Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958 {
959 struct net *net;
960
961 BUG_ON(!dev_net(dev));
962 net = dev_net(dev);
963
964 if (!dev_valid_name(name))
965 return -EINVAL;
966
967 if (fmt && strchr(name, '%'))
968 return dev_alloc_name(dev, name);
969 else if (__dev_get_by_name(net, name))
970 return -EEXIST;
971 else if (dev->name != name)
972 strlcpy(dev->name, name, IFNAMSIZ);
973
974 return 0;
975 }
976
977 /**
978 * dev_change_name - change name of a device
979 * @dev: device
980 * @newname: name (or format string) must be at least IFNAMSIZ
981 *
982 * Change name of a device, can pass format strings "eth%d".
983 * for wildcarding.
984 */
985 int dev_change_name(struct net_device *dev, const char *newname)
986 {
987 char oldname[IFNAMSIZ];
988 int err = 0;
989 int ret;
990 struct net *net;
991
992 ASSERT_RTNL();
993 BUG_ON(!dev_net(dev));
994
995 net = dev_net(dev);
996 if (dev->flags & IFF_UP)
997 return -EBUSY;
998
999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 return 0;
1001
1002 memcpy(oldname, dev->name, IFNAMSIZ);
1003
1004 err = dev_get_valid_name(dev, newname, 1);
1005 if (err < 0)
1006 return err;
1007
1008 rollback:
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_del(&dev->name_hlist);
1017 write_unlock_bh(&dev_base_lock);
1018
1019 synchronize_rcu();
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 write_unlock_bh(&dev_base_lock);
1024
1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 ret = notifier_to_errno(ret);
1027
1028 if (ret) {
1029 /* err >= 0 after dev_alloc_name() or stores the first errno */
1030 if (err >= 0) {
1031 err = ret;
1032 memcpy(dev->name, oldname, IFNAMSIZ);
1033 goto rollback;
1034 } else {
1035 printk(KERN_ERR
1036 "%s: name change rollback failed: %d.\n",
1037 dev->name, ret);
1038 }
1039 }
1040
1041 return err;
1042 }
1043
1044 /**
1045 * dev_set_alias - change ifalias of a device
1046 * @dev: device
1047 * @alias: name up to IFALIASZ
1048 * @len: limit of bytes to copy from info
1049 *
1050 * Set ifalias for a device,
1051 */
1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053 {
1054 ASSERT_RTNL();
1055
1056 if (len >= IFALIASZ)
1057 return -EINVAL;
1058
1059 if (!len) {
1060 if (dev->ifalias) {
1061 kfree(dev->ifalias);
1062 dev->ifalias = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 if (!dev->ifalias)
1069 return -ENOMEM;
1070
1071 strlcpy(dev->ifalias, alias, len+1);
1072 return len;
1073 }
1074
1075
1076 /**
1077 * netdev_features_change - device changes features
1078 * @dev: device to cause notification
1079 *
1080 * Called to indicate a device has changed features.
1081 */
1082 void netdev_features_change(struct net_device *dev)
1083 {
1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085 }
1086 EXPORT_SYMBOL(netdev_features_change);
1087
1088 /**
1089 * netdev_state_change - device changes state
1090 * @dev: device to cause notification
1091 *
1092 * Called to indicate a device has changed state. This function calls
1093 * the notifier chains for netdev_chain and sends a NEWLINK message
1094 * to the routing socket.
1095 */
1096 void netdev_state_change(struct net_device *dev)
1097 {
1098 if (dev->flags & IFF_UP) {
1099 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 }
1102 }
1103 EXPORT_SYMBOL(netdev_state_change);
1104
1105 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106 {
1107 return call_netdevice_notifiers(event, dev);
1108 }
1109 EXPORT_SYMBOL(netdev_bonding_change);
1110
1111 /**
1112 * dev_load - load a network module
1113 * @net: the applicable net namespace
1114 * @name: name of interface
1115 *
1116 * If a network interface is not present and the process has suitable
1117 * privileges this function loads the module. If module loading is not
1118 * available in this kernel then it becomes a nop.
1119 */
1120
1121 void dev_load(struct net *net, const char *name)
1122 {
1123 struct net_device *dev;
1124
1125 rcu_read_lock();
1126 dev = dev_get_by_name_rcu(net, name);
1127 rcu_read_unlock();
1128
1129 if (!dev && capable(CAP_NET_ADMIN))
1130 request_module("%s", name);
1131 }
1132 EXPORT_SYMBOL(dev_load);
1133
1134 static int __dev_open(struct net_device *dev)
1135 {
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 int ret;
1138
1139 ASSERT_RTNL();
1140
1141 /*
1142 * Is it even present?
1143 */
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1146
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Call device private open method
1154 */
1155 set_bit(__LINK_STATE_START, &dev->state);
1156
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1159
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1162
1163 /*
1164 * If it went open OK then:
1165 */
1166
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1170 /*
1171 * Set the flags.
1172 */
1173 dev->flags |= IFF_UP;
1174
1175 /*
1176 * Enable NET_DMA
1177 */
1178 net_dmaengine_get();
1179
1180 /*
1181 * Initialize multicasting status
1182 */
1183 dev_set_rx_mode(dev);
1184
1185 /*
1186 * Wakeup transmit queue engine
1187 */
1188 dev_activate(dev);
1189 }
1190
1191 return ret;
1192 }
1193
1194 /**
1195 * dev_open - prepare an interface for use.
1196 * @dev: device to open
1197 *
1198 * Takes a device from down to up state. The device's private open
1199 * function is invoked and then the multicast lists are loaded. Finally
1200 * the device is moved into the up state and a %NETDEV_UP message is
1201 * sent to the netdev notifier chain.
1202 *
1203 * Calling this function on an active interface is a nop. On a failure
1204 * a negative errno code is returned.
1205 */
1206 int dev_open(struct net_device *dev)
1207 {
1208 int ret;
1209
1210 /*
1211 * Is it already up?
1212 */
1213 if (dev->flags & IFF_UP)
1214 return 0;
1215
1216 /*
1217 * Open device
1218 */
1219 ret = __dev_open(dev);
1220 if (ret < 0)
1221 return ret;
1222
1223 /*
1224 * ... and announce new interface.
1225 */
1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 call_netdevice_notifiers(NETDEV_UP, dev);
1228
1229 return ret;
1230 }
1231 EXPORT_SYMBOL(dev_open);
1232
1233 static int __dev_close(struct net_device *dev)
1234 {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 ASSERT_RTNL();
1238 might_sleep();
1239
1240 /*
1241 * Tell people we are going down, so that they can
1242 * prepare to death, when device is still operating.
1243 */
1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245
1246 clear_bit(__LINK_STATE_START, &dev->state);
1247
1248 /* Synchronize to scheduled poll. We cannot touch poll list,
1249 * it can be even on different cpu. So just clear netif_running().
1250 *
1251 * dev->stop() will invoke napi_disable() on all of it's
1252 * napi_struct instances on this device.
1253 */
1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255
1256 dev_deactivate(dev);
1257
1258 /*
1259 * Call the device specific close. This cannot fail.
1260 * Only if device is UP
1261 *
1262 * We allow it to be called even after a DETACH hot-plug
1263 * event.
1264 */
1265 if (ops->ndo_stop)
1266 ops->ndo_stop(dev);
1267
1268 /*
1269 * Device is now down.
1270 */
1271
1272 dev->flags &= ~IFF_UP;
1273
1274 /*
1275 * Shutdown NET_DMA
1276 */
1277 net_dmaengine_put();
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * dev_close - shutdown an interface.
1284 * @dev: device to shutdown
1285 *
1286 * This function moves an active device into down state. A
1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289 * chain.
1290 */
1291 int dev_close(struct net_device *dev)
1292 {
1293 if (!(dev->flags & IFF_UP))
1294 return 0;
1295
1296 __dev_close(dev);
1297
1298 /*
1299 * Tell people we are down
1300 */
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 call_netdevice_notifiers(NETDEV_DOWN, dev);
1303
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307
1308
1309 /**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 dev->ethtool_ops->set_flags) {
1321 u32 flags = dev->ethtool_ops->get_flags(dev);
1322 if (flags & ETH_FLAG_LRO) {
1323 flags &= ~ETH_FLAG_LRO;
1324 dev->ethtool_ops->set_flags(dev, flags);
1325 }
1326 }
1327 WARN_ON(dev->features & NETIF_F_LRO);
1328 }
1329 EXPORT_SYMBOL(dev_disable_lro);
1330
1331
1332 static int dev_boot_phase = 1;
1333
1334 /*
1335 * Device change register/unregister. These are not inline or static
1336 * as we export them to the world.
1337 */
1338
1339 /**
1340 * register_netdevice_notifier - register a network notifier block
1341 * @nb: notifier
1342 *
1343 * Register a notifier to be called when network device events occur.
1344 * The notifier passed is linked into the kernel structures and must
1345 * not be reused until it has been unregistered. A negative errno code
1346 * is returned on a failure.
1347 *
1348 * When registered all registration and up events are replayed
1349 * to the new notifier to allow device to have a race free
1350 * view of the network device list.
1351 */
1352
1353 int register_netdevice_notifier(struct notifier_block *nb)
1354 {
1355 struct net_device *dev;
1356 struct net_device *last;
1357 struct net *net;
1358 int err;
1359
1360 rtnl_lock();
1361 err = raw_notifier_chain_register(&netdev_chain, nb);
1362 if (err)
1363 goto unlock;
1364 if (dev_boot_phase)
1365 goto unlock;
1366 for_each_net(net) {
1367 for_each_netdev(net, dev) {
1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 err = notifier_to_errno(err);
1370 if (err)
1371 goto rollback;
1372
1373 if (!(dev->flags & IFF_UP))
1374 continue;
1375
1376 nb->notifier_call(nb, NETDEV_UP, dev);
1377 }
1378 }
1379
1380 unlock:
1381 rtnl_unlock();
1382 return err;
1383
1384 rollback:
1385 last = dev;
1386 for_each_net(net) {
1387 for_each_netdev(net, dev) {
1388 if (dev == last)
1389 break;
1390
1391 if (dev->flags & IFF_UP) {
1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 }
1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 }
1398 }
1399
1400 raw_notifier_chain_unregister(&netdev_chain, nb);
1401 goto unlock;
1402 }
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1404
1405 /**
1406 * unregister_netdevice_notifier - unregister a network notifier block
1407 * @nb: notifier
1408 *
1409 * Unregister a notifier previously registered by
1410 * register_netdevice_notifier(). The notifier is unlinked into the
1411 * kernel structures and may then be reused. A negative errno code
1412 * is returned on a failure.
1413 */
1414
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 {
1417 int err;
1418
1419 rtnl_lock();
1420 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 rtnl_unlock();
1422 return err;
1423 }
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1425
1426 /**
1427 * call_netdevice_notifiers - call all network notifier blocks
1428 * @val: value passed unmodified to notifier function
1429 * @dev: net_device pointer passed unmodified to notifier function
1430 *
1431 * Call all network notifier blocks. Parameters and return value
1432 * are as for raw_notifier_call_chain().
1433 */
1434
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436 {
1437 ASSERT_RTNL();
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444 void net_enable_timestamp(void)
1445 {
1446 atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449
1450 void net_disable_timestamp(void)
1451 {
1452 atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455
1456 static inline void net_timestamp_set(struct sk_buff *skb)
1457 {
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462 }
1463
1464 static inline void net_timestamp_check(struct sk_buff *skb)
1465 {
1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1468 }
1469
1470 /**
1471 * dev_forward_skb - loopback an skb to another netif
1472 *
1473 * @dev: destination network device
1474 * @skb: buffer to forward
1475 *
1476 * return values:
1477 * NET_RX_SUCCESS (no congestion)
1478 * NET_RX_DROP (packet was dropped, but freed)
1479 *
1480 * dev_forward_skb can be used for injecting an skb from the
1481 * start_xmit function of one device into the receive queue
1482 * of another device.
1483 *
1484 * The receiving device may be in another namespace, so
1485 * we have to clear all information in the skb that could
1486 * impact namespace isolation.
1487 */
1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489 {
1490 skb_orphan(skb);
1491
1492 if (!(dev->flags & IFF_UP) ||
1493 (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 kfree_skb(skb);
1495 return NET_RX_DROP;
1496 }
1497 skb_set_dev(skb, dev);
1498 skb->tstamp.tv64 = 0;
1499 skb->pkt_type = PACKET_HOST;
1500 skb->protocol = eth_type_trans(skb, dev);
1501 return netif_rx(skb);
1502 }
1503 EXPORT_SYMBOL_GPL(dev_forward_skb);
1504
1505 /*
1506 * Support routine. Sends outgoing frames to any network
1507 * taps currently in use.
1508 */
1509
1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511 {
1512 struct packet_type *ptype;
1513
1514 #ifdef CONFIG_NET_CLS_ACT
1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 net_timestamp_set(skb);
1517 #else
1518 net_timestamp_set(skb);
1519 #endif
1520
1521 rcu_read_lock();
1522 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 /* Never send packets back to the socket
1524 * they originated from - MvS (miquels@drinkel.ow.org)
1525 */
1526 if ((ptype->dev == dev || !ptype->dev) &&
1527 (ptype->af_packet_priv == NULL ||
1528 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (!skb2)
1531 break;
1532
1533 /* skb->nh should be correctly
1534 set by sender, so that the second statement is
1535 just protection against buggy protocols.
1536 */
1537 skb_reset_mac_header(skb2);
1538
1539 if (skb_network_header(skb2) < skb2->data ||
1540 skb2->network_header > skb2->tail) {
1541 if (net_ratelimit())
1542 printk(KERN_CRIT "protocol %04x is "
1543 "buggy, dev %s\n",
1544 skb2->protocol, dev->name);
1545 skb_reset_network_header(skb2);
1546 }
1547
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 }
1552 }
1553 rcu_read_unlock();
1554 }
1555
1556
1557 static inline void __netif_reschedule(struct Qdisc *q)
1558 {
1559 struct softnet_data *sd;
1560 unsigned long flags;
1561
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 q->next_sched = NULL;
1565 *sd->output_queue_tailp = q;
1566 sd->output_queue_tailp = &q->next_sched;
1567 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1568 local_irq_restore(flags);
1569 }
1570
1571 void __netif_schedule(struct Qdisc *q)
1572 {
1573 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1574 __netif_reschedule(q);
1575 }
1576 EXPORT_SYMBOL(__netif_schedule);
1577
1578 void dev_kfree_skb_irq(struct sk_buff *skb)
1579 {
1580 if (atomic_dec_and_test(&skb->users)) {
1581 struct softnet_data *sd;
1582 unsigned long flags;
1583
1584 local_irq_save(flags);
1585 sd = &__get_cpu_var(softnet_data);
1586 skb->next = sd->completion_queue;
1587 sd->completion_queue = skb;
1588 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1589 local_irq_restore(flags);
1590 }
1591 }
1592 EXPORT_SYMBOL(dev_kfree_skb_irq);
1593
1594 void dev_kfree_skb_any(struct sk_buff *skb)
1595 {
1596 if (in_irq() || irqs_disabled())
1597 dev_kfree_skb_irq(skb);
1598 else
1599 dev_kfree_skb(skb);
1600 }
1601 EXPORT_SYMBOL(dev_kfree_skb_any);
1602
1603
1604 /**
1605 * netif_device_detach - mark device as removed
1606 * @dev: network device
1607 *
1608 * Mark device as removed from system and therefore no longer available.
1609 */
1610 void netif_device_detach(struct net_device *dev)
1611 {
1612 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1613 netif_running(dev)) {
1614 netif_tx_stop_all_queues(dev);
1615 }
1616 }
1617 EXPORT_SYMBOL(netif_device_detach);
1618
1619 /**
1620 * netif_device_attach - mark device as attached
1621 * @dev: network device
1622 *
1623 * Mark device as attached from system and restart if needed.
1624 */
1625 void netif_device_attach(struct net_device *dev)
1626 {
1627 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1628 netif_running(dev)) {
1629 netif_tx_wake_all_queues(dev);
1630 __netdev_watchdog_up(dev);
1631 }
1632 }
1633 EXPORT_SYMBOL(netif_device_attach);
1634
1635 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1636 {
1637 return ((features & NETIF_F_GEN_CSUM) ||
1638 ((features & NETIF_F_IP_CSUM) &&
1639 protocol == htons(ETH_P_IP)) ||
1640 ((features & NETIF_F_IPV6_CSUM) &&
1641 protocol == htons(ETH_P_IPV6)) ||
1642 ((features & NETIF_F_FCOE_CRC) &&
1643 protocol == htons(ETH_P_FCOE)));
1644 }
1645
1646 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1647 {
1648 if (can_checksum_protocol(dev->features, skb->protocol))
1649 return true;
1650
1651 if (skb->protocol == htons(ETH_P_8021Q)) {
1652 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1653 if (can_checksum_protocol(dev->features & dev->vlan_features,
1654 veh->h_vlan_encapsulated_proto))
1655 return true;
1656 }
1657
1658 return false;
1659 }
1660
1661 /**
1662 * skb_dev_set -- assign a new device to a buffer
1663 * @skb: buffer for the new device
1664 * @dev: network device
1665 *
1666 * If an skb is owned by a device already, we have to reset
1667 * all data private to the namespace a device belongs to
1668 * before assigning it a new device.
1669 */
1670 #ifdef CONFIG_NET_NS
1671 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1672 {
1673 skb_dst_drop(skb);
1674 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1675 secpath_reset(skb);
1676 nf_reset(skb);
1677 skb_init_secmark(skb);
1678 skb->mark = 0;
1679 skb->priority = 0;
1680 skb->nf_trace = 0;
1681 skb->ipvs_property = 0;
1682 #ifdef CONFIG_NET_SCHED
1683 skb->tc_index = 0;
1684 #endif
1685 }
1686 skb->dev = dev;
1687 }
1688 EXPORT_SYMBOL(skb_set_dev);
1689 #endif /* CONFIG_NET_NS */
1690
1691 /*
1692 * Invalidate hardware checksum when packet is to be mangled, and
1693 * complete checksum manually on outgoing path.
1694 */
1695 int skb_checksum_help(struct sk_buff *skb)
1696 {
1697 __wsum csum;
1698 int ret = 0, offset;
1699
1700 if (skb->ip_summed == CHECKSUM_COMPLETE)
1701 goto out_set_summed;
1702
1703 if (unlikely(skb_shinfo(skb)->gso_size)) {
1704 /* Let GSO fix up the checksum. */
1705 goto out_set_summed;
1706 }
1707
1708 offset = skb->csum_start - skb_headroom(skb);
1709 BUG_ON(offset >= skb_headlen(skb));
1710 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1711
1712 offset += skb->csum_offset;
1713 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1714
1715 if (skb_cloned(skb) &&
1716 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1717 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1718 if (ret)
1719 goto out;
1720 }
1721
1722 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1723 out_set_summed:
1724 skb->ip_summed = CHECKSUM_NONE;
1725 out:
1726 return ret;
1727 }
1728 EXPORT_SYMBOL(skb_checksum_help);
1729
1730 /**
1731 * skb_gso_segment - Perform segmentation on skb.
1732 * @skb: buffer to segment
1733 * @features: features for the output path (see dev->features)
1734 *
1735 * This function segments the given skb and returns a list of segments.
1736 *
1737 * It may return NULL if the skb requires no segmentation. This is
1738 * only possible when GSO is used for verifying header integrity.
1739 */
1740 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1741 {
1742 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1743 struct packet_type *ptype;
1744 __be16 type = skb->protocol;
1745 int err;
1746
1747 skb_reset_mac_header(skb);
1748 skb->mac_len = skb->network_header - skb->mac_header;
1749 __skb_pull(skb, skb->mac_len);
1750
1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 struct net_device *dev = skb->dev;
1753 struct ethtool_drvinfo info = {};
1754
1755 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1756 dev->ethtool_ops->get_drvinfo(dev, &info);
1757
1758 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1759 "ip_summed=%d",
1760 info.driver, dev ? dev->features : 0L,
1761 skb->sk ? skb->sk->sk_route_caps : 0L,
1762 skb->len, skb->data_len, skb->ip_summed);
1763
1764 if (skb_header_cloned(skb) &&
1765 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1766 return ERR_PTR(err);
1767 }
1768
1769 rcu_read_lock();
1770 list_for_each_entry_rcu(ptype,
1771 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1772 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1773 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1774 err = ptype->gso_send_check(skb);
1775 segs = ERR_PTR(err);
1776 if (err || skb_gso_ok(skb, features))
1777 break;
1778 __skb_push(skb, (skb->data -
1779 skb_network_header(skb)));
1780 }
1781 segs = ptype->gso_segment(skb, features);
1782 break;
1783 }
1784 }
1785 rcu_read_unlock();
1786
1787 __skb_push(skb, skb->data - skb_mac_header(skb));
1788
1789 return segs;
1790 }
1791 EXPORT_SYMBOL(skb_gso_segment);
1792
1793 /* Take action when hardware reception checksum errors are detected. */
1794 #ifdef CONFIG_BUG
1795 void netdev_rx_csum_fault(struct net_device *dev)
1796 {
1797 if (net_ratelimit()) {
1798 printk(KERN_ERR "%s: hw csum failure.\n",
1799 dev ? dev->name : "<unknown>");
1800 dump_stack();
1801 }
1802 }
1803 EXPORT_SYMBOL(netdev_rx_csum_fault);
1804 #endif
1805
1806 /* Actually, we should eliminate this check as soon as we know, that:
1807 * 1. IOMMU is present and allows to map all the memory.
1808 * 2. No high memory really exists on this machine.
1809 */
1810
1811 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1812 {
1813 #ifdef CONFIG_HIGHMEM
1814 int i;
1815 if (!(dev->features & NETIF_F_HIGHDMA)) {
1816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1817 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1818 return 1;
1819 }
1820
1821 if (PCI_DMA_BUS_IS_PHYS) {
1822 struct device *pdev = dev->dev.parent;
1823
1824 if (!pdev)
1825 return 0;
1826 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1827 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1828 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1829 return 1;
1830 }
1831 }
1832 #endif
1833 return 0;
1834 }
1835
1836 struct dev_gso_cb {
1837 void (*destructor)(struct sk_buff *skb);
1838 };
1839
1840 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1841
1842 static void dev_gso_skb_destructor(struct sk_buff *skb)
1843 {
1844 struct dev_gso_cb *cb;
1845
1846 do {
1847 struct sk_buff *nskb = skb->next;
1848
1849 skb->next = nskb->next;
1850 nskb->next = NULL;
1851 kfree_skb(nskb);
1852 } while (skb->next);
1853
1854 cb = DEV_GSO_CB(skb);
1855 if (cb->destructor)
1856 cb->destructor(skb);
1857 }
1858
1859 /**
1860 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1861 * @skb: buffer to segment
1862 *
1863 * This function segments the given skb and stores the list of segments
1864 * in skb->next.
1865 */
1866 static int dev_gso_segment(struct sk_buff *skb)
1867 {
1868 struct net_device *dev = skb->dev;
1869 struct sk_buff *segs;
1870 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1871 NETIF_F_SG : 0);
1872
1873 segs = skb_gso_segment(skb, features);
1874
1875 /* Verifying header integrity only. */
1876 if (!segs)
1877 return 0;
1878
1879 if (IS_ERR(segs))
1880 return PTR_ERR(segs);
1881
1882 skb->next = segs;
1883 DEV_GSO_CB(skb)->destructor = skb->destructor;
1884 skb->destructor = dev_gso_skb_destructor;
1885
1886 return 0;
1887 }
1888
1889 /*
1890 * Try to orphan skb early, right before transmission by the device.
1891 * We cannot orphan skb if tx timestamp is requested, since
1892 * drivers need to call skb_tstamp_tx() to send the timestamp.
1893 */
1894 static inline void skb_orphan_try(struct sk_buff *skb)
1895 {
1896 if (!skb_tx(skb)->flags)
1897 skb_orphan(skb);
1898 }
1899
1900 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1901 struct netdev_queue *txq)
1902 {
1903 const struct net_device_ops *ops = dev->netdev_ops;
1904 int rc = NETDEV_TX_OK;
1905
1906 if (likely(!skb->next)) {
1907 if (!list_empty(&ptype_all))
1908 dev_queue_xmit_nit(skb, dev);
1909
1910 /*
1911 * If device doesnt need skb->dst, release it right now while
1912 * its hot in this cpu cache
1913 */
1914 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1915 skb_dst_drop(skb);
1916
1917 skb_orphan_try(skb);
1918
1919 if (netif_needs_gso(dev, skb)) {
1920 if (unlikely(dev_gso_segment(skb)))
1921 goto out_kfree_skb;
1922 if (skb->next)
1923 goto gso;
1924 }
1925
1926 rc = ops->ndo_start_xmit(skb, dev);
1927 if (rc == NETDEV_TX_OK)
1928 txq_trans_update(txq);
1929 return rc;
1930 }
1931
1932 gso:
1933 do {
1934 struct sk_buff *nskb = skb->next;
1935
1936 skb->next = nskb->next;
1937 nskb->next = NULL;
1938
1939 /*
1940 * If device doesnt need nskb->dst, release it right now while
1941 * its hot in this cpu cache
1942 */
1943 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1944 skb_dst_drop(nskb);
1945
1946 rc = ops->ndo_start_xmit(nskb, dev);
1947 if (unlikely(rc != NETDEV_TX_OK)) {
1948 if (rc & ~NETDEV_TX_MASK)
1949 goto out_kfree_gso_skb;
1950 nskb->next = skb->next;
1951 skb->next = nskb;
1952 return rc;
1953 }
1954 txq_trans_update(txq);
1955 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1956 return NETDEV_TX_BUSY;
1957 } while (skb->next);
1958
1959 out_kfree_gso_skb:
1960 if (likely(skb->next == NULL))
1961 skb->destructor = DEV_GSO_CB(skb)->destructor;
1962 out_kfree_skb:
1963 kfree_skb(skb);
1964 return rc;
1965 }
1966
1967 static u32 hashrnd __read_mostly;
1968
1969 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1970 {
1971 u32 hash;
1972
1973 if (skb_rx_queue_recorded(skb)) {
1974 hash = skb_get_rx_queue(skb);
1975 while (unlikely(hash >= dev->real_num_tx_queues))
1976 hash -= dev->real_num_tx_queues;
1977 return hash;
1978 }
1979
1980 if (skb->sk && skb->sk->sk_hash)
1981 hash = skb->sk->sk_hash;
1982 else
1983 hash = (__force u16) skb->protocol;
1984
1985 hash = jhash_1word(hash, hashrnd);
1986
1987 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1988 }
1989 EXPORT_SYMBOL(skb_tx_hash);
1990
1991 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1992 {
1993 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1994 if (net_ratelimit()) {
1995 pr_warning("%s selects TX queue %d, but "
1996 "real number of TX queues is %d\n",
1997 dev->name, queue_index, dev->real_num_tx_queues);
1998 }
1999 return 0;
2000 }
2001 return queue_index;
2002 }
2003
2004 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2005 struct sk_buff *skb)
2006 {
2007 u16 queue_index;
2008 struct sock *sk = skb->sk;
2009
2010 if (sk_tx_queue_recorded(sk)) {
2011 queue_index = sk_tx_queue_get(sk);
2012 } else {
2013 const struct net_device_ops *ops = dev->netdev_ops;
2014
2015 if (ops->ndo_select_queue) {
2016 queue_index = ops->ndo_select_queue(dev, skb);
2017 queue_index = dev_cap_txqueue(dev, queue_index);
2018 } else {
2019 queue_index = 0;
2020 if (dev->real_num_tx_queues > 1)
2021 queue_index = skb_tx_hash(dev, skb);
2022
2023 if (sk) {
2024 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2025
2026 if (dst && skb_dst(skb) == dst)
2027 sk_tx_queue_set(sk, queue_index);
2028 }
2029 }
2030 }
2031
2032 skb_set_queue_mapping(skb, queue_index);
2033 return netdev_get_tx_queue(dev, queue_index);
2034 }
2035
2036 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2037 struct net_device *dev,
2038 struct netdev_queue *txq)
2039 {
2040 spinlock_t *root_lock = qdisc_lock(q);
2041 int rc;
2042
2043 spin_lock(root_lock);
2044 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2045 kfree_skb(skb);
2046 rc = NET_XMIT_DROP;
2047 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2048 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2049 /*
2050 * This is a work-conserving queue; there are no old skbs
2051 * waiting to be sent out; and the qdisc is not running -
2052 * xmit the skb directly.
2053 */
2054 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2055 skb_dst_force(skb);
2056 __qdisc_update_bstats(q, skb->len);
2057 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2058 __qdisc_run(q);
2059 else
2060 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2061
2062 rc = NET_XMIT_SUCCESS;
2063 } else {
2064 skb_dst_force(skb);
2065 rc = qdisc_enqueue_root(skb, q);
2066 qdisc_run(q);
2067 }
2068 spin_unlock(root_lock);
2069
2070 return rc;
2071 }
2072
2073 /*
2074 * Returns true if either:
2075 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2076 * 2. skb is fragmented and the device does not support SG, or if
2077 * at least one of fragments is in highmem and device does not
2078 * support DMA from it.
2079 */
2080 static inline int skb_needs_linearize(struct sk_buff *skb,
2081 struct net_device *dev)
2082 {
2083 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2084 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2085 illegal_highdma(dev, skb)));
2086 }
2087
2088 /**
2089 * dev_queue_xmit - transmit a buffer
2090 * @skb: buffer to transmit
2091 *
2092 * Queue a buffer for transmission to a network device. The caller must
2093 * have set the device and priority and built the buffer before calling
2094 * this function. The function can be called from an interrupt.
2095 *
2096 * A negative errno code is returned on a failure. A success does not
2097 * guarantee the frame will be transmitted as it may be dropped due
2098 * to congestion or traffic shaping.
2099 *
2100 * -----------------------------------------------------------------------------------
2101 * I notice this method can also return errors from the queue disciplines,
2102 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2103 * be positive.
2104 *
2105 * Regardless of the return value, the skb is consumed, so it is currently
2106 * difficult to retry a send to this method. (You can bump the ref count
2107 * before sending to hold a reference for retry if you are careful.)
2108 *
2109 * When calling this method, interrupts MUST be enabled. This is because
2110 * the BH enable code must have IRQs enabled so that it will not deadlock.
2111 * --BLG
2112 */
2113 int dev_queue_xmit(struct sk_buff *skb)
2114 {
2115 struct net_device *dev = skb->dev;
2116 struct netdev_queue *txq;
2117 struct Qdisc *q;
2118 int rc = -ENOMEM;
2119
2120 /* GSO will handle the following emulations directly. */
2121 if (netif_needs_gso(dev, skb))
2122 goto gso;
2123
2124 /* Convert a paged skb to linear, if required */
2125 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2126 goto out_kfree_skb;
2127
2128 /* If packet is not checksummed and device does not support
2129 * checksumming for this protocol, complete checksumming here.
2130 */
2131 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2132 skb_set_transport_header(skb, skb->csum_start -
2133 skb_headroom(skb));
2134 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2135 goto out_kfree_skb;
2136 }
2137
2138 gso:
2139 /* Disable soft irqs for various locks below. Also
2140 * stops preemption for RCU.
2141 */
2142 rcu_read_lock_bh();
2143
2144 txq = dev_pick_tx(dev, skb);
2145 q = rcu_dereference_bh(txq->qdisc);
2146
2147 #ifdef CONFIG_NET_CLS_ACT
2148 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2149 #endif
2150 if (q->enqueue) {
2151 rc = __dev_xmit_skb(skb, q, dev, txq);
2152 goto out;
2153 }
2154
2155 /* The device has no queue. Common case for software devices:
2156 loopback, all the sorts of tunnels...
2157
2158 Really, it is unlikely that netif_tx_lock protection is necessary
2159 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2160 counters.)
2161 However, it is possible, that they rely on protection
2162 made by us here.
2163
2164 Check this and shot the lock. It is not prone from deadlocks.
2165 Either shot noqueue qdisc, it is even simpler 8)
2166 */
2167 if (dev->flags & IFF_UP) {
2168 int cpu = smp_processor_id(); /* ok because BHs are off */
2169
2170 if (txq->xmit_lock_owner != cpu) {
2171
2172 HARD_TX_LOCK(dev, txq, cpu);
2173
2174 if (!netif_tx_queue_stopped(txq)) {
2175 rc = dev_hard_start_xmit(skb, dev, txq);
2176 if (dev_xmit_complete(rc)) {
2177 HARD_TX_UNLOCK(dev, txq);
2178 goto out;
2179 }
2180 }
2181 HARD_TX_UNLOCK(dev, txq);
2182 if (net_ratelimit())
2183 printk(KERN_CRIT "Virtual device %s asks to "
2184 "queue packet!\n", dev->name);
2185 } else {
2186 /* Recursion is detected! It is possible,
2187 * unfortunately */
2188 if (net_ratelimit())
2189 printk(KERN_CRIT "Dead loop on virtual device "
2190 "%s, fix it urgently!\n", dev->name);
2191 }
2192 }
2193
2194 rc = -ENETDOWN;
2195 rcu_read_unlock_bh();
2196
2197 out_kfree_skb:
2198 kfree_skb(skb);
2199 return rc;
2200 out:
2201 rcu_read_unlock_bh();
2202 return rc;
2203 }
2204 EXPORT_SYMBOL(dev_queue_xmit);
2205
2206
2207 /*=======================================================================
2208 Receiver routines
2209 =======================================================================*/
2210
2211 int netdev_max_backlog __read_mostly = 1000;
2212 int netdev_tstamp_prequeue __read_mostly = 1;
2213 int netdev_budget __read_mostly = 300;
2214 int weight_p __read_mostly = 64; /* old backlog weight */
2215
2216 /* Called with irq disabled */
2217 static inline void ____napi_schedule(struct softnet_data *sd,
2218 struct napi_struct *napi)
2219 {
2220 list_add_tail(&napi->poll_list, &sd->poll_list);
2221 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2222 }
2223
2224 #ifdef CONFIG_RPS
2225
2226 /* One global table that all flow-based protocols share. */
2227 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2228 EXPORT_SYMBOL(rps_sock_flow_table);
2229
2230 /*
2231 * get_rps_cpu is called from netif_receive_skb and returns the target
2232 * CPU from the RPS map of the receiving queue for a given skb.
2233 * rcu_read_lock must be held on entry.
2234 */
2235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2236 struct rps_dev_flow **rflowp)
2237 {
2238 struct ipv6hdr *ip6;
2239 struct iphdr *ip;
2240 struct netdev_rx_queue *rxqueue;
2241 struct rps_map *map;
2242 struct rps_dev_flow_table *flow_table;
2243 struct rps_sock_flow_table *sock_flow_table;
2244 int cpu = -1;
2245 u8 ip_proto;
2246 u16 tcpu;
2247 u32 addr1, addr2, ihl;
2248 union {
2249 u32 v32;
2250 u16 v16[2];
2251 } ports;
2252
2253 if (skb_rx_queue_recorded(skb)) {
2254 u16 index = skb_get_rx_queue(skb);
2255 if (unlikely(index >= dev->num_rx_queues)) {
2256 if (net_ratelimit()) {
2257 pr_warning("%s received packet on queue "
2258 "%u, but number of RX queues is %u\n",
2259 dev->name, index, dev->num_rx_queues);
2260 }
2261 goto done;
2262 }
2263 rxqueue = dev->_rx + index;
2264 } else
2265 rxqueue = dev->_rx;
2266
2267 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2268 goto done;
2269
2270 if (skb->rxhash)
2271 goto got_hash; /* Skip hash computation on packet header */
2272
2273 switch (skb->protocol) {
2274 case __constant_htons(ETH_P_IP):
2275 if (!pskb_may_pull(skb, sizeof(*ip)))
2276 goto done;
2277
2278 ip = (struct iphdr *) skb->data;
2279 ip_proto = ip->protocol;
2280 addr1 = (__force u32) ip->saddr;
2281 addr2 = (__force u32) ip->daddr;
2282 ihl = ip->ihl;
2283 break;
2284 case __constant_htons(ETH_P_IPV6):
2285 if (!pskb_may_pull(skb, sizeof(*ip6)))
2286 goto done;
2287
2288 ip6 = (struct ipv6hdr *) skb->data;
2289 ip_proto = ip6->nexthdr;
2290 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2291 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2292 ihl = (40 >> 2);
2293 break;
2294 default:
2295 goto done;
2296 }
2297 switch (ip_proto) {
2298 case IPPROTO_TCP:
2299 case IPPROTO_UDP:
2300 case IPPROTO_DCCP:
2301 case IPPROTO_ESP:
2302 case IPPROTO_AH:
2303 case IPPROTO_SCTP:
2304 case IPPROTO_UDPLITE:
2305 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2306 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2307 if (ports.v16[1] < ports.v16[0])
2308 swap(ports.v16[0], ports.v16[1]);
2309 break;
2310 }
2311 default:
2312 ports.v32 = 0;
2313 break;
2314 }
2315
2316 /* get a consistent hash (same value on both flow directions) */
2317 if (addr2 < addr1)
2318 swap(addr1, addr2);
2319 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2320 if (!skb->rxhash)
2321 skb->rxhash = 1;
2322
2323 got_hash:
2324 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2325 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2326 if (flow_table && sock_flow_table) {
2327 u16 next_cpu;
2328 struct rps_dev_flow *rflow;
2329
2330 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2331 tcpu = rflow->cpu;
2332
2333 next_cpu = sock_flow_table->ents[skb->rxhash &
2334 sock_flow_table->mask];
2335
2336 /*
2337 * If the desired CPU (where last recvmsg was done) is
2338 * different from current CPU (one in the rx-queue flow
2339 * table entry), switch if one of the following holds:
2340 * - Current CPU is unset (equal to RPS_NO_CPU).
2341 * - Current CPU is offline.
2342 * - The current CPU's queue tail has advanced beyond the
2343 * last packet that was enqueued using this table entry.
2344 * This guarantees that all previous packets for the flow
2345 * have been dequeued, thus preserving in order delivery.
2346 */
2347 if (unlikely(tcpu != next_cpu) &&
2348 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2349 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2350 rflow->last_qtail)) >= 0)) {
2351 tcpu = rflow->cpu = next_cpu;
2352 if (tcpu != RPS_NO_CPU)
2353 rflow->last_qtail = per_cpu(softnet_data,
2354 tcpu).input_queue_head;
2355 }
2356 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2357 *rflowp = rflow;
2358 cpu = tcpu;
2359 goto done;
2360 }
2361 }
2362
2363 map = rcu_dereference(rxqueue->rps_map);
2364 if (map) {
2365 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2366
2367 if (cpu_online(tcpu)) {
2368 cpu = tcpu;
2369 goto done;
2370 }
2371 }
2372
2373 done:
2374 return cpu;
2375 }
2376
2377 /* Called from hardirq (IPI) context */
2378 static void rps_trigger_softirq(void *data)
2379 {
2380 struct softnet_data *sd = data;
2381
2382 ____napi_schedule(sd, &sd->backlog);
2383 sd->received_rps++;
2384 }
2385
2386 #endif /* CONFIG_RPS */
2387
2388 /*
2389 * Check if this softnet_data structure is another cpu one
2390 * If yes, queue it to our IPI list and return 1
2391 * If no, return 0
2392 */
2393 static int rps_ipi_queued(struct softnet_data *sd)
2394 {
2395 #ifdef CONFIG_RPS
2396 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2397
2398 if (sd != mysd) {
2399 sd->rps_ipi_next = mysd->rps_ipi_list;
2400 mysd->rps_ipi_list = sd;
2401
2402 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2403 return 1;
2404 }
2405 #endif /* CONFIG_RPS */
2406 return 0;
2407 }
2408
2409 /*
2410 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2411 * queue (may be a remote CPU queue).
2412 */
2413 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2414 unsigned int *qtail)
2415 {
2416 struct softnet_data *sd;
2417 unsigned long flags;
2418
2419 sd = &per_cpu(softnet_data, cpu);
2420
2421 local_irq_save(flags);
2422
2423 rps_lock(sd);
2424 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2425 if (skb_queue_len(&sd->input_pkt_queue)) {
2426 enqueue:
2427 __skb_queue_tail(&sd->input_pkt_queue, skb);
2428 input_queue_tail_incr_save(sd, qtail);
2429 rps_unlock(sd);
2430 local_irq_restore(flags);
2431 return NET_RX_SUCCESS;
2432 }
2433
2434 /* Schedule NAPI for backlog device
2435 * We can use non atomic operation since we own the queue lock
2436 */
2437 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2438 if (!rps_ipi_queued(sd))
2439 ____napi_schedule(sd, &sd->backlog);
2440 }
2441 goto enqueue;
2442 }
2443
2444 sd->dropped++;
2445 rps_unlock(sd);
2446
2447 local_irq_restore(flags);
2448
2449 kfree_skb(skb);
2450 return NET_RX_DROP;
2451 }
2452
2453 /**
2454 * netif_rx - post buffer to the network code
2455 * @skb: buffer to post
2456 *
2457 * This function receives a packet from a device driver and queues it for
2458 * the upper (protocol) levels to process. It always succeeds. The buffer
2459 * may be dropped during processing for congestion control or by the
2460 * protocol layers.
2461 *
2462 * return values:
2463 * NET_RX_SUCCESS (no congestion)
2464 * NET_RX_DROP (packet was dropped)
2465 *
2466 */
2467
2468 int netif_rx(struct sk_buff *skb)
2469 {
2470 int ret;
2471
2472 /* if netpoll wants it, pretend we never saw it */
2473 if (netpoll_rx(skb))
2474 return NET_RX_DROP;
2475
2476 if (netdev_tstamp_prequeue)
2477 net_timestamp_check(skb);
2478
2479 #ifdef CONFIG_RPS
2480 {
2481 struct rps_dev_flow voidflow, *rflow = &voidflow;
2482 int cpu;
2483
2484 rcu_read_lock();
2485
2486 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2487 if (cpu < 0)
2488 cpu = smp_processor_id();
2489
2490 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2491
2492 rcu_read_unlock();
2493 }
2494 #else
2495 {
2496 unsigned int qtail;
2497 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2498 put_cpu();
2499 }
2500 #endif
2501 return ret;
2502 }
2503 EXPORT_SYMBOL(netif_rx);
2504
2505 int netif_rx_ni(struct sk_buff *skb)
2506 {
2507 int err;
2508
2509 preempt_disable();
2510 err = netif_rx(skb);
2511 if (local_softirq_pending())
2512 do_softirq();
2513 preempt_enable();
2514
2515 return err;
2516 }
2517 EXPORT_SYMBOL(netif_rx_ni);
2518
2519 static void net_tx_action(struct softirq_action *h)
2520 {
2521 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2522
2523 if (sd->completion_queue) {
2524 struct sk_buff *clist;
2525
2526 local_irq_disable();
2527 clist = sd->completion_queue;
2528 sd->completion_queue = NULL;
2529 local_irq_enable();
2530
2531 while (clist) {
2532 struct sk_buff *skb = clist;
2533 clist = clist->next;
2534
2535 WARN_ON(atomic_read(&skb->users));
2536 __kfree_skb(skb);
2537 }
2538 }
2539
2540 if (sd->output_queue) {
2541 struct Qdisc *head;
2542
2543 local_irq_disable();
2544 head = sd->output_queue;
2545 sd->output_queue = NULL;
2546 sd->output_queue_tailp = &sd->output_queue;
2547 local_irq_enable();
2548
2549 while (head) {
2550 struct Qdisc *q = head;
2551 spinlock_t *root_lock;
2552
2553 head = head->next_sched;
2554
2555 root_lock = qdisc_lock(q);
2556 if (spin_trylock(root_lock)) {
2557 smp_mb__before_clear_bit();
2558 clear_bit(__QDISC_STATE_SCHED,
2559 &q->state);
2560 qdisc_run(q);
2561 spin_unlock(root_lock);
2562 } else {
2563 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2564 &q->state)) {
2565 __netif_reschedule(q);
2566 } else {
2567 smp_mb__before_clear_bit();
2568 clear_bit(__QDISC_STATE_SCHED,
2569 &q->state);
2570 }
2571 }
2572 }
2573 }
2574 }
2575
2576 static inline int deliver_skb(struct sk_buff *skb,
2577 struct packet_type *pt_prev,
2578 struct net_device *orig_dev)
2579 {
2580 atomic_inc(&skb->users);
2581 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2582 }
2583
2584 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2585
2586 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2587 /* This hook is defined here for ATM LANE */
2588 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2589 unsigned char *addr) __read_mostly;
2590 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2591 #endif
2592
2593 /*
2594 * If bridge module is loaded call bridging hook.
2595 * returns NULL if packet was consumed.
2596 */
2597 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2598 struct sk_buff *skb) __read_mostly;
2599 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2600
2601 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2602 struct packet_type **pt_prev, int *ret,
2603 struct net_device *orig_dev)
2604 {
2605 struct net_bridge_port *port;
2606
2607 if (skb->pkt_type == PACKET_LOOPBACK ||
2608 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2609 return skb;
2610
2611 if (*pt_prev) {
2612 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2613 *pt_prev = NULL;
2614 }
2615
2616 return br_handle_frame_hook(port, skb);
2617 }
2618 #else
2619 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2620 #endif
2621
2622 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2623 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2624 struct sk_buff *skb) __read_mostly;
2625 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2626
2627 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2628 struct packet_type **pt_prev,
2629 int *ret,
2630 struct net_device *orig_dev)
2631 {
2632 struct macvlan_port *port;
2633
2634 port = rcu_dereference(skb->dev->macvlan_port);
2635 if (!port)
2636 return skb;
2637
2638 if (*pt_prev) {
2639 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2640 *pt_prev = NULL;
2641 }
2642 return macvlan_handle_frame_hook(port, skb);
2643 }
2644 #else
2645 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2646 #endif
2647
2648 #ifdef CONFIG_NET_CLS_ACT
2649 /* TODO: Maybe we should just force sch_ingress to be compiled in
2650 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2651 * a compare and 2 stores extra right now if we dont have it on
2652 * but have CONFIG_NET_CLS_ACT
2653 * NOTE: This doesnt stop any functionality; if you dont have
2654 * the ingress scheduler, you just cant add policies on ingress.
2655 *
2656 */
2657 static int ing_filter(struct sk_buff *skb)
2658 {
2659 struct net_device *dev = skb->dev;
2660 u32 ttl = G_TC_RTTL(skb->tc_verd);
2661 struct netdev_queue *rxq;
2662 int result = TC_ACT_OK;
2663 struct Qdisc *q;
2664
2665 if (MAX_RED_LOOP < ttl++) {
2666 printk(KERN_WARNING
2667 "Redir loop detected Dropping packet (%d->%d)\n",
2668 skb->skb_iif, dev->ifindex);
2669 return TC_ACT_SHOT;
2670 }
2671
2672 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2673 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2674
2675 rxq = &dev->rx_queue;
2676
2677 q = rxq->qdisc;
2678 if (q != &noop_qdisc) {
2679 spin_lock(qdisc_lock(q));
2680 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2681 result = qdisc_enqueue_root(skb, q);
2682 spin_unlock(qdisc_lock(q));
2683 }
2684
2685 return result;
2686 }
2687
2688 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2689 struct packet_type **pt_prev,
2690 int *ret, struct net_device *orig_dev)
2691 {
2692 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2693 goto out;
2694
2695 if (*pt_prev) {
2696 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2697 *pt_prev = NULL;
2698 } else {
2699 /* Huh? Why does turning on AF_PACKET affect this? */
2700 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2701 }
2702
2703 switch (ing_filter(skb)) {
2704 case TC_ACT_SHOT:
2705 case TC_ACT_STOLEN:
2706 kfree_skb(skb);
2707 return NULL;
2708 }
2709
2710 out:
2711 skb->tc_verd = 0;
2712 return skb;
2713 }
2714 #endif
2715
2716 /*
2717 * netif_nit_deliver - deliver received packets to network taps
2718 * @skb: buffer
2719 *
2720 * This function is used to deliver incoming packets to network
2721 * taps. It should be used when the normal netif_receive_skb path
2722 * is bypassed, for example because of VLAN acceleration.
2723 */
2724 void netif_nit_deliver(struct sk_buff *skb)
2725 {
2726 struct packet_type *ptype;
2727
2728 if (list_empty(&ptype_all))
2729 return;
2730
2731 skb_reset_network_header(skb);
2732 skb_reset_transport_header(skb);
2733 skb->mac_len = skb->network_header - skb->mac_header;
2734
2735 rcu_read_lock();
2736 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2737 if (!ptype->dev || ptype->dev == skb->dev)
2738 deliver_skb(skb, ptype, skb->dev);
2739 }
2740 rcu_read_unlock();
2741 }
2742
2743 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2744 struct net_device *master)
2745 {
2746 if (skb->pkt_type == PACKET_HOST) {
2747 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2748
2749 memcpy(dest, master->dev_addr, ETH_ALEN);
2750 }
2751 }
2752
2753 /* On bonding slaves other than the currently active slave, suppress
2754 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2755 * ARP on active-backup slaves with arp_validate enabled.
2756 */
2757 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2758 {
2759 struct net_device *dev = skb->dev;
2760
2761 if (master->priv_flags & IFF_MASTER_ARPMON)
2762 dev->last_rx = jiffies;
2763
2764 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2765 /* Do address unmangle. The local destination address
2766 * will be always the one master has. Provides the right
2767 * functionality in a bridge.
2768 */
2769 skb_bond_set_mac_by_master(skb, master);
2770 }
2771
2772 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2773 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2774 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2775 return 0;
2776
2777 if (master->priv_flags & IFF_MASTER_ALB) {
2778 if (skb->pkt_type != PACKET_BROADCAST &&
2779 skb->pkt_type != PACKET_MULTICAST)
2780 return 0;
2781 }
2782 if (master->priv_flags & IFF_MASTER_8023AD &&
2783 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2784 return 0;
2785
2786 return 1;
2787 }
2788 return 0;
2789 }
2790 EXPORT_SYMBOL(__skb_bond_should_drop);
2791
2792 static int __netif_receive_skb(struct sk_buff *skb)
2793 {
2794 struct packet_type *ptype, *pt_prev;
2795 struct net_device *orig_dev;
2796 struct net_device *master;
2797 struct net_device *null_or_orig;
2798 struct net_device *null_or_bond;
2799 int ret = NET_RX_DROP;
2800 __be16 type;
2801
2802 if (!netdev_tstamp_prequeue)
2803 net_timestamp_check(skb);
2804
2805 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2806 return NET_RX_SUCCESS;
2807
2808 /* if we've gotten here through NAPI, check netpoll */
2809 if (netpoll_receive_skb(skb))
2810 return NET_RX_DROP;
2811
2812 if (!skb->skb_iif)
2813 skb->skb_iif = skb->dev->ifindex;
2814
2815 null_or_orig = NULL;
2816 orig_dev = skb->dev;
2817 master = ACCESS_ONCE(orig_dev->master);
2818 if (master) {
2819 if (skb_bond_should_drop(skb, master))
2820 null_or_orig = orig_dev; /* deliver only exact match */
2821 else
2822 skb->dev = master;
2823 }
2824
2825 __get_cpu_var(softnet_data).processed++;
2826
2827 skb_reset_network_header(skb);
2828 skb_reset_transport_header(skb);
2829 skb->mac_len = skb->network_header - skb->mac_header;
2830
2831 pt_prev = NULL;
2832
2833 rcu_read_lock();
2834
2835 #ifdef CONFIG_NET_CLS_ACT
2836 if (skb->tc_verd & TC_NCLS) {
2837 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2838 goto ncls;
2839 }
2840 #endif
2841
2842 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2843 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2844 ptype->dev == orig_dev) {
2845 if (pt_prev)
2846 ret = deliver_skb(skb, pt_prev, orig_dev);
2847 pt_prev = ptype;
2848 }
2849 }
2850
2851 #ifdef CONFIG_NET_CLS_ACT
2852 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2853 if (!skb)
2854 goto out;
2855 ncls:
2856 #endif
2857
2858 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2859 if (!skb)
2860 goto out;
2861 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2862 if (!skb)
2863 goto out;
2864
2865 /*
2866 * Make sure frames received on VLAN interfaces stacked on
2867 * bonding interfaces still make their way to any base bonding
2868 * device that may have registered for a specific ptype. The
2869 * handler may have to adjust skb->dev and orig_dev.
2870 */
2871 null_or_bond = NULL;
2872 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2873 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2874 null_or_bond = vlan_dev_real_dev(skb->dev);
2875 }
2876
2877 type = skb->protocol;
2878 list_for_each_entry_rcu(ptype,
2879 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2880 if (ptype->type == type && (ptype->dev == null_or_orig ||
2881 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2882 ptype->dev == null_or_bond)) {
2883 if (pt_prev)
2884 ret = deliver_skb(skb, pt_prev, orig_dev);
2885 pt_prev = ptype;
2886 }
2887 }
2888
2889 if (pt_prev) {
2890 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2891 } else {
2892 kfree_skb(skb);
2893 /* Jamal, now you will not able to escape explaining
2894 * me how you were going to use this. :-)
2895 */
2896 ret = NET_RX_DROP;
2897 }
2898
2899 out:
2900 rcu_read_unlock();
2901 return ret;
2902 }
2903
2904 /**
2905 * netif_receive_skb - process receive buffer from network
2906 * @skb: buffer to process
2907 *
2908 * netif_receive_skb() is the main receive data processing function.
2909 * It always succeeds. The buffer may be dropped during processing
2910 * for congestion control or by the protocol layers.
2911 *
2912 * This function may only be called from softirq context and interrupts
2913 * should be enabled.
2914 *
2915 * Return values (usually ignored):
2916 * NET_RX_SUCCESS: no congestion
2917 * NET_RX_DROP: packet was dropped
2918 */
2919 int netif_receive_skb(struct sk_buff *skb)
2920 {
2921 if (netdev_tstamp_prequeue)
2922 net_timestamp_check(skb);
2923
2924 #ifdef CONFIG_RPS
2925 {
2926 struct rps_dev_flow voidflow, *rflow = &voidflow;
2927 int cpu, ret;
2928
2929 rcu_read_lock();
2930
2931 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2932
2933 if (cpu >= 0) {
2934 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2935 rcu_read_unlock();
2936 } else {
2937 rcu_read_unlock();
2938 ret = __netif_receive_skb(skb);
2939 }
2940
2941 return ret;
2942 }
2943 #else
2944 return __netif_receive_skb(skb);
2945 #endif
2946 }
2947 EXPORT_SYMBOL(netif_receive_skb);
2948
2949 /* Network device is going away, flush any packets still pending
2950 * Called with irqs disabled.
2951 */
2952 static void flush_backlog(void *arg)
2953 {
2954 struct net_device *dev = arg;
2955 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2956 struct sk_buff *skb, *tmp;
2957
2958 rps_lock(sd);
2959 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2960 if (skb->dev == dev) {
2961 __skb_unlink(skb, &sd->input_pkt_queue);
2962 kfree_skb(skb);
2963 input_queue_head_incr(sd);
2964 }
2965 }
2966 rps_unlock(sd);
2967
2968 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2969 if (skb->dev == dev) {
2970 __skb_unlink(skb, &sd->process_queue);
2971 kfree_skb(skb);
2972 input_queue_head_incr(sd);
2973 }
2974 }
2975 }
2976
2977 static int napi_gro_complete(struct sk_buff *skb)
2978 {
2979 struct packet_type *ptype;
2980 __be16 type = skb->protocol;
2981 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2982 int err = -ENOENT;
2983
2984 if (NAPI_GRO_CB(skb)->count == 1) {
2985 skb_shinfo(skb)->gso_size = 0;
2986 goto out;
2987 }
2988
2989 rcu_read_lock();
2990 list_for_each_entry_rcu(ptype, head, list) {
2991 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2992 continue;
2993
2994 err = ptype->gro_complete(skb);
2995 break;
2996 }
2997 rcu_read_unlock();
2998
2999 if (err) {
3000 WARN_ON(&ptype->list == head);
3001 kfree_skb(skb);
3002 return NET_RX_SUCCESS;
3003 }
3004
3005 out:
3006 return netif_receive_skb(skb);
3007 }
3008
3009 static void napi_gro_flush(struct napi_struct *napi)
3010 {
3011 struct sk_buff *skb, *next;
3012
3013 for (skb = napi->gro_list; skb; skb = next) {
3014 next = skb->next;
3015 skb->next = NULL;
3016 napi_gro_complete(skb);
3017 }
3018
3019 napi->gro_count = 0;
3020 napi->gro_list = NULL;
3021 }
3022
3023 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3024 {
3025 struct sk_buff **pp = NULL;
3026 struct packet_type *ptype;
3027 __be16 type = skb->protocol;
3028 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3029 int same_flow;
3030 int mac_len;
3031 enum gro_result ret;
3032
3033 if (!(skb->dev->features & NETIF_F_GRO))
3034 goto normal;
3035
3036 if (skb_is_gso(skb) || skb_has_frags(skb))
3037 goto normal;
3038
3039 rcu_read_lock();
3040 list_for_each_entry_rcu(ptype, head, list) {
3041 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3042 continue;
3043
3044 skb_set_network_header(skb, skb_gro_offset(skb));
3045 mac_len = skb->network_header - skb->mac_header;
3046 skb->mac_len = mac_len;
3047 NAPI_GRO_CB(skb)->same_flow = 0;
3048 NAPI_GRO_CB(skb)->flush = 0;
3049 NAPI_GRO_CB(skb)->free = 0;
3050
3051 pp = ptype->gro_receive(&napi->gro_list, skb);
3052 break;
3053 }
3054 rcu_read_unlock();
3055
3056 if (&ptype->list == head)
3057 goto normal;
3058
3059 same_flow = NAPI_GRO_CB(skb)->same_flow;
3060 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3061
3062 if (pp) {
3063 struct sk_buff *nskb = *pp;
3064
3065 *pp = nskb->next;
3066 nskb->next = NULL;
3067 napi_gro_complete(nskb);
3068 napi->gro_count--;
3069 }
3070
3071 if (same_flow)
3072 goto ok;
3073
3074 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3075 goto normal;
3076
3077 napi->gro_count++;
3078 NAPI_GRO_CB(skb)->count = 1;
3079 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3080 skb->next = napi->gro_list;
3081 napi->gro_list = skb;
3082 ret = GRO_HELD;
3083
3084 pull:
3085 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3086 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3087
3088 BUG_ON(skb->end - skb->tail < grow);
3089
3090 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3091
3092 skb->tail += grow;
3093 skb->data_len -= grow;
3094
3095 skb_shinfo(skb)->frags[0].page_offset += grow;
3096 skb_shinfo(skb)->frags[0].size -= grow;
3097
3098 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3099 put_page(skb_shinfo(skb)->frags[0].page);
3100 memmove(skb_shinfo(skb)->frags,
3101 skb_shinfo(skb)->frags + 1,
3102 --skb_shinfo(skb)->nr_frags);
3103 }
3104 }
3105
3106 ok:
3107 return ret;
3108
3109 normal:
3110 ret = GRO_NORMAL;
3111 goto pull;
3112 }
3113 EXPORT_SYMBOL(dev_gro_receive);
3114
3115 static gro_result_t
3116 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3117 {
3118 struct sk_buff *p;
3119
3120 if (netpoll_rx_on(skb))
3121 return GRO_NORMAL;
3122
3123 for (p = napi->gro_list; p; p = p->next) {
3124 NAPI_GRO_CB(p)->same_flow =
3125 (p->dev == skb->dev) &&
3126 !compare_ether_header(skb_mac_header(p),
3127 skb_gro_mac_header(skb));
3128 NAPI_GRO_CB(p)->flush = 0;
3129 }
3130
3131 return dev_gro_receive(napi, skb);
3132 }
3133
3134 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3135 {
3136 switch (ret) {
3137 case GRO_NORMAL:
3138 if (netif_receive_skb(skb))
3139 ret = GRO_DROP;
3140 break;
3141
3142 case GRO_DROP:
3143 case GRO_MERGED_FREE:
3144 kfree_skb(skb);
3145 break;
3146
3147 case GRO_HELD:
3148 case GRO_MERGED:
3149 break;
3150 }
3151
3152 return ret;
3153 }
3154 EXPORT_SYMBOL(napi_skb_finish);
3155
3156 void skb_gro_reset_offset(struct sk_buff *skb)
3157 {
3158 NAPI_GRO_CB(skb)->data_offset = 0;
3159 NAPI_GRO_CB(skb)->frag0 = NULL;
3160 NAPI_GRO_CB(skb)->frag0_len = 0;
3161
3162 if (skb->mac_header == skb->tail &&
3163 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3164 NAPI_GRO_CB(skb)->frag0 =
3165 page_address(skb_shinfo(skb)->frags[0].page) +
3166 skb_shinfo(skb)->frags[0].page_offset;
3167 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3168 }
3169 }
3170 EXPORT_SYMBOL(skb_gro_reset_offset);
3171
3172 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3173 {
3174 skb_gro_reset_offset(skb);
3175
3176 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3177 }
3178 EXPORT_SYMBOL(napi_gro_receive);
3179
3180 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3181 {
3182 __skb_pull(skb, skb_headlen(skb));
3183 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3184
3185 napi->skb = skb;
3186 }
3187 EXPORT_SYMBOL(napi_reuse_skb);
3188
3189 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3190 {
3191 struct sk_buff *skb = napi->skb;
3192
3193 if (!skb) {
3194 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3195 if (skb)
3196 napi->skb = skb;
3197 }
3198 return skb;
3199 }
3200 EXPORT_SYMBOL(napi_get_frags);
3201
3202 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3203 gro_result_t ret)
3204 {
3205 switch (ret) {
3206 case GRO_NORMAL:
3207 case GRO_HELD:
3208 skb->protocol = eth_type_trans(skb, skb->dev);
3209
3210 if (ret == GRO_HELD)
3211 skb_gro_pull(skb, -ETH_HLEN);
3212 else if (netif_receive_skb(skb))
3213 ret = GRO_DROP;
3214 break;
3215
3216 case GRO_DROP:
3217 case GRO_MERGED_FREE:
3218 napi_reuse_skb(napi, skb);
3219 break;
3220
3221 case GRO_MERGED:
3222 break;
3223 }
3224
3225 return ret;
3226 }
3227 EXPORT_SYMBOL(napi_frags_finish);
3228
3229 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3230 {
3231 struct sk_buff *skb = napi->skb;
3232 struct ethhdr *eth;
3233 unsigned int hlen;
3234 unsigned int off;
3235
3236 napi->skb = NULL;
3237
3238 skb_reset_mac_header(skb);
3239 skb_gro_reset_offset(skb);
3240
3241 off = skb_gro_offset(skb);
3242 hlen = off + sizeof(*eth);
3243 eth = skb_gro_header_fast(skb, off);
3244 if (skb_gro_header_hard(skb, hlen)) {
3245 eth = skb_gro_header_slow(skb, hlen, off);
3246 if (unlikely(!eth)) {
3247 napi_reuse_skb(napi, skb);
3248 skb = NULL;
3249 goto out;
3250 }
3251 }
3252
3253 skb_gro_pull(skb, sizeof(*eth));
3254
3255 /*
3256 * This works because the only protocols we care about don't require
3257 * special handling. We'll fix it up properly at the end.
3258 */
3259 skb->protocol = eth->h_proto;
3260
3261 out:
3262 return skb;
3263 }
3264 EXPORT_SYMBOL(napi_frags_skb);
3265
3266 gro_result_t napi_gro_frags(struct napi_struct *napi)
3267 {
3268 struct sk_buff *skb = napi_frags_skb(napi);
3269
3270 if (!skb)
3271 return GRO_DROP;
3272
3273 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3274 }
3275 EXPORT_SYMBOL(napi_gro_frags);
3276
3277 /*
3278 * net_rps_action sends any pending IPI's for rps.
3279 * Note: called with local irq disabled, but exits with local irq enabled.
3280 */
3281 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3282 {
3283 #ifdef CONFIG_RPS
3284 struct softnet_data *remsd = sd->rps_ipi_list;
3285
3286 if (remsd) {
3287 sd->rps_ipi_list = NULL;
3288
3289 local_irq_enable();
3290
3291 /* Send pending IPI's to kick RPS processing on remote cpus. */
3292 while (remsd) {
3293 struct softnet_data *next = remsd->rps_ipi_next;
3294
3295 if (cpu_online(remsd->cpu))
3296 __smp_call_function_single(remsd->cpu,
3297 &remsd->csd, 0);
3298 remsd = next;
3299 }
3300 } else
3301 #endif
3302 local_irq_enable();
3303 }
3304
3305 static int process_backlog(struct napi_struct *napi, int quota)
3306 {
3307 int work = 0;
3308 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3309
3310 #ifdef CONFIG_RPS
3311 /* Check if we have pending ipi, its better to send them now,
3312 * not waiting net_rx_action() end.
3313 */
3314 if (sd->rps_ipi_list) {
3315 local_irq_disable();
3316 net_rps_action_and_irq_enable(sd);
3317 }
3318 #endif
3319 napi->weight = weight_p;
3320 local_irq_disable();
3321 while (work < quota) {
3322 struct sk_buff *skb;
3323 unsigned int qlen;
3324
3325 while ((skb = __skb_dequeue(&sd->process_queue))) {
3326 local_irq_enable();
3327 __netif_receive_skb(skb);
3328 local_irq_disable();
3329 input_queue_head_incr(sd);
3330 if (++work >= quota) {
3331 local_irq_enable();
3332 return work;
3333 }
3334 }
3335
3336 rps_lock(sd);
3337 qlen = skb_queue_len(&sd->input_pkt_queue);
3338 if (qlen)
3339 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3340 &sd->process_queue);
3341
3342 if (qlen < quota - work) {
3343 /*
3344 * Inline a custom version of __napi_complete().
3345 * only current cpu owns and manipulates this napi,
3346 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3347 * we can use a plain write instead of clear_bit(),
3348 * and we dont need an smp_mb() memory barrier.
3349 */
3350 list_del(&napi->poll_list);
3351 napi->state = 0;
3352
3353 quota = work + qlen;
3354 }
3355 rps_unlock(sd);
3356 }
3357 local_irq_enable();
3358
3359 return work;
3360 }
3361
3362 /**
3363 * __napi_schedule - schedule for receive
3364 * @n: entry to schedule
3365 *
3366 * The entry's receive function will be scheduled to run
3367 */
3368 void __napi_schedule(struct napi_struct *n)
3369 {
3370 unsigned long flags;
3371
3372 local_irq_save(flags);
3373 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3374 local_irq_restore(flags);
3375 }
3376 EXPORT_SYMBOL(__napi_schedule);
3377
3378 void __napi_complete(struct napi_struct *n)
3379 {
3380 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3381 BUG_ON(n->gro_list);
3382
3383 list_del(&n->poll_list);
3384 smp_mb__before_clear_bit();
3385 clear_bit(NAPI_STATE_SCHED, &n->state);
3386 }
3387 EXPORT_SYMBOL(__napi_complete);
3388
3389 void napi_complete(struct napi_struct *n)
3390 {
3391 unsigned long flags;
3392
3393 /*
3394 * don't let napi dequeue from the cpu poll list
3395 * just in case its running on a different cpu
3396 */
3397 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3398 return;
3399
3400 napi_gro_flush(n);
3401 local_irq_save(flags);
3402 __napi_complete(n);
3403 local_irq_restore(flags);
3404 }
3405 EXPORT_SYMBOL(napi_complete);
3406
3407 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3408 int (*poll)(struct napi_struct *, int), int weight)
3409 {
3410 INIT_LIST_HEAD(&napi->poll_list);
3411 napi->gro_count = 0;
3412 napi->gro_list = NULL;
3413 napi->skb = NULL;
3414 napi->poll = poll;
3415 napi->weight = weight;
3416 list_add(&napi->dev_list, &dev->napi_list);
3417 napi->dev = dev;
3418 #ifdef CONFIG_NETPOLL
3419 spin_lock_init(&napi->poll_lock);
3420 napi->poll_owner = -1;
3421 #endif
3422 set_bit(NAPI_STATE_SCHED, &napi->state);
3423 }
3424 EXPORT_SYMBOL(netif_napi_add);
3425
3426 void netif_napi_del(struct napi_struct *napi)
3427 {
3428 struct sk_buff *skb, *next;
3429
3430 list_del_init(&napi->dev_list);
3431 napi_free_frags(napi);
3432
3433 for (skb = napi->gro_list; skb; skb = next) {
3434 next = skb->next;
3435 skb->next = NULL;
3436 kfree_skb(skb);
3437 }
3438
3439 napi->gro_list = NULL;
3440 napi->gro_count = 0;
3441 }
3442 EXPORT_SYMBOL(netif_napi_del);
3443
3444 static void net_rx_action(struct softirq_action *h)
3445 {
3446 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3447 unsigned long time_limit = jiffies + 2;
3448 int budget = netdev_budget;
3449 void *have;
3450
3451 local_irq_disable();
3452
3453 while (!list_empty(&sd->poll_list)) {
3454 struct napi_struct *n;
3455 int work, weight;
3456
3457 /* If softirq window is exhuasted then punt.
3458 * Allow this to run for 2 jiffies since which will allow
3459 * an average latency of 1.5/HZ.
3460 */
3461 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3462 goto softnet_break;
3463
3464 local_irq_enable();
3465
3466 /* Even though interrupts have been re-enabled, this
3467 * access is safe because interrupts can only add new
3468 * entries to the tail of this list, and only ->poll()
3469 * calls can remove this head entry from the list.
3470 */
3471 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3472
3473 have = netpoll_poll_lock(n);
3474
3475 weight = n->weight;
3476
3477 /* This NAPI_STATE_SCHED test is for avoiding a race
3478 * with netpoll's poll_napi(). Only the entity which
3479 * obtains the lock and sees NAPI_STATE_SCHED set will
3480 * actually make the ->poll() call. Therefore we avoid
3481 * accidently calling ->poll() when NAPI is not scheduled.
3482 */
3483 work = 0;
3484 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3485 work = n->poll(n, weight);
3486 trace_napi_poll(n);
3487 }
3488
3489 WARN_ON_ONCE(work > weight);
3490
3491 budget -= work;
3492
3493 local_irq_disable();
3494
3495 /* Drivers must not modify the NAPI state if they
3496 * consume the entire weight. In such cases this code
3497 * still "owns" the NAPI instance and therefore can
3498 * move the instance around on the list at-will.
3499 */
3500 if (unlikely(work == weight)) {
3501 if (unlikely(napi_disable_pending(n))) {
3502 local_irq_enable();
3503 napi_complete(n);
3504 local_irq_disable();
3505 } else
3506 list_move_tail(&n->poll_list, &sd->poll_list);
3507 }
3508
3509 netpoll_poll_unlock(have);
3510 }
3511 out:
3512 net_rps_action_and_irq_enable(sd);
3513
3514 #ifdef CONFIG_NET_DMA
3515 /*
3516 * There may not be any more sk_buffs coming right now, so push
3517 * any pending DMA copies to hardware
3518 */
3519 dma_issue_pending_all();
3520 #endif
3521
3522 return;
3523
3524 softnet_break:
3525 sd->time_squeeze++;
3526 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3527 goto out;
3528 }
3529
3530 static gifconf_func_t *gifconf_list[NPROTO];
3531
3532 /**
3533 * register_gifconf - register a SIOCGIF handler
3534 * @family: Address family
3535 * @gifconf: Function handler
3536 *
3537 * Register protocol dependent address dumping routines. The handler
3538 * that is passed must not be freed or reused until it has been replaced
3539 * by another handler.
3540 */
3541 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3542 {
3543 if (family >= NPROTO)
3544 return -EINVAL;
3545 gifconf_list[family] = gifconf;
3546 return 0;
3547 }
3548 EXPORT_SYMBOL(register_gifconf);
3549
3550
3551 /*
3552 * Map an interface index to its name (SIOCGIFNAME)
3553 */
3554
3555 /*
3556 * We need this ioctl for efficient implementation of the
3557 * if_indextoname() function required by the IPv6 API. Without
3558 * it, we would have to search all the interfaces to find a
3559 * match. --pb
3560 */
3561
3562 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3563 {
3564 struct net_device *dev;
3565 struct ifreq ifr;
3566
3567 /*
3568 * Fetch the caller's info block.
3569 */
3570
3571 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3572 return -EFAULT;
3573
3574 rcu_read_lock();
3575 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3576 if (!dev) {
3577 rcu_read_unlock();
3578 return -ENODEV;
3579 }
3580
3581 strcpy(ifr.ifr_name, dev->name);
3582 rcu_read_unlock();
3583
3584 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3585 return -EFAULT;
3586 return 0;
3587 }
3588
3589 /*
3590 * Perform a SIOCGIFCONF call. This structure will change
3591 * size eventually, and there is nothing I can do about it.
3592 * Thus we will need a 'compatibility mode'.
3593 */
3594
3595 static int dev_ifconf(struct net *net, char __user *arg)
3596 {
3597 struct ifconf ifc;
3598 struct net_device *dev;
3599 char __user *pos;
3600 int len;
3601 int total;
3602 int i;
3603
3604 /*
3605 * Fetch the caller's info block.
3606 */
3607
3608 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3609 return -EFAULT;
3610
3611 pos = ifc.ifc_buf;
3612 len = ifc.ifc_len;
3613
3614 /*
3615 * Loop over the interfaces, and write an info block for each.
3616 */
3617
3618 total = 0;
3619 for_each_netdev(net, dev) {
3620 for (i = 0; i < NPROTO; i++) {
3621 if (gifconf_list[i]) {
3622 int done;
3623 if (!pos)
3624 done = gifconf_list[i](dev, NULL, 0);
3625 else
3626 done = gifconf_list[i](dev, pos + total,
3627 len - total);
3628 if (done < 0)
3629 return -EFAULT;
3630 total += done;
3631 }
3632 }
3633 }
3634
3635 /*
3636 * All done. Write the updated control block back to the caller.
3637 */
3638 ifc.ifc_len = total;
3639
3640 /*
3641 * Both BSD and Solaris return 0 here, so we do too.
3642 */
3643 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3644 }
3645
3646 #ifdef CONFIG_PROC_FS
3647 /*
3648 * This is invoked by the /proc filesystem handler to display a device
3649 * in detail.
3650 */
3651 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3652 __acquires(RCU)
3653 {
3654 struct net *net = seq_file_net(seq);
3655 loff_t off;
3656 struct net_device *dev;
3657
3658 rcu_read_lock();
3659 if (!*pos)
3660 return SEQ_START_TOKEN;
3661
3662 off = 1;
3663 for_each_netdev_rcu(net, dev)
3664 if (off++ == *pos)
3665 return dev;
3666
3667 return NULL;
3668 }
3669
3670 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3671 {
3672 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3673 first_net_device(seq_file_net(seq)) :
3674 next_net_device((struct net_device *)v);
3675
3676 ++*pos;
3677 return rcu_dereference(dev);
3678 }
3679
3680 void dev_seq_stop(struct seq_file *seq, void *v)
3681 __releases(RCU)
3682 {
3683 rcu_read_unlock();
3684 }
3685
3686 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3687 {
3688 const struct net_device_stats *stats = dev_get_stats(dev);
3689
3690 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3691 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3692 dev->name, stats->rx_bytes, stats->rx_packets,
3693 stats->rx_errors,
3694 stats->rx_dropped + stats->rx_missed_errors,
3695 stats->rx_fifo_errors,
3696 stats->rx_length_errors + stats->rx_over_errors +
3697 stats->rx_crc_errors + stats->rx_frame_errors,
3698 stats->rx_compressed, stats->multicast,
3699 stats->tx_bytes, stats->tx_packets,
3700 stats->tx_errors, stats->tx_dropped,
3701 stats->tx_fifo_errors, stats->collisions,
3702 stats->tx_carrier_errors +
3703 stats->tx_aborted_errors +
3704 stats->tx_window_errors +
3705 stats->tx_heartbeat_errors,
3706 stats->tx_compressed);
3707 }
3708
3709 /*
3710 * Called from the PROCfs module. This now uses the new arbitrary sized
3711 * /proc/net interface to create /proc/net/dev
3712 */
3713 static int dev_seq_show(struct seq_file *seq, void *v)
3714 {
3715 if (v == SEQ_START_TOKEN)
3716 seq_puts(seq, "Inter-| Receive "
3717 " | Transmit\n"
3718 " face |bytes packets errs drop fifo frame "
3719 "compressed multicast|bytes packets errs "
3720 "drop fifo colls carrier compressed\n");
3721 else
3722 dev_seq_printf_stats(seq, v);
3723 return 0;
3724 }
3725
3726 static struct softnet_data *softnet_get_online(loff_t *pos)
3727 {
3728 struct softnet_data *sd = NULL;
3729
3730 while (*pos < nr_cpu_ids)
3731 if (cpu_online(*pos)) {
3732 sd = &per_cpu(softnet_data, *pos);
3733 break;
3734 } else
3735 ++*pos;
3736 return sd;
3737 }
3738
3739 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3740 {
3741 return softnet_get_online(pos);
3742 }
3743
3744 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3745 {
3746 ++*pos;
3747 return softnet_get_online(pos);
3748 }
3749
3750 static void softnet_seq_stop(struct seq_file *seq, void *v)
3751 {
3752 }
3753
3754 static int softnet_seq_show(struct seq_file *seq, void *v)
3755 {
3756 struct softnet_data *sd = v;
3757
3758 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3759 sd->processed, sd->dropped, sd->time_squeeze, 0,
3760 0, 0, 0, 0, /* was fastroute */
3761 sd->cpu_collision, sd->received_rps);
3762 return 0;
3763 }
3764
3765 static const struct seq_operations dev_seq_ops = {
3766 .start = dev_seq_start,
3767 .next = dev_seq_next,
3768 .stop = dev_seq_stop,
3769 .show = dev_seq_show,
3770 };
3771
3772 static int dev_seq_open(struct inode *inode, struct file *file)
3773 {
3774 return seq_open_net(inode, file, &dev_seq_ops,
3775 sizeof(struct seq_net_private));
3776 }
3777
3778 static const struct file_operations dev_seq_fops = {
3779 .owner = THIS_MODULE,
3780 .open = dev_seq_open,
3781 .read = seq_read,
3782 .llseek = seq_lseek,
3783 .release = seq_release_net,
3784 };
3785
3786 static const struct seq_operations softnet_seq_ops = {
3787 .start = softnet_seq_start,
3788 .next = softnet_seq_next,
3789 .stop = softnet_seq_stop,
3790 .show = softnet_seq_show,
3791 };
3792
3793 static int softnet_seq_open(struct inode *inode, struct file *file)
3794 {
3795 return seq_open(file, &softnet_seq_ops);
3796 }
3797
3798 static const struct file_operations softnet_seq_fops = {
3799 .owner = THIS_MODULE,
3800 .open = softnet_seq_open,
3801 .read = seq_read,
3802 .llseek = seq_lseek,
3803 .release = seq_release,
3804 };
3805
3806 static void *ptype_get_idx(loff_t pos)
3807 {
3808 struct packet_type *pt = NULL;
3809 loff_t i = 0;
3810 int t;
3811
3812 list_for_each_entry_rcu(pt, &ptype_all, list) {
3813 if (i == pos)
3814 return pt;
3815 ++i;
3816 }
3817
3818 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3819 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3820 if (i == pos)
3821 return pt;
3822 ++i;
3823 }
3824 }
3825 return NULL;
3826 }
3827
3828 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3829 __acquires(RCU)
3830 {
3831 rcu_read_lock();
3832 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3833 }
3834
3835 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3836 {
3837 struct packet_type *pt;
3838 struct list_head *nxt;
3839 int hash;
3840
3841 ++*pos;
3842 if (v == SEQ_START_TOKEN)
3843 return ptype_get_idx(0);
3844
3845 pt = v;
3846 nxt = pt->list.next;
3847 if (pt->type == htons(ETH_P_ALL)) {
3848 if (nxt != &ptype_all)
3849 goto found;
3850 hash = 0;
3851 nxt = ptype_base[0].next;
3852 } else
3853 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3854
3855 while (nxt == &ptype_base[hash]) {
3856 if (++hash >= PTYPE_HASH_SIZE)
3857 return NULL;
3858 nxt = ptype_base[hash].next;
3859 }
3860 found:
3861 return list_entry(nxt, struct packet_type, list);
3862 }
3863
3864 static void ptype_seq_stop(struct seq_file *seq, void *v)
3865 __releases(RCU)
3866 {
3867 rcu_read_unlock();
3868 }
3869
3870 static int ptype_seq_show(struct seq_file *seq, void *v)
3871 {
3872 struct packet_type *pt = v;
3873
3874 if (v == SEQ_START_TOKEN)
3875 seq_puts(seq, "Type Device Function\n");
3876 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3877 if (pt->type == htons(ETH_P_ALL))
3878 seq_puts(seq, "ALL ");
3879 else
3880 seq_printf(seq, "%04x", ntohs(pt->type));
3881
3882 seq_printf(seq, " %-8s %pF\n",
3883 pt->dev ? pt->dev->name : "", pt->func);
3884 }
3885
3886 return 0;
3887 }
3888
3889 static const struct seq_operations ptype_seq_ops = {
3890 .start = ptype_seq_start,
3891 .next = ptype_seq_next,
3892 .stop = ptype_seq_stop,
3893 .show = ptype_seq_show,
3894 };
3895
3896 static int ptype_seq_open(struct inode *inode, struct file *file)
3897 {
3898 return seq_open_net(inode, file, &ptype_seq_ops,
3899 sizeof(struct seq_net_private));
3900 }
3901
3902 static const struct file_operations ptype_seq_fops = {
3903 .owner = THIS_MODULE,
3904 .open = ptype_seq_open,
3905 .read = seq_read,
3906 .llseek = seq_lseek,
3907 .release = seq_release_net,
3908 };
3909
3910
3911 static int __net_init dev_proc_net_init(struct net *net)
3912 {
3913 int rc = -ENOMEM;
3914
3915 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3916 goto out;
3917 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3918 goto out_dev;
3919 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3920 goto out_softnet;
3921
3922 if (wext_proc_init(net))
3923 goto out_ptype;
3924 rc = 0;
3925 out:
3926 return rc;
3927 out_ptype:
3928 proc_net_remove(net, "ptype");
3929 out_softnet:
3930 proc_net_remove(net, "softnet_stat");
3931 out_dev:
3932 proc_net_remove(net, "dev");
3933 goto out;
3934 }
3935
3936 static void __net_exit dev_proc_net_exit(struct net *net)
3937 {
3938 wext_proc_exit(net);
3939
3940 proc_net_remove(net, "ptype");
3941 proc_net_remove(net, "softnet_stat");
3942 proc_net_remove(net, "dev");
3943 }
3944
3945 static struct pernet_operations __net_initdata dev_proc_ops = {
3946 .init = dev_proc_net_init,
3947 .exit = dev_proc_net_exit,
3948 };
3949
3950 static int __init dev_proc_init(void)
3951 {
3952 return register_pernet_subsys(&dev_proc_ops);
3953 }
3954 #else
3955 #define dev_proc_init() 0
3956 #endif /* CONFIG_PROC_FS */
3957
3958
3959 /**
3960 * netdev_set_master - set up master/slave pair
3961 * @slave: slave device
3962 * @master: new master device
3963 *
3964 * Changes the master device of the slave. Pass %NULL to break the
3965 * bonding. The caller must hold the RTNL semaphore. On a failure
3966 * a negative errno code is returned. On success the reference counts
3967 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3968 * function returns zero.
3969 */
3970 int netdev_set_master(struct net_device *slave, struct net_device *master)
3971 {
3972 struct net_device *old = slave->master;
3973
3974 ASSERT_RTNL();
3975
3976 if (master) {
3977 if (old)
3978 return -EBUSY;
3979 dev_hold(master);
3980 }
3981
3982 slave->master = master;
3983
3984 if (old) {
3985 synchronize_net();
3986 dev_put(old);
3987 }
3988 if (master)
3989 slave->flags |= IFF_SLAVE;
3990 else
3991 slave->flags &= ~IFF_SLAVE;
3992
3993 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3994 return 0;
3995 }
3996 EXPORT_SYMBOL(netdev_set_master);
3997
3998 static void dev_change_rx_flags(struct net_device *dev, int flags)
3999 {
4000 const struct net_device_ops *ops = dev->netdev_ops;
4001
4002 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4003 ops->ndo_change_rx_flags(dev, flags);
4004 }
4005
4006 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4007 {
4008 unsigned short old_flags = dev->flags;
4009 uid_t uid;
4010 gid_t gid;
4011
4012 ASSERT_RTNL();
4013
4014 dev->flags |= IFF_PROMISC;
4015 dev->promiscuity += inc;
4016 if (dev->promiscuity == 0) {
4017 /*
4018 * Avoid overflow.
4019 * If inc causes overflow, untouch promisc and return error.
4020 */
4021 if (inc < 0)
4022 dev->flags &= ~IFF_PROMISC;
4023 else {
4024 dev->promiscuity -= inc;
4025 printk(KERN_WARNING "%s: promiscuity touches roof, "
4026 "set promiscuity failed, promiscuity feature "
4027 "of device might be broken.\n", dev->name);
4028 return -EOVERFLOW;
4029 }
4030 }
4031 if (dev->flags != old_flags) {
4032 printk(KERN_INFO "device %s %s promiscuous mode\n",
4033 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4034 "left");
4035 if (audit_enabled) {
4036 current_uid_gid(&uid, &gid);
4037 audit_log(current->audit_context, GFP_ATOMIC,
4038 AUDIT_ANOM_PROMISCUOUS,
4039 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4040 dev->name, (dev->flags & IFF_PROMISC),
4041 (old_flags & IFF_PROMISC),
4042 audit_get_loginuid(current),
4043 uid, gid,
4044 audit_get_sessionid(current));
4045 }
4046
4047 dev_change_rx_flags(dev, IFF_PROMISC);
4048 }
4049 return 0;
4050 }
4051
4052 /**
4053 * dev_set_promiscuity - update promiscuity count on a device
4054 * @dev: device
4055 * @inc: modifier
4056 *
4057 * Add or remove promiscuity from a device. While the count in the device
4058 * remains above zero the interface remains promiscuous. Once it hits zero
4059 * the device reverts back to normal filtering operation. A negative inc
4060 * value is used to drop promiscuity on the device.
4061 * Return 0 if successful or a negative errno code on error.
4062 */
4063 int dev_set_promiscuity(struct net_device *dev, int inc)
4064 {
4065 unsigned short old_flags = dev->flags;
4066 int err;
4067
4068 err = __dev_set_promiscuity(dev, inc);
4069 if (err < 0)
4070 return err;
4071 if (dev->flags != old_flags)
4072 dev_set_rx_mode(dev);
4073 return err;
4074 }
4075 EXPORT_SYMBOL(dev_set_promiscuity);
4076
4077 /**
4078 * dev_set_allmulti - update allmulti count on a device
4079 * @dev: device
4080 * @inc: modifier
4081 *
4082 * Add or remove reception of all multicast frames to a device. While the
4083 * count in the device remains above zero the interface remains listening
4084 * to all interfaces. Once it hits zero the device reverts back to normal
4085 * filtering operation. A negative @inc value is used to drop the counter
4086 * when releasing a resource needing all multicasts.
4087 * Return 0 if successful or a negative errno code on error.
4088 */
4089
4090 int dev_set_allmulti(struct net_device *dev, int inc)
4091 {
4092 unsigned short old_flags = dev->flags;
4093
4094 ASSERT_RTNL();
4095
4096 dev->flags |= IFF_ALLMULTI;
4097 dev->allmulti += inc;
4098 if (dev->allmulti == 0) {
4099 /*
4100 * Avoid overflow.
4101 * If inc causes overflow, untouch allmulti and return error.
4102 */
4103 if (inc < 0)
4104 dev->flags &= ~IFF_ALLMULTI;
4105 else {
4106 dev->allmulti -= inc;
4107 printk(KERN_WARNING "%s: allmulti touches roof, "
4108 "set allmulti failed, allmulti feature of "
4109 "device might be broken.\n", dev->name);
4110 return -EOVERFLOW;
4111 }
4112 }
4113 if (dev->flags ^ old_flags) {
4114 dev_change_rx_flags(dev, IFF_ALLMULTI);
4115 dev_set_rx_mode(dev);
4116 }
4117 return 0;
4118 }
4119 EXPORT_SYMBOL(dev_set_allmulti);
4120
4121 /*
4122 * Upload unicast and multicast address lists to device and
4123 * configure RX filtering. When the device doesn't support unicast
4124 * filtering it is put in promiscuous mode while unicast addresses
4125 * are present.
4126 */
4127 void __dev_set_rx_mode(struct net_device *dev)
4128 {
4129 const struct net_device_ops *ops = dev->netdev_ops;
4130
4131 /* dev_open will call this function so the list will stay sane. */
4132 if (!(dev->flags&IFF_UP))
4133 return;
4134
4135 if (!netif_device_present(dev))
4136 return;
4137
4138 if (ops->ndo_set_rx_mode)
4139 ops->ndo_set_rx_mode(dev);
4140 else {
4141 /* Unicast addresses changes may only happen under the rtnl,
4142 * therefore calling __dev_set_promiscuity here is safe.
4143 */
4144 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4145 __dev_set_promiscuity(dev, 1);
4146 dev->uc_promisc = 1;
4147 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4148 __dev_set_promiscuity(dev, -1);
4149 dev->uc_promisc = 0;
4150 }
4151
4152 if (ops->ndo_set_multicast_list)
4153 ops->ndo_set_multicast_list(dev);
4154 }
4155 }
4156
4157 void dev_set_rx_mode(struct net_device *dev)
4158 {
4159 netif_addr_lock_bh(dev);
4160 __dev_set_rx_mode(dev);
4161 netif_addr_unlock_bh(dev);
4162 }
4163
4164 /**
4165 * dev_get_flags - get flags reported to userspace
4166 * @dev: device
4167 *
4168 * Get the combination of flag bits exported through APIs to userspace.
4169 */
4170 unsigned dev_get_flags(const struct net_device *dev)
4171 {
4172 unsigned flags;
4173
4174 flags = (dev->flags & ~(IFF_PROMISC |
4175 IFF_ALLMULTI |
4176 IFF_RUNNING |
4177 IFF_LOWER_UP |
4178 IFF_DORMANT)) |
4179 (dev->gflags & (IFF_PROMISC |
4180 IFF_ALLMULTI));
4181
4182 if (netif_running(dev)) {
4183 if (netif_oper_up(dev))
4184 flags |= IFF_RUNNING;
4185 if (netif_carrier_ok(dev))
4186 flags |= IFF_LOWER_UP;
4187 if (netif_dormant(dev))
4188 flags |= IFF_DORMANT;
4189 }
4190
4191 return flags;
4192 }
4193 EXPORT_SYMBOL(dev_get_flags);
4194
4195 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4196 {
4197 int old_flags = dev->flags;
4198 int ret;
4199
4200 ASSERT_RTNL();
4201
4202 /*
4203 * Set the flags on our device.
4204 */
4205
4206 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4207 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4208 IFF_AUTOMEDIA)) |
4209 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4210 IFF_ALLMULTI));
4211
4212 /*
4213 * Load in the correct multicast list now the flags have changed.
4214 */
4215
4216 if ((old_flags ^ flags) & IFF_MULTICAST)
4217 dev_change_rx_flags(dev, IFF_MULTICAST);
4218
4219 dev_set_rx_mode(dev);
4220
4221 /*
4222 * Have we downed the interface. We handle IFF_UP ourselves
4223 * according to user attempts to set it, rather than blindly
4224 * setting it.
4225 */
4226
4227 ret = 0;
4228 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4229 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4230
4231 if (!ret)
4232 dev_set_rx_mode(dev);
4233 }
4234
4235 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4236 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4237
4238 dev->gflags ^= IFF_PROMISC;
4239 dev_set_promiscuity(dev, inc);
4240 }
4241
4242 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4243 is important. Some (broken) drivers set IFF_PROMISC, when
4244 IFF_ALLMULTI is requested not asking us and not reporting.
4245 */
4246 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4247 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4248
4249 dev->gflags ^= IFF_ALLMULTI;
4250 dev_set_allmulti(dev, inc);
4251 }
4252
4253 return ret;
4254 }
4255
4256 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4257 {
4258 unsigned int changes = dev->flags ^ old_flags;
4259
4260 if (changes & IFF_UP) {
4261 if (dev->flags & IFF_UP)
4262 call_netdevice_notifiers(NETDEV_UP, dev);
4263 else
4264 call_netdevice_notifiers(NETDEV_DOWN, dev);
4265 }
4266
4267 if (dev->flags & IFF_UP &&
4268 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4269 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4270 }
4271
4272 /**
4273 * dev_change_flags - change device settings
4274 * @dev: device
4275 * @flags: device state flags
4276 *
4277 * Change settings on device based state flags. The flags are
4278 * in the userspace exported format.
4279 */
4280 int dev_change_flags(struct net_device *dev, unsigned flags)
4281 {
4282 int ret, changes;
4283 int old_flags = dev->flags;
4284
4285 ret = __dev_change_flags(dev, flags);
4286 if (ret < 0)
4287 return ret;
4288
4289 changes = old_flags ^ dev->flags;
4290 if (changes)
4291 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4292
4293 __dev_notify_flags(dev, old_flags);
4294 return ret;
4295 }
4296 EXPORT_SYMBOL(dev_change_flags);
4297
4298 /**
4299 * dev_set_mtu - Change maximum transfer unit
4300 * @dev: device
4301 * @new_mtu: new transfer unit
4302 *
4303 * Change the maximum transfer size of the network device.
4304 */
4305 int dev_set_mtu(struct net_device *dev, int new_mtu)
4306 {
4307 const struct net_device_ops *ops = dev->netdev_ops;
4308 int err;
4309
4310 if (new_mtu == dev->mtu)
4311 return 0;
4312
4313 /* MTU must be positive. */
4314 if (new_mtu < 0)
4315 return -EINVAL;
4316
4317 if (!netif_device_present(dev))
4318 return -ENODEV;
4319
4320 err = 0;
4321 if (ops->ndo_change_mtu)
4322 err = ops->ndo_change_mtu(dev, new_mtu);
4323 else
4324 dev->mtu = new_mtu;
4325
4326 if (!err && dev->flags & IFF_UP)
4327 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4328 return err;
4329 }
4330 EXPORT_SYMBOL(dev_set_mtu);
4331
4332 /**
4333 * dev_set_mac_address - Change Media Access Control Address
4334 * @dev: device
4335 * @sa: new address
4336 *
4337 * Change the hardware (MAC) address of the device
4338 */
4339 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4340 {
4341 const struct net_device_ops *ops = dev->netdev_ops;
4342 int err;
4343
4344 if (!ops->ndo_set_mac_address)
4345 return -EOPNOTSUPP;
4346 if (sa->sa_family != dev->type)
4347 return -EINVAL;
4348 if (!netif_device_present(dev))
4349 return -ENODEV;
4350 err = ops->ndo_set_mac_address(dev, sa);
4351 if (!err)
4352 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4353 return err;
4354 }
4355 EXPORT_SYMBOL(dev_set_mac_address);
4356
4357 /*
4358 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4359 */
4360 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4361 {
4362 int err;
4363 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4364
4365 if (!dev)
4366 return -ENODEV;
4367
4368 switch (cmd) {
4369 case SIOCGIFFLAGS: /* Get interface flags */
4370 ifr->ifr_flags = (short) dev_get_flags(dev);
4371 return 0;
4372
4373 case SIOCGIFMETRIC: /* Get the metric on the interface
4374 (currently unused) */
4375 ifr->ifr_metric = 0;
4376 return 0;
4377
4378 case SIOCGIFMTU: /* Get the MTU of a device */
4379 ifr->ifr_mtu = dev->mtu;
4380 return 0;
4381
4382 case SIOCGIFHWADDR:
4383 if (!dev->addr_len)
4384 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4385 else
4386 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4387 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4388 ifr->ifr_hwaddr.sa_family = dev->type;
4389 return 0;
4390
4391 case SIOCGIFSLAVE:
4392 err = -EINVAL;
4393 break;
4394
4395 case SIOCGIFMAP:
4396 ifr->ifr_map.mem_start = dev->mem_start;
4397 ifr->ifr_map.mem_end = dev->mem_end;
4398 ifr->ifr_map.base_addr = dev->base_addr;
4399 ifr->ifr_map.irq = dev->irq;
4400 ifr->ifr_map.dma = dev->dma;
4401 ifr->ifr_map.port = dev->if_port;
4402 return 0;
4403
4404 case SIOCGIFINDEX:
4405 ifr->ifr_ifindex = dev->ifindex;
4406 return 0;
4407
4408 case SIOCGIFTXQLEN:
4409 ifr->ifr_qlen = dev->tx_queue_len;
4410 return 0;
4411
4412 default:
4413 /* dev_ioctl() should ensure this case
4414 * is never reached
4415 */
4416 WARN_ON(1);
4417 err = -EINVAL;
4418 break;
4419
4420 }
4421 return err;
4422 }
4423
4424 /*
4425 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4426 */
4427 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4428 {
4429 int err;
4430 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4431 const struct net_device_ops *ops;
4432
4433 if (!dev)
4434 return -ENODEV;
4435
4436 ops = dev->netdev_ops;
4437
4438 switch (cmd) {
4439 case SIOCSIFFLAGS: /* Set interface flags */
4440 return dev_change_flags(dev, ifr->ifr_flags);
4441
4442 case SIOCSIFMETRIC: /* Set the metric on the interface
4443 (currently unused) */
4444 return -EOPNOTSUPP;
4445
4446 case SIOCSIFMTU: /* Set the MTU of a device */
4447 return dev_set_mtu(dev, ifr->ifr_mtu);
4448
4449 case SIOCSIFHWADDR:
4450 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4451
4452 case SIOCSIFHWBROADCAST:
4453 if (ifr->ifr_hwaddr.sa_family != dev->type)
4454 return -EINVAL;
4455 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4456 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4457 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4458 return 0;
4459
4460 case SIOCSIFMAP:
4461 if (ops->ndo_set_config) {
4462 if (!netif_device_present(dev))
4463 return -ENODEV;
4464 return ops->ndo_set_config(dev, &ifr->ifr_map);
4465 }
4466 return -EOPNOTSUPP;
4467
4468 case SIOCADDMULTI:
4469 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4470 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4471 return -EINVAL;
4472 if (!netif_device_present(dev))
4473 return -ENODEV;
4474 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4475
4476 case SIOCDELMULTI:
4477 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4478 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4479 return -EINVAL;
4480 if (!netif_device_present(dev))
4481 return -ENODEV;
4482 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4483
4484 case SIOCSIFTXQLEN:
4485 if (ifr->ifr_qlen < 0)
4486 return -EINVAL;
4487 dev->tx_queue_len = ifr->ifr_qlen;
4488 return 0;
4489
4490 case SIOCSIFNAME:
4491 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4492 return dev_change_name(dev, ifr->ifr_newname);
4493
4494 /*
4495 * Unknown or private ioctl
4496 */
4497 default:
4498 if ((cmd >= SIOCDEVPRIVATE &&
4499 cmd <= SIOCDEVPRIVATE + 15) ||
4500 cmd == SIOCBONDENSLAVE ||
4501 cmd == SIOCBONDRELEASE ||
4502 cmd == SIOCBONDSETHWADDR ||
4503 cmd == SIOCBONDSLAVEINFOQUERY ||
4504 cmd == SIOCBONDINFOQUERY ||
4505 cmd == SIOCBONDCHANGEACTIVE ||
4506 cmd == SIOCGMIIPHY ||
4507 cmd == SIOCGMIIREG ||
4508 cmd == SIOCSMIIREG ||
4509 cmd == SIOCBRADDIF ||
4510 cmd == SIOCBRDELIF ||
4511 cmd == SIOCSHWTSTAMP ||
4512 cmd == SIOCWANDEV) {
4513 err = -EOPNOTSUPP;
4514 if (ops->ndo_do_ioctl) {
4515 if (netif_device_present(dev))
4516 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4517 else
4518 err = -ENODEV;
4519 }
4520 } else
4521 err = -EINVAL;
4522
4523 }
4524 return err;
4525 }
4526
4527 /*
4528 * This function handles all "interface"-type I/O control requests. The actual
4529 * 'doing' part of this is dev_ifsioc above.
4530 */
4531
4532 /**
4533 * dev_ioctl - network device ioctl
4534 * @net: the applicable net namespace
4535 * @cmd: command to issue
4536 * @arg: pointer to a struct ifreq in user space
4537 *
4538 * Issue ioctl functions to devices. This is normally called by the
4539 * user space syscall interfaces but can sometimes be useful for
4540 * other purposes. The return value is the return from the syscall if
4541 * positive or a negative errno code on error.
4542 */
4543
4544 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4545 {
4546 struct ifreq ifr;
4547 int ret;
4548 char *colon;
4549
4550 /* One special case: SIOCGIFCONF takes ifconf argument
4551 and requires shared lock, because it sleeps writing
4552 to user space.
4553 */
4554
4555 if (cmd == SIOCGIFCONF) {
4556 rtnl_lock();
4557 ret = dev_ifconf(net, (char __user *) arg);
4558 rtnl_unlock();
4559 return ret;
4560 }
4561 if (cmd == SIOCGIFNAME)
4562 return dev_ifname(net, (struct ifreq __user *)arg);
4563
4564 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4565 return -EFAULT;
4566
4567 ifr.ifr_name[IFNAMSIZ-1] = 0;
4568
4569 colon = strchr(ifr.ifr_name, ':');
4570 if (colon)
4571 *colon = 0;
4572
4573 /*
4574 * See which interface the caller is talking about.
4575 */
4576
4577 switch (cmd) {
4578 /*
4579 * These ioctl calls:
4580 * - can be done by all.
4581 * - atomic and do not require locking.
4582 * - return a value
4583 */
4584 case SIOCGIFFLAGS:
4585 case SIOCGIFMETRIC:
4586 case SIOCGIFMTU:
4587 case SIOCGIFHWADDR:
4588 case SIOCGIFSLAVE:
4589 case SIOCGIFMAP:
4590 case SIOCGIFINDEX:
4591 case SIOCGIFTXQLEN:
4592 dev_load(net, ifr.ifr_name);
4593 rcu_read_lock();
4594 ret = dev_ifsioc_locked(net, &ifr, cmd);
4595 rcu_read_unlock();
4596 if (!ret) {
4597 if (colon)
4598 *colon = ':';
4599 if (copy_to_user(arg, &ifr,
4600 sizeof(struct ifreq)))
4601 ret = -EFAULT;
4602 }
4603 return ret;
4604
4605 case SIOCETHTOOL:
4606 dev_load(net, ifr.ifr_name);
4607 rtnl_lock();
4608 ret = dev_ethtool(net, &ifr);
4609 rtnl_unlock();
4610 if (!ret) {
4611 if (colon)
4612 *colon = ':';
4613 if (copy_to_user(arg, &ifr,
4614 sizeof(struct ifreq)))
4615 ret = -EFAULT;
4616 }
4617 return ret;
4618
4619 /*
4620 * These ioctl calls:
4621 * - require superuser power.
4622 * - require strict serialization.
4623 * - return a value
4624 */
4625 case SIOCGMIIPHY:
4626 case SIOCGMIIREG:
4627 case SIOCSIFNAME:
4628 if (!capable(CAP_NET_ADMIN))
4629 return -EPERM;
4630 dev_load(net, ifr.ifr_name);
4631 rtnl_lock();
4632 ret = dev_ifsioc(net, &ifr, cmd);
4633 rtnl_unlock();
4634 if (!ret) {
4635 if (colon)
4636 *colon = ':';
4637 if (copy_to_user(arg, &ifr,
4638 sizeof(struct ifreq)))
4639 ret = -EFAULT;
4640 }
4641 return ret;
4642
4643 /*
4644 * These ioctl calls:
4645 * - require superuser power.
4646 * - require strict serialization.
4647 * - do not return a value
4648 */
4649 case SIOCSIFFLAGS:
4650 case SIOCSIFMETRIC:
4651 case SIOCSIFMTU:
4652 case SIOCSIFMAP:
4653 case SIOCSIFHWADDR:
4654 case SIOCSIFSLAVE:
4655 case SIOCADDMULTI:
4656 case SIOCDELMULTI:
4657 case SIOCSIFHWBROADCAST:
4658 case SIOCSIFTXQLEN:
4659 case SIOCSMIIREG:
4660 case SIOCBONDENSLAVE:
4661 case SIOCBONDRELEASE:
4662 case SIOCBONDSETHWADDR:
4663 case SIOCBONDCHANGEACTIVE:
4664 case SIOCBRADDIF:
4665 case SIOCBRDELIF:
4666 case SIOCSHWTSTAMP:
4667 if (!capable(CAP_NET_ADMIN))
4668 return -EPERM;
4669 /* fall through */
4670 case SIOCBONDSLAVEINFOQUERY:
4671 case SIOCBONDINFOQUERY:
4672 dev_load(net, ifr.ifr_name);
4673 rtnl_lock();
4674 ret = dev_ifsioc(net, &ifr, cmd);
4675 rtnl_unlock();
4676 return ret;
4677
4678 case SIOCGIFMEM:
4679 /* Get the per device memory space. We can add this but
4680 * currently do not support it */
4681 case SIOCSIFMEM:
4682 /* Set the per device memory buffer space.
4683 * Not applicable in our case */
4684 case SIOCSIFLINK:
4685 return -EINVAL;
4686
4687 /*
4688 * Unknown or private ioctl.
4689 */
4690 default:
4691 if (cmd == SIOCWANDEV ||
4692 (cmd >= SIOCDEVPRIVATE &&
4693 cmd <= SIOCDEVPRIVATE + 15)) {
4694 dev_load(net, ifr.ifr_name);
4695 rtnl_lock();
4696 ret = dev_ifsioc(net, &ifr, cmd);
4697 rtnl_unlock();
4698 if (!ret && copy_to_user(arg, &ifr,
4699 sizeof(struct ifreq)))
4700 ret = -EFAULT;
4701 return ret;
4702 }
4703 /* Take care of Wireless Extensions */
4704 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4705 return wext_handle_ioctl(net, &ifr, cmd, arg);
4706 return -EINVAL;
4707 }
4708 }
4709
4710
4711 /**
4712 * dev_new_index - allocate an ifindex
4713 * @net: the applicable net namespace
4714 *
4715 * Returns a suitable unique value for a new device interface
4716 * number. The caller must hold the rtnl semaphore or the
4717 * dev_base_lock to be sure it remains unique.
4718 */
4719 static int dev_new_index(struct net *net)
4720 {
4721 static int ifindex;
4722 for (;;) {
4723 if (++ifindex <= 0)
4724 ifindex = 1;
4725 if (!__dev_get_by_index(net, ifindex))
4726 return ifindex;
4727 }
4728 }
4729
4730 /* Delayed registration/unregisteration */
4731 static LIST_HEAD(net_todo_list);
4732
4733 static void net_set_todo(struct net_device *dev)
4734 {
4735 list_add_tail(&dev->todo_list, &net_todo_list);
4736 }
4737
4738 static void rollback_registered_many(struct list_head *head)
4739 {
4740 struct net_device *dev, *tmp;
4741
4742 BUG_ON(dev_boot_phase);
4743 ASSERT_RTNL();
4744
4745 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4746 /* Some devices call without registering
4747 * for initialization unwind. Remove those
4748 * devices and proceed with the remaining.
4749 */
4750 if (dev->reg_state == NETREG_UNINITIALIZED) {
4751 pr_debug("unregister_netdevice: device %s/%p never "
4752 "was registered\n", dev->name, dev);
4753
4754 WARN_ON(1);
4755 list_del(&dev->unreg_list);
4756 continue;
4757 }
4758
4759 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4760
4761 /* If device is running, close it first. */
4762 dev_close(dev);
4763
4764 /* And unlink it from device chain. */
4765 unlist_netdevice(dev);
4766
4767 dev->reg_state = NETREG_UNREGISTERING;
4768 }
4769
4770 synchronize_net();
4771
4772 list_for_each_entry(dev, head, unreg_list) {
4773 /* Shutdown queueing discipline. */
4774 dev_shutdown(dev);
4775
4776
4777 /* Notify protocols, that we are about to destroy
4778 this device. They should clean all the things.
4779 */
4780 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4781
4782 if (!dev->rtnl_link_ops ||
4783 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4784 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4785
4786 /*
4787 * Flush the unicast and multicast chains
4788 */
4789 dev_uc_flush(dev);
4790 dev_mc_flush(dev);
4791
4792 if (dev->netdev_ops->ndo_uninit)
4793 dev->netdev_ops->ndo_uninit(dev);
4794
4795 /* Notifier chain MUST detach us from master device. */
4796 WARN_ON(dev->master);
4797
4798 /* Remove entries from kobject tree */
4799 netdev_unregister_kobject(dev);
4800 }
4801
4802 /* Process any work delayed until the end of the batch */
4803 dev = list_first_entry(head, struct net_device, unreg_list);
4804 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4805
4806 synchronize_net();
4807
4808 list_for_each_entry(dev, head, unreg_list)
4809 dev_put(dev);
4810 }
4811
4812 static void rollback_registered(struct net_device *dev)
4813 {
4814 LIST_HEAD(single);
4815
4816 list_add(&dev->unreg_list, &single);
4817 rollback_registered_many(&single);
4818 }
4819
4820 static void __netdev_init_queue_locks_one(struct net_device *dev,
4821 struct netdev_queue *dev_queue,
4822 void *_unused)
4823 {
4824 spin_lock_init(&dev_queue->_xmit_lock);
4825 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4826 dev_queue->xmit_lock_owner = -1;
4827 }
4828
4829 static void netdev_init_queue_locks(struct net_device *dev)
4830 {
4831 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4832 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4833 }
4834
4835 unsigned long netdev_fix_features(unsigned long features, const char *name)
4836 {
4837 /* Fix illegal SG+CSUM combinations. */
4838 if ((features & NETIF_F_SG) &&
4839 !(features & NETIF_F_ALL_CSUM)) {
4840 if (name)
4841 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4842 "checksum feature.\n", name);
4843 features &= ~NETIF_F_SG;
4844 }
4845
4846 /* TSO requires that SG is present as well. */
4847 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4848 if (name)
4849 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4850 "SG feature.\n", name);
4851 features &= ~NETIF_F_TSO;
4852 }
4853
4854 if (features & NETIF_F_UFO) {
4855 if (!(features & NETIF_F_GEN_CSUM)) {
4856 if (name)
4857 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4858 "since no NETIF_F_HW_CSUM feature.\n",
4859 name);
4860 features &= ~NETIF_F_UFO;
4861 }
4862
4863 if (!(features & NETIF_F_SG)) {
4864 if (name)
4865 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4866 "since no NETIF_F_SG feature.\n", name);
4867 features &= ~NETIF_F_UFO;
4868 }
4869 }
4870
4871 return features;
4872 }
4873 EXPORT_SYMBOL(netdev_fix_features);
4874
4875 /**
4876 * netif_stacked_transfer_operstate - transfer operstate
4877 * @rootdev: the root or lower level device to transfer state from
4878 * @dev: the device to transfer operstate to
4879 *
4880 * Transfer operational state from root to device. This is normally
4881 * called when a stacking relationship exists between the root
4882 * device and the device(a leaf device).
4883 */
4884 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4885 struct net_device *dev)
4886 {
4887 if (rootdev->operstate == IF_OPER_DORMANT)
4888 netif_dormant_on(dev);
4889 else
4890 netif_dormant_off(dev);
4891
4892 if (netif_carrier_ok(rootdev)) {
4893 if (!netif_carrier_ok(dev))
4894 netif_carrier_on(dev);
4895 } else {
4896 if (netif_carrier_ok(dev))
4897 netif_carrier_off(dev);
4898 }
4899 }
4900 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4901
4902 /**
4903 * register_netdevice - register a network device
4904 * @dev: device to register
4905 *
4906 * Take a completed network device structure and add it to the kernel
4907 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4908 * chain. 0 is returned on success. A negative errno code is returned
4909 * on a failure to set up the device, or if the name is a duplicate.
4910 *
4911 * Callers must hold the rtnl semaphore. You may want
4912 * register_netdev() instead of this.
4913 *
4914 * BUGS:
4915 * The locking appears insufficient to guarantee two parallel registers
4916 * will not get the same name.
4917 */
4918
4919 int register_netdevice(struct net_device *dev)
4920 {
4921 int ret;
4922 struct net *net = dev_net(dev);
4923
4924 BUG_ON(dev_boot_phase);
4925 ASSERT_RTNL();
4926
4927 might_sleep();
4928
4929 /* When net_device's are persistent, this will be fatal. */
4930 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4931 BUG_ON(!net);
4932
4933 spin_lock_init(&dev->addr_list_lock);
4934 netdev_set_addr_lockdep_class(dev);
4935 netdev_init_queue_locks(dev);
4936
4937 dev->iflink = -1;
4938
4939 #ifdef CONFIG_RPS
4940 if (!dev->num_rx_queues) {
4941 /*
4942 * Allocate a single RX queue if driver never called
4943 * alloc_netdev_mq
4944 */
4945
4946 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4947 if (!dev->_rx) {
4948 ret = -ENOMEM;
4949 goto out;
4950 }
4951
4952 dev->_rx->first = dev->_rx;
4953 atomic_set(&dev->_rx->count, 1);
4954 dev->num_rx_queues = 1;
4955 }
4956 #endif
4957 /* Init, if this function is available */
4958 if (dev->netdev_ops->ndo_init) {
4959 ret = dev->netdev_ops->ndo_init(dev);
4960 if (ret) {
4961 if (ret > 0)
4962 ret = -EIO;
4963 goto out;
4964 }
4965 }
4966
4967 ret = dev_get_valid_name(dev, dev->name, 0);
4968 if (ret)
4969 goto err_uninit;
4970
4971 dev->ifindex = dev_new_index(net);
4972 if (dev->iflink == -1)
4973 dev->iflink = dev->ifindex;
4974
4975 /* Fix illegal checksum combinations */
4976 if ((dev->features & NETIF_F_HW_CSUM) &&
4977 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4978 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4979 dev->name);
4980 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4981 }
4982
4983 if ((dev->features & NETIF_F_NO_CSUM) &&
4984 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4985 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4986 dev->name);
4987 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4988 }
4989
4990 dev->features = netdev_fix_features(dev->features, dev->name);
4991
4992 /* Enable software GSO if SG is supported. */
4993 if (dev->features & NETIF_F_SG)
4994 dev->features |= NETIF_F_GSO;
4995
4996 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4997 ret = notifier_to_errno(ret);
4998 if (ret)
4999 goto err_uninit;
5000
5001 ret = netdev_register_kobject(dev);
5002 if (ret)
5003 goto err_uninit;
5004 dev->reg_state = NETREG_REGISTERED;
5005
5006 /*
5007 * Default initial state at registry is that the
5008 * device is present.
5009 */
5010
5011 set_bit(__LINK_STATE_PRESENT, &dev->state);
5012
5013 dev_init_scheduler(dev);
5014 dev_hold(dev);
5015 list_netdevice(dev);
5016
5017 /* Notify protocols, that a new device appeared. */
5018 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5019 ret = notifier_to_errno(ret);
5020 if (ret) {
5021 rollback_registered(dev);
5022 dev->reg_state = NETREG_UNREGISTERED;
5023 }
5024 /*
5025 * Prevent userspace races by waiting until the network
5026 * device is fully setup before sending notifications.
5027 */
5028 if (!dev->rtnl_link_ops ||
5029 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5030 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5031
5032 out:
5033 return ret;
5034
5035 err_uninit:
5036 if (dev->netdev_ops->ndo_uninit)
5037 dev->netdev_ops->ndo_uninit(dev);
5038 goto out;
5039 }
5040 EXPORT_SYMBOL(register_netdevice);
5041
5042 /**
5043 * init_dummy_netdev - init a dummy network device for NAPI
5044 * @dev: device to init
5045 *
5046 * This takes a network device structure and initialize the minimum
5047 * amount of fields so it can be used to schedule NAPI polls without
5048 * registering a full blown interface. This is to be used by drivers
5049 * that need to tie several hardware interfaces to a single NAPI
5050 * poll scheduler due to HW limitations.
5051 */
5052 int init_dummy_netdev(struct net_device *dev)
5053 {
5054 /* Clear everything. Note we don't initialize spinlocks
5055 * are they aren't supposed to be taken by any of the
5056 * NAPI code and this dummy netdev is supposed to be
5057 * only ever used for NAPI polls
5058 */
5059 memset(dev, 0, sizeof(struct net_device));
5060
5061 /* make sure we BUG if trying to hit standard
5062 * register/unregister code path
5063 */
5064 dev->reg_state = NETREG_DUMMY;
5065
5066 /* initialize the ref count */
5067 atomic_set(&dev->refcnt, 1);
5068
5069 /* NAPI wants this */
5070 INIT_LIST_HEAD(&dev->napi_list);
5071
5072 /* a dummy interface is started by default */
5073 set_bit(__LINK_STATE_PRESENT, &dev->state);
5074 set_bit(__LINK_STATE_START, &dev->state);
5075
5076 return 0;
5077 }
5078 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5079
5080
5081 /**
5082 * register_netdev - register a network device
5083 * @dev: device to register
5084 *
5085 * Take a completed network device structure and add it to the kernel
5086 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5087 * chain. 0 is returned on success. A negative errno code is returned
5088 * on a failure to set up the device, or if the name is a duplicate.
5089 *
5090 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5091 * and expands the device name if you passed a format string to
5092 * alloc_netdev.
5093 */
5094 int register_netdev(struct net_device *dev)
5095 {
5096 int err;
5097
5098 rtnl_lock();
5099
5100 /*
5101 * If the name is a format string the caller wants us to do a
5102 * name allocation.
5103 */
5104 if (strchr(dev->name, '%')) {
5105 err = dev_alloc_name(dev, dev->name);
5106 if (err < 0)
5107 goto out;
5108 }
5109
5110 err = register_netdevice(dev);
5111 out:
5112 rtnl_unlock();
5113 return err;
5114 }
5115 EXPORT_SYMBOL(register_netdev);
5116
5117 /*
5118 * netdev_wait_allrefs - wait until all references are gone.
5119 *
5120 * This is called when unregistering network devices.
5121 *
5122 * Any protocol or device that holds a reference should register
5123 * for netdevice notification, and cleanup and put back the
5124 * reference if they receive an UNREGISTER event.
5125 * We can get stuck here if buggy protocols don't correctly
5126 * call dev_put.
5127 */
5128 static void netdev_wait_allrefs(struct net_device *dev)
5129 {
5130 unsigned long rebroadcast_time, warning_time;
5131
5132 linkwatch_forget_dev(dev);
5133
5134 rebroadcast_time = warning_time = jiffies;
5135 while (atomic_read(&dev->refcnt) != 0) {
5136 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5137 rtnl_lock();
5138
5139 /* Rebroadcast unregister notification */
5140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5141 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5142 * should have already handle it the first time */
5143
5144 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5145 &dev->state)) {
5146 /* We must not have linkwatch events
5147 * pending on unregister. If this
5148 * happens, we simply run the queue
5149 * unscheduled, resulting in a noop
5150 * for this device.
5151 */
5152 linkwatch_run_queue();
5153 }
5154
5155 __rtnl_unlock();
5156
5157 rebroadcast_time = jiffies;
5158 }
5159
5160 msleep(250);
5161
5162 if (time_after(jiffies, warning_time + 10 * HZ)) {
5163 printk(KERN_EMERG "unregister_netdevice: "
5164 "waiting for %s to become free. Usage "
5165 "count = %d\n",
5166 dev->name, atomic_read(&dev->refcnt));
5167 warning_time = jiffies;
5168 }
5169 }
5170 }
5171
5172 /* The sequence is:
5173 *
5174 * rtnl_lock();
5175 * ...
5176 * register_netdevice(x1);
5177 * register_netdevice(x2);
5178 * ...
5179 * unregister_netdevice(y1);
5180 * unregister_netdevice(y2);
5181 * ...
5182 * rtnl_unlock();
5183 * free_netdev(y1);
5184 * free_netdev(y2);
5185 *
5186 * We are invoked by rtnl_unlock().
5187 * This allows us to deal with problems:
5188 * 1) We can delete sysfs objects which invoke hotplug
5189 * without deadlocking with linkwatch via keventd.
5190 * 2) Since we run with the RTNL semaphore not held, we can sleep
5191 * safely in order to wait for the netdev refcnt to drop to zero.
5192 *
5193 * We must not return until all unregister events added during
5194 * the interval the lock was held have been completed.
5195 */
5196 void netdev_run_todo(void)
5197 {
5198 struct list_head list;
5199
5200 /* Snapshot list, allow later requests */
5201 list_replace_init(&net_todo_list, &list);
5202
5203 __rtnl_unlock();
5204
5205 while (!list_empty(&list)) {
5206 struct net_device *dev
5207 = list_first_entry(&list, struct net_device, todo_list);
5208 list_del(&dev->todo_list);
5209
5210 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5211 printk(KERN_ERR "network todo '%s' but state %d\n",
5212 dev->name, dev->reg_state);
5213 dump_stack();
5214 continue;
5215 }
5216
5217 dev->reg_state = NETREG_UNREGISTERED;
5218
5219 on_each_cpu(flush_backlog, dev, 1);
5220
5221 netdev_wait_allrefs(dev);
5222
5223 /* paranoia */
5224 BUG_ON(atomic_read(&dev->refcnt));
5225 WARN_ON(dev->ip_ptr);
5226 WARN_ON(dev->ip6_ptr);
5227 WARN_ON(dev->dn_ptr);
5228
5229 if (dev->destructor)
5230 dev->destructor(dev);
5231
5232 /* Free network device */
5233 kobject_put(&dev->dev.kobj);
5234 }
5235 }
5236
5237 /**
5238 * dev_txq_stats_fold - fold tx_queues stats
5239 * @dev: device to get statistics from
5240 * @stats: struct net_device_stats to hold results
5241 */
5242 void dev_txq_stats_fold(const struct net_device *dev,
5243 struct net_device_stats *stats)
5244 {
5245 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5246 unsigned int i;
5247 struct netdev_queue *txq;
5248
5249 for (i = 0; i < dev->num_tx_queues; i++) {
5250 txq = netdev_get_tx_queue(dev, i);
5251 tx_bytes += txq->tx_bytes;
5252 tx_packets += txq->tx_packets;
5253 tx_dropped += txq->tx_dropped;
5254 }
5255 if (tx_bytes || tx_packets || tx_dropped) {
5256 stats->tx_bytes = tx_bytes;
5257 stats->tx_packets = tx_packets;
5258 stats->tx_dropped = tx_dropped;
5259 }
5260 }
5261 EXPORT_SYMBOL(dev_txq_stats_fold);
5262
5263 /**
5264 * dev_get_stats - get network device statistics
5265 * @dev: device to get statistics from
5266 *
5267 * Get network statistics from device. The device driver may provide
5268 * its own method by setting dev->netdev_ops->get_stats; otherwise
5269 * the internal statistics structure is used.
5270 */
5271 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5272 {
5273 const struct net_device_ops *ops = dev->netdev_ops;
5274
5275 if (ops->ndo_get_stats)
5276 return ops->ndo_get_stats(dev);
5277
5278 dev_txq_stats_fold(dev, &dev->stats);
5279 return &dev->stats;
5280 }
5281 EXPORT_SYMBOL(dev_get_stats);
5282
5283 static void netdev_init_one_queue(struct net_device *dev,
5284 struct netdev_queue *queue,
5285 void *_unused)
5286 {
5287 queue->dev = dev;
5288 }
5289
5290 static void netdev_init_queues(struct net_device *dev)
5291 {
5292 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5293 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5294 spin_lock_init(&dev->tx_global_lock);
5295 }
5296
5297 /**
5298 * alloc_netdev_mq - allocate network device
5299 * @sizeof_priv: size of private data to allocate space for
5300 * @name: device name format string
5301 * @setup: callback to initialize device
5302 * @queue_count: the number of subqueues to allocate
5303 *
5304 * Allocates a struct net_device with private data area for driver use
5305 * and performs basic initialization. Also allocates subquue structs
5306 * for each queue on the device at the end of the netdevice.
5307 */
5308 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5309 void (*setup)(struct net_device *), unsigned int queue_count)
5310 {
5311 struct netdev_queue *tx;
5312 struct net_device *dev;
5313 size_t alloc_size;
5314 struct net_device *p;
5315 #ifdef CONFIG_RPS
5316 struct netdev_rx_queue *rx;
5317 int i;
5318 #endif
5319
5320 BUG_ON(strlen(name) >= sizeof(dev->name));
5321
5322 alloc_size = sizeof(struct net_device);
5323 if (sizeof_priv) {
5324 /* ensure 32-byte alignment of private area */
5325 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5326 alloc_size += sizeof_priv;
5327 }
5328 /* ensure 32-byte alignment of whole construct */
5329 alloc_size += NETDEV_ALIGN - 1;
5330
5331 p = kzalloc(alloc_size, GFP_KERNEL);
5332 if (!p) {
5333 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5334 return NULL;
5335 }
5336
5337 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5338 if (!tx) {
5339 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5340 "tx qdiscs.\n");
5341 goto free_p;
5342 }
5343
5344 #ifdef CONFIG_RPS
5345 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5346 if (!rx) {
5347 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5348 "rx queues.\n");
5349 goto free_tx;
5350 }
5351
5352 atomic_set(&rx->count, queue_count);
5353
5354 /*
5355 * Set a pointer to first element in the array which holds the
5356 * reference count.
5357 */
5358 for (i = 0; i < queue_count; i++)
5359 rx[i].first = rx;
5360 #endif
5361
5362 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5363 dev->padded = (char *)dev - (char *)p;
5364
5365 if (dev_addr_init(dev))
5366 goto free_rx;
5367
5368 dev_mc_init(dev);
5369 dev_uc_init(dev);
5370
5371 dev_net_set(dev, &init_net);
5372
5373 dev->_tx = tx;
5374 dev->num_tx_queues = queue_count;
5375 dev->real_num_tx_queues = queue_count;
5376
5377 #ifdef CONFIG_RPS
5378 dev->_rx = rx;
5379 dev->num_rx_queues = queue_count;
5380 #endif
5381
5382 dev->gso_max_size = GSO_MAX_SIZE;
5383
5384 netdev_init_queues(dev);
5385
5386 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5387 dev->ethtool_ntuple_list.count = 0;
5388 INIT_LIST_HEAD(&dev->napi_list);
5389 INIT_LIST_HEAD(&dev->unreg_list);
5390 INIT_LIST_HEAD(&dev->link_watch_list);
5391 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5392 setup(dev);
5393 strcpy(dev->name, name);
5394 return dev;
5395
5396 free_rx:
5397 #ifdef CONFIG_RPS
5398 kfree(rx);
5399 free_tx:
5400 #endif
5401 kfree(tx);
5402 free_p:
5403 kfree(p);
5404 return NULL;
5405 }
5406 EXPORT_SYMBOL(alloc_netdev_mq);
5407
5408 /**
5409 * free_netdev - free network device
5410 * @dev: device
5411 *
5412 * This function does the last stage of destroying an allocated device
5413 * interface. The reference to the device object is released.
5414 * If this is the last reference then it will be freed.
5415 */
5416 void free_netdev(struct net_device *dev)
5417 {
5418 struct napi_struct *p, *n;
5419
5420 release_net(dev_net(dev));
5421
5422 kfree(dev->_tx);
5423
5424 /* Flush device addresses */
5425 dev_addr_flush(dev);
5426
5427 /* Clear ethtool n-tuple list */
5428 ethtool_ntuple_flush(dev);
5429
5430 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5431 netif_napi_del(p);
5432
5433 /* Compatibility with error handling in drivers */
5434 if (dev->reg_state == NETREG_UNINITIALIZED) {
5435 kfree((char *)dev - dev->padded);
5436 return;
5437 }
5438
5439 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5440 dev->reg_state = NETREG_RELEASED;
5441
5442 /* will free via device release */
5443 put_device(&dev->dev);
5444 }
5445 EXPORT_SYMBOL(free_netdev);
5446
5447 /**
5448 * synchronize_net - Synchronize with packet receive processing
5449 *
5450 * Wait for packets currently being received to be done.
5451 * Does not block later packets from starting.
5452 */
5453 void synchronize_net(void)
5454 {
5455 might_sleep();
5456 synchronize_rcu();
5457 }
5458 EXPORT_SYMBOL(synchronize_net);
5459
5460 /**
5461 * unregister_netdevice_queue - remove device from the kernel
5462 * @dev: device
5463 * @head: list
5464 *
5465 * This function shuts down a device interface and removes it
5466 * from the kernel tables.
5467 * If head not NULL, device is queued to be unregistered later.
5468 *
5469 * Callers must hold the rtnl semaphore. You may want
5470 * unregister_netdev() instead of this.
5471 */
5472
5473 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5474 {
5475 ASSERT_RTNL();
5476
5477 if (head) {
5478 list_move_tail(&dev->unreg_list, head);
5479 } else {
5480 rollback_registered(dev);
5481 /* Finish processing unregister after unlock */
5482 net_set_todo(dev);
5483 }
5484 }
5485 EXPORT_SYMBOL(unregister_netdevice_queue);
5486
5487 /**
5488 * unregister_netdevice_many - unregister many devices
5489 * @head: list of devices
5490 */
5491 void unregister_netdevice_many(struct list_head *head)
5492 {
5493 struct net_device *dev;
5494
5495 if (!list_empty(head)) {
5496 rollback_registered_many(head);
5497 list_for_each_entry(dev, head, unreg_list)
5498 net_set_todo(dev);
5499 }
5500 }
5501 EXPORT_SYMBOL(unregister_netdevice_many);
5502
5503 /**
5504 * unregister_netdev - remove device from the kernel
5505 * @dev: device
5506 *
5507 * This function shuts down a device interface and removes it
5508 * from the kernel tables.
5509 *
5510 * This is just a wrapper for unregister_netdevice that takes
5511 * the rtnl semaphore. In general you want to use this and not
5512 * unregister_netdevice.
5513 */
5514 void unregister_netdev(struct net_device *dev)
5515 {
5516 rtnl_lock();
5517 unregister_netdevice(dev);
5518 rtnl_unlock();
5519 }
5520 EXPORT_SYMBOL(unregister_netdev);
5521
5522 /**
5523 * dev_change_net_namespace - move device to different nethost namespace
5524 * @dev: device
5525 * @net: network namespace
5526 * @pat: If not NULL name pattern to try if the current device name
5527 * is already taken in the destination network namespace.
5528 *
5529 * This function shuts down a device interface and moves it
5530 * to a new network namespace. On success 0 is returned, on
5531 * a failure a netagive errno code is returned.
5532 *
5533 * Callers must hold the rtnl semaphore.
5534 */
5535
5536 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5537 {
5538 int err;
5539
5540 ASSERT_RTNL();
5541
5542 /* Don't allow namespace local devices to be moved. */
5543 err = -EINVAL;
5544 if (dev->features & NETIF_F_NETNS_LOCAL)
5545 goto out;
5546
5547 /* Ensure the device has been registrered */
5548 err = -EINVAL;
5549 if (dev->reg_state != NETREG_REGISTERED)
5550 goto out;
5551
5552 /* Get out if there is nothing todo */
5553 err = 0;
5554 if (net_eq(dev_net(dev), net))
5555 goto out;
5556
5557 /* Pick the destination device name, and ensure
5558 * we can use it in the destination network namespace.
5559 */
5560 err = -EEXIST;
5561 if (__dev_get_by_name(net, dev->name)) {
5562 /* We get here if we can't use the current device name */
5563 if (!pat)
5564 goto out;
5565 if (dev_get_valid_name(dev, pat, 1))
5566 goto out;
5567 }
5568
5569 /*
5570 * And now a mini version of register_netdevice unregister_netdevice.
5571 */
5572
5573 /* If device is running close it first. */
5574 dev_close(dev);
5575
5576 /* And unlink it from device chain */
5577 err = -ENODEV;
5578 unlist_netdevice(dev);
5579
5580 synchronize_net();
5581
5582 /* Shutdown queueing discipline. */
5583 dev_shutdown(dev);
5584
5585 /* Notify protocols, that we are about to destroy
5586 this device. They should clean all the things.
5587 */
5588 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5589 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5590
5591 /*
5592 * Flush the unicast and multicast chains
5593 */
5594 dev_uc_flush(dev);
5595 dev_mc_flush(dev);
5596
5597 /* Actually switch the network namespace */
5598 dev_net_set(dev, net);
5599
5600 /* If there is an ifindex conflict assign a new one */
5601 if (__dev_get_by_index(net, dev->ifindex)) {
5602 int iflink = (dev->iflink == dev->ifindex);
5603 dev->ifindex = dev_new_index(net);
5604 if (iflink)
5605 dev->iflink = dev->ifindex;
5606 }
5607
5608 /* Fixup kobjects */
5609 err = device_rename(&dev->dev, dev->name);
5610 WARN_ON(err);
5611
5612 /* Add the device back in the hashes */
5613 list_netdevice(dev);
5614
5615 /* Notify protocols, that a new device appeared. */
5616 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5617
5618 /*
5619 * Prevent userspace races by waiting until the network
5620 * device is fully setup before sending notifications.
5621 */
5622 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5623
5624 synchronize_net();
5625 err = 0;
5626 out:
5627 return err;
5628 }
5629 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5630
5631 static int dev_cpu_callback(struct notifier_block *nfb,
5632 unsigned long action,
5633 void *ocpu)
5634 {
5635 struct sk_buff **list_skb;
5636 struct sk_buff *skb;
5637 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5638 struct softnet_data *sd, *oldsd;
5639
5640 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5641 return NOTIFY_OK;
5642
5643 local_irq_disable();
5644 cpu = smp_processor_id();
5645 sd = &per_cpu(softnet_data, cpu);
5646 oldsd = &per_cpu(softnet_data, oldcpu);
5647
5648 /* Find end of our completion_queue. */
5649 list_skb = &sd->completion_queue;
5650 while (*list_skb)
5651 list_skb = &(*list_skb)->next;
5652 /* Append completion queue from offline CPU. */
5653 *list_skb = oldsd->completion_queue;
5654 oldsd->completion_queue = NULL;
5655
5656 /* Append output queue from offline CPU. */
5657 if (oldsd->output_queue) {
5658 *sd->output_queue_tailp = oldsd->output_queue;
5659 sd->output_queue_tailp = oldsd->output_queue_tailp;
5660 oldsd->output_queue = NULL;
5661 oldsd->output_queue_tailp = &oldsd->output_queue;
5662 }
5663
5664 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5665 local_irq_enable();
5666
5667 /* Process offline CPU's input_pkt_queue */
5668 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5669 netif_rx(skb);
5670 input_queue_head_incr(oldsd);
5671 }
5672 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5673 netif_rx(skb);
5674 input_queue_head_incr(oldsd);
5675 }
5676
5677 return NOTIFY_OK;
5678 }
5679
5680
5681 /**
5682 * netdev_increment_features - increment feature set by one
5683 * @all: current feature set
5684 * @one: new feature set
5685 * @mask: mask feature set
5686 *
5687 * Computes a new feature set after adding a device with feature set
5688 * @one to the master device with current feature set @all. Will not
5689 * enable anything that is off in @mask. Returns the new feature set.
5690 */
5691 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5692 unsigned long mask)
5693 {
5694 /* If device needs checksumming, downgrade to it. */
5695 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5696 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5697 else if (mask & NETIF_F_ALL_CSUM) {
5698 /* If one device supports v4/v6 checksumming, set for all. */
5699 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5700 !(all & NETIF_F_GEN_CSUM)) {
5701 all &= ~NETIF_F_ALL_CSUM;
5702 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5703 }
5704
5705 /* If one device supports hw checksumming, set for all. */
5706 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5707 all &= ~NETIF_F_ALL_CSUM;
5708 all |= NETIF_F_HW_CSUM;
5709 }
5710 }
5711
5712 one |= NETIF_F_ALL_CSUM;
5713
5714 one |= all & NETIF_F_ONE_FOR_ALL;
5715 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5716 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5717
5718 return all;
5719 }
5720 EXPORT_SYMBOL(netdev_increment_features);
5721
5722 static struct hlist_head *netdev_create_hash(void)
5723 {
5724 int i;
5725 struct hlist_head *hash;
5726
5727 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5728 if (hash != NULL)
5729 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5730 INIT_HLIST_HEAD(&hash[i]);
5731
5732 return hash;
5733 }
5734
5735 /* Initialize per network namespace state */
5736 static int __net_init netdev_init(struct net *net)
5737 {
5738 INIT_LIST_HEAD(&net->dev_base_head);
5739
5740 net->dev_name_head = netdev_create_hash();
5741 if (net->dev_name_head == NULL)
5742 goto err_name;
5743
5744 net->dev_index_head = netdev_create_hash();
5745 if (net->dev_index_head == NULL)
5746 goto err_idx;
5747
5748 return 0;
5749
5750 err_idx:
5751 kfree(net->dev_name_head);
5752 err_name:
5753 return -ENOMEM;
5754 }
5755
5756 /**
5757 * netdev_drivername - network driver for the device
5758 * @dev: network device
5759 * @buffer: buffer for resulting name
5760 * @len: size of buffer
5761 *
5762 * Determine network driver for device.
5763 */
5764 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5765 {
5766 const struct device_driver *driver;
5767 const struct device *parent;
5768
5769 if (len <= 0 || !buffer)
5770 return buffer;
5771 buffer[0] = 0;
5772
5773 parent = dev->dev.parent;
5774
5775 if (!parent)
5776 return buffer;
5777
5778 driver = parent->driver;
5779 if (driver && driver->name)
5780 strlcpy(buffer, driver->name, len);
5781 return buffer;
5782 }
5783
5784 static void __net_exit netdev_exit(struct net *net)
5785 {
5786 kfree(net->dev_name_head);
5787 kfree(net->dev_index_head);
5788 }
5789
5790 static struct pernet_operations __net_initdata netdev_net_ops = {
5791 .init = netdev_init,
5792 .exit = netdev_exit,
5793 };
5794
5795 static void __net_exit default_device_exit(struct net *net)
5796 {
5797 struct net_device *dev, *aux;
5798 /*
5799 * Push all migratable network devices back to the
5800 * initial network namespace
5801 */
5802 rtnl_lock();
5803 for_each_netdev_safe(net, dev, aux) {
5804 int err;
5805 char fb_name[IFNAMSIZ];
5806
5807 /* Ignore unmoveable devices (i.e. loopback) */
5808 if (dev->features & NETIF_F_NETNS_LOCAL)
5809 continue;
5810
5811 /* Leave virtual devices for the generic cleanup */
5812 if (dev->rtnl_link_ops)
5813 continue;
5814
5815 /* Push remaing network devices to init_net */
5816 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5817 err = dev_change_net_namespace(dev, &init_net, fb_name);
5818 if (err) {
5819 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5820 __func__, dev->name, err);
5821 BUG();
5822 }
5823 }
5824 rtnl_unlock();
5825 }
5826
5827 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5828 {
5829 /* At exit all network devices most be removed from a network
5830 * namespace. Do this in the reverse order of registeration.
5831 * Do this across as many network namespaces as possible to
5832 * improve batching efficiency.
5833 */
5834 struct net_device *dev;
5835 struct net *net;
5836 LIST_HEAD(dev_kill_list);
5837
5838 rtnl_lock();
5839 list_for_each_entry(net, net_list, exit_list) {
5840 for_each_netdev_reverse(net, dev) {
5841 if (dev->rtnl_link_ops)
5842 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5843 else
5844 unregister_netdevice_queue(dev, &dev_kill_list);
5845 }
5846 }
5847 unregister_netdevice_many(&dev_kill_list);
5848 rtnl_unlock();
5849 }
5850
5851 static struct pernet_operations __net_initdata default_device_ops = {
5852 .exit = default_device_exit,
5853 .exit_batch = default_device_exit_batch,
5854 };
5855
5856 /*
5857 * Initialize the DEV module. At boot time this walks the device list and
5858 * unhooks any devices that fail to initialise (normally hardware not
5859 * present) and leaves us with a valid list of present and active devices.
5860 *
5861 */
5862
5863 /*
5864 * This is called single threaded during boot, so no need
5865 * to take the rtnl semaphore.
5866 */
5867 static int __init net_dev_init(void)
5868 {
5869 int i, rc = -ENOMEM;
5870
5871 BUG_ON(!dev_boot_phase);
5872
5873 if (dev_proc_init())
5874 goto out;
5875
5876 if (netdev_kobject_init())
5877 goto out;
5878
5879 INIT_LIST_HEAD(&ptype_all);
5880 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5881 INIT_LIST_HEAD(&ptype_base[i]);
5882
5883 if (register_pernet_subsys(&netdev_net_ops))
5884 goto out;
5885
5886 /*
5887 * Initialise the packet receive queues.
5888 */
5889
5890 for_each_possible_cpu(i) {
5891 struct softnet_data *sd = &per_cpu(softnet_data, i);
5892
5893 memset(sd, 0, sizeof(*sd));
5894 skb_queue_head_init(&sd->input_pkt_queue);
5895 skb_queue_head_init(&sd->process_queue);
5896 sd->completion_queue = NULL;
5897 INIT_LIST_HEAD(&sd->poll_list);
5898 sd->output_queue = NULL;
5899 sd->output_queue_tailp = &sd->output_queue;
5900 #ifdef CONFIG_RPS
5901 sd->csd.func = rps_trigger_softirq;
5902 sd->csd.info = sd;
5903 sd->csd.flags = 0;
5904 sd->cpu = i;
5905 #endif
5906
5907 sd->backlog.poll = process_backlog;
5908 sd->backlog.weight = weight_p;
5909 sd->backlog.gro_list = NULL;
5910 sd->backlog.gro_count = 0;
5911 }
5912
5913 dev_boot_phase = 0;
5914
5915 /* The loopback device is special if any other network devices
5916 * is present in a network namespace the loopback device must
5917 * be present. Since we now dynamically allocate and free the
5918 * loopback device ensure this invariant is maintained by
5919 * keeping the loopback device as the first device on the
5920 * list of network devices. Ensuring the loopback devices
5921 * is the first device that appears and the last network device
5922 * that disappears.
5923 */
5924 if (register_pernet_device(&loopback_net_ops))
5925 goto out;
5926
5927 if (register_pernet_device(&default_device_ops))
5928 goto out;
5929
5930 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5931 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5932
5933 hotcpu_notifier(dev_cpu_callback, 0);
5934 dst_init();
5935 dev_mcast_init();
5936 rc = 0;
5937 out:
5938 return rc;
5939 }
5940
5941 subsys_initcall(net_dev_init);
5942
5943 static int __init initialize_hashrnd(void)
5944 {
5945 get_random_bytes(&hashrnd, sizeof(hashrnd));
5946 return 0;
5947 }
5948
5949 late_initcall_sync(initialize_hashrnd);
5950
This page took 0.371871 seconds and 6 git commands to generate.