Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 /*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
175
176 /*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
211 {
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228 static void unlist_netdevice(struct net_device *dev)
229 {
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327 }
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331 {
332 }
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 }
336 #endif
337
338 /*******************************************************************************
339
340 Protocol management and registration routines
341
342 *******************************************************************************/
343
344 /*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360 /**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373 void dev_add_pack(struct packet_type *pt)
374 {
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385 }
386 EXPORT_SYMBOL(dev_add_pack);
387
388 /**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401 void __dev_remove_pack(struct packet_type *pt)
402 {
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446 /******************************************************************************
447
448 Device Boot-time Settings Routines
449
450 *******************************************************************************/
451
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455 /**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 {
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480 }
481
482 /**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491 int netdev_boot_setup_check(struct net_device *dev)
492 {
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511 /**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521 unsigned long netdev_boot_base(const char *prefix, int unit)
522 {
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540 }
541
542 /*
543 * Saves at boot time configured settings for any netdevice.
544 */
545 int __init netdev_boot_setup(char *str)
546 {
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567 }
568
569 __setup("netdev=", netdev_boot_setup);
570
571 /*******************************************************************************
572
573 Device Interface Subroutines
574
575 *******************************************************************************/
576
577 /**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 {
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600 }
601 EXPORT_SYMBOL(__dev_get_by_name);
602
603 /**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629 /**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 {
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651 }
652 EXPORT_SYMBOL(dev_get_by_name);
653
654 /**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_index);
679
680 /**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 {
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706 /**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_index);
729
730 /**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 {
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(dev_getbyhwaddr);
759
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev, *ret = NULL;
776
777 rcu_read_lock();
778 for_each_netdev_rcu(net, dev)
779 if (dev->type == type) {
780 dev_hold(dev);
781 ret = dev;
782 break;
783 }
784 rcu_read_unlock();
785 return ret;
786 }
787 EXPORT_SYMBOL(dev_getfirstbyhwtype);
788
789 /**
790 * dev_get_by_flags - find any device with given flags
791 * @net: the applicable net namespace
792 * @if_flags: IFF_* values
793 * @mask: bitmask of bits in if_flags to check
794 *
795 * Search for any interface with the given flags. Returns NULL if a device
796 * is not found or a pointer to the device. The device returned has
797 * had a reference added and the pointer is safe until the user calls
798 * dev_put to indicate they have finished with it.
799 */
800
801 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
802 unsigned short mask)
803 {
804 struct net_device *dev, *ret;
805
806 ret = NULL;
807 rcu_read_lock();
808 for_each_netdev_rcu(net, dev) {
809 if (((dev->flags ^ if_flags) & mask) == 0) {
810 dev_hold(dev);
811 ret = dev;
812 break;
813 }
814 }
815 rcu_read_unlock();
816 return ret;
817 }
818 EXPORT_SYMBOL(dev_get_by_flags);
819
820 /**
821 * dev_valid_name - check if name is okay for network device
822 * @name: name string
823 *
824 * Network device names need to be valid file names to
825 * to allow sysfs to work. We also disallow any kind of
826 * whitespace.
827 */
828 int dev_valid_name(const char *name)
829 {
830 if (*name == '\0')
831 return 0;
832 if (strlen(name) >= IFNAMSIZ)
833 return 0;
834 if (!strcmp(name, ".") || !strcmp(name, ".."))
835 return 0;
836
837 while (*name) {
838 if (*name == '/' || isspace(*name))
839 return 0;
840 name++;
841 }
842 return 1;
843 }
844 EXPORT_SYMBOL(dev_valid_name);
845
846 /**
847 * __dev_alloc_name - allocate a name for a device
848 * @net: network namespace to allocate the device name in
849 * @name: name format string
850 * @buf: scratch buffer and result name string
851 *
852 * Passed a format string - eg "lt%d" it will try and find a suitable
853 * id. It scans list of devices to build up a free map, then chooses
854 * the first empty slot. The caller must hold the dev_base or rtnl lock
855 * while allocating the name and adding the device in order to avoid
856 * duplicates.
857 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
858 * Returns the number of the unit assigned or a negative errno code.
859 */
860
861 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
862 {
863 int i = 0;
864 const char *p;
865 const int max_netdevices = 8*PAGE_SIZE;
866 unsigned long *inuse;
867 struct net_device *d;
868
869 p = strnchr(name, IFNAMSIZ-1, '%');
870 if (p) {
871 /*
872 * Verify the string as this thing may have come from
873 * the user. There must be either one "%d" and no other "%"
874 * characters.
875 */
876 if (p[1] != 'd' || strchr(p + 2, '%'))
877 return -EINVAL;
878
879 /* Use one page as a bit array of possible slots */
880 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
881 if (!inuse)
882 return -ENOMEM;
883
884 for_each_netdev(net, d) {
885 if (!sscanf(d->name, name, &i))
886 continue;
887 if (i < 0 || i >= max_netdevices)
888 continue;
889
890 /* avoid cases where sscanf is not exact inverse of printf */
891 snprintf(buf, IFNAMSIZ, name, i);
892 if (!strncmp(buf, d->name, IFNAMSIZ))
893 set_bit(i, inuse);
894 }
895
896 i = find_first_zero_bit(inuse, max_netdevices);
897 free_page((unsigned long) inuse);
898 }
899
900 if (buf != name)
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!__dev_get_by_name(net, buf))
903 return i;
904
905 /* It is possible to run out of possible slots
906 * when the name is long and there isn't enough space left
907 * for the digits, or if all bits are used.
908 */
909 return -ENFILE;
910 }
911
912 /**
913 * dev_alloc_name - allocate a name for a device
914 * @dev: device
915 * @name: name format string
916 *
917 * Passed a format string - eg "lt%d" it will try and find a suitable
918 * id. It scans list of devices to build up a free map, then chooses
919 * the first empty slot. The caller must hold the dev_base or rtnl lock
920 * while allocating the name and adding the device in order to avoid
921 * duplicates.
922 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
923 * Returns the number of the unit assigned or a negative errno code.
924 */
925
926 int dev_alloc_name(struct net_device *dev, const char *name)
927 {
928 char buf[IFNAMSIZ];
929 struct net *net;
930 int ret;
931
932 BUG_ON(!dev_net(dev));
933 net = dev_net(dev);
934 ret = __dev_alloc_name(net, name, buf);
935 if (ret >= 0)
936 strlcpy(dev->name, buf, IFNAMSIZ);
937 return ret;
938 }
939 EXPORT_SYMBOL(dev_alloc_name);
940
941 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
942 bool fmt)
943 {
944 if (!dev_valid_name(name))
945 return -EINVAL;
946
947 if (fmt && strchr(name, '%'))
948 return __dev_alloc_name(net, name, buf);
949 else if (__dev_get_by_name(net, name))
950 return -EEXIST;
951 else if (buf != name)
952 strlcpy(buf, name, IFNAMSIZ);
953
954 return 0;
955 }
956
957 /**
958 * dev_change_name - change name of a device
959 * @dev: device
960 * @newname: name (or format string) must be at least IFNAMSIZ
961 *
962 * Change name of a device, can pass format strings "eth%d".
963 * for wildcarding.
964 */
965 int dev_change_name(struct net_device *dev, const char *newname)
966 {
967 char oldname[IFNAMSIZ];
968 int err = 0;
969 int ret;
970 struct net *net;
971
972 ASSERT_RTNL();
973 BUG_ON(!dev_net(dev));
974
975 net = dev_net(dev);
976 if (dev->flags & IFF_UP)
977 return -EBUSY;
978
979 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
980 return 0;
981
982 memcpy(oldname, dev->name, IFNAMSIZ);
983
984 err = dev_get_valid_name(net, newname, dev->name, 1);
985 if (err < 0)
986 return err;
987
988 rollback:
989 /* For now only devices in the initial network namespace
990 * are in sysfs.
991 */
992 if (net_eq(net, &init_net)) {
993 ret = device_rename(&dev->dev, dev->name);
994 if (ret) {
995 memcpy(dev->name, oldname, IFNAMSIZ);
996 return ret;
997 }
998 }
999
1000 write_lock_bh(&dev_base_lock);
1001 hlist_del(&dev->name_hlist);
1002 write_unlock_bh(&dev_base_lock);
1003
1004 synchronize_rcu();
1005
1006 write_lock_bh(&dev_base_lock);
1007 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1008 write_unlock_bh(&dev_base_lock);
1009
1010 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1011 ret = notifier_to_errno(ret);
1012
1013 if (ret) {
1014 /* err >= 0 after dev_alloc_name() or stores the first errno */
1015 if (err >= 0) {
1016 err = ret;
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 goto rollback;
1019 } else {
1020 printk(KERN_ERR
1021 "%s: name change rollback failed: %d.\n",
1022 dev->name, ret);
1023 }
1024 }
1025
1026 return err;
1027 }
1028
1029 /**
1030 * dev_set_alias - change ifalias of a device
1031 * @dev: device
1032 * @alias: name up to IFALIASZ
1033 * @len: limit of bytes to copy from info
1034 *
1035 * Set ifalias for a device,
1036 */
1037 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1038 {
1039 ASSERT_RTNL();
1040
1041 if (len >= IFALIASZ)
1042 return -EINVAL;
1043
1044 if (!len) {
1045 if (dev->ifalias) {
1046 kfree(dev->ifalias);
1047 dev->ifalias = NULL;
1048 }
1049 return 0;
1050 }
1051
1052 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1053 if (!dev->ifalias)
1054 return -ENOMEM;
1055
1056 strlcpy(dev->ifalias, alias, len+1);
1057 return len;
1058 }
1059
1060
1061 /**
1062 * netdev_features_change - device changes features
1063 * @dev: device to cause notification
1064 *
1065 * Called to indicate a device has changed features.
1066 */
1067 void netdev_features_change(struct net_device *dev)
1068 {
1069 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1070 }
1071 EXPORT_SYMBOL(netdev_features_change);
1072
1073 /**
1074 * netdev_state_change - device changes state
1075 * @dev: device to cause notification
1076 *
1077 * Called to indicate a device has changed state. This function calls
1078 * the notifier chains for netdev_chain and sends a NEWLINK message
1079 * to the routing socket.
1080 */
1081 void netdev_state_change(struct net_device *dev)
1082 {
1083 if (dev->flags & IFF_UP) {
1084 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1085 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1086 }
1087 }
1088 EXPORT_SYMBOL(netdev_state_change);
1089
1090 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1091 {
1092 return call_netdevice_notifiers(event, dev);
1093 }
1094 EXPORT_SYMBOL(netdev_bonding_change);
1095
1096 /**
1097 * dev_load - load a network module
1098 * @net: the applicable net namespace
1099 * @name: name of interface
1100 *
1101 * If a network interface is not present and the process has suitable
1102 * privileges this function loads the module. If module loading is not
1103 * available in this kernel then it becomes a nop.
1104 */
1105
1106 void dev_load(struct net *net, const char *name)
1107 {
1108 struct net_device *dev;
1109
1110 rcu_read_lock();
1111 dev = dev_get_by_name_rcu(net, name);
1112 rcu_read_unlock();
1113
1114 if (!dev && capable(CAP_NET_ADMIN))
1115 request_module("%s", name);
1116 }
1117 EXPORT_SYMBOL(dev_load);
1118
1119 static int __dev_open(struct net_device *dev)
1120 {
1121 const struct net_device_ops *ops = dev->netdev_ops;
1122 int ret;
1123
1124 ASSERT_RTNL();
1125
1126 /*
1127 * Is it even present?
1128 */
1129 if (!netif_device_present(dev))
1130 return -ENODEV;
1131
1132 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1133 ret = notifier_to_errno(ret);
1134 if (ret)
1135 return ret;
1136
1137 /*
1138 * Call device private open method
1139 */
1140 set_bit(__LINK_STATE_START, &dev->state);
1141
1142 if (ops->ndo_validate_addr)
1143 ret = ops->ndo_validate_addr(dev);
1144
1145 if (!ret && ops->ndo_open)
1146 ret = ops->ndo_open(dev);
1147
1148 /*
1149 * If it went open OK then:
1150 */
1151
1152 if (ret)
1153 clear_bit(__LINK_STATE_START, &dev->state);
1154 else {
1155 /*
1156 * Set the flags.
1157 */
1158 dev->flags |= IFF_UP;
1159
1160 /*
1161 * Enable NET_DMA
1162 */
1163 net_dmaengine_get();
1164
1165 /*
1166 * Initialize multicasting status
1167 */
1168 dev_set_rx_mode(dev);
1169
1170 /*
1171 * Wakeup transmit queue engine
1172 */
1173 dev_activate(dev);
1174 }
1175
1176 return ret;
1177 }
1178
1179 /**
1180 * dev_open - prepare an interface for use.
1181 * @dev: device to open
1182 *
1183 * Takes a device from down to up state. The device's private open
1184 * function is invoked and then the multicast lists are loaded. Finally
1185 * the device is moved into the up state and a %NETDEV_UP message is
1186 * sent to the netdev notifier chain.
1187 *
1188 * Calling this function on an active interface is a nop. On a failure
1189 * a negative errno code is returned.
1190 */
1191 int dev_open(struct net_device *dev)
1192 {
1193 int ret;
1194
1195 /*
1196 * Is it already up?
1197 */
1198 if (dev->flags & IFF_UP)
1199 return 0;
1200
1201 /*
1202 * Open device
1203 */
1204 ret = __dev_open(dev);
1205 if (ret < 0)
1206 return ret;
1207
1208 /*
1209 * ... and announce new interface.
1210 */
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1212 call_netdevice_notifiers(NETDEV_UP, dev);
1213
1214 return ret;
1215 }
1216 EXPORT_SYMBOL(dev_open);
1217
1218 static int __dev_close(struct net_device *dev)
1219 {
1220 const struct net_device_ops *ops = dev->netdev_ops;
1221
1222 ASSERT_RTNL();
1223 might_sleep();
1224
1225 /*
1226 * Tell people we are going down, so that they can
1227 * prepare to death, when device is still operating.
1228 */
1229 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1230
1231 clear_bit(__LINK_STATE_START, &dev->state);
1232
1233 /* Synchronize to scheduled poll. We cannot touch poll list,
1234 * it can be even on different cpu. So just clear netif_running().
1235 *
1236 * dev->stop() will invoke napi_disable() on all of it's
1237 * napi_struct instances on this device.
1238 */
1239 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1240
1241 dev_deactivate(dev);
1242
1243 /*
1244 * Call the device specific close. This cannot fail.
1245 * Only if device is UP
1246 *
1247 * We allow it to be called even after a DETACH hot-plug
1248 * event.
1249 */
1250 if (ops->ndo_stop)
1251 ops->ndo_stop(dev);
1252
1253 /*
1254 * Device is now down.
1255 */
1256
1257 dev->flags &= ~IFF_UP;
1258
1259 /*
1260 * Shutdown NET_DMA
1261 */
1262 net_dmaengine_put();
1263
1264 return 0;
1265 }
1266
1267 /**
1268 * dev_close - shutdown an interface.
1269 * @dev: device to shutdown
1270 *
1271 * This function moves an active device into down state. A
1272 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1273 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1274 * chain.
1275 */
1276 int dev_close(struct net_device *dev)
1277 {
1278 if (!(dev->flags & IFF_UP))
1279 return 0;
1280
1281 __dev_close(dev);
1282
1283 /*
1284 * Tell people we are down
1285 */
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1287 call_netdevice_notifiers(NETDEV_DOWN, dev);
1288
1289 return 0;
1290 }
1291 EXPORT_SYMBOL(dev_close);
1292
1293
1294 /**
1295 * dev_disable_lro - disable Large Receive Offload on a device
1296 * @dev: device
1297 *
1298 * Disable Large Receive Offload (LRO) on a net device. Must be
1299 * called under RTNL. This is needed if received packets may be
1300 * forwarded to another interface.
1301 */
1302 void dev_disable_lro(struct net_device *dev)
1303 {
1304 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1305 dev->ethtool_ops->set_flags) {
1306 u32 flags = dev->ethtool_ops->get_flags(dev);
1307 if (flags & ETH_FLAG_LRO) {
1308 flags &= ~ETH_FLAG_LRO;
1309 dev->ethtool_ops->set_flags(dev, flags);
1310 }
1311 }
1312 WARN_ON(dev->features & NETIF_F_LRO);
1313 }
1314 EXPORT_SYMBOL(dev_disable_lro);
1315
1316
1317 static int dev_boot_phase = 1;
1318
1319 /*
1320 * Device change register/unregister. These are not inline or static
1321 * as we export them to the world.
1322 */
1323
1324 /**
1325 * register_netdevice_notifier - register a network notifier block
1326 * @nb: notifier
1327 *
1328 * Register a notifier to be called when network device events occur.
1329 * The notifier passed is linked into the kernel structures and must
1330 * not be reused until it has been unregistered. A negative errno code
1331 * is returned on a failure.
1332 *
1333 * When registered all registration and up events are replayed
1334 * to the new notifier to allow device to have a race free
1335 * view of the network device list.
1336 */
1337
1338 int register_netdevice_notifier(struct notifier_block *nb)
1339 {
1340 struct net_device *dev;
1341 struct net_device *last;
1342 struct net *net;
1343 int err;
1344
1345 rtnl_lock();
1346 err = raw_notifier_chain_register(&netdev_chain, nb);
1347 if (err)
1348 goto unlock;
1349 if (dev_boot_phase)
1350 goto unlock;
1351 for_each_net(net) {
1352 for_each_netdev(net, dev) {
1353 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1354 err = notifier_to_errno(err);
1355 if (err)
1356 goto rollback;
1357
1358 if (!(dev->flags & IFF_UP))
1359 continue;
1360
1361 nb->notifier_call(nb, NETDEV_UP, dev);
1362 }
1363 }
1364
1365 unlock:
1366 rtnl_unlock();
1367 return err;
1368
1369 rollback:
1370 last = dev;
1371 for_each_net(net) {
1372 for_each_netdev(net, dev) {
1373 if (dev == last)
1374 break;
1375
1376 if (dev->flags & IFF_UP) {
1377 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1378 nb->notifier_call(nb, NETDEV_DOWN, dev);
1379 }
1380 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1381 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1382 }
1383 }
1384
1385 raw_notifier_chain_unregister(&netdev_chain, nb);
1386 goto unlock;
1387 }
1388 EXPORT_SYMBOL(register_netdevice_notifier);
1389
1390 /**
1391 * unregister_netdevice_notifier - unregister a network notifier block
1392 * @nb: notifier
1393 *
1394 * Unregister a notifier previously registered by
1395 * register_netdevice_notifier(). The notifier is unlinked into the
1396 * kernel structures and may then be reused. A negative errno code
1397 * is returned on a failure.
1398 */
1399
1400 int unregister_netdevice_notifier(struct notifier_block *nb)
1401 {
1402 int err;
1403
1404 rtnl_lock();
1405 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1406 rtnl_unlock();
1407 return err;
1408 }
1409 EXPORT_SYMBOL(unregister_netdevice_notifier);
1410
1411 /**
1412 * call_netdevice_notifiers - call all network notifier blocks
1413 * @val: value passed unmodified to notifier function
1414 * @dev: net_device pointer passed unmodified to notifier function
1415 *
1416 * Call all network notifier blocks. Parameters and return value
1417 * are as for raw_notifier_call_chain().
1418 */
1419
1420 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1421 {
1422 return raw_notifier_call_chain(&netdev_chain, val, dev);
1423 }
1424
1425 /* When > 0 there are consumers of rx skb time stamps */
1426 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1427
1428 void net_enable_timestamp(void)
1429 {
1430 atomic_inc(&netstamp_needed);
1431 }
1432 EXPORT_SYMBOL(net_enable_timestamp);
1433
1434 void net_disable_timestamp(void)
1435 {
1436 atomic_dec(&netstamp_needed);
1437 }
1438 EXPORT_SYMBOL(net_disable_timestamp);
1439
1440 static inline void net_timestamp(struct sk_buff *skb)
1441 {
1442 if (atomic_read(&netstamp_needed))
1443 __net_timestamp(skb);
1444 else
1445 skb->tstamp.tv64 = 0;
1446 }
1447
1448 /**
1449 * dev_forward_skb - loopback an skb to another netif
1450 *
1451 * @dev: destination network device
1452 * @skb: buffer to forward
1453 *
1454 * return values:
1455 * NET_RX_SUCCESS (no congestion)
1456 * NET_RX_DROP (packet was dropped)
1457 *
1458 * dev_forward_skb can be used for injecting an skb from the
1459 * start_xmit function of one device into the receive queue
1460 * of another device.
1461 *
1462 * The receiving device may be in another namespace, so
1463 * we have to clear all information in the skb that could
1464 * impact namespace isolation.
1465 */
1466 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1467 {
1468 skb_orphan(skb);
1469
1470 if (!(dev->flags & IFF_UP))
1471 return NET_RX_DROP;
1472
1473 if (skb->len > (dev->mtu + dev->hard_header_len))
1474 return NET_RX_DROP;
1475
1476 skb_set_dev(skb, dev);
1477 skb->tstamp.tv64 = 0;
1478 skb->pkt_type = PACKET_HOST;
1479 skb->protocol = eth_type_trans(skb, dev);
1480 return netif_rx(skb);
1481 }
1482 EXPORT_SYMBOL_GPL(dev_forward_skb);
1483
1484 /*
1485 * Support routine. Sends outgoing frames to any network
1486 * taps currently in use.
1487 */
1488
1489 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1490 {
1491 struct packet_type *ptype;
1492
1493 #ifdef CONFIG_NET_CLS_ACT
1494 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1495 net_timestamp(skb);
1496 #else
1497 net_timestamp(skb);
1498 #endif
1499
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1502 /* Never send packets back to the socket
1503 * they originated from - MvS (miquels@drinkel.ow.org)
1504 */
1505 if ((ptype->dev == dev || !ptype->dev) &&
1506 (ptype->af_packet_priv == NULL ||
1507 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1508 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1509 if (!skb2)
1510 break;
1511
1512 /* skb->nh should be correctly
1513 set by sender, so that the second statement is
1514 just protection against buggy protocols.
1515 */
1516 skb_reset_mac_header(skb2);
1517
1518 if (skb_network_header(skb2) < skb2->data ||
1519 skb2->network_header > skb2->tail) {
1520 if (net_ratelimit())
1521 printk(KERN_CRIT "protocol %04x is "
1522 "buggy, dev %s\n",
1523 skb2->protocol, dev->name);
1524 skb_reset_network_header(skb2);
1525 }
1526
1527 skb2->transport_header = skb2->network_header;
1528 skb2->pkt_type = PACKET_OUTGOING;
1529 ptype->func(skb2, skb->dev, ptype, skb->dev);
1530 }
1531 }
1532 rcu_read_unlock();
1533 }
1534
1535
1536 static inline void __netif_reschedule(struct Qdisc *q)
1537 {
1538 struct softnet_data *sd;
1539 unsigned long flags;
1540
1541 local_irq_save(flags);
1542 sd = &__get_cpu_var(softnet_data);
1543 q->next_sched = sd->output_queue;
1544 sd->output_queue = q;
1545 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1546 local_irq_restore(flags);
1547 }
1548
1549 void __netif_schedule(struct Qdisc *q)
1550 {
1551 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1552 __netif_reschedule(q);
1553 }
1554 EXPORT_SYMBOL(__netif_schedule);
1555
1556 void dev_kfree_skb_irq(struct sk_buff *skb)
1557 {
1558 if (atomic_dec_and_test(&skb->users)) {
1559 struct softnet_data *sd;
1560 unsigned long flags;
1561
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 skb->next = sd->completion_queue;
1565 sd->completion_queue = skb;
1566 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1567 local_irq_restore(flags);
1568 }
1569 }
1570 EXPORT_SYMBOL(dev_kfree_skb_irq);
1571
1572 void dev_kfree_skb_any(struct sk_buff *skb)
1573 {
1574 if (in_irq() || irqs_disabled())
1575 dev_kfree_skb_irq(skb);
1576 else
1577 dev_kfree_skb(skb);
1578 }
1579 EXPORT_SYMBOL(dev_kfree_skb_any);
1580
1581
1582 /**
1583 * netif_device_detach - mark device as removed
1584 * @dev: network device
1585 *
1586 * Mark device as removed from system and therefore no longer available.
1587 */
1588 void netif_device_detach(struct net_device *dev)
1589 {
1590 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1591 netif_running(dev)) {
1592 netif_tx_stop_all_queues(dev);
1593 }
1594 }
1595 EXPORT_SYMBOL(netif_device_detach);
1596
1597 /**
1598 * netif_device_attach - mark device as attached
1599 * @dev: network device
1600 *
1601 * Mark device as attached from system and restart if needed.
1602 */
1603 void netif_device_attach(struct net_device *dev)
1604 {
1605 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1606 netif_running(dev)) {
1607 netif_tx_wake_all_queues(dev);
1608 __netdev_watchdog_up(dev);
1609 }
1610 }
1611 EXPORT_SYMBOL(netif_device_attach);
1612
1613 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1614 {
1615 return ((features & NETIF_F_GEN_CSUM) ||
1616 ((features & NETIF_F_IP_CSUM) &&
1617 protocol == htons(ETH_P_IP)) ||
1618 ((features & NETIF_F_IPV6_CSUM) &&
1619 protocol == htons(ETH_P_IPV6)) ||
1620 ((features & NETIF_F_FCOE_CRC) &&
1621 protocol == htons(ETH_P_FCOE)));
1622 }
1623
1624 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1625 {
1626 if (can_checksum_protocol(dev->features, skb->protocol))
1627 return true;
1628
1629 if (skb->protocol == htons(ETH_P_8021Q)) {
1630 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1631 if (can_checksum_protocol(dev->features & dev->vlan_features,
1632 veh->h_vlan_encapsulated_proto))
1633 return true;
1634 }
1635
1636 return false;
1637 }
1638
1639 /**
1640 * skb_dev_set -- assign a new device to a buffer
1641 * @skb: buffer for the new device
1642 * @dev: network device
1643 *
1644 * If an skb is owned by a device already, we have to reset
1645 * all data private to the namespace a device belongs to
1646 * before assigning it a new device.
1647 */
1648 #ifdef CONFIG_NET_NS
1649 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1650 {
1651 skb_dst_drop(skb);
1652 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1653 secpath_reset(skb);
1654 nf_reset(skb);
1655 skb_init_secmark(skb);
1656 skb->mark = 0;
1657 skb->priority = 0;
1658 skb->nf_trace = 0;
1659 skb->ipvs_property = 0;
1660 #ifdef CONFIG_NET_SCHED
1661 skb->tc_index = 0;
1662 #endif
1663 }
1664 skb->dev = dev;
1665 }
1666 EXPORT_SYMBOL(skb_set_dev);
1667 #endif /* CONFIG_NET_NS */
1668
1669 /*
1670 * Invalidate hardware checksum when packet is to be mangled, and
1671 * complete checksum manually on outgoing path.
1672 */
1673 int skb_checksum_help(struct sk_buff *skb)
1674 {
1675 __wsum csum;
1676 int ret = 0, offset;
1677
1678 if (skb->ip_summed == CHECKSUM_COMPLETE)
1679 goto out_set_summed;
1680
1681 if (unlikely(skb_shinfo(skb)->gso_size)) {
1682 /* Let GSO fix up the checksum. */
1683 goto out_set_summed;
1684 }
1685
1686 offset = skb->csum_start - skb_headroom(skb);
1687 BUG_ON(offset >= skb_headlen(skb));
1688 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1689
1690 offset += skb->csum_offset;
1691 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1692
1693 if (skb_cloned(skb) &&
1694 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1696 if (ret)
1697 goto out;
1698 }
1699
1700 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1701 out_set_summed:
1702 skb->ip_summed = CHECKSUM_NONE;
1703 out:
1704 return ret;
1705 }
1706 EXPORT_SYMBOL(skb_checksum_help);
1707
1708 /**
1709 * skb_gso_segment - Perform segmentation on skb.
1710 * @skb: buffer to segment
1711 * @features: features for the output path (see dev->features)
1712 *
1713 * This function segments the given skb and returns a list of segments.
1714 *
1715 * It may return NULL if the skb requires no segmentation. This is
1716 * only possible when GSO is used for verifying header integrity.
1717 */
1718 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1719 {
1720 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1721 struct packet_type *ptype;
1722 __be16 type = skb->protocol;
1723 int err;
1724
1725 skb_reset_mac_header(skb);
1726 skb->mac_len = skb->network_header - skb->mac_header;
1727 __skb_pull(skb, skb->mac_len);
1728
1729 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1730 struct net_device *dev = skb->dev;
1731 struct ethtool_drvinfo info = {};
1732
1733 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1734 dev->ethtool_ops->get_drvinfo(dev, &info);
1735
1736 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1737 "ip_summed=%d",
1738 info.driver, dev ? dev->features : 0L,
1739 skb->sk ? skb->sk->sk_route_caps : 0L,
1740 skb->len, skb->data_len, skb->ip_summed);
1741
1742 if (skb_header_cloned(skb) &&
1743 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1744 return ERR_PTR(err);
1745 }
1746
1747 rcu_read_lock();
1748 list_for_each_entry_rcu(ptype,
1749 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1750 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 err = ptype->gso_send_check(skb);
1753 segs = ERR_PTR(err);
1754 if (err || skb_gso_ok(skb, features))
1755 break;
1756 __skb_push(skb, (skb->data -
1757 skb_network_header(skb)));
1758 }
1759 segs = ptype->gso_segment(skb, features);
1760 break;
1761 }
1762 }
1763 rcu_read_unlock();
1764
1765 __skb_push(skb, skb->data - skb_mac_header(skb));
1766
1767 return segs;
1768 }
1769 EXPORT_SYMBOL(skb_gso_segment);
1770
1771 /* Take action when hardware reception checksum errors are detected. */
1772 #ifdef CONFIG_BUG
1773 void netdev_rx_csum_fault(struct net_device *dev)
1774 {
1775 if (net_ratelimit()) {
1776 printk(KERN_ERR "%s: hw csum failure.\n",
1777 dev ? dev->name : "<unknown>");
1778 dump_stack();
1779 }
1780 }
1781 EXPORT_SYMBOL(netdev_rx_csum_fault);
1782 #endif
1783
1784 /* Actually, we should eliminate this check as soon as we know, that:
1785 * 1. IOMMU is present and allows to map all the memory.
1786 * 2. No high memory really exists on this machine.
1787 */
1788
1789 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1790 {
1791 #ifdef CONFIG_HIGHMEM
1792 int i;
1793
1794 if (dev->features & NETIF_F_HIGHDMA)
1795 return 0;
1796
1797 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1798 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1799 return 1;
1800
1801 #endif
1802 return 0;
1803 }
1804
1805 struct dev_gso_cb {
1806 void (*destructor)(struct sk_buff *skb);
1807 };
1808
1809 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1810
1811 static void dev_gso_skb_destructor(struct sk_buff *skb)
1812 {
1813 struct dev_gso_cb *cb;
1814
1815 do {
1816 struct sk_buff *nskb = skb->next;
1817
1818 skb->next = nskb->next;
1819 nskb->next = NULL;
1820 kfree_skb(nskb);
1821 } while (skb->next);
1822
1823 cb = DEV_GSO_CB(skb);
1824 if (cb->destructor)
1825 cb->destructor(skb);
1826 }
1827
1828 /**
1829 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1830 * @skb: buffer to segment
1831 *
1832 * This function segments the given skb and stores the list of segments
1833 * in skb->next.
1834 */
1835 static int dev_gso_segment(struct sk_buff *skb)
1836 {
1837 struct net_device *dev = skb->dev;
1838 struct sk_buff *segs;
1839 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1840 NETIF_F_SG : 0);
1841
1842 segs = skb_gso_segment(skb, features);
1843
1844 /* Verifying header integrity only. */
1845 if (!segs)
1846 return 0;
1847
1848 if (IS_ERR(segs))
1849 return PTR_ERR(segs);
1850
1851 skb->next = segs;
1852 DEV_GSO_CB(skb)->destructor = skb->destructor;
1853 skb->destructor = dev_gso_skb_destructor;
1854
1855 return 0;
1856 }
1857
1858 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1859 struct netdev_queue *txq)
1860 {
1861 const struct net_device_ops *ops = dev->netdev_ops;
1862 int rc = NETDEV_TX_OK;
1863
1864 if (likely(!skb->next)) {
1865 if (!list_empty(&ptype_all))
1866 dev_queue_xmit_nit(skb, dev);
1867
1868 if (netif_needs_gso(dev, skb)) {
1869 if (unlikely(dev_gso_segment(skb)))
1870 goto out_kfree_skb;
1871 if (skb->next)
1872 goto gso;
1873 }
1874
1875 /*
1876 * If device doesnt need skb->dst, release it right now while
1877 * its hot in this cpu cache
1878 */
1879 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1880 skb_dst_drop(skb);
1881
1882 rc = ops->ndo_start_xmit(skb, dev);
1883 if (rc == NETDEV_TX_OK)
1884 txq_trans_update(txq);
1885 /*
1886 * TODO: if skb_orphan() was called by
1887 * dev->hard_start_xmit() (for example, the unmodified
1888 * igb driver does that; bnx2 doesn't), then
1889 * skb_tx_software_timestamp() will be unable to send
1890 * back the time stamp.
1891 *
1892 * How can this be prevented? Always create another
1893 * reference to the socket before calling
1894 * dev->hard_start_xmit()? Prevent that skb_orphan()
1895 * does anything in dev->hard_start_xmit() by clearing
1896 * the skb destructor before the call and restoring it
1897 * afterwards, then doing the skb_orphan() ourselves?
1898 */
1899 return rc;
1900 }
1901
1902 gso:
1903 do {
1904 struct sk_buff *nskb = skb->next;
1905
1906 skb->next = nskb->next;
1907 nskb->next = NULL;
1908
1909 /*
1910 * If device doesnt need nskb->dst, release it right now while
1911 * its hot in this cpu cache
1912 */
1913 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1914 skb_dst_drop(nskb);
1915
1916 rc = ops->ndo_start_xmit(nskb, dev);
1917 if (unlikely(rc != NETDEV_TX_OK)) {
1918 if (rc & ~NETDEV_TX_MASK)
1919 goto out_kfree_gso_skb;
1920 nskb->next = skb->next;
1921 skb->next = nskb;
1922 return rc;
1923 }
1924 txq_trans_update(txq);
1925 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1926 return NETDEV_TX_BUSY;
1927 } while (skb->next);
1928
1929 out_kfree_gso_skb:
1930 if (likely(skb->next == NULL))
1931 skb->destructor = DEV_GSO_CB(skb)->destructor;
1932 out_kfree_skb:
1933 kfree_skb(skb);
1934 return rc;
1935 }
1936
1937 static u32 hashrnd __read_mostly;
1938
1939 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1940 {
1941 u32 hash;
1942
1943 if (skb_rx_queue_recorded(skb)) {
1944 hash = skb_get_rx_queue(skb);
1945 while (unlikely(hash >= dev->real_num_tx_queues))
1946 hash -= dev->real_num_tx_queues;
1947 return hash;
1948 }
1949
1950 if (skb->sk && skb->sk->sk_hash)
1951 hash = skb->sk->sk_hash;
1952 else
1953 hash = skb->protocol;
1954
1955 hash = jhash_1word(hash, hashrnd);
1956
1957 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1958 }
1959 EXPORT_SYMBOL(skb_tx_hash);
1960
1961 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1962 {
1963 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1964 if (net_ratelimit()) {
1965 netdev_warn(dev, "selects TX queue %d, but "
1966 "real number of TX queues is %d\n",
1967 queue_index, dev->real_num_tx_queues);
1968 }
1969 return 0;
1970 }
1971 return queue_index;
1972 }
1973
1974 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1975 struct sk_buff *skb)
1976 {
1977 u16 queue_index;
1978 struct sock *sk = skb->sk;
1979
1980 if (sk_tx_queue_recorded(sk)) {
1981 queue_index = sk_tx_queue_get(sk);
1982 } else {
1983 const struct net_device_ops *ops = dev->netdev_ops;
1984
1985 if (ops->ndo_select_queue) {
1986 queue_index = ops->ndo_select_queue(dev, skb);
1987 queue_index = dev_cap_txqueue(dev, queue_index);
1988 } else {
1989 queue_index = 0;
1990 if (dev->real_num_tx_queues > 1)
1991 queue_index = skb_tx_hash(dev, skb);
1992
1993 if (sk && sk->sk_dst_cache)
1994 sk_tx_queue_set(sk, queue_index);
1995 }
1996 }
1997
1998 skb_set_queue_mapping(skb, queue_index);
1999 return netdev_get_tx_queue(dev, queue_index);
2000 }
2001
2002 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2003 struct net_device *dev,
2004 struct netdev_queue *txq)
2005 {
2006 spinlock_t *root_lock = qdisc_lock(q);
2007 int rc;
2008
2009 spin_lock(root_lock);
2010 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2011 kfree_skb(skb);
2012 rc = NET_XMIT_DROP;
2013 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2014 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2015 /*
2016 * This is a work-conserving queue; there are no old skbs
2017 * waiting to be sent out; and the qdisc is not running -
2018 * xmit the skb directly.
2019 */
2020 __qdisc_update_bstats(q, skb->len);
2021 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2022 __qdisc_run(q);
2023 else
2024 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2025
2026 rc = NET_XMIT_SUCCESS;
2027 } else {
2028 rc = qdisc_enqueue_root(skb, q);
2029 qdisc_run(q);
2030 }
2031 spin_unlock(root_lock);
2032
2033 return rc;
2034 }
2035
2036 /*
2037 * Returns true if either:
2038 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2039 * 2. skb is fragmented and the device does not support SG, or if
2040 * at least one of fragments is in highmem and device does not
2041 * support DMA from it.
2042 */
2043 static inline int skb_needs_linearize(struct sk_buff *skb,
2044 struct net_device *dev)
2045 {
2046 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2047 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2048 illegal_highdma(dev, skb)));
2049 }
2050
2051 /**
2052 * dev_queue_xmit - transmit a buffer
2053 * @skb: buffer to transmit
2054 *
2055 * Queue a buffer for transmission to a network device. The caller must
2056 * have set the device and priority and built the buffer before calling
2057 * this function. The function can be called from an interrupt.
2058 *
2059 * A negative errno code is returned on a failure. A success does not
2060 * guarantee the frame will be transmitted as it may be dropped due
2061 * to congestion or traffic shaping.
2062 *
2063 * -----------------------------------------------------------------------------------
2064 * I notice this method can also return errors from the queue disciplines,
2065 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2066 * be positive.
2067 *
2068 * Regardless of the return value, the skb is consumed, so it is currently
2069 * difficult to retry a send to this method. (You can bump the ref count
2070 * before sending to hold a reference for retry if you are careful.)
2071 *
2072 * When calling this method, interrupts MUST be enabled. This is because
2073 * the BH enable code must have IRQs enabled so that it will not deadlock.
2074 * --BLG
2075 */
2076 int dev_queue_xmit(struct sk_buff *skb)
2077 {
2078 struct net_device *dev = skb->dev;
2079 struct netdev_queue *txq;
2080 struct Qdisc *q;
2081 int rc = -ENOMEM;
2082
2083 /* GSO will handle the following emulations directly. */
2084 if (netif_needs_gso(dev, skb))
2085 goto gso;
2086
2087 /* Convert a paged skb to linear, if required */
2088 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2089 goto out_kfree_skb;
2090
2091 /* If packet is not checksummed and device does not support
2092 * checksumming for this protocol, complete checksumming here.
2093 */
2094 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2095 skb_set_transport_header(skb, skb->csum_start -
2096 skb_headroom(skb));
2097 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2098 goto out_kfree_skb;
2099 }
2100
2101 gso:
2102 /* Disable soft irqs for various locks below. Also
2103 * stops preemption for RCU.
2104 */
2105 rcu_read_lock_bh();
2106
2107 txq = dev_pick_tx(dev, skb);
2108 q = rcu_dereference_bh(txq->qdisc);
2109
2110 #ifdef CONFIG_NET_CLS_ACT
2111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2112 #endif
2113 if (q->enqueue) {
2114 rc = __dev_xmit_skb(skb, q, dev, txq);
2115 goto out;
2116 }
2117
2118 /* The device has no queue. Common case for software devices:
2119 loopback, all the sorts of tunnels...
2120
2121 Really, it is unlikely that netif_tx_lock protection is necessary
2122 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2123 counters.)
2124 However, it is possible, that they rely on protection
2125 made by us here.
2126
2127 Check this and shot the lock. It is not prone from deadlocks.
2128 Either shot noqueue qdisc, it is even simpler 8)
2129 */
2130 if (dev->flags & IFF_UP) {
2131 int cpu = smp_processor_id(); /* ok because BHs are off */
2132
2133 if (txq->xmit_lock_owner != cpu) {
2134
2135 HARD_TX_LOCK(dev, txq, cpu);
2136
2137 if (!netif_tx_queue_stopped(txq)) {
2138 rc = dev_hard_start_xmit(skb, dev, txq);
2139 if (dev_xmit_complete(rc)) {
2140 HARD_TX_UNLOCK(dev, txq);
2141 goto out;
2142 }
2143 }
2144 HARD_TX_UNLOCK(dev, txq);
2145 if (net_ratelimit())
2146 printk(KERN_CRIT "Virtual device %s asks to "
2147 "queue packet!\n", dev->name);
2148 } else {
2149 /* Recursion is detected! It is possible,
2150 * unfortunately */
2151 if (net_ratelimit())
2152 printk(KERN_CRIT "Dead loop on virtual device "
2153 "%s, fix it urgently!\n", dev->name);
2154 }
2155 }
2156
2157 rc = -ENETDOWN;
2158 rcu_read_unlock_bh();
2159
2160 out_kfree_skb:
2161 kfree_skb(skb);
2162 return rc;
2163 out:
2164 rcu_read_unlock_bh();
2165 return rc;
2166 }
2167 EXPORT_SYMBOL(dev_queue_xmit);
2168
2169
2170 /*=======================================================================
2171 Receiver routines
2172 =======================================================================*/
2173
2174 int netdev_max_backlog __read_mostly = 1000;
2175 int netdev_budget __read_mostly = 300;
2176 int weight_p __read_mostly = 64; /* old backlog weight */
2177
2178 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2179
2180 #ifdef CONFIG_SMP
2181 /*
2182 * get_rps_cpu is called from netif_receive_skb and returns the target
2183 * CPU from the RPS map of the receiving queue for a given skb.
2184 */
2185 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2186 {
2187 struct ipv6hdr *ip6;
2188 struct iphdr *ip;
2189 struct netdev_rx_queue *rxqueue;
2190 struct rps_map *map;
2191 int cpu = -1;
2192 u8 ip_proto;
2193 u32 addr1, addr2, ports, ihl;
2194
2195 rcu_read_lock();
2196
2197 if (skb_rx_queue_recorded(skb)) {
2198 u16 index = skb_get_rx_queue(skb);
2199 if (unlikely(index >= dev->num_rx_queues)) {
2200 if (net_ratelimit()) {
2201 netdev_warn(dev, "received packet on queue "
2202 "%u, but number of RX queues is %u\n",
2203 index, dev->num_rx_queues);
2204 }
2205 goto done;
2206 }
2207 rxqueue = dev->_rx + index;
2208 } else
2209 rxqueue = dev->_rx;
2210
2211 if (!rxqueue->rps_map)
2212 goto done;
2213
2214 if (skb->rxhash)
2215 goto got_hash; /* Skip hash computation on packet header */
2216
2217 switch (skb->protocol) {
2218 case __constant_htons(ETH_P_IP):
2219 if (!pskb_may_pull(skb, sizeof(*ip)))
2220 goto done;
2221
2222 ip = (struct iphdr *) skb->data;
2223 ip_proto = ip->protocol;
2224 addr1 = ip->saddr;
2225 addr2 = ip->daddr;
2226 ihl = ip->ihl;
2227 break;
2228 case __constant_htons(ETH_P_IPV6):
2229 if (!pskb_may_pull(skb, sizeof(*ip6)))
2230 goto done;
2231
2232 ip6 = (struct ipv6hdr *) skb->data;
2233 ip_proto = ip6->nexthdr;
2234 addr1 = ip6->saddr.s6_addr32[3];
2235 addr2 = ip6->daddr.s6_addr32[3];
2236 ihl = (40 >> 2);
2237 break;
2238 default:
2239 goto done;
2240 }
2241 ports = 0;
2242 switch (ip_proto) {
2243 case IPPROTO_TCP:
2244 case IPPROTO_UDP:
2245 case IPPROTO_DCCP:
2246 case IPPROTO_ESP:
2247 case IPPROTO_AH:
2248 case IPPROTO_SCTP:
2249 case IPPROTO_UDPLITE:
2250 if (pskb_may_pull(skb, (ihl * 4) + 4))
2251 ports = *((u32 *) (skb->data + (ihl * 4)));
2252 break;
2253
2254 default:
2255 break;
2256 }
2257
2258 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2259 if (!skb->rxhash)
2260 skb->rxhash = 1;
2261
2262 got_hash:
2263 map = rcu_dereference(rxqueue->rps_map);
2264 if (map) {
2265 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2266
2267 if (cpu_online(tcpu)) {
2268 cpu = tcpu;
2269 goto done;
2270 }
2271 }
2272
2273 done:
2274 rcu_read_unlock();
2275 return cpu;
2276 }
2277
2278 /*
2279 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2280 * to be sent to kick remote softirq processing. There are two masks since
2281 * the sending of IPIs must be done with interrupts enabled. The select field
2282 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2283 * select is flipped before net_rps_action is called while still under lock,
2284 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2285 * it without conflicting with enqueue_backlog operation.
2286 */
2287 struct rps_remote_softirq_cpus {
2288 cpumask_t mask[2];
2289 int select;
2290 };
2291 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2292
2293 /* Called from hardirq (IPI) context */
2294 static void trigger_softirq(void *data)
2295 {
2296 struct softnet_data *queue = data;
2297 __napi_schedule(&queue->backlog);
2298 __get_cpu_var(netdev_rx_stat).received_rps++;
2299 }
2300 #endif /* CONFIG_SMP */
2301
2302 /*
2303 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2304 * queue (may be a remote CPU queue).
2305 */
2306 static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2307 {
2308 struct softnet_data *queue;
2309 unsigned long flags;
2310
2311 queue = &per_cpu(softnet_data, cpu);
2312
2313 local_irq_save(flags);
2314 __get_cpu_var(netdev_rx_stat).total++;
2315
2316 spin_lock(&queue->input_pkt_queue.lock);
2317 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2318 if (queue->input_pkt_queue.qlen) {
2319 enqueue:
2320 __skb_queue_tail(&queue->input_pkt_queue, skb);
2321 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2322 flags);
2323 return NET_RX_SUCCESS;
2324 }
2325
2326 /* Schedule NAPI for backlog device */
2327 if (napi_schedule_prep(&queue->backlog)) {
2328 #ifdef CONFIG_SMP
2329 if (cpu != smp_processor_id()) {
2330 struct rps_remote_softirq_cpus *rcpus =
2331 &__get_cpu_var(rps_remote_softirq_cpus);
2332
2333 cpu_set(cpu, rcpus->mask[rcpus->select]);
2334 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2335 } else
2336 __napi_schedule(&queue->backlog);
2337 #else
2338 __napi_schedule(&queue->backlog);
2339 #endif
2340 }
2341 goto enqueue;
2342 }
2343
2344 spin_unlock(&queue->input_pkt_queue.lock);
2345
2346 __get_cpu_var(netdev_rx_stat).dropped++;
2347 local_irq_restore(flags);
2348
2349 kfree_skb(skb);
2350 return NET_RX_DROP;
2351 }
2352
2353 /**
2354 * netif_rx - post buffer to the network code
2355 * @skb: buffer to post
2356 *
2357 * This function receives a packet from a device driver and queues it for
2358 * the upper (protocol) levels to process. It always succeeds. The buffer
2359 * may be dropped during processing for congestion control or by the
2360 * protocol layers.
2361 *
2362 * return values:
2363 * NET_RX_SUCCESS (no congestion)
2364 * NET_RX_DROP (packet was dropped)
2365 *
2366 */
2367
2368 int netif_rx(struct sk_buff *skb)
2369 {
2370 int cpu;
2371
2372 /* if netpoll wants it, pretend we never saw it */
2373 if (netpoll_rx(skb))
2374 return NET_RX_DROP;
2375
2376 if (!skb->tstamp.tv64)
2377 net_timestamp(skb);
2378
2379 #ifdef CONFIG_SMP
2380 cpu = get_rps_cpu(skb->dev, skb);
2381 if (cpu < 0)
2382 cpu = smp_processor_id();
2383 #else
2384 cpu = smp_processor_id();
2385 #endif
2386
2387 return enqueue_to_backlog(skb, cpu);
2388 }
2389 EXPORT_SYMBOL(netif_rx);
2390
2391 int netif_rx_ni(struct sk_buff *skb)
2392 {
2393 int err;
2394
2395 preempt_disable();
2396 err = netif_rx(skb);
2397 if (local_softirq_pending())
2398 do_softirq();
2399 preempt_enable();
2400
2401 return err;
2402 }
2403 EXPORT_SYMBOL(netif_rx_ni);
2404
2405 static void net_tx_action(struct softirq_action *h)
2406 {
2407 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2408
2409 if (sd->completion_queue) {
2410 struct sk_buff *clist;
2411
2412 local_irq_disable();
2413 clist = sd->completion_queue;
2414 sd->completion_queue = NULL;
2415 local_irq_enable();
2416
2417 while (clist) {
2418 struct sk_buff *skb = clist;
2419 clist = clist->next;
2420
2421 WARN_ON(atomic_read(&skb->users));
2422 __kfree_skb(skb);
2423 }
2424 }
2425
2426 if (sd->output_queue) {
2427 struct Qdisc *head;
2428
2429 local_irq_disable();
2430 head = sd->output_queue;
2431 sd->output_queue = NULL;
2432 local_irq_enable();
2433
2434 while (head) {
2435 struct Qdisc *q = head;
2436 spinlock_t *root_lock;
2437
2438 head = head->next_sched;
2439
2440 root_lock = qdisc_lock(q);
2441 if (spin_trylock(root_lock)) {
2442 smp_mb__before_clear_bit();
2443 clear_bit(__QDISC_STATE_SCHED,
2444 &q->state);
2445 qdisc_run(q);
2446 spin_unlock(root_lock);
2447 } else {
2448 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2449 &q->state)) {
2450 __netif_reschedule(q);
2451 } else {
2452 smp_mb__before_clear_bit();
2453 clear_bit(__QDISC_STATE_SCHED,
2454 &q->state);
2455 }
2456 }
2457 }
2458 }
2459 }
2460
2461 static inline int deliver_skb(struct sk_buff *skb,
2462 struct packet_type *pt_prev,
2463 struct net_device *orig_dev)
2464 {
2465 atomic_inc(&skb->users);
2466 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2467 }
2468
2469 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2470
2471 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2472 /* This hook is defined here for ATM LANE */
2473 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2474 unsigned char *addr) __read_mostly;
2475 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2476 #endif
2477
2478 /*
2479 * If bridge module is loaded call bridging hook.
2480 * returns NULL if packet was consumed.
2481 */
2482 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2483 struct sk_buff *skb) __read_mostly;
2484 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2485
2486 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2487 struct packet_type **pt_prev, int *ret,
2488 struct net_device *orig_dev)
2489 {
2490 struct net_bridge_port *port;
2491
2492 if (skb->pkt_type == PACKET_LOOPBACK ||
2493 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2494 return skb;
2495
2496 if (*pt_prev) {
2497 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2498 *pt_prev = NULL;
2499 }
2500
2501 return br_handle_frame_hook(port, skb);
2502 }
2503 #else
2504 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2505 #endif
2506
2507 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2508 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2509 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2510
2511 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2512 struct packet_type **pt_prev,
2513 int *ret,
2514 struct net_device *orig_dev)
2515 {
2516 if (skb->dev->macvlan_port == NULL)
2517 return skb;
2518
2519 if (*pt_prev) {
2520 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2521 *pt_prev = NULL;
2522 }
2523 return macvlan_handle_frame_hook(skb);
2524 }
2525 #else
2526 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2527 #endif
2528
2529 #ifdef CONFIG_NET_CLS_ACT
2530 /* TODO: Maybe we should just force sch_ingress to be compiled in
2531 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2532 * a compare and 2 stores extra right now if we dont have it on
2533 * but have CONFIG_NET_CLS_ACT
2534 * NOTE: This doesnt stop any functionality; if you dont have
2535 * the ingress scheduler, you just cant add policies on ingress.
2536 *
2537 */
2538 static int ing_filter(struct sk_buff *skb)
2539 {
2540 struct net_device *dev = skb->dev;
2541 u32 ttl = G_TC_RTTL(skb->tc_verd);
2542 struct netdev_queue *rxq;
2543 int result = TC_ACT_OK;
2544 struct Qdisc *q;
2545
2546 if (MAX_RED_LOOP < ttl++) {
2547 printk(KERN_WARNING
2548 "Redir loop detected Dropping packet (%d->%d)\n",
2549 skb->skb_iif, dev->ifindex);
2550 return TC_ACT_SHOT;
2551 }
2552
2553 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2554 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2555
2556 rxq = &dev->rx_queue;
2557
2558 q = rxq->qdisc;
2559 if (q != &noop_qdisc) {
2560 spin_lock(qdisc_lock(q));
2561 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2562 result = qdisc_enqueue_root(skb, q);
2563 spin_unlock(qdisc_lock(q));
2564 }
2565
2566 return result;
2567 }
2568
2569 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2570 struct packet_type **pt_prev,
2571 int *ret, struct net_device *orig_dev)
2572 {
2573 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2574 goto out;
2575
2576 if (*pt_prev) {
2577 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2578 *pt_prev = NULL;
2579 } else {
2580 /* Huh? Why does turning on AF_PACKET affect this? */
2581 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2582 }
2583
2584 switch (ing_filter(skb)) {
2585 case TC_ACT_SHOT:
2586 case TC_ACT_STOLEN:
2587 kfree_skb(skb);
2588 return NULL;
2589 }
2590
2591 out:
2592 skb->tc_verd = 0;
2593 return skb;
2594 }
2595 #endif
2596
2597 /*
2598 * netif_nit_deliver - deliver received packets to network taps
2599 * @skb: buffer
2600 *
2601 * This function is used to deliver incoming packets to network
2602 * taps. It should be used when the normal netif_receive_skb path
2603 * is bypassed, for example because of VLAN acceleration.
2604 */
2605 void netif_nit_deliver(struct sk_buff *skb)
2606 {
2607 struct packet_type *ptype;
2608
2609 if (list_empty(&ptype_all))
2610 return;
2611
2612 skb_reset_network_header(skb);
2613 skb_reset_transport_header(skb);
2614 skb->mac_len = skb->network_header - skb->mac_header;
2615
2616 rcu_read_lock();
2617 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2618 if (!ptype->dev || ptype->dev == skb->dev)
2619 deliver_skb(skb, ptype, skb->dev);
2620 }
2621 rcu_read_unlock();
2622 }
2623
2624 int __netif_receive_skb(struct sk_buff *skb)
2625 {
2626 struct packet_type *ptype, *pt_prev;
2627 struct net_device *orig_dev;
2628 struct net_device *master;
2629 struct net_device *null_or_orig;
2630 struct net_device *null_or_bond;
2631 int ret = NET_RX_DROP;
2632 __be16 type;
2633
2634 if (!skb->tstamp.tv64)
2635 net_timestamp(skb);
2636
2637 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2638 return NET_RX_SUCCESS;
2639
2640 /* if we've gotten here through NAPI, check netpoll */
2641 if (netpoll_receive_skb(skb))
2642 return NET_RX_DROP;
2643
2644 if (!skb->skb_iif)
2645 skb->skb_iif = skb->dev->ifindex;
2646
2647 null_or_orig = NULL;
2648 orig_dev = skb->dev;
2649 master = ACCESS_ONCE(orig_dev->master);
2650 if (master) {
2651 if (skb_bond_should_drop(skb, master))
2652 null_or_orig = orig_dev; /* deliver only exact match */
2653 else
2654 skb->dev = master;
2655 }
2656
2657 __get_cpu_var(netdev_rx_stat).total++;
2658
2659 skb_reset_network_header(skb);
2660 skb_reset_transport_header(skb);
2661 skb->mac_len = skb->network_header - skb->mac_header;
2662
2663 pt_prev = NULL;
2664
2665 rcu_read_lock();
2666
2667 #ifdef CONFIG_NET_CLS_ACT
2668 if (skb->tc_verd & TC_NCLS) {
2669 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2670 goto ncls;
2671 }
2672 #endif
2673
2674 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2675 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2676 ptype->dev == orig_dev) {
2677 if (pt_prev)
2678 ret = deliver_skb(skb, pt_prev, orig_dev);
2679 pt_prev = ptype;
2680 }
2681 }
2682
2683 #ifdef CONFIG_NET_CLS_ACT
2684 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2685 if (!skb)
2686 goto out;
2687 ncls:
2688 #endif
2689
2690 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2691 if (!skb)
2692 goto out;
2693 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2694 if (!skb)
2695 goto out;
2696
2697 /*
2698 * Make sure frames received on VLAN interfaces stacked on
2699 * bonding interfaces still make their way to any base bonding
2700 * device that may have registered for a specific ptype. The
2701 * handler may have to adjust skb->dev and orig_dev.
2702 */
2703 null_or_bond = NULL;
2704 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2705 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2706 null_or_bond = vlan_dev_real_dev(skb->dev);
2707 }
2708
2709 type = skb->protocol;
2710 list_for_each_entry_rcu(ptype,
2711 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2712 if (ptype->type == type && (ptype->dev == null_or_orig ||
2713 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2714 ptype->dev == null_or_bond)) {
2715 if (pt_prev)
2716 ret = deliver_skb(skb, pt_prev, orig_dev);
2717 pt_prev = ptype;
2718 }
2719 }
2720
2721 if (pt_prev) {
2722 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2723 } else {
2724 kfree_skb(skb);
2725 /* Jamal, now you will not able to escape explaining
2726 * me how you were going to use this. :-)
2727 */
2728 ret = NET_RX_DROP;
2729 }
2730
2731 out:
2732 rcu_read_unlock();
2733 return ret;
2734 }
2735
2736 /**
2737 * netif_receive_skb - process receive buffer from network
2738 * @skb: buffer to process
2739 *
2740 * netif_receive_skb() is the main receive data processing function.
2741 * It always succeeds. The buffer may be dropped during processing
2742 * for congestion control or by the protocol layers.
2743 *
2744 * This function may only be called from softirq context and interrupts
2745 * should be enabled.
2746 *
2747 * Return values (usually ignored):
2748 * NET_RX_SUCCESS: no congestion
2749 * NET_RX_DROP: packet was dropped
2750 */
2751 int netif_receive_skb(struct sk_buff *skb)
2752 {
2753 #ifdef CONFIG_SMP
2754 int cpu;
2755
2756 cpu = get_rps_cpu(skb->dev, skb);
2757
2758 if (cpu < 0)
2759 return __netif_receive_skb(skb);
2760 else
2761 return enqueue_to_backlog(skb, cpu);
2762 #else
2763 return __netif_receive_skb(skb);
2764 #endif
2765 }
2766 EXPORT_SYMBOL(netif_receive_skb);
2767
2768 /* Network device is going away, flush any packets still pending */
2769 static void flush_backlog(void *arg)
2770 {
2771 struct net_device *dev = arg;
2772 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2773 struct sk_buff *skb, *tmp;
2774
2775 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2776 if (skb->dev == dev) {
2777 __skb_unlink(skb, &queue->input_pkt_queue);
2778 kfree_skb(skb);
2779 }
2780 }
2781
2782 static int napi_gro_complete(struct sk_buff *skb)
2783 {
2784 struct packet_type *ptype;
2785 __be16 type = skb->protocol;
2786 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2787 int err = -ENOENT;
2788
2789 if (NAPI_GRO_CB(skb)->count == 1) {
2790 skb_shinfo(skb)->gso_size = 0;
2791 goto out;
2792 }
2793
2794 rcu_read_lock();
2795 list_for_each_entry_rcu(ptype, head, list) {
2796 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2797 continue;
2798
2799 err = ptype->gro_complete(skb);
2800 break;
2801 }
2802 rcu_read_unlock();
2803
2804 if (err) {
2805 WARN_ON(&ptype->list == head);
2806 kfree_skb(skb);
2807 return NET_RX_SUCCESS;
2808 }
2809
2810 out:
2811 return netif_receive_skb(skb);
2812 }
2813
2814 static void napi_gro_flush(struct napi_struct *napi)
2815 {
2816 struct sk_buff *skb, *next;
2817
2818 for (skb = napi->gro_list; skb; skb = next) {
2819 next = skb->next;
2820 skb->next = NULL;
2821 napi_gro_complete(skb);
2822 }
2823
2824 napi->gro_count = 0;
2825 napi->gro_list = NULL;
2826 }
2827
2828 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2829 {
2830 struct sk_buff **pp = NULL;
2831 struct packet_type *ptype;
2832 __be16 type = skb->protocol;
2833 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2834 int same_flow;
2835 int mac_len;
2836 enum gro_result ret;
2837
2838 if (!(skb->dev->features & NETIF_F_GRO))
2839 goto normal;
2840
2841 if (skb_is_gso(skb) || skb_has_frags(skb))
2842 goto normal;
2843
2844 rcu_read_lock();
2845 list_for_each_entry_rcu(ptype, head, list) {
2846 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2847 continue;
2848
2849 skb_set_network_header(skb, skb_gro_offset(skb));
2850 mac_len = skb->network_header - skb->mac_header;
2851 skb->mac_len = mac_len;
2852 NAPI_GRO_CB(skb)->same_flow = 0;
2853 NAPI_GRO_CB(skb)->flush = 0;
2854 NAPI_GRO_CB(skb)->free = 0;
2855
2856 pp = ptype->gro_receive(&napi->gro_list, skb);
2857 break;
2858 }
2859 rcu_read_unlock();
2860
2861 if (&ptype->list == head)
2862 goto normal;
2863
2864 same_flow = NAPI_GRO_CB(skb)->same_flow;
2865 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2866
2867 if (pp) {
2868 struct sk_buff *nskb = *pp;
2869
2870 *pp = nskb->next;
2871 nskb->next = NULL;
2872 napi_gro_complete(nskb);
2873 napi->gro_count--;
2874 }
2875
2876 if (same_flow)
2877 goto ok;
2878
2879 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2880 goto normal;
2881
2882 napi->gro_count++;
2883 NAPI_GRO_CB(skb)->count = 1;
2884 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2885 skb->next = napi->gro_list;
2886 napi->gro_list = skb;
2887 ret = GRO_HELD;
2888
2889 pull:
2890 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2891 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2892
2893 BUG_ON(skb->end - skb->tail < grow);
2894
2895 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2896
2897 skb->tail += grow;
2898 skb->data_len -= grow;
2899
2900 skb_shinfo(skb)->frags[0].page_offset += grow;
2901 skb_shinfo(skb)->frags[0].size -= grow;
2902
2903 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2904 put_page(skb_shinfo(skb)->frags[0].page);
2905 memmove(skb_shinfo(skb)->frags,
2906 skb_shinfo(skb)->frags + 1,
2907 --skb_shinfo(skb)->nr_frags);
2908 }
2909 }
2910
2911 ok:
2912 return ret;
2913
2914 normal:
2915 ret = GRO_NORMAL;
2916 goto pull;
2917 }
2918 EXPORT_SYMBOL(dev_gro_receive);
2919
2920 static gro_result_t
2921 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2922 {
2923 struct sk_buff *p;
2924
2925 if (netpoll_rx_on(skb))
2926 return GRO_NORMAL;
2927
2928 for (p = napi->gro_list; p; p = p->next) {
2929 NAPI_GRO_CB(p)->same_flow =
2930 (p->dev == skb->dev) &&
2931 !compare_ether_header(skb_mac_header(p),
2932 skb_gro_mac_header(skb));
2933 NAPI_GRO_CB(p)->flush = 0;
2934 }
2935
2936 return dev_gro_receive(napi, skb);
2937 }
2938
2939 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2940 {
2941 switch (ret) {
2942 case GRO_NORMAL:
2943 if (netif_receive_skb(skb))
2944 ret = GRO_DROP;
2945 break;
2946
2947 case GRO_DROP:
2948 case GRO_MERGED_FREE:
2949 kfree_skb(skb);
2950 break;
2951
2952 case GRO_HELD:
2953 case GRO_MERGED:
2954 break;
2955 }
2956
2957 return ret;
2958 }
2959 EXPORT_SYMBOL(napi_skb_finish);
2960
2961 void skb_gro_reset_offset(struct sk_buff *skb)
2962 {
2963 NAPI_GRO_CB(skb)->data_offset = 0;
2964 NAPI_GRO_CB(skb)->frag0 = NULL;
2965 NAPI_GRO_CB(skb)->frag0_len = 0;
2966
2967 if (skb->mac_header == skb->tail &&
2968 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2969 NAPI_GRO_CB(skb)->frag0 =
2970 page_address(skb_shinfo(skb)->frags[0].page) +
2971 skb_shinfo(skb)->frags[0].page_offset;
2972 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2973 }
2974 }
2975 EXPORT_SYMBOL(skb_gro_reset_offset);
2976
2977 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2978 {
2979 skb_gro_reset_offset(skb);
2980
2981 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2982 }
2983 EXPORT_SYMBOL(napi_gro_receive);
2984
2985 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2986 {
2987 __skb_pull(skb, skb_headlen(skb));
2988 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2989
2990 napi->skb = skb;
2991 }
2992 EXPORT_SYMBOL(napi_reuse_skb);
2993
2994 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2995 {
2996 struct sk_buff *skb = napi->skb;
2997
2998 if (!skb) {
2999 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3000 if (skb)
3001 napi->skb = skb;
3002 }
3003 return skb;
3004 }
3005 EXPORT_SYMBOL(napi_get_frags);
3006
3007 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3008 gro_result_t ret)
3009 {
3010 switch (ret) {
3011 case GRO_NORMAL:
3012 case GRO_HELD:
3013 skb->protocol = eth_type_trans(skb, skb->dev);
3014
3015 if (ret == GRO_HELD)
3016 skb_gro_pull(skb, -ETH_HLEN);
3017 else if (netif_receive_skb(skb))
3018 ret = GRO_DROP;
3019 break;
3020
3021 case GRO_DROP:
3022 case GRO_MERGED_FREE:
3023 napi_reuse_skb(napi, skb);
3024 break;
3025
3026 case GRO_MERGED:
3027 break;
3028 }
3029
3030 return ret;
3031 }
3032 EXPORT_SYMBOL(napi_frags_finish);
3033
3034 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3035 {
3036 struct sk_buff *skb = napi->skb;
3037 struct ethhdr *eth;
3038 unsigned int hlen;
3039 unsigned int off;
3040
3041 napi->skb = NULL;
3042
3043 skb_reset_mac_header(skb);
3044 skb_gro_reset_offset(skb);
3045
3046 off = skb_gro_offset(skb);
3047 hlen = off + sizeof(*eth);
3048 eth = skb_gro_header_fast(skb, off);
3049 if (skb_gro_header_hard(skb, hlen)) {
3050 eth = skb_gro_header_slow(skb, hlen, off);
3051 if (unlikely(!eth)) {
3052 napi_reuse_skb(napi, skb);
3053 skb = NULL;
3054 goto out;
3055 }
3056 }
3057
3058 skb_gro_pull(skb, sizeof(*eth));
3059
3060 /*
3061 * This works because the only protocols we care about don't require
3062 * special handling. We'll fix it up properly at the end.
3063 */
3064 skb->protocol = eth->h_proto;
3065
3066 out:
3067 return skb;
3068 }
3069 EXPORT_SYMBOL(napi_frags_skb);
3070
3071 gro_result_t napi_gro_frags(struct napi_struct *napi)
3072 {
3073 struct sk_buff *skb = napi_frags_skb(napi);
3074
3075 if (!skb)
3076 return GRO_DROP;
3077
3078 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3079 }
3080 EXPORT_SYMBOL(napi_gro_frags);
3081
3082 static int process_backlog(struct napi_struct *napi, int quota)
3083 {
3084 int work = 0;
3085 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3086 unsigned long start_time = jiffies;
3087
3088 napi->weight = weight_p;
3089 do {
3090 struct sk_buff *skb;
3091
3092 spin_lock_irq(&queue->input_pkt_queue.lock);
3093 skb = __skb_dequeue(&queue->input_pkt_queue);
3094 if (!skb) {
3095 __napi_complete(napi);
3096 spin_unlock_irq(&queue->input_pkt_queue.lock);
3097 break;
3098 }
3099 spin_unlock_irq(&queue->input_pkt_queue.lock);
3100
3101 __netif_receive_skb(skb);
3102 } while (++work < quota && jiffies == start_time);
3103
3104 return work;
3105 }
3106
3107 /**
3108 * __napi_schedule - schedule for receive
3109 * @n: entry to schedule
3110 *
3111 * The entry's receive function will be scheduled to run
3112 */
3113 void __napi_schedule(struct napi_struct *n)
3114 {
3115 unsigned long flags;
3116
3117 local_irq_save(flags);
3118 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3119 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3120 local_irq_restore(flags);
3121 }
3122 EXPORT_SYMBOL(__napi_schedule);
3123
3124 void __napi_complete(struct napi_struct *n)
3125 {
3126 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3127 BUG_ON(n->gro_list);
3128
3129 list_del(&n->poll_list);
3130 smp_mb__before_clear_bit();
3131 clear_bit(NAPI_STATE_SCHED, &n->state);
3132 }
3133 EXPORT_SYMBOL(__napi_complete);
3134
3135 void napi_complete(struct napi_struct *n)
3136 {
3137 unsigned long flags;
3138
3139 /*
3140 * don't let napi dequeue from the cpu poll list
3141 * just in case its running on a different cpu
3142 */
3143 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3144 return;
3145
3146 napi_gro_flush(n);
3147 local_irq_save(flags);
3148 __napi_complete(n);
3149 local_irq_restore(flags);
3150 }
3151 EXPORT_SYMBOL(napi_complete);
3152
3153 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3154 int (*poll)(struct napi_struct *, int), int weight)
3155 {
3156 INIT_LIST_HEAD(&napi->poll_list);
3157 napi->gro_count = 0;
3158 napi->gro_list = NULL;
3159 napi->skb = NULL;
3160 napi->poll = poll;
3161 napi->weight = weight;
3162 list_add(&napi->dev_list, &dev->napi_list);
3163 napi->dev = dev;
3164 #ifdef CONFIG_NETPOLL
3165 spin_lock_init(&napi->poll_lock);
3166 napi->poll_owner = -1;
3167 #endif
3168 set_bit(NAPI_STATE_SCHED, &napi->state);
3169 }
3170 EXPORT_SYMBOL(netif_napi_add);
3171
3172 void netif_napi_del(struct napi_struct *napi)
3173 {
3174 struct sk_buff *skb, *next;
3175
3176 list_del_init(&napi->dev_list);
3177 napi_free_frags(napi);
3178
3179 for (skb = napi->gro_list; skb; skb = next) {
3180 next = skb->next;
3181 skb->next = NULL;
3182 kfree_skb(skb);
3183 }
3184
3185 napi->gro_list = NULL;
3186 napi->gro_count = 0;
3187 }
3188 EXPORT_SYMBOL(netif_napi_del);
3189
3190 #ifdef CONFIG_SMP
3191 /*
3192 * net_rps_action sends any pending IPI's for rps. This is only called from
3193 * softirq and interrupts must be enabled.
3194 */
3195 static void net_rps_action(cpumask_t *mask)
3196 {
3197 int cpu;
3198
3199 /* Send pending IPI's to kick RPS processing on remote cpus. */
3200 for_each_cpu_mask_nr(cpu, *mask) {
3201 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3202 if (cpu_online(cpu))
3203 __smp_call_function_single(cpu, &queue->csd, 0);
3204 }
3205 cpus_clear(*mask);
3206 }
3207 #endif
3208
3209 static void net_rx_action(struct softirq_action *h)
3210 {
3211 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3212 unsigned long time_limit = jiffies + 2;
3213 int budget = netdev_budget;
3214 void *have;
3215 #ifdef CONFIG_SMP
3216 int select;
3217 struct rps_remote_softirq_cpus *rcpus;
3218 #endif
3219
3220 local_irq_disable();
3221
3222 while (!list_empty(list)) {
3223 struct napi_struct *n;
3224 int work, weight;
3225
3226 /* If softirq window is exhuasted then punt.
3227 * Allow this to run for 2 jiffies since which will allow
3228 * an average latency of 1.5/HZ.
3229 */
3230 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3231 goto softnet_break;
3232
3233 local_irq_enable();
3234
3235 /* Even though interrupts have been re-enabled, this
3236 * access is safe because interrupts can only add new
3237 * entries to the tail of this list, and only ->poll()
3238 * calls can remove this head entry from the list.
3239 */
3240 n = list_first_entry(list, struct napi_struct, poll_list);
3241
3242 have = netpoll_poll_lock(n);
3243
3244 weight = n->weight;
3245
3246 /* This NAPI_STATE_SCHED test is for avoiding a race
3247 * with netpoll's poll_napi(). Only the entity which
3248 * obtains the lock and sees NAPI_STATE_SCHED set will
3249 * actually make the ->poll() call. Therefore we avoid
3250 * accidently calling ->poll() when NAPI is not scheduled.
3251 */
3252 work = 0;
3253 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3254 work = n->poll(n, weight);
3255 trace_napi_poll(n);
3256 }
3257
3258 WARN_ON_ONCE(work > weight);
3259
3260 budget -= work;
3261
3262 local_irq_disable();
3263
3264 /* Drivers must not modify the NAPI state if they
3265 * consume the entire weight. In such cases this code
3266 * still "owns" the NAPI instance and therefore can
3267 * move the instance around on the list at-will.
3268 */
3269 if (unlikely(work == weight)) {
3270 if (unlikely(napi_disable_pending(n))) {
3271 local_irq_enable();
3272 napi_complete(n);
3273 local_irq_disable();
3274 } else
3275 list_move_tail(&n->poll_list, list);
3276 }
3277
3278 netpoll_poll_unlock(have);
3279 }
3280 out:
3281 #ifdef CONFIG_SMP
3282 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3283 select = rcpus->select;
3284 rcpus->select ^= 1;
3285
3286 local_irq_enable();
3287
3288 net_rps_action(&rcpus->mask[select]);
3289 #else
3290 local_irq_enable();
3291 #endif
3292
3293 #ifdef CONFIG_NET_DMA
3294 /*
3295 * There may not be any more sk_buffs coming right now, so push
3296 * any pending DMA copies to hardware
3297 */
3298 dma_issue_pending_all();
3299 #endif
3300
3301 return;
3302
3303 softnet_break:
3304 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3305 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3306 goto out;
3307 }
3308
3309 static gifconf_func_t *gifconf_list[NPROTO];
3310
3311 /**
3312 * register_gifconf - register a SIOCGIF handler
3313 * @family: Address family
3314 * @gifconf: Function handler
3315 *
3316 * Register protocol dependent address dumping routines. The handler
3317 * that is passed must not be freed or reused until it has been replaced
3318 * by another handler.
3319 */
3320 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3321 {
3322 if (family >= NPROTO)
3323 return -EINVAL;
3324 gifconf_list[family] = gifconf;
3325 return 0;
3326 }
3327 EXPORT_SYMBOL(register_gifconf);
3328
3329
3330 /*
3331 * Map an interface index to its name (SIOCGIFNAME)
3332 */
3333
3334 /*
3335 * We need this ioctl for efficient implementation of the
3336 * if_indextoname() function required by the IPv6 API. Without
3337 * it, we would have to search all the interfaces to find a
3338 * match. --pb
3339 */
3340
3341 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3342 {
3343 struct net_device *dev;
3344 struct ifreq ifr;
3345
3346 /*
3347 * Fetch the caller's info block.
3348 */
3349
3350 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3351 return -EFAULT;
3352
3353 rcu_read_lock();
3354 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3355 if (!dev) {
3356 rcu_read_unlock();
3357 return -ENODEV;
3358 }
3359
3360 strcpy(ifr.ifr_name, dev->name);
3361 rcu_read_unlock();
3362
3363 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3364 return -EFAULT;
3365 return 0;
3366 }
3367
3368 /*
3369 * Perform a SIOCGIFCONF call. This structure will change
3370 * size eventually, and there is nothing I can do about it.
3371 * Thus we will need a 'compatibility mode'.
3372 */
3373
3374 static int dev_ifconf(struct net *net, char __user *arg)
3375 {
3376 struct ifconf ifc;
3377 struct net_device *dev;
3378 char __user *pos;
3379 int len;
3380 int total;
3381 int i;
3382
3383 /*
3384 * Fetch the caller's info block.
3385 */
3386
3387 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3388 return -EFAULT;
3389
3390 pos = ifc.ifc_buf;
3391 len = ifc.ifc_len;
3392
3393 /*
3394 * Loop over the interfaces, and write an info block for each.
3395 */
3396
3397 total = 0;
3398 for_each_netdev(net, dev) {
3399 for (i = 0; i < NPROTO; i++) {
3400 if (gifconf_list[i]) {
3401 int done;
3402 if (!pos)
3403 done = gifconf_list[i](dev, NULL, 0);
3404 else
3405 done = gifconf_list[i](dev, pos + total,
3406 len - total);
3407 if (done < 0)
3408 return -EFAULT;
3409 total += done;
3410 }
3411 }
3412 }
3413
3414 /*
3415 * All done. Write the updated control block back to the caller.
3416 */
3417 ifc.ifc_len = total;
3418
3419 /*
3420 * Both BSD and Solaris return 0 here, so we do too.
3421 */
3422 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3423 }
3424
3425 #ifdef CONFIG_PROC_FS
3426 /*
3427 * This is invoked by the /proc filesystem handler to display a device
3428 * in detail.
3429 */
3430 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3431 __acquires(RCU)
3432 {
3433 struct net *net = seq_file_net(seq);
3434 loff_t off;
3435 struct net_device *dev;
3436
3437 rcu_read_lock();
3438 if (!*pos)
3439 return SEQ_START_TOKEN;
3440
3441 off = 1;
3442 for_each_netdev_rcu(net, dev)
3443 if (off++ == *pos)
3444 return dev;
3445
3446 return NULL;
3447 }
3448
3449 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3450 {
3451 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3452 first_net_device(seq_file_net(seq)) :
3453 next_net_device((struct net_device *)v);
3454
3455 ++*pos;
3456 return rcu_dereference(dev);
3457 }
3458
3459 void dev_seq_stop(struct seq_file *seq, void *v)
3460 __releases(RCU)
3461 {
3462 rcu_read_unlock();
3463 }
3464
3465 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3466 {
3467 const struct net_device_stats *stats = dev_get_stats(dev);
3468
3469 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3470 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3471 dev->name, stats->rx_bytes, stats->rx_packets,
3472 stats->rx_errors,
3473 stats->rx_dropped + stats->rx_missed_errors,
3474 stats->rx_fifo_errors,
3475 stats->rx_length_errors + stats->rx_over_errors +
3476 stats->rx_crc_errors + stats->rx_frame_errors,
3477 stats->rx_compressed, stats->multicast,
3478 stats->tx_bytes, stats->tx_packets,
3479 stats->tx_errors, stats->tx_dropped,
3480 stats->tx_fifo_errors, stats->collisions,
3481 stats->tx_carrier_errors +
3482 stats->tx_aborted_errors +
3483 stats->tx_window_errors +
3484 stats->tx_heartbeat_errors,
3485 stats->tx_compressed);
3486 }
3487
3488 /*
3489 * Called from the PROCfs module. This now uses the new arbitrary sized
3490 * /proc/net interface to create /proc/net/dev
3491 */
3492 static int dev_seq_show(struct seq_file *seq, void *v)
3493 {
3494 if (v == SEQ_START_TOKEN)
3495 seq_puts(seq, "Inter-| Receive "
3496 " | Transmit\n"
3497 " face |bytes packets errs drop fifo frame "
3498 "compressed multicast|bytes packets errs "
3499 "drop fifo colls carrier compressed\n");
3500 else
3501 dev_seq_printf_stats(seq, v);
3502 return 0;
3503 }
3504
3505 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3506 {
3507 struct netif_rx_stats *rc = NULL;
3508
3509 while (*pos < nr_cpu_ids)
3510 if (cpu_online(*pos)) {
3511 rc = &per_cpu(netdev_rx_stat, *pos);
3512 break;
3513 } else
3514 ++*pos;
3515 return rc;
3516 }
3517
3518 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3519 {
3520 return softnet_get_online(pos);
3521 }
3522
3523 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3524 {
3525 ++*pos;
3526 return softnet_get_online(pos);
3527 }
3528
3529 static void softnet_seq_stop(struct seq_file *seq, void *v)
3530 {
3531 }
3532
3533 static int softnet_seq_show(struct seq_file *seq, void *v)
3534 {
3535 struct netif_rx_stats *s = v;
3536
3537 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3538 s->total, s->dropped, s->time_squeeze, 0,
3539 0, 0, 0, 0, /* was fastroute */
3540 s->cpu_collision, s->received_rps);
3541 return 0;
3542 }
3543
3544 static const struct seq_operations dev_seq_ops = {
3545 .start = dev_seq_start,
3546 .next = dev_seq_next,
3547 .stop = dev_seq_stop,
3548 .show = dev_seq_show,
3549 };
3550
3551 static int dev_seq_open(struct inode *inode, struct file *file)
3552 {
3553 return seq_open_net(inode, file, &dev_seq_ops,
3554 sizeof(struct seq_net_private));
3555 }
3556
3557 static const struct file_operations dev_seq_fops = {
3558 .owner = THIS_MODULE,
3559 .open = dev_seq_open,
3560 .read = seq_read,
3561 .llseek = seq_lseek,
3562 .release = seq_release_net,
3563 };
3564
3565 static const struct seq_operations softnet_seq_ops = {
3566 .start = softnet_seq_start,
3567 .next = softnet_seq_next,
3568 .stop = softnet_seq_stop,
3569 .show = softnet_seq_show,
3570 };
3571
3572 static int softnet_seq_open(struct inode *inode, struct file *file)
3573 {
3574 return seq_open(file, &softnet_seq_ops);
3575 }
3576
3577 static const struct file_operations softnet_seq_fops = {
3578 .owner = THIS_MODULE,
3579 .open = softnet_seq_open,
3580 .read = seq_read,
3581 .llseek = seq_lseek,
3582 .release = seq_release,
3583 };
3584
3585 static void *ptype_get_idx(loff_t pos)
3586 {
3587 struct packet_type *pt = NULL;
3588 loff_t i = 0;
3589 int t;
3590
3591 list_for_each_entry_rcu(pt, &ptype_all, list) {
3592 if (i == pos)
3593 return pt;
3594 ++i;
3595 }
3596
3597 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3598 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3599 if (i == pos)
3600 return pt;
3601 ++i;
3602 }
3603 }
3604 return NULL;
3605 }
3606
3607 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3608 __acquires(RCU)
3609 {
3610 rcu_read_lock();
3611 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3612 }
3613
3614 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3615 {
3616 struct packet_type *pt;
3617 struct list_head *nxt;
3618 int hash;
3619
3620 ++*pos;
3621 if (v == SEQ_START_TOKEN)
3622 return ptype_get_idx(0);
3623
3624 pt = v;
3625 nxt = pt->list.next;
3626 if (pt->type == htons(ETH_P_ALL)) {
3627 if (nxt != &ptype_all)
3628 goto found;
3629 hash = 0;
3630 nxt = ptype_base[0].next;
3631 } else
3632 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3633
3634 while (nxt == &ptype_base[hash]) {
3635 if (++hash >= PTYPE_HASH_SIZE)
3636 return NULL;
3637 nxt = ptype_base[hash].next;
3638 }
3639 found:
3640 return list_entry(nxt, struct packet_type, list);
3641 }
3642
3643 static void ptype_seq_stop(struct seq_file *seq, void *v)
3644 __releases(RCU)
3645 {
3646 rcu_read_unlock();
3647 }
3648
3649 static int ptype_seq_show(struct seq_file *seq, void *v)
3650 {
3651 struct packet_type *pt = v;
3652
3653 if (v == SEQ_START_TOKEN)
3654 seq_puts(seq, "Type Device Function\n");
3655 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3656 if (pt->type == htons(ETH_P_ALL))
3657 seq_puts(seq, "ALL ");
3658 else
3659 seq_printf(seq, "%04x", ntohs(pt->type));
3660
3661 seq_printf(seq, " %-8s %pF\n",
3662 pt->dev ? pt->dev->name : "", pt->func);
3663 }
3664
3665 return 0;
3666 }
3667
3668 static const struct seq_operations ptype_seq_ops = {
3669 .start = ptype_seq_start,
3670 .next = ptype_seq_next,
3671 .stop = ptype_seq_stop,
3672 .show = ptype_seq_show,
3673 };
3674
3675 static int ptype_seq_open(struct inode *inode, struct file *file)
3676 {
3677 return seq_open_net(inode, file, &ptype_seq_ops,
3678 sizeof(struct seq_net_private));
3679 }
3680
3681 static const struct file_operations ptype_seq_fops = {
3682 .owner = THIS_MODULE,
3683 .open = ptype_seq_open,
3684 .read = seq_read,
3685 .llseek = seq_lseek,
3686 .release = seq_release_net,
3687 };
3688
3689
3690 static int __net_init dev_proc_net_init(struct net *net)
3691 {
3692 int rc = -ENOMEM;
3693
3694 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3695 goto out;
3696 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3697 goto out_dev;
3698 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3699 goto out_softnet;
3700
3701 if (wext_proc_init(net))
3702 goto out_ptype;
3703 rc = 0;
3704 out:
3705 return rc;
3706 out_ptype:
3707 proc_net_remove(net, "ptype");
3708 out_softnet:
3709 proc_net_remove(net, "softnet_stat");
3710 out_dev:
3711 proc_net_remove(net, "dev");
3712 goto out;
3713 }
3714
3715 static void __net_exit dev_proc_net_exit(struct net *net)
3716 {
3717 wext_proc_exit(net);
3718
3719 proc_net_remove(net, "ptype");
3720 proc_net_remove(net, "softnet_stat");
3721 proc_net_remove(net, "dev");
3722 }
3723
3724 static struct pernet_operations __net_initdata dev_proc_ops = {
3725 .init = dev_proc_net_init,
3726 .exit = dev_proc_net_exit,
3727 };
3728
3729 static int __init dev_proc_init(void)
3730 {
3731 return register_pernet_subsys(&dev_proc_ops);
3732 }
3733 #else
3734 #define dev_proc_init() 0
3735 #endif /* CONFIG_PROC_FS */
3736
3737
3738 /**
3739 * netdev_set_master - set up master/slave pair
3740 * @slave: slave device
3741 * @master: new master device
3742 *
3743 * Changes the master device of the slave. Pass %NULL to break the
3744 * bonding. The caller must hold the RTNL semaphore. On a failure
3745 * a negative errno code is returned. On success the reference counts
3746 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3747 * function returns zero.
3748 */
3749 int netdev_set_master(struct net_device *slave, struct net_device *master)
3750 {
3751 struct net_device *old = slave->master;
3752
3753 ASSERT_RTNL();
3754
3755 if (master) {
3756 if (old)
3757 return -EBUSY;
3758 dev_hold(master);
3759 }
3760
3761 slave->master = master;
3762
3763 if (old) {
3764 synchronize_net();
3765 dev_put(old);
3766 }
3767 if (master)
3768 slave->flags |= IFF_SLAVE;
3769 else
3770 slave->flags &= ~IFF_SLAVE;
3771
3772 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3773 return 0;
3774 }
3775 EXPORT_SYMBOL(netdev_set_master);
3776
3777 static void dev_change_rx_flags(struct net_device *dev, int flags)
3778 {
3779 const struct net_device_ops *ops = dev->netdev_ops;
3780
3781 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3782 ops->ndo_change_rx_flags(dev, flags);
3783 }
3784
3785 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3786 {
3787 unsigned short old_flags = dev->flags;
3788 uid_t uid;
3789 gid_t gid;
3790
3791 ASSERT_RTNL();
3792
3793 dev->flags |= IFF_PROMISC;
3794 dev->promiscuity += inc;
3795 if (dev->promiscuity == 0) {
3796 /*
3797 * Avoid overflow.
3798 * If inc causes overflow, untouch promisc and return error.
3799 */
3800 if (inc < 0)
3801 dev->flags &= ~IFF_PROMISC;
3802 else {
3803 dev->promiscuity -= inc;
3804 printk(KERN_WARNING "%s: promiscuity touches roof, "
3805 "set promiscuity failed, promiscuity feature "
3806 "of device might be broken.\n", dev->name);
3807 return -EOVERFLOW;
3808 }
3809 }
3810 if (dev->flags != old_flags) {
3811 printk(KERN_INFO "device %s %s promiscuous mode\n",
3812 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3813 "left");
3814 if (audit_enabled) {
3815 current_uid_gid(&uid, &gid);
3816 audit_log(current->audit_context, GFP_ATOMIC,
3817 AUDIT_ANOM_PROMISCUOUS,
3818 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3819 dev->name, (dev->flags & IFF_PROMISC),
3820 (old_flags & IFF_PROMISC),
3821 audit_get_loginuid(current),
3822 uid, gid,
3823 audit_get_sessionid(current));
3824 }
3825
3826 dev_change_rx_flags(dev, IFF_PROMISC);
3827 }
3828 return 0;
3829 }
3830
3831 /**
3832 * dev_set_promiscuity - update promiscuity count on a device
3833 * @dev: device
3834 * @inc: modifier
3835 *
3836 * Add or remove promiscuity from a device. While the count in the device
3837 * remains above zero the interface remains promiscuous. Once it hits zero
3838 * the device reverts back to normal filtering operation. A negative inc
3839 * value is used to drop promiscuity on the device.
3840 * Return 0 if successful or a negative errno code on error.
3841 */
3842 int dev_set_promiscuity(struct net_device *dev, int inc)
3843 {
3844 unsigned short old_flags = dev->flags;
3845 int err;
3846
3847 err = __dev_set_promiscuity(dev, inc);
3848 if (err < 0)
3849 return err;
3850 if (dev->flags != old_flags)
3851 dev_set_rx_mode(dev);
3852 return err;
3853 }
3854 EXPORT_SYMBOL(dev_set_promiscuity);
3855
3856 /**
3857 * dev_set_allmulti - update allmulti count on a device
3858 * @dev: device
3859 * @inc: modifier
3860 *
3861 * Add or remove reception of all multicast frames to a device. While the
3862 * count in the device remains above zero the interface remains listening
3863 * to all interfaces. Once it hits zero the device reverts back to normal
3864 * filtering operation. A negative @inc value is used to drop the counter
3865 * when releasing a resource needing all multicasts.
3866 * Return 0 if successful or a negative errno code on error.
3867 */
3868
3869 int dev_set_allmulti(struct net_device *dev, int inc)
3870 {
3871 unsigned short old_flags = dev->flags;
3872
3873 ASSERT_RTNL();
3874
3875 dev->flags |= IFF_ALLMULTI;
3876 dev->allmulti += inc;
3877 if (dev->allmulti == 0) {
3878 /*
3879 * Avoid overflow.
3880 * If inc causes overflow, untouch allmulti and return error.
3881 */
3882 if (inc < 0)
3883 dev->flags &= ~IFF_ALLMULTI;
3884 else {
3885 dev->allmulti -= inc;
3886 printk(KERN_WARNING "%s: allmulti touches roof, "
3887 "set allmulti failed, allmulti feature of "
3888 "device might be broken.\n", dev->name);
3889 return -EOVERFLOW;
3890 }
3891 }
3892 if (dev->flags ^ old_flags) {
3893 dev_change_rx_flags(dev, IFF_ALLMULTI);
3894 dev_set_rx_mode(dev);
3895 }
3896 return 0;
3897 }
3898 EXPORT_SYMBOL(dev_set_allmulti);
3899
3900 /*
3901 * Upload unicast and multicast address lists to device and
3902 * configure RX filtering. When the device doesn't support unicast
3903 * filtering it is put in promiscuous mode while unicast addresses
3904 * are present.
3905 */
3906 void __dev_set_rx_mode(struct net_device *dev)
3907 {
3908 const struct net_device_ops *ops = dev->netdev_ops;
3909
3910 /* dev_open will call this function so the list will stay sane. */
3911 if (!(dev->flags&IFF_UP))
3912 return;
3913
3914 if (!netif_device_present(dev))
3915 return;
3916
3917 if (ops->ndo_set_rx_mode)
3918 ops->ndo_set_rx_mode(dev);
3919 else {
3920 /* Unicast addresses changes may only happen under the rtnl,
3921 * therefore calling __dev_set_promiscuity here is safe.
3922 */
3923 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3924 __dev_set_promiscuity(dev, 1);
3925 dev->uc_promisc = 1;
3926 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3927 __dev_set_promiscuity(dev, -1);
3928 dev->uc_promisc = 0;
3929 }
3930
3931 if (ops->ndo_set_multicast_list)
3932 ops->ndo_set_multicast_list(dev);
3933 }
3934 }
3935
3936 void dev_set_rx_mode(struct net_device *dev)
3937 {
3938 netif_addr_lock_bh(dev);
3939 __dev_set_rx_mode(dev);
3940 netif_addr_unlock_bh(dev);
3941 }
3942
3943 /* hw addresses list handling functions */
3944
3945 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3946 int addr_len, unsigned char addr_type)
3947 {
3948 struct netdev_hw_addr *ha;
3949 int alloc_size;
3950
3951 if (addr_len > MAX_ADDR_LEN)
3952 return -EINVAL;
3953
3954 list_for_each_entry(ha, &list->list, list) {
3955 if (!memcmp(ha->addr, addr, addr_len) &&
3956 ha->type == addr_type) {
3957 ha->refcount++;
3958 return 0;
3959 }
3960 }
3961
3962
3963 alloc_size = sizeof(*ha);
3964 if (alloc_size < L1_CACHE_BYTES)
3965 alloc_size = L1_CACHE_BYTES;
3966 ha = kmalloc(alloc_size, GFP_ATOMIC);
3967 if (!ha)
3968 return -ENOMEM;
3969 memcpy(ha->addr, addr, addr_len);
3970 ha->type = addr_type;
3971 ha->refcount = 1;
3972 ha->synced = false;
3973 list_add_tail_rcu(&ha->list, &list->list);
3974 list->count++;
3975 return 0;
3976 }
3977
3978 static void ha_rcu_free(struct rcu_head *head)
3979 {
3980 struct netdev_hw_addr *ha;
3981
3982 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3983 kfree(ha);
3984 }
3985
3986 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3987 int addr_len, unsigned char addr_type)
3988 {
3989 struct netdev_hw_addr *ha;
3990
3991 list_for_each_entry(ha, &list->list, list) {
3992 if (!memcmp(ha->addr, addr, addr_len) &&
3993 (ha->type == addr_type || !addr_type)) {
3994 if (--ha->refcount)
3995 return 0;
3996 list_del_rcu(&ha->list);
3997 call_rcu(&ha->rcu_head, ha_rcu_free);
3998 list->count--;
3999 return 0;
4000 }
4001 }
4002 return -ENOENT;
4003 }
4004
4005 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
4006 struct netdev_hw_addr_list *from_list,
4007 int addr_len,
4008 unsigned char addr_type)
4009 {
4010 int err;
4011 struct netdev_hw_addr *ha, *ha2;
4012 unsigned char type;
4013
4014 list_for_each_entry(ha, &from_list->list, list) {
4015 type = addr_type ? addr_type : ha->type;
4016 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
4017 if (err)
4018 goto unroll;
4019 }
4020 return 0;
4021
4022 unroll:
4023 list_for_each_entry(ha2, &from_list->list, list) {
4024 if (ha2 == ha)
4025 break;
4026 type = addr_type ? addr_type : ha2->type;
4027 __hw_addr_del(to_list, ha2->addr, addr_len, type);
4028 }
4029 return err;
4030 }
4031
4032 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4033 struct netdev_hw_addr_list *from_list,
4034 int addr_len,
4035 unsigned char addr_type)
4036 {
4037 struct netdev_hw_addr *ha;
4038 unsigned char type;
4039
4040 list_for_each_entry(ha, &from_list->list, list) {
4041 type = addr_type ? addr_type : ha->type;
4042 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
4043 }
4044 }
4045
4046 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4047 struct netdev_hw_addr_list *from_list,
4048 int addr_len)
4049 {
4050 int err = 0;
4051 struct netdev_hw_addr *ha, *tmp;
4052
4053 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4054 if (!ha->synced) {
4055 err = __hw_addr_add(to_list, ha->addr,
4056 addr_len, ha->type);
4057 if (err)
4058 break;
4059 ha->synced = true;
4060 ha->refcount++;
4061 } else if (ha->refcount == 1) {
4062 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4063 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
4064 }
4065 }
4066 return err;
4067 }
4068
4069 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4070 struct netdev_hw_addr_list *from_list,
4071 int addr_len)
4072 {
4073 struct netdev_hw_addr *ha, *tmp;
4074
4075 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4076 if (ha->synced) {
4077 __hw_addr_del(to_list, ha->addr,
4078 addr_len, ha->type);
4079 ha->synced = false;
4080 __hw_addr_del(from_list, ha->addr,
4081 addr_len, ha->type);
4082 }
4083 }
4084 }
4085
4086 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
4087 {
4088 struct netdev_hw_addr *ha, *tmp;
4089
4090 list_for_each_entry_safe(ha, tmp, &list->list, list) {
4091 list_del_rcu(&ha->list);
4092 call_rcu(&ha->rcu_head, ha_rcu_free);
4093 }
4094 list->count = 0;
4095 }
4096
4097 static void __hw_addr_init(struct netdev_hw_addr_list *list)
4098 {
4099 INIT_LIST_HEAD(&list->list);
4100 list->count = 0;
4101 }
4102
4103 /* Device addresses handling functions */
4104
4105 static void dev_addr_flush(struct net_device *dev)
4106 {
4107 /* rtnl_mutex must be held here */
4108
4109 __hw_addr_flush(&dev->dev_addrs);
4110 dev->dev_addr = NULL;
4111 }
4112
4113 static int dev_addr_init(struct net_device *dev)
4114 {
4115 unsigned char addr[MAX_ADDR_LEN];
4116 struct netdev_hw_addr *ha;
4117 int err;
4118
4119 /* rtnl_mutex must be held here */
4120
4121 __hw_addr_init(&dev->dev_addrs);
4122 memset(addr, 0, sizeof(addr));
4123 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
4124 NETDEV_HW_ADDR_T_LAN);
4125 if (!err) {
4126 /*
4127 * Get the first (previously created) address from the list
4128 * and set dev_addr pointer to this location.
4129 */
4130 ha = list_first_entry(&dev->dev_addrs.list,
4131 struct netdev_hw_addr, list);
4132 dev->dev_addr = ha->addr;
4133 }
4134 return err;
4135 }
4136
4137 /**
4138 * dev_addr_add - Add a device address
4139 * @dev: device
4140 * @addr: address to add
4141 * @addr_type: address type
4142 *
4143 * Add a device address to the device or increase the reference count if
4144 * it already exists.
4145 *
4146 * The caller must hold the rtnl_mutex.
4147 */
4148 int dev_addr_add(struct net_device *dev, unsigned char *addr,
4149 unsigned char addr_type)
4150 {
4151 int err;
4152
4153 ASSERT_RTNL();
4154
4155 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
4156 if (!err)
4157 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4158 return err;
4159 }
4160 EXPORT_SYMBOL(dev_addr_add);
4161
4162 /**
4163 * dev_addr_del - Release a device address.
4164 * @dev: device
4165 * @addr: address to delete
4166 * @addr_type: address type
4167 *
4168 * Release reference to a device address and remove it from the device
4169 * if the reference count drops to zero.
4170 *
4171 * The caller must hold the rtnl_mutex.
4172 */
4173 int dev_addr_del(struct net_device *dev, unsigned char *addr,
4174 unsigned char addr_type)
4175 {
4176 int err;
4177 struct netdev_hw_addr *ha;
4178
4179 ASSERT_RTNL();
4180
4181 /*
4182 * We can not remove the first address from the list because
4183 * dev->dev_addr points to that.
4184 */
4185 ha = list_first_entry(&dev->dev_addrs.list,
4186 struct netdev_hw_addr, list);
4187 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4188 return -ENOENT;
4189
4190 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
4191 addr_type);
4192 if (!err)
4193 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4194 return err;
4195 }
4196 EXPORT_SYMBOL(dev_addr_del);
4197
4198 /**
4199 * dev_addr_add_multiple - Add device addresses from another device
4200 * @to_dev: device to which addresses will be added
4201 * @from_dev: device from which addresses will be added
4202 * @addr_type: address type - 0 means type will be used from from_dev
4203 *
4204 * Add device addresses of the one device to another.
4205 **
4206 * The caller must hold the rtnl_mutex.
4207 */
4208 int dev_addr_add_multiple(struct net_device *to_dev,
4209 struct net_device *from_dev,
4210 unsigned char addr_type)
4211 {
4212 int err;
4213
4214 ASSERT_RTNL();
4215
4216 if (from_dev->addr_len != to_dev->addr_len)
4217 return -EINVAL;
4218 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4219 to_dev->addr_len, addr_type);
4220 if (!err)
4221 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4222 return err;
4223 }
4224 EXPORT_SYMBOL(dev_addr_add_multiple);
4225
4226 /**
4227 * dev_addr_del_multiple - Delete device addresses by another device
4228 * @to_dev: device where the addresses will be deleted
4229 * @from_dev: device by which addresses the addresses will be deleted
4230 * @addr_type: address type - 0 means type will used from from_dev
4231 *
4232 * Deletes addresses in to device by the list of addresses in from device.
4233 *
4234 * The caller must hold the rtnl_mutex.
4235 */
4236 int dev_addr_del_multiple(struct net_device *to_dev,
4237 struct net_device *from_dev,
4238 unsigned char addr_type)
4239 {
4240 ASSERT_RTNL();
4241
4242 if (from_dev->addr_len != to_dev->addr_len)
4243 return -EINVAL;
4244 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4245 to_dev->addr_len, addr_type);
4246 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4247 return 0;
4248 }
4249 EXPORT_SYMBOL(dev_addr_del_multiple);
4250
4251 /* multicast addresses handling functions */
4252
4253 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4254 void *addr, int alen, int glbl)
4255 {
4256 struct dev_addr_list *da;
4257
4258 for (; (da = *list) != NULL; list = &da->next) {
4259 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4260 alen == da->da_addrlen) {
4261 if (glbl) {
4262 int old_glbl = da->da_gusers;
4263 da->da_gusers = 0;
4264 if (old_glbl == 0)
4265 break;
4266 }
4267 if (--da->da_users)
4268 return 0;
4269
4270 *list = da->next;
4271 kfree(da);
4272 (*count)--;
4273 return 0;
4274 }
4275 }
4276 return -ENOENT;
4277 }
4278
4279 int __dev_addr_add(struct dev_addr_list **list, int *count,
4280 void *addr, int alen, int glbl)
4281 {
4282 struct dev_addr_list *da;
4283
4284 for (da = *list; da != NULL; da = da->next) {
4285 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4286 da->da_addrlen == alen) {
4287 if (glbl) {
4288 int old_glbl = da->da_gusers;
4289 da->da_gusers = 1;
4290 if (old_glbl)
4291 return 0;
4292 }
4293 da->da_users++;
4294 return 0;
4295 }
4296 }
4297
4298 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4299 if (da == NULL)
4300 return -ENOMEM;
4301 memcpy(da->da_addr, addr, alen);
4302 da->da_addrlen = alen;
4303 da->da_users = 1;
4304 da->da_gusers = glbl ? 1 : 0;
4305 da->next = *list;
4306 *list = da;
4307 (*count)++;
4308 return 0;
4309 }
4310
4311 /**
4312 * dev_unicast_delete - Release secondary unicast address.
4313 * @dev: device
4314 * @addr: address to delete
4315 *
4316 * Release reference to a secondary unicast address and remove it
4317 * from the device if the reference count drops to zero.
4318 *
4319 * The caller must hold the rtnl_mutex.
4320 */
4321 int dev_unicast_delete(struct net_device *dev, void *addr)
4322 {
4323 int err;
4324
4325 ASSERT_RTNL();
4326
4327 netif_addr_lock_bh(dev);
4328 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4329 NETDEV_HW_ADDR_T_UNICAST);
4330 if (!err)
4331 __dev_set_rx_mode(dev);
4332 netif_addr_unlock_bh(dev);
4333 return err;
4334 }
4335 EXPORT_SYMBOL(dev_unicast_delete);
4336
4337 /**
4338 * dev_unicast_add - add a secondary unicast address
4339 * @dev: device
4340 * @addr: address to add
4341 *
4342 * Add a secondary unicast address to the device or increase
4343 * the reference count if it already exists.
4344 *
4345 * The caller must hold the rtnl_mutex.
4346 */
4347 int dev_unicast_add(struct net_device *dev, void *addr)
4348 {
4349 int err;
4350
4351 ASSERT_RTNL();
4352
4353 netif_addr_lock_bh(dev);
4354 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4355 NETDEV_HW_ADDR_T_UNICAST);
4356 if (!err)
4357 __dev_set_rx_mode(dev);
4358 netif_addr_unlock_bh(dev);
4359 return err;
4360 }
4361 EXPORT_SYMBOL(dev_unicast_add);
4362
4363 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4364 struct dev_addr_list **from, int *from_count)
4365 {
4366 struct dev_addr_list *da, *next;
4367 int err = 0;
4368
4369 da = *from;
4370 while (da != NULL) {
4371 next = da->next;
4372 if (!da->da_synced) {
4373 err = __dev_addr_add(to, to_count,
4374 da->da_addr, da->da_addrlen, 0);
4375 if (err < 0)
4376 break;
4377 da->da_synced = 1;
4378 da->da_users++;
4379 } else if (da->da_users == 1) {
4380 __dev_addr_delete(to, to_count,
4381 da->da_addr, da->da_addrlen, 0);
4382 __dev_addr_delete(from, from_count,
4383 da->da_addr, da->da_addrlen, 0);
4384 }
4385 da = next;
4386 }
4387 return err;
4388 }
4389 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4390
4391 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4392 struct dev_addr_list **from, int *from_count)
4393 {
4394 struct dev_addr_list *da, *next;
4395
4396 da = *from;
4397 while (da != NULL) {
4398 next = da->next;
4399 if (da->da_synced) {
4400 __dev_addr_delete(to, to_count,
4401 da->da_addr, da->da_addrlen, 0);
4402 da->da_synced = 0;
4403 __dev_addr_delete(from, from_count,
4404 da->da_addr, da->da_addrlen, 0);
4405 }
4406 da = next;
4407 }
4408 }
4409 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4410
4411 /**
4412 * dev_unicast_sync - Synchronize device's unicast list to another device
4413 * @to: destination device
4414 * @from: source device
4415 *
4416 * Add newly added addresses to the destination device and release
4417 * addresses that have no users left. The source device must be
4418 * locked by netif_tx_lock_bh.
4419 *
4420 * This function is intended to be called from the dev->set_rx_mode
4421 * function of layered software devices.
4422 */
4423 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4424 {
4425 int err = 0;
4426
4427 if (to->addr_len != from->addr_len)
4428 return -EINVAL;
4429
4430 netif_addr_lock_bh(to);
4431 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4432 if (!err)
4433 __dev_set_rx_mode(to);
4434 netif_addr_unlock_bh(to);
4435 return err;
4436 }
4437 EXPORT_SYMBOL(dev_unicast_sync);
4438
4439 /**
4440 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4441 * @to: destination device
4442 * @from: source device
4443 *
4444 * Remove all addresses that were added to the destination device by
4445 * dev_unicast_sync(). This function is intended to be called from the
4446 * dev->stop function of layered software devices.
4447 */
4448 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4449 {
4450 if (to->addr_len != from->addr_len)
4451 return;
4452
4453 netif_addr_lock_bh(from);
4454 netif_addr_lock(to);
4455 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4456 __dev_set_rx_mode(to);
4457 netif_addr_unlock(to);
4458 netif_addr_unlock_bh(from);
4459 }
4460 EXPORT_SYMBOL(dev_unicast_unsync);
4461
4462 void dev_unicast_flush(struct net_device *dev)
4463 {
4464 netif_addr_lock_bh(dev);
4465 __hw_addr_flush(&dev->uc);
4466 netif_addr_unlock_bh(dev);
4467 }
4468 EXPORT_SYMBOL(dev_unicast_flush);
4469
4470 static void dev_unicast_init(struct net_device *dev)
4471 {
4472 __hw_addr_init(&dev->uc);
4473 }
4474
4475
4476 static void __dev_addr_discard(struct dev_addr_list **list)
4477 {
4478 struct dev_addr_list *tmp;
4479
4480 while (*list != NULL) {
4481 tmp = *list;
4482 *list = tmp->next;
4483 if (tmp->da_users > tmp->da_gusers)
4484 printk("__dev_addr_discard: address leakage! "
4485 "da_users=%d\n", tmp->da_users);
4486 kfree(tmp);
4487 }
4488 }
4489
4490 void dev_addr_discard(struct net_device *dev)
4491 {
4492 netif_addr_lock_bh(dev);
4493
4494 __dev_addr_discard(&dev->mc_list);
4495 netdev_mc_count(dev) = 0;
4496
4497 netif_addr_unlock_bh(dev);
4498 }
4499 EXPORT_SYMBOL(dev_addr_discard);
4500
4501 /**
4502 * dev_get_flags - get flags reported to userspace
4503 * @dev: device
4504 *
4505 * Get the combination of flag bits exported through APIs to userspace.
4506 */
4507 unsigned dev_get_flags(const struct net_device *dev)
4508 {
4509 unsigned flags;
4510
4511 flags = (dev->flags & ~(IFF_PROMISC |
4512 IFF_ALLMULTI |
4513 IFF_RUNNING |
4514 IFF_LOWER_UP |
4515 IFF_DORMANT)) |
4516 (dev->gflags & (IFF_PROMISC |
4517 IFF_ALLMULTI));
4518
4519 if (netif_running(dev)) {
4520 if (netif_oper_up(dev))
4521 flags |= IFF_RUNNING;
4522 if (netif_carrier_ok(dev))
4523 flags |= IFF_LOWER_UP;
4524 if (netif_dormant(dev))
4525 flags |= IFF_DORMANT;
4526 }
4527
4528 return flags;
4529 }
4530 EXPORT_SYMBOL(dev_get_flags);
4531
4532 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4533 {
4534 int old_flags = dev->flags;
4535 int ret;
4536
4537 ASSERT_RTNL();
4538
4539 /*
4540 * Set the flags on our device.
4541 */
4542
4543 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4544 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4545 IFF_AUTOMEDIA)) |
4546 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4547 IFF_ALLMULTI));
4548
4549 /*
4550 * Load in the correct multicast list now the flags have changed.
4551 */
4552
4553 if ((old_flags ^ flags) & IFF_MULTICAST)
4554 dev_change_rx_flags(dev, IFF_MULTICAST);
4555
4556 dev_set_rx_mode(dev);
4557
4558 /*
4559 * Have we downed the interface. We handle IFF_UP ourselves
4560 * according to user attempts to set it, rather than blindly
4561 * setting it.
4562 */
4563
4564 ret = 0;
4565 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4566 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4567
4568 if (!ret)
4569 dev_set_rx_mode(dev);
4570 }
4571
4572 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4573 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4574
4575 dev->gflags ^= IFF_PROMISC;
4576 dev_set_promiscuity(dev, inc);
4577 }
4578
4579 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4580 is important. Some (broken) drivers set IFF_PROMISC, when
4581 IFF_ALLMULTI is requested not asking us and not reporting.
4582 */
4583 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4584 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4585
4586 dev->gflags ^= IFF_ALLMULTI;
4587 dev_set_allmulti(dev, inc);
4588 }
4589
4590 return ret;
4591 }
4592
4593 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4594 {
4595 unsigned int changes = dev->flags ^ old_flags;
4596
4597 if (changes & IFF_UP) {
4598 if (dev->flags & IFF_UP)
4599 call_netdevice_notifiers(NETDEV_UP, dev);
4600 else
4601 call_netdevice_notifiers(NETDEV_DOWN, dev);
4602 }
4603
4604 if (dev->flags & IFF_UP &&
4605 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4606 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4607 }
4608
4609 /**
4610 * dev_change_flags - change device settings
4611 * @dev: device
4612 * @flags: device state flags
4613 *
4614 * Change settings on device based state flags. The flags are
4615 * in the userspace exported format.
4616 */
4617 int dev_change_flags(struct net_device *dev, unsigned flags)
4618 {
4619 int ret, changes;
4620 int old_flags = dev->flags;
4621
4622 ret = __dev_change_flags(dev, flags);
4623 if (ret < 0)
4624 return ret;
4625
4626 changes = old_flags ^ dev->flags;
4627 if (changes)
4628 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4629
4630 __dev_notify_flags(dev, old_flags);
4631 return ret;
4632 }
4633 EXPORT_SYMBOL(dev_change_flags);
4634
4635 /**
4636 * dev_set_mtu - Change maximum transfer unit
4637 * @dev: device
4638 * @new_mtu: new transfer unit
4639 *
4640 * Change the maximum transfer size of the network device.
4641 */
4642 int dev_set_mtu(struct net_device *dev, int new_mtu)
4643 {
4644 const struct net_device_ops *ops = dev->netdev_ops;
4645 int err;
4646
4647 if (new_mtu == dev->mtu)
4648 return 0;
4649
4650 /* MTU must be positive. */
4651 if (new_mtu < 0)
4652 return -EINVAL;
4653
4654 if (!netif_device_present(dev))
4655 return -ENODEV;
4656
4657 err = 0;
4658 if (ops->ndo_change_mtu)
4659 err = ops->ndo_change_mtu(dev, new_mtu);
4660 else
4661 dev->mtu = new_mtu;
4662
4663 if (!err && dev->flags & IFF_UP)
4664 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4665 return err;
4666 }
4667 EXPORT_SYMBOL(dev_set_mtu);
4668
4669 /**
4670 * dev_set_mac_address - Change Media Access Control Address
4671 * @dev: device
4672 * @sa: new address
4673 *
4674 * Change the hardware (MAC) address of the device
4675 */
4676 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4677 {
4678 const struct net_device_ops *ops = dev->netdev_ops;
4679 int err;
4680
4681 if (!ops->ndo_set_mac_address)
4682 return -EOPNOTSUPP;
4683 if (sa->sa_family != dev->type)
4684 return -EINVAL;
4685 if (!netif_device_present(dev))
4686 return -ENODEV;
4687 err = ops->ndo_set_mac_address(dev, sa);
4688 if (!err)
4689 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4690 return err;
4691 }
4692 EXPORT_SYMBOL(dev_set_mac_address);
4693
4694 /*
4695 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4696 */
4697 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4698 {
4699 int err;
4700 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4701
4702 if (!dev)
4703 return -ENODEV;
4704
4705 switch (cmd) {
4706 case SIOCGIFFLAGS: /* Get interface flags */
4707 ifr->ifr_flags = (short) dev_get_flags(dev);
4708 return 0;
4709
4710 case SIOCGIFMETRIC: /* Get the metric on the interface
4711 (currently unused) */
4712 ifr->ifr_metric = 0;
4713 return 0;
4714
4715 case SIOCGIFMTU: /* Get the MTU of a device */
4716 ifr->ifr_mtu = dev->mtu;
4717 return 0;
4718
4719 case SIOCGIFHWADDR:
4720 if (!dev->addr_len)
4721 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4722 else
4723 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4724 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4725 ifr->ifr_hwaddr.sa_family = dev->type;
4726 return 0;
4727
4728 case SIOCGIFSLAVE:
4729 err = -EINVAL;
4730 break;
4731
4732 case SIOCGIFMAP:
4733 ifr->ifr_map.mem_start = dev->mem_start;
4734 ifr->ifr_map.mem_end = dev->mem_end;
4735 ifr->ifr_map.base_addr = dev->base_addr;
4736 ifr->ifr_map.irq = dev->irq;
4737 ifr->ifr_map.dma = dev->dma;
4738 ifr->ifr_map.port = dev->if_port;
4739 return 0;
4740
4741 case SIOCGIFINDEX:
4742 ifr->ifr_ifindex = dev->ifindex;
4743 return 0;
4744
4745 case SIOCGIFTXQLEN:
4746 ifr->ifr_qlen = dev->tx_queue_len;
4747 return 0;
4748
4749 default:
4750 /* dev_ioctl() should ensure this case
4751 * is never reached
4752 */
4753 WARN_ON(1);
4754 err = -EINVAL;
4755 break;
4756
4757 }
4758 return err;
4759 }
4760
4761 /*
4762 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4763 */
4764 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4765 {
4766 int err;
4767 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4768 const struct net_device_ops *ops;
4769
4770 if (!dev)
4771 return -ENODEV;
4772
4773 ops = dev->netdev_ops;
4774
4775 switch (cmd) {
4776 case SIOCSIFFLAGS: /* Set interface flags */
4777 return dev_change_flags(dev, ifr->ifr_flags);
4778
4779 case SIOCSIFMETRIC: /* Set the metric on the interface
4780 (currently unused) */
4781 return -EOPNOTSUPP;
4782
4783 case SIOCSIFMTU: /* Set the MTU of a device */
4784 return dev_set_mtu(dev, ifr->ifr_mtu);
4785
4786 case SIOCSIFHWADDR:
4787 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4788
4789 case SIOCSIFHWBROADCAST:
4790 if (ifr->ifr_hwaddr.sa_family != dev->type)
4791 return -EINVAL;
4792 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4793 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4794 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4795 return 0;
4796
4797 case SIOCSIFMAP:
4798 if (ops->ndo_set_config) {
4799 if (!netif_device_present(dev))
4800 return -ENODEV;
4801 return ops->ndo_set_config(dev, &ifr->ifr_map);
4802 }
4803 return -EOPNOTSUPP;
4804
4805 case SIOCADDMULTI:
4806 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4807 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4808 return -EINVAL;
4809 if (!netif_device_present(dev))
4810 return -ENODEV;
4811 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4812 dev->addr_len, 1);
4813
4814 case SIOCDELMULTI:
4815 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4816 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4817 return -EINVAL;
4818 if (!netif_device_present(dev))
4819 return -ENODEV;
4820 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4821 dev->addr_len, 1);
4822
4823 case SIOCSIFTXQLEN:
4824 if (ifr->ifr_qlen < 0)
4825 return -EINVAL;
4826 dev->tx_queue_len = ifr->ifr_qlen;
4827 return 0;
4828
4829 case SIOCSIFNAME:
4830 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4831 return dev_change_name(dev, ifr->ifr_newname);
4832
4833 /*
4834 * Unknown or private ioctl
4835 */
4836 default:
4837 if ((cmd >= SIOCDEVPRIVATE &&
4838 cmd <= SIOCDEVPRIVATE + 15) ||
4839 cmd == SIOCBONDENSLAVE ||
4840 cmd == SIOCBONDRELEASE ||
4841 cmd == SIOCBONDSETHWADDR ||
4842 cmd == SIOCBONDSLAVEINFOQUERY ||
4843 cmd == SIOCBONDINFOQUERY ||
4844 cmd == SIOCBONDCHANGEACTIVE ||
4845 cmd == SIOCGMIIPHY ||
4846 cmd == SIOCGMIIREG ||
4847 cmd == SIOCSMIIREG ||
4848 cmd == SIOCBRADDIF ||
4849 cmd == SIOCBRDELIF ||
4850 cmd == SIOCSHWTSTAMP ||
4851 cmd == SIOCWANDEV) {
4852 err = -EOPNOTSUPP;
4853 if (ops->ndo_do_ioctl) {
4854 if (netif_device_present(dev))
4855 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4856 else
4857 err = -ENODEV;
4858 }
4859 } else
4860 err = -EINVAL;
4861
4862 }
4863 return err;
4864 }
4865
4866 /*
4867 * This function handles all "interface"-type I/O control requests. The actual
4868 * 'doing' part of this is dev_ifsioc above.
4869 */
4870
4871 /**
4872 * dev_ioctl - network device ioctl
4873 * @net: the applicable net namespace
4874 * @cmd: command to issue
4875 * @arg: pointer to a struct ifreq in user space
4876 *
4877 * Issue ioctl functions to devices. This is normally called by the
4878 * user space syscall interfaces but can sometimes be useful for
4879 * other purposes. The return value is the return from the syscall if
4880 * positive or a negative errno code on error.
4881 */
4882
4883 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4884 {
4885 struct ifreq ifr;
4886 int ret;
4887 char *colon;
4888
4889 /* One special case: SIOCGIFCONF takes ifconf argument
4890 and requires shared lock, because it sleeps writing
4891 to user space.
4892 */
4893
4894 if (cmd == SIOCGIFCONF) {
4895 rtnl_lock();
4896 ret = dev_ifconf(net, (char __user *) arg);
4897 rtnl_unlock();
4898 return ret;
4899 }
4900 if (cmd == SIOCGIFNAME)
4901 return dev_ifname(net, (struct ifreq __user *)arg);
4902
4903 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4904 return -EFAULT;
4905
4906 ifr.ifr_name[IFNAMSIZ-1] = 0;
4907
4908 colon = strchr(ifr.ifr_name, ':');
4909 if (colon)
4910 *colon = 0;
4911
4912 /*
4913 * See which interface the caller is talking about.
4914 */
4915
4916 switch (cmd) {
4917 /*
4918 * These ioctl calls:
4919 * - can be done by all.
4920 * - atomic and do not require locking.
4921 * - return a value
4922 */
4923 case SIOCGIFFLAGS:
4924 case SIOCGIFMETRIC:
4925 case SIOCGIFMTU:
4926 case SIOCGIFHWADDR:
4927 case SIOCGIFSLAVE:
4928 case SIOCGIFMAP:
4929 case SIOCGIFINDEX:
4930 case SIOCGIFTXQLEN:
4931 dev_load(net, ifr.ifr_name);
4932 rcu_read_lock();
4933 ret = dev_ifsioc_locked(net, &ifr, cmd);
4934 rcu_read_unlock();
4935 if (!ret) {
4936 if (colon)
4937 *colon = ':';
4938 if (copy_to_user(arg, &ifr,
4939 sizeof(struct ifreq)))
4940 ret = -EFAULT;
4941 }
4942 return ret;
4943
4944 case SIOCETHTOOL:
4945 dev_load(net, ifr.ifr_name);
4946 rtnl_lock();
4947 ret = dev_ethtool(net, &ifr);
4948 rtnl_unlock();
4949 if (!ret) {
4950 if (colon)
4951 *colon = ':';
4952 if (copy_to_user(arg, &ifr,
4953 sizeof(struct ifreq)))
4954 ret = -EFAULT;
4955 }
4956 return ret;
4957
4958 /*
4959 * These ioctl calls:
4960 * - require superuser power.
4961 * - require strict serialization.
4962 * - return a value
4963 */
4964 case SIOCGMIIPHY:
4965 case SIOCGMIIREG:
4966 case SIOCSIFNAME:
4967 if (!capable(CAP_NET_ADMIN))
4968 return -EPERM;
4969 dev_load(net, ifr.ifr_name);
4970 rtnl_lock();
4971 ret = dev_ifsioc(net, &ifr, cmd);
4972 rtnl_unlock();
4973 if (!ret) {
4974 if (colon)
4975 *colon = ':';
4976 if (copy_to_user(arg, &ifr,
4977 sizeof(struct ifreq)))
4978 ret = -EFAULT;
4979 }
4980 return ret;
4981
4982 /*
4983 * These ioctl calls:
4984 * - require superuser power.
4985 * - require strict serialization.
4986 * - do not return a value
4987 */
4988 case SIOCSIFFLAGS:
4989 case SIOCSIFMETRIC:
4990 case SIOCSIFMTU:
4991 case SIOCSIFMAP:
4992 case SIOCSIFHWADDR:
4993 case SIOCSIFSLAVE:
4994 case SIOCADDMULTI:
4995 case SIOCDELMULTI:
4996 case SIOCSIFHWBROADCAST:
4997 case SIOCSIFTXQLEN:
4998 case SIOCSMIIREG:
4999 case SIOCBONDENSLAVE:
5000 case SIOCBONDRELEASE:
5001 case SIOCBONDSETHWADDR:
5002 case SIOCBONDCHANGEACTIVE:
5003 case SIOCBRADDIF:
5004 case SIOCBRDELIF:
5005 case SIOCSHWTSTAMP:
5006 if (!capable(CAP_NET_ADMIN))
5007 return -EPERM;
5008 /* fall through */
5009 case SIOCBONDSLAVEINFOQUERY:
5010 case SIOCBONDINFOQUERY:
5011 dev_load(net, ifr.ifr_name);
5012 rtnl_lock();
5013 ret = dev_ifsioc(net, &ifr, cmd);
5014 rtnl_unlock();
5015 return ret;
5016
5017 case SIOCGIFMEM:
5018 /* Get the per device memory space. We can add this but
5019 * currently do not support it */
5020 case SIOCSIFMEM:
5021 /* Set the per device memory buffer space.
5022 * Not applicable in our case */
5023 case SIOCSIFLINK:
5024 return -EINVAL;
5025
5026 /*
5027 * Unknown or private ioctl.
5028 */
5029 default:
5030 if (cmd == SIOCWANDEV ||
5031 (cmd >= SIOCDEVPRIVATE &&
5032 cmd <= SIOCDEVPRIVATE + 15)) {
5033 dev_load(net, ifr.ifr_name);
5034 rtnl_lock();
5035 ret = dev_ifsioc(net, &ifr, cmd);
5036 rtnl_unlock();
5037 if (!ret && copy_to_user(arg, &ifr,
5038 sizeof(struct ifreq)))
5039 ret = -EFAULT;
5040 return ret;
5041 }
5042 /* Take care of Wireless Extensions */
5043 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5044 return wext_handle_ioctl(net, &ifr, cmd, arg);
5045 return -EINVAL;
5046 }
5047 }
5048
5049
5050 /**
5051 * dev_new_index - allocate an ifindex
5052 * @net: the applicable net namespace
5053 *
5054 * Returns a suitable unique value for a new device interface
5055 * number. The caller must hold the rtnl semaphore or the
5056 * dev_base_lock to be sure it remains unique.
5057 */
5058 static int dev_new_index(struct net *net)
5059 {
5060 static int ifindex;
5061 for (;;) {
5062 if (++ifindex <= 0)
5063 ifindex = 1;
5064 if (!__dev_get_by_index(net, ifindex))
5065 return ifindex;
5066 }
5067 }
5068
5069 /* Delayed registration/unregisteration */
5070 static LIST_HEAD(net_todo_list);
5071
5072 static void net_set_todo(struct net_device *dev)
5073 {
5074 list_add_tail(&dev->todo_list, &net_todo_list);
5075 }
5076
5077 static void rollback_registered_many(struct list_head *head)
5078 {
5079 struct net_device *dev, *tmp;
5080
5081 BUG_ON(dev_boot_phase);
5082 ASSERT_RTNL();
5083
5084 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5085 /* Some devices call without registering
5086 * for initialization unwind. Remove those
5087 * devices and proceed with the remaining.
5088 */
5089 if (dev->reg_state == NETREG_UNINITIALIZED) {
5090 pr_debug("unregister_netdevice: device %s/%p never "
5091 "was registered\n", dev->name, dev);
5092
5093 WARN_ON(1);
5094 list_del(&dev->unreg_list);
5095 continue;
5096 }
5097
5098 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5099
5100 /* If device is running, close it first. */
5101 dev_close(dev);
5102
5103 /* And unlink it from device chain. */
5104 unlist_netdevice(dev);
5105
5106 dev->reg_state = NETREG_UNREGISTERING;
5107 }
5108
5109 synchronize_net();
5110
5111 list_for_each_entry(dev, head, unreg_list) {
5112 /* Shutdown queueing discipline. */
5113 dev_shutdown(dev);
5114
5115
5116 /* Notify protocols, that we are about to destroy
5117 this device. They should clean all the things.
5118 */
5119 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5120
5121 if (!dev->rtnl_link_ops ||
5122 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5123 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5124
5125 /*
5126 * Flush the unicast and multicast chains
5127 */
5128 dev_unicast_flush(dev);
5129 dev_addr_discard(dev);
5130
5131 if (dev->netdev_ops->ndo_uninit)
5132 dev->netdev_ops->ndo_uninit(dev);
5133
5134 /* Notifier chain MUST detach us from master device. */
5135 WARN_ON(dev->master);
5136
5137 /* Remove entries from kobject tree */
5138 netdev_unregister_kobject(dev);
5139 }
5140
5141 /* Process any work delayed until the end of the batch */
5142 dev = list_first_entry(head, struct net_device, unreg_list);
5143 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5144
5145 synchronize_net();
5146
5147 list_for_each_entry(dev, head, unreg_list)
5148 dev_put(dev);
5149 }
5150
5151 static void rollback_registered(struct net_device *dev)
5152 {
5153 LIST_HEAD(single);
5154
5155 list_add(&dev->unreg_list, &single);
5156 rollback_registered_many(&single);
5157 }
5158
5159 static void __netdev_init_queue_locks_one(struct net_device *dev,
5160 struct netdev_queue *dev_queue,
5161 void *_unused)
5162 {
5163 spin_lock_init(&dev_queue->_xmit_lock);
5164 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
5165 dev_queue->xmit_lock_owner = -1;
5166 }
5167
5168 static void netdev_init_queue_locks(struct net_device *dev)
5169 {
5170 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5171 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
5172 }
5173
5174 unsigned long netdev_fix_features(unsigned long features, const char *name)
5175 {
5176 /* Fix illegal SG+CSUM combinations. */
5177 if ((features & NETIF_F_SG) &&
5178 !(features & NETIF_F_ALL_CSUM)) {
5179 if (name)
5180 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5181 "checksum feature.\n", name);
5182 features &= ~NETIF_F_SG;
5183 }
5184
5185 /* TSO requires that SG is present as well. */
5186 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5187 if (name)
5188 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5189 "SG feature.\n", name);
5190 features &= ~NETIF_F_TSO;
5191 }
5192
5193 if (features & NETIF_F_UFO) {
5194 if (!(features & NETIF_F_GEN_CSUM)) {
5195 if (name)
5196 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5197 "since no NETIF_F_HW_CSUM feature.\n",
5198 name);
5199 features &= ~NETIF_F_UFO;
5200 }
5201
5202 if (!(features & NETIF_F_SG)) {
5203 if (name)
5204 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5205 "since no NETIF_F_SG feature.\n", name);
5206 features &= ~NETIF_F_UFO;
5207 }
5208 }
5209
5210 return features;
5211 }
5212 EXPORT_SYMBOL(netdev_fix_features);
5213
5214 /**
5215 * netif_stacked_transfer_operstate - transfer operstate
5216 * @rootdev: the root or lower level device to transfer state from
5217 * @dev: the device to transfer operstate to
5218 *
5219 * Transfer operational state from root to device. This is normally
5220 * called when a stacking relationship exists between the root
5221 * device and the device(a leaf device).
5222 */
5223 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5224 struct net_device *dev)
5225 {
5226 if (rootdev->operstate == IF_OPER_DORMANT)
5227 netif_dormant_on(dev);
5228 else
5229 netif_dormant_off(dev);
5230
5231 if (netif_carrier_ok(rootdev)) {
5232 if (!netif_carrier_ok(dev))
5233 netif_carrier_on(dev);
5234 } else {
5235 if (netif_carrier_ok(dev))
5236 netif_carrier_off(dev);
5237 }
5238 }
5239 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5240
5241 /**
5242 * register_netdevice - register a network device
5243 * @dev: device to register
5244 *
5245 * Take a completed network device structure and add it to the kernel
5246 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5247 * chain. 0 is returned on success. A negative errno code is returned
5248 * on a failure to set up the device, or if the name is a duplicate.
5249 *
5250 * Callers must hold the rtnl semaphore. You may want
5251 * register_netdev() instead of this.
5252 *
5253 * BUGS:
5254 * The locking appears insufficient to guarantee two parallel registers
5255 * will not get the same name.
5256 */
5257
5258 int register_netdevice(struct net_device *dev)
5259 {
5260 int ret;
5261 struct net *net = dev_net(dev);
5262
5263 BUG_ON(dev_boot_phase);
5264 ASSERT_RTNL();
5265
5266 might_sleep();
5267
5268 /* When net_device's are persistent, this will be fatal. */
5269 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5270 BUG_ON(!net);
5271
5272 spin_lock_init(&dev->addr_list_lock);
5273 netdev_set_addr_lockdep_class(dev);
5274 netdev_init_queue_locks(dev);
5275
5276 dev->iflink = -1;
5277
5278 if (!dev->num_rx_queues) {
5279 /*
5280 * Allocate a single RX queue if driver never called
5281 * alloc_netdev_mq
5282 */
5283
5284 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5285 if (!dev->_rx) {
5286 ret = -ENOMEM;
5287 goto out;
5288 }
5289
5290 dev->_rx->first = dev->_rx;
5291 atomic_set(&dev->_rx->count, 1);
5292 dev->num_rx_queues = 1;
5293 }
5294
5295 /* Init, if this function is available */
5296 if (dev->netdev_ops->ndo_init) {
5297 ret = dev->netdev_ops->ndo_init(dev);
5298 if (ret) {
5299 if (ret > 0)
5300 ret = -EIO;
5301 goto out;
5302 }
5303 }
5304
5305 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5306 if (ret)
5307 goto err_uninit;
5308
5309 dev->ifindex = dev_new_index(net);
5310 if (dev->iflink == -1)
5311 dev->iflink = dev->ifindex;
5312
5313 /* Fix illegal checksum combinations */
5314 if ((dev->features & NETIF_F_HW_CSUM) &&
5315 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5316 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5317 dev->name);
5318 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5319 }
5320
5321 if ((dev->features & NETIF_F_NO_CSUM) &&
5322 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5323 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5324 dev->name);
5325 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5326 }
5327
5328 dev->features = netdev_fix_features(dev->features, dev->name);
5329
5330 /* Enable software GSO if SG is supported. */
5331 if (dev->features & NETIF_F_SG)
5332 dev->features |= NETIF_F_GSO;
5333
5334 netdev_initialize_kobject(dev);
5335
5336 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5337 ret = notifier_to_errno(ret);
5338 if (ret)
5339 goto err_uninit;
5340
5341 ret = netdev_register_kobject(dev);
5342 if (ret)
5343 goto err_uninit;
5344 dev->reg_state = NETREG_REGISTERED;
5345
5346 /*
5347 * Default initial state at registry is that the
5348 * device is present.
5349 */
5350
5351 set_bit(__LINK_STATE_PRESENT, &dev->state);
5352
5353 dev_init_scheduler(dev);
5354 dev_hold(dev);
5355 list_netdevice(dev);
5356
5357 /* Notify protocols, that a new device appeared. */
5358 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5359 ret = notifier_to_errno(ret);
5360 if (ret) {
5361 rollback_registered(dev);
5362 dev->reg_state = NETREG_UNREGISTERED;
5363 }
5364 /*
5365 * Prevent userspace races by waiting until the network
5366 * device is fully setup before sending notifications.
5367 */
5368 if (!dev->rtnl_link_ops ||
5369 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5370 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5371
5372 out:
5373 return ret;
5374
5375 err_uninit:
5376 if (dev->netdev_ops->ndo_uninit)
5377 dev->netdev_ops->ndo_uninit(dev);
5378 goto out;
5379 }
5380 EXPORT_SYMBOL(register_netdevice);
5381
5382 /**
5383 * init_dummy_netdev - init a dummy network device for NAPI
5384 * @dev: device to init
5385 *
5386 * This takes a network device structure and initialize the minimum
5387 * amount of fields so it can be used to schedule NAPI polls without
5388 * registering a full blown interface. This is to be used by drivers
5389 * that need to tie several hardware interfaces to a single NAPI
5390 * poll scheduler due to HW limitations.
5391 */
5392 int init_dummy_netdev(struct net_device *dev)
5393 {
5394 /* Clear everything. Note we don't initialize spinlocks
5395 * are they aren't supposed to be taken by any of the
5396 * NAPI code and this dummy netdev is supposed to be
5397 * only ever used for NAPI polls
5398 */
5399 memset(dev, 0, sizeof(struct net_device));
5400
5401 /* make sure we BUG if trying to hit standard
5402 * register/unregister code path
5403 */
5404 dev->reg_state = NETREG_DUMMY;
5405
5406 /* initialize the ref count */
5407 atomic_set(&dev->refcnt, 1);
5408
5409 /* NAPI wants this */
5410 INIT_LIST_HEAD(&dev->napi_list);
5411
5412 /* a dummy interface is started by default */
5413 set_bit(__LINK_STATE_PRESENT, &dev->state);
5414 set_bit(__LINK_STATE_START, &dev->state);
5415
5416 return 0;
5417 }
5418 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5419
5420
5421 /**
5422 * register_netdev - register a network device
5423 * @dev: device to register
5424 *
5425 * Take a completed network device structure and add it to the kernel
5426 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5427 * chain. 0 is returned on success. A negative errno code is returned
5428 * on a failure to set up the device, or if the name is a duplicate.
5429 *
5430 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5431 * and expands the device name if you passed a format string to
5432 * alloc_netdev.
5433 */
5434 int register_netdev(struct net_device *dev)
5435 {
5436 int err;
5437
5438 rtnl_lock();
5439
5440 /*
5441 * If the name is a format string the caller wants us to do a
5442 * name allocation.
5443 */
5444 if (strchr(dev->name, '%')) {
5445 err = dev_alloc_name(dev, dev->name);
5446 if (err < 0)
5447 goto out;
5448 }
5449
5450 err = register_netdevice(dev);
5451 out:
5452 rtnl_unlock();
5453 return err;
5454 }
5455 EXPORT_SYMBOL(register_netdev);
5456
5457 /*
5458 * netdev_wait_allrefs - wait until all references are gone.
5459 *
5460 * This is called when unregistering network devices.
5461 *
5462 * Any protocol or device that holds a reference should register
5463 * for netdevice notification, and cleanup and put back the
5464 * reference if they receive an UNREGISTER event.
5465 * We can get stuck here if buggy protocols don't correctly
5466 * call dev_put.
5467 */
5468 static void netdev_wait_allrefs(struct net_device *dev)
5469 {
5470 unsigned long rebroadcast_time, warning_time;
5471
5472 linkwatch_forget_dev(dev);
5473
5474 rebroadcast_time = warning_time = jiffies;
5475 while (atomic_read(&dev->refcnt) != 0) {
5476 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5477 rtnl_lock();
5478
5479 /* Rebroadcast unregister notification */
5480 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5481 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5482 * should have already handle it the first time */
5483
5484 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5485 &dev->state)) {
5486 /* We must not have linkwatch events
5487 * pending on unregister. If this
5488 * happens, we simply run the queue
5489 * unscheduled, resulting in a noop
5490 * for this device.
5491 */
5492 linkwatch_run_queue();
5493 }
5494
5495 __rtnl_unlock();
5496
5497 rebroadcast_time = jiffies;
5498 }
5499
5500 msleep(250);
5501
5502 if (time_after(jiffies, warning_time + 10 * HZ)) {
5503 printk(KERN_EMERG "unregister_netdevice: "
5504 "waiting for %s to become free. Usage "
5505 "count = %d\n",
5506 dev->name, atomic_read(&dev->refcnt));
5507 warning_time = jiffies;
5508 }
5509 }
5510 }
5511
5512 /* The sequence is:
5513 *
5514 * rtnl_lock();
5515 * ...
5516 * register_netdevice(x1);
5517 * register_netdevice(x2);
5518 * ...
5519 * unregister_netdevice(y1);
5520 * unregister_netdevice(y2);
5521 * ...
5522 * rtnl_unlock();
5523 * free_netdev(y1);
5524 * free_netdev(y2);
5525 *
5526 * We are invoked by rtnl_unlock().
5527 * This allows us to deal with problems:
5528 * 1) We can delete sysfs objects which invoke hotplug
5529 * without deadlocking with linkwatch via keventd.
5530 * 2) Since we run with the RTNL semaphore not held, we can sleep
5531 * safely in order to wait for the netdev refcnt to drop to zero.
5532 *
5533 * We must not return until all unregister events added during
5534 * the interval the lock was held have been completed.
5535 */
5536 void netdev_run_todo(void)
5537 {
5538 struct list_head list;
5539
5540 /* Snapshot list, allow later requests */
5541 list_replace_init(&net_todo_list, &list);
5542
5543 __rtnl_unlock();
5544
5545 while (!list_empty(&list)) {
5546 struct net_device *dev
5547 = list_first_entry(&list, struct net_device, todo_list);
5548 list_del(&dev->todo_list);
5549
5550 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5551 printk(KERN_ERR "network todo '%s' but state %d\n",
5552 dev->name, dev->reg_state);
5553 dump_stack();
5554 continue;
5555 }
5556
5557 dev->reg_state = NETREG_UNREGISTERED;
5558
5559 on_each_cpu(flush_backlog, dev, 1);
5560
5561 netdev_wait_allrefs(dev);
5562
5563 /* paranoia */
5564 BUG_ON(atomic_read(&dev->refcnt));
5565 WARN_ON(dev->ip_ptr);
5566 WARN_ON(dev->ip6_ptr);
5567 WARN_ON(dev->dn_ptr);
5568
5569 if (dev->destructor)
5570 dev->destructor(dev);
5571
5572 /* Free network device */
5573 kobject_put(&dev->dev.kobj);
5574 }
5575 }
5576
5577 /**
5578 * dev_txq_stats_fold - fold tx_queues stats
5579 * @dev: device to get statistics from
5580 * @stats: struct net_device_stats to hold results
5581 */
5582 void dev_txq_stats_fold(const struct net_device *dev,
5583 struct net_device_stats *stats)
5584 {
5585 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5586 unsigned int i;
5587 struct netdev_queue *txq;
5588
5589 for (i = 0; i < dev->num_tx_queues; i++) {
5590 txq = netdev_get_tx_queue(dev, i);
5591 tx_bytes += txq->tx_bytes;
5592 tx_packets += txq->tx_packets;
5593 tx_dropped += txq->tx_dropped;
5594 }
5595 if (tx_bytes || tx_packets || tx_dropped) {
5596 stats->tx_bytes = tx_bytes;
5597 stats->tx_packets = tx_packets;
5598 stats->tx_dropped = tx_dropped;
5599 }
5600 }
5601 EXPORT_SYMBOL(dev_txq_stats_fold);
5602
5603 /**
5604 * dev_get_stats - get network device statistics
5605 * @dev: device to get statistics from
5606 *
5607 * Get network statistics from device. The device driver may provide
5608 * its own method by setting dev->netdev_ops->get_stats; otherwise
5609 * the internal statistics structure is used.
5610 */
5611 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5612 {
5613 const struct net_device_ops *ops = dev->netdev_ops;
5614
5615 if (ops->ndo_get_stats)
5616 return ops->ndo_get_stats(dev);
5617
5618 dev_txq_stats_fold(dev, &dev->stats);
5619 return &dev->stats;
5620 }
5621 EXPORT_SYMBOL(dev_get_stats);
5622
5623 static void netdev_init_one_queue(struct net_device *dev,
5624 struct netdev_queue *queue,
5625 void *_unused)
5626 {
5627 queue->dev = dev;
5628 }
5629
5630 static void netdev_init_queues(struct net_device *dev)
5631 {
5632 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5633 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5634 spin_lock_init(&dev->tx_global_lock);
5635 }
5636
5637 /**
5638 * alloc_netdev_mq - allocate network device
5639 * @sizeof_priv: size of private data to allocate space for
5640 * @name: device name format string
5641 * @setup: callback to initialize device
5642 * @queue_count: the number of subqueues to allocate
5643 *
5644 * Allocates a struct net_device with private data area for driver use
5645 * and performs basic initialization. Also allocates subquue structs
5646 * for each queue on the device at the end of the netdevice.
5647 */
5648 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5649 void (*setup)(struct net_device *), unsigned int queue_count)
5650 {
5651 struct netdev_queue *tx;
5652 struct netdev_rx_queue *rx;
5653 struct net_device *dev;
5654 size_t alloc_size;
5655 struct net_device *p;
5656 int i;
5657
5658 BUG_ON(strlen(name) >= sizeof(dev->name));
5659
5660 alloc_size = sizeof(struct net_device);
5661 if (sizeof_priv) {
5662 /* ensure 32-byte alignment of private area */
5663 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5664 alloc_size += sizeof_priv;
5665 }
5666 /* ensure 32-byte alignment of whole construct */
5667 alloc_size += NETDEV_ALIGN - 1;
5668
5669 p = kzalloc(alloc_size, GFP_KERNEL);
5670 if (!p) {
5671 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5672 return NULL;
5673 }
5674
5675 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5676 if (!tx) {
5677 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5678 "tx qdiscs.\n");
5679 goto free_p;
5680 }
5681
5682 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5683 if (!rx) {
5684 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5685 "rx queues.\n");
5686 goto free_tx;
5687 }
5688
5689 atomic_set(&rx->count, queue_count);
5690
5691 /*
5692 * Set a pointer to first element in the array which holds the
5693 * reference count.
5694 */
5695 for (i = 0; i < queue_count; i++)
5696 rx[i].first = rx;
5697
5698 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5699 dev->padded = (char *)dev - (char *)p;
5700
5701 if (dev_addr_init(dev))
5702 goto free_rx;
5703
5704 dev_unicast_init(dev);
5705
5706 dev_net_set(dev, &init_net);
5707
5708 dev->_tx = tx;
5709 dev->num_tx_queues = queue_count;
5710 dev->real_num_tx_queues = queue_count;
5711
5712 dev->_rx = rx;
5713 dev->num_rx_queues = queue_count;
5714
5715 dev->gso_max_size = GSO_MAX_SIZE;
5716
5717 netdev_init_queues(dev);
5718
5719 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5720 dev->ethtool_ntuple_list.count = 0;
5721 INIT_LIST_HEAD(&dev->napi_list);
5722 INIT_LIST_HEAD(&dev->unreg_list);
5723 INIT_LIST_HEAD(&dev->link_watch_list);
5724 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5725 setup(dev);
5726 strcpy(dev->name, name);
5727 return dev;
5728
5729 free_rx:
5730 kfree(rx);
5731 free_tx:
5732 kfree(tx);
5733 free_p:
5734 kfree(p);
5735 return NULL;
5736 }
5737 EXPORT_SYMBOL(alloc_netdev_mq);
5738
5739 /**
5740 * free_netdev - free network device
5741 * @dev: device
5742 *
5743 * This function does the last stage of destroying an allocated device
5744 * interface. The reference to the device object is released.
5745 * If this is the last reference then it will be freed.
5746 */
5747 void free_netdev(struct net_device *dev)
5748 {
5749 struct napi_struct *p, *n;
5750
5751 release_net(dev_net(dev));
5752
5753 kfree(dev->_tx);
5754
5755 /* Flush device addresses */
5756 dev_addr_flush(dev);
5757
5758 /* Clear ethtool n-tuple list */
5759 ethtool_ntuple_flush(dev);
5760
5761 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5762 netif_napi_del(p);
5763
5764 /* Compatibility with error handling in drivers */
5765 if (dev->reg_state == NETREG_UNINITIALIZED) {
5766 kfree((char *)dev - dev->padded);
5767 return;
5768 }
5769
5770 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5771 dev->reg_state = NETREG_RELEASED;
5772
5773 /* will free via device release */
5774 put_device(&dev->dev);
5775 }
5776 EXPORT_SYMBOL(free_netdev);
5777
5778 /**
5779 * synchronize_net - Synchronize with packet receive processing
5780 *
5781 * Wait for packets currently being received to be done.
5782 * Does not block later packets from starting.
5783 */
5784 void synchronize_net(void)
5785 {
5786 might_sleep();
5787 synchronize_rcu();
5788 }
5789 EXPORT_SYMBOL(synchronize_net);
5790
5791 /**
5792 * unregister_netdevice_queue - remove device from the kernel
5793 * @dev: device
5794 * @head: list
5795 *
5796 * This function shuts down a device interface and removes it
5797 * from the kernel tables.
5798 * If head not NULL, device is queued to be unregistered later.
5799 *
5800 * Callers must hold the rtnl semaphore. You may want
5801 * unregister_netdev() instead of this.
5802 */
5803
5804 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5805 {
5806 ASSERT_RTNL();
5807
5808 if (head) {
5809 list_move_tail(&dev->unreg_list, head);
5810 } else {
5811 rollback_registered(dev);
5812 /* Finish processing unregister after unlock */
5813 net_set_todo(dev);
5814 }
5815 }
5816 EXPORT_SYMBOL(unregister_netdevice_queue);
5817
5818 /**
5819 * unregister_netdevice_many - unregister many devices
5820 * @head: list of devices
5821 */
5822 void unregister_netdevice_many(struct list_head *head)
5823 {
5824 struct net_device *dev;
5825
5826 if (!list_empty(head)) {
5827 rollback_registered_many(head);
5828 list_for_each_entry(dev, head, unreg_list)
5829 net_set_todo(dev);
5830 }
5831 }
5832 EXPORT_SYMBOL(unregister_netdevice_many);
5833
5834 /**
5835 * unregister_netdev - remove device from the kernel
5836 * @dev: device
5837 *
5838 * This function shuts down a device interface and removes it
5839 * from the kernel tables.
5840 *
5841 * This is just a wrapper for unregister_netdevice that takes
5842 * the rtnl semaphore. In general you want to use this and not
5843 * unregister_netdevice.
5844 */
5845 void unregister_netdev(struct net_device *dev)
5846 {
5847 rtnl_lock();
5848 unregister_netdevice(dev);
5849 rtnl_unlock();
5850 }
5851 EXPORT_SYMBOL(unregister_netdev);
5852
5853 /**
5854 * dev_change_net_namespace - move device to different nethost namespace
5855 * @dev: device
5856 * @net: network namespace
5857 * @pat: If not NULL name pattern to try if the current device name
5858 * is already taken in the destination network namespace.
5859 *
5860 * This function shuts down a device interface and moves it
5861 * to a new network namespace. On success 0 is returned, on
5862 * a failure a netagive errno code is returned.
5863 *
5864 * Callers must hold the rtnl semaphore.
5865 */
5866
5867 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5868 {
5869 int err;
5870
5871 ASSERT_RTNL();
5872
5873 /* Don't allow namespace local devices to be moved. */
5874 err = -EINVAL;
5875 if (dev->features & NETIF_F_NETNS_LOCAL)
5876 goto out;
5877
5878 #ifdef CONFIG_SYSFS
5879 /* Don't allow real devices to be moved when sysfs
5880 * is enabled.
5881 */
5882 err = -EINVAL;
5883 if (dev->dev.parent)
5884 goto out;
5885 #endif
5886
5887 /* Ensure the device has been registrered */
5888 err = -EINVAL;
5889 if (dev->reg_state != NETREG_REGISTERED)
5890 goto out;
5891
5892 /* Get out if there is nothing todo */
5893 err = 0;
5894 if (net_eq(dev_net(dev), net))
5895 goto out;
5896
5897 /* Pick the destination device name, and ensure
5898 * we can use it in the destination network namespace.
5899 */
5900 err = -EEXIST;
5901 if (__dev_get_by_name(net, dev->name)) {
5902 /* We get here if we can't use the current device name */
5903 if (!pat)
5904 goto out;
5905 if (dev_get_valid_name(net, pat, dev->name, 1))
5906 goto out;
5907 }
5908
5909 /*
5910 * And now a mini version of register_netdevice unregister_netdevice.
5911 */
5912
5913 /* If device is running close it first. */
5914 dev_close(dev);
5915
5916 /* And unlink it from device chain */
5917 err = -ENODEV;
5918 unlist_netdevice(dev);
5919
5920 synchronize_net();
5921
5922 /* Shutdown queueing discipline. */
5923 dev_shutdown(dev);
5924
5925 /* Notify protocols, that we are about to destroy
5926 this device. They should clean all the things.
5927 */
5928 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5929 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5930
5931 /*
5932 * Flush the unicast and multicast chains
5933 */
5934 dev_unicast_flush(dev);
5935 dev_addr_discard(dev);
5936
5937 netdev_unregister_kobject(dev);
5938
5939 /* Actually switch the network namespace */
5940 dev_net_set(dev, net);
5941
5942 /* If there is an ifindex conflict assign a new one */
5943 if (__dev_get_by_index(net, dev->ifindex)) {
5944 int iflink = (dev->iflink == dev->ifindex);
5945 dev->ifindex = dev_new_index(net);
5946 if (iflink)
5947 dev->iflink = dev->ifindex;
5948 }
5949
5950 /* Fixup kobjects */
5951 err = netdev_register_kobject(dev);
5952 WARN_ON(err);
5953
5954 /* Add the device back in the hashes */
5955 list_netdevice(dev);
5956
5957 /* Notify protocols, that a new device appeared. */
5958 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5959
5960 /*
5961 * Prevent userspace races by waiting until the network
5962 * device is fully setup before sending notifications.
5963 */
5964 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5965
5966 synchronize_net();
5967 err = 0;
5968 out:
5969 return err;
5970 }
5971 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5972
5973 static int dev_cpu_callback(struct notifier_block *nfb,
5974 unsigned long action,
5975 void *ocpu)
5976 {
5977 struct sk_buff **list_skb;
5978 struct Qdisc **list_net;
5979 struct sk_buff *skb;
5980 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5981 struct softnet_data *sd, *oldsd;
5982
5983 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5984 return NOTIFY_OK;
5985
5986 local_irq_disable();
5987 cpu = smp_processor_id();
5988 sd = &per_cpu(softnet_data, cpu);
5989 oldsd = &per_cpu(softnet_data, oldcpu);
5990
5991 /* Find end of our completion_queue. */
5992 list_skb = &sd->completion_queue;
5993 while (*list_skb)
5994 list_skb = &(*list_skb)->next;
5995 /* Append completion queue from offline CPU. */
5996 *list_skb = oldsd->completion_queue;
5997 oldsd->completion_queue = NULL;
5998
5999 /* Find end of our output_queue. */
6000 list_net = &sd->output_queue;
6001 while (*list_net)
6002 list_net = &(*list_net)->next_sched;
6003 /* Append output queue from offline CPU. */
6004 *list_net = oldsd->output_queue;
6005 oldsd->output_queue = NULL;
6006
6007 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6008 local_irq_enable();
6009
6010 /* Process offline CPU's input_pkt_queue */
6011 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
6012 netif_rx(skb);
6013
6014 return NOTIFY_OK;
6015 }
6016
6017
6018 /**
6019 * netdev_increment_features - increment feature set by one
6020 * @all: current feature set
6021 * @one: new feature set
6022 * @mask: mask feature set
6023 *
6024 * Computes a new feature set after adding a device with feature set
6025 * @one to the master device with current feature set @all. Will not
6026 * enable anything that is off in @mask. Returns the new feature set.
6027 */
6028 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6029 unsigned long mask)
6030 {
6031 /* If device needs checksumming, downgrade to it. */
6032 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6033 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6034 else if (mask & NETIF_F_ALL_CSUM) {
6035 /* If one device supports v4/v6 checksumming, set for all. */
6036 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6037 !(all & NETIF_F_GEN_CSUM)) {
6038 all &= ~NETIF_F_ALL_CSUM;
6039 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6040 }
6041
6042 /* If one device supports hw checksumming, set for all. */
6043 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6044 all &= ~NETIF_F_ALL_CSUM;
6045 all |= NETIF_F_HW_CSUM;
6046 }
6047 }
6048
6049 one |= NETIF_F_ALL_CSUM;
6050
6051 one |= all & NETIF_F_ONE_FOR_ALL;
6052 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6053 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6054
6055 return all;
6056 }
6057 EXPORT_SYMBOL(netdev_increment_features);
6058
6059 static struct hlist_head *netdev_create_hash(void)
6060 {
6061 int i;
6062 struct hlist_head *hash;
6063
6064 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6065 if (hash != NULL)
6066 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6067 INIT_HLIST_HEAD(&hash[i]);
6068
6069 return hash;
6070 }
6071
6072 /* Initialize per network namespace state */
6073 static int __net_init netdev_init(struct net *net)
6074 {
6075 INIT_LIST_HEAD(&net->dev_base_head);
6076
6077 net->dev_name_head = netdev_create_hash();
6078 if (net->dev_name_head == NULL)
6079 goto err_name;
6080
6081 net->dev_index_head = netdev_create_hash();
6082 if (net->dev_index_head == NULL)
6083 goto err_idx;
6084
6085 return 0;
6086
6087 err_idx:
6088 kfree(net->dev_name_head);
6089 err_name:
6090 return -ENOMEM;
6091 }
6092
6093 /**
6094 * netdev_drivername - network driver for the device
6095 * @dev: network device
6096 * @buffer: buffer for resulting name
6097 * @len: size of buffer
6098 *
6099 * Determine network driver for device.
6100 */
6101 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6102 {
6103 const struct device_driver *driver;
6104 const struct device *parent;
6105
6106 if (len <= 0 || !buffer)
6107 return buffer;
6108 buffer[0] = 0;
6109
6110 parent = dev->dev.parent;
6111
6112 if (!parent)
6113 return buffer;
6114
6115 driver = parent->driver;
6116 if (driver && driver->name)
6117 strlcpy(buffer, driver->name, len);
6118 return buffer;
6119 }
6120
6121 static void __net_exit netdev_exit(struct net *net)
6122 {
6123 kfree(net->dev_name_head);
6124 kfree(net->dev_index_head);
6125 }
6126
6127 static struct pernet_operations __net_initdata netdev_net_ops = {
6128 .init = netdev_init,
6129 .exit = netdev_exit,
6130 };
6131
6132 static void __net_exit default_device_exit(struct net *net)
6133 {
6134 struct net_device *dev, *aux;
6135 /*
6136 * Push all migratable network devices back to the
6137 * initial network namespace
6138 */
6139 rtnl_lock();
6140 for_each_netdev_safe(net, dev, aux) {
6141 int err;
6142 char fb_name[IFNAMSIZ];
6143
6144 /* Ignore unmoveable devices (i.e. loopback) */
6145 if (dev->features & NETIF_F_NETNS_LOCAL)
6146 continue;
6147
6148 /* Leave virtual devices for the generic cleanup */
6149 if (dev->rtnl_link_ops)
6150 continue;
6151
6152 /* Push remaing network devices to init_net */
6153 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6154 err = dev_change_net_namespace(dev, &init_net, fb_name);
6155 if (err) {
6156 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6157 __func__, dev->name, err);
6158 BUG();
6159 }
6160 }
6161 rtnl_unlock();
6162 }
6163
6164 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6165 {
6166 /* At exit all network devices most be removed from a network
6167 * namespace. Do this in the reverse order of registeration.
6168 * Do this across as many network namespaces as possible to
6169 * improve batching efficiency.
6170 */
6171 struct net_device *dev;
6172 struct net *net;
6173 LIST_HEAD(dev_kill_list);
6174
6175 rtnl_lock();
6176 list_for_each_entry(net, net_list, exit_list) {
6177 for_each_netdev_reverse(net, dev) {
6178 if (dev->rtnl_link_ops)
6179 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6180 else
6181 unregister_netdevice_queue(dev, &dev_kill_list);
6182 }
6183 }
6184 unregister_netdevice_many(&dev_kill_list);
6185 rtnl_unlock();
6186 }
6187
6188 static struct pernet_operations __net_initdata default_device_ops = {
6189 .exit = default_device_exit,
6190 .exit_batch = default_device_exit_batch,
6191 };
6192
6193 /*
6194 * Initialize the DEV module. At boot time this walks the device list and
6195 * unhooks any devices that fail to initialise (normally hardware not
6196 * present) and leaves us with a valid list of present and active devices.
6197 *
6198 */
6199
6200 /*
6201 * This is called single threaded during boot, so no need
6202 * to take the rtnl semaphore.
6203 */
6204 static int __init net_dev_init(void)
6205 {
6206 int i, rc = -ENOMEM;
6207
6208 BUG_ON(!dev_boot_phase);
6209
6210 if (dev_proc_init())
6211 goto out;
6212
6213 if (netdev_kobject_init())
6214 goto out;
6215
6216 INIT_LIST_HEAD(&ptype_all);
6217 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6218 INIT_LIST_HEAD(&ptype_base[i]);
6219
6220 if (register_pernet_subsys(&netdev_net_ops))
6221 goto out;
6222
6223 /*
6224 * Initialise the packet receive queues.
6225 */
6226
6227 for_each_possible_cpu(i) {
6228 struct softnet_data *queue;
6229
6230 queue = &per_cpu(softnet_data, i);
6231 skb_queue_head_init(&queue->input_pkt_queue);
6232 queue->completion_queue = NULL;
6233 INIT_LIST_HEAD(&queue->poll_list);
6234
6235 #ifdef CONFIG_SMP
6236 queue->csd.func = trigger_softirq;
6237 queue->csd.info = queue;
6238 queue->csd.flags = 0;
6239 #endif
6240
6241 queue->backlog.poll = process_backlog;
6242 queue->backlog.weight = weight_p;
6243 queue->backlog.gro_list = NULL;
6244 queue->backlog.gro_count = 0;
6245 }
6246
6247 dev_boot_phase = 0;
6248
6249 /* The loopback device is special if any other network devices
6250 * is present in a network namespace the loopback device must
6251 * be present. Since we now dynamically allocate and free the
6252 * loopback device ensure this invariant is maintained by
6253 * keeping the loopback device as the first device on the
6254 * list of network devices. Ensuring the loopback devices
6255 * is the first device that appears and the last network device
6256 * that disappears.
6257 */
6258 if (register_pernet_device(&loopback_net_ops))
6259 goto out;
6260
6261 if (register_pernet_device(&default_device_ops))
6262 goto out;
6263
6264 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6265 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6266
6267 hotcpu_notifier(dev_cpu_callback, 0);
6268 dst_init();
6269 dev_mcast_init();
6270 rc = 0;
6271 out:
6272 return rc;
6273 }
6274
6275 subsys_initcall(net_dev_init);
6276
6277 static int __init initialize_hashrnd(void)
6278 {
6279 get_random_bytes(&hashrnd, sizeof(hashrnd));
6280 return 0;
6281 }
6282
6283 late_initcall_sync(initialize_hashrnd);
6284
This page took 0.283697 seconds and 6 git commands to generate.