two parallel registers
7111 * will not get the same name.
7112 */
7113
7114 int register_netdevice(struct net_device *dev)
7115 {
7116 int ret;
7117 struct net *net = dev_net(dev);
7118
7119 BUG_ON(dev_boot_phase);
7120 ASSERT_RTNL();
7121
7122 might_sleep();
7123
7124 /* When net_device's are persistent, this will be fatal. */
7125 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7126 BUG_ON(!net);
7127
7128 spin_lock_init(&dev->addr_list_lock);
7129 netdev_set_addr_lockdep_class(dev);
7130
7131 ret = dev_get_valid_name(net, dev, dev->name);
7132 if (ret < 0)
7133 goto out;
7134
7135 /* Init, if this function is available */
7136 if (dev->netdev_ops->ndo_init) {
7137 ret = dev->netdev_ops->ndo_init(dev);
7138 if (ret) {
7139 if (ret > 0)
7140 ret = -EIO;
7141 goto out;
7142 }
7143 }
7144
7145 if (((dev->hw_features | dev->features) &
7146 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7147 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7148 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7149 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7150 ret = -EINVAL;
7151 goto err_uninit;
7152 }
7153
7154 ret = -EBUSY;
7155 if (!dev->ifindex)
7156 dev->ifindex = dev_new_index(net);
7157 else if (__dev_get_by_index(net, dev->ifindex))
7158 goto err_uninit;
7159
7160 /* Transfer changeable features to wanted_features and enable
7161 * software offloads (GSO and GRO).
7162 */
7163 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7164 dev->features |= NETIF_F_SOFT_FEATURES;
7165 dev->wanted_features = dev->features & dev->hw_features;
7166
7167 if (!(dev->flags & IFF_LOOPBACK))
7168 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7169
7170 /* If IPv4 TCP segmentation offload is supported we should also
7171 * allow the device to enable segmenting the frame with the option
7172 * of ignoring a static IP ID value. This doesn't enable the
7173 * feature itself but allows the user to enable it later.
7174 */
7175 if (dev->hw_features & NETIF_F_TSO)
7176 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7177 if (dev->vlan_features & NETIF_F_TSO)
7178 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7179 if (dev->mpls_features & NETIF_F_TSO)
7180 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7181 if (dev->hw_enc_features & NETIF_F_TSO)
7182 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7183
7184 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7185 */
7186 dev->vlan_features |= NETIF_F_HIGHDMA;
7187
7188 /* Make NETIF_F_SG inheritable to tunnel devices.
7189 */
7190 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7191
7192 /* Make NETIF_F_SG inheritable to MPLS.
7193 */
7194 dev->mpls_features |= NETIF_F_SG;
7195
7196 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7197 ret = notifier_to_errno(ret);
7198 if (ret)
7199 goto err_uninit;
7200
7201 ret = netdev_register_kobject(dev);
7202 if (ret)
7203 goto err_uninit;
7204 dev->reg_state = NETREG_REGISTERED;
7205
7206 __netdev_update_features(dev);
7207
7208 /*
7209 * Default initial state at registry is that the
7210 * device is present.
7211 */
7212
7213 set_bit(__LINK_STATE_PRESENT, &dev->state);
7214
7215 linkwatch_init_dev(dev);
7216
7217 dev_init_scheduler(dev);
7218 dev_hold(dev);
7219 list_netdevice(dev);
7220 add_device_randomness(dev->dev_addr, dev->addr_len);
7221
7222 /* If the device has permanent device address, driver should
7223 * set dev_addr and also addr_assign_type should be set to
7224 * NET_ADDR_PERM (default value).
7225 */
7226 if (dev->addr_assign_type == NET_ADDR_PERM)
7227 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7228
7229 /* Notify protocols, that a new device appeared. */
7230 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7231 ret = notifier_to_errno(ret);
7232 if (ret) {
7233 rollback_registered(dev);
7234 dev->reg_state = NETREG_UNREGISTERED;
7235 }
7236 /*
7237 * Prevent userspace races by waiting until the network
7238 * device is fully setup before sending notifications.
7239 */
7240 if (!dev->rtnl_link_ops ||
7241 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7242 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7243
7244 out:
7245 return ret;
7246
7247 err_uninit:
7248 if (dev->netdev_ops->ndo_uninit)
7249 dev->netdev_ops->ndo_uninit(dev);
7250 goto out;
7251 }
7252 EXPORT_SYMBOL(register_netdevice);
7253
7254 /**
7255 * init_dummy_netdev - init a dummy network device for NAPI
7256 * @dev: device to init
7257 *
7258 * This takes a network device structure and initialize the minimum
7259 * amount of fields so it can be used to schedule NAPI polls without
7260 * registering a full blown interface. This is to be used by drivers
7261 * that need to tie several hardware interfaces to a single NAPI
7262 * poll scheduler due to HW limitations.
7263 */
7264 int init_dummy_netdev(struct net_device *dev)
7265 {
7266 /* Clear everything. Note we don't initialize spinlocks
7267 * are they aren't supposed to be taken by any of the
7268 * NAPI code and this dummy netdev is supposed to be
7269 * only ever used for NAPI polls
7270 */
7271 memset(dev, 0, sizeof(struct net_device));
7272
7273 /* make sure we BUG if trying to hit standard
7274 * register/unregister code path
7275 */
7276 dev->reg_state = NETREG_DUMMY;
7277
7278 /* NAPI wants this */
7279 INIT_LIST_HEAD(&dev->napi_list);
7280
7281 /* a dummy interface is started by default */
7282 set_bit(__LINK_STATE_PRESENT, &dev->state);
7283 set_bit(__LINK_STATE_START, &dev->state);
7284
7285 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7286 * because users of this 'device' dont need to change
7287 * its refcount.
7288 */
7289
7290 return 0;
7291 }
7292 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7293
7294
7295 /**
7296 * register_netdev - register a network device
7297 * @dev: device to register
7298 *
7299 * Take a completed network device structure and add it to the kernel
7300 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7301 * chain. 0 is returned on success. A negative errno code is returned
7302 * on a failure to set up the device, or if the name is a duplicate.
7303 *
7304 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7305 * and expands the device name if you passed a format string to
7306 * alloc_netdev.
7307 */
7308 int register_netdev(struct net_device *dev)
7309 {
7310 int err;
7311
7312 rtnl_lock();
7313 err = register_netdevice(dev);
7314 rtnl_unlock();
7315 return err;
7316 }
7317 EXPORT_SYMBOL(register_netdev);
7318
7319 int netdev_refcnt_read(const struct net_device *dev)
7320 {
7321 int i, refcnt = 0;
7322
7323 for_each_possible_cpu(i)
7324 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7325 return refcnt;
7326 }
7327 EXPORT_SYMBOL(netdev_refcnt_read);
7328
7329 /**
7330 * netdev_wait_allrefs - wait until all references are gone.
7331 * @dev: target net_device
7332 *
7333 * This is called when unregistering network devices.
7334 *
7335 * Any protocol or device that holds a reference should register
7336 * for netdevice notification, and cleanup and put back the
7337 * reference if they receive an UNREGISTER event.
7338 * We can get stuck here if buggy protocols don't correctly
7339 * call dev_put.
7340 */
7341 static void netdev_wait_allrefs(struct net_device *dev)
7342 {
7343 unsigned long rebroadcast_time, warning_time;
7344 int refcnt;
7345
7346 linkwatch_forget_dev(dev);
7347
7348 rebroadcast_time = warning_time = jiffies;
7349 refcnt = netdev_refcnt_read(dev);
7350
7351 while (refcnt != 0) {
7352 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7353 rtnl_lock();
7354
7355 /* Rebroadcast unregister notification */
7356 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7357
7358 __rtnl_unlock();
7359 rcu_barrier();
7360 rtnl_lock();
7361
7362 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7363 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7364 &dev->state)) {
7365 /* We must not have linkwatch events
7366 * pending on unregister. If this
7367 * happens, we simply run the queue
7368 * unscheduled, resulting in a noop
7369 * for this device.
7370 */
7371 linkwatch_run_queue();
7372 }
7373
7374 __rtnl_unlock();
7375
7376 rebroadcast_time = jiffies;
7377 }
7378
7379 msleep(250);
7380
7381 refcnt = netdev_refcnt_read(dev);
7382
7383 if (time_after(jiffies, warning_time + 10 * HZ)) {
7384 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7385 dev->name, refcnt);
7386 warning_time = jiffies;
7387 }
7388 }
7389 }
7390
7391 /* The sequence is:
7392 *
7393 * rtnl_lock();
7394 * ...
7395 * register_netdevice(x1);
7396 * register_netdevice(x2);
7397 * ...
7398 * unregister_netdevice(y1);
7399 * unregister_netdevice(y2);
7400 * ...
7401 * rtnl_unlock();
7402 * free_netdev(y1);
7403 * free_netdev(y2);
7404 *
7405 * We are invoked by rtnl_unlock().
7406 * This allows us to deal with problems:
7407 * 1) We can delete sysfs objects which invoke hotplug
7408 * without deadlocking with linkwatch via keventd.
7409 * 2) Since we run with the RTNL semaphore not held, we can sleep
7410 * safely in order to wait for the netdev refcnt to drop to zero.
7411 *
7412 * We must not return until all unregister events added during
7413 * the interval the lock was held have been completed.
7414 */
7415 void netdev_run_todo(void)
7416 {
7417 struct list_head list;
7418
7419 /* Snapshot list, allow later requests */
7420 list_replace_init(&net_todo_list, &list);
7421
7422 __rtnl_unlock();
7423
7424
7425 /* Wait for rcu callbacks to finish before next phase */
7426 if (!list_empty(&list))
7427 rcu_barrier();
7428
7429 while (!list_empty(&list)) {
7430 struct net_device *dev
7431 = list_first_entry(&list, struct net_device, todo_list);
7432 list_del(&dev->todo_list);
7433
7434 rtnl_lock();
7435 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7436 __rtnl_unlock();
7437
7438 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7439 pr_err("network todo '%s' but state %d\n",
7440 dev->name, dev->reg_state);
7441 dump_stack();
7442 continue;
7443 }
7444
7445 dev->reg_state = NETREG_UNREGISTERED;
7446
7447 netdev_wait_allrefs(dev);
7448
7449 /* paranoia */
7450 BUG_ON(netdev_refcnt_read(dev));
7451 BUG_ON(!list_empty(&dev->ptype_all));
7452 BUG_ON(!list_empty(&dev->ptype_specific));
7453 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7454 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7455 WARN_ON(dev->dn_ptr);
7456
7457 if (dev->destructor)
7458 dev->destructor(dev);
7459
7460 /* Report a network device has been unregistered */
7461 rtnl_lock();
7462 dev_net(dev)->dev_unreg_count--;
7463 __rtnl_unlock();
7464 wake_up(&netdev_unregistering_wq);
7465
7466 /* Free network device */
7467 kobject_put(&dev->dev.kobj);
7468 }
7469 }
7470
7471 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7472 * all the same fields in the same order as net_device_stats, with only
7473 * the type differing, but rtnl_link_stats64 may have additional fields
7474 * at the end for newer counters.
7475 */
7476 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7477 const struct net_device_stats *netdev_stats)
7478 {
7479 #if BITS_PER_LONG == 64
7480 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7481 memcpy(stats64, netdev_stats, sizeof(*stats64));
7482 /* zero out counters that only exist in rtnl_link_stats64 */
7483 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7484 sizeof(*stats64) - sizeof(*netdev_stats));
7485 #else
7486 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7487 const unsigned long *src = (const unsigned long *)netdev_stats;
7488 u64 *dst = (u64 *)stats64;
7489
7490 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7491 for (i = 0; i < n; i++)
7492 dst[i] = src[i];
7493 /* zero out counters that only exist in rtnl_link_stats64 */
7494 memset((char *)stats64 + n * sizeof(u64), 0,
7495 sizeof(*stats64) - n * sizeof(u64));
7496 #endif
7497 }
7498 EXPORT_SYMBOL(netdev_stats_to_stats64);
7499
7500 /**
7501 * dev_get_stats - get network device statistics
7502 * @dev: device to get statistics from
7503 * @storage: place to store stats
7504 *
7505 * Get network statistics from device. Return @storage.
7506 * The device driver may provide its own method by setting
7507 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7508 * otherwise the internal statistics structure is used.
7509 */
7510 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7511 struct rtnl_link_stats64 *storage)
7512 {
7513 const struct net_device_ops *ops = dev->netdev_ops;
7514
7515 if (ops->ndo_get_stats64) {
7516 memset(storage, 0, sizeof(*storage));
7517 ops->ndo_get_stats64(dev, storage);
7518 } else if (ops->ndo_get_stats) {
7519 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7520 } else {
7521 netdev_stats_to_stats64(storage, &dev->stats);
7522 }
7523 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7524 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7525 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7526 return storage;
7527 }
7528 EXPORT_SYMBOL(dev_get_stats);
7529
7530 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7531 {
7532 struct netdev_queue *queue = dev_ingress_queue(dev);
7533
7534 #ifdef CONFIG_NET_CLS_ACT
7535 if (queue)
7536 return queue;
7537 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7538 if (!queue)
7539 return NULL;
7540 netdev_init_one_queue(dev, queue, NULL);
7541 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7542 queue->qdisc_sleeping = &noop_qdisc;
7543 rcu_assign_pointer(dev->ingress_queue, queue);
7544 #endif
7545 return queue;
7546 }
7547
7548 static const struct ethtool_ops default_ethtool_ops;
7549
7550 void netdev_set_default_ethtool_ops(struct net_device *dev,
7551 const struct ethtool_ops *ops)
7552 {
7553 if (dev->ethtool_ops == &default_ethtool_ops)
7554 dev->ethtool_ops = ops;
7555 }
7556 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7557
7558 void netdev_freemem(struct net_device *dev)
7559 {
7560 char *addr = (char *)dev - dev->padded;
7561
7562 kvfree(addr);
7563 }
7564
7565 /**
7566 * alloc_netdev_mqs - allocate network device
7567 * @sizeof_priv: size of private data to allocate space for
7568 * @name: device name format string
7569 * @name_assign_type: origin of device name
7570 * @setup: callback to initialize device
7571 * @txqs: the number of TX subqueues to allocate
7572 * @rxqs: the number of RX subqueues to allocate
7573 *
7574 * Allocates a struct net_device with private data area for driver use
7575 * and performs basic initialization. Also allocates subqueue structs
7576 * for each queue on the device.
7577 */
7578 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7579 unsigned char name_assign_type,
7580 void (*setup)(struct net_device *),
7581 unsigned int txqs, unsigned int rxqs)
7582 {
7583 struct net_device *dev;
7584 size_t alloc_size;
7585 struct net_device *p;
7586
7587 BUG_ON(strlen(name) >= sizeof(dev->name));
7588
7589 if (txqs < 1) {
7590 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7591 return NULL;
7592 }
7593
7594 #ifdef CONFIG_SYSFS
7595 if (rxqs < 1) {
7596 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7597 return NULL;
7598 }
7599 #endif
7600
7601 alloc_size = sizeof(struct net_device);
7602 if (sizeof_priv) {
7603 /* ensure 32-byte alignment of private area */
7604 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7605 alloc_size += sizeof_priv;
7606 }
7607 /* ensure 32-byte alignment of whole construct */
7608 alloc_size += NETDEV_ALIGN - 1;
7609
7610 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7611 if (!p)
7612 p = vzalloc(alloc_size);
7613 if (!p)
7614 return NULL;
7615
7616 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7617 dev->padded = (char *)dev - (char *)p;
7618
7619 dev->pcpu_refcnt = alloc_percpu(int);
7620 if (!dev->pcpu_refcnt)
7621 goto free_dev;
7622
7623 if (dev_addr_init(dev))
7624 goto free_pcpu;
7625
7626 dev_mc_init(dev);
7627 dev_uc_init(dev);
7628
7629 dev_net_set(dev, &init_net);
7630
7631 dev->gso_max_size = GSO_MAX_SIZE;
7632 dev->gso_max_segs = GSO_MAX_SEGS;
7633
7634 INIT_LIST_HEAD(&dev->napi_list);
7635 INIT_LIST_HEAD(&dev->unreg_list);
7636 INIT_LIST_HEAD(&dev->close_list);
7637 INIT_LIST_HEAD(&dev->link_watch_list);
7638 INIT_LIST_HEAD(&dev->adj_list.upper);
7639 INIT_LIST_HEAD(&dev->adj_list.lower);
7640 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7641 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7642 INIT_LIST_HEAD(&dev->ptype_all);
7643 INIT_LIST_HEAD(&dev->ptype_specific);
7644 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7645 setup(dev);
7646
7647 if (!dev->tx_queue_len) {
7648 dev->priv_flags |= IFF_NO_QUEUE;
7649 dev->tx_queue_len = 1;
7650 }
7651
7652 dev->num_tx_queues = txqs;
7653 dev->real_num_tx_queues = txqs;
7654 if (netif_alloc_netdev_queues(dev))
7655 goto free_all;
7656
7657 #ifdef CONFIG_SYSFS
7658 dev->num_rx_queues = rxqs;
7659 dev->real_num_rx_queues = rxqs;
7660 if (netif_alloc_rx_queues(dev))
7661 goto free_all;
7662 #endif
7663
7664 strcpy(dev->name, name);
7665 dev->name_assign_type = name_assign_type;
7666 dev->group = INIT_NETDEV_GROUP;
7667 if (!dev->ethtool_ops)
7668 dev->ethtool_ops = &default_ethtool_ops;
7669
7670 nf_hook_ingress_init(dev);
7671
7672 return dev;
7673
7674 free_all:
7675 free_netdev(dev);
7676 return NULL;
7677
7678 free_pcpu:
7679 free_percpu(dev->pcpu_refcnt);
7680 free_dev:
7681 netdev_freemem(dev);
7682 return NULL;
7683 }
7684 EXPORT_SYMBOL(alloc_netdev_mqs);
7685
7686 /**
7687 * free_netdev - free network device
7688 * @dev: device
7689 *
7690 * This function does the last stage of destroying an allocated device
7691 * interface. The reference to the device object is released.
7692 * If this is the last reference then it will be freed.
7693 * Must be called in process context.
7694 */
7695 void free_netdev(struct net_device *dev)
7696 {
7697 struct napi_struct *p, *n;
7698
7699 might_sleep();
7700 netif_free_tx_queues(dev);
7701 #ifdef CONFIG_SYSFS
7702 kvfree(dev->_rx);
7703 #endif
7704
7705 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7706
7707 /* Flush device addresses */
7708 dev_addr_flush(dev);
7709
7710 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7711 netif_napi_del(p);
7712
7713 free_percpu(dev->pcpu_refcnt);
7714 dev->pcpu_refcnt = NULL;
7715
7716 /* Compatibility with error handling in drivers */
7717 if (dev->reg_state == NETREG_UNINITIALIZED) {
7718 netdev_freemem(dev);
7719 return;
7720 }
7721
7722 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7723 dev->reg_state = NETREG_RELEASED;
7724
7725 /* will free via device release */
7726 put_device(&dev->dev);
7727 }
7728 EXPORT_SYMBOL(free_netdev);
7729
7730 /**
7731 * synchronize_net - Synchronize with packet receive processing
7732 *
7733 * Wait for packets currently being received to be done.
7734 * Does not block later packets from starting.
7735 */
7736 void synchronize_net(void)
7737 {
7738 might_sleep();
7739 if (rtnl_is_locked())
7740 synchronize_rcu_expedited();
7741 else
7742 synchronize_rcu();
7743 }
7744 EXPORT_SYMBOL(synchronize_net);
7745
7746 /**
7747 * unregister_netdevice_queue - remove device from the kernel
7748 * @dev: device
7749 * @head: list
7750 *
7751 * This function shuts down a device interface and removes it
7752 * from the kernel tables.
7753 * If head not NULL, device is queued to be unregistered later.
7754 *
7755 * Callers must hold the rtnl semaphore. You may want
7756 * unregister_netdev() instead of this.
7757 */
7758
7759 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7760 {
7761 ASSERT_RTNL();
7762
7763 if (head) {
7764 list_move_tail(&dev->unreg_list, head);
7765 } else {
7766 rollback_registered(dev);
7767 /* Finish processing unregister after unlock */
7768 net_set_todo(dev);
7769 }
7770 }
7771 EXPORT_SYMBOL(unregister_netdevice_queue);
7772
7773 /**
7774 * unregister_netdevice_many - unregister many devices
7775 * @head: list of devices
7776 *
7777 * Note: As most callers use a stack allocated list_head,
7778 * we force a list_del() to make sure stack wont be corrupted later.
7779 */
7780 void unregister_netdevice_many(struct list_head *head)
7781 {
7782 struct net_device *dev;
7783
7784 if (!list_empty(head)) {
7785 rollback_registered_many(head);
7786 list_for_each_entry(dev, head, unreg_list)
7787 net_set_todo(dev);
7788 list_del(head);
7789 }
7790 }
7791 EXPORT_SYMBOL(unregister_netdevice_many);
7792
7793 /**
7794 * unregister_netdev - remove device from the kernel
7795 * @dev: device
7796 *
7797 * This function shuts down a device interface and removes it
7798 * from the kernel tables.
7799 *
7800 * This is just a wrapper for unregister_netdevice that takes
7801 * the rtnl semaphore. In general you want to use this and not
7802 * unregister_netdevice.
7803 */
7804 void unregister_netdev(struct net_device *dev)
7805 {
7806 rtnl_lock();
7807 unregister_netdevice(dev);
7808 rtnl_unlock();
7809 }
7810 EXPORT_SYMBOL(unregister_netdev);
7811
7812 /**
7813 * dev_change_net_namespace - move device to different nethost namespace
7814 * @dev: device
7815 * @net: network namespace
7816 * @pat: If not NULL name pattern to try if the current device name
7817 * is already taken in the destination network namespace.
7818 *
7819 * This function shuts down a device interface and moves it
7820 * to a new network namespace. On success 0 is returned, on
7821 * a failure a netagive errno code is returned.
7822 *
7823 * Callers must hold the rtnl semaphore.
7824 */
7825
7826 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7827 {
7828 int err;
7829
7830 ASSERT_RTNL();
7831
7832 /* Don't allow namespace local devices to be moved. */
7833 err = -EINVAL;
7834 if (dev->features & NETIF_F_NETNS_LOCAL)
7835 goto out;
7836
7837 /* Ensure the device has been registrered */
7838 if (dev->reg_state != NETREG_REGISTERED)
7839 goto out;
7840
7841 /* Get out if there is nothing todo */
7842 err = 0;
7843 if (net_eq(dev_net(dev), net))
7844 goto out;
7845
7846 /* Pick the destination device name, and ensure
7847 * we can use it in the destination network namespace.
7848 */
7849 err = -EEXIST;
7850 if (__dev_get_by_name(net, dev->name)) {
7851 /* We get here if we can't use the current device name */
7852 if (!pat)
7853 goto out;
7854 if (dev_get_valid_name(net, dev, pat) < 0)
7855 goto out;
7856 }
7857
7858 /*
7859 * And now a mini version of register_netdevice unregister_netdevice.
7860 */
7861
7862 /* If device is running close it first. */
7863 dev_close(dev);
7864
7865 /* And unlink it from device chain */
7866 err = -ENODEV;
7867 unlist_netdevice(dev);
7868
7869 synchronize_net();
7870
7871 /* Shutdown queueing discipline. */
7872 dev_shutdown(dev);
7873
7874 /* Notify protocols, that we are about to destroy
7875 this device. They should clean all the things.
7876
7877 Note that dev->reg_state stays at NETREG_REGISTERED.
7878 This is wanted because this way 8021q and macvlan know
7879 the device is just moving and can keep their slaves up.
7880 */
7881 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7882 rcu_barrier();
7883 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7884 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7885
7886 /*
7887 * Flush the unicast and multicast chains
7888 */
7889 dev_uc_flush(dev);
7890 dev_mc_flush(dev);
7891
7892 /* Send a netdev-removed uevent to the old namespace */
7893 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7894 netdev_adjacent_del_links(dev);
7895
7896 /* Actually switch the network namespace */
7897 dev_net_set(dev, net);
7898
7899 /* If there is an ifindex conflict assign a new one */
7900 if (__dev_get_by_index(net, dev->ifindex))
7901 dev->ifindex = dev_new_index(net);
7902
7903 /* Send a netdev-add uevent to the new namespace */
7904 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7905 netdev_adjacent_add_links(dev);
7906
7907 /* Fixup kobjects */
7908 err = device_rename(&dev->dev, dev->name);
7909 WARN_ON(err);
7910
7911 /* Add the device back in the hashes */
7912 list_netdevice(dev);
7913
7914 /* Notify protocols, that a new device appeared. */
7915 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7916
7917 /*
7918 * Prevent userspace races by waiting until the network
7919 * device is fully setup before sending notifications.
7920 */
7921 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7922
7923 synchronize_net();
7924 err = 0;
7925 out:
7926 return err;
7927 }
7928 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7929
7930 static int dev_cpu_callback(struct notifier_block *nfb,
7931 unsigned long action,
7932 void *ocpu)
7933 {
7934 struct sk_buff **list_skb;
7935 struct sk_buff *skb;
7936 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7937 struct softnet_data *sd, *oldsd;
7938
7939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7940 return NOTIFY_OK;
7941
7942 local_irq_disable();
7943 cpu = smp_processor_id();
7944 sd = &per_cpu(softnet_data, cpu);
7945 oldsd = &per_cpu(softnet_data, oldcpu);
7946
7947 /* Find end of our completion_queue. */
7948 list_skb = &sd->completion_queue;
7949 while (*list_skb)
7950 list_skb = &(*list_skb)->next;
7951 /* Append completion queue from offline CPU. */
7952 *list_skb = oldsd->completion_queue;
7953 oldsd->completion_queue = NULL;
7954
7955 /* Append output queue from offline CPU. */
7956 if (oldsd->output_queue) {
7957 *sd->output_queue_tailp = oldsd->output_queue;
7958 sd->output_queue_tailp = oldsd->output_queue_tailp;
7959 oldsd->output_queue = NULL;
7960 oldsd->output_queue_tailp = &oldsd->output_queue;
7961 }
7962 /* Append NAPI poll list from offline CPU, with one exception :
7963 * process_backlog() must be called by cpu owning percpu backlog.
7964 * We properly handle process_queue & input_pkt_queue later.
7965 */
7966 while (!list_empty(&oldsd->poll_list)) {
7967 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7968 struct napi_struct,
7969 poll_list);
7970
7971 list_del_init(&napi->poll_list);
7972 if (napi->poll == process_backlog)
7973 napi->state = 0;
7974 else
7975 ____napi_schedule(sd, napi);
7976 }
7977
7978 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7979 local_irq_enable();
7980
7981 /* Process offline CPU's input_pkt_queue */
7982 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7983 netif_rx_ni(skb);
7984 input_queue_head_incr(oldsd);
7985 }
7986 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7987 netif_rx_ni(skb);
7988 input_queue_head_incr(oldsd);
7989 }
7990
7991 return NOTIFY_OK;
7992 }
7993
7994
7995 /**
7996 * netdev_increment_features - increment feature set by one
7997 * @all: current feature set
7998 * @one: new feature set
7999 * @mask: mask feature set
8000 *
8001 * Computes a new feature set after adding a device with feature set
8002 * @one to the master device with current feature set @all. Will not
8003 * enable anything that is off in @mask. Returns the new feature set.
8004 */
8005 netdev_features_t netdev_increment_features(netdev_features_t all,
8006 netdev_features_t one, netdev_features_t mask)
8007 {
8008 if (mask & NETIF_F_HW_CSUM)
8009 mask |= NETIF_F_CSUM_MASK;
8010 mask |= NETIF_F_VLAN_CHALLENGED;
8011
8012 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8013 all &= one | ~NETIF_F_ALL_FOR_ALL;
8014
8015 /* If one device supports hw checksumming, set for all. */
8016 if (all & NETIF_F_HW_CSUM)
8017 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8018
8019 return all;
8020 }
8021 EXPORT_SYMBOL(netdev_increment_features);
8022
8023 static struct hlist_head * __net_init netdev_create_hash(void)
8024 {
8025 int i;
8026 struct hlist_head *hash;
8027
8028 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8029 if (hash != NULL)
8030 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8031 INIT_HLIST_HEAD(&hash[i]);
8032
8033 return hash;
8034 }
8035
8036 /* Initialize per network namespace state */
8037 static int __net_init netdev_init(struct net *net)
8038 {
8039 if (net != &init_net)
8040 INIT_LIST_HEAD(&net->dev_base_head);
8041
8042 net->dev_name_head = netdev_create_hash();
8043 if (net->dev_name_head == NULL)
8044 goto err_name;
8045
8046 net->dev_index_head = netdev_create_hash();
8047 if (net->dev_index_head == NULL)
8048 goto err_idx;
8049
8050 return 0;
8051
8052 err_idx:
8053 kfree(net->dev_name_head);
8054 err_name:
8055 return -ENOMEM;
8056 }
8057
8058 /**
8059 * netdev_drivername - network driver for the device
8060 * @dev: network device
8061 *
8062 * Determine network driver for device.
8063 */
8064 const char *netdev_drivername(const struct net_device *dev)
8065 {
8066 const struct device_driver *driver;
8067 const struct device *parent;
8068 const char *empty = "";
8069
8070 parent = dev->dev.parent;
8071 if (!parent)
8072 return empty;
8073
8074 driver = parent->driver;
8075 if (driver && driver->name)
8076 return driver->name;
8077 return empty;
8078 }
8079
8080 static void __netdev_printk(const char *level, const struct net_device *dev,
8081 struct va_format *vaf)
8082 {
8083 if (dev && dev->dev.parent) {
8084 dev_printk_emit(level[1] - '0',
8085 dev->dev.parent,
8086 "%s %s %s%s: %pV",
8087 dev_driver_string(dev->dev.parent),
8088 dev_name(dev->dev.parent),
8089 netdev_name(dev), netdev_reg_state(dev),
8090 vaf);
8091 } else if (dev) {
8092 printk("%s%s%s: %pV",
8093 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8094 } else {
8095 printk("%s(NULL net_device): %pV", level, vaf);
8096 }
8097 }
8098
8099 void netdev_printk(const char *level, const struct net_device *dev,
8100 const char *format, ...)
8101 {
8102 struct va_format vaf;
8103 va_list args;
8104
8105 va_start(args, format);
8106
8107 vaf.fmt = format;
8108 vaf.va = &args;
8109
8110 __netdev_printk(level, dev, &vaf);
8111
8112 va_end(args);
8113 }
8114 EXPORT_SYMBOL(netdev_printk);
8115
8116 #define define_netdev_printk_level(func, level) \
8117 void func(const struct net_device *dev, const char *fmt, ...) \
8118 { \
8119 struct va_format vaf; \
8120 va_list args; \
8121 \
8122 va_start(args, fmt); \
8123 \
8124 vaf.fmt = fmt; \
8125 vaf.va = &args; \
8126 \
8127 __netdev_printk(level, dev, &vaf); \
8128 \
8129 va_end(args); \
8130 } \
8131 EXPORT_SYMBOL(func);
8132
8133 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8134 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8135 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8136 define_netdev_printk_level(netdev_err, KERN_ERR);
8137 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8138 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8139 define_netdev_printk_level(netdev_info, KERN_INFO);
8140
8141 static void __net_exit netdev_exit(struct net *net)
8142 {
8143 kfree(net->dev_name_head);
8144 kfree(net->dev_index_head);
8145 }
8146
8147 static struct pernet_operations __net_initdata netdev_net_ops = {
8148 .init = netdev_init,
8149 .exit = netdev_exit,
8150 };
8151
8152 static void __net_exit default_device_exit(struct net *net)
8153 {
8154 struct net_device *dev, *aux;
8155 /*
8156 * Push all migratable network devices back to the
8157 * initial network namespace
8158 */
8159 rtnl_lock();
8160 for_each_netdev_safe(net, dev, aux) {
8161 int err;
8162 char fb_name[IFNAMSIZ];
8163
8164 /* Ignore unmoveable devices (i.e. loopback) */
8165 if (dev->features & NETIF_F_NETNS_LOCAL)
8166 continue;
8167
8168 /* Leave virtual devices for the generic cleanup */
8169 if (dev->rtnl_link_ops)
8170 continue;
8171
8172 /* Push remaining network devices to init_net */
8173 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8174 err = dev_change_net_namespace(dev, &init_net, fb_name);
8175 if (err) {
8176 pr_emerg("%s: failed to move %s to init_net: %d\n",
8177 __func__, dev->name, err);
8178 BUG();
8179 }
8180 }
8181 rtnl_unlock();
8182 }
8183
8184 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8185 {
8186 /* Return with the rtnl_lock held when there are no network
8187 * devices unregistering in any network namespace in net_list.
8188 */
8189 struct net *net;
8190 bool unregistering;
8191 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8192
8193 add_wait_queue(&netdev_unregistering_wq, &wait);
8194 for (;;) {
8195 unregistering = false;
8196 rtnl_lock();
8197 list_for_each_entry(net, net_list, exit_list) {
8198 if (net->dev_unreg_count > 0) {
8199 unregistering = true;
8200 break;
8201 }
8202 }
8203 if (!unregistering)
8204 break;
8205 __rtnl_unlock();
8206
8207 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8208 }
8209 remove_wait_queue(&netdev_unregistering_wq, &wait);
8210 }
8211
8212 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8213 {
8214 /* At exit all network devices most be removed from a network
8215 * namespace. Do this in the reverse order of registration.
8216 * Do this across as many network namespaces as possible to
8217 * improve batching efficiency.
8218 */
8219 struct net_device *dev;
8220 struct net *net;
8221 LIST_HEAD(dev_kill_list);
8222
8223 /* To prevent network device cleanup code from dereferencing
8224 * loopback devices or network devices that have been freed
8225 * wait here for all pending unregistrations to complete,
8226 * before unregistring the loopback device and allowing the
8227 * network namespace be freed.
8228 *
8229 * The netdev todo list containing all network devices
8230 * unregistrations that happen in default_device_exit_batch
8231 * will run in the rtnl_unlock() at the end of
8232 * default_device_exit_batch.
8233 */
8234 rtnl_lock_unregistering(net_list);
8235 list_for_each_entry(net, net_list, exit_list) {
8236 for_each_netdev_reverse(net, dev) {
8237 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8238 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8239 else
8240 unregister_netdevice_queue(dev, &dev_kill_list);
8241 }
8242 }
8243 unregister_netdevice_many(&dev_kill_list);
8244 rtnl_unlock();
8245 }
8246
8247 static struct pernet_operations __net_initdata default_device_ops = {
8248 .exit = default_device_exit,
8249 .exit_batch = default_device_exit_batch,
8250 };
8251
8252 /*
8253 * Initialize the DEV module. At boot time this walks the device list and
8254 * unhooks any devices that fail to initialise (normally hardware not
8255 * present) and leaves us with a valid list of present and active devices.
8256 *
8257 */
8258
8259 /*
8260 * This is called single threaded during boot, so no need
8261 * to take the rtnl semaphore.
8262 */
8263 static int __init net_dev_init(void)
8264 {
8265 int i, rc = -ENOMEM;
8266
8267 BUG_ON(!dev_boot_phase);
8268
8269 if (dev_proc_init())
8270 goto out;
8271
8272 if (netdev_kobject_init())
8273 goto out;
8274
8275 INIT_LIST_HEAD(&ptype_all);
8276 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8277 INIT_LIST_HEAD(&ptype_base[i]);
8278
8279 INIT_LIST_HEAD(&offload_base);
8280
8281 if (register_pernet_subsys(&netdev_net_ops))
8282 goto out;
8283
8284 /*
8285 * Initialise the packet receive queues.
8286 */
8287
8288 for_each_possible_cpu(i) {
8289 struct softnet_data *sd = &per_cpu(softnet_data, i);
8290
8291 skb_queue_head_init(&sd->input_pkt_queue);
8292 skb_queue_head_init(&sd->process_queue);
8293 INIT_LIST_HEAD(&sd->poll_list);
8294 sd->output_queue_tailp = &sd->output_queue;
8295 #ifdef CONFIG_RPS
8296 sd->csd.func = rps_trigger_softirq;
8297 sd->csd.info = sd;
8298 sd->cpu = i;
8299 #endif
8300
8301 sd->backlog.poll = process_backlog;
8302 sd->backlog.weight = weight_p;
8303 }
8304
8305 dev_boot_phase = 0;
8306
8307 /* The loopback device is special if any other network devices
8308 * is present in a network namespace the loopback device must
8309 * be present. Since we now dynamically allocate and free the
8310 * loopback device ensure this invariant is maintained by
8311 * keeping the loopback device as the first device on the
8312 * list of network devices. Ensuring the loopback devices
8313 * is the first device that appears and the last network device
8314 * that disappears.
8315 */
8316 if (register_pernet_device(&loopback_net_ops))
8317 goto out;
8318
8319 if (register_pernet_device(&default_device_ops))
8320 goto out;
8321
8322 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8323 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8324
8325 hotcpu_notifier(dev_cpu_callback, 0);
8326 dst_subsys_init();
8327 rc = 0;
8328 out:
8329 return rc;
8330 }
8331
8332 subsys_initcall(net_dev_init);
This page took 0.225662 seconds and 6 git commands to generate.