Merge tag 'sh-for-linus' of git://github.com/pmundt/linux-sh
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1062
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1067 }
1068 return 0;
1069 }
1070
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1074
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1077 }
1078
1079
1080 /**
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed features.
1085 */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091
1092 /**
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1095 *
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1099 */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114
1115 /**
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1119 *
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1123 */
1124
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 struct net_device *dev;
1128 int no_module;
1129
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1133
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 name);
1141 }
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 const struct net_device_ops *ops = dev->netdev_ops;
1148 int ret;
1149
1150 ASSERT_RTNL();
1151
1152 if (!netif_device_present(dev))
1153 return -ENODEV;
1154
1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 ret = notifier_to_errno(ret);
1157 if (ret)
1158 return ret;
1159
1160 set_bit(__LINK_STATE_START, &dev->state);
1161
1162 if (ops->ndo_validate_addr)
1163 ret = ops->ndo_validate_addr(dev);
1164
1165 if (!ret && ops->ndo_open)
1166 ret = ops->ndo_open(dev);
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 dev->flags |= IFF_UP;
1172 net_dmaengine_get();
1173 dev_set_rx_mode(dev);
1174 dev_activate(dev);
1175 }
1176
1177 return ret;
1178 }
1179
1180 /**
1181 * dev_open - prepare an interface for use.
1182 * @dev: device to open
1183 *
1184 * Takes a device from down to up state. The device's private open
1185 * function is invoked and then the multicast lists are loaded. Finally
1186 * the device is moved into the up state and a %NETDEV_UP message is
1187 * sent to the netdev notifier chain.
1188 *
1189 * Calling this function on an active interface is a nop. On a failure
1190 * a negative errno code is returned.
1191 */
1192 int dev_open(struct net_device *dev)
1193 {
1194 int ret;
1195
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 ret = __dev_open(dev);
1200 if (ret < 0)
1201 return ret;
1202
1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1204 call_netdevice_notifiers(NETDEV_UP, dev);
1205
1206 return ret;
1207 }
1208 EXPORT_SYMBOL(dev_open);
1209
1210 static int __dev_close_many(struct list_head *head)
1211 {
1212 struct net_device *dev;
1213
1214 ASSERT_RTNL();
1215 might_sleep();
1216
1217 list_for_each_entry(dev, head, unreg_list) {
1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1219
1220 clear_bit(__LINK_STATE_START, &dev->state);
1221
1222 /* Synchronize to scheduled poll. We cannot touch poll list, it
1223 * can be even on different cpu. So just clear netif_running().
1224 *
1225 * dev->stop() will invoke napi_disable() on all of it's
1226 * napi_struct instances on this device.
1227 */
1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1229 }
1230
1231 dev_deactivate_many(head);
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 const struct net_device_ops *ops = dev->netdev_ops;
1235
1236 /*
1237 * Call the device specific close. This cannot fail.
1238 * Only if device is UP
1239 *
1240 * We allow it to be called even after a DETACH hot-plug
1241 * event.
1242 */
1243 if (ops->ndo_stop)
1244 ops->ndo_stop(dev);
1245
1246 dev->flags &= ~IFF_UP;
1247 net_dmaengine_put();
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int __dev_close(struct net_device *dev)
1254 {
1255 int retval;
1256 LIST_HEAD(single);
1257
1258 list_add(&dev->unreg_list, &single);
1259 retval = __dev_close_many(&single);
1260 list_del(&single);
1261 return retval;
1262 }
1263
1264 static int dev_close_many(struct list_head *head)
1265 {
1266 struct net_device *dev, *tmp;
1267 LIST_HEAD(tmp_list);
1268
1269 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1270 if (!(dev->flags & IFF_UP))
1271 list_move(&dev->unreg_list, &tmp_list);
1272
1273 __dev_close_many(head);
1274
1275 list_for_each_entry(dev, head, unreg_list) {
1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1277 call_netdevice_notifiers(NETDEV_DOWN, dev);
1278 }
1279
1280 /* rollback_registered_many needs the complete original list */
1281 list_splice(&tmp_list, head);
1282 return 0;
1283 }
1284
1285 /**
1286 * dev_close - shutdown an interface.
1287 * @dev: device to shutdown
1288 *
1289 * This function moves an active device into down state. A
1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1292 * chain.
1293 */
1294 int dev_close(struct net_device *dev)
1295 {
1296 if (dev->flags & IFF_UP) {
1297 LIST_HEAD(single);
1298
1299 list_add(&dev->unreg_list, &single);
1300 dev_close_many(&single);
1301 list_del(&single);
1302 }
1303 return 0;
1304 }
1305 EXPORT_SYMBOL(dev_close);
1306
1307
1308 /**
1309 * dev_disable_lro - disable Large Receive Offload on a device
1310 * @dev: device
1311 *
1312 * Disable Large Receive Offload (LRO) on a net device. Must be
1313 * called under RTNL. This is needed if received packets may be
1314 * forwarded to another interface.
1315 */
1316 void dev_disable_lro(struct net_device *dev)
1317 {
1318 /*
1319 * If we're trying to disable lro on a vlan device
1320 * use the underlying physical device instead
1321 */
1322 if (is_vlan_dev(dev))
1323 dev = vlan_dev_real_dev(dev);
1324
1325 dev->wanted_features &= ~NETIF_F_LRO;
1326 netdev_update_features(dev);
1327
1328 if (unlikely(dev->features & NETIF_F_LRO))
1329 netdev_WARN(dev, "failed to disable LRO!\n");
1330 }
1331 EXPORT_SYMBOL(dev_disable_lro);
1332
1333
1334 static int dev_boot_phase = 1;
1335
1336 /**
1337 * register_netdevice_notifier - register a network notifier block
1338 * @nb: notifier
1339 *
1340 * Register a notifier to be called when network device events occur.
1341 * The notifier passed is linked into the kernel structures and must
1342 * not be reused until it has been unregistered. A negative errno code
1343 * is returned on a failure.
1344 *
1345 * When registered all registration and up events are replayed
1346 * to the new notifier to allow device to have a race free
1347 * view of the network device list.
1348 */
1349
1350 int register_netdevice_notifier(struct notifier_block *nb)
1351 {
1352 struct net_device *dev;
1353 struct net_device *last;
1354 struct net *net;
1355 int err;
1356
1357 rtnl_lock();
1358 err = raw_notifier_chain_register(&netdev_chain, nb);
1359 if (err)
1360 goto unlock;
1361 if (dev_boot_phase)
1362 goto unlock;
1363 for_each_net(net) {
1364 for_each_netdev(net, dev) {
1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1366 err = notifier_to_errno(err);
1367 if (err)
1368 goto rollback;
1369
1370 if (!(dev->flags & IFF_UP))
1371 continue;
1372
1373 nb->notifier_call(nb, NETDEV_UP, dev);
1374 }
1375 }
1376
1377 unlock:
1378 rtnl_unlock();
1379 return err;
1380
1381 rollback:
1382 last = dev;
1383 for_each_net(net) {
1384 for_each_netdev(net, dev) {
1385 if (dev == last)
1386 goto outroll;
1387
1388 if (dev->flags & IFF_UP) {
1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1390 nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 }
1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 }
1395 }
1396
1397 outroll:
1398 raw_notifier_chain_unregister(&netdev_chain, nb);
1399 goto unlock;
1400 }
1401 EXPORT_SYMBOL(register_netdevice_notifier);
1402
1403 /**
1404 * unregister_netdevice_notifier - unregister a network notifier block
1405 * @nb: notifier
1406 *
1407 * Unregister a notifier previously registered by
1408 * register_netdevice_notifier(). The notifier is unlinked into the
1409 * kernel structures and may then be reused. A negative errno code
1410 * is returned on a failure.
1411 *
1412 * After unregistering unregister and down device events are synthesized
1413 * for all devices on the device list to the removed notifier to remove
1414 * the need for special case cleanup code.
1415 */
1416
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 struct net_device *dev;
1420 struct net *net;
1421 int err;
1422
1423 rtnl_lock();
1424 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1425 if (err)
1426 goto unlock;
1427
1428 for_each_net(net) {
1429 for_each_netdev(net, dev) {
1430 if (dev->flags & IFF_UP) {
1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1432 nb->notifier_call(nb, NETDEV_DOWN, dev);
1433 }
1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1436 }
1437 }
1438 unlock:
1439 rtnl_unlock();
1440 return err;
1441 }
1442 EXPORT_SYMBOL(unregister_netdevice_notifier);
1443
1444 /**
1445 * call_netdevice_notifiers - call all network notifier blocks
1446 * @val: value passed unmodified to notifier function
1447 * @dev: net_device pointer passed unmodified to notifier function
1448 *
1449 * Call all network notifier blocks. Parameters and return value
1450 * are as for raw_notifier_call_chain().
1451 */
1452
1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1454 {
1455 ASSERT_RTNL();
1456 return raw_notifier_call_chain(&netdev_chain, val, dev);
1457 }
1458 EXPORT_SYMBOL(call_netdevice_notifiers);
1459
1460 static struct static_key netstamp_needed __read_mostly;
1461 #ifdef HAVE_JUMP_LABEL
1462 /* We are not allowed to call static_key_slow_dec() from irq context
1463 * If net_disable_timestamp() is called from irq context, defer the
1464 * static_key_slow_dec() calls.
1465 */
1466 static atomic_t netstamp_needed_deferred;
1467 #endif
1468
1469 void net_enable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1473
1474 if (deferred) {
1475 while (--deferred)
1476 static_key_slow_dec(&netstamp_needed);
1477 return;
1478 }
1479 #endif
1480 WARN_ON(in_interrupt());
1481 static_key_slow_inc(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_enable_timestamp);
1484
1485 void net_disable_timestamp(void)
1486 {
1487 #ifdef HAVE_JUMP_LABEL
1488 if (in_interrupt()) {
1489 atomic_inc(&netstamp_needed_deferred);
1490 return;
1491 }
1492 #endif
1493 static_key_slow_dec(&netstamp_needed);
1494 }
1495 EXPORT_SYMBOL(net_disable_timestamp);
1496
1497 static inline void net_timestamp_set(struct sk_buff *skb)
1498 {
1499 skb->tstamp.tv64 = 0;
1500 if (static_key_false(&netstamp_needed))
1501 __net_timestamp(skb);
1502 }
1503
1504 #define net_timestamp_check(COND, SKB) \
1505 if (static_key_false(&netstamp_needed)) { \
1506 if ((COND) && !(SKB)->tstamp.tv64) \
1507 __net_timestamp(SKB); \
1508 } \
1509
1510 static int net_hwtstamp_validate(struct ifreq *ifr)
1511 {
1512 struct hwtstamp_config cfg;
1513 enum hwtstamp_tx_types tx_type;
1514 enum hwtstamp_rx_filters rx_filter;
1515 int tx_type_valid = 0;
1516 int rx_filter_valid = 0;
1517
1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1519 return -EFAULT;
1520
1521 if (cfg.flags) /* reserved for future extensions */
1522 return -EINVAL;
1523
1524 tx_type = cfg.tx_type;
1525 rx_filter = cfg.rx_filter;
1526
1527 switch (tx_type) {
1528 case HWTSTAMP_TX_OFF:
1529 case HWTSTAMP_TX_ON:
1530 case HWTSTAMP_TX_ONESTEP_SYNC:
1531 tx_type_valid = 1;
1532 break;
1533 }
1534
1535 switch (rx_filter) {
1536 case HWTSTAMP_FILTER_NONE:
1537 case HWTSTAMP_FILTER_ALL:
1538 case HWTSTAMP_FILTER_SOME:
1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1548 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1549 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1551 rx_filter_valid = 1;
1552 break;
1553 }
1554
1555 if (!tx_type_valid || !rx_filter_valid)
1556 return -ERANGE;
1557
1558 return 0;
1559 }
1560
1561 static inline bool is_skb_forwardable(struct net_device *dev,
1562 struct sk_buff *skb)
1563 {
1564 unsigned int len;
1565
1566 if (!(dev->flags & IFF_UP))
1567 return false;
1568
1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1570 if (skb->len <= len)
1571 return true;
1572
1573 /* if TSO is enabled, we don't care about the length as the packet
1574 * could be forwarded without being segmented before
1575 */
1576 if (skb_is_gso(skb))
1577 return true;
1578
1579 return false;
1580 }
1581
1582 /**
1583 * dev_forward_skb - loopback an skb to another netif
1584 *
1585 * @dev: destination network device
1586 * @skb: buffer to forward
1587 *
1588 * return values:
1589 * NET_RX_SUCCESS (no congestion)
1590 * NET_RX_DROP (packet was dropped, but freed)
1591 *
1592 * dev_forward_skb can be used for injecting an skb from the
1593 * start_xmit function of one device into the receive queue
1594 * of another device.
1595 *
1596 * The receiving device may be in another namespace, so
1597 * we have to clear all information in the skb that could
1598 * impact namespace isolation.
1599 */
1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1604 atomic_long_inc(&dev->rx_dropped);
1605 kfree_skb(skb);
1606 return NET_RX_DROP;
1607 }
1608 }
1609
1610 skb_orphan(skb);
1611 nf_reset(skb);
1612
1613 if (unlikely(!is_skb_forwardable(dev, skb))) {
1614 atomic_long_inc(&dev->rx_dropped);
1615 kfree_skb(skb);
1616 return NET_RX_DROP;
1617 }
1618 skb->skb_iif = 0;
1619 skb->dev = dev;
1620 skb_dst_drop(skb);
1621 skb->tstamp.tv64 = 0;
1622 skb->pkt_type = PACKET_HOST;
1623 skb->protocol = eth_type_trans(skb, dev);
1624 skb->mark = 0;
1625 secpath_reset(skb);
1626 nf_reset(skb);
1627 return netif_rx(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630
1631 static inline int deliver_skb(struct sk_buff *skb,
1632 struct packet_type *pt_prev,
1633 struct net_device *orig_dev)
1634 {
1635 atomic_inc(&skb->users);
1636 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1637 }
1638
1639 /*
1640 * Support routine. Sends outgoing frames to any network
1641 * taps currently in use.
1642 */
1643
1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1645 {
1646 struct packet_type *ptype;
1647 struct sk_buff *skb2 = NULL;
1648 struct packet_type *pt_prev = NULL;
1649
1650 rcu_read_lock();
1651 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1652 /* Never send packets back to the socket
1653 * they originated from - MvS (miquels@drinkel.ow.org)
1654 */
1655 if ((ptype->dev == dev || !ptype->dev) &&
1656 (ptype->af_packet_priv == NULL ||
1657 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1658 if (pt_prev) {
1659 deliver_skb(skb2, pt_prev, skb->dev);
1660 pt_prev = ptype;
1661 continue;
1662 }
1663
1664 skb2 = skb_clone(skb, GFP_ATOMIC);
1665 if (!skb2)
1666 break;
1667
1668 net_timestamp_set(skb2);
1669
1670 /* skb->nh should be correctly
1671 set by sender, so that the second statement is
1672 just protection against buggy protocols.
1673 */
1674 skb_reset_mac_header(skb2);
1675
1676 if (skb_network_header(skb2) < skb2->data ||
1677 skb2->network_header > skb2->tail) {
1678 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1679 ntohs(skb2->protocol),
1680 dev->name);
1681 skb_reset_network_header(skb2);
1682 }
1683
1684 skb2->transport_header = skb2->network_header;
1685 skb2->pkt_type = PACKET_OUTGOING;
1686 pt_prev = ptype;
1687 }
1688 }
1689 if (pt_prev)
1690 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1691 rcu_read_unlock();
1692 }
1693
1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1695 * @dev: Network device
1696 * @txq: number of queues available
1697 *
1698 * If real_num_tx_queues is changed the tc mappings may no longer be
1699 * valid. To resolve this verify the tc mapping remains valid and if
1700 * not NULL the mapping. With no priorities mapping to this
1701 * offset/count pair it will no longer be used. In the worst case TC0
1702 * is invalid nothing can be done so disable priority mappings. If is
1703 * expected that drivers will fix this mapping if they can before
1704 * calling netif_set_real_num_tx_queues.
1705 */
1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1707 {
1708 int i;
1709 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1710
1711 /* If TC0 is invalidated disable TC mapping */
1712 if (tc->offset + tc->count > txq) {
1713 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1714 dev->num_tc = 0;
1715 return;
1716 }
1717
1718 /* Invalidated prio to tc mappings set to TC0 */
1719 for (i = 1; i < TC_BITMASK + 1; i++) {
1720 int q = netdev_get_prio_tc_map(dev, i);
1721
1722 tc = &dev->tc_to_txq[q];
1723 if (tc->offset + tc->count > txq) {
1724 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1725 i, q);
1726 netdev_set_prio_tc_map(dev, i, 0);
1727 }
1728 }
1729 }
1730
1731 /*
1732 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1733 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1734 */
1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1736 {
1737 int rc;
1738
1739 if (txq < 1 || txq > dev->num_tx_queues)
1740 return -EINVAL;
1741
1742 if (dev->reg_state == NETREG_REGISTERED ||
1743 dev->reg_state == NETREG_UNREGISTERING) {
1744 ASSERT_RTNL();
1745
1746 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1747 txq);
1748 if (rc)
1749 return rc;
1750
1751 if (dev->num_tc)
1752 netif_setup_tc(dev, txq);
1753
1754 if (txq < dev->real_num_tx_queues)
1755 qdisc_reset_all_tx_gt(dev, txq);
1756 }
1757
1758 dev->real_num_tx_queues = txq;
1759 return 0;
1760 }
1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1762
1763 #ifdef CONFIG_RPS
1764 /**
1765 * netif_set_real_num_rx_queues - set actual number of RX queues used
1766 * @dev: Network device
1767 * @rxq: Actual number of RX queues
1768 *
1769 * This must be called either with the rtnl_lock held or before
1770 * registration of the net device. Returns 0 on success, or a
1771 * negative error code. If called before registration, it always
1772 * succeeds.
1773 */
1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1775 {
1776 int rc;
1777
1778 if (rxq < 1 || rxq > dev->num_rx_queues)
1779 return -EINVAL;
1780
1781 if (dev->reg_state == NETREG_REGISTERED) {
1782 ASSERT_RTNL();
1783
1784 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1785 rxq);
1786 if (rc)
1787 return rc;
1788 }
1789
1790 dev->real_num_rx_queues = rxq;
1791 return 0;
1792 }
1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1794 #endif
1795
1796 static inline void __netif_reschedule(struct Qdisc *q)
1797 {
1798 struct softnet_data *sd;
1799 unsigned long flags;
1800
1801 local_irq_save(flags);
1802 sd = &__get_cpu_var(softnet_data);
1803 q->next_sched = NULL;
1804 *sd->output_queue_tailp = q;
1805 sd->output_queue_tailp = &q->next_sched;
1806 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1807 local_irq_restore(flags);
1808 }
1809
1810 void __netif_schedule(struct Qdisc *q)
1811 {
1812 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1813 __netif_reschedule(q);
1814 }
1815 EXPORT_SYMBOL(__netif_schedule);
1816
1817 void dev_kfree_skb_irq(struct sk_buff *skb)
1818 {
1819 if (atomic_dec_and_test(&skb->users)) {
1820 struct softnet_data *sd;
1821 unsigned long flags;
1822
1823 local_irq_save(flags);
1824 sd = &__get_cpu_var(softnet_data);
1825 skb->next = sd->completion_queue;
1826 sd->completion_queue = skb;
1827 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1828 local_irq_restore(flags);
1829 }
1830 }
1831 EXPORT_SYMBOL(dev_kfree_skb_irq);
1832
1833 void dev_kfree_skb_any(struct sk_buff *skb)
1834 {
1835 if (in_irq() || irqs_disabled())
1836 dev_kfree_skb_irq(skb);
1837 else
1838 dev_kfree_skb(skb);
1839 }
1840 EXPORT_SYMBOL(dev_kfree_skb_any);
1841
1842
1843 /**
1844 * netif_device_detach - mark device as removed
1845 * @dev: network device
1846 *
1847 * Mark device as removed from system and therefore no longer available.
1848 */
1849 void netif_device_detach(struct net_device *dev)
1850 {
1851 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1852 netif_running(dev)) {
1853 netif_tx_stop_all_queues(dev);
1854 }
1855 }
1856 EXPORT_SYMBOL(netif_device_detach);
1857
1858 /**
1859 * netif_device_attach - mark device as attached
1860 * @dev: network device
1861 *
1862 * Mark device as attached from system and restart if needed.
1863 */
1864 void netif_device_attach(struct net_device *dev)
1865 {
1866 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1867 netif_running(dev)) {
1868 netif_tx_wake_all_queues(dev);
1869 __netdev_watchdog_up(dev);
1870 }
1871 }
1872 EXPORT_SYMBOL(netif_device_attach);
1873
1874 static void skb_warn_bad_offload(const struct sk_buff *skb)
1875 {
1876 static const netdev_features_t null_features = 0;
1877 struct net_device *dev = skb->dev;
1878 const char *driver = "";
1879
1880 if (dev && dev->dev.parent)
1881 driver = dev_driver_string(dev->dev.parent);
1882
1883 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1884 "gso_type=%d ip_summed=%d\n",
1885 driver, dev ? &dev->features : &null_features,
1886 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1887 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1888 skb_shinfo(skb)->gso_type, skb->ip_summed);
1889 }
1890
1891 /*
1892 * Invalidate hardware checksum when packet is to be mangled, and
1893 * complete checksum manually on outgoing path.
1894 */
1895 int skb_checksum_help(struct sk_buff *skb)
1896 {
1897 __wsum csum;
1898 int ret = 0, offset;
1899
1900 if (skb->ip_summed == CHECKSUM_COMPLETE)
1901 goto out_set_summed;
1902
1903 if (unlikely(skb_shinfo(skb)->gso_size)) {
1904 skb_warn_bad_offload(skb);
1905 return -EINVAL;
1906 }
1907
1908 offset = skb_checksum_start_offset(skb);
1909 BUG_ON(offset >= skb_headlen(skb));
1910 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1911
1912 offset += skb->csum_offset;
1913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1914
1915 if (skb_cloned(skb) &&
1916 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1918 if (ret)
1919 goto out;
1920 }
1921
1922 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1923 out_set_summed:
1924 skb->ip_summed = CHECKSUM_NONE;
1925 out:
1926 return ret;
1927 }
1928 EXPORT_SYMBOL(skb_checksum_help);
1929
1930 /**
1931 * skb_gso_segment - Perform segmentation on skb.
1932 * @skb: buffer to segment
1933 * @features: features for the output path (see dev->features)
1934 *
1935 * This function segments the given skb and returns a list of segments.
1936 *
1937 * It may return NULL if the skb requires no segmentation. This is
1938 * only possible when GSO is used for verifying header integrity.
1939 */
1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1941 netdev_features_t features)
1942 {
1943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1944 struct packet_type *ptype;
1945 __be16 type = skb->protocol;
1946 int vlan_depth = ETH_HLEN;
1947 int err;
1948
1949 while (type == htons(ETH_P_8021Q)) {
1950 struct vlan_hdr *vh;
1951
1952 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1953 return ERR_PTR(-EINVAL);
1954
1955 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1956 type = vh->h_vlan_encapsulated_proto;
1957 vlan_depth += VLAN_HLEN;
1958 }
1959
1960 skb_reset_mac_header(skb);
1961 skb->mac_len = skb->network_header - skb->mac_header;
1962 __skb_pull(skb, skb->mac_len);
1963
1964 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1965 skb_warn_bad_offload(skb);
1966
1967 if (skb_header_cloned(skb) &&
1968 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1969 return ERR_PTR(err);
1970 }
1971
1972 rcu_read_lock();
1973 list_for_each_entry_rcu(ptype,
1974 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1975 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1976 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1977 err = ptype->gso_send_check(skb);
1978 segs = ERR_PTR(err);
1979 if (err || skb_gso_ok(skb, features))
1980 break;
1981 __skb_push(skb, (skb->data -
1982 skb_network_header(skb)));
1983 }
1984 segs = ptype->gso_segment(skb, features);
1985 break;
1986 }
1987 }
1988 rcu_read_unlock();
1989
1990 __skb_push(skb, skb->data - skb_mac_header(skb));
1991
1992 return segs;
1993 }
1994 EXPORT_SYMBOL(skb_gso_segment);
1995
1996 /* Take action when hardware reception checksum errors are detected. */
1997 #ifdef CONFIG_BUG
1998 void netdev_rx_csum_fault(struct net_device *dev)
1999 {
2000 if (net_ratelimit()) {
2001 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2002 dump_stack();
2003 }
2004 }
2005 EXPORT_SYMBOL(netdev_rx_csum_fault);
2006 #endif
2007
2008 /* Actually, we should eliminate this check as soon as we know, that:
2009 * 1. IOMMU is present and allows to map all the memory.
2010 * 2. No high memory really exists on this machine.
2011 */
2012
2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2014 {
2015 #ifdef CONFIG_HIGHMEM
2016 int i;
2017 if (!(dev->features & NETIF_F_HIGHDMA)) {
2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2019 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2020 if (PageHighMem(skb_frag_page(frag)))
2021 return 1;
2022 }
2023 }
2024
2025 if (PCI_DMA_BUS_IS_PHYS) {
2026 struct device *pdev = dev->dev.parent;
2027
2028 if (!pdev)
2029 return 0;
2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2033 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2034 return 1;
2035 }
2036 }
2037 #endif
2038 return 0;
2039 }
2040
2041 struct dev_gso_cb {
2042 void (*destructor)(struct sk_buff *skb);
2043 };
2044
2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2046
2047 static void dev_gso_skb_destructor(struct sk_buff *skb)
2048 {
2049 struct dev_gso_cb *cb;
2050
2051 do {
2052 struct sk_buff *nskb = skb->next;
2053
2054 skb->next = nskb->next;
2055 nskb->next = NULL;
2056 kfree_skb(nskb);
2057 } while (skb->next);
2058
2059 cb = DEV_GSO_CB(skb);
2060 if (cb->destructor)
2061 cb->destructor(skb);
2062 }
2063
2064 /**
2065 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2066 * @skb: buffer to segment
2067 * @features: device features as applicable to this skb
2068 *
2069 * This function segments the given skb and stores the list of segments
2070 * in skb->next.
2071 */
2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2073 {
2074 struct sk_buff *segs;
2075
2076 segs = skb_gso_segment(skb, features);
2077
2078 /* Verifying header integrity only. */
2079 if (!segs)
2080 return 0;
2081
2082 if (IS_ERR(segs))
2083 return PTR_ERR(segs);
2084
2085 skb->next = segs;
2086 DEV_GSO_CB(skb)->destructor = skb->destructor;
2087 skb->destructor = dev_gso_skb_destructor;
2088
2089 return 0;
2090 }
2091
2092 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2093 {
2094 return ((features & NETIF_F_GEN_CSUM) ||
2095 ((features & NETIF_F_V4_CSUM) &&
2096 protocol == htons(ETH_P_IP)) ||
2097 ((features & NETIF_F_V6_CSUM) &&
2098 protocol == htons(ETH_P_IPV6)) ||
2099 ((features & NETIF_F_FCOE_CRC) &&
2100 protocol == htons(ETH_P_FCOE)));
2101 }
2102
2103 static netdev_features_t harmonize_features(struct sk_buff *skb,
2104 __be16 protocol, netdev_features_t features)
2105 {
2106 if (!can_checksum_protocol(features, protocol)) {
2107 features &= ~NETIF_F_ALL_CSUM;
2108 features &= ~NETIF_F_SG;
2109 } else if (illegal_highdma(skb->dev, skb)) {
2110 features &= ~NETIF_F_SG;
2111 }
2112
2113 return features;
2114 }
2115
2116 netdev_features_t netif_skb_features(struct sk_buff *skb)
2117 {
2118 __be16 protocol = skb->protocol;
2119 netdev_features_t features = skb->dev->features;
2120
2121 if (protocol == htons(ETH_P_8021Q)) {
2122 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2123 protocol = veh->h_vlan_encapsulated_proto;
2124 } else if (!vlan_tx_tag_present(skb)) {
2125 return harmonize_features(skb, protocol, features);
2126 }
2127
2128 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2129
2130 if (protocol != htons(ETH_P_8021Q)) {
2131 return harmonize_features(skb, protocol, features);
2132 } else {
2133 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2134 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2135 return harmonize_features(skb, protocol, features);
2136 }
2137 }
2138 EXPORT_SYMBOL(netif_skb_features);
2139
2140 /*
2141 * Returns true if either:
2142 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2143 * 2. skb is fragmented and the device does not support SG, or if
2144 * at least one of fragments is in highmem and device does not
2145 * support DMA from it.
2146 */
2147 static inline int skb_needs_linearize(struct sk_buff *skb,
2148 int features)
2149 {
2150 return skb_is_nonlinear(skb) &&
2151 ((skb_has_frag_list(skb) &&
2152 !(features & NETIF_F_FRAGLIST)) ||
2153 (skb_shinfo(skb)->nr_frags &&
2154 !(features & NETIF_F_SG)));
2155 }
2156
2157 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2158 struct netdev_queue *txq)
2159 {
2160 const struct net_device_ops *ops = dev->netdev_ops;
2161 int rc = NETDEV_TX_OK;
2162 unsigned int skb_len;
2163
2164 if (likely(!skb->next)) {
2165 netdev_features_t features;
2166
2167 /*
2168 * If device doesn't need skb->dst, release it right now while
2169 * its hot in this cpu cache
2170 */
2171 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2172 skb_dst_drop(skb);
2173
2174 if (!list_empty(&ptype_all))
2175 dev_queue_xmit_nit(skb, dev);
2176
2177 features = netif_skb_features(skb);
2178
2179 if (vlan_tx_tag_present(skb) &&
2180 !(features & NETIF_F_HW_VLAN_TX)) {
2181 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2182 if (unlikely(!skb))
2183 goto out;
2184
2185 skb->vlan_tci = 0;
2186 }
2187
2188 if (netif_needs_gso(skb, features)) {
2189 if (unlikely(dev_gso_segment(skb, features)))
2190 goto out_kfree_skb;
2191 if (skb->next)
2192 goto gso;
2193 } else {
2194 if (skb_needs_linearize(skb, features) &&
2195 __skb_linearize(skb))
2196 goto out_kfree_skb;
2197
2198 /* If packet is not checksummed and device does not
2199 * support checksumming for this protocol, complete
2200 * checksumming here.
2201 */
2202 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2203 skb_set_transport_header(skb,
2204 skb_checksum_start_offset(skb));
2205 if (!(features & NETIF_F_ALL_CSUM) &&
2206 skb_checksum_help(skb))
2207 goto out_kfree_skb;
2208 }
2209 }
2210
2211 skb_len = skb->len;
2212 rc = ops->ndo_start_xmit(skb, dev);
2213 trace_net_dev_xmit(skb, rc, dev, skb_len);
2214 if (rc == NETDEV_TX_OK)
2215 txq_trans_update(txq);
2216 return rc;
2217 }
2218
2219 gso:
2220 do {
2221 struct sk_buff *nskb = skb->next;
2222
2223 skb->next = nskb->next;
2224 nskb->next = NULL;
2225
2226 /*
2227 * If device doesn't need nskb->dst, release it right now while
2228 * its hot in this cpu cache
2229 */
2230 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2231 skb_dst_drop(nskb);
2232
2233 skb_len = nskb->len;
2234 rc = ops->ndo_start_xmit(nskb, dev);
2235 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2236 if (unlikely(rc != NETDEV_TX_OK)) {
2237 if (rc & ~NETDEV_TX_MASK)
2238 goto out_kfree_gso_skb;
2239 nskb->next = skb->next;
2240 skb->next = nskb;
2241 return rc;
2242 }
2243 txq_trans_update(txq);
2244 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2245 return NETDEV_TX_BUSY;
2246 } while (skb->next);
2247
2248 out_kfree_gso_skb:
2249 if (likely(skb->next == NULL))
2250 skb->destructor = DEV_GSO_CB(skb)->destructor;
2251 out_kfree_skb:
2252 kfree_skb(skb);
2253 out:
2254 return rc;
2255 }
2256
2257 static u32 hashrnd __read_mostly;
2258
2259 /*
2260 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2261 * to be used as a distribution range.
2262 */
2263 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2264 unsigned int num_tx_queues)
2265 {
2266 u32 hash;
2267 u16 qoffset = 0;
2268 u16 qcount = num_tx_queues;
2269
2270 if (skb_rx_queue_recorded(skb)) {
2271 hash = skb_get_rx_queue(skb);
2272 while (unlikely(hash >= num_tx_queues))
2273 hash -= num_tx_queues;
2274 return hash;
2275 }
2276
2277 if (dev->num_tc) {
2278 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2279 qoffset = dev->tc_to_txq[tc].offset;
2280 qcount = dev->tc_to_txq[tc].count;
2281 }
2282
2283 if (skb->sk && skb->sk->sk_hash)
2284 hash = skb->sk->sk_hash;
2285 else
2286 hash = (__force u16) skb->protocol;
2287 hash = jhash_1word(hash, hashrnd);
2288
2289 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2290 }
2291 EXPORT_SYMBOL(__skb_tx_hash);
2292
2293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2294 {
2295 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2296 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2297 dev->name, queue_index,
2298 dev->real_num_tx_queues);
2299 return 0;
2300 }
2301 return queue_index;
2302 }
2303
2304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2305 {
2306 #ifdef CONFIG_XPS
2307 struct xps_dev_maps *dev_maps;
2308 struct xps_map *map;
2309 int queue_index = -1;
2310
2311 rcu_read_lock();
2312 dev_maps = rcu_dereference(dev->xps_maps);
2313 if (dev_maps) {
2314 map = rcu_dereference(
2315 dev_maps->cpu_map[raw_smp_processor_id()]);
2316 if (map) {
2317 if (map->len == 1)
2318 queue_index = map->queues[0];
2319 else {
2320 u32 hash;
2321 if (skb->sk && skb->sk->sk_hash)
2322 hash = skb->sk->sk_hash;
2323 else
2324 hash = (__force u16) skb->protocol ^
2325 skb->rxhash;
2326 hash = jhash_1word(hash, hashrnd);
2327 queue_index = map->queues[
2328 ((u64)hash * map->len) >> 32];
2329 }
2330 if (unlikely(queue_index >= dev->real_num_tx_queues))
2331 queue_index = -1;
2332 }
2333 }
2334 rcu_read_unlock();
2335
2336 return queue_index;
2337 #else
2338 return -1;
2339 #endif
2340 }
2341
2342 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2343 struct sk_buff *skb)
2344 {
2345 int queue_index;
2346 const struct net_device_ops *ops = dev->netdev_ops;
2347
2348 if (dev->real_num_tx_queues == 1)
2349 queue_index = 0;
2350 else if (ops->ndo_select_queue) {
2351 queue_index = ops->ndo_select_queue(dev, skb);
2352 queue_index = dev_cap_txqueue(dev, queue_index);
2353 } else {
2354 struct sock *sk = skb->sk;
2355 queue_index = sk_tx_queue_get(sk);
2356
2357 if (queue_index < 0 || skb->ooo_okay ||
2358 queue_index >= dev->real_num_tx_queues) {
2359 int old_index = queue_index;
2360
2361 queue_index = get_xps_queue(dev, skb);
2362 if (queue_index < 0)
2363 queue_index = skb_tx_hash(dev, skb);
2364
2365 if (queue_index != old_index && sk) {
2366 struct dst_entry *dst =
2367 rcu_dereference_check(sk->sk_dst_cache, 1);
2368
2369 if (dst && skb_dst(skb) == dst)
2370 sk_tx_queue_set(sk, queue_index);
2371 }
2372 }
2373 }
2374
2375 skb_set_queue_mapping(skb, queue_index);
2376 return netdev_get_tx_queue(dev, queue_index);
2377 }
2378
2379 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2380 struct net_device *dev,
2381 struct netdev_queue *txq)
2382 {
2383 spinlock_t *root_lock = qdisc_lock(q);
2384 bool contended;
2385 int rc;
2386
2387 qdisc_skb_cb(skb)->pkt_len = skb->len;
2388 qdisc_calculate_pkt_len(skb, q);
2389 /*
2390 * Heuristic to force contended enqueues to serialize on a
2391 * separate lock before trying to get qdisc main lock.
2392 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2393 * and dequeue packets faster.
2394 */
2395 contended = qdisc_is_running(q);
2396 if (unlikely(contended))
2397 spin_lock(&q->busylock);
2398
2399 spin_lock(root_lock);
2400 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2401 kfree_skb(skb);
2402 rc = NET_XMIT_DROP;
2403 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2404 qdisc_run_begin(q)) {
2405 /*
2406 * This is a work-conserving queue; there are no old skbs
2407 * waiting to be sent out; and the qdisc is not running -
2408 * xmit the skb directly.
2409 */
2410 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2411 skb_dst_force(skb);
2412
2413 qdisc_bstats_update(q, skb);
2414
2415 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2416 if (unlikely(contended)) {
2417 spin_unlock(&q->busylock);
2418 contended = false;
2419 }
2420 __qdisc_run(q);
2421 } else
2422 qdisc_run_end(q);
2423
2424 rc = NET_XMIT_SUCCESS;
2425 } else {
2426 skb_dst_force(skb);
2427 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2428 if (qdisc_run_begin(q)) {
2429 if (unlikely(contended)) {
2430 spin_unlock(&q->busylock);
2431 contended = false;
2432 }
2433 __qdisc_run(q);
2434 }
2435 }
2436 spin_unlock(root_lock);
2437 if (unlikely(contended))
2438 spin_unlock(&q->busylock);
2439 return rc;
2440 }
2441
2442 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2443 static void skb_update_prio(struct sk_buff *skb)
2444 {
2445 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2446
2447 if (!skb->priority && skb->sk && map) {
2448 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2449
2450 if (prioidx < map->priomap_len)
2451 skb->priority = map->priomap[prioidx];
2452 }
2453 }
2454 #else
2455 #define skb_update_prio(skb)
2456 #endif
2457
2458 static DEFINE_PER_CPU(int, xmit_recursion);
2459 #define RECURSION_LIMIT 10
2460
2461 /**
2462 * dev_queue_xmit - transmit a buffer
2463 * @skb: buffer to transmit
2464 *
2465 * Queue a buffer for transmission to a network device. The caller must
2466 * have set the device and priority and built the buffer before calling
2467 * this function. The function can be called from an interrupt.
2468 *
2469 * A negative errno code is returned on a failure. A success does not
2470 * guarantee the frame will be transmitted as it may be dropped due
2471 * to congestion or traffic shaping.
2472 *
2473 * -----------------------------------------------------------------------------------
2474 * I notice this method can also return errors from the queue disciplines,
2475 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2476 * be positive.
2477 *
2478 * Regardless of the return value, the skb is consumed, so it is currently
2479 * difficult to retry a send to this method. (You can bump the ref count
2480 * before sending to hold a reference for retry if you are careful.)
2481 *
2482 * When calling this method, interrupts MUST be enabled. This is because
2483 * the BH enable code must have IRQs enabled so that it will not deadlock.
2484 * --BLG
2485 */
2486 int dev_queue_xmit(struct sk_buff *skb)
2487 {
2488 struct net_device *dev = skb->dev;
2489 struct netdev_queue *txq;
2490 struct Qdisc *q;
2491 int rc = -ENOMEM;
2492
2493 /* Disable soft irqs for various locks below. Also
2494 * stops preemption for RCU.
2495 */
2496 rcu_read_lock_bh();
2497
2498 skb_update_prio(skb);
2499
2500 txq = dev_pick_tx(dev, skb);
2501 q = rcu_dereference_bh(txq->qdisc);
2502
2503 #ifdef CONFIG_NET_CLS_ACT
2504 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2505 #endif
2506 trace_net_dev_queue(skb);
2507 if (q->enqueue) {
2508 rc = __dev_xmit_skb(skb, q, dev, txq);
2509 goto out;
2510 }
2511
2512 /* The device has no queue. Common case for software devices:
2513 loopback, all the sorts of tunnels...
2514
2515 Really, it is unlikely that netif_tx_lock protection is necessary
2516 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2517 counters.)
2518 However, it is possible, that they rely on protection
2519 made by us here.
2520
2521 Check this and shot the lock. It is not prone from deadlocks.
2522 Either shot noqueue qdisc, it is even simpler 8)
2523 */
2524 if (dev->flags & IFF_UP) {
2525 int cpu = smp_processor_id(); /* ok because BHs are off */
2526
2527 if (txq->xmit_lock_owner != cpu) {
2528
2529 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2530 goto recursion_alert;
2531
2532 HARD_TX_LOCK(dev, txq, cpu);
2533
2534 if (!netif_xmit_stopped(txq)) {
2535 __this_cpu_inc(xmit_recursion);
2536 rc = dev_hard_start_xmit(skb, dev, txq);
2537 __this_cpu_dec(xmit_recursion);
2538 if (dev_xmit_complete(rc)) {
2539 HARD_TX_UNLOCK(dev, txq);
2540 goto out;
2541 }
2542 }
2543 HARD_TX_UNLOCK(dev, txq);
2544 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2545 dev->name);
2546 } else {
2547 /* Recursion is detected! It is possible,
2548 * unfortunately
2549 */
2550 recursion_alert:
2551 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2552 dev->name);
2553 }
2554 }
2555
2556 rc = -ENETDOWN;
2557 rcu_read_unlock_bh();
2558
2559 kfree_skb(skb);
2560 return rc;
2561 out:
2562 rcu_read_unlock_bh();
2563 return rc;
2564 }
2565 EXPORT_SYMBOL(dev_queue_xmit);
2566
2567
2568 /*=======================================================================
2569 Receiver routines
2570 =======================================================================*/
2571
2572 int netdev_max_backlog __read_mostly = 1000;
2573 int netdev_tstamp_prequeue __read_mostly = 1;
2574 int netdev_budget __read_mostly = 300;
2575 int weight_p __read_mostly = 64; /* old backlog weight */
2576
2577 /* Called with irq disabled */
2578 static inline void ____napi_schedule(struct softnet_data *sd,
2579 struct napi_struct *napi)
2580 {
2581 list_add_tail(&napi->poll_list, &sd->poll_list);
2582 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2583 }
2584
2585 /*
2586 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2587 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2588 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2589 * if hash is a canonical 4-tuple hash over transport ports.
2590 */
2591 void __skb_get_rxhash(struct sk_buff *skb)
2592 {
2593 struct flow_keys keys;
2594 u32 hash;
2595
2596 if (!skb_flow_dissect(skb, &keys))
2597 return;
2598
2599 if (keys.ports) {
2600 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2601 swap(keys.port16[0], keys.port16[1]);
2602 skb->l4_rxhash = 1;
2603 }
2604
2605 /* get a consistent hash (same value on both flow directions) */
2606 if ((__force u32)keys.dst < (__force u32)keys.src)
2607 swap(keys.dst, keys.src);
2608
2609 hash = jhash_3words((__force u32)keys.dst,
2610 (__force u32)keys.src,
2611 (__force u32)keys.ports, hashrnd);
2612 if (!hash)
2613 hash = 1;
2614
2615 skb->rxhash = hash;
2616 }
2617 EXPORT_SYMBOL(__skb_get_rxhash);
2618
2619 #ifdef CONFIG_RPS
2620
2621 /* One global table that all flow-based protocols share. */
2622 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2623 EXPORT_SYMBOL(rps_sock_flow_table);
2624
2625 struct static_key rps_needed __read_mostly;
2626
2627 static struct rps_dev_flow *
2628 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2629 struct rps_dev_flow *rflow, u16 next_cpu)
2630 {
2631 if (next_cpu != RPS_NO_CPU) {
2632 #ifdef CONFIG_RFS_ACCEL
2633 struct netdev_rx_queue *rxqueue;
2634 struct rps_dev_flow_table *flow_table;
2635 struct rps_dev_flow *old_rflow;
2636 u32 flow_id;
2637 u16 rxq_index;
2638 int rc;
2639
2640 /* Should we steer this flow to a different hardware queue? */
2641 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2642 !(dev->features & NETIF_F_NTUPLE))
2643 goto out;
2644 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2645 if (rxq_index == skb_get_rx_queue(skb))
2646 goto out;
2647
2648 rxqueue = dev->_rx + rxq_index;
2649 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2650 if (!flow_table)
2651 goto out;
2652 flow_id = skb->rxhash & flow_table->mask;
2653 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2654 rxq_index, flow_id);
2655 if (rc < 0)
2656 goto out;
2657 old_rflow = rflow;
2658 rflow = &flow_table->flows[flow_id];
2659 rflow->filter = rc;
2660 if (old_rflow->filter == rflow->filter)
2661 old_rflow->filter = RPS_NO_FILTER;
2662 out:
2663 #endif
2664 rflow->last_qtail =
2665 per_cpu(softnet_data, next_cpu).input_queue_head;
2666 }
2667
2668 rflow->cpu = next_cpu;
2669 return rflow;
2670 }
2671
2672 /*
2673 * get_rps_cpu is called from netif_receive_skb and returns the target
2674 * CPU from the RPS map of the receiving queue for a given skb.
2675 * rcu_read_lock must be held on entry.
2676 */
2677 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2678 struct rps_dev_flow **rflowp)
2679 {
2680 struct netdev_rx_queue *rxqueue;
2681 struct rps_map *map;
2682 struct rps_dev_flow_table *flow_table;
2683 struct rps_sock_flow_table *sock_flow_table;
2684 int cpu = -1;
2685 u16 tcpu;
2686
2687 if (skb_rx_queue_recorded(skb)) {
2688 u16 index = skb_get_rx_queue(skb);
2689 if (unlikely(index >= dev->real_num_rx_queues)) {
2690 WARN_ONCE(dev->real_num_rx_queues > 1,
2691 "%s received packet on queue %u, but number "
2692 "of RX queues is %u\n",
2693 dev->name, index, dev->real_num_rx_queues);
2694 goto done;
2695 }
2696 rxqueue = dev->_rx + index;
2697 } else
2698 rxqueue = dev->_rx;
2699
2700 map = rcu_dereference(rxqueue->rps_map);
2701 if (map) {
2702 if (map->len == 1 &&
2703 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2704 tcpu = map->cpus[0];
2705 if (cpu_online(tcpu))
2706 cpu = tcpu;
2707 goto done;
2708 }
2709 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2710 goto done;
2711 }
2712
2713 skb_reset_network_header(skb);
2714 if (!skb_get_rxhash(skb))
2715 goto done;
2716
2717 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2718 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2719 if (flow_table && sock_flow_table) {
2720 u16 next_cpu;
2721 struct rps_dev_flow *rflow;
2722
2723 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2724 tcpu = rflow->cpu;
2725
2726 next_cpu = sock_flow_table->ents[skb->rxhash &
2727 sock_flow_table->mask];
2728
2729 /*
2730 * If the desired CPU (where last recvmsg was done) is
2731 * different from current CPU (one in the rx-queue flow
2732 * table entry), switch if one of the following holds:
2733 * - Current CPU is unset (equal to RPS_NO_CPU).
2734 * - Current CPU is offline.
2735 * - The current CPU's queue tail has advanced beyond the
2736 * last packet that was enqueued using this table entry.
2737 * This guarantees that all previous packets for the flow
2738 * have been dequeued, thus preserving in order delivery.
2739 */
2740 if (unlikely(tcpu != next_cpu) &&
2741 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2742 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2743 rflow->last_qtail)) >= 0))
2744 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2745
2746 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2747 *rflowp = rflow;
2748 cpu = tcpu;
2749 goto done;
2750 }
2751 }
2752
2753 if (map) {
2754 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2755
2756 if (cpu_online(tcpu)) {
2757 cpu = tcpu;
2758 goto done;
2759 }
2760 }
2761
2762 done:
2763 return cpu;
2764 }
2765
2766 #ifdef CONFIG_RFS_ACCEL
2767
2768 /**
2769 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2770 * @dev: Device on which the filter was set
2771 * @rxq_index: RX queue index
2772 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2773 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2774 *
2775 * Drivers that implement ndo_rx_flow_steer() should periodically call
2776 * this function for each installed filter and remove the filters for
2777 * which it returns %true.
2778 */
2779 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2780 u32 flow_id, u16 filter_id)
2781 {
2782 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2783 struct rps_dev_flow_table *flow_table;
2784 struct rps_dev_flow *rflow;
2785 bool expire = true;
2786 int cpu;
2787
2788 rcu_read_lock();
2789 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2790 if (flow_table && flow_id <= flow_table->mask) {
2791 rflow = &flow_table->flows[flow_id];
2792 cpu = ACCESS_ONCE(rflow->cpu);
2793 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2794 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2795 rflow->last_qtail) <
2796 (int)(10 * flow_table->mask)))
2797 expire = false;
2798 }
2799 rcu_read_unlock();
2800 return expire;
2801 }
2802 EXPORT_SYMBOL(rps_may_expire_flow);
2803
2804 #endif /* CONFIG_RFS_ACCEL */
2805
2806 /* Called from hardirq (IPI) context */
2807 static void rps_trigger_softirq(void *data)
2808 {
2809 struct softnet_data *sd = data;
2810
2811 ____napi_schedule(sd, &sd->backlog);
2812 sd->received_rps++;
2813 }
2814
2815 #endif /* CONFIG_RPS */
2816
2817 /*
2818 * Check if this softnet_data structure is another cpu one
2819 * If yes, queue it to our IPI list and return 1
2820 * If no, return 0
2821 */
2822 static int rps_ipi_queued(struct softnet_data *sd)
2823 {
2824 #ifdef CONFIG_RPS
2825 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2826
2827 if (sd != mysd) {
2828 sd->rps_ipi_next = mysd->rps_ipi_list;
2829 mysd->rps_ipi_list = sd;
2830
2831 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2832 return 1;
2833 }
2834 #endif /* CONFIG_RPS */
2835 return 0;
2836 }
2837
2838 /*
2839 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2840 * queue (may be a remote CPU queue).
2841 */
2842 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2843 unsigned int *qtail)
2844 {
2845 struct softnet_data *sd;
2846 unsigned long flags;
2847
2848 sd = &per_cpu(softnet_data, cpu);
2849
2850 local_irq_save(flags);
2851
2852 rps_lock(sd);
2853 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2854 if (skb_queue_len(&sd->input_pkt_queue)) {
2855 enqueue:
2856 __skb_queue_tail(&sd->input_pkt_queue, skb);
2857 input_queue_tail_incr_save(sd, qtail);
2858 rps_unlock(sd);
2859 local_irq_restore(flags);
2860 return NET_RX_SUCCESS;
2861 }
2862
2863 /* Schedule NAPI for backlog device
2864 * We can use non atomic operation since we own the queue lock
2865 */
2866 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2867 if (!rps_ipi_queued(sd))
2868 ____napi_schedule(sd, &sd->backlog);
2869 }
2870 goto enqueue;
2871 }
2872
2873 sd->dropped++;
2874 rps_unlock(sd);
2875
2876 local_irq_restore(flags);
2877
2878 atomic_long_inc(&skb->dev->rx_dropped);
2879 kfree_skb(skb);
2880 return NET_RX_DROP;
2881 }
2882
2883 /**
2884 * netif_rx - post buffer to the network code
2885 * @skb: buffer to post
2886 *
2887 * This function receives a packet from a device driver and queues it for
2888 * the upper (protocol) levels to process. It always succeeds. The buffer
2889 * may be dropped during processing for congestion control or by the
2890 * protocol layers.
2891 *
2892 * return values:
2893 * NET_RX_SUCCESS (no congestion)
2894 * NET_RX_DROP (packet was dropped)
2895 *
2896 */
2897
2898 int netif_rx(struct sk_buff *skb)
2899 {
2900 int ret;
2901
2902 /* if netpoll wants it, pretend we never saw it */
2903 if (netpoll_rx(skb))
2904 return NET_RX_DROP;
2905
2906 net_timestamp_check(netdev_tstamp_prequeue, skb);
2907
2908 trace_netif_rx(skb);
2909 #ifdef CONFIG_RPS
2910 if (static_key_false(&rps_needed)) {
2911 struct rps_dev_flow voidflow, *rflow = &voidflow;
2912 int cpu;
2913
2914 preempt_disable();
2915 rcu_read_lock();
2916
2917 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2918 if (cpu < 0)
2919 cpu = smp_processor_id();
2920
2921 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2922
2923 rcu_read_unlock();
2924 preempt_enable();
2925 } else
2926 #endif
2927 {
2928 unsigned int qtail;
2929 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2930 put_cpu();
2931 }
2932 return ret;
2933 }
2934 EXPORT_SYMBOL(netif_rx);
2935
2936 int netif_rx_ni(struct sk_buff *skb)
2937 {
2938 int err;
2939
2940 preempt_disable();
2941 err = netif_rx(skb);
2942 if (local_softirq_pending())
2943 do_softirq();
2944 preempt_enable();
2945
2946 return err;
2947 }
2948 EXPORT_SYMBOL(netif_rx_ni);
2949
2950 static void net_tx_action(struct softirq_action *h)
2951 {
2952 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2953
2954 if (sd->completion_queue) {
2955 struct sk_buff *clist;
2956
2957 local_irq_disable();
2958 clist = sd->completion_queue;
2959 sd->completion_queue = NULL;
2960 local_irq_enable();
2961
2962 while (clist) {
2963 struct sk_buff *skb = clist;
2964 clist = clist->next;
2965
2966 WARN_ON(atomic_read(&skb->users));
2967 trace_kfree_skb(skb, net_tx_action);
2968 __kfree_skb(skb);
2969 }
2970 }
2971
2972 if (sd->output_queue) {
2973 struct Qdisc *head;
2974
2975 local_irq_disable();
2976 head = sd->output_queue;
2977 sd->output_queue = NULL;
2978 sd->output_queue_tailp = &sd->output_queue;
2979 local_irq_enable();
2980
2981 while (head) {
2982 struct Qdisc *q = head;
2983 spinlock_t *root_lock;
2984
2985 head = head->next_sched;
2986
2987 root_lock = qdisc_lock(q);
2988 if (spin_trylock(root_lock)) {
2989 smp_mb__before_clear_bit();
2990 clear_bit(__QDISC_STATE_SCHED,
2991 &q->state);
2992 qdisc_run(q);
2993 spin_unlock(root_lock);
2994 } else {
2995 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2996 &q->state)) {
2997 __netif_reschedule(q);
2998 } else {
2999 smp_mb__before_clear_bit();
3000 clear_bit(__QDISC_STATE_SCHED,
3001 &q->state);
3002 }
3003 }
3004 }
3005 }
3006 }
3007
3008 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3009 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3010 /* This hook is defined here for ATM LANE */
3011 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3012 unsigned char *addr) __read_mostly;
3013 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3014 #endif
3015
3016 #ifdef CONFIG_NET_CLS_ACT
3017 /* TODO: Maybe we should just force sch_ingress to be compiled in
3018 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3019 * a compare and 2 stores extra right now if we dont have it on
3020 * but have CONFIG_NET_CLS_ACT
3021 * NOTE: This doesn't stop any functionality; if you dont have
3022 * the ingress scheduler, you just can't add policies on ingress.
3023 *
3024 */
3025 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3026 {
3027 struct net_device *dev = skb->dev;
3028 u32 ttl = G_TC_RTTL(skb->tc_verd);
3029 int result = TC_ACT_OK;
3030 struct Qdisc *q;
3031
3032 if (unlikely(MAX_RED_LOOP < ttl++)) {
3033 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3034 skb->skb_iif, dev->ifindex);
3035 return TC_ACT_SHOT;
3036 }
3037
3038 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3039 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3040
3041 q = rxq->qdisc;
3042 if (q != &noop_qdisc) {
3043 spin_lock(qdisc_lock(q));
3044 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3045 result = qdisc_enqueue_root(skb, q);
3046 spin_unlock(qdisc_lock(q));
3047 }
3048
3049 return result;
3050 }
3051
3052 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3053 struct packet_type **pt_prev,
3054 int *ret, struct net_device *orig_dev)
3055 {
3056 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3057
3058 if (!rxq || rxq->qdisc == &noop_qdisc)
3059 goto out;
3060
3061 if (*pt_prev) {
3062 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3063 *pt_prev = NULL;
3064 }
3065
3066 switch (ing_filter(skb, rxq)) {
3067 case TC_ACT_SHOT:
3068 case TC_ACT_STOLEN:
3069 kfree_skb(skb);
3070 return NULL;
3071 }
3072
3073 out:
3074 skb->tc_verd = 0;
3075 return skb;
3076 }
3077 #endif
3078
3079 /**
3080 * netdev_rx_handler_register - register receive handler
3081 * @dev: device to register a handler for
3082 * @rx_handler: receive handler to register
3083 * @rx_handler_data: data pointer that is used by rx handler
3084 *
3085 * Register a receive hander for a device. This handler will then be
3086 * called from __netif_receive_skb. A negative errno code is returned
3087 * on a failure.
3088 *
3089 * The caller must hold the rtnl_mutex.
3090 *
3091 * For a general description of rx_handler, see enum rx_handler_result.
3092 */
3093 int netdev_rx_handler_register(struct net_device *dev,
3094 rx_handler_func_t *rx_handler,
3095 void *rx_handler_data)
3096 {
3097 ASSERT_RTNL();
3098
3099 if (dev->rx_handler)
3100 return -EBUSY;
3101
3102 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3103 rcu_assign_pointer(dev->rx_handler, rx_handler);
3104
3105 return 0;
3106 }
3107 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3108
3109 /**
3110 * netdev_rx_handler_unregister - unregister receive handler
3111 * @dev: device to unregister a handler from
3112 *
3113 * Unregister a receive hander from a device.
3114 *
3115 * The caller must hold the rtnl_mutex.
3116 */
3117 void netdev_rx_handler_unregister(struct net_device *dev)
3118 {
3119
3120 ASSERT_RTNL();
3121 RCU_INIT_POINTER(dev->rx_handler, NULL);
3122 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3123 }
3124 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3125
3126 static int __netif_receive_skb(struct sk_buff *skb)
3127 {
3128 struct packet_type *ptype, *pt_prev;
3129 rx_handler_func_t *rx_handler;
3130 struct net_device *orig_dev;
3131 struct net_device *null_or_dev;
3132 bool deliver_exact = false;
3133 int ret = NET_RX_DROP;
3134 __be16 type;
3135
3136 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3137
3138 trace_netif_receive_skb(skb);
3139
3140 /* if we've gotten here through NAPI, check netpoll */
3141 if (netpoll_receive_skb(skb))
3142 return NET_RX_DROP;
3143
3144 if (!skb->skb_iif)
3145 skb->skb_iif = skb->dev->ifindex;
3146 orig_dev = skb->dev;
3147
3148 skb_reset_network_header(skb);
3149 skb_reset_transport_header(skb);
3150 skb_reset_mac_len(skb);
3151
3152 pt_prev = NULL;
3153
3154 rcu_read_lock();
3155
3156 another_round:
3157
3158 __this_cpu_inc(softnet_data.processed);
3159
3160 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3161 skb = vlan_untag(skb);
3162 if (unlikely(!skb))
3163 goto out;
3164 }
3165
3166 #ifdef CONFIG_NET_CLS_ACT
3167 if (skb->tc_verd & TC_NCLS) {
3168 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3169 goto ncls;
3170 }
3171 #endif
3172
3173 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3174 if (!ptype->dev || ptype->dev == skb->dev) {
3175 if (pt_prev)
3176 ret = deliver_skb(skb, pt_prev, orig_dev);
3177 pt_prev = ptype;
3178 }
3179 }
3180
3181 #ifdef CONFIG_NET_CLS_ACT
3182 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3183 if (!skb)
3184 goto out;
3185 ncls:
3186 #endif
3187
3188 rx_handler = rcu_dereference(skb->dev->rx_handler);
3189 if (vlan_tx_tag_present(skb)) {
3190 if (pt_prev) {
3191 ret = deliver_skb(skb, pt_prev, orig_dev);
3192 pt_prev = NULL;
3193 }
3194 if (vlan_do_receive(&skb, !rx_handler))
3195 goto another_round;
3196 else if (unlikely(!skb))
3197 goto out;
3198 }
3199
3200 if (rx_handler) {
3201 if (pt_prev) {
3202 ret = deliver_skb(skb, pt_prev, orig_dev);
3203 pt_prev = NULL;
3204 }
3205 switch (rx_handler(&skb)) {
3206 case RX_HANDLER_CONSUMED:
3207 goto out;
3208 case RX_HANDLER_ANOTHER:
3209 goto another_round;
3210 case RX_HANDLER_EXACT:
3211 deliver_exact = true;
3212 case RX_HANDLER_PASS:
3213 break;
3214 default:
3215 BUG();
3216 }
3217 }
3218
3219 /* deliver only exact match when indicated */
3220 null_or_dev = deliver_exact ? skb->dev : NULL;
3221
3222 type = skb->protocol;
3223 list_for_each_entry_rcu(ptype,
3224 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3225 if (ptype->type == type &&
3226 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3227 ptype->dev == orig_dev)) {
3228 if (pt_prev)
3229 ret = deliver_skb(skb, pt_prev, orig_dev);
3230 pt_prev = ptype;
3231 }
3232 }
3233
3234 if (pt_prev) {
3235 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3236 } else {
3237 atomic_long_inc(&skb->dev->rx_dropped);
3238 kfree_skb(skb);
3239 /* Jamal, now you will not able to escape explaining
3240 * me how you were going to use this. :-)
3241 */
3242 ret = NET_RX_DROP;
3243 }
3244
3245 out:
3246 rcu_read_unlock();
3247 return ret;
3248 }
3249
3250 /**
3251 * netif_receive_skb - process receive buffer from network
3252 * @skb: buffer to process
3253 *
3254 * netif_receive_skb() is the main receive data processing function.
3255 * It always succeeds. The buffer may be dropped during processing
3256 * for congestion control or by the protocol layers.
3257 *
3258 * This function may only be called from softirq context and interrupts
3259 * should be enabled.
3260 *
3261 * Return values (usually ignored):
3262 * NET_RX_SUCCESS: no congestion
3263 * NET_RX_DROP: packet was dropped
3264 */
3265 int netif_receive_skb(struct sk_buff *skb)
3266 {
3267 net_timestamp_check(netdev_tstamp_prequeue, skb);
3268
3269 if (skb_defer_rx_timestamp(skb))
3270 return NET_RX_SUCCESS;
3271
3272 #ifdef CONFIG_RPS
3273 if (static_key_false(&rps_needed)) {
3274 struct rps_dev_flow voidflow, *rflow = &voidflow;
3275 int cpu, ret;
3276
3277 rcu_read_lock();
3278
3279 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3280
3281 if (cpu >= 0) {
3282 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3283 rcu_read_unlock();
3284 return ret;
3285 }
3286 rcu_read_unlock();
3287 }
3288 #endif
3289 return __netif_receive_skb(skb);
3290 }
3291 EXPORT_SYMBOL(netif_receive_skb);
3292
3293 /* Network device is going away, flush any packets still pending
3294 * Called with irqs disabled.
3295 */
3296 static void flush_backlog(void *arg)
3297 {
3298 struct net_device *dev = arg;
3299 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3300 struct sk_buff *skb, *tmp;
3301
3302 rps_lock(sd);
3303 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3304 if (skb->dev == dev) {
3305 __skb_unlink(skb, &sd->input_pkt_queue);
3306 kfree_skb(skb);
3307 input_queue_head_incr(sd);
3308 }
3309 }
3310 rps_unlock(sd);
3311
3312 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3313 if (skb->dev == dev) {
3314 __skb_unlink(skb, &sd->process_queue);
3315 kfree_skb(skb);
3316 input_queue_head_incr(sd);
3317 }
3318 }
3319 }
3320
3321 static int napi_gro_complete(struct sk_buff *skb)
3322 {
3323 struct packet_type *ptype;
3324 __be16 type = skb->protocol;
3325 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3326 int err = -ENOENT;
3327
3328 if (NAPI_GRO_CB(skb)->count == 1) {
3329 skb_shinfo(skb)->gso_size = 0;
3330 goto out;
3331 }
3332
3333 rcu_read_lock();
3334 list_for_each_entry_rcu(ptype, head, list) {
3335 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3336 continue;
3337
3338 err = ptype->gro_complete(skb);
3339 break;
3340 }
3341 rcu_read_unlock();
3342
3343 if (err) {
3344 WARN_ON(&ptype->list == head);
3345 kfree_skb(skb);
3346 return NET_RX_SUCCESS;
3347 }
3348
3349 out:
3350 return netif_receive_skb(skb);
3351 }
3352
3353 inline void napi_gro_flush(struct napi_struct *napi)
3354 {
3355 struct sk_buff *skb, *next;
3356
3357 for (skb = napi->gro_list; skb; skb = next) {
3358 next = skb->next;
3359 skb->next = NULL;
3360 napi_gro_complete(skb);
3361 }
3362
3363 napi->gro_count = 0;
3364 napi->gro_list = NULL;
3365 }
3366 EXPORT_SYMBOL(napi_gro_flush);
3367
3368 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3369 {
3370 struct sk_buff **pp = NULL;
3371 struct packet_type *ptype;
3372 __be16 type = skb->protocol;
3373 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3374 int same_flow;
3375 int mac_len;
3376 enum gro_result ret;
3377
3378 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3379 goto normal;
3380
3381 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3382 goto normal;
3383
3384 rcu_read_lock();
3385 list_for_each_entry_rcu(ptype, head, list) {
3386 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3387 continue;
3388
3389 skb_set_network_header(skb, skb_gro_offset(skb));
3390 mac_len = skb->network_header - skb->mac_header;
3391 skb->mac_len = mac_len;
3392 NAPI_GRO_CB(skb)->same_flow = 0;
3393 NAPI_GRO_CB(skb)->flush = 0;
3394 NAPI_GRO_CB(skb)->free = 0;
3395
3396 pp = ptype->gro_receive(&napi->gro_list, skb);
3397 break;
3398 }
3399 rcu_read_unlock();
3400
3401 if (&ptype->list == head)
3402 goto normal;
3403
3404 same_flow = NAPI_GRO_CB(skb)->same_flow;
3405 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3406
3407 if (pp) {
3408 struct sk_buff *nskb = *pp;
3409
3410 *pp = nskb->next;
3411 nskb->next = NULL;
3412 napi_gro_complete(nskb);
3413 napi->gro_count--;
3414 }
3415
3416 if (same_flow)
3417 goto ok;
3418
3419 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3420 goto normal;
3421
3422 napi->gro_count++;
3423 NAPI_GRO_CB(skb)->count = 1;
3424 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3425 skb->next = napi->gro_list;
3426 napi->gro_list = skb;
3427 ret = GRO_HELD;
3428
3429 pull:
3430 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3431 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3432
3433 BUG_ON(skb->end - skb->tail < grow);
3434
3435 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3436
3437 skb->tail += grow;
3438 skb->data_len -= grow;
3439
3440 skb_shinfo(skb)->frags[0].page_offset += grow;
3441 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3442
3443 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3444 skb_frag_unref(skb, 0);
3445 memmove(skb_shinfo(skb)->frags,
3446 skb_shinfo(skb)->frags + 1,
3447 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3448 }
3449 }
3450
3451 ok:
3452 return ret;
3453
3454 normal:
3455 ret = GRO_NORMAL;
3456 goto pull;
3457 }
3458 EXPORT_SYMBOL(dev_gro_receive);
3459
3460 static inline gro_result_t
3461 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3462 {
3463 struct sk_buff *p;
3464 unsigned int maclen = skb->dev->hard_header_len;
3465
3466 for (p = napi->gro_list; p; p = p->next) {
3467 unsigned long diffs;
3468
3469 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3470 diffs |= p->vlan_tci ^ skb->vlan_tci;
3471 if (maclen == ETH_HLEN)
3472 diffs |= compare_ether_header(skb_mac_header(p),
3473 skb_gro_mac_header(skb));
3474 else if (!diffs)
3475 diffs = memcmp(skb_mac_header(p),
3476 skb_gro_mac_header(skb),
3477 maclen);
3478 NAPI_GRO_CB(p)->same_flow = !diffs;
3479 NAPI_GRO_CB(p)->flush = 0;
3480 }
3481
3482 return dev_gro_receive(napi, skb);
3483 }
3484
3485 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3486 {
3487 switch (ret) {
3488 case GRO_NORMAL:
3489 if (netif_receive_skb(skb))
3490 ret = GRO_DROP;
3491 break;
3492
3493 case GRO_DROP:
3494 kfree_skb(skb);
3495 break;
3496
3497 case GRO_MERGED_FREE:
3498 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3499 kmem_cache_free(skbuff_head_cache, skb);
3500 else
3501 __kfree_skb(skb);
3502 break;
3503
3504 case GRO_HELD:
3505 case GRO_MERGED:
3506 break;
3507 }
3508
3509 return ret;
3510 }
3511 EXPORT_SYMBOL(napi_skb_finish);
3512
3513 void skb_gro_reset_offset(struct sk_buff *skb)
3514 {
3515 NAPI_GRO_CB(skb)->data_offset = 0;
3516 NAPI_GRO_CB(skb)->frag0 = NULL;
3517 NAPI_GRO_CB(skb)->frag0_len = 0;
3518
3519 if (skb->mac_header == skb->tail &&
3520 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3521 NAPI_GRO_CB(skb)->frag0 =
3522 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3523 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3524 }
3525 }
3526 EXPORT_SYMBOL(skb_gro_reset_offset);
3527
3528 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3529 {
3530 skb_gro_reset_offset(skb);
3531
3532 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3533 }
3534 EXPORT_SYMBOL(napi_gro_receive);
3535
3536 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3537 {
3538 __skb_pull(skb, skb_headlen(skb));
3539 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3540 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3541 skb->vlan_tci = 0;
3542 skb->dev = napi->dev;
3543 skb->skb_iif = 0;
3544
3545 napi->skb = skb;
3546 }
3547
3548 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3549 {
3550 struct sk_buff *skb = napi->skb;
3551
3552 if (!skb) {
3553 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3554 if (skb)
3555 napi->skb = skb;
3556 }
3557 return skb;
3558 }
3559 EXPORT_SYMBOL(napi_get_frags);
3560
3561 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3562 gro_result_t ret)
3563 {
3564 switch (ret) {
3565 case GRO_NORMAL:
3566 case GRO_HELD:
3567 skb->protocol = eth_type_trans(skb, skb->dev);
3568
3569 if (ret == GRO_HELD)
3570 skb_gro_pull(skb, -ETH_HLEN);
3571 else if (netif_receive_skb(skb))
3572 ret = GRO_DROP;
3573 break;
3574
3575 case GRO_DROP:
3576 case GRO_MERGED_FREE:
3577 napi_reuse_skb(napi, skb);
3578 break;
3579
3580 case GRO_MERGED:
3581 break;
3582 }
3583
3584 return ret;
3585 }
3586 EXPORT_SYMBOL(napi_frags_finish);
3587
3588 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3589 {
3590 struct sk_buff *skb = napi->skb;
3591 struct ethhdr *eth;
3592 unsigned int hlen;
3593 unsigned int off;
3594
3595 napi->skb = NULL;
3596
3597 skb_reset_mac_header(skb);
3598 skb_gro_reset_offset(skb);
3599
3600 off = skb_gro_offset(skb);
3601 hlen = off + sizeof(*eth);
3602 eth = skb_gro_header_fast(skb, off);
3603 if (skb_gro_header_hard(skb, hlen)) {
3604 eth = skb_gro_header_slow(skb, hlen, off);
3605 if (unlikely(!eth)) {
3606 napi_reuse_skb(napi, skb);
3607 skb = NULL;
3608 goto out;
3609 }
3610 }
3611
3612 skb_gro_pull(skb, sizeof(*eth));
3613
3614 /*
3615 * This works because the only protocols we care about don't require
3616 * special handling. We'll fix it up properly at the end.
3617 */
3618 skb->protocol = eth->h_proto;
3619
3620 out:
3621 return skb;
3622 }
3623
3624 gro_result_t napi_gro_frags(struct napi_struct *napi)
3625 {
3626 struct sk_buff *skb = napi_frags_skb(napi);
3627
3628 if (!skb)
3629 return GRO_DROP;
3630
3631 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3632 }
3633 EXPORT_SYMBOL(napi_gro_frags);
3634
3635 /*
3636 * net_rps_action sends any pending IPI's for rps.
3637 * Note: called with local irq disabled, but exits with local irq enabled.
3638 */
3639 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3640 {
3641 #ifdef CONFIG_RPS
3642 struct softnet_data *remsd = sd->rps_ipi_list;
3643
3644 if (remsd) {
3645 sd->rps_ipi_list = NULL;
3646
3647 local_irq_enable();
3648
3649 /* Send pending IPI's to kick RPS processing on remote cpus. */
3650 while (remsd) {
3651 struct softnet_data *next = remsd->rps_ipi_next;
3652
3653 if (cpu_online(remsd->cpu))
3654 __smp_call_function_single(remsd->cpu,
3655 &remsd->csd, 0);
3656 remsd = next;
3657 }
3658 } else
3659 #endif
3660 local_irq_enable();
3661 }
3662
3663 static int process_backlog(struct napi_struct *napi, int quota)
3664 {
3665 int work = 0;
3666 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3667
3668 #ifdef CONFIG_RPS
3669 /* Check if we have pending ipi, its better to send them now,
3670 * not waiting net_rx_action() end.
3671 */
3672 if (sd->rps_ipi_list) {
3673 local_irq_disable();
3674 net_rps_action_and_irq_enable(sd);
3675 }
3676 #endif
3677 napi->weight = weight_p;
3678 local_irq_disable();
3679 while (work < quota) {
3680 struct sk_buff *skb;
3681 unsigned int qlen;
3682
3683 while ((skb = __skb_dequeue(&sd->process_queue))) {
3684 local_irq_enable();
3685 __netif_receive_skb(skb);
3686 local_irq_disable();
3687 input_queue_head_incr(sd);
3688 if (++work >= quota) {
3689 local_irq_enable();
3690 return work;
3691 }
3692 }
3693
3694 rps_lock(sd);
3695 qlen = skb_queue_len(&sd->input_pkt_queue);
3696 if (qlen)
3697 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3698 &sd->process_queue);
3699
3700 if (qlen < quota - work) {
3701 /*
3702 * Inline a custom version of __napi_complete().
3703 * only current cpu owns and manipulates this napi,
3704 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3705 * we can use a plain write instead of clear_bit(),
3706 * and we dont need an smp_mb() memory barrier.
3707 */
3708 list_del(&napi->poll_list);
3709 napi->state = 0;
3710
3711 quota = work + qlen;
3712 }
3713 rps_unlock(sd);
3714 }
3715 local_irq_enable();
3716
3717 return work;
3718 }
3719
3720 /**
3721 * __napi_schedule - schedule for receive
3722 * @n: entry to schedule
3723 *
3724 * The entry's receive function will be scheduled to run
3725 */
3726 void __napi_schedule(struct napi_struct *n)
3727 {
3728 unsigned long flags;
3729
3730 local_irq_save(flags);
3731 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3732 local_irq_restore(flags);
3733 }
3734 EXPORT_SYMBOL(__napi_schedule);
3735
3736 void __napi_complete(struct napi_struct *n)
3737 {
3738 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3739 BUG_ON(n->gro_list);
3740
3741 list_del(&n->poll_list);
3742 smp_mb__before_clear_bit();
3743 clear_bit(NAPI_STATE_SCHED, &n->state);
3744 }
3745 EXPORT_SYMBOL(__napi_complete);
3746
3747 void napi_complete(struct napi_struct *n)
3748 {
3749 unsigned long flags;
3750
3751 /*
3752 * don't let napi dequeue from the cpu poll list
3753 * just in case its running on a different cpu
3754 */
3755 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3756 return;
3757
3758 napi_gro_flush(n);
3759 local_irq_save(flags);
3760 __napi_complete(n);
3761 local_irq_restore(flags);
3762 }
3763 EXPORT_SYMBOL(napi_complete);
3764
3765 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3766 int (*poll)(struct napi_struct *, int), int weight)
3767 {
3768 INIT_LIST_HEAD(&napi->poll_list);
3769 napi->gro_count = 0;
3770 napi->gro_list = NULL;
3771 napi->skb = NULL;
3772 napi->poll = poll;
3773 napi->weight = weight;
3774 list_add(&napi->dev_list, &dev->napi_list);
3775 napi->dev = dev;
3776 #ifdef CONFIG_NETPOLL
3777 spin_lock_init(&napi->poll_lock);
3778 napi->poll_owner = -1;
3779 #endif
3780 set_bit(NAPI_STATE_SCHED, &napi->state);
3781 }
3782 EXPORT_SYMBOL(netif_napi_add);
3783
3784 void netif_napi_del(struct napi_struct *napi)
3785 {
3786 struct sk_buff *skb, *next;
3787
3788 list_del_init(&napi->dev_list);
3789 napi_free_frags(napi);
3790
3791 for (skb = napi->gro_list; skb; skb = next) {
3792 next = skb->next;
3793 skb->next = NULL;
3794 kfree_skb(skb);
3795 }
3796
3797 napi->gro_list = NULL;
3798 napi->gro_count = 0;
3799 }
3800 EXPORT_SYMBOL(netif_napi_del);
3801
3802 static void net_rx_action(struct softirq_action *h)
3803 {
3804 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3805 unsigned long time_limit = jiffies + 2;
3806 int budget = netdev_budget;
3807 void *have;
3808
3809 local_irq_disable();
3810
3811 while (!list_empty(&sd->poll_list)) {
3812 struct napi_struct *n;
3813 int work, weight;
3814
3815 /* If softirq window is exhuasted then punt.
3816 * Allow this to run for 2 jiffies since which will allow
3817 * an average latency of 1.5/HZ.
3818 */
3819 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3820 goto softnet_break;
3821
3822 local_irq_enable();
3823
3824 /* Even though interrupts have been re-enabled, this
3825 * access is safe because interrupts can only add new
3826 * entries to the tail of this list, and only ->poll()
3827 * calls can remove this head entry from the list.
3828 */
3829 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3830
3831 have = netpoll_poll_lock(n);
3832
3833 weight = n->weight;
3834
3835 /* This NAPI_STATE_SCHED test is for avoiding a race
3836 * with netpoll's poll_napi(). Only the entity which
3837 * obtains the lock and sees NAPI_STATE_SCHED set will
3838 * actually make the ->poll() call. Therefore we avoid
3839 * accidentally calling ->poll() when NAPI is not scheduled.
3840 */
3841 work = 0;
3842 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3843 work = n->poll(n, weight);
3844 trace_napi_poll(n);
3845 }
3846
3847 WARN_ON_ONCE(work > weight);
3848
3849 budget -= work;
3850
3851 local_irq_disable();
3852
3853 /* Drivers must not modify the NAPI state if they
3854 * consume the entire weight. In such cases this code
3855 * still "owns" the NAPI instance and therefore can
3856 * move the instance around on the list at-will.
3857 */
3858 if (unlikely(work == weight)) {
3859 if (unlikely(napi_disable_pending(n))) {
3860 local_irq_enable();
3861 napi_complete(n);
3862 local_irq_disable();
3863 } else
3864 list_move_tail(&n->poll_list, &sd->poll_list);
3865 }
3866
3867 netpoll_poll_unlock(have);
3868 }
3869 out:
3870 net_rps_action_and_irq_enable(sd);
3871
3872 #ifdef CONFIG_NET_DMA
3873 /*
3874 * There may not be any more sk_buffs coming right now, so push
3875 * any pending DMA copies to hardware
3876 */
3877 dma_issue_pending_all();
3878 #endif
3879
3880 return;
3881
3882 softnet_break:
3883 sd->time_squeeze++;
3884 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3885 goto out;
3886 }
3887
3888 static gifconf_func_t *gifconf_list[NPROTO];
3889
3890 /**
3891 * register_gifconf - register a SIOCGIF handler
3892 * @family: Address family
3893 * @gifconf: Function handler
3894 *
3895 * Register protocol dependent address dumping routines. The handler
3896 * that is passed must not be freed or reused until it has been replaced
3897 * by another handler.
3898 */
3899 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3900 {
3901 if (family >= NPROTO)
3902 return -EINVAL;
3903 gifconf_list[family] = gifconf;
3904 return 0;
3905 }
3906 EXPORT_SYMBOL(register_gifconf);
3907
3908
3909 /*
3910 * Map an interface index to its name (SIOCGIFNAME)
3911 */
3912
3913 /*
3914 * We need this ioctl for efficient implementation of the
3915 * if_indextoname() function required by the IPv6 API. Without
3916 * it, we would have to search all the interfaces to find a
3917 * match. --pb
3918 */
3919
3920 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3921 {
3922 struct net_device *dev;
3923 struct ifreq ifr;
3924
3925 /*
3926 * Fetch the caller's info block.
3927 */
3928
3929 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3930 return -EFAULT;
3931
3932 rcu_read_lock();
3933 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3934 if (!dev) {
3935 rcu_read_unlock();
3936 return -ENODEV;
3937 }
3938
3939 strcpy(ifr.ifr_name, dev->name);
3940 rcu_read_unlock();
3941
3942 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3943 return -EFAULT;
3944 return 0;
3945 }
3946
3947 /*
3948 * Perform a SIOCGIFCONF call. This structure will change
3949 * size eventually, and there is nothing I can do about it.
3950 * Thus we will need a 'compatibility mode'.
3951 */
3952
3953 static int dev_ifconf(struct net *net, char __user *arg)
3954 {
3955 struct ifconf ifc;
3956 struct net_device *dev;
3957 char __user *pos;
3958 int len;
3959 int total;
3960 int i;
3961
3962 /*
3963 * Fetch the caller's info block.
3964 */
3965
3966 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3967 return -EFAULT;
3968
3969 pos = ifc.ifc_buf;
3970 len = ifc.ifc_len;
3971
3972 /*
3973 * Loop over the interfaces, and write an info block for each.
3974 */
3975
3976 total = 0;
3977 for_each_netdev(net, dev) {
3978 for (i = 0; i < NPROTO; i++) {
3979 if (gifconf_list[i]) {
3980 int done;
3981 if (!pos)
3982 done = gifconf_list[i](dev, NULL, 0);
3983 else
3984 done = gifconf_list[i](dev, pos + total,
3985 len - total);
3986 if (done < 0)
3987 return -EFAULT;
3988 total += done;
3989 }
3990 }
3991 }
3992
3993 /*
3994 * All done. Write the updated control block back to the caller.
3995 */
3996 ifc.ifc_len = total;
3997
3998 /*
3999 * Both BSD and Solaris return 0 here, so we do too.
4000 */
4001 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4002 }
4003
4004 #ifdef CONFIG_PROC_FS
4005
4006 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4007
4008 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4009 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4010 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4011
4012 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4013 {
4014 struct net *net = seq_file_net(seq);
4015 struct net_device *dev;
4016 struct hlist_node *p;
4017 struct hlist_head *h;
4018 unsigned int count = 0, offset = get_offset(*pos);
4019
4020 h = &net->dev_name_head[get_bucket(*pos)];
4021 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4022 if (++count == offset)
4023 return dev;
4024 }
4025
4026 return NULL;
4027 }
4028
4029 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4030 {
4031 struct net_device *dev;
4032 unsigned int bucket;
4033
4034 do {
4035 dev = dev_from_same_bucket(seq, pos);
4036 if (dev)
4037 return dev;
4038
4039 bucket = get_bucket(*pos) + 1;
4040 *pos = set_bucket_offset(bucket, 1);
4041 } while (bucket < NETDEV_HASHENTRIES);
4042
4043 return NULL;
4044 }
4045
4046 /*
4047 * This is invoked by the /proc filesystem handler to display a device
4048 * in detail.
4049 */
4050 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4051 __acquires(RCU)
4052 {
4053 rcu_read_lock();
4054 if (!*pos)
4055 return SEQ_START_TOKEN;
4056
4057 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4058 return NULL;
4059
4060 return dev_from_bucket(seq, pos);
4061 }
4062
4063 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4064 {
4065 ++*pos;
4066 return dev_from_bucket(seq, pos);
4067 }
4068
4069 void dev_seq_stop(struct seq_file *seq, void *v)
4070 __releases(RCU)
4071 {
4072 rcu_read_unlock();
4073 }
4074
4075 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4076 {
4077 struct rtnl_link_stats64 temp;
4078 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4079
4080 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4081 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4082 dev->name, stats->rx_bytes, stats->rx_packets,
4083 stats->rx_errors,
4084 stats->rx_dropped + stats->rx_missed_errors,
4085 stats->rx_fifo_errors,
4086 stats->rx_length_errors + stats->rx_over_errors +
4087 stats->rx_crc_errors + stats->rx_frame_errors,
4088 stats->rx_compressed, stats->multicast,
4089 stats->tx_bytes, stats->tx_packets,
4090 stats->tx_errors, stats->tx_dropped,
4091 stats->tx_fifo_errors, stats->collisions,
4092 stats->tx_carrier_errors +
4093 stats->tx_aborted_errors +
4094 stats->tx_window_errors +
4095 stats->tx_heartbeat_errors,
4096 stats->tx_compressed);
4097 }
4098
4099 /*
4100 * Called from the PROCfs module. This now uses the new arbitrary sized
4101 * /proc/net interface to create /proc/net/dev
4102 */
4103 static int dev_seq_show(struct seq_file *seq, void *v)
4104 {
4105 if (v == SEQ_START_TOKEN)
4106 seq_puts(seq, "Inter-| Receive "
4107 " | Transmit\n"
4108 " face |bytes packets errs drop fifo frame "
4109 "compressed multicast|bytes packets errs "
4110 "drop fifo colls carrier compressed\n");
4111 else
4112 dev_seq_printf_stats(seq, v);
4113 return 0;
4114 }
4115
4116 static struct softnet_data *softnet_get_online(loff_t *pos)
4117 {
4118 struct softnet_data *sd = NULL;
4119
4120 while (*pos < nr_cpu_ids)
4121 if (cpu_online(*pos)) {
4122 sd = &per_cpu(softnet_data, *pos);
4123 break;
4124 } else
4125 ++*pos;
4126 return sd;
4127 }
4128
4129 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4130 {
4131 return softnet_get_online(pos);
4132 }
4133
4134 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4135 {
4136 ++*pos;
4137 return softnet_get_online(pos);
4138 }
4139
4140 static void softnet_seq_stop(struct seq_file *seq, void *v)
4141 {
4142 }
4143
4144 static int softnet_seq_show(struct seq_file *seq, void *v)
4145 {
4146 struct softnet_data *sd = v;
4147
4148 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4149 sd->processed, sd->dropped, sd->time_squeeze, 0,
4150 0, 0, 0, 0, /* was fastroute */
4151 sd->cpu_collision, sd->received_rps);
4152 return 0;
4153 }
4154
4155 static const struct seq_operations dev_seq_ops = {
4156 .start = dev_seq_start,
4157 .next = dev_seq_next,
4158 .stop = dev_seq_stop,
4159 .show = dev_seq_show,
4160 };
4161
4162 static int dev_seq_open(struct inode *inode, struct file *file)
4163 {
4164 return seq_open_net(inode, file, &dev_seq_ops,
4165 sizeof(struct seq_net_private));
4166 }
4167
4168 static const struct file_operations dev_seq_fops = {
4169 .owner = THIS_MODULE,
4170 .open = dev_seq_open,
4171 .read = seq_read,
4172 .llseek = seq_lseek,
4173 .release = seq_release_net,
4174 };
4175
4176 static const struct seq_operations softnet_seq_ops = {
4177 .start = softnet_seq_start,
4178 .next = softnet_seq_next,
4179 .stop = softnet_seq_stop,
4180 .show = softnet_seq_show,
4181 };
4182
4183 static int softnet_seq_open(struct inode *inode, struct file *file)
4184 {
4185 return seq_open(file, &softnet_seq_ops);
4186 }
4187
4188 static const struct file_operations softnet_seq_fops = {
4189 .owner = THIS_MODULE,
4190 .open = softnet_seq_open,
4191 .read = seq_read,
4192 .llseek = seq_lseek,
4193 .release = seq_release,
4194 };
4195
4196 static void *ptype_get_idx(loff_t pos)
4197 {
4198 struct packet_type *pt = NULL;
4199 loff_t i = 0;
4200 int t;
4201
4202 list_for_each_entry_rcu(pt, &ptype_all, list) {
4203 if (i == pos)
4204 return pt;
4205 ++i;
4206 }
4207
4208 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4209 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4210 if (i == pos)
4211 return pt;
4212 ++i;
4213 }
4214 }
4215 return NULL;
4216 }
4217
4218 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4219 __acquires(RCU)
4220 {
4221 rcu_read_lock();
4222 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4223 }
4224
4225 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4226 {
4227 struct packet_type *pt;
4228 struct list_head *nxt;
4229 int hash;
4230
4231 ++*pos;
4232 if (v == SEQ_START_TOKEN)
4233 return ptype_get_idx(0);
4234
4235 pt = v;
4236 nxt = pt->list.next;
4237 if (pt->type == htons(ETH_P_ALL)) {
4238 if (nxt != &ptype_all)
4239 goto found;
4240 hash = 0;
4241 nxt = ptype_base[0].next;
4242 } else
4243 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4244
4245 while (nxt == &ptype_base[hash]) {
4246 if (++hash >= PTYPE_HASH_SIZE)
4247 return NULL;
4248 nxt = ptype_base[hash].next;
4249 }
4250 found:
4251 return list_entry(nxt, struct packet_type, list);
4252 }
4253
4254 static void ptype_seq_stop(struct seq_file *seq, void *v)
4255 __releases(RCU)
4256 {
4257 rcu_read_unlock();
4258 }
4259
4260 static int ptype_seq_show(struct seq_file *seq, void *v)
4261 {
4262 struct packet_type *pt = v;
4263
4264 if (v == SEQ_START_TOKEN)
4265 seq_puts(seq, "Type Device Function\n");
4266 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4267 if (pt->type == htons(ETH_P_ALL))
4268 seq_puts(seq, "ALL ");
4269 else
4270 seq_printf(seq, "%04x", ntohs(pt->type));
4271
4272 seq_printf(seq, " %-8s %pF\n",
4273 pt->dev ? pt->dev->name : "", pt->func);
4274 }
4275
4276 return 0;
4277 }
4278
4279 static const struct seq_operations ptype_seq_ops = {
4280 .start = ptype_seq_start,
4281 .next = ptype_seq_next,
4282 .stop = ptype_seq_stop,
4283 .show = ptype_seq_show,
4284 };
4285
4286 static int ptype_seq_open(struct inode *inode, struct file *file)
4287 {
4288 return seq_open_net(inode, file, &ptype_seq_ops,
4289 sizeof(struct seq_net_private));
4290 }
4291
4292 static const struct file_operations ptype_seq_fops = {
4293 .owner = THIS_MODULE,
4294 .open = ptype_seq_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = seq_release_net,
4298 };
4299
4300
4301 static int __net_init dev_proc_net_init(struct net *net)
4302 {
4303 int rc = -ENOMEM;
4304
4305 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4306 goto out;
4307 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4308 goto out_dev;
4309 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4310 goto out_softnet;
4311
4312 if (wext_proc_init(net))
4313 goto out_ptype;
4314 rc = 0;
4315 out:
4316 return rc;
4317 out_ptype:
4318 proc_net_remove(net, "ptype");
4319 out_softnet:
4320 proc_net_remove(net, "softnet_stat");
4321 out_dev:
4322 proc_net_remove(net, "dev");
4323 goto out;
4324 }
4325
4326 static void __net_exit dev_proc_net_exit(struct net *net)
4327 {
4328 wext_proc_exit(net);
4329
4330 proc_net_remove(net, "ptype");
4331 proc_net_remove(net, "softnet_stat");
4332 proc_net_remove(net, "dev");
4333 }
4334
4335 static struct pernet_operations __net_initdata dev_proc_ops = {
4336 .init = dev_proc_net_init,
4337 .exit = dev_proc_net_exit,
4338 };
4339
4340 static int __init dev_proc_init(void)
4341 {
4342 return register_pernet_subsys(&dev_proc_ops);
4343 }
4344 #else
4345 #define dev_proc_init() 0
4346 #endif /* CONFIG_PROC_FS */
4347
4348
4349 /**
4350 * netdev_set_master - set up master pointer
4351 * @slave: slave device
4352 * @master: new master device
4353 *
4354 * Changes the master device of the slave. Pass %NULL to break the
4355 * bonding. The caller must hold the RTNL semaphore. On a failure
4356 * a negative errno code is returned. On success the reference counts
4357 * are adjusted and the function returns zero.
4358 */
4359 int netdev_set_master(struct net_device *slave, struct net_device *master)
4360 {
4361 struct net_device *old = slave->master;
4362
4363 ASSERT_RTNL();
4364
4365 if (master) {
4366 if (old)
4367 return -EBUSY;
4368 dev_hold(master);
4369 }
4370
4371 slave->master = master;
4372
4373 if (old)
4374 dev_put(old);
4375 return 0;
4376 }
4377 EXPORT_SYMBOL(netdev_set_master);
4378
4379 /**
4380 * netdev_set_bond_master - set up bonding master/slave pair
4381 * @slave: slave device
4382 * @master: new master device
4383 *
4384 * Changes the master device of the slave. Pass %NULL to break the
4385 * bonding. The caller must hold the RTNL semaphore. On a failure
4386 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4387 * to the routing socket and the function returns zero.
4388 */
4389 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4390 {
4391 int err;
4392
4393 ASSERT_RTNL();
4394
4395 err = netdev_set_master(slave, master);
4396 if (err)
4397 return err;
4398 if (master)
4399 slave->flags |= IFF_SLAVE;
4400 else
4401 slave->flags &= ~IFF_SLAVE;
4402
4403 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4404 return 0;
4405 }
4406 EXPORT_SYMBOL(netdev_set_bond_master);
4407
4408 static void dev_change_rx_flags(struct net_device *dev, int flags)
4409 {
4410 const struct net_device_ops *ops = dev->netdev_ops;
4411
4412 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4413 ops->ndo_change_rx_flags(dev, flags);
4414 }
4415
4416 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4417 {
4418 unsigned int old_flags = dev->flags;
4419 uid_t uid;
4420 gid_t gid;
4421
4422 ASSERT_RTNL();
4423
4424 dev->flags |= IFF_PROMISC;
4425 dev->promiscuity += inc;
4426 if (dev->promiscuity == 0) {
4427 /*
4428 * Avoid overflow.
4429 * If inc causes overflow, untouch promisc and return error.
4430 */
4431 if (inc < 0)
4432 dev->flags &= ~IFF_PROMISC;
4433 else {
4434 dev->promiscuity -= inc;
4435 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4436 dev->name);
4437 return -EOVERFLOW;
4438 }
4439 }
4440 if (dev->flags != old_flags) {
4441 pr_info("device %s %s promiscuous mode\n",
4442 dev->name,
4443 dev->flags & IFF_PROMISC ? "entered" : "left");
4444 if (audit_enabled) {
4445 current_uid_gid(&uid, &gid);
4446 audit_log(current->audit_context, GFP_ATOMIC,
4447 AUDIT_ANOM_PROMISCUOUS,
4448 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4449 dev->name, (dev->flags & IFF_PROMISC),
4450 (old_flags & IFF_PROMISC),
4451 audit_get_loginuid(current),
4452 uid, gid,
4453 audit_get_sessionid(current));
4454 }
4455
4456 dev_change_rx_flags(dev, IFF_PROMISC);
4457 }
4458 return 0;
4459 }
4460
4461 /**
4462 * dev_set_promiscuity - update promiscuity count on a device
4463 * @dev: device
4464 * @inc: modifier
4465 *
4466 * Add or remove promiscuity from a device. While the count in the device
4467 * remains above zero the interface remains promiscuous. Once it hits zero
4468 * the device reverts back to normal filtering operation. A negative inc
4469 * value is used to drop promiscuity on the device.
4470 * Return 0 if successful or a negative errno code on error.
4471 */
4472 int dev_set_promiscuity(struct net_device *dev, int inc)
4473 {
4474 unsigned int old_flags = dev->flags;
4475 int err;
4476
4477 err = __dev_set_promiscuity(dev, inc);
4478 if (err < 0)
4479 return err;
4480 if (dev->flags != old_flags)
4481 dev_set_rx_mode(dev);
4482 return err;
4483 }
4484 EXPORT_SYMBOL(dev_set_promiscuity);
4485
4486 /**
4487 * dev_set_allmulti - update allmulti count on a device
4488 * @dev: device
4489 * @inc: modifier
4490 *
4491 * Add or remove reception of all multicast frames to a device. While the
4492 * count in the device remains above zero the interface remains listening
4493 * to all interfaces. Once it hits zero the device reverts back to normal
4494 * filtering operation. A negative @inc value is used to drop the counter
4495 * when releasing a resource needing all multicasts.
4496 * Return 0 if successful or a negative errno code on error.
4497 */
4498
4499 int dev_set_allmulti(struct net_device *dev, int inc)
4500 {
4501 unsigned int old_flags = dev->flags;
4502
4503 ASSERT_RTNL();
4504
4505 dev->flags |= IFF_ALLMULTI;
4506 dev->allmulti += inc;
4507 if (dev->allmulti == 0) {
4508 /*
4509 * Avoid overflow.
4510 * If inc causes overflow, untouch allmulti and return error.
4511 */
4512 if (inc < 0)
4513 dev->flags &= ~IFF_ALLMULTI;
4514 else {
4515 dev->allmulti -= inc;
4516 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4517 dev->name);
4518 return -EOVERFLOW;
4519 }
4520 }
4521 if (dev->flags ^ old_flags) {
4522 dev_change_rx_flags(dev, IFF_ALLMULTI);
4523 dev_set_rx_mode(dev);
4524 }
4525 return 0;
4526 }
4527 EXPORT_SYMBOL(dev_set_allmulti);
4528
4529 /*
4530 * Upload unicast and multicast address lists to device and
4531 * configure RX filtering. When the device doesn't support unicast
4532 * filtering it is put in promiscuous mode while unicast addresses
4533 * are present.
4534 */
4535 void __dev_set_rx_mode(struct net_device *dev)
4536 {
4537 const struct net_device_ops *ops = dev->netdev_ops;
4538
4539 /* dev_open will call this function so the list will stay sane. */
4540 if (!(dev->flags&IFF_UP))
4541 return;
4542
4543 if (!netif_device_present(dev))
4544 return;
4545
4546 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4547 /* Unicast addresses changes may only happen under the rtnl,
4548 * therefore calling __dev_set_promiscuity here is safe.
4549 */
4550 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4551 __dev_set_promiscuity(dev, 1);
4552 dev->uc_promisc = true;
4553 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4554 __dev_set_promiscuity(dev, -1);
4555 dev->uc_promisc = false;
4556 }
4557 }
4558
4559 if (ops->ndo_set_rx_mode)
4560 ops->ndo_set_rx_mode(dev);
4561 }
4562
4563 void dev_set_rx_mode(struct net_device *dev)
4564 {
4565 netif_addr_lock_bh(dev);
4566 __dev_set_rx_mode(dev);
4567 netif_addr_unlock_bh(dev);
4568 }
4569
4570 /**
4571 * dev_get_flags - get flags reported to userspace
4572 * @dev: device
4573 *
4574 * Get the combination of flag bits exported through APIs to userspace.
4575 */
4576 unsigned int dev_get_flags(const struct net_device *dev)
4577 {
4578 unsigned int flags;
4579
4580 flags = (dev->flags & ~(IFF_PROMISC |
4581 IFF_ALLMULTI |
4582 IFF_RUNNING |
4583 IFF_LOWER_UP |
4584 IFF_DORMANT)) |
4585 (dev->gflags & (IFF_PROMISC |
4586 IFF_ALLMULTI));
4587
4588 if (netif_running(dev)) {
4589 if (netif_oper_up(dev))
4590 flags |= IFF_RUNNING;
4591 if (netif_carrier_ok(dev))
4592 flags |= IFF_LOWER_UP;
4593 if (netif_dormant(dev))
4594 flags |= IFF_DORMANT;
4595 }
4596
4597 return flags;
4598 }
4599 EXPORT_SYMBOL(dev_get_flags);
4600
4601 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4602 {
4603 unsigned int old_flags = dev->flags;
4604 int ret;
4605
4606 ASSERT_RTNL();
4607
4608 /*
4609 * Set the flags on our device.
4610 */
4611
4612 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4613 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4614 IFF_AUTOMEDIA)) |
4615 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4616 IFF_ALLMULTI));
4617
4618 /*
4619 * Load in the correct multicast list now the flags have changed.
4620 */
4621
4622 if ((old_flags ^ flags) & IFF_MULTICAST)
4623 dev_change_rx_flags(dev, IFF_MULTICAST);
4624
4625 dev_set_rx_mode(dev);
4626
4627 /*
4628 * Have we downed the interface. We handle IFF_UP ourselves
4629 * according to user attempts to set it, rather than blindly
4630 * setting it.
4631 */
4632
4633 ret = 0;
4634 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4635 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4636
4637 if (!ret)
4638 dev_set_rx_mode(dev);
4639 }
4640
4641 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4642 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4643
4644 dev->gflags ^= IFF_PROMISC;
4645 dev_set_promiscuity(dev, inc);
4646 }
4647
4648 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4649 is important. Some (broken) drivers set IFF_PROMISC, when
4650 IFF_ALLMULTI is requested not asking us and not reporting.
4651 */
4652 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4653 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4654
4655 dev->gflags ^= IFF_ALLMULTI;
4656 dev_set_allmulti(dev, inc);
4657 }
4658
4659 return ret;
4660 }
4661
4662 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4663 {
4664 unsigned int changes = dev->flags ^ old_flags;
4665
4666 if (changes & IFF_UP) {
4667 if (dev->flags & IFF_UP)
4668 call_netdevice_notifiers(NETDEV_UP, dev);
4669 else
4670 call_netdevice_notifiers(NETDEV_DOWN, dev);
4671 }
4672
4673 if (dev->flags & IFF_UP &&
4674 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4675 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4676 }
4677
4678 /**
4679 * dev_change_flags - change device settings
4680 * @dev: device
4681 * @flags: device state flags
4682 *
4683 * Change settings on device based state flags. The flags are
4684 * in the userspace exported format.
4685 */
4686 int dev_change_flags(struct net_device *dev, unsigned int flags)
4687 {
4688 int ret;
4689 unsigned int changes, old_flags = dev->flags;
4690
4691 ret = __dev_change_flags(dev, flags);
4692 if (ret < 0)
4693 return ret;
4694
4695 changes = old_flags ^ dev->flags;
4696 if (changes)
4697 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4698
4699 __dev_notify_flags(dev, old_flags);
4700 return ret;
4701 }
4702 EXPORT_SYMBOL(dev_change_flags);
4703
4704 /**
4705 * dev_set_mtu - Change maximum transfer unit
4706 * @dev: device
4707 * @new_mtu: new transfer unit
4708 *
4709 * Change the maximum transfer size of the network device.
4710 */
4711 int dev_set_mtu(struct net_device *dev, int new_mtu)
4712 {
4713 const struct net_device_ops *ops = dev->netdev_ops;
4714 int err;
4715
4716 if (new_mtu == dev->mtu)
4717 return 0;
4718
4719 /* MTU must be positive. */
4720 if (new_mtu < 0)
4721 return -EINVAL;
4722
4723 if (!netif_device_present(dev))
4724 return -ENODEV;
4725
4726 err = 0;
4727 if (ops->ndo_change_mtu)
4728 err = ops->ndo_change_mtu(dev, new_mtu);
4729 else
4730 dev->mtu = new_mtu;
4731
4732 if (!err && dev->flags & IFF_UP)
4733 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4734 return err;
4735 }
4736 EXPORT_SYMBOL(dev_set_mtu);
4737
4738 /**
4739 * dev_set_group - Change group this device belongs to
4740 * @dev: device
4741 * @new_group: group this device should belong to
4742 */
4743 void dev_set_group(struct net_device *dev, int new_group)
4744 {
4745 dev->group = new_group;
4746 }
4747 EXPORT_SYMBOL(dev_set_group);
4748
4749 /**
4750 * dev_set_mac_address - Change Media Access Control Address
4751 * @dev: device
4752 * @sa: new address
4753 *
4754 * Change the hardware (MAC) address of the device
4755 */
4756 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4757 {
4758 const struct net_device_ops *ops = dev->netdev_ops;
4759 int err;
4760
4761 if (!ops->ndo_set_mac_address)
4762 return -EOPNOTSUPP;
4763 if (sa->sa_family != dev->type)
4764 return -EINVAL;
4765 if (!netif_device_present(dev))
4766 return -ENODEV;
4767 err = ops->ndo_set_mac_address(dev, sa);
4768 if (!err)
4769 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4770 return err;
4771 }
4772 EXPORT_SYMBOL(dev_set_mac_address);
4773
4774 /*
4775 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4776 */
4777 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4778 {
4779 int err;
4780 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4781
4782 if (!dev)
4783 return -ENODEV;
4784
4785 switch (cmd) {
4786 case SIOCGIFFLAGS: /* Get interface flags */
4787 ifr->ifr_flags = (short) dev_get_flags(dev);
4788 return 0;
4789
4790 case SIOCGIFMETRIC: /* Get the metric on the interface
4791 (currently unused) */
4792 ifr->ifr_metric = 0;
4793 return 0;
4794
4795 case SIOCGIFMTU: /* Get the MTU of a device */
4796 ifr->ifr_mtu = dev->mtu;
4797 return 0;
4798
4799 case SIOCGIFHWADDR:
4800 if (!dev->addr_len)
4801 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4802 else
4803 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4804 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4805 ifr->ifr_hwaddr.sa_family = dev->type;
4806 return 0;
4807
4808 case SIOCGIFSLAVE:
4809 err = -EINVAL;
4810 break;
4811
4812 case SIOCGIFMAP:
4813 ifr->ifr_map.mem_start = dev->mem_start;
4814 ifr->ifr_map.mem_end = dev->mem_end;
4815 ifr->ifr_map.base_addr = dev->base_addr;
4816 ifr->ifr_map.irq = dev->irq;
4817 ifr->ifr_map.dma = dev->dma;
4818 ifr->ifr_map.port = dev->if_port;
4819 return 0;
4820
4821 case SIOCGIFINDEX:
4822 ifr->ifr_ifindex = dev->ifindex;
4823 return 0;
4824
4825 case SIOCGIFTXQLEN:
4826 ifr->ifr_qlen = dev->tx_queue_len;
4827 return 0;
4828
4829 default:
4830 /* dev_ioctl() should ensure this case
4831 * is never reached
4832 */
4833 WARN_ON(1);
4834 err = -ENOTTY;
4835 break;
4836
4837 }
4838 return err;
4839 }
4840
4841 /*
4842 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4843 */
4844 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4845 {
4846 int err;
4847 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4848 const struct net_device_ops *ops;
4849
4850 if (!dev)
4851 return -ENODEV;
4852
4853 ops = dev->netdev_ops;
4854
4855 switch (cmd) {
4856 case SIOCSIFFLAGS: /* Set interface flags */
4857 return dev_change_flags(dev, ifr->ifr_flags);
4858
4859 case SIOCSIFMETRIC: /* Set the metric on the interface
4860 (currently unused) */
4861 return -EOPNOTSUPP;
4862
4863 case SIOCSIFMTU: /* Set the MTU of a device */
4864 return dev_set_mtu(dev, ifr->ifr_mtu);
4865
4866 case SIOCSIFHWADDR:
4867 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4868
4869 case SIOCSIFHWBROADCAST:
4870 if (ifr->ifr_hwaddr.sa_family != dev->type)
4871 return -EINVAL;
4872 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4873 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4874 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4875 return 0;
4876
4877 case SIOCSIFMAP:
4878 if (ops->ndo_set_config) {
4879 if (!netif_device_present(dev))
4880 return -ENODEV;
4881 return ops->ndo_set_config(dev, &ifr->ifr_map);
4882 }
4883 return -EOPNOTSUPP;
4884
4885 case SIOCADDMULTI:
4886 if (!ops->ndo_set_rx_mode ||
4887 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4888 return -EINVAL;
4889 if (!netif_device_present(dev))
4890 return -ENODEV;
4891 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4892
4893 case SIOCDELMULTI:
4894 if (!ops->ndo_set_rx_mode ||
4895 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4896 return -EINVAL;
4897 if (!netif_device_present(dev))
4898 return -ENODEV;
4899 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4900
4901 case SIOCSIFTXQLEN:
4902 if (ifr->ifr_qlen < 0)
4903 return -EINVAL;
4904 dev->tx_queue_len = ifr->ifr_qlen;
4905 return 0;
4906
4907 case SIOCSIFNAME:
4908 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4909 return dev_change_name(dev, ifr->ifr_newname);
4910
4911 case SIOCSHWTSTAMP:
4912 err = net_hwtstamp_validate(ifr);
4913 if (err)
4914 return err;
4915 /* fall through */
4916
4917 /*
4918 * Unknown or private ioctl
4919 */
4920 default:
4921 if ((cmd >= SIOCDEVPRIVATE &&
4922 cmd <= SIOCDEVPRIVATE + 15) ||
4923 cmd == SIOCBONDENSLAVE ||
4924 cmd == SIOCBONDRELEASE ||
4925 cmd == SIOCBONDSETHWADDR ||
4926 cmd == SIOCBONDSLAVEINFOQUERY ||
4927 cmd == SIOCBONDINFOQUERY ||
4928 cmd == SIOCBONDCHANGEACTIVE ||
4929 cmd == SIOCGMIIPHY ||
4930 cmd == SIOCGMIIREG ||
4931 cmd == SIOCSMIIREG ||
4932 cmd == SIOCBRADDIF ||
4933 cmd == SIOCBRDELIF ||
4934 cmd == SIOCSHWTSTAMP ||
4935 cmd == SIOCWANDEV) {
4936 err = -EOPNOTSUPP;
4937 if (ops->ndo_do_ioctl) {
4938 if (netif_device_present(dev))
4939 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4940 else
4941 err = -ENODEV;
4942 }
4943 } else
4944 err = -EINVAL;
4945
4946 }
4947 return err;
4948 }
4949
4950 /*
4951 * This function handles all "interface"-type I/O control requests. The actual
4952 * 'doing' part of this is dev_ifsioc above.
4953 */
4954
4955 /**
4956 * dev_ioctl - network device ioctl
4957 * @net: the applicable net namespace
4958 * @cmd: command to issue
4959 * @arg: pointer to a struct ifreq in user space
4960 *
4961 * Issue ioctl functions to devices. This is normally called by the
4962 * user space syscall interfaces but can sometimes be useful for
4963 * other purposes. The return value is the return from the syscall if
4964 * positive or a negative errno code on error.
4965 */
4966
4967 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4968 {
4969 struct ifreq ifr;
4970 int ret;
4971 char *colon;
4972
4973 /* One special case: SIOCGIFCONF takes ifconf argument
4974 and requires shared lock, because it sleeps writing
4975 to user space.
4976 */
4977
4978 if (cmd == SIOCGIFCONF) {
4979 rtnl_lock();
4980 ret = dev_ifconf(net, (char __user *) arg);
4981 rtnl_unlock();
4982 return ret;
4983 }
4984 if (cmd == SIOCGIFNAME)
4985 return dev_ifname(net, (struct ifreq __user *)arg);
4986
4987 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4988 return -EFAULT;
4989
4990 ifr.ifr_name[IFNAMSIZ-1] = 0;
4991
4992 colon = strchr(ifr.ifr_name, ':');
4993 if (colon)
4994 *colon = 0;
4995
4996 /*
4997 * See which interface the caller is talking about.
4998 */
4999
5000 switch (cmd) {
5001 /*
5002 * These ioctl calls:
5003 * - can be done by all.
5004 * - atomic and do not require locking.
5005 * - return a value
5006 */
5007 case SIOCGIFFLAGS:
5008 case SIOCGIFMETRIC:
5009 case SIOCGIFMTU:
5010 case SIOCGIFHWADDR:
5011 case SIOCGIFSLAVE:
5012 case SIOCGIFMAP:
5013 case SIOCGIFINDEX:
5014 case SIOCGIFTXQLEN:
5015 dev_load(net, ifr.ifr_name);
5016 rcu_read_lock();
5017 ret = dev_ifsioc_locked(net, &ifr, cmd);
5018 rcu_read_unlock();
5019 if (!ret) {
5020 if (colon)
5021 *colon = ':';
5022 if (copy_to_user(arg, &ifr,
5023 sizeof(struct ifreq)))
5024 ret = -EFAULT;
5025 }
5026 return ret;
5027
5028 case SIOCETHTOOL:
5029 dev_load(net, ifr.ifr_name);
5030 rtnl_lock();
5031 ret = dev_ethtool(net, &ifr);
5032 rtnl_unlock();
5033 if (!ret) {
5034 if (colon)
5035 *colon = ':';
5036 if (copy_to_user(arg, &ifr,
5037 sizeof(struct ifreq)))
5038 ret = -EFAULT;
5039 }
5040 return ret;
5041
5042 /*
5043 * These ioctl calls:
5044 * - require superuser power.
5045 * - require strict serialization.
5046 * - return a value
5047 */
5048 case SIOCGMIIPHY:
5049 case SIOCGMIIREG:
5050 case SIOCSIFNAME:
5051 if (!capable(CAP_NET_ADMIN))
5052 return -EPERM;
5053 dev_load(net, ifr.ifr_name);
5054 rtnl_lock();
5055 ret = dev_ifsioc(net, &ifr, cmd);
5056 rtnl_unlock();
5057 if (!ret) {
5058 if (colon)
5059 *colon = ':';
5060 if (copy_to_user(arg, &ifr,
5061 sizeof(struct ifreq)))
5062 ret = -EFAULT;
5063 }
5064 return ret;
5065
5066 /*
5067 * These ioctl calls:
5068 * - require superuser power.
5069 * - require strict serialization.
5070 * - do not return a value
5071 */
5072 case SIOCSIFFLAGS:
5073 case SIOCSIFMETRIC:
5074 case SIOCSIFMTU:
5075 case SIOCSIFMAP:
5076 case SIOCSIFHWADDR:
5077 case SIOCSIFSLAVE:
5078 case SIOCADDMULTI:
5079 case SIOCDELMULTI:
5080 case SIOCSIFHWBROADCAST:
5081 case SIOCSIFTXQLEN:
5082 case SIOCSMIIREG:
5083 case SIOCBONDENSLAVE:
5084 case SIOCBONDRELEASE:
5085 case SIOCBONDSETHWADDR:
5086 case SIOCBONDCHANGEACTIVE:
5087 case SIOCBRADDIF:
5088 case SIOCBRDELIF:
5089 case SIOCSHWTSTAMP:
5090 if (!capable(CAP_NET_ADMIN))
5091 return -EPERM;
5092 /* fall through */
5093 case SIOCBONDSLAVEINFOQUERY:
5094 case SIOCBONDINFOQUERY:
5095 dev_load(net, ifr.ifr_name);
5096 rtnl_lock();
5097 ret = dev_ifsioc(net, &ifr, cmd);
5098 rtnl_unlock();
5099 return ret;
5100
5101 case SIOCGIFMEM:
5102 /* Get the per device memory space. We can add this but
5103 * currently do not support it */
5104 case SIOCSIFMEM:
5105 /* Set the per device memory buffer space.
5106 * Not applicable in our case */
5107 case SIOCSIFLINK:
5108 return -ENOTTY;
5109
5110 /*
5111 * Unknown or private ioctl.
5112 */
5113 default:
5114 if (cmd == SIOCWANDEV ||
5115 (cmd >= SIOCDEVPRIVATE &&
5116 cmd <= SIOCDEVPRIVATE + 15)) {
5117 dev_load(net, ifr.ifr_name);
5118 rtnl_lock();
5119 ret = dev_ifsioc(net, &ifr, cmd);
5120 rtnl_unlock();
5121 if (!ret && copy_to_user(arg, &ifr,
5122 sizeof(struct ifreq)))
5123 ret = -EFAULT;
5124 return ret;
5125 }
5126 /* Take care of Wireless Extensions */
5127 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5128 return wext_handle_ioctl(net, &ifr, cmd, arg);
5129 return -ENOTTY;
5130 }
5131 }
5132
5133
5134 /**
5135 * dev_new_index - allocate an ifindex
5136 * @net: the applicable net namespace
5137 *
5138 * Returns a suitable unique value for a new device interface
5139 * number. The caller must hold the rtnl semaphore or the
5140 * dev_base_lock to be sure it remains unique.
5141 */
5142 static int dev_new_index(struct net *net)
5143 {
5144 static int ifindex;
5145 for (;;) {
5146 if (++ifindex <= 0)
5147 ifindex = 1;
5148 if (!__dev_get_by_index(net, ifindex))
5149 return ifindex;
5150 }
5151 }
5152
5153 /* Delayed registration/unregisteration */
5154 static LIST_HEAD(net_todo_list);
5155
5156 static void net_set_todo(struct net_device *dev)
5157 {
5158 list_add_tail(&dev->todo_list, &net_todo_list);
5159 }
5160
5161 static void rollback_registered_many(struct list_head *head)
5162 {
5163 struct net_device *dev, *tmp;
5164
5165 BUG_ON(dev_boot_phase);
5166 ASSERT_RTNL();
5167
5168 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5169 /* Some devices call without registering
5170 * for initialization unwind. Remove those
5171 * devices and proceed with the remaining.
5172 */
5173 if (dev->reg_state == NETREG_UNINITIALIZED) {
5174 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5175 dev->name, dev);
5176
5177 WARN_ON(1);
5178 list_del(&dev->unreg_list);
5179 continue;
5180 }
5181 dev->dismantle = true;
5182 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5183 }
5184
5185 /* If device is running, close it first. */
5186 dev_close_many(head);
5187
5188 list_for_each_entry(dev, head, unreg_list) {
5189 /* And unlink it from device chain. */
5190 unlist_netdevice(dev);
5191
5192 dev->reg_state = NETREG_UNREGISTERING;
5193 }
5194
5195 synchronize_net();
5196
5197 list_for_each_entry(dev, head, unreg_list) {
5198 /* Shutdown queueing discipline. */
5199 dev_shutdown(dev);
5200
5201
5202 /* Notify protocols, that we are about to destroy
5203 this device. They should clean all the things.
5204 */
5205 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5206
5207 if (!dev->rtnl_link_ops ||
5208 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5209 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5210
5211 /*
5212 * Flush the unicast and multicast chains
5213 */
5214 dev_uc_flush(dev);
5215 dev_mc_flush(dev);
5216
5217 if (dev->netdev_ops->ndo_uninit)
5218 dev->netdev_ops->ndo_uninit(dev);
5219
5220 /* Notifier chain MUST detach us from master device. */
5221 WARN_ON(dev->master);
5222
5223 /* Remove entries from kobject tree */
5224 netdev_unregister_kobject(dev);
5225 }
5226
5227 /* Process any work delayed until the end of the batch */
5228 dev = list_first_entry(head, struct net_device, unreg_list);
5229 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5230
5231 synchronize_net();
5232
5233 list_for_each_entry(dev, head, unreg_list)
5234 dev_put(dev);
5235 }
5236
5237 static void rollback_registered(struct net_device *dev)
5238 {
5239 LIST_HEAD(single);
5240
5241 list_add(&dev->unreg_list, &single);
5242 rollback_registered_many(&single);
5243 list_del(&single);
5244 }
5245
5246 static netdev_features_t netdev_fix_features(struct net_device *dev,
5247 netdev_features_t features)
5248 {
5249 /* Fix illegal checksum combinations */
5250 if ((features & NETIF_F_HW_CSUM) &&
5251 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5252 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5253 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5254 }
5255
5256 /* Fix illegal SG+CSUM combinations. */
5257 if ((features & NETIF_F_SG) &&
5258 !(features & NETIF_F_ALL_CSUM)) {
5259 netdev_dbg(dev,
5260 "Dropping NETIF_F_SG since no checksum feature.\n");
5261 features &= ~NETIF_F_SG;
5262 }
5263
5264 /* TSO requires that SG is present as well. */
5265 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5266 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5267 features &= ~NETIF_F_ALL_TSO;
5268 }
5269
5270 /* TSO ECN requires that TSO is present as well. */
5271 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5272 features &= ~NETIF_F_TSO_ECN;
5273
5274 /* Software GSO depends on SG. */
5275 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5276 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5277 features &= ~NETIF_F_GSO;
5278 }
5279
5280 /* UFO needs SG and checksumming */
5281 if (features & NETIF_F_UFO) {
5282 /* maybe split UFO into V4 and V6? */
5283 if (!((features & NETIF_F_GEN_CSUM) ||
5284 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5285 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5286 netdev_dbg(dev,
5287 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5288 features &= ~NETIF_F_UFO;
5289 }
5290
5291 if (!(features & NETIF_F_SG)) {
5292 netdev_dbg(dev,
5293 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5294 features &= ~NETIF_F_UFO;
5295 }
5296 }
5297
5298 return features;
5299 }
5300
5301 int __netdev_update_features(struct net_device *dev)
5302 {
5303 netdev_features_t features;
5304 int err = 0;
5305
5306 ASSERT_RTNL();
5307
5308 features = netdev_get_wanted_features(dev);
5309
5310 if (dev->netdev_ops->ndo_fix_features)
5311 features = dev->netdev_ops->ndo_fix_features(dev, features);
5312
5313 /* driver might be less strict about feature dependencies */
5314 features = netdev_fix_features(dev, features);
5315
5316 if (dev->features == features)
5317 return 0;
5318
5319 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5320 &dev->features, &features);
5321
5322 if (dev->netdev_ops->ndo_set_features)
5323 err = dev->netdev_ops->ndo_set_features(dev, features);
5324
5325 if (unlikely(err < 0)) {
5326 netdev_err(dev,
5327 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5328 err, &features, &dev->features);
5329 return -1;
5330 }
5331
5332 if (!err)
5333 dev->features = features;
5334
5335 return 1;
5336 }
5337
5338 /**
5339 * netdev_update_features - recalculate device features
5340 * @dev: the device to check
5341 *
5342 * Recalculate dev->features set and send notifications if it
5343 * has changed. Should be called after driver or hardware dependent
5344 * conditions might have changed that influence the features.
5345 */
5346 void netdev_update_features(struct net_device *dev)
5347 {
5348 if (__netdev_update_features(dev))
5349 netdev_features_change(dev);
5350 }
5351 EXPORT_SYMBOL(netdev_update_features);
5352
5353 /**
5354 * netdev_change_features - recalculate device features
5355 * @dev: the device to check
5356 *
5357 * Recalculate dev->features set and send notifications even
5358 * if they have not changed. Should be called instead of
5359 * netdev_update_features() if also dev->vlan_features might
5360 * have changed to allow the changes to be propagated to stacked
5361 * VLAN devices.
5362 */
5363 void netdev_change_features(struct net_device *dev)
5364 {
5365 __netdev_update_features(dev);
5366 netdev_features_change(dev);
5367 }
5368 EXPORT_SYMBOL(netdev_change_features);
5369
5370 /**
5371 * netif_stacked_transfer_operstate - transfer operstate
5372 * @rootdev: the root or lower level device to transfer state from
5373 * @dev: the device to transfer operstate to
5374 *
5375 * Transfer operational state from root to device. This is normally
5376 * called when a stacking relationship exists between the root
5377 * device and the device(a leaf device).
5378 */
5379 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5380 struct net_device *dev)
5381 {
5382 if (rootdev->operstate == IF_OPER_DORMANT)
5383 netif_dormant_on(dev);
5384 else
5385 netif_dormant_off(dev);
5386
5387 if (netif_carrier_ok(rootdev)) {
5388 if (!netif_carrier_ok(dev))
5389 netif_carrier_on(dev);
5390 } else {
5391 if (netif_carrier_ok(dev))
5392 netif_carrier_off(dev);
5393 }
5394 }
5395 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5396
5397 #ifdef CONFIG_RPS
5398 static int netif_alloc_rx_queues(struct net_device *dev)
5399 {
5400 unsigned int i, count = dev->num_rx_queues;
5401 struct netdev_rx_queue *rx;
5402
5403 BUG_ON(count < 1);
5404
5405 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5406 if (!rx) {
5407 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5408 return -ENOMEM;
5409 }
5410 dev->_rx = rx;
5411
5412 for (i = 0; i < count; i++)
5413 rx[i].dev = dev;
5414 return 0;
5415 }
5416 #endif
5417
5418 static void netdev_init_one_queue(struct net_device *dev,
5419 struct netdev_queue *queue, void *_unused)
5420 {
5421 /* Initialize queue lock */
5422 spin_lock_init(&queue->_xmit_lock);
5423 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5424 queue->xmit_lock_owner = -1;
5425 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5426 queue->dev = dev;
5427 #ifdef CONFIG_BQL
5428 dql_init(&queue->dql, HZ);
5429 #endif
5430 }
5431
5432 static int netif_alloc_netdev_queues(struct net_device *dev)
5433 {
5434 unsigned int count = dev->num_tx_queues;
5435 struct netdev_queue *tx;
5436
5437 BUG_ON(count < 1);
5438
5439 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5440 if (!tx) {
5441 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5442 return -ENOMEM;
5443 }
5444 dev->_tx = tx;
5445
5446 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5447 spin_lock_init(&dev->tx_global_lock);
5448
5449 return 0;
5450 }
5451
5452 /**
5453 * register_netdevice - register a network device
5454 * @dev: device to register
5455 *
5456 * Take a completed network device structure and add it to the kernel
5457 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5458 * chain. 0 is returned on success. A negative errno code is returned
5459 * on a failure to set up the device, or if the name is a duplicate.
5460 *
5461 * Callers must hold the rtnl semaphore. You may want
5462 * register_netdev() instead of this.
5463 *
5464 * BUGS:
5465 * The locking appears insufficient to guarantee two parallel registers
5466 * will not get the same name.
5467 */
5468
5469 int register_netdevice(struct net_device *dev)
5470 {
5471 int ret;
5472 struct net *net = dev_net(dev);
5473
5474 BUG_ON(dev_boot_phase);
5475 ASSERT_RTNL();
5476
5477 might_sleep();
5478
5479 /* When net_device's are persistent, this will be fatal. */
5480 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5481 BUG_ON(!net);
5482
5483 spin_lock_init(&dev->addr_list_lock);
5484 netdev_set_addr_lockdep_class(dev);
5485
5486 dev->iflink = -1;
5487
5488 ret = dev_get_valid_name(dev, dev->name);
5489 if (ret < 0)
5490 goto out;
5491
5492 /* Init, if this function is available */
5493 if (dev->netdev_ops->ndo_init) {
5494 ret = dev->netdev_ops->ndo_init(dev);
5495 if (ret) {
5496 if (ret > 0)
5497 ret = -EIO;
5498 goto out;
5499 }
5500 }
5501
5502 dev->ifindex = dev_new_index(net);
5503 if (dev->iflink == -1)
5504 dev->iflink = dev->ifindex;
5505
5506 /* Transfer changeable features to wanted_features and enable
5507 * software offloads (GSO and GRO).
5508 */
5509 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5510 dev->features |= NETIF_F_SOFT_FEATURES;
5511 dev->wanted_features = dev->features & dev->hw_features;
5512
5513 /* Turn on no cache copy if HW is doing checksum */
5514 if (!(dev->flags & IFF_LOOPBACK)) {
5515 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5516 if (dev->features & NETIF_F_ALL_CSUM) {
5517 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5518 dev->features |= NETIF_F_NOCACHE_COPY;
5519 }
5520 }
5521
5522 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5523 */
5524 dev->vlan_features |= NETIF_F_HIGHDMA;
5525
5526 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5527 ret = notifier_to_errno(ret);
5528 if (ret)
5529 goto err_uninit;
5530
5531 ret = netdev_register_kobject(dev);
5532 if (ret)
5533 goto err_uninit;
5534 dev->reg_state = NETREG_REGISTERED;
5535
5536 __netdev_update_features(dev);
5537
5538 /*
5539 * Default initial state at registry is that the
5540 * device is present.
5541 */
5542
5543 set_bit(__LINK_STATE_PRESENT, &dev->state);
5544
5545 dev_init_scheduler(dev);
5546 dev_hold(dev);
5547 list_netdevice(dev);
5548
5549 /* Notify protocols, that a new device appeared. */
5550 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5551 ret = notifier_to_errno(ret);
5552 if (ret) {
5553 rollback_registered(dev);
5554 dev->reg_state = NETREG_UNREGISTERED;
5555 }
5556 /*
5557 * Prevent userspace races by waiting until the network
5558 * device is fully setup before sending notifications.
5559 */
5560 if (!dev->rtnl_link_ops ||
5561 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5562 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5563
5564 out:
5565 return ret;
5566
5567 err_uninit:
5568 if (dev->netdev_ops->ndo_uninit)
5569 dev->netdev_ops->ndo_uninit(dev);
5570 goto out;
5571 }
5572 EXPORT_SYMBOL(register_netdevice);
5573
5574 /**
5575 * init_dummy_netdev - init a dummy network device for NAPI
5576 * @dev: device to init
5577 *
5578 * This takes a network device structure and initialize the minimum
5579 * amount of fields so it can be used to schedule NAPI polls without
5580 * registering a full blown interface. This is to be used by drivers
5581 * that need to tie several hardware interfaces to a single NAPI
5582 * poll scheduler due to HW limitations.
5583 */
5584 int init_dummy_netdev(struct net_device *dev)
5585 {
5586 /* Clear everything. Note we don't initialize spinlocks
5587 * are they aren't supposed to be taken by any of the
5588 * NAPI code and this dummy netdev is supposed to be
5589 * only ever used for NAPI polls
5590 */
5591 memset(dev, 0, sizeof(struct net_device));
5592
5593 /* make sure we BUG if trying to hit standard
5594 * register/unregister code path
5595 */
5596 dev->reg_state = NETREG_DUMMY;
5597
5598 /* NAPI wants this */
5599 INIT_LIST_HEAD(&dev->napi_list);
5600
5601 /* a dummy interface is started by default */
5602 set_bit(__LINK_STATE_PRESENT, &dev->state);
5603 set_bit(__LINK_STATE_START, &dev->state);
5604
5605 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5606 * because users of this 'device' dont need to change
5607 * its refcount.
5608 */
5609
5610 return 0;
5611 }
5612 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5613
5614
5615 /**
5616 * register_netdev - register a network device
5617 * @dev: device to register
5618 *
5619 * Take a completed network device structure and add it to the kernel
5620 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5621 * chain. 0 is returned on success. A negative errno code is returned
5622 * on a failure to set up the device, or if the name is a duplicate.
5623 *
5624 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5625 * and expands the device name if you passed a format string to
5626 * alloc_netdev.
5627 */
5628 int register_netdev(struct net_device *dev)
5629 {
5630 int err;
5631
5632 rtnl_lock();
5633 err = register_netdevice(dev);
5634 rtnl_unlock();
5635 return err;
5636 }
5637 EXPORT_SYMBOL(register_netdev);
5638
5639 int netdev_refcnt_read(const struct net_device *dev)
5640 {
5641 int i, refcnt = 0;
5642
5643 for_each_possible_cpu(i)
5644 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5645 return refcnt;
5646 }
5647 EXPORT_SYMBOL(netdev_refcnt_read);
5648
5649 /*
5650 * netdev_wait_allrefs - wait until all references are gone.
5651 *
5652 * This is called when unregistering network devices.
5653 *
5654 * Any protocol or device that holds a reference should register
5655 * for netdevice notification, and cleanup and put back the
5656 * reference if they receive an UNREGISTER event.
5657 * We can get stuck here if buggy protocols don't correctly
5658 * call dev_put.
5659 */
5660 static void netdev_wait_allrefs(struct net_device *dev)
5661 {
5662 unsigned long rebroadcast_time, warning_time;
5663 int refcnt;
5664
5665 linkwatch_forget_dev(dev);
5666
5667 rebroadcast_time = warning_time = jiffies;
5668 refcnt = netdev_refcnt_read(dev);
5669
5670 while (refcnt != 0) {
5671 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5672 rtnl_lock();
5673
5674 /* Rebroadcast unregister notification */
5675 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5676 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5677 * should have already handle it the first time */
5678
5679 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5680 &dev->state)) {
5681 /* We must not have linkwatch events
5682 * pending on unregister. If this
5683 * happens, we simply run the queue
5684 * unscheduled, resulting in a noop
5685 * for this device.
5686 */
5687 linkwatch_run_queue();
5688 }
5689
5690 __rtnl_unlock();
5691
5692 rebroadcast_time = jiffies;
5693 }
5694
5695 msleep(250);
5696
5697 refcnt = netdev_refcnt_read(dev);
5698
5699 if (time_after(jiffies, warning_time + 10 * HZ)) {
5700 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5701 dev->name, refcnt);
5702 warning_time = jiffies;
5703 }
5704 }
5705 }
5706
5707 /* The sequence is:
5708 *
5709 * rtnl_lock();
5710 * ...
5711 * register_netdevice(x1);
5712 * register_netdevice(x2);
5713 * ...
5714 * unregister_netdevice(y1);
5715 * unregister_netdevice(y2);
5716 * ...
5717 * rtnl_unlock();
5718 * free_netdev(y1);
5719 * free_netdev(y2);
5720 *
5721 * We are invoked by rtnl_unlock().
5722 * This allows us to deal with problems:
5723 * 1) We can delete sysfs objects which invoke hotplug
5724 * without deadlocking with linkwatch via keventd.
5725 * 2) Since we run with the RTNL semaphore not held, we can sleep
5726 * safely in order to wait for the netdev refcnt to drop to zero.
5727 *
5728 * We must not return until all unregister events added during
5729 * the interval the lock was held have been completed.
5730 */
5731 void netdev_run_todo(void)
5732 {
5733 struct list_head list;
5734
5735 /* Snapshot list, allow later requests */
5736 list_replace_init(&net_todo_list, &list);
5737
5738 __rtnl_unlock();
5739
5740 /* Wait for rcu callbacks to finish before attempting to drain
5741 * the device list. This usually avoids a 250ms wait.
5742 */
5743 if (!list_empty(&list))
5744 rcu_barrier();
5745
5746 while (!list_empty(&list)) {
5747 struct net_device *dev
5748 = list_first_entry(&list, struct net_device, todo_list);
5749 list_del(&dev->todo_list);
5750
5751 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5752 pr_err("network todo '%s' but state %d\n",
5753 dev->name, dev->reg_state);
5754 dump_stack();
5755 continue;
5756 }
5757
5758 dev->reg_state = NETREG_UNREGISTERED;
5759
5760 on_each_cpu(flush_backlog, dev, 1);
5761
5762 netdev_wait_allrefs(dev);
5763
5764 /* paranoia */
5765 BUG_ON(netdev_refcnt_read(dev));
5766 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5767 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5768 WARN_ON(dev->dn_ptr);
5769
5770 if (dev->destructor)
5771 dev->destructor(dev);
5772
5773 /* Free network device */
5774 kobject_put(&dev->dev.kobj);
5775 }
5776 }
5777
5778 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5779 * fields in the same order, with only the type differing.
5780 */
5781 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5782 const struct net_device_stats *netdev_stats)
5783 {
5784 #if BITS_PER_LONG == 64
5785 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5786 memcpy(stats64, netdev_stats, sizeof(*stats64));
5787 #else
5788 size_t i, n = sizeof(*stats64) / sizeof(u64);
5789 const unsigned long *src = (const unsigned long *)netdev_stats;
5790 u64 *dst = (u64 *)stats64;
5791
5792 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5793 sizeof(*stats64) / sizeof(u64));
5794 for (i = 0; i < n; i++)
5795 dst[i] = src[i];
5796 #endif
5797 }
5798 EXPORT_SYMBOL(netdev_stats_to_stats64);
5799
5800 /**
5801 * dev_get_stats - get network device statistics
5802 * @dev: device to get statistics from
5803 * @storage: place to store stats
5804 *
5805 * Get network statistics from device. Return @storage.
5806 * The device driver may provide its own method by setting
5807 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5808 * otherwise the internal statistics structure is used.
5809 */
5810 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5811 struct rtnl_link_stats64 *storage)
5812 {
5813 const struct net_device_ops *ops = dev->netdev_ops;
5814
5815 if (ops->ndo_get_stats64) {
5816 memset(storage, 0, sizeof(*storage));
5817 ops->ndo_get_stats64(dev, storage);
5818 } else if (ops->ndo_get_stats) {
5819 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5820 } else {
5821 netdev_stats_to_stats64(storage, &dev->stats);
5822 }
5823 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5824 return storage;
5825 }
5826 EXPORT_SYMBOL(dev_get_stats);
5827
5828 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5829 {
5830 struct netdev_queue *queue = dev_ingress_queue(dev);
5831
5832 #ifdef CONFIG_NET_CLS_ACT
5833 if (queue)
5834 return queue;
5835 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5836 if (!queue)
5837 return NULL;
5838 netdev_init_one_queue(dev, queue, NULL);
5839 queue->qdisc = &noop_qdisc;
5840 queue->qdisc_sleeping = &noop_qdisc;
5841 rcu_assign_pointer(dev->ingress_queue, queue);
5842 #endif
5843 return queue;
5844 }
5845
5846 /**
5847 * alloc_netdev_mqs - allocate network device
5848 * @sizeof_priv: size of private data to allocate space for
5849 * @name: device name format string
5850 * @setup: callback to initialize device
5851 * @txqs: the number of TX subqueues to allocate
5852 * @rxqs: the number of RX subqueues to allocate
5853 *
5854 * Allocates a struct net_device with private data area for driver use
5855 * and performs basic initialization. Also allocates subquue structs
5856 * for each queue on the device.
5857 */
5858 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5859 void (*setup)(struct net_device *),
5860 unsigned int txqs, unsigned int rxqs)
5861 {
5862 struct net_device *dev;
5863 size_t alloc_size;
5864 struct net_device *p;
5865
5866 BUG_ON(strlen(name) >= sizeof(dev->name));
5867
5868 if (txqs < 1) {
5869 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5870 return NULL;
5871 }
5872
5873 #ifdef CONFIG_RPS
5874 if (rxqs < 1) {
5875 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5876 return NULL;
5877 }
5878 #endif
5879
5880 alloc_size = sizeof(struct net_device);
5881 if (sizeof_priv) {
5882 /* ensure 32-byte alignment of private area */
5883 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5884 alloc_size += sizeof_priv;
5885 }
5886 /* ensure 32-byte alignment of whole construct */
5887 alloc_size += NETDEV_ALIGN - 1;
5888
5889 p = kzalloc(alloc_size, GFP_KERNEL);
5890 if (!p) {
5891 pr_err("alloc_netdev: Unable to allocate device\n");
5892 return NULL;
5893 }
5894
5895 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5896 dev->padded = (char *)dev - (char *)p;
5897
5898 dev->pcpu_refcnt = alloc_percpu(int);
5899 if (!dev->pcpu_refcnt)
5900 goto free_p;
5901
5902 if (dev_addr_init(dev))
5903 goto free_pcpu;
5904
5905 dev_mc_init(dev);
5906 dev_uc_init(dev);
5907
5908 dev_net_set(dev, &init_net);
5909
5910 dev->gso_max_size = GSO_MAX_SIZE;
5911
5912 INIT_LIST_HEAD(&dev->napi_list);
5913 INIT_LIST_HEAD(&dev->unreg_list);
5914 INIT_LIST_HEAD(&dev->link_watch_list);
5915 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5916 setup(dev);
5917
5918 dev->num_tx_queues = txqs;
5919 dev->real_num_tx_queues = txqs;
5920 if (netif_alloc_netdev_queues(dev))
5921 goto free_all;
5922
5923 #ifdef CONFIG_RPS
5924 dev->num_rx_queues = rxqs;
5925 dev->real_num_rx_queues = rxqs;
5926 if (netif_alloc_rx_queues(dev))
5927 goto free_all;
5928 #endif
5929
5930 strcpy(dev->name, name);
5931 dev->group = INIT_NETDEV_GROUP;
5932 return dev;
5933
5934 free_all:
5935 free_netdev(dev);
5936 return NULL;
5937
5938 free_pcpu:
5939 free_percpu(dev->pcpu_refcnt);
5940 kfree(dev->_tx);
5941 #ifdef CONFIG_RPS
5942 kfree(dev->_rx);
5943 #endif
5944
5945 free_p:
5946 kfree(p);
5947 return NULL;
5948 }
5949 EXPORT_SYMBOL(alloc_netdev_mqs);
5950
5951 /**
5952 * free_netdev - free network device
5953 * @dev: device
5954 *
5955 * This function does the last stage of destroying an allocated device
5956 * interface. The reference to the device object is released.
5957 * If this is the last reference then it will be freed.
5958 */
5959 void free_netdev(struct net_device *dev)
5960 {
5961 struct napi_struct *p, *n;
5962
5963 release_net(dev_net(dev));
5964
5965 kfree(dev->_tx);
5966 #ifdef CONFIG_RPS
5967 kfree(dev->_rx);
5968 #endif
5969
5970 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5971
5972 /* Flush device addresses */
5973 dev_addr_flush(dev);
5974
5975 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5976 netif_napi_del(p);
5977
5978 free_percpu(dev->pcpu_refcnt);
5979 dev->pcpu_refcnt = NULL;
5980
5981 /* Compatibility with error handling in drivers */
5982 if (dev->reg_state == NETREG_UNINITIALIZED) {
5983 kfree((char *)dev - dev->padded);
5984 return;
5985 }
5986
5987 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5988 dev->reg_state = NETREG_RELEASED;
5989
5990 /* will free via device release */
5991 put_device(&dev->dev);
5992 }
5993 EXPORT_SYMBOL(free_netdev);
5994
5995 /**
5996 * synchronize_net - Synchronize with packet receive processing
5997 *
5998 * Wait for packets currently being received to be done.
5999 * Does not block later packets from starting.
6000 */
6001 void synchronize_net(void)
6002 {
6003 might_sleep();
6004 if (rtnl_is_locked())
6005 synchronize_rcu_expedited();
6006 else
6007 synchronize_rcu();
6008 }
6009 EXPORT_SYMBOL(synchronize_net);
6010
6011 /**
6012 * unregister_netdevice_queue - remove device from the kernel
6013 * @dev: device
6014 * @head: list
6015 *
6016 * This function shuts down a device interface and removes it
6017 * from the kernel tables.
6018 * If head not NULL, device is queued to be unregistered later.
6019 *
6020 * Callers must hold the rtnl semaphore. You may want
6021 * unregister_netdev() instead of this.
6022 */
6023
6024 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6025 {
6026 ASSERT_RTNL();
6027
6028 if (head) {
6029 list_move_tail(&dev->unreg_list, head);
6030 } else {
6031 rollback_registered(dev);
6032 /* Finish processing unregister after unlock */
6033 net_set_todo(dev);
6034 }
6035 }
6036 EXPORT_SYMBOL(unregister_netdevice_queue);
6037
6038 /**
6039 * unregister_netdevice_many - unregister many devices
6040 * @head: list of devices
6041 */
6042 void unregister_netdevice_many(struct list_head *head)
6043 {
6044 struct net_device *dev;
6045
6046 if (!list_empty(head)) {
6047 rollback_registered_many(head);
6048 list_for_each_entry(dev, head, unreg_list)
6049 net_set_todo(dev);
6050 }
6051 }
6052 EXPORT_SYMBOL(unregister_netdevice_many);
6053
6054 /**
6055 * unregister_netdev - remove device from the kernel
6056 * @dev: device
6057 *
6058 * This function shuts down a device interface and removes it
6059 * from the kernel tables.
6060 *
6061 * This is just a wrapper for unregister_netdevice that takes
6062 * the rtnl semaphore. In general you want to use this and not
6063 * unregister_netdevice.
6064 */
6065 void unregister_netdev(struct net_device *dev)
6066 {
6067 rtnl_lock();
6068 unregister_netdevice(dev);
6069 rtnl_unlock();
6070 }
6071 EXPORT_SYMBOL(unregister_netdev);
6072
6073 /**
6074 * dev_change_net_namespace - move device to different nethost namespace
6075 * @dev: device
6076 * @net: network namespace
6077 * @pat: If not NULL name pattern to try if the current device name
6078 * is already taken in the destination network namespace.
6079 *
6080 * This function shuts down a device interface and moves it
6081 * to a new network namespace. On success 0 is returned, on
6082 * a failure a netagive errno code is returned.
6083 *
6084 * Callers must hold the rtnl semaphore.
6085 */
6086
6087 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6088 {
6089 int err;
6090
6091 ASSERT_RTNL();
6092
6093 /* Don't allow namespace local devices to be moved. */
6094 err = -EINVAL;
6095 if (dev->features & NETIF_F_NETNS_LOCAL)
6096 goto out;
6097
6098 /* Ensure the device has been registrered */
6099 err = -EINVAL;
6100 if (dev->reg_state != NETREG_REGISTERED)
6101 goto out;
6102
6103 /* Get out if there is nothing todo */
6104 err = 0;
6105 if (net_eq(dev_net(dev), net))
6106 goto out;
6107
6108 /* Pick the destination device name, and ensure
6109 * we can use it in the destination network namespace.
6110 */
6111 err = -EEXIST;
6112 if (__dev_get_by_name(net, dev->name)) {
6113 /* We get here if we can't use the current device name */
6114 if (!pat)
6115 goto out;
6116 if (dev_get_valid_name(dev, pat) < 0)
6117 goto out;
6118 }
6119
6120 /*
6121 * And now a mini version of register_netdevice unregister_netdevice.
6122 */
6123
6124 /* If device is running close it first. */
6125 dev_close(dev);
6126
6127 /* And unlink it from device chain */
6128 err = -ENODEV;
6129 unlist_netdevice(dev);
6130
6131 synchronize_net();
6132
6133 /* Shutdown queueing discipline. */
6134 dev_shutdown(dev);
6135
6136 /* Notify protocols, that we are about to destroy
6137 this device. They should clean all the things.
6138
6139 Note that dev->reg_state stays at NETREG_REGISTERED.
6140 This is wanted because this way 8021q and macvlan know
6141 the device is just moving and can keep their slaves up.
6142 */
6143 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6144 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6145 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6146
6147 /*
6148 * Flush the unicast and multicast chains
6149 */
6150 dev_uc_flush(dev);
6151 dev_mc_flush(dev);
6152
6153 /* Actually switch the network namespace */
6154 dev_net_set(dev, net);
6155
6156 /* If there is an ifindex conflict assign a new one */
6157 if (__dev_get_by_index(net, dev->ifindex)) {
6158 int iflink = (dev->iflink == dev->ifindex);
6159 dev->ifindex = dev_new_index(net);
6160 if (iflink)
6161 dev->iflink = dev->ifindex;
6162 }
6163
6164 /* Fixup kobjects */
6165 err = device_rename(&dev->dev, dev->name);
6166 WARN_ON(err);
6167
6168 /* Add the device back in the hashes */
6169 list_netdevice(dev);
6170
6171 /* Notify protocols, that a new device appeared. */
6172 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6173
6174 /*
6175 * Prevent userspace races by waiting until the network
6176 * device is fully setup before sending notifications.
6177 */
6178 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6179
6180 synchronize_net();
6181 err = 0;
6182 out:
6183 return err;
6184 }
6185 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6186
6187 static int dev_cpu_callback(struct notifier_block *nfb,
6188 unsigned long action,
6189 void *ocpu)
6190 {
6191 struct sk_buff **list_skb;
6192 struct sk_buff *skb;
6193 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6194 struct softnet_data *sd, *oldsd;
6195
6196 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6197 return NOTIFY_OK;
6198
6199 local_irq_disable();
6200 cpu = smp_processor_id();
6201 sd = &per_cpu(softnet_data, cpu);
6202 oldsd = &per_cpu(softnet_data, oldcpu);
6203
6204 /* Find end of our completion_queue. */
6205 list_skb = &sd->completion_queue;
6206 while (*list_skb)
6207 list_skb = &(*list_skb)->next;
6208 /* Append completion queue from offline CPU. */
6209 *list_skb = oldsd->completion_queue;
6210 oldsd->completion_queue = NULL;
6211
6212 /* Append output queue from offline CPU. */
6213 if (oldsd->output_queue) {
6214 *sd->output_queue_tailp = oldsd->output_queue;
6215 sd->output_queue_tailp = oldsd->output_queue_tailp;
6216 oldsd->output_queue = NULL;
6217 oldsd->output_queue_tailp = &oldsd->output_queue;
6218 }
6219 /* Append NAPI poll list from offline CPU. */
6220 if (!list_empty(&oldsd->poll_list)) {
6221 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6222 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6223 }
6224
6225 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6226 local_irq_enable();
6227
6228 /* Process offline CPU's input_pkt_queue */
6229 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6230 netif_rx(skb);
6231 input_queue_head_incr(oldsd);
6232 }
6233 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6234 netif_rx(skb);
6235 input_queue_head_incr(oldsd);
6236 }
6237
6238 return NOTIFY_OK;
6239 }
6240
6241
6242 /**
6243 * netdev_increment_features - increment feature set by one
6244 * @all: current feature set
6245 * @one: new feature set
6246 * @mask: mask feature set
6247 *
6248 * Computes a new feature set after adding a device with feature set
6249 * @one to the master device with current feature set @all. Will not
6250 * enable anything that is off in @mask. Returns the new feature set.
6251 */
6252 netdev_features_t netdev_increment_features(netdev_features_t all,
6253 netdev_features_t one, netdev_features_t mask)
6254 {
6255 if (mask & NETIF_F_GEN_CSUM)
6256 mask |= NETIF_F_ALL_CSUM;
6257 mask |= NETIF_F_VLAN_CHALLENGED;
6258
6259 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6260 all &= one | ~NETIF_F_ALL_FOR_ALL;
6261
6262 /* If one device supports hw checksumming, set for all. */
6263 if (all & NETIF_F_GEN_CSUM)
6264 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6265
6266 return all;
6267 }
6268 EXPORT_SYMBOL(netdev_increment_features);
6269
6270 static struct hlist_head *netdev_create_hash(void)
6271 {
6272 int i;
6273 struct hlist_head *hash;
6274
6275 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6276 if (hash != NULL)
6277 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6278 INIT_HLIST_HEAD(&hash[i]);
6279
6280 return hash;
6281 }
6282
6283 /* Initialize per network namespace state */
6284 static int __net_init netdev_init(struct net *net)
6285 {
6286 if (net != &init_net)
6287 INIT_LIST_HEAD(&net->dev_base_head);
6288
6289 net->dev_name_head = netdev_create_hash();
6290 if (net->dev_name_head == NULL)
6291 goto err_name;
6292
6293 net->dev_index_head = netdev_create_hash();
6294 if (net->dev_index_head == NULL)
6295 goto err_idx;
6296
6297 return 0;
6298
6299 err_idx:
6300 kfree(net->dev_name_head);
6301 err_name:
6302 return -ENOMEM;
6303 }
6304
6305 /**
6306 * netdev_drivername - network driver for the device
6307 * @dev: network device
6308 *
6309 * Determine network driver for device.
6310 */
6311 const char *netdev_drivername(const struct net_device *dev)
6312 {
6313 const struct device_driver *driver;
6314 const struct device *parent;
6315 const char *empty = "";
6316
6317 parent = dev->dev.parent;
6318 if (!parent)
6319 return empty;
6320
6321 driver = parent->driver;
6322 if (driver && driver->name)
6323 return driver->name;
6324 return empty;
6325 }
6326
6327 int __netdev_printk(const char *level, const struct net_device *dev,
6328 struct va_format *vaf)
6329 {
6330 int r;
6331
6332 if (dev && dev->dev.parent)
6333 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6334 netdev_name(dev), vaf);
6335 else if (dev)
6336 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6337 else
6338 r = printk("%s(NULL net_device): %pV", level, vaf);
6339
6340 return r;
6341 }
6342 EXPORT_SYMBOL(__netdev_printk);
6343
6344 int netdev_printk(const char *level, const struct net_device *dev,
6345 const char *format, ...)
6346 {
6347 struct va_format vaf;
6348 va_list args;
6349 int r;
6350
6351 va_start(args, format);
6352
6353 vaf.fmt = format;
6354 vaf.va = &args;
6355
6356 r = __netdev_printk(level, dev, &vaf);
6357 va_end(args);
6358
6359 return r;
6360 }
6361 EXPORT_SYMBOL(netdev_printk);
6362
6363 #define define_netdev_printk_level(func, level) \
6364 int func(const struct net_device *dev, const char *fmt, ...) \
6365 { \
6366 int r; \
6367 struct va_format vaf; \
6368 va_list args; \
6369 \
6370 va_start(args, fmt); \
6371 \
6372 vaf.fmt = fmt; \
6373 vaf.va = &args; \
6374 \
6375 r = __netdev_printk(level, dev, &vaf); \
6376 va_end(args); \
6377 \
6378 return r; \
6379 } \
6380 EXPORT_SYMBOL(func);
6381
6382 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6383 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6384 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6385 define_netdev_printk_level(netdev_err, KERN_ERR);
6386 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6387 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6388 define_netdev_printk_level(netdev_info, KERN_INFO);
6389
6390 static void __net_exit netdev_exit(struct net *net)
6391 {
6392 kfree(net->dev_name_head);
6393 kfree(net->dev_index_head);
6394 }
6395
6396 static struct pernet_operations __net_initdata netdev_net_ops = {
6397 .init = netdev_init,
6398 .exit = netdev_exit,
6399 };
6400
6401 static void __net_exit default_device_exit(struct net *net)
6402 {
6403 struct net_device *dev, *aux;
6404 /*
6405 * Push all migratable network devices back to the
6406 * initial network namespace
6407 */
6408 rtnl_lock();
6409 for_each_netdev_safe(net, dev, aux) {
6410 int err;
6411 char fb_name[IFNAMSIZ];
6412
6413 /* Ignore unmoveable devices (i.e. loopback) */
6414 if (dev->features & NETIF_F_NETNS_LOCAL)
6415 continue;
6416
6417 /* Leave virtual devices for the generic cleanup */
6418 if (dev->rtnl_link_ops)
6419 continue;
6420
6421 /* Push remaining network devices to init_net */
6422 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6423 err = dev_change_net_namespace(dev, &init_net, fb_name);
6424 if (err) {
6425 pr_emerg("%s: failed to move %s to init_net: %d\n",
6426 __func__, dev->name, err);
6427 BUG();
6428 }
6429 }
6430 rtnl_unlock();
6431 }
6432
6433 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6434 {
6435 /* At exit all network devices most be removed from a network
6436 * namespace. Do this in the reverse order of registration.
6437 * Do this across as many network namespaces as possible to
6438 * improve batching efficiency.
6439 */
6440 struct net_device *dev;
6441 struct net *net;
6442 LIST_HEAD(dev_kill_list);
6443
6444 rtnl_lock();
6445 list_for_each_entry(net, net_list, exit_list) {
6446 for_each_netdev_reverse(net, dev) {
6447 if (dev->rtnl_link_ops)
6448 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6449 else
6450 unregister_netdevice_queue(dev, &dev_kill_list);
6451 }
6452 }
6453 unregister_netdevice_many(&dev_kill_list);
6454 list_del(&dev_kill_list);
6455 rtnl_unlock();
6456 }
6457
6458 static struct pernet_operations __net_initdata default_device_ops = {
6459 .exit = default_device_exit,
6460 .exit_batch = default_device_exit_batch,
6461 };
6462
6463 /*
6464 * Initialize the DEV module. At boot time this walks the device list and
6465 * unhooks any devices that fail to initialise (normally hardware not
6466 * present) and leaves us with a valid list of present and active devices.
6467 *
6468 */
6469
6470 /*
6471 * This is called single threaded during boot, so no need
6472 * to take the rtnl semaphore.
6473 */
6474 static int __init net_dev_init(void)
6475 {
6476 int i, rc = -ENOMEM;
6477
6478 BUG_ON(!dev_boot_phase);
6479
6480 if (dev_proc_init())
6481 goto out;
6482
6483 if (netdev_kobject_init())
6484 goto out;
6485
6486 INIT_LIST_HEAD(&ptype_all);
6487 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6488 INIT_LIST_HEAD(&ptype_base[i]);
6489
6490 if (register_pernet_subsys(&netdev_net_ops))
6491 goto out;
6492
6493 /*
6494 * Initialise the packet receive queues.
6495 */
6496
6497 for_each_possible_cpu(i) {
6498 struct softnet_data *sd = &per_cpu(softnet_data, i);
6499
6500 memset(sd, 0, sizeof(*sd));
6501 skb_queue_head_init(&sd->input_pkt_queue);
6502 skb_queue_head_init(&sd->process_queue);
6503 sd->completion_queue = NULL;
6504 INIT_LIST_HEAD(&sd->poll_list);
6505 sd->output_queue = NULL;
6506 sd->output_queue_tailp = &sd->output_queue;
6507 #ifdef CONFIG_RPS
6508 sd->csd.func = rps_trigger_softirq;
6509 sd->csd.info = sd;
6510 sd->csd.flags = 0;
6511 sd->cpu = i;
6512 #endif
6513
6514 sd->backlog.poll = process_backlog;
6515 sd->backlog.weight = weight_p;
6516 sd->backlog.gro_list = NULL;
6517 sd->backlog.gro_count = 0;
6518 }
6519
6520 dev_boot_phase = 0;
6521
6522 /* The loopback device is special if any other network devices
6523 * is present in a network namespace the loopback device must
6524 * be present. Since we now dynamically allocate and free the
6525 * loopback device ensure this invariant is maintained by
6526 * keeping the loopback device as the first device on the
6527 * list of network devices. Ensuring the loopback devices
6528 * is the first device that appears and the last network device
6529 * that disappears.
6530 */
6531 if (register_pernet_device(&loopback_net_ops))
6532 goto out;
6533
6534 if (register_pernet_device(&default_device_ops))
6535 goto out;
6536
6537 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6538 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6539
6540 hotcpu_notifier(dev_cpu_callback, 0);
6541 dst_init();
6542 dev_mcast_init();
6543 rc = 0;
6544 out:
6545 return rc;
6546 }
6547
6548 subsys_initcall(net_dev_init);
6549
6550 static int __init initialize_hashrnd(void)
6551 {
6552 get_random_bytes(&hashrnd, sizeof(hashrnd));
6553 return 0;
6554 }
6555
6556 late_initcall_sync(initialize_hashrnd);
6557
This page took 0.314795 seconds and 6 git commands to generate.