net: deliver skbs on inactive slaves to exact matches
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958 {
959 struct net *net;
960
961 BUG_ON(!dev_net(dev));
962 net = dev_net(dev);
963
964 if (!dev_valid_name(name))
965 return -EINVAL;
966
967 if (fmt && strchr(name, '%'))
968 return dev_alloc_name(dev, name);
969 else if (__dev_get_by_name(net, name))
970 return -EEXIST;
971 else if (dev->name != name)
972 strlcpy(dev->name, name, IFNAMSIZ);
973
974 return 0;
975 }
976
977 /**
978 * dev_change_name - change name of a device
979 * @dev: device
980 * @newname: name (or format string) must be at least IFNAMSIZ
981 *
982 * Change name of a device, can pass format strings "eth%d".
983 * for wildcarding.
984 */
985 int dev_change_name(struct net_device *dev, const char *newname)
986 {
987 char oldname[IFNAMSIZ];
988 int err = 0;
989 int ret;
990 struct net *net;
991
992 ASSERT_RTNL();
993 BUG_ON(!dev_net(dev));
994
995 net = dev_net(dev);
996 if (dev->flags & IFF_UP)
997 return -EBUSY;
998
999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 return 0;
1001
1002 memcpy(oldname, dev->name, IFNAMSIZ);
1003
1004 err = dev_get_valid_name(dev, newname, 1);
1005 if (err < 0)
1006 return err;
1007
1008 rollback:
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_del(&dev->name_hlist);
1017 write_unlock_bh(&dev_base_lock);
1018
1019 synchronize_rcu();
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 write_unlock_bh(&dev_base_lock);
1024
1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 ret = notifier_to_errno(ret);
1027
1028 if (ret) {
1029 /* err >= 0 after dev_alloc_name() or stores the first errno */
1030 if (err >= 0) {
1031 err = ret;
1032 memcpy(dev->name, oldname, IFNAMSIZ);
1033 goto rollback;
1034 } else {
1035 printk(KERN_ERR
1036 "%s: name change rollback failed: %d.\n",
1037 dev->name, ret);
1038 }
1039 }
1040
1041 return err;
1042 }
1043
1044 /**
1045 * dev_set_alias - change ifalias of a device
1046 * @dev: device
1047 * @alias: name up to IFALIASZ
1048 * @len: limit of bytes to copy from info
1049 *
1050 * Set ifalias for a device,
1051 */
1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053 {
1054 ASSERT_RTNL();
1055
1056 if (len >= IFALIASZ)
1057 return -EINVAL;
1058
1059 if (!len) {
1060 if (dev->ifalias) {
1061 kfree(dev->ifalias);
1062 dev->ifalias = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 if (!dev->ifalias)
1069 return -ENOMEM;
1070
1071 strlcpy(dev->ifalias, alias, len+1);
1072 return len;
1073 }
1074
1075
1076 /**
1077 * netdev_features_change - device changes features
1078 * @dev: device to cause notification
1079 *
1080 * Called to indicate a device has changed features.
1081 */
1082 void netdev_features_change(struct net_device *dev)
1083 {
1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085 }
1086 EXPORT_SYMBOL(netdev_features_change);
1087
1088 /**
1089 * netdev_state_change - device changes state
1090 * @dev: device to cause notification
1091 *
1092 * Called to indicate a device has changed state. This function calls
1093 * the notifier chains for netdev_chain and sends a NEWLINK message
1094 * to the routing socket.
1095 */
1096 void netdev_state_change(struct net_device *dev)
1097 {
1098 if (dev->flags & IFF_UP) {
1099 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 }
1102 }
1103 EXPORT_SYMBOL(netdev_state_change);
1104
1105 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106 {
1107 return call_netdevice_notifiers(event, dev);
1108 }
1109 EXPORT_SYMBOL(netdev_bonding_change);
1110
1111 /**
1112 * dev_load - load a network module
1113 * @net: the applicable net namespace
1114 * @name: name of interface
1115 *
1116 * If a network interface is not present and the process has suitable
1117 * privileges this function loads the module. If module loading is not
1118 * available in this kernel then it becomes a nop.
1119 */
1120
1121 void dev_load(struct net *net, const char *name)
1122 {
1123 struct net_device *dev;
1124
1125 rcu_read_lock();
1126 dev = dev_get_by_name_rcu(net, name);
1127 rcu_read_unlock();
1128
1129 if (!dev && capable(CAP_NET_ADMIN))
1130 request_module("%s", name);
1131 }
1132 EXPORT_SYMBOL(dev_load);
1133
1134 static int __dev_open(struct net_device *dev)
1135 {
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 int ret;
1138
1139 ASSERT_RTNL();
1140
1141 /*
1142 * Is it even present?
1143 */
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1146
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Call device private open method
1154 */
1155 set_bit(__LINK_STATE_START, &dev->state);
1156
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1159
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1162
1163 /*
1164 * If it went open OK then:
1165 */
1166
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1170 /*
1171 * Set the flags.
1172 */
1173 dev->flags |= IFF_UP;
1174
1175 /*
1176 * Enable NET_DMA
1177 */
1178 net_dmaengine_get();
1179
1180 /*
1181 * Initialize multicasting status
1182 */
1183 dev_set_rx_mode(dev);
1184
1185 /*
1186 * Wakeup transmit queue engine
1187 */
1188 dev_activate(dev);
1189 }
1190
1191 return ret;
1192 }
1193
1194 /**
1195 * dev_open - prepare an interface for use.
1196 * @dev: device to open
1197 *
1198 * Takes a device from down to up state. The device's private open
1199 * function is invoked and then the multicast lists are loaded. Finally
1200 * the device is moved into the up state and a %NETDEV_UP message is
1201 * sent to the netdev notifier chain.
1202 *
1203 * Calling this function on an active interface is a nop. On a failure
1204 * a negative errno code is returned.
1205 */
1206 int dev_open(struct net_device *dev)
1207 {
1208 int ret;
1209
1210 /*
1211 * Is it already up?
1212 */
1213 if (dev->flags & IFF_UP)
1214 return 0;
1215
1216 /*
1217 * Open device
1218 */
1219 ret = __dev_open(dev);
1220 if (ret < 0)
1221 return ret;
1222
1223 /*
1224 * ... and announce new interface.
1225 */
1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 call_netdevice_notifiers(NETDEV_UP, dev);
1228
1229 return ret;
1230 }
1231 EXPORT_SYMBOL(dev_open);
1232
1233 static int __dev_close(struct net_device *dev)
1234 {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 ASSERT_RTNL();
1238 might_sleep();
1239
1240 /*
1241 * Tell people we are going down, so that they can
1242 * prepare to death, when device is still operating.
1243 */
1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245
1246 clear_bit(__LINK_STATE_START, &dev->state);
1247
1248 /* Synchronize to scheduled poll. We cannot touch poll list,
1249 * it can be even on different cpu. So just clear netif_running().
1250 *
1251 * dev->stop() will invoke napi_disable() on all of it's
1252 * napi_struct instances on this device.
1253 */
1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255
1256 dev_deactivate(dev);
1257
1258 /*
1259 * Call the device specific close. This cannot fail.
1260 * Only if device is UP
1261 *
1262 * We allow it to be called even after a DETACH hot-plug
1263 * event.
1264 */
1265 if (ops->ndo_stop)
1266 ops->ndo_stop(dev);
1267
1268 /*
1269 * Device is now down.
1270 */
1271
1272 dev->flags &= ~IFF_UP;
1273
1274 /*
1275 * Shutdown NET_DMA
1276 */
1277 net_dmaengine_put();
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * dev_close - shutdown an interface.
1284 * @dev: device to shutdown
1285 *
1286 * This function moves an active device into down state. A
1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289 * chain.
1290 */
1291 int dev_close(struct net_device *dev)
1292 {
1293 if (!(dev->flags & IFF_UP))
1294 return 0;
1295
1296 __dev_close(dev);
1297
1298 /*
1299 * Tell people we are down
1300 */
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 call_netdevice_notifiers(NETDEV_DOWN, dev);
1303
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307
1308
1309 /**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 dev->ethtool_ops->set_flags) {
1321 u32 flags = dev->ethtool_ops->get_flags(dev);
1322 if (flags & ETH_FLAG_LRO) {
1323 flags &= ~ETH_FLAG_LRO;
1324 dev->ethtool_ops->set_flags(dev, flags);
1325 }
1326 }
1327 WARN_ON(dev->features & NETIF_F_LRO);
1328 }
1329 EXPORT_SYMBOL(dev_disable_lro);
1330
1331
1332 static int dev_boot_phase = 1;
1333
1334 /*
1335 * Device change register/unregister. These are not inline or static
1336 * as we export them to the world.
1337 */
1338
1339 /**
1340 * register_netdevice_notifier - register a network notifier block
1341 * @nb: notifier
1342 *
1343 * Register a notifier to be called when network device events occur.
1344 * The notifier passed is linked into the kernel structures and must
1345 * not be reused until it has been unregistered. A negative errno code
1346 * is returned on a failure.
1347 *
1348 * When registered all registration and up events are replayed
1349 * to the new notifier to allow device to have a race free
1350 * view of the network device list.
1351 */
1352
1353 int register_netdevice_notifier(struct notifier_block *nb)
1354 {
1355 struct net_device *dev;
1356 struct net_device *last;
1357 struct net *net;
1358 int err;
1359
1360 rtnl_lock();
1361 err = raw_notifier_chain_register(&netdev_chain, nb);
1362 if (err)
1363 goto unlock;
1364 if (dev_boot_phase)
1365 goto unlock;
1366 for_each_net(net) {
1367 for_each_netdev(net, dev) {
1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 err = notifier_to_errno(err);
1370 if (err)
1371 goto rollback;
1372
1373 if (!(dev->flags & IFF_UP))
1374 continue;
1375
1376 nb->notifier_call(nb, NETDEV_UP, dev);
1377 }
1378 }
1379
1380 unlock:
1381 rtnl_unlock();
1382 return err;
1383
1384 rollback:
1385 last = dev;
1386 for_each_net(net) {
1387 for_each_netdev(net, dev) {
1388 if (dev == last)
1389 break;
1390
1391 if (dev->flags & IFF_UP) {
1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 }
1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 }
1398 }
1399
1400 raw_notifier_chain_unregister(&netdev_chain, nb);
1401 goto unlock;
1402 }
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1404
1405 /**
1406 * unregister_netdevice_notifier - unregister a network notifier block
1407 * @nb: notifier
1408 *
1409 * Unregister a notifier previously registered by
1410 * register_netdevice_notifier(). The notifier is unlinked into the
1411 * kernel structures and may then be reused. A negative errno code
1412 * is returned on a failure.
1413 */
1414
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 {
1417 int err;
1418
1419 rtnl_lock();
1420 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 rtnl_unlock();
1422 return err;
1423 }
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1425
1426 /**
1427 * call_netdevice_notifiers - call all network notifier blocks
1428 * @val: value passed unmodified to notifier function
1429 * @dev: net_device pointer passed unmodified to notifier function
1430 *
1431 * Call all network notifier blocks. Parameters and return value
1432 * are as for raw_notifier_call_chain().
1433 */
1434
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436 {
1437 ASSERT_RTNL();
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444 void net_enable_timestamp(void)
1445 {
1446 atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449
1450 void net_disable_timestamp(void)
1451 {
1452 atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455
1456 static inline void net_timestamp_set(struct sk_buff *skb)
1457 {
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462 }
1463
1464 static inline void net_timestamp_check(struct sk_buff *skb)
1465 {
1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1468 }
1469
1470 /**
1471 * dev_forward_skb - loopback an skb to another netif
1472 *
1473 * @dev: destination network device
1474 * @skb: buffer to forward
1475 *
1476 * return values:
1477 * NET_RX_SUCCESS (no congestion)
1478 * NET_RX_DROP (packet was dropped, but freed)
1479 *
1480 * dev_forward_skb can be used for injecting an skb from the
1481 * start_xmit function of one device into the receive queue
1482 * of another device.
1483 *
1484 * The receiving device may be in another namespace, so
1485 * we have to clear all information in the skb that could
1486 * impact namespace isolation.
1487 */
1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489 {
1490 skb_orphan(skb);
1491
1492 if (!(dev->flags & IFF_UP) ||
1493 (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 kfree_skb(skb);
1495 return NET_RX_DROP;
1496 }
1497 skb_set_dev(skb, dev);
1498 skb->tstamp.tv64 = 0;
1499 skb->pkt_type = PACKET_HOST;
1500 skb->protocol = eth_type_trans(skb, dev);
1501 return netif_rx(skb);
1502 }
1503 EXPORT_SYMBOL_GPL(dev_forward_skb);
1504
1505 /*
1506 * Support routine. Sends outgoing frames to any network
1507 * taps currently in use.
1508 */
1509
1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511 {
1512 struct packet_type *ptype;
1513
1514 #ifdef CONFIG_NET_CLS_ACT
1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 net_timestamp_set(skb);
1517 #else
1518 net_timestamp_set(skb);
1519 #endif
1520
1521 rcu_read_lock();
1522 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 /* Never send packets back to the socket
1524 * they originated from - MvS (miquels@drinkel.ow.org)
1525 */
1526 if ((ptype->dev == dev || !ptype->dev) &&
1527 (ptype->af_packet_priv == NULL ||
1528 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (!skb2)
1531 break;
1532
1533 /* skb->nh should be correctly
1534 set by sender, so that the second statement is
1535 just protection against buggy protocols.
1536 */
1537 skb_reset_mac_header(skb2);
1538
1539 if (skb_network_header(skb2) < skb2->data ||
1540 skb2->network_header > skb2->tail) {
1541 if (net_ratelimit())
1542 printk(KERN_CRIT "protocol %04x is "
1543 "buggy, dev %s\n",
1544 skb2->protocol, dev->name);
1545 skb_reset_network_header(skb2);
1546 }
1547
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 }
1552 }
1553 rcu_read_unlock();
1554 }
1555
1556
1557 static inline void __netif_reschedule(struct Qdisc *q)
1558 {
1559 struct softnet_data *sd;
1560 unsigned long flags;
1561
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 q->next_sched = NULL;
1565 *sd->output_queue_tailp = q;
1566 sd->output_queue_tailp = &q->next_sched;
1567 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1568 local_irq_restore(flags);
1569 }
1570
1571 void __netif_schedule(struct Qdisc *q)
1572 {
1573 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1574 __netif_reschedule(q);
1575 }
1576 EXPORT_SYMBOL(__netif_schedule);
1577
1578 void dev_kfree_skb_irq(struct sk_buff *skb)
1579 {
1580 if (atomic_dec_and_test(&skb->users)) {
1581 struct softnet_data *sd;
1582 unsigned long flags;
1583
1584 local_irq_save(flags);
1585 sd = &__get_cpu_var(softnet_data);
1586 skb->next = sd->completion_queue;
1587 sd->completion_queue = skb;
1588 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1589 local_irq_restore(flags);
1590 }
1591 }
1592 EXPORT_SYMBOL(dev_kfree_skb_irq);
1593
1594 void dev_kfree_skb_any(struct sk_buff *skb)
1595 {
1596 if (in_irq() || irqs_disabled())
1597 dev_kfree_skb_irq(skb);
1598 else
1599 dev_kfree_skb(skb);
1600 }
1601 EXPORT_SYMBOL(dev_kfree_skb_any);
1602
1603
1604 /**
1605 * netif_device_detach - mark device as removed
1606 * @dev: network device
1607 *
1608 * Mark device as removed from system and therefore no longer available.
1609 */
1610 void netif_device_detach(struct net_device *dev)
1611 {
1612 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1613 netif_running(dev)) {
1614 netif_tx_stop_all_queues(dev);
1615 }
1616 }
1617 EXPORT_SYMBOL(netif_device_detach);
1618
1619 /**
1620 * netif_device_attach - mark device as attached
1621 * @dev: network device
1622 *
1623 * Mark device as attached from system and restart if needed.
1624 */
1625 void netif_device_attach(struct net_device *dev)
1626 {
1627 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1628 netif_running(dev)) {
1629 netif_tx_wake_all_queues(dev);
1630 __netdev_watchdog_up(dev);
1631 }
1632 }
1633 EXPORT_SYMBOL(netif_device_attach);
1634
1635 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1636 {
1637 return ((features & NETIF_F_GEN_CSUM) ||
1638 ((features & NETIF_F_IP_CSUM) &&
1639 protocol == htons(ETH_P_IP)) ||
1640 ((features & NETIF_F_IPV6_CSUM) &&
1641 protocol == htons(ETH_P_IPV6)) ||
1642 ((features & NETIF_F_FCOE_CRC) &&
1643 protocol == htons(ETH_P_FCOE)));
1644 }
1645
1646 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1647 {
1648 if (can_checksum_protocol(dev->features, skb->protocol))
1649 return true;
1650
1651 if (skb->protocol == htons(ETH_P_8021Q)) {
1652 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1653 if (can_checksum_protocol(dev->features & dev->vlan_features,
1654 veh->h_vlan_encapsulated_proto))
1655 return true;
1656 }
1657
1658 return false;
1659 }
1660
1661 /**
1662 * skb_dev_set -- assign a new device to a buffer
1663 * @skb: buffer for the new device
1664 * @dev: network device
1665 *
1666 * If an skb is owned by a device already, we have to reset
1667 * all data private to the namespace a device belongs to
1668 * before assigning it a new device.
1669 */
1670 #ifdef CONFIG_NET_NS
1671 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1672 {
1673 skb_dst_drop(skb);
1674 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1675 secpath_reset(skb);
1676 nf_reset(skb);
1677 skb_init_secmark(skb);
1678 skb->mark = 0;
1679 skb->priority = 0;
1680 skb->nf_trace = 0;
1681 skb->ipvs_property = 0;
1682 #ifdef CONFIG_NET_SCHED
1683 skb->tc_index = 0;
1684 #endif
1685 }
1686 skb->dev = dev;
1687 }
1688 EXPORT_SYMBOL(skb_set_dev);
1689 #endif /* CONFIG_NET_NS */
1690
1691 /*
1692 * Invalidate hardware checksum when packet is to be mangled, and
1693 * complete checksum manually on outgoing path.
1694 */
1695 int skb_checksum_help(struct sk_buff *skb)
1696 {
1697 __wsum csum;
1698 int ret = 0, offset;
1699
1700 if (skb->ip_summed == CHECKSUM_COMPLETE)
1701 goto out_set_summed;
1702
1703 if (unlikely(skb_shinfo(skb)->gso_size)) {
1704 /* Let GSO fix up the checksum. */
1705 goto out_set_summed;
1706 }
1707
1708 offset = skb->csum_start - skb_headroom(skb);
1709 BUG_ON(offset >= skb_headlen(skb));
1710 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1711
1712 offset += skb->csum_offset;
1713 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1714
1715 if (skb_cloned(skb) &&
1716 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1717 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1718 if (ret)
1719 goto out;
1720 }
1721
1722 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1723 out_set_summed:
1724 skb->ip_summed = CHECKSUM_NONE;
1725 out:
1726 return ret;
1727 }
1728 EXPORT_SYMBOL(skb_checksum_help);
1729
1730 /**
1731 * skb_gso_segment - Perform segmentation on skb.
1732 * @skb: buffer to segment
1733 * @features: features for the output path (see dev->features)
1734 *
1735 * This function segments the given skb and returns a list of segments.
1736 *
1737 * It may return NULL if the skb requires no segmentation. This is
1738 * only possible when GSO is used for verifying header integrity.
1739 */
1740 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1741 {
1742 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1743 struct packet_type *ptype;
1744 __be16 type = skb->protocol;
1745 int err;
1746
1747 skb_reset_mac_header(skb);
1748 skb->mac_len = skb->network_header - skb->mac_header;
1749 __skb_pull(skb, skb->mac_len);
1750
1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 struct net_device *dev = skb->dev;
1753 struct ethtool_drvinfo info = {};
1754
1755 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1756 dev->ethtool_ops->get_drvinfo(dev, &info);
1757
1758 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1759 "ip_summed=%d",
1760 info.driver, dev ? dev->features : 0L,
1761 skb->sk ? skb->sk->sk_route_caps : 0L,
1762 skb->len, skb->data_len, skb->ip_summed);
1763
1764 if (skb_header_cloned(skb) &&
1765 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1766 return ERR_PTR(err);
1767 }
1768
1769 rcu_read_lock();
1770 list_for_each_entry_rcu(ptype,
1771 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1772 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1773 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1774 err = ptype->gso_send_check(skb);
1775 segs = ERR_PTR(err);
1776 if (err || skb_gso_ok(skb, features))
1777 break;
1778 __skb_push(skb, (skb->data -
1779 skb_network_header(skb)));
1780 }
1781 segs = ptype->gso_segment(skb, features);
1782 break;
1783 }
1784 }
1785 rcu_read_unlock();
1786
1787 __skb_push(skb, skb->data - skb_mac_header(skb));
1788
1789 return segs;
1790 }
1791 EXPORT_SYMBOL(skb_gso_segment);
1792
1793 /* Take action when hardware reception checksum errors are detected. */
1794 #ifdef CONFIG_BUG
1795 void netdev_rx_csum_fault(struct net_device *dev)
1796 {
1797 if (net_ratelimit()) {
1798 printk(KERN_ERR "%s: hw csum failure.\n",
1799 dev ? dev->name : "<unknown>");
1800 dump_stack();
1801 }
1802 }
1803 EXPORT_SYMBOL(netdev_rx_csum_fault);
1804 #endif
1805
1806 /* Actually, we should eliminate this check as soon as we know, that:
1807 * 1. IOMMU is present and allows to map all the memory.
1808 * 2. No high memory really exists on this machine.
1809 */
1810
1811 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1812 {
1813 #ifdef CONFIG_HIGHMEM
1814 int i;
1815 if (!(dev->features & NETIF_F_HIGHDMA)) {
1816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1817 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1818 return 1;
1819 }
1820
1821 if (PCI_DMA_BUS_IS_PHYS) {
1822 struct device *pdev = dev->dev.parent;
1823
1824 if (!pdev)
1825 return 0;
1826 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1827 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1828 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1829 return 1;
1830 }
1831 }
1832 #endif
1833 return 0;
1834 }
1835
1836 struct dev_gso_cb {
1837 void (*destructor)(struct sk_buff *skb);
1838 };
1839
1840 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1841
1842 static void dev_gso_skb_destructor(struct sk_buff *skb)
1843 {
1844 struct dev_gso_cb *cb;
1845
1846 do {
1847 struct sk_buff *nskb = skb->next;
1848
1849 skb->next = nskb->next;
1850 nskb->next = NULL;
1851 kfree_skb(nskb);
1852 } while (skb->next);
1853
1854 cb = DEV_GSO_CB(skb);
1855 if (cb->destructor)
1856 cb->destructor(skb);
1857 }
1858
1859 /**
1860 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1861 * @skb: buffer to segment
1862 *
1863 * This function segments the given skb and stores the list of segments
1864 * in skb->next.
1865 */
1866 static int dev_gso_segment(struct sk_buff *skb)
1867 {
1868 struct net_device *dev = skb->dev;
1869 struct sk_buff *segs;
1870 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1871 NETIF_F_SG : 0);
1872
1873 segs = skb_gso_segment(skb, features);
1874
1875 /* Verifying header integrity only. */
1876 if (!segs)
1877 return 0;
1878
1879 if (IS_ERR(segs))
1880 return PTR_ERR(segs);
1881
1882 skb->next = segs;
1883 DEV_GSO_CB(skb)->destructor = skb->destructor;
1884 skb->destructor = dev_gso_skb_destructor;
1885
1886 return 0;
1887 }
1888
1889 /*
1890 * Try to orphan skb early, right before transmission by the device.
1891 * We cannot orphan skb if tx timestamp is requested, since
1892 * drivers need to call skb_tstamp_tx() to send the timestamp.
1893 */
1894 static inline void skb_orphan_try(struct sk_buff *skb)
1895 {
1896 if (!skb_tx(skb)->flags)
1897 skb_orphan(skb);
1898 }
1899
1900 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1901 struct netdev_queue *txq)
1902 {
1903 const struct net_device_ops *ops = dev->netdev_ops;
1904 int rc = NETDEV_TX_OK;
1905
1906 if (likely(!skb->next)) {
1907 if (!list_empty(&ptype_all))
1908 dev_queue_xmit_nit(skb, dev);
1909
1910 /*
1911 * If device doesnt need skb->dst, release it right now while
1912 * its hot in this cpu cache
1913 */
1914 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1915 skb_dst_drop(skb);
1916
1917 skb_orphan_try(skb);
1918
1919 if (netif_needs_gso(dev, skb)) {
1920 if (unlikely(dev_gso_segment(skb)))
1921 goto out_kfree_skb;
1922 if (skb->next)
1923 goto gso;
1924 }
1925
1926 rc = ops->ndo_start_xmit(skb, dev);
1927 if (rc == NETDEV_TX_OK)
1928 txq_trans_update(txq);
1929 return rc;
1930 }
1931
1932 gso:
1933 do {
1934 struct sk_buff *nskb = skb->next;
1935
1936 skb->next = nskb->next;
1937 nskb->next = NULL;
1938
1939 /*
1940 * If device doesnt need nskb->dst, release it right now while
1941 * its hot in this cpu cache
1942 */
1943 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1944 skb_dst_drop(nskb);
1945
1946 rc = ops->ndo_start_xmit(nskb, dev);
1947 if (unlikely(rc != NETDEV_TX_OK)) {
1948 if (rc & ~NETDEV_TX_MASK)
1949 goto out_kfree_gso_skb;
1950 nskb->next = skb->next;
1951 skb->next = nskb;
1952 return rc;
1953 }
1954 txq_trans_update(txq);
1955 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1956 return NETDEV_TX_BUSY;
1957 } while (skb->next);
1958
1959 out_kfree_gso_skb:
1960 if (likely(skb->next == NULL))
1961 skb->destructor = DEV_GSO_CB(skb)->destructor;
1962 out_kfree_skb:
1963 kfree_skb(skb);
1964 return rc;
1965 }
1966
1967 static u32 hashrnd __read_mostly;
1968
1969 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1970 {
1971 u32 hash;
1972
1973 if (skb_rx_queue_recorded(skb)) {
1974 hash = skb_get_rx_queue(skb);
1975 while (unlikely(hash >= dev->real_num_tx_queues))
1976 hash -= dev->real_num_tx_queues;
1977 return hash;
1978 }
1979
1980 if (skb->sk && skb->sk->sk_hash)
1981 hash = skb->sk->sk_hash;
1982 else
1983 hash = (__force u16) skb->protocol;
1984
1985 hash = jhash_1word(hash, hashrnd);
1986
1987 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1988 }
1989 EXPORT_SYMBOL(skb_tx_hash);
1990
1991 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1992 {
1993 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1994 if (net_ratelimit()) {
1995 pr_warning("%s selects TX queue %d, but "
1996 "real number of TX queues is %d\n",
1997 dev->name, queue_index, dev->real_num_tx_queues);
1998 }
1999 return 0;
2000 }
2001 return queue_index;
2002 }
2003
2004 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2005 struct sk_buff *skb)
2006 {
2007 u16 queue_index;
2008 struct sock *sk = skb->sk;
2009
2010 if (sk_tx_queue_recorded(sk)) {
2011 queue_index = sk_tx_queue_get(sk);
2012 } else {
2013 const struct net_device_ops *ops = dev->netdev_ops;
2014
2015 if (ops->ndo_select_queue) {
2016 queue_index = ops->ndo_select_queue(dev, skb);
2017 queue_index = dev_cap_txqueue(dev, queue_index);
2018 } else {
2019 queue_index = 0;
2020 if (dev->real_num_tx_queues > 1)
2021 queue_index = skb_tx_hash(dev, skb);
2022
2023 if (sk) {
2024 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2025
2026 if (dst && skb_dst(skb) == dst)
2027 sk_tx_queue_set(sk, queue_index);
2028 }
2029 }
2030 }
2031
2032 skb_set_queue_mapping(skb, queue_index);
2033 return netdev_get_tx_queue(dev, queue_index);
2034 }
2035
2036 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2037 struct net_device *dev,
2038 struct netdev_queue *txq)
2039 {
2040 spinlock_t *root_lock = qdisc_lock(q);
2041 int rc;
2042
2043 spin_lock(root_lock);
2044 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2045 kfree_skb(skb);
2046 rc = NET_XMIT_DROP;
2047 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2048 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2049 /*
2050 * This is a work-conserving queue; there are no old skbs
2051 * waiting to be sent out; and the qdisc is not running -
2052 * xmit the skb directly.
2053 */
2054 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2055 skb_dst_force(skb);
2056 __qdisc_update_bstats(q, skb->len);
2057 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2058 __qdisc_run(q);
2059 else
2060 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2061
2062 rc = NET_XMIT_SUCCESS;
2063 } else {
2064 skb_dst_force(skb);
2065 rc = qdisc_enqueue_root(skb, q);
2066 qdisc_run(q);
2067 }
2068 spin_unlock(root_lock);
2069
2070 return rc;
2071 }
2072
2073 /*
2074 * Returns true if either:
2075 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2076 * 2. skb is fragmented and the device does not support SG, or if
2077 * at least one of fragments is in highmem and device does not
2078 * support DMA from it.
2079 */
2080 static inline int skb_needs_linearize(struct sk_buff *skb,
2081 struct net_device *dev)
2082 {
2083 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2084 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2085 illegal_highdma(dev, skb)));
2086 }
2087
2088 /**
2089 * dev_queue_xmit - transmit a buffer
2090 * @skb: buffer to transmit
2091 *
2092 * Queue a buffer for transmission to a network device. The caller must
2093 * have set the device and priority and built the buffer before calling
2094 * this function. The function can be called from an interrupt.
2095 *
2096 * A negative errno code is returned on a failure. A success does not
2097 * guarantee the frame will be transmitted as it may be dropped due
2098 * to congestion or traffic shaping.
2099 *
2100 * -----------------------------------------------------------------------------------
2101 * I notice this method can also return errors from the queue disciplines,
2102 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2103 * be positive.
2104 *
2105 * Regardless of the return value, the skb is consumed, so it is currently
2106 * difficult to retry a send to this method. (You can bump the ref count
2107 * before sending to hold a reference for retry if you are careful.)
2108 *
2109 * When calling this method, interrupts MUST be enabled. This is because
2110 * the BH enable code must have IRQs enabled so that it will not deadlock.
2111 * --BLG
2112 */
2113 int dev_queue_xmit(struct sk_buff *skb)
2114 {
2115 struct net_device *dev = skb->dev;
2116 struct netdev_queue *txq;
2117 struct Qdisc *q;
2118 int rc = -ENOMEM;
2119
2120 /* GSO will handle the following emulations directly. */
2121 if (netif_needs_gso(dev, skb))
2122 goto gso;
2123
2124 /* Convert a paged skb to linear, if required */
2125 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2126 goto out_kfree_skb;
2127
2128 /* If packet is not checksummed and device does not support
2129 * checksumming for this protocol, complete checksumming here.
2130 */
2131 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2132 skb_set_transport_header(skb, skb->csum_start -
2133 skb_headroom(skb));
2134 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2135 goto out_kfree_skb;
2136 }
2137
2138 gso:
2139 /* Disable soft irqs for various locks below. Also
2140 * stops preemption for RCU.
2141 */
2142 rcu_read_lock_bh();
2143
2144 txq = dev_pick_tx(dev, skb);
2145 q = rcu_dereference_bh(txq->qdisc);
2146
2147 #ifdef CONFIG_NET_CLS_ACT
2148 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2149 #endif
2150 if (q->enqueue) {
2151 rc = __dev_xmit_skb(skb, q, dev, txq);
2152 goto out;
2153 }
2154
2155 /* The device has no queue. Common case for software devices:
2156 loopback, all the sorts of tunnels...
2157
2158 Really, it is unlikely that netif_tx_lock protection is necessary
2159 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2160 counters.)
2161 However, it is possible, that they rely on protection
2162 made by us here.
2163
2164 Check this and shot the lock. It is not prone from deadlocks.
2165 Either shot noqueue qdisc, it is even simpler 8)
2166 */
2167 if (dev->flags & IFF_UP) {
2168 int cpu = smp_processor_id(); /* ok because BHs are off */
2169
2170 if (txq->xmit_lock_owner != cpu) {
2171
2172 HARD_TX_LOCK(dev, txq, cpu);
2173
2174 if (!netif_tx_queue_stopped(txq)) {
2175 rc = dev_hard_start_xmit(skb, dev, txq);
2176 if (dev_xmit_complete(rc)) {
2177 HARD_TX_UNLOCK(dev, txq);
2178 goto out;
2179 }
2180 }
2181 HARD_TX_UNLOCK(dev, txq);
2182 if (net_ratelimit())
2183 printk(KERN_CRIT "Virtual device %s asks to "
2184 "queue packet!\n", dev->name);
2185 } else {
2186 /* Recursion is detected! It is possible,
2187 * unfortunately */
2188 if (net_ratelimit())
2189 printk(KERN_CRIT "Dead loop on virtual device "
2190 "%s, fix it urgently!\n", dev->name);
2191 }
2192 }
2193
2194 rc = -ENETDOWN;
2195 rcu_read_unlock_bh();
2196
2197 out_kfree_skb:
2198 kfree_skb(skb);
2199 return rc;
2200 out:
2201 rcu_read_unlock_bh();
2202 return rc;
2203 }
2204 EXPORT_SYMBOL(dev_queue_xmit);
2205
2206
2207 /*=======================================================================
2208 Receiver routines
2209 =======================================================================*/
2210
2211 int netdev_max_backlog __read_mostly = 1000;
2212 int netdev_tstamp_prequeue __read_mostly = 1;
2213 int netdev_budget __read_mostly = 300;
2214 int weight_p __read_mostly = 64; /* old backlog weight */
2215
2216 /* Called with irq disabled */
2217 static inline void ____napi_schedule(struct softnet_data *sd,
2218 struct napi_struct *napi)
2219 {
2220 list_add_tail(&napi->poll_list, &sd->poll_list);
2221 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2222 }
2223
2224 #ifdef CONFIG_RPS
2225
2226 /* One global table that all flow-based protocols share. */
2227 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2228 EXPORT_SYMBOL(rps_sock_flow_table);
2229
2230 /*
2231 * get_rps_cpu is called from netif_receive_skb and returns the target
2232 * CPU from the RPS map of the receiving queue for a given skb.
2233 * rcu_read_lock must be held on entry.
2234 */
2235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2236 struct rps_dev_flow **rflowp)
2237 {
2238 struct ipv6hdr *ip6;
2239 struct iphdr *ip;
2240 struct netdev_rx_queue *rxqueue;
2241 struct rps_map *map;
2242 struct rps_dev_flow_table *flow_table;
2243 struct rps_sock_flow_table *sock_flow_table;
2244 int cpu = -1;
2245 u8 ip_proto;
2246 u16 tcpu;
2247 u32 addr1, addr2, ihl;
2248 union {
2249 u32 v32;
2250 u16 v16[2];
2251 } ports;
2252
2253 if (skb_rx_queue_recorded(skb)) {
2254 u16 index = skb_get_rx_queue(skb);
2255 if (unlikely(index >= dev->num_rx_queues)) {
2256 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2257 "on queue %u, but number of RX queues is %u\n",
2258 dev->name, index, dev->num_rx_queues);
2259 goto done;
2260 }
2261 rxqueue = dev->_rx + index;
2262 } else
2263 rxqueue = dev->_rx;
2264
2265 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2266 goto done;
2267
2268 if (skb->rxhash)
2269 goto got_hash; /* Skip hash computation on packet header */
2270
2271 switch (skb->protocol) {
2272 case __constant_htons(ETH_P_IP):
2273 if (!pskb_may_pull(skb, sizeof(*ip)))
2274 goto done;
2275
2276 ip = (struct iphdr *) skb->data;
2277 ip_proto = ip->protocol;
2278 addr1 = (__force u32) ip->saddr;
2279 addr2 = (__force u32) ip->daddr;
2280 ihl = ip->ihl;
2281 break;
2282 case __constant_htons(ETH_P_IPV6):
2283 if (!pskb_may_pull(skb, sizeof(*ip6)))
2284 goto done;
2285
2286 ip6 = (struct ipv6hdr *) skb->data;
2287 ip_proto = ip6->nexthdr;
2288 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2289 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2290 ihl = (40 >> 2);
2291 break;
2292 default:
2293 goto done;
2294 }
2295 switch (ip_proto) {
2296 case IPPROTO_TCP:
2297 case IPPROTO_UDP:
2298 case IPPROTO_DCCP:
2299 case IPPROTO_ESP:
2300 case IPPROTO_AH:
2301 case IPPROTO_SCTP:
2302 case IPPROTO_UDPLITE:
2303 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2304 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2305 if (ports.v16[1] < ports.v16[0])
2306 swap(ports.v16[0], ports.v16[1]);
2307 break;
2308 }
2309 default:
2310 ports.v32 = 0;
2311 break;
2312 }
2313
2314 /* get a consistent hash (same value on both flow directions) */
2315 if (addr2 < addr1)
2316 swap(addr1, addr2);
2317 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2318 if (!skb->rxhash)
2319 skb->rxhash = 1;
2320
2321 got_hash:
2322 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2323 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2324 if (flow_table && sock_flow_table) {
2325 u16 next_cpu;
2326 struct rps_dev_flow *rflow;
2327
2328 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2329 tcpu = rflow->cpu;
2330
2331 next_cpu = sock_flow_table->ents[skb->rxhash &
2332 sock_flow_table->mask];
2333
2334 /*
2335 * If the desired CPU (where last recvmsg was done) is
2336 * different from current CPU (one in the rx-queue flow
2337 * table entry), switch if one of the following holds:
2338 * - Current CPU is unset (equal to RPS_NO_CPU).
2339 * - Current CPU is offline.
2340 * - The current CPU's queue tail has advanced beyond the
2341 * last packet that was enqueued using this table entry.
2342 * This guarantees that all previous packets for the flow
2343 * have been dequeued, thus preserving in order delivery.
2344 */
2345 if (unlikely(tcpu != next_cpu) &&
2346 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2347 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2348 rflow->last_qtail)) >= 0)) {
2349 tcpu = rflow->cpu = next_cpu;
2350 if (tcpu != RPS_NO_CPU)
2351 rflow->last_qtail = per_cpu(softnet_data,
2352 tcpu).input_queue_head;
2353 }
2354 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2355 *rflowp = rflow;
2356 cpu = tcpu;
2357 goto done;
2358 }
2359 }
2360
2361 map = rcu_dereference(rxqueue->rps_map);
2362 if (map) {
2363 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2364
2365 if (cpu_online(tcpu)) {
2366 cpu = tcpu;
2367 goto done;
2368 }
2369 }
2370
2371 done:
2372 return cpu;
2373 }
2374
2375 /* Called from hardirq (IPI) context */
2376 static void rps_trigger_softirq(void *data)
2377 {
2378 struct softnet_data *sd = data;
2379
2380 ____napi_schedule(sd, &sd->backlog);
2381 sd->received_rps++;
2382 }
2383
2384 #endif /* CONFIG_RPS */
2385
2386 /*
2387 * Check if this softnet_data structure is another cpu one
2388 * If yes, queue it to our IPI list and return 1
2389 * If no, return 0
2390 */
2391 static int rps_ipi_queued(struct softnet_data *sd)
2392 {
2393 #ifdef CONFIG_RPS
2394 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2395
2396 if (sd != mysd) {
2397 sd->rps_ipi_next = mysd->rps_ipi_list;
2398 mysd->rps_ipi_list = sd;
2399
2400 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2401 return 1;
2402 }
2403 #endif /* CONFIG_RPS */
2404 return 0;
2405 }
2406
2407 /*
2408 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2409 * queue (may be a remote CPU queue).
2410 */
2411 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2412 unsigned int *qtail)
2413 {
2414 struct softnet_data *sd;
2415 unsigned long flags;
2416
2417 sd = &per_cpu(softnet_data, cpu);
2418
2419 local_irq_save(flags);
2420
2421 rps_lock(sd);
2422 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2423 if (skb_queue_len(&sd->input_pkt_queue)) {
2424 enqueue:
2425 __skb_queue_tail(&sd->input_pkt_queue, skb);
2426 input_queue_tail_incr_save(sd, qtail);
2427 rps_unlock(sd);
2428 local_irq_restore(flags);
2429 return NET_RX_SUCCESS;
2430 }
2431
2432 /* Schedule NAPI for backlog device
2433 * We can use non atomic operation since we own the queue lock
2434 */
2435 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2436 if (!rps_ipi_queued(sd))
2437 ____napi_schedule(sd, &sd->backlog);
2438 }
2439 goto enqueue;
2440 }
2441
2442 sd->dropped++;
2443 rps_unlock(sd);
2444
2445 local_irq_restore(flags);
2446
2447 kfree_skb(skb);
2448 return NET_RX_DROP;
2449 }
2450
2451 /**
2452 * netif_rx - post buffer to the network code
2453 * @skb: buffer to post
2454 *
2455 * This function receives a packet from a device driver and queues it for
2456 * the upper (protocol) levels to process. It always succeeds. The buffer
2457 * may be dropped during processing for congestion control or by the
2458 * protocol layers.
2459 *
2460 * return values:
2461 * NET_RX_SUCCESS (no congestion)
2462 * NET_RX_DROP (packet was dropped)
2463 *
2464 */
2465
2466 int netif_rx(struct sk_buff *skb)
2467 {
2468 int ret;
2469
2470 /* if netpoll wants it, pretend we never saw it */
2471 if (netpoll_rx(skb))
2472 return NET_RX_DROP;
2473
2474 if (netdev_tstamp_prequeue)
2475 net_timestamp_check(skb);
2476
2477 #ifdef CONFIG_RPS
2478 {
2479 struct rps_dev_flow voidflow, *rflow = &voidflow;
2480 int cpu;
2481
2482 rcu_read_lock();
2483
2484 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2485 if (cpu < 0)
2486 cpu = smp_processor_id();
2487
2488 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2489
2490 rcu_read_unlock();
2491 }
2492 #else
2493 {
2494 unsigned int qtail;
2495 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2496 put_cpu();
2497 }
2498 #endif
2499 return ret;
2500 }
2501 EXPORT_SYMBOL(netif_rx);
2502
2503 int netif_rx_ni(struct sk_buff *skb)
2504 {
2505 int err;
2506
2507 preempt_disable();
2508 err = netif_rx(skb);
2509 if (local_softirq_pending())
2510 do_softirq();
2511 preempt_enable();
2512
2513 return err;
2514 }
2515 EXPORT_SYMBOL(netif_rx_ni);
2516
2517 static void net_tx_action(struct softirq_action *h)
2518 {
2519 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2520
2521 if (sd->completion_queue) {
2522 struct sk_buff *clist;
2523
2524 local_irq_disable();
2525 clist = sd->completion_queue;
2526 sd->completion_queue = NULL;
2527 local_irq_enable();
2528
2529 while (clist) {
2530 struct sk_buff *skb = clist;
2531 clist = clist->next;
2532
2533 WARN_ON(atomic_read(&skb->users));
2534 __kfree_skb(skb);
2535 }
2536 }
2537
2538 if (sd->output_queue) {
2539 struct Qdisc *head;
2540
2541 local_irq_disable();
2542 head = sd->output_queue;
2543 sd->output_queue = NULL;
2544 sd->output_queue_tailp = &sd->output_queue;
2545 local_irq_enable();
2546
2547 while (head) {
2548 struct Qdisc *q = head;
2549 spinlock_t *root_lock;
2550
2551 head = head->next_sched;
2552
2553 root_lock = qdisc_lock(q);
2554 if (spin_trylock(root_lock)) {
2555 smp_mb__before_clear_bit();
2556 clear_bit(__QDISC_STATE_SCHED,
2557 &q->state);
2558 qdisc_run(q);
2559 spin_unlock(root_lock);
2560 } else {
2561 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2562 &q->state)) {
2563 __netif_reschedule(q);
2564 } else {
2565 smp_mb__before_clear_bit();
2566 clear_bit(__QDISC_STATE_SCHED,
2567 &q->state);
2568 }
2569 }
2570 }
2571 }
2572 }
2573
2574 static inline int deliver_skb(struct sk_buff *skb,
2575 struct packet_type *pt_prev,
2576 struct net_device *orig_dev)
2577 {
2578 atomic_inc(&skb->users);
2579 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2580 }
2581
2582 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2583
2584 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2585 /* This hook is defined here for ATM LANE */
2586 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2587 unsigned char *addr) __read_mostly;
2588 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2589 #endif
2590
2591 /*
2592 * If bridge module is loaded call bridging hook.
2593 * returns NULL if packet was consumed.
2594 */
2595 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2596 struct sk_buff *skb) __read_mostly;
2597 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2598
2599 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2600 struct packet_type **pt_prev, int *ret,
2601 struct net_device *orig_dev)
2602 {
2603 struct net_bridge_port *port;
2604
2605 if (skb->pkt_type == PACKET_LOOPBACK ||
2606 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2607 return skb;
2608
2609 if (*pt_prev) {
2610 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2611 *pt_prev = NULL;
2612 }
2613
2614 return br_handle_frame_hook(port, skb);
2615 }
2616 #else
2617 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2618 #endif
2619
2620 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2621 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2622 struct sk_buff *skb) __read_mostly;
2623 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2624
2625 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2626 struct packet_type **pt_prev,
2627 int *ret,
2628 struct net_device *orig_dev)
2629 {
2630 struct macvlan_port *port;
2631
2632 port = rcu_dereference(skb->dev->macvlan_port);
2633 if (!port)
2634 return skb;
2635
2636 if (*pt_prev) {
2637 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2638 *pt_prev = NULL;
2639 }
2640 return macvlan_handle_frame_hook(port, skb);
2641 }
2642 #else
2643 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2644 #endif
2645
2646 #ifdef CONFIG_NET_CLS_ACT
2647 /* TODO: Maybe we should just force sch_ingress to be compiled in
2648 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2649 * a compare and 2 stores extra right now if we dont have it on
2650 * but have CONFIG_NET_CLS_ACT
2651 * NOTE: This doesnt stop any functionality; if you dont have
2652 * the ingress scheduler, you just cant add policies on ingress.
2653 *
2654 */
2655 static int ing_filter(struct sk_buff *skb)
2656 {
2657 struct net_device *dev = skb->dev;
2658 u32 ttl = G_TC_RTTL(skb->tc_verd);
2659 struct netdev_queue *rxq;
2660 int result = TC_ACT_OK;
2661 struct Qdisc *q;
2662
2663 if (MAX_RED_LOOP < ttl++) {
2664 printk(KERN_WARNING
2665 "Redir loop detected Dropping packet (%d->%d)\n",
2666 skb->skb_iif, dev->ifindex);
2667 return TC_ACT_SHOT;
2668 }
2669
2670 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2671 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2672
2673 rxq = &dev->rx_queue;
2674
2675 q = rxq->qdisc;
2676 if (q != &noop_qdisc) {
2677 spin_lock(qdisc_lock(q));
2678 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2679 result = qdisc_enqueue_root(skb, q);
2680 spin_unlock(qdisc_lock(q));
2681 }
2682
2683 return result;
2684 }
2685
2686 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2687 struct packet_type **pt_prev,
2688 int *ret, struct net_device *orig_dev)
2689 {
2690 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2691 goto out;
2692
2693 if (*pt_prev) {
2694 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2695 *pt_prev = NULL;
2696 } else {
2697 /* Huh? Why does turning on AF_PACKET affect this? */
2698 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2699 }
2700
2701 switch (ing_filter(skb)) {
2702 case TC_ACT_SHOT:
2703 case TC_ACT_STOLEN:
2704 kfree_skb(skb);
2705 return NULL;
2706 }
2707
2708 out:
2709 skb->tc_verd = 0;
2710 return skb;
2711 }
2712 #endif
2713
2714 /*
2715 * netif_nit_deliver - deliver received packets to network taps
2716 * @skb: buffer
2717 *
2718 * This function is used to deliver incoming packets to network
2719 * taps. It should be used when the normal netif_receive_skb path
2720 * is bypassed, for example because of VLAN acceleration.
2721 */
2722 void netif_nit_deliver(struct sk_buff *skb)
2723 {
2724 struct packet_type *ptype;
2725
2726 if (list_empty(&ptype_all))
2727 return;
2728
2729 skb_reset_network_header(skb);
2730 skb_reset_transport_header(skb);
2731 skb->mac_len = skb->network_header - skb->mac_header;
2732
2733 rcu_read_lock();
2734 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2735 if (!ptype->dev || ptype->dev == skb->dev)
2736 deliver_skb(skb, ptype, skb->dev);
2737 }
2738 rcu_read_unlock();
2739 }
2740
2741 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2742 struct net_device *master)
2743 {
2744 if (skb->pkt_type == PACKET_HOST) {
2745 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2746
2747 memcpy(dest, master->dev_addr, ETH_ALEN);
2748 }
2749 }
2750
2751 /* On bonding slaves other than the currently active slave, suppress
2752 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2753 * ARP on active-backup slaves with arp_validate enabled.
2754 */
2755 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2756 {
2757 struct net_device *dev = skb->dev;
2758
2759 if (master->priv_flags & IFF_MASTER_ARPMON)
2760 dev->last_rx = jiffies;
2761
2762 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2763 /* Do address unmangle. The local destination address
2764 * will be always the one master has. Provides the right
2765 * functionality in a bridge.
2766 */
2767 skb_bond_set_mac_by_master(skb, master);
2768 }
2769
2770 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2771 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2772 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2773 return 0;
2774
2775 if (master->priv_flags & IFF_MASTER_ALB) {
2776 if (skb->pkt_type != PACKET_BROADCAST &&
2777 skb->pkt_type != PACKET_MULTICAST)
2778 return 0;
2779 }
2780 if (master->priv_flags & IFF_MASTER_8023AD &&
2781 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2782 return 0;
2783
2784 return 1;
2785 }
2786 return 0;
2787 }
2788 EXPORT_SYMBOL(__skb_bond_should_drop);
2789
2790 static int __netif_receive_skb(struct sk_buff *skb)
2791 {
2792 struct packet_type *ptype, *pt_prev;
2793 struct net_device *orig_dev;
2794 struct net_device *master;
2795 struct net_device *null_or_orig;
2796 struct net_device *orig_or_bond;
2797 int ret = NET_RX_DROP;
2798 __be16 type;
2799
2800 if (!netdev_tstamp_prequeue)
2801 net_timestamp_check(skb);
2802
2803 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2804 return NET_RX_SUCCESS;
2805
2806 /* if we've gotten here through NAPI, check netpoll */
2807 if (netpoll_receive_skb(skb))
2808 return NET_RX_DROP;
2809
2810 if (!skb->skb_iif)
2811 skb->skb_iif = skb->dev->ifindex;
2812
2813 /*
2814 * bonding note: skbs received on inactive slaves should only
2815 * be delivered to pkt handlers that are exact matches. Also
2816 * the deliver_no_wcard flag will be set. If packet handlers
2817 * are sensitive to duplicate packets these skbs will need to
2818 * be dropped at the handler. The vlan accel path may have
2819 * already set the deliver_no_wcard flag.
2820 */
2821 null_or_orig = NULL;
2822 orig_dev = skb->dev;
2823 master = ACCESS_ONCE(orig_dev->master);
2824 if (skb->deliver_no_wcard)
2825 null_or_orig = orig_dev;
2826 else if (master) {
2827 if (skb_bond_should_drop(skb, master)) {
2828 skb->deliver_no_wcard = 1;
2829 null_or_orig = orig_dev; /* deliver only exact match */
2830 } else
2831 skb->dev = master;
2832 }
2833
2834 __get_cpu_var(softnet_data).processed++;
2835
2836 skb_reset_network_header(skb);
2837 skb_reset_transport_header(skb);
2838 skb->mac_len = skb->network_header - skb->mac_header;
2839
2840 pt_prev = NULL;
2841
2842 rcu_read_lock();
2843
2844 #ifdef CONFIG_NET_CLS_ACT
2845 if (skb->tc_verd & TC_NCLS) {
2846 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2847 goto ncls;
2848 }
2849 #endif
2850
2851 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2852 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2853 ptype->dev == orig_dev) {
2854 if (pt_prev)
2855 ret = deliver_skb(skb, pt_prev, orig_dev);
2856 pt_prev = ptype;
2857 }
2858 }
2859
2860 #ifdef CONFIG_NET_CLS_ACT
2861 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2862 if (!skb)
2863 goto out;
2864 ncls:
2865 #endif
2866
2867 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2868 if (!skb)
2869 goto out;
2870 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2871 if (!skb)
2872 goto out;
2873
2874 /*
2875 * Make sure frames received on VLAN interfaces stacked on
2876 * bonding interfaces still make their way to any base bonding
2877 * device that may have registered for a specific ptype. The
2878 * handler may have to adjust skb->dev and orig_dev.
2879 */
2880 orig_or_bond = orig_dev;
2881 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2882 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2883 orig_or_bond = vlan_dev_real_dev(skb->dev);
2884 }
2885
2886 type = skb->protocol;
2887 list_for_each_entry_rcu(ptype,
2888 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2889 if (ptype->type == type && (ptype->dev == null_or_orig ||
2890 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2891 ptype->dev == orig_or_bond)) {
2892 if (pt_prev)
2893 ret = deliver_skb(skb, pt_prev, orig_dev);
2894 pt_prev = ptype;
2895 }
2896 }
2897
2898 if (pt_prev) {
2899 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2900 } else {
2901 kfree_skb(skb);
2902 /* Jamal, now you will not able to escape explaining
2903 * me how you were going to use this. :-)
2904 */
2905 ret = NET_RX_DROP;
2906 }
2907
2908 out:
2909 rcu_read_unlock();
2910 return ret;
2911 }
2912
2913 /**
2914 * netif_receive_skb - process receive buffer from network
2915 * @skb: buffer to process
2916 *
2917 * netif_receive_skb() is the main receive data processing function.
2918 * It always succeeds. The buffer may be dropped during processing
2919 * for congestion control or by the protocol layers.
2920 *
2921 * This function may only be called from softirq context and interrupts
2922 * should be enabled.
2923 *
2924 * Return values (usually ignored):
2925 * NET_RX_SUCCESS: no congestion
2926 * NET_RX_DROP: packet was dropped
2927 */
2928 int netif_receive_skb(struct sk_buff *skb)
2929 {
2930 if (netdev_tstamp_prequeue)
2931 net_timestamp_check(skb);
2932
2933 #ifdef CONFIG_RPS
2934 {
2935 struct rps_dev_flow voidflow, *rflow = &voidflow;
2936 int cpu, ret;
2937
2938 rcu_read_lock();
2939
2940 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2941
2942 if (cpu >= 0) {
2943 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2944 rcu_read_unlock();
2945 } else {
2946 rcu_read_unlock();
2947 ret = __netif_receive_skb(skb);
2948 }
2949
2950 return ret;
2951 }
2952 #else
2953 return __netif_receive_skb(skb);
2954 #endif
2955 }
2956 EXPORT_SYMBOL(netif_receive_skb);
2957
2958 /* Network device is going away, flush any packets still pending
2959 * Called with irqs disabled.
2960 */
2961 static void flush_backlog(void *arg)
2962 {
2963 struct net_device *dev = arg;
2964 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2965 struct sk_buff *skb, *tmp;
2966
2967 rps_lock(sd);
2968 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2969 if (skb->dev == dev) {
2970 __skb_unlink(skb, &sd->input_pkt_queue);
2971 kfree_skb(skb);
2972 input_queue_head_incr(sd);
2973 }
2974 }
2975 rps_unlock(sd);
2976
2977 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2978 if (skb->dev == dev) {
2979 __skb_unlink(skb, &sd->process_queue);
2980 kfree_skb(skb);
2981 input_queue_head_incr(sd);
2982 }
2983 }
2984 }
2985
2986 static int napi_gro_complete(struct sk_buff *skb)
2987 {
2988 struct packet_type *ptype;
2989 __be16 type = skb->protocol;
2990 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2991 int err = -ENOENT;
2992
2993 if (NAPI_GRO_CB(skb)->count == 1) {
2994 skb_shinfo(skb)->gso_size = 0;
2995 goto out;
2996 }
2997
2998 rcu_read_lock();
2999 list_for_each_entry_rcu(ptype, head, list) {
3000 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3001 continue;
3002
3003 err = ptype->gro_complete(skb);
3004 break;
3005 }
3006 rcu_read_unlock();
3007
3008 if (err) {
3009 WARN_ON(&ptype->list == head);
3010 kfree_skb(skb);
3011 return NET_RX_SUCCESS;
3012 }
3013
3014 out:
3015 return netif_receive_skb(skb);
3016 }
3017
3018 static void napi_gro_flush(struct napi_struct *napi)
3019 {
3020 struct sk_buff *skb, *next;
3021
3022 for (skb = napi->gro_list; skb; skb = next) {
3023 next = skb->next;
3024 skb->next = NULL;
3025 napi_gro_complete(skb);
3026 }
3027
3028 napi->gro_count = 0;
3029 napi->gro_list = NULL;
3030 }
3031
3032 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3033 {
3034 struct sk_buff **pp = NULL;
3035 struct packet_type *ptype;
3036 __be16 type = skb->protocol;
3037 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3038 int same_flow;
3039 int mac_len;
3040 enum gro_result ret;
3041
3042 if (!(skb->dev->features & NETIF_F_GRO))
3043 goto normal;
3044
3045 if (skb_is_gso(skb) || skb_has_frags(skb))
3046 goto normal;
3047
3048 rcu_read_lock();
3049 list_for_each_entry_rcu(ptype, head, list) {
3050 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3051 continue;
3052
3053 skb_set_network_header(skb, skb_gro_offset(skb));
3054 mac_len = skb->network_header - skb->mac_header;
3055 skb->mac_len = mac_len;
3056 NAPI_GRO_CB(skb)->same_flow = 0;
3057 NAPI_GRO_CB(skb)->flush = 0;
3058 NAPI_GRO_CB(skb)->free = 0;
3059
3060 pp = ptype->gro_receive(&napi->gro_list, skb);
3061 break;
3062 }
3063 rcu_read_unlock();
3064
3065 if (&ptype->list == head)
3066 goto normal;
3067
3068 same_flow = NAPI_GRO_CB(skb)->same_flow;
3069 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3070
3071 if (pp) {
3072 struct sk_buff *nskb = *pp;
3073
3074 *pp = nskb->next;
3075 nskb->next = NULL;
3076 napi_gro_complete(nskb);
3077 napi->gro_count--;
3078 }
3079
3080 if (same_flow)
3081 goto ok;
3082
3083 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3084 goto normal;
3085
3086 napi->gro_count++;
3087 NAPI_GRO_CB(skb)->count = 1;
3088 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3089 skb->next = napi->gro_list;
3090 napi->gro_list = skb;
3091 ret = GRO_HELD;
3092
3093 pull:
3094 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3095 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3096
3097 BUG_ON(skb->end - skb->tail < grow);
3098
3099 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3100
3101 skb->tail += grow;
3102 skb->data_len -= grow;
3103
3104 skb_shinfo(skb)->frags[0].page_offset += grow;
3105 skb_shinfo(skb)->frags[0].size -= grow;
3106
3107 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3108 put_page(skb_shinfo(skb)->frags[0].page);
3109 memmove(skb_shinfo(skb)->frags,
3110 skb_shinfo(skb)->frags + 1,
3111 --skb_shinfo(skb)->nr_frags);
3112 }
3113 }
3114
3115 ok:
3116 return ret;
3117
3118 normal:
3119 ret = GRO_NORMAL;
3120 goto pull;
3121 }
3122 EXPORT_SYMBOL(dev_gro_receive);
3123
3124 static gro_result_t
3125 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3126 {
3127 struct sk_buff *p;
3128
3129 if (netpoll_rx_on(skb))
3130 return GRO_NORMAL;
3131
3132 for (p = napi->gro_list; p; p = p->next) {
3133 NAPI_GRO_CB(p)->same_flow =
3134 (p->dev == skb->dev) &&
3135 !compare_ether_header(skb_mac_header(p),
3136 skb_gro_mac_header(skb));
3137 NAPI_GRO_CB(p)->flush = 0;
3138 }
3139
3140 return dev_gro_receive(napi, skb);
3141 }
3142
3143 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3144 {
3145 switch (ret) {
3146 case GRO_NORMAL:
3147 if (netif_receive_skb(skb))
3148 ret = GRO_DROP;
3149 break;
3150
3151 case GRO_DROP:
3152 case GRO_MERGED_FREE:
3153 kfree_skb(skb);
3154 break;
3155
3156 case GRO_HELD:
3157 case GRO_MERGED:
3158 break;
3159 }
3160
3161 return ret;
3162 }
3163 EXPORT_SYMBOL(napi_skb_finish);
3164
3165 void skb_gro_reset_offset(struct sk_buff *skb)
3166 {
3167 NAPI_GRO_CB(skb)->data_offset = 0;
3168 NAPI_GRO_CB(skb)->frag0 = NULL;
3169 NAPI_GRO_CB(skb)->frag0_len = 0;
3170
3171 if (skb->mac_header == skb->tail &&
3172 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3173 NAPI_GRO_CB(skb)->frag0 =
3174 page_address(skb_shinfo(skb)->frags[0].page) +
3175 skb_shinfo(skb)->frags[0].page_offset;
3176 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3177 }
3178 }
3179 EXPORT_SYMBOL(skb_gro_reset_offset);
3180
3181 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3182 {
3183 skb_gro_reset_offset(skb);
3184
3185 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3186 }
3187 EXPORT_SYMBOL(napi_gro_receive);
3188
3189 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3190 {
3191 __skb_pull(skb, skb_headlen(skb));
3192 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3193
3194 napi->skb = skb;
3195 }
3196 EXPORT_SYMBOL(napi_reuse_skb);
3197
3198 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3199 {
3200 struct sk_buff *skb = napi->skb;
3201
3202 if (!skb) {
3203 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3204 if (skb)
3205 napi->skb = skb;
3206 }
3207 return skb;
3208 }
3209 EXPORT_SYMBOL(napi_get_frags);
3210
3211 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3212 gro_result_t ret)
3213 {
3214 switch (ret) {
3215 case GRO_NORMAL:
3216 case GRO_HELD:
3217 skb->protocol = eth_type_trans(skb, skb->dev);
3218
3219 if (ret == GRO_HELD)
3220 skb_gro_pull(skb, -ETH_HLEN);
3221 else if (netif_receive_skb(skb))
3222 ret = GRO_DROP;
3223 break;
3224
3225 case GRO_DROP:
3226 case GRO_MERGED_FREE:
3227 napi_reuse_skb(napi, skb);
3228 break;
3229
3230 case GRO_MERGED:
3231 break;
3232 }
3233
3234 return ret;
3235 }
3236 EXPORT_SYMBOL(napi_frags_finish);
3237
3238 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3239 {
3240 struct sk_buff *skb = napi->skb;
3241 struct ethhdr *eth;
3242 unsigned int hlen;
3243 unsigned int off;
3244
3245 napi->skb = NULL;
3246
3247 skb_reset_mac_header(skb);
3248 skb_gro_reset_offset(skb);
3249
3250 off = skb_gro_offset(skb);
3251 hlen = off + sizeof(*eth);
3252 eth = skb_gro_header_fast(skb, off);
3253 if (skb_gro_header_hard(skb, hlen)) {
3254 eth = skb_gro_header_slow(skb, hlen, off);
3255 if (unlikely(!eth)) {
3256 napi_reuse_skb(napi, skb);
3257 skb = NULL;
3258 goto out;
3259 }
3260 }
3261
3262 skb_gro_pull(skb, sizeof(*eth));
3263
3264 /*
3265 * This works because the only protocols we care about don't require
3266 * special handling. We'll fix it up properly at the end.
3267 */
3268 skb->protocol = eth->h_proto;
3269
3270 out:
3271 return skb;
3272 }
3273 EXPORT_SYMBOL(napi_frags_skb);
3274
3275 gro_result_t napi_gro_frags(struct napi_struct *napi)
3276 {
3277 struct sk_buff *skb = napi_frags_skb(napi);
3278
3279 if (!skb)
3280 return GRO_DROP;
3281
3282 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3283 }
3284 EXPORT_SYMBOL(napi_gro_frags);
3285
3286 /*
3287 * net_rps_action sends any pending IPI's for rps.
3288 * Note: called with local irq disabled, but exits with local irq enabled.
3289 */
3290 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3291 {
3292 #ifdef CONFIG_RPS
3293 struct softnet_data *remsd = sd->rps_ipi_list;
3294
3295 if (remsd) {
3296 sd->rps_ipi_list = NULL;
3297
3298 local_irq_enable();
3299
3300 /* Send pending IPI's to kick RPS processing on remote cpus. */
3301 while (remsd) {
3302 struct softnet_data *next = remsd->rps_ipi_next;
3303
3304 if (cpu_online(remsd->cpu))
3305 __smp_call_function_single(remsd->cpu,
3306 &remsd->csd, 0);
3307 remsd = next;
3308 }
3309 } else
3310 #endif
3311 local_irq_enable();
3312 }
3313
3314 static int process_backlog(struct napi_struct *napi, int quota)
3315 {
3316 int work = 0;
3317 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3318
3319 #ifdef CONFIG_RPS
3320 /* Check if we have pending ipi, its better to send them now,
3321 * not waiting net_rx_action() end.
3322 */
3323 if (sd->rps_ipi_list) {
3324 local_irq_disable();
3325 net_rps_action_and_irq_enable(sd);
3326 }
3327 #endif
3328 napi->weight = weight_p;
3329 local_irq_disable();
3330 while (work < quota) {
3331 struct sk_buff *skb;
3332 unsigned int qlen;
3333
3334 while ((skb = __skb_dequeue(&sd->process_queue))) {
3335 local_irq_enable();
3336 __netif_receive_skb(skb);
3337 local_irq_disable();
3338 input_queue_head_incr(sd);
3339 if (++work >= quota) {
3340 local_irq_enable();
3341 return work;
3342 }
3343 }
3344
3345 rps_lock(sd);
3346 qlen = skb_queue_len(&sd->input_pkt_queue);
3347 if (qlen)
3348 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3349 &sd->process_queue);
3350
3351 if (qlen < quota - work) {
3352 /*
3353 * Inline a custom version of __napi_complete().
3354 * only current cpu owns and manipulates this napi,
3355 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3356 * we can use a plain write instead of clear_bit(),
3357 * and we dont need an smp_mb() memory barrier.
3358 */
3359 list_del(&napi->poll_list);
3360 napi->state = 0;
3361
3362 quota = work + qlen;
3363 }
3364 rps_unlock(sd);
3365 }
3366 local_irq_enable();
3367
3368 return work;
3369 }
3370
3371 /**
3372 * __napi_schedule - schedule for receive
3373 * @n: entry to schedule
3374 *
3375 * The entry's receive function will be scheduled to run
3376 */
3377 void __napi_schedule(struct napi_struct *n)
3378 {
3379 unsigned long flags;
3380
3381 local_irq_save(flags);
3382 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3383 local_irq_restore(flags);
3384 }
3385 EXPORT_SYMBOL(__napi_schedule);
3386
3387 void __napi_complete(struct napi_struct *n)
3388 {
3389 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3390 BUG_ON(n->gro_list);
3391
3392 list_del(&n->poll_list);
3393 smp_mb__before_clear_bit();
3394 clear_bit(NAPI_STATE_SCHED, &n->state);
3395 }
3396 EXPORT_SYMBOL(__napi_complete);
3397
3398 void napi_complete(struct napi_struct *n)
3399 {
3400 unsigned long flags;
3401
3402 /*
3403 * don't let napi dequeue from the cpu poll list
3404 * just in case its running on a different cpu
3405 */
3406 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3407 return;
3408
3409 napi_gro_flush(n);
3410 local_irq_save(flags);
3411 __napi_complete(n);
3412 local_irq_restore(flags);
3413 }
3414 EXPORT_SYMBOL(napi_complete);
3415
3416 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3417 int (*poll)(struct napi_struct *, int), int weight)
3418 {
3419 INIT_LIST_HEAD(&napi->poll_list);
3420 napi->gro_count = 0;
3421 napi->gro_list = NULL;
3422 napi->skb = NULL;
3423 napi->poll = poll;
3424 napi->weight = weight;
3425 list_add(&napi->dev_list, &dev->napi_list);
3426 napi->dev = dev;
3427 #ifdef CONFIG_NETPOLL
3428 spin_lock_init(&napi->poll_lock);
3429 napi->poll_owner = -1;
3430 #endif
3431 set_bit(NAPI_STATE_SCHED, &napi->state);
3432 }
3433 EXPORT_SYMBOL(netif_napi_add);
3434
3435 void netif_napi_del(struct napi_struct *napi)
3436 {
3437 struct sk_buff *skb, *next;
3438
3439 list_del_init(&napi->dev_list);
3440 napi_free_frags(napi);
3441
3442 for (skb = napi->gro_list; skb; skb = next) {
3443 next = skb->next;
3444 skb->next = NULL;
3445 kfree_skb(skb);
3446 }
3447
3448 napi->gro_list = NULL;
3449 napi->gro_count = 0;
3450 }
3451 EXPORT_SYMBOL(netif_napi_del);
3452
3453 static void net_rx_action(struct softirq_action *h)
3454 {
3455 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3456 unsigned long time_limit = jiffies + 2;
3457 int budget = netdev_budget;
3458 void *have;
3459
3460 local_irq_disable();
3461
3462 while (!list_empty(&sd->poll_list)) {
3463 struct napi_struct *n;
3464 int work, weight;
3465
3466 /* If softirq window is exhuasted then punt.
3467 * Allow this to run for 2 jiffies since which will allow
3468 * an average latency of 1.5/HZ.
3469 */
3470 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3471 goto softnet_break;
3472
3473 local_irq_enable();
3474
3475 /* Even though interrupts have been re-enabled, this
3476 * access is safe because interrupts can only add new
3477 * entries to the tail of this list, and only ->poll()
3478 * calls can remove this head entry from the list.
3479 */
3480 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3481
3482 have = netpoll_poll_lock(n);
3483
3484 weight = n->weight;
3485
3486 /* This NAPI_STATE_SCHED test is for avoiding a race
3487 * with netpoll's poll_napi(). Only the entity which
3488 * obtains the lock and sees NAPI_STATE_SCHED set will
3489 * actually make the ->poll() call. Therefore we avoid
3490 * accidently calling ->poll() when NAPI is not scheduled.
3491 */
3492 work = 0;
3493 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3494 work = n->poll(n, weight);
3495 trace_napi_poll(n);
3496 }
3497
3498 WARN_ON_ONCE(work > weight);
3499
3500 budget -= work;
3501
3502 local_irq_disable();
3503
3504 /* Drivers must not modify the NAPI state if they
3505 * consume the entire weight. In such cases this code
3506 * still "owns" the NAPI instance and therefore can
3507 * move the instance around on the list at-will.
3508 */
3509 if (unlikely(work == weight)) {
3510 if (unlikely(napi_disable_pending(n))) {
3511 local_irq_enable();
3512 napi_complete(n);
3513 local_irq_disable();
3514 } else
3515 list_move_tail(&n->poll_list, &sd->poll_list);
3516 }
3517
3518 netpoll_poll_unlock(have);
3519 }
3520 out:
3521 net_rps_action_and_irq_enable(sd);
3522
3523 #ifdef CONFIG_NET_DMA
3524 /*
3525 * There may not be any more sk_buffs coming right now, so push
3526 * any pending DMA copies to hardware
3527 */
3528 dma_issue_pending_all();
3529 #endif
3530
3531 return;
3532
3533 softnet_break:
3534 sd->time_squeeze++;
3535 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3536 goto out;
3537 }
3538
3539 static gifconf_func_t *gifconf_list[NPROTO];
3540
3541 /**
3542 * register_gifconf - register a SIOCGIF handler
3543 * @family: Address family
3544 * @gifconf: Function handler
3545 *
3546 * Register protocol dependent address dumping routines. The handler
3547 * that is passed must not be freed or reused until it has been replaced
3548 * by another handler.
3549 */
3550 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3551 {
3552 if (family >= NPROTO)
3553 return -EINVAL;
3554 gifconf_list[family] = gifconf;
3555 return 0;
3556 }
3557 EXPORT_SYMBOL(register_gifconf);
3558
3559
3560 /*
3561 * Map an interface index to its name (SIOCGIFNAME)
3562 */
3563
3564 /*
3565 * We need this ioctl for efficient implementation of the
3566 * if_indextoname() function required by the IPv6 API. Without
3567 * it, we would have to search all the interfaces to find a
3568 * match. --pb
3569 */
3570
3571 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3572 {
3573 struct net_device *dev;
3574 struct ifreq ifr;
3575
3576 /*
3577 * Fetch the caller's info block.
3578 */
3579
3580 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3581 return -EFAULT;
3582
3583 rcu_read_lock();
3584 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3585 if (!dev) {
3586 rcu_read_unlock();
3587 return -ENODEV;
3588 }
3589
3590 strcpy(ifr.ifr_name, dev->name);
3591 rcu_read_unlock();
3592
3593 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3594 return -EFAULT;
3595 return 0;
3596 }
3597
3598 /*
3599 * Perform a SIOCGIFCONF call. This structure will change
3600 * size eventually, and there is nothing I can do about it.
3601 * Thus we will need a 'compatibility mode'.
3602 */
3603
3604 static int dev_ifconf(struct net *net, char __user *arg)
3605 {
3606 struct ifconf ifc;
3607 struct net_device *dev;
3608 char __user *pos;
3609 int len;
3610 int total;
3611 int i;
3612
3613 /*
3614 * Fetch the caller's info block.
3615 */
3616
3617 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3618 return -EFAULT;
3619
3620 pos = ifc.ifc_buf;
3621 len = ifc.ifc_len;
3622
3623 /*
3624 * Loop over the interfaces, and write an info block for each.
3625 */
3626
3627 total = 0;
3628 for_each_netdev(net, dev) {
3629 for (i = 0; i < NPROTO; i++) {
3630 if (gifconf_list[i]) {
3631 int done;
3632 if (!pos)
3633 done = gifconf_list[i](dev, NULL, 0);
3634 else
3635 done = gifconf_list[i](dev, pos + total,
3636 len - total);
3637 if (done < 0)
3638 return -EFAULT;
3639 total += done;
3640 }
3641 }
3642 }
3643
3644 /*
3645 * All done. Write the updated control block back to the caller.
3646 */
3647 ifc.ifc_len = total;
3648
3649 /*
3650 * Both BSD and Solaris return 0 here, so we do too.
3651 */
3652 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3653 }
3654
3655 #ifdef CONFIG_PROC_FS
3656 /*
3657 * This is invoked by the /proc filesystem handler to display a device
3658 * in detail.
3659 */
3660 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3661 __acquires(RCU)
3662 {
3663 struct net *net = seq_file_net(seq);
3664 loff_t off;
3665 struct net_device *dev;
3666
3667 rcu_read_lock();
3668 if (!*pos)
3669 return SEQ_START_TOKEN;
3670
3671 off = 1;
3672 for_each_netdev_rcu(net, dev)
3673 if (off++ == *pos)
3674 return dev;
3675
3676 return NULL;
3677 }
3678
3679 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3680 {
3681 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3682 first_net_device(seq_file_net(seq)) :
3683 next_net_device((struct net_device *)v);
3684
3685 ++*pos;
3686 return rcu_dereference(dev);
3687 }
3688
3689 void dev_seq_stop(struct seq_file *seq, void *v)
3690 __releases(RCU)
3691 {
3692 rcu_read_unlock();
3693 }
3694
3695 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3696 {
3697 const struct net_device_stats *stats = dev_get_stats(dev);
3698
3699 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3700 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3701 dev->name, stats->rx_bytes, stats->rx_packets,
3702 stats->rx_errors,
3703 stats->rx_dropped + stats->rx_missed_errors,
3704 stats->rx_fifo_errors,
3705 stats->rx_length_errors + stats->rx_over_errors +
3706 stats->rx_crc_errors + stats->rx_frame_errors,
3707 stats->rx_compressed, stats->multicast,
3708 stats->tx_bytes, stats->tx_packets,
3709 stats->tx_errors, stats->tx_dropped,
3710 stats->tx_fifo_errors, stats->collisions,
3711 stats->tx_carrier_errors +
3712 stats->tx_aborted_errors +
3713 stats->tx_window_errors +
3714 stats->tx_heartbeat_errors,
3715 stats->tx_compressed);
3716 }
3717
3718 /*
3719 * Called from the PROCfs module. This now uses the new arbitrary sized
3720 * /proc/net interface to create /proc/net/dev
3721 */
3722 static int dev_seq_show(struct seq_file *seq, void *v)
3723 {
3724 if (v == SEQ_START_TOKEN)
3725 seq_puts(seq, "Inter-| Receive "
3726 " | Transmit\n"
3727 " face |bytes packets errs drop fifo frame "
3728 "compressed multicast|bytes packets errs "
3729 "drop fifo colls carrier compressed\n");
3730 else
3731 dev_seq_printf_stats(seq, v);
3732 return 0;
3733 }
3734
3735 static struct softnet_data *softnet_get_online(loff_t *pos)
3736 {
3737 struct softnet_data *sd = NULL;
3738
3739 while (*pos < nr_cpu_ids)
3740 if (cpu_online(*pos)) {
3741 sd = &per_cpu(softnet_data, *pos);
3742 break;
3743 } else
3744 ++*pos;
3745 return sd;
3746 }
3747
3748 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3749 {
3750 return softnet_get_online(pos);
3751 }
3752
3753 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3754 {
3755 ++*pos;
3756 return softnet_get_online(pos);
3757 }
3758
3759 static void softnet_seq_stop(struct seq_file *seq, void *v)
3760 {
3761 }
3762
3763 static int softnet_seq_show(struct seq_file *seq, void *v)
3764 {
3765 struct softnet_data *sd = v;
3766
3767 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3768 sd->processed, sd->dropped, sd->time_squeeze, 0,
3769 0, 0, 0, 0, /* was fastroute */
3770 sd->cpu_collision, sd->received_rps);
3771 return 0;
3772 }
3773
3774 static const struct seq_operations dev_seq_ops = {
3775 .start = dev_seq_start,
3776 .next = dev_seq_next,
3777 .stop = dev_seq_stop,
3778 .show = dev_seq_show,
3779 };
3780
3781 static int dev_seq_open(struct inode *inode, struct file *file)
3782 {
3783 return seq_open_net(inode, file, &dev_seq_ops,
3784 sizeof(struct seq_net_private));
3785 }
3786
3787 static const struct file_operations dev_seq_fops = {
3788 .owner = THIS_MODULE,
3789 .open = dev_seq_open,
3790 .read = seq_read,
3791 .llseek = seq_lseek,
3792 .release = seq_release_net,
3793 };
3794
3795 static const struct seq_operations softnet_seq_ops = {
3796 .start = softnet_seq_start,
3797 .next = softnet_seq_next,
3798 .stop = softnet_seq_stop,
3799 .show = softnet_seq_show,
3800 };
3801
3802 static int softnet_seq_open(struct inode *inode, struct file *file)
3803 {
3804 return seq_open(file, &softnet_seq_ops);
3805 }
3806
3807 static const struct file_operations softnet_seq_fops = {
3808 .owner = THIS_MODULE,
3809 .open = softnet_seq_open,
3810 .read = seq_read,
3811 .llseek = seq_lseek,
3812 .release = seq_release,
3813 };
3814
3815 static void *ptype_get_idx(loff_t pos)
3816 {
3817 struct packet_type *pt = NULL;
3818 loff_t i = 0;
3819 int t;
3820
3821 list_for_each_entry_rcu(pt, &ptype_all, list) {
3822 if (i == pos)
3823 return pt;
3824 ++i;
3825 }
3826
3827 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3828 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3829 if (i == pos)
3830 return pt;
3831 ++i;
3832 }
3833 }
3834 return NULL;
3835 }
3836
3837 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3838 __acquires(RCU)
3839 {
3840 rcu_read_lock();
3841 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3842 }
3843
3844 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3845 {
3846 struct packet_type *pt;
3847 struct list_head *nxt;
3848 int hash;
3849
3850 ++*pos;
3851 if (v == SEQ_START_TOKEN)
3852 return ptype_get_idx(0);
3853
3854 pt = v;
3855 nxt = pt->list.next;
3856 if (pt->type == htons(ETH_P_ALL)) {
3857 if (nxt != &ptype_all)
3858 goto found;
3859 hash = 0;
3860 nxt = ptype_base[0].next;
3861 } else
3862 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3863
3864 while (nxt == &ptype_base[hash]) {
3865 if (++hash >= PTYPE_HASH_SIZE)
3866 return NULL;
3867 nxt = ptype_base[hash].next;
3868 }
3869 found:
3870 return list_entry(nxt, struct packet_type, list);
3871 }
3872
3873 static void ptype_seq_stop(struct seq_file *seq, void *v)
3874 __releases(RCU)
3875 {
3876 rcu_read_unlock();
3877 }
3878
3879 static int ptype_seq_show(struct seq_file *seq, void *v)
3880 {
3881 struct packet_type *pt = v;
3882
3883 if (v == SEQ_START_TOKEN)
3884 seq_puts(seq, "Type Device Function\n");
3885 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3886 if (pt->type == htons(ETH_P_ALL))
3887 seq_puts(seq, "ALL ");
3888 else
3889 seq_printf(seq, "%04x", ntohs(pt->type));
3890
3891 seq_printf(seq, " %-8s %pF\n",
3892 pt->dev ? pt->dev->name : "", pt->func);
3893 }
3894
3895 return 0;
3896 }
3897
3898 static const struct seq_operations ptype_seq_ops = {
3899 .start = ptype_seq_start,
3900 .next = ptype_seq_next,
3901 .stop = ptype_seq_stop,
3902 .show = ptype_seq_show,
3903 };
3904
3905 static int ptype_seq_open(struct inode *inode, struct file *file)
3906 {
3907 return seq_open_net(inode, file, &ptype_seq_ops,
3908 sizeof(struct seq_net_private));
3909 }
3910
3911 static const struct file_operations ptype_seq_fops = {
3912 .owner = THIS_MODULE,
3913 .open = ptype_seq_open,
3914 .read = seq_read,
3915 .llseek = seq_lseek,
3916 .release = seq_release_net,
3917 };
3918
3919
3920 static int __net_init dev_proc_net_init(struct net *net)
3921 {
3922 int rc = -ENOMEM;
3923
3924 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3925 goto out;
3926 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3927 goto out_dev;
3928 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3929 goto out_softnet;
3930
3931 if (wext_proc_init(net))
3932 goto out_ptype;
3933 rc = 0;
3934 out:
3935 return rc;
3936 out_ptype:
3937 proc_net_remove(net, "ptype");
3938 out_softnet:
3939 proc_net_remove(net, "softnet_stat");
3940 out_dev:
3941 proc_net_remove(net, "dev");
3942 goto out;
3943 }
3944
3945 static void __net_exit dev_proc_net_exit(struct net *net)
3946 {
3947 wext_proc_exit(net);
3948
3949 proc_net_remove(net, "ptype");
3950 proc_net_remove(net, "softnet_stat");
3951 proc_net_remove(net, "dev");
3952 }
3953
3954 static struct pernet_operations __net_initdata dev_proc_ops = {
3955 .init = dev_proc_net_init,
3956 .exit = dev_proc_net_exit,
3957 };
3958
3959 static int __init dev_proc_init(void)
3960 {
3961 return register_pernet_subsys(&dev_proc_ops);
3962 }
3963 #else
3964 #define dev_proc_init() 0
3965 #endif /* CONFIG_PROC_FS */
3966
3967
3968 /**
3969 * netdev_set_master - set up master/slave pair
3970 * @slave: slave device
3971 * @master: new master device
3972 *
3973 * Changes the master device of the slave. Pass %NULL to break the
3974 * bonding. The caller must hold the RTNL semaphore. On a failure
3975 * a negative errno code is returned. On success the reference counts
3976 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3977 * function returns zero.
3978 */
3979 int netdev_set_master(struct net_device *slave, struct net_device *master)
3980 {
3981 struct net_device *old = slave->master;
3982
3983 ASSERT_RTNL();
3984
3985 if (master) {
3986 if (old)
3987 return -EBUSY;
3988 dev_hold(master);
3989 }
3990
3991 slave->master = master;
3992
3993 if (old) {
3994 synchronize_net();
3995 dev_put(old);
3996 }
3997 if (master)
3998 slave->flags |= IFF_SLAVE;
3999 else
4000 slave->flags &= ~IFF_SLAVE;
4001
4002 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4003 return 0;
4004 }
4005 EXPORT_SYMBOL(netdev_set_master);
4006
4007 static void dev_change_rx_flags(struct net_device *dev, int flags)
4008 {
4009 const struct net_device_ops *ops = dev->netdev_ops;
4010
4011 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4012 ops->ndo_change_rx_flags(dev, flags);
4013 }
4014
4015 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4016 {
4017 unsigned short old_flags = dev->flags;
4018 uid_t uid;
4019 gid_t gid;
4020
4021 ASSERT_RTNL();
4022
4023 dev->flags |= IFF_PROMISC;
4024 dev->promiscuity += inc;
4025 if (dev->promiscuity == 0) {
4026 /*
4027 * Avoid overflow.
4028 * If inc causes overflow, untouch promisc and return error.
4029 */
4030 if (inc < 0)
4031 dev->flags &= ~IFF_PROMISC;
4032 else {
4033 dev->promiscuity -= inc;
4034 printk(KERN_WARNING "%s: promiscuity touches roof, "
4035 "set promiscuity failed, promiscuity feature "
4036 "of device might be broken.\n", dev->name);
4037 return -EOVERFLOW;
4038 }
4039 }
4040 if (dev->flags != old_flags) {
4041 printk(KERN_INFO "device %s %s promiscuous mode\n",
4042 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4043 "left");
4044 if (audit_enabled) {
4045 current_uid_gid(&uid, &gid);
4046 audit_log(current->audit_context, GFP_ATOMIC,
4047 AUDIT_ANOM_PROMISCUOUS,
4048 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4049 dev->name, (dev->flags & IFF_PROMISC),
4050 (old_flags & IFF_PROMISC),
4051 audit_get_loginuid(current),
4052 uid, gid,
4053 audit_get_sessionid(current));
4054 }
4055
4056 dev_change_rx_flags(dev, IFF_PROMISC);
4057 }
4058 return 0;
4059 }
4060
4061 /**
4062 * dev_set_promiscuity - update promiscuity count on a device
4063 * @dev: device
4064 * @inc: modifier
4065 *
4066 * Add or remove promiscuity from a device. While the count in the device
4067 * remains above zero the interface remains promiscuous. Once it hits zero
4068 * the device reverts back to normal filtering operation. A negative inc
4069 * value is used to drop promiscuity on the device.
4070 * Return 0 if successful or a negative errno code on error.
4071 */
4072 int dev_set_promiscuity(struct net_device *dev, int inc)
4073 {
4074 unsigned short old_flags = dev->flags;
4075 int err;
4076
4077 err = __dev_set_promiscuity(dev, inc);
4078 if (err < 0)
4079 return err;
4080 if (dev->flags != old_flags)
4081 dev_set_rx_mode(dev);
4082 return err;
4083 }
4084 EXPORT_SYMBOL(dev_set_promiscuity);
4085
4086 /**
4087 * dev_set_allmulti - update allmulti count on a device
4088 * @dev: device
4089 * @inc: modifier
4090 *
4091 * Add or remove reception of all multicast frames to a device. While the
4092 * count in the device remains above zero the interface remains listening
4093 * to all interfaces. Once it hits zero the device reverts back to normal
4094 * filtering operation. A negative @inc value is used to drop the counter
4095 * when releasing a resource needing all multicasts.
4096 * Return 0 if successful or a negative errno code on error.
4097 */
4098
4099 int dev_set_allmulti(struct net_device *dev, int inc)
4100 {
4101 unsigned short old_flags = dev->flags;
4102
4103 ASSERT_RTNL();
4104
4105 dev->flags |= IFF_ALLMULTI;
4106 dev->allmulti += inc;
4107 if (dev->allmulti == 0) {
4108 /*
4109 * Avoid overflow.
4110 * If inc causes overflow, untouch allmulti and return error.
4111 */
4112 if (inc < 0)
4113 dev->flags &= ~IFF_ALLMULTI;
4114 else {
4115 dev->allmulti -= inc;
4116 printk(KERN_WARNING "%s: allmulti touches roof, "
4117 "set allmulti failed, allmulti feature of "
4118 "device might be broken.\n", dev->name);
4119 return -EOVERFLOW;
4120 }
4121 }
4122 if (dev->flags ^ old_flags) {
4123 dev_change_rx_flags(dev, IFF_ALLMULTI);
4124 dev_set_rx_mode(dev);
4125 }
4126 return 0;
4127 }
4128 EXPORT_SYMBOL(dev_set_allmulti);
4129
4130 /*
4131 * Upload unicast and multicast address lists to device and
4132 * configure RX filtering. When the device doesn't support unicast
4133 * filtering it is put in promiscuous mode while unicast addresses
4134 * are present.
4135 */
4136 void __dev_set_rx_mode(struct net_device *dev)
4137 {
4138 const struct net_device_ops *ops = dev->netdev_ops;
4139
4140 /* dev_open will call this function so the list will stay sane. */
4141 if (!(dev->flags&IFF_UP))
4142 return;
4143
4144 if (!netif_device_present(dev))
4145 return;
4146
4147 if (ops->ndo_set_rx_mode)
4148 ops->ndo_set_rx_mode(dev);
4149 else {
4150 /* Unicast addresses changes may only happen under the rtnl,
4151 * therefore calling __dev_set_promiscuity here is safe.
4152 */
4153 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4154 __dev_set_promiscuity(dev, 1);
4155 dev->uc_promisc = 1;
4156 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4157 __dev_set_promiscuity(dev, -1);
4158 dev->uc_promisc = 0;
4159 }
4160
4161 if (ops->ndo_set_multicast_list)
4162 ops->ndo_set_multicast_list(dev);
4163 }
4164 }
4165
4166 void dev_set_rx_mode(struct net_device *dev)
4167 {
4168 netif_addr_lock_bh(dev);
4169 __dev_set_rx_mode(dev);
4170 netif_addr_unlock_bh(dev);
4171 }
4172
4173 /**
4174 * dev_get_flags - get flags reported to userspace
4175 * @dev: device
4176 *
4177 * Get the combination of flag bits exported through APIs to userspace.
4178 */
4179 unsigned dev_get_flags(const struct net_device *dev)
4180 {
4181 unsigned flags;
4182
4183 flags = (dev->flags & ~(IFF_PROMISC |
4184 IFF_ALLMULTI |
4185 IFF_RUNNING |
4186 IFF_LOWER_UP |
4187 IFF_DORMANT)) |
4188 (dev->gflags & (IFF_PROMISC |
4189 IFF_ALLMULTI));
4190
4191 if (netif_running(dev)) {
4192 if (netif_oper_up(dev))
4193 flags |= IFF_RUNNING;
4194 if (netif_carrier_ok(dev))
4195 flags |= IFF_LOWER_UP;
4196 if (netif_dormant(dev))
4197 flags |= IFF_DORMANT;
4198 }
4199
4200 return flags;
4201 }
4202 EXPORT_SYMBOL(dev_get_flags);
4203
4204 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4205 {
4206 int old_flags = dev->flags;
4207 int ret;
4208
4209 ASSERT_RTNL();
4210
4211 /*
4212 * Set the flags on our device.
4213 */
4214
4215 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4216 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4217 IFF_AUTOMEDIA)) |
4218 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4219 IFF_ALLMULTI));
4220
4221 /*
4222 * Load in the correct multicast list now the flags have changed.
4223 */
4224
4225 if ((old_flags ^ flags) & IFF_MULTICAST)
4226 dev_change_rx_flags(dev, IFF_MULTICAST);
4227
4228 dev_set_rx_mode(dev);
4229
4230 /*
4231 * Have we downed the interface. We handle IFF_UP ourselves
4232 * according to user attempts to set it, rather than blindly
4233 * setting it.
4234 */
4235
4236 ret = 0;
4237 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4238 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4239
4240 if (!ret)
4241 dev_set_rx_mode(dev);
4242 }
4243
4244 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4245 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4246
4247 dev->gflags ^= IFF_PROMISC;
4248 dev_set_promiscuity(dev, inc);
4249 }
4250
4251 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4252 is important. Some (broken) drivers set IFF_PROMISC, when
4253 IFF_ALLMULTI is requested not asking us and not reporting.
4254 */
4255 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4256 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4257
4258 dev->gflags ^= IFF_ALLMULTI;
4259 dev_set_allmulti(dev, inc);
4260 }
4261
4262 return ret;
4263 }
4264
4265 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4266 {
4267 unsigned int changes = dev->flags ^ old_flags;
4268
4269 if (changes & IFF_UP) {
4270 if (dev->flags & IFF_UP)
4271 call_netdevice_notifiers(NETDEV_UP, dev);
4272 else
4273 call_netdevice_notifiers(NETDEV_DOWN, dev);
4274 }
4275
4276 if (dev->flags & IFF_UP &&
4277 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4278 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4279 }
4280
4281 /**
4282 * dev_change_flags - change device settings
4283 * @dev: device
4284 * @flags: device state flags
4285 *
4286 * Change settings on device based state flags. The flags are
4287 * in the userspace exported format.
4288 */
4289 int dev_change_flags(struct net_device *dev, unsigned flags)
4290 {
4291 int ret, changes;
4292 int old_flags = dev->flags;
4293
4294 ret = __dev_change_flags(dev, flags);
4295 if (ret < 0)
4296 return ret;
4297
4298 changes = old_flags ^ dev->flags;
4299 if (changes)
4300 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4301
4302 __dev_notify_flags(dev, old_flags);
4303 return ret;
4304 }
4305 EXPORT_SYMBOL(dev_change_flags);
4306
4307 /**
4308 * dev_set_mtu - Change maximum transfer unit
4309 * @dev: device
4310 * @new_mtu: new transfer unit
4311 *
4312 * Change the maximum transfer size of the network device.
4313 */
4314 int dev_set_mtu(struct net_device *dev, int new_mtu)
4315 {
4316 const struct net_device_ops *ops = dev->netdev_ops;
4317 int err;
4318
4319 if (new_mtu == dev->mtu)
4320 return 0;
4321
4322 /* MTU must be positive. */
4323 if (new_mtu < 0)
4324 return -EINVAL;
4325
4326 if (!netif_device_present(dev))
4327 return -ENODEV;
4328
4329 err = 0;
4330 if (ops->ndo_change_mtu)
4331 err = ops->ndo_change_mtu(dev, new_mtu);
4332 else
4333 dev->mtu = new_mtu;
4334
4335 if (!err && dev->flags & IFF_UP)
4336 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4337 return err;
4338 }
4339 EXPORT_SYMBOL(dev_set_mtu);
4340
4341 /**
4342 * dev_set_mac_address - Change Media Access Control Address
4343 * @dev: device
4344 * @sa: new address
4345 *
4346 * Change the hardware (MAC) address of the device
4347 */
4348 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4349 {
4350 const struct net_device_ops *ops = dev->netdev_ops;
4351 int err;
4352
4353 if (!ops->ndo_set_mac_address)
4354 return -EOPNOTSUPP;
4355 if (sa->sa_family != dev->type)
4356 return -EINVAL;
4357 if (!netif_device_present(dev))
4358 return -ENODEV;
4359 err = ops->ndo_set_mac_address(dev, sa);
4360 if (!err)
4361 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4362 return err;
4363 }
4364 EXPORT_SYMBOL(dev_set_mac_address);
4365
4366 /*
4367 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4368 */
4369 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4370 {
4371 int err;
4372 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4373
4374 if (!dev)
4375 return -ENODEV;
4376
4377 switch (cmd) {
4378 case SIOCGIFFLAGS: /* Get interface flags */
4379 ifr->ifr_flags = (short) dev_get_flags(dev);
4380 return 0;
4381
4382 case SIOCGIFMETRIC: /* Get the metric on the interface
4383 (currently unused) */
4384 ifr->ifr_metric = 0;
4385 return 0;
4386
4387 case SIOCGIFMTU: /* Get the MTU of a device */
4388 ifr->ifr_mtu = dev->mtu;
4389 return 0;
4390
4391 case SIOCGIFHWADDR:
4392 if (!dev->addr_len)
4393 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4394 else
4395 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4396 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4397 ifr->ifr_hwaddr.sa_family = dev->type;
4398 return 0;
4399
4400 case SIOCGIFSLAVE:
4401 err = -EINVAL;
4402 break;
4403
4404 case SIOCGIFMAP:
4405 ifr->ifr_map.mem_start = dev->mem_start;
4406 ifr->ifr_map.mem_end = dev->mem_end;
4407 ifr->ifr_map.base_addr = dev->base_addr;
4408 ifr->ifr_map.irq = dev->irq;
4409 ifr->ifr_map.dma = dev->dma;
4410 ifr->ifr_map.port = dev->if_port;
4411 return 0;
4412
4413 case SIOCGIFINDEX:
4414 ifr->ifr_ifindex = dev->ifindex;
4415 return 0;
4416
4417 case SIOCGIFTXQLEN:
4418 ifr->ifr_qlen = dev->tx_queue_len;
4419 return 0;
4420
4421 default:
4422 /* dev_ioctl() should ensure this case
4423 * is never reached
4424 */
4425 WARN_ON(1);
4426 err = -EINVAL;
4427 break;
4428
4429 }
4430 return err;
4431 }
4432
4433 /*
4434 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4435 */
4436 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4437 {
4438 int err;
4439 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4440 const struct net_device_ops *ops;
4441
4442 if (!dev)
4443 return -ENODEV;
4444
4445 ops = dev->netdev_ops;
4446
4447 switch (cmd) {
4448 case SIOCSIFFLAGS: /* Set interface flags */
4449 return dev_change_flags(dev, ifr->ifr_flags);
4450
4451 case SIOCSIFMETRIC: /* Set the metric on the interface
4452 (currently unused) */
4453 return -EOPNOTSUPP;
4454
4455 case SIOCSIFMTU: /* Set the MTU of a device */
4456 return dev_set_mtu(dev, ifr->ifr_mtu);
4457
4458 case SIOCSIFHWADDR:
4459 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4460
4461 case SIOCSIFHWBROADCAST:
4462 if (ifr->ifr_hwaddr.sa_family != dev->type)
4463 return -EINVAL;
4464 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4465 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4466 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4467 return 0;
4468
4469 case SIOCSIFMAP:
4470 if (ops->ndo_set_config) {
4471 if (!netif_device_present(dev))
4472 return -ENODEV;
4473 return ops->ndo_set_config(dev, &ifr->ifr_map);
4474 }
4475 return -EOPNOTSUPP;
4476
4477 case SIOCADDMULTI:
4478 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4479 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4480 return -EINVAL;
4481 if (!netif_device_present(dev))
4482 return -ENODEV;
4483 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4484
4485 case SIOCDELMULTI:
4486 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4487 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4488 return -EINVAL;
4489 if (!netif_device_present(dev))
4490 return -ENODEV;
4491 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4492
4493 case SIOCSIFTXQLEN:
4494 if (ifr->ifr_qlen < 0)
4495 return -EINVAL;
4496 dev->tx_queue_len = ifr->ifr_qlen;
4497 return 0;
4498
4499 case SIOCSIFNAME:
4500 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4501 return dev_change_name(dev, ifr->ifr_newname);
4502
4503 /*
4504 * Unknown or private ioctl
4505 */
4506 default:
4507 if ((cmd >= SIOCDEVPRIVATE &&
4508 cmd <= SIOCDEVPRIVATE + 15) ||
4509 cmd == SIOCBONDENSLAVE ||
4510 cmd == SIOCBONDRELEASE ||
4511 cmd == SIOCBONDSETHWADDR ||
4512 cmd == SIOCBONDSLAVEINFOQUERY ||
4513 cmd == SIOCBONDINFOQUERY ||
4514 cmd == SIOCBONDCHANGEACTIVE ||
4515 cmd == SIOCGMIIPHY ||
4516 cmd == SIOCGMIIREG ||
4517 cmd == SIOCSMIIREG ||
4518 cmd == SIOCBRADDIF ||
4519 cmd == SIOCBRDELIF ||
4520 cmd == SIOCSHWTSTAMP ||
4521 cmd == SIOCWANDEV) {
4522 err = -EOPNOTSUPP;
4523 if (ops->ndo_do_ioctl) {
4524 if (netif_device_present(dev))
4525 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4526 else
4527 err = -ENODEV;
4528 }
4529 } else
4530 err = -EINVAL;
4531
4532 }
4533 return err;
4534 }
4535
4536 /*
4537 * This function handles all "interface"-type I/O control requests. The actual
4538 * 'doing' part of this is dev_ifsioc above.
4539 */
4540
4541 /**
4542 * dev_ioctl - network device ioctl
4543 * @net: the applicable net namespace
4544 * @cmd: command to issue
4545 * @arg: pointer to a struct ifreq in user space
4546 *
4547 * Issue ioctl functions to devices. This is normally called by the
4548 * user space syscall interfaces but can sometimes be useful for
4549 * other purposes. The return value is the return from the syscall if
4550 * positive or a negative errno code on error.
4551 */
4552
4553 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4554 {
4555 struct ifreq ifr;
4556 int ret;
4557 char *colon;
4558
4559 /* One special case: SIOCGIFCONF takes ifconf argument
4560 and requires shared lock, because it sleeps writing
4561 to user space.
4562 */
4563
4564 if (cmd == SIOCGIFCONF) {
4565 rtnl_lock();
4566 ret = dev_ifconf(net, (char __user *) arg);
4567 rtnl_unlock();
4568 return ret;
4569 }
4570 if (cmd == SIOCGIFNAME)
4571 return dev_ifname(net, (struct ifreq __user *)arg);
4572
4573 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4574 return -EFAULT;
4575
4576 ifr.ifr_name[IFNAMSIZ-1] = 0;
4577
4578 colon = strchr(ifr.ifr_name, ':');
4579 if (colon)
4580 *colon = 0;
4581
4582 /*
4583 * See which interface the caller is talking about.
4584 */
4585
4586 switch (cmd) {
4587 /*
4588 * These ioctl calls:
4589 * - can be done by all.
4590 * - atomic and do not require locking.
4591 * - return a value
4592 */
4593 case SIOCGIFFLAGS:
4594 case SIOCGIFMETRIC:
4595 case SIOCGIFMTU:
4596 case SIOCGIFHWADDR:
4597 case SIOCGIFSLAVE:
4598 case SIOCGIFMAP:
4599 case SIOCGIFINDEX:
4600 case SIOCGIFTXQLEN:
4601 dev_load(net, ifr.ifr_name);
4602 rcu_read_lock();
4603 ret = dev_ifsioc_locked(net, &ifr, cmd);
4604 rcu_read_unlock();
4605 if (!ret) {
4606 if (colon)
4607 *colon = ':';
4608 if (copy_to_user(arg, &ifr,
4609 sizeof(struct ifreq)))
4610 ret = -EFAULT;
4611 }
4612 return ret;
4613
4614 case SIOCETHTOOL:
4615 dev_load(net, ifr.ifr_name);
4616 rtnl_lock();
4617 ret = dev_ethtool(net, &ifr);
4618 rtnl_unlock();
4619 if (!ret) {
4620 if (colon)
4621 *colon = ':';
4622 if (copy_to_user(arg, &ifr,
4623 sizeof(struct ifreq)))
4624 ret = -EFAULT;
4625 }
4626 return ret;
4627
4628 /*
4629 * These ioctl calls:
4630 * - require superuser power.
4631 * - require strict serialization.
4632 * - return a value
4633 */
4634 case SIOCGMIIPHY:
4635 case SIOCGMIIREG:
4636 case SIOCSIFNAME:
4637 if (!capable(CAP_NET_ADMIN))
4638 return -EPERM;
4639 dev_load(net, ifr.ifr_name);
4640 rtnl_lock();
4641 ret = dev_ifsioc(net, &ifr, cmd);
4642 rtnl_unlock();
4643 if (!ret) {
4644 if (colon)
4645 *colon = ':';
4646 if (copy_to_user(arg, &ifr,
4647 sizeof(struct ifreq)))
4648 ret = -EFAULT;
4649 }
4650 return ret;
4651
4652 /*
4653 * These ioctl calls:
4654 * - require superuser power.
4655 * - require strict serialization.
4656 * - do not return a value
4657 */
4658 case SIOCSIFFLAGS:
4659 case SIOCSIFMETRIC:
4660 case SIOCSIFMTU:
4661 case SIOCSIFMAP:
4662 case SIOCSIFHWADDR:
4663 case SIOCSIFSLAVE:
4664 case SIOCADDMULTI:
4665 case SIOCDELMULTI:
4666 case SIOCSIFHWBROADCAST:
4667 case SIOCSIFTXQLEN:
4668 case SIOCSMIIREG:
4669 case SIOCBONDENSLAVE:
4670 case SIOCBONDRELEASE:
4671 case SIOCBONDSETHWADDR:
4672 case SIOCBONDCHANGEACTIVE:
4673 case SIOCBRADDIF:
4674 case SIOCBRDELIF:
4675 case SIOCSHWTSTAMP:
4676 if (!capable(CAP_NET_ADMIN))
4677 return -EPERM;
4678 /* fall through */
4679 case SIOCBONDSLAVEINFOQUERY:
4680 case SIOCBONDINFOQUERY:
4681 dev_load(net, ifr.ifr_name);
4682 rtnl_lock();
4683 ret = dev_ifsioc(net, &ifr, cmd);
4684 rtnl_unlock();
4685 return ret;
4686
4687 case SIOCGIFMEM:
4688 /* Get the per device memory space. We can add this but
4689 * currently do not support it */
4690 case SIOCSIFMEM:
4691 /* Set the per device memory buffer space.
4692 * Not applicable in our case */
4693 case SIOCSIFLINK:
4694 return -EINVAL;
4695
4696 /*
4697 * Unknown or private ioctl.
4698 */
4699 default:
4700 if (cmd == SIOCWANDEV ||
4701 (cmd >= SIOCDEVPRIVATE &&
4702 cmd <= SIOCDEVPRIVATE + 15)) {
4703 dev_load(net, ifr.ifr_name);
4704 rtnl_lock();
4705 ret = dev_ifsioc(net, &ifr, cmd);
4706 rtnl_unlock();
4707 if (!ret && copy_to_user(arg, &ifr,
4708 sizeof(struct ifreq)))
4709 ret = -EFAULT;
4710 return ret;
4711 }
4712 /* Take care of Wireless Extensions */
4713 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4714 return wext_handle_ioctl(net, &ifr, cmd, arg);
4715 return -EINVAL;
4716 }
4717 }
4718
4719
4720 /**
4721 * dev_new_index - allocate an ifindex
4722 * @net: the applicable net namespace
4723 *
4724 * Returns a suitable unique value for a new device interface
4725 * number. The caller must hold the rtnl semaphore or the
4726 * dev_base_lock to be sure it remains unique.
4727 */
4728 static int dev_new_index(struct net *net)
4729 {
4730 static int ifindex;
4731 for (;;) {
4732 if (++ifindex <= 0)
4733 ifindex = 1;
4734 if (!__dev_get_by_index(net, ifindex))
4735 return ifindex;
4736 }
4737 }
4738
4739 /* Delayed registration/unregisteration */
4740 static LIST_HEAD(net_todo_list);
4741
4742 static void net_set_todo(struct net_device *dev)
4743 {
4744 list_add_tail(&dev->todo_list, &net_todo_list);
4745 }
4746
4747 static void rollback_registered_many(struct list_head *head)
4748 {
4749 struct net_device *dev, *tmp;
4750
4751 BUG_ON(dev_boot_phase);
4752 ASSERT_RTNL();
4753
4754 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4755 /* Some devices call without registering
4756 * for initialization unwind. Remove those
4757 * devices and proceed with the remaining.
4758 */
4759 if (dev->reg_state == NETREG_UNINITIALIZED) {
4760 pr_debug("unregister_netdevice: device %s/%p never "
4761 "was registered\n", dev->name, dev);
4762
4763 WARN_ON(1);
4764 list_del(&dev->unreg_list);
4765 continue;
4766 }
4767
4768 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4769
4770 /* If device is running, close it first. */
4771 dev_close(dev);
4772
4773 /* And unlink it from device chain. */
4774 unlist_netdevice(dev);
4775
4776 dev->reg_state = NETREG_UNREGISTERING;
4777 }
4778
4779 synchronize_net();
4780
4781 list_for_each_entry(dev, head, unreg_list) {
4782 /* Shutdown queueing discipline. */
4783 dev_shutdown(dev);
4784
4785
4786 /* Notify protocols, that we are about to destroy
4787 this device. They should clean all the things.
4788 */
4789 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4790
4791 if (!dev->rtnl_link_ops ||
4792 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4793 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4794
4795 /*
4796 * Flush the unicast and multicast chains
4797 */
4798 dev_uc_flush(dev);
4799 dev_mc_flush(dev);
4800
4801 if (dev->netdev_ops->ndo_uninit)
4802 dev->netdev_ops->ndo_uninit(dev);
4803
4804 /* Notifier chain MUST detach us from master device. */
4805 WARN_ON(dev->master);
4806
4807 /* Remove entries from kobject tree */
4808 netdev_unregister_kobject(dev);
4809 }
4810
4811 /* Process any work delayed until the end of the batch */
4812 dev = list_first_entry(head, struct net_device, unreg_list);
4813 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4814
4815 synchronize_net();
4816
4817 list_for_each_entry(dev, head, unreg_list)
4818 dev_put(dev);
4819 }
4820
4821 static void rollback_registered(struct net_device *dev)
4822 {
4823 LIST_HEAD(single);
4824
4825 list_add(&dev->unreg_list, &single);
4826 rollback_registered_many(&single);
4827 }
4828
4829 static void __netdev_init_queue_locks_one(struct net_device *dev,
4830 struct netdev_queue *dev_queue,
4831 void *_unused)
4832 {
4833 spin_lock_init(&dev_queue->_xmit_lock);
4834 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4835 dev_queue->xmit_lock_owner = -1;
4836 }
4837
4838 static void netdev_init_queue_locks(struct net_device *dev)
4839 {
4840 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4841 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4842 }
4843
4844 unsigned long netdev_fix_features(unsigned long features, const char *name)
4845 {
4846 /* Fix illegal SG+CSUM combinations. */
4847 if ((features & NETIF_F_SG) &&
4848 !(features & NETIF_F_ALL_CSUM)) {
4849 if (name)
4850 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4851 "checksum feature.\n", name);
4852 features &= ~NETIF_F_SG;
4853 }
4854
4855 /* TSO requires that SG is present as well. */
4856 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4857 if (name)
4858 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4859 "SG feature.\n", name);
4860 features &= ~NETIF_F_TSO;
4861 }
4862
4863 if (features & NETIF_F_UFO) {
4864 if (!(features & NETIF_F_GEN_CSUM)) {
4865 if (name)
4866 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4867 "since no NETIF_F_HW_CSUM feature.\n",
4868 name);
4869 features &= ~NETIF_F_UFO;
4870 }
4871
4872 if (!(features & NETIF_F_SG)) {
4873 if (name)
4874 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4875 "since no NETIF_F_SG feature.\n", name);
4876 features &= ~NETIF_F_UFO;
4877 }
4878 }
4879
4880 return features;
4881 }
4882 EXPORT_SYMBOL(netdev_fix_features);
4883
4884 /**
4885 * netif_stacked_transfer_operstate - transfer operstate
4886 * @rootdev: the root or lower level device to transfer state from
4887 * @dev: the device to transfer operstate to
4888 *
4889 * Transfer operational state from root to device. This is normally
4890 * called when a stacking relationship exists between the root
4891 * device and the device(a leaf device).
4892 */
4893 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4894 struct net_device *dev)
4895 {
4896 if (rootdev->operstate == IF_OPER_DORMANT)
4897 netif_dormant_on(dev);
4898 else
4899 netif_dormant_off(dev);
4900
4901 if (netif_carrier_ok(rootdev)) {
4902 if (!netif_carrier_ok(dev))
4903 netif_carrier_on(dev);
4904 } else {
4905 if (netif_carrier_ok(dev))
4906 netif_carrier_off(dev);
4907 }
4908 }
4909 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4910
4911 /**
4912 * register_netdevice - register a network device
4913 * @dev: device to register
4914 *
4915 * Take a completed network device structure and add it to the kernel
4916 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4917 * chain. 0 is returned on success. A negative errno code is returned
4918 * on a failure to set up the device, or if the name is a duplicate.
4919 *
4920 * Callers must hold the rtnl semaphore. You may want
4921 * register_netdev() instead of this.
4922 *
4923 * BUGS:
4924 * The locking appears insufficient to guarantee two parallel registers
4925 * will not get the same name.
4926 */
4927
4928 int register_netdevice(struct net_device *dev)
4929 {
4930 int ret;
4931 struct net *net = dev_net(dev);
4932
4933 BUG_ON(dev_boot_phase);
4934 ASSERT_RTNL();
4935
4936 might_sleep();
4937
4938 /* When net_device's are persistent, this will be fatal. */
4939 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4940 BUG_ON(!net);
4941
4942 spin_lock_init(&dev->addr_list_lock);
4943 netdev_set_addr_lockdep_class(dev);
4944 netdev_init_queue_locks(dev);
4945
4946 dev->iflink = -1;
4947
4948 #ifdef CONFIG_RPS
4949 if (!dev->num_rx_queues) {
4950 /*
4951 * Allocate a single RX queue if driver never called
4952 * alloc_netdev_mq
4953 */
4954
4955 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4956 if (!dev->_rx) {
4957 ret = -ENOMEM;
4958 goto out;
4959 }
4960
4961 dev->_rx->first = dev->_rx;
4962 atomic_set(&dev->_rx->count, 1);
4963 dev->num_rx_queues = 1;
4964 }
4965 #endif
4966 /* Init, if this function is available */
4967 if (dev->netdev_ops->ndo_init) {
4968 ret = dev->netdev_ops->ndo_init(dev);
4969 if (ret) {
4970 if (ret > 0)
4971 ret = -EIO;
4972 goto out;
4973 }
4974 }
4975
4976 ret = dev_get_valid_name(dev, dev->name, 0);
4977 if (ret)
4978 goto err_uninit;
4979
4980 dev->ifindex = dev_new_index(net);
4981 if (dev->iflink == -1)
4982 dev->iflink = dev->ifindex;
4983
4984 /* Fix illegal checksum combinations */
4985 if ((dev->features & NETIF_F_HW_CSUM) &&
4986 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4987 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4988 dev->name);
4989 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4990 }
4991
4992 if ((dev->features & NETIF_F_NO_CSUM) &&
4993 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4994 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4995 dev->name);
4996 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4997 }
4998
4999 dev->features = netdev_fix_features(dev->features, dev->name);
5000
5001 /* Enable software GSO if SG is supported. */
5002 if (dev->features & NETIF_F_SG)
5003 dev->features |= NETIF_F_GSO;
5004
5005 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5006 ret = notifier_to_errno(ret);
5007 if (ret)
5008 goto err_uninit;
5009
5010 ret = netdev_register_kobject(dev);
5011 if (ret)
5012 goto err_uninit;
5013 dev->reg_state = NETREG_REGISTERED;
5014
5015 /*
5016 * Default initial state at registry is that the
5017 * device is present.
5018 */
5019
5020 set_bit(__LINK_STATE_PRESENT, &dev->state);
5021
5022 dev_init_scheduler(dev);
5023 dev_hold(dev);
5024 list_netdevice(dev);
5025
5026 /* Notify protocols, that a new device appeared. */
5027 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5028 ret = notifier_to_errno(ret);
5029 if (ret) {
5030 rollback_registered(dev);
5031 dev->reg_state = NETREG_UNREGISTERED;
5032 }
5033 /*
5034 * Prevent userspace races by waiting until the network
5035 * device is fully setup before sending notifications.
5036 */
5037 if (!dev->rtnl_link_ops ||
5038 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5039 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5040
5041 out:
5042 return ret;
5043
5044 err_uninit:
5045 if (dev->netdev_ops->ndo_uninit)
5046 dev->netdev_ops->ndo_uninit(dev);
5047 goto out;
5048 }
5049 EXPORT_SYMBOL(register_netdevice);
5050
5051 /**
5052 * init_dummy_netdev - init a dummy network device for NAPI
5053 * @dev: device to init
5054 *
5055 * This takes a network device structure and initialize the minimum
5056 * amount of fields so it can be used to schedule NAPI polls without
5057 * registering a full blown interface. This is to be used by drivers
5058 * that need to tie several hardware interfaces to a single NAPI
5059 * poll scheduler due to HW limitations.
5060 */
5061 int init_dummy_netdev(struct net_device *dev)
5062 {
5063 /* Clear everything. Note we don't initialize spinlocks
5064 * are they aren't supposed to be taken by any of the
5065 * NAPI code and this dummy netdev is supposed to be
5066 * only ever used for NAPI polls
5067 */
5068 memset(dev, 0, sizeof(struct net_device));
5069
5070 /* make sure we BUG if trying to hit standard
5071 * register/unregister code path
5072 */
5073 dev->reg_state = NETREG_DUMMY;
5074
5075 /* initialize the ref count */
5076 atomic_set(&dev->refcnt, 1);
5077
5078 /* NAPI wants this */
5079 INIT_LIST_HEAD(&dev->napi_list);
5080
5081 /* a dummy interface is started by default */
5082 set_bit(__LINK_STATE_PRESENT, &dev->state);
5083 set_bit(__LINK_STATE_START, &dev->state);
5084
5085 return 0;
5086 }
5087 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5088
5089
5090 /**
5091 * register_netdev - register a network device
5092 * @dev: device to register
5093 *
5094 * Take a completed network device structure and add it to the kernel
5095 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5096 * chain. 0 is returned on success. A negative errno code is returned
5097 * on a failure to set up the device, or if the name is a duplicate.
5098 *
5099 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5100 * and expands the device name if you passed a format string to
5101 * alloc_netdev.
5102 */
5103 int register_netdev(struct net_device *dev)
5104 {
5105 int err;
5106
5107 rtnl_lock();
5108
5109 /*
5110 * If the name is a format string the caller wants us to do a
5111 * name allocation.
5112 */
5113 if (strchr(dev->name, '%')) {
5114 err = dev_alloc_name(dev, dev->name);
5115 if (err < 0)
5116 goto out;
5117 }
5118
5119 err = register_netdevice(dev);
5120 out:
5121 rtnl_unlock();
5122 return err;
5123 }
5124 EXPORT_SYMBOL(register_netdev);
5125
5126 /*
5127 * netdev_wait_allrefs - wait until all references are gone.
5128 *
5129 * This is called when unregistering network devices.
5130 *
5131 * Any protocol or device that holds a reference should register
5132 * for netdevice notification, and cleanup and put back the
5133 * reference if they receive an UNREGISTER event.
5134 * We can get stuck here if buggy protocols don't correctly
5135 * call dev_put.
5136 */
5137 static void netdev_wait_allrefs(struct net_device *dev)
5138 {
5139 unsigned long rebroadcast_time, warning_time;
5140
5141 linkwatch_forget_dev(dev);
5142
5143 rebroadcast_time = warning_time = jiffies;
5144 while (atomic_read(&dev->refcnt) != 0) {
5145 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5146 rtnl_lock();
5147
5148 /* Rebroadcast unregister notification */
5149 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5150 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5151 * should have already handle it the first time */
5152
5153 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5154 &dev->state)) {
5155 /* We must not have linkwatch events
5156 * pending on unregister. If this
5157 * happens, we simply run the queue
5158 * unscheduled, resulting in a noop
5159 * for this device.
5160 */
5161 linkwatch_run_queue();
5162 }
5163
5164 __rtnl_unlock();
5165
5166 rebroadcast_time = jiffies;
5167 }
5168
5169 msleep(250);
5170
5171 if (time_after(jiffies, warning_time + 10 * HZ)) {
5172 printk(KERN_EMERG "unregister_netdevice: "
5173 "waiting for %s to become free. Usage "
5174 "count = %d\n",
5175 dev->name, atomic_read(&dev->refcnt));
5176 warning_time = jiffies;
5177 }
5178 }
5179 }
5180
5181 /* The sequence is:
5182 *
5183 * rtnl_lock();
5184 * ...
5185 * register_netdevice(x1);
5186 * register_netdevice(x2);
5187 * ...
5188 * unregister_netdevice(y1);
5189 * unregister_netdevice(y2);
5190 * ...
5191 * rtnl_unlock();
5192 * free_netdev(y1);
5193 * free_netdev(y2);
5194 *
5195 * We are invoked by rtnl_unlock().
5196 * This allows us to deal with problems:
5197 * 1) We can delete sysfs objects which invoke hotplug
5198 * without deadlocking with linkwatch via keventd.
5199 * 2) Since we run with the RTNL semaphore not held, we can sleep
5200 * safely in order to wait for the netdev refcnt to drop to zero.
5201 *
5202 * We must not return until all unregister events added during
5203 * the interval the lock was held have been completed.
5204 */
5205 void netdev_run_todo(void)
5206 {
5207 struct list_head list;
5208
5209 /* Snapshot list, allow later requests */
5210 list_replace_init(&net_todo_list, &list);
5211
5212 __rtnl_unlock();
5213
5214 while (!list_empty(&list)) {
5215 struct net_device *dev
5216 = list_first_entry(&list, struct net_device, todo_list);
5217 list_del(&dev->todo_list);
5218
5219 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5220 printk(KERN_ERR "network todo '%s' but state %d\n",
5221 dev->name, dev->reg_state);
5222 dump_stack();
5223 continue;
5224 }
5225
5226 dev->reg_state = NETREG_UNREGISTERED;
5227
5228 on_each_cpu(flush_backlog, dev, 1);
5229
5230 netdev_wait_allrefs(dev);
5231
5232 /* paranoia */
5233 BUG_ON(atomic_read(&dev->refcnt));
5234 WARN_ON(dev->ip_ptr);
5235 WARN_ON(dev->ip6_ptr);
5236 WARN_ON(dev->dn_ptr);
5237
5238 if (dev->destructor)
5239 dev->destructor(dev);
5240
5241 /* Free network device */
5242 kobject_put(&dev->dev.kobj);
5243 }
5244 }
5245
5246 /**
5247 * dev_txq_stats_fold - fold tx_queues stats
5248 * @dev: device to get statistics from
5249 * @stats: struct net_device_stats to hold results
5250 */
5251 void dev_txq_stats_fold(const struct net_device *dev,
5252 struct net_device_stats *stats)
5253 {
5254 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5255 unsigned int i;
5256 struct netdev_queue *txq;
5257
5258 for (i = 0; i < dev->num_tx_queues; i++) {
5259 txq = netdev_get_tx_queue(dev, i);
5260 tx_bytes += txq->tx_bytes;
5261 tx_packets += txq->tx_packets;
5262 tx_dropped += txq->tx_dropped;
5263 }
5264 if (tx_bytes || tx_packets || tx_dropped) {
5265 stats->tx_bytes = tx_bytes;
5266 stats->tx_packets = tx_packets;
5267 stats->tx_dropped = tx_dropped;
5268 }
5269 }
5270 EXPORT_SYMBOL(dev_txq_stats_fold);
5271
5272 /**
5273 * dev_get_stats - get network device statistics
5274 * @dev: device to get statistics from
5275 *
5276 * Get network statistics from device. The device driver may provide
5277 * its own method by setting dev->netdev_ops->get_stats; otherwise
5278 * the internal statistics structure is used.
5279 */
5280 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5281 {
5282 const struct net_device_ops *ops = dev->netdev_ops;
5283
5284 if (ops->ndo_get_stats)
5285 return ops->ndo_get_stats(dev);
5286
5287 dev_txq_stats_fold(dev, &dev->stats);
5288 return &dev->stats;
5289 }
5290 EXPORT_SYMBOL(dev_get_stats);
5291
5292 static void netdev_init_one_queue(struct net_device *dev,
5293 struct netdev_queue *queue,
5294 void *_unused)
5295 {
5296 queue->dev = dev;
5297 }
5298
5299 static void netdev_init_queues(struct net_device *dev)
5300 {
5301 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5302 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5303 spin_lock_init(&dev->tx_global_lock);
5304 }
5305
5306 /**
5307 * alloc_netdev_mq - allocate network device
5308 * @sizeof_priv: size of private data to allocate space for
5309 * @name: device name format string
5310 * @setup: callback to initialize device
5311 * @queue_count: the number of subqueues to allocate
5312 *
5313 * Allocates a struct net_device with private data area for driver use
5314 * and performs basic initialization. Also allocates subquue structs
5315 * for each queue on the device at the end of the netdevice.
5316 */
5317 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5318 void (*setup)(struct net_device *), unsigned int queue_count)
5319 {
5320 struct netdev_queue *tx;
5321 struct net_device *dev;
5322 size_t alloc_size;
5323 struct net_device *p;
5324 #ifdef CONFIG_RPS
5325 struct netdev_rx_queue *rx;
5326 int i;
5327 #endif
5328
5329 BUG_ON(strlen(name) >= sizeof(dev->name));
5330
5331 alloc_size = sizeof(struct net_device);
5332 if (sizeof_priv) {
5333 /* ensure 32-byte alignment of private area */
5334 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5335 alloc_size += sizeof_priv;
5336 }
5337 /* ensure 32-byte alignment of whole construct */
5338 alloc_size += NETDEV_ALIGN - 1;
5339
5340 p = kzalloc(alloc_size, GFP_KERNEL);
5341 if (!p) {
5342 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5343 return NULL;
5344 }
5345
5346 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5347 if (!tx) {
5348 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5349 "tx qdiscs.\n");
5350 goto free_p;
5351 }
5352
5353 #ifdef CONFIG_RPS
5354 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5355 if (!rx) {
5356 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5357 "rx queues.\n");
5358 goto free_tx;
5359 }
5360
5361 atomic_set(&rx->count, queue_count);
5362
5363 /*
5364 * Set a pointer to first element in the array which holds the
5365 * reference count.
5366 */
5367 for (i = 0; i < queue_count; i++)
5368 rx[i].first = rx;
5369 #endif
5370
5371 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5372 dev->padded = (char *)dev - (char *)p;
5373
5374 if (dev_addr_init(dev))
5375 goto free_rx;
5376
5377 dev_mc_init(dev);
5378 dev_uc_init(dev);
5379
5380 dev_net_set(dev, &init_net);
5381
5382 dev->_tx = tx;
5383 dev->num_tx_queues = queue_count;
5384 dev->real_num_tx_queues = queue_count;
5385
5386 #ifdef CONFIG_RPS
5387 dev->_rx = rx;
5388 dev->num_rx_queues = queue_count;
5389 #endif
5390
5391 dev->gso_max_size = GSO_MAX_SIZE;
5392
5393 netdev_init_queues(dev);
5394
5395 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5396 dev->ethtool_ntuple_list.count = 0;
5397 INIT_LIST_HEAD(&dev->napi_list);
5398 INIT_LIST_HEAD(&dev->unreg_list);
5399 INIT_LIST_HEAD(&dev->link_watch_list);
5400 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5401 setup(dev);
5402 strcpy(dev->name, name);
5403 return dev;
5404
5405 free_rx:
5406 #ifdef CONFIG_RPS
5407 kfree(rx);
5408 free_tx:
5409 #endif
5410 kfree(tx);
5411 free_p:
5412 kfree(p);
5413 return NULL;
5414 }
5415 EXPORT_SYMBOL(alloc_netdev_mq);
5416
5417 /**
5418 * free_netdev - free network device
5419 * @dev: device
5420 *
5421 * This function does the last stage of destroying an allocated device
5422 * interface. The reference to the device object is released.
5423 * If this is the last reference then it will be freed.
5424 */
5425 void free_netdev(struct net_device *dev)
5426 {
5427 struct napi_struct *p, *n;
5428
5429 release_net(dev_net(dev));
5430
5431 kfree(dev->_tx);
5432
5433 /* Flush device addresses */
5434 dev_addr_flush(dev);
5435
5436 /* Clear ethtool n-tuple list */
5437 ethtool_ntuple_flush(dev);
5438
5439 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5440 netif_napi_del(p);
5441
5442 /* Compatibility with error handling in drivers */
5443 if (dev->reg_state == NETREG_UNINITIALIZED) {
5444 kfree((char *)dev - dev->padded);
5445 return;
5446 }
5447
5448 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5449 dev->reg_state = NETREG_RELEASED;
5450
5451 /* will free via device release */
5452 put_device(&dev->dev);
5453 }
5454 EXPORT_SYMBOL(free_netdev);
5455
5456 /**
5457 * synchronize_net - Synchronize with packet receive processing
5458 *
5459 * Wait for packets currently being received to be done.
5460 * Does not block later packets from starting.
5461 */
5462 void synchronize_net(void)
5463 {
5464 might_sleep();
5465 synchronize_rcu();
5466 }
5467 EXPORT_SYMBOL(synchronize_net);
5468
5469 /**
5470 * unregister_netdevice_queue - remove device from the kernel
5471 * @dev: device
5472 * @head: list
5473 *
5474 * This function shuts down a device interface and removes it
5475 * from the kernel tables.
5476 * If head not NULL, device is queued to be unregistered later.
5477 *
5478 * Callers must hold the rtnl semaphore. You may want
5479 * unregister_netdev() instead of this.
5480 */
5481
5482 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5483 {
5484 ASSERT_RTNL();
5485
5486 if (head) {
5487 list_move_tail(&dev->unreg_list, head);
5488 } else {
5489 rollback_registered(dev);
5490 /* Finish processing unregister after unlock */
5491 net_set_todo(dev);
5492 }
5493 }
5494 EXPORT_SYMBOL(unregister_netdevice_queue);
5495
5496 /**
5497 * unregister_netdevice_many - unregister many devices
5498 * @head: list of devices
5499 */
5500 void unregister_netdevice_many(struct list_head *head)
5501 {
5502 struct net_device *dev;
5503
5504 if (!list_empty(head)) {
5505 rollback_registered_many(head);
5506 list_for_each_entry(dev, head, unreg_list)
5507 net_set_todo(dev);
5508 }
5509 }
5510 EXPORT_SYMBOL(unregister_netdevice_many);
5511
5512 /**
5513 * unregister_netdev - remove device from the kernel
5514 * @dev: device
5515 *
5516 * This function shuts down a device interface and removes it
5517 * from the kernel tables.
5518 *
5519 * This is just a wrapper for unregister_netdevice that takes
5520 * the rtnl semaphore. In general you want to use this and not
5521 * unregister_netdevice.
5522 */
5523 void unregister_netdev(struct net_device *dev)
5524 {
5525 rtnl_lock();
5526 unregister_netdevice(dev);
5527 rtnl_unlock();
5528 }
5529 EXPORT_SYMBOL(unregister_netdev);
5530
5531 /**
5532 * dev_change_net_namespace - move device to different nethost namespace
5533 * @dev: device
5534 * @net: network namespace
5535 * @pat: If not NULL name pattern to try if the current device name
5536 * is already taken in the destination network namespace.
5537 *
5538 * This function shuts down a device interface and moves it
5539 * to a new network namespace. On success 0 is returned, on
5540 * a failure a netagive errno code is returned.
5541 *
5542 * Callers must hold the rtnl semaphore.
5543 */
5544
5545 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5546 {
5547 int err;
5548
5549 ASSERT_RTNL();
5550
5551 /* Don't allow namespace local devices to be moved. */
5552 err = -EINVAL;
5553 if (dev->features & NETIF_F_NETNS_LOCAL)
5554 goto out;
5555
5556 /* Ensure the device has been registrered */
5557 err = -EINVAL;
5558 if (dev->reg_state != NETREG_REGISTERED)
5559 goto out;
5560
5561 /* Get out if there is nothing todo */
5562 err = 0;
5563 if (net_eq(dev_net(dev), net))
5564 goto out;
5565
5566 /* Pick the destination device name, and ensure
5567 * we can use it in the destination network namespace.
5568 */
5569 err = -EEXIST;
5570 if (__dev_get_by_name(net, dev->name)) {
5571 /* We get here if we can't use the current device name */
5572 if (!pat)
5573 goto out;
5574 if (dev_get_valid_name(dev, pat, 1))
5575 goto out;
5576 }
5577
5578 /*
5579 * And now a mini version of register_netdevice unregister_netdevice.
5580 */
5581
5582 /* If device is running close it first. */
5583 dev_close(dev);
5584
5585 /* And unlink it from device chain */
5586 err = -ENODEV;
5587 unlist_netdevice(dev);
5588
5589 synchronize_net();
5590
5591 /* Shutdown queueing discipline. */
5592 dev_shutdown(dev);
5593
5594 /* Notify protocols, that we are about to destroy
5595 this device. They should clean all the things.
5596 */
5597 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5598 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5599
5600 /*
5601 * Flush the unicast and multicast chains
5602 */
5603 dev_uc_flush(dev);
5604 dev_mc_flush(dev);
5605
5606 /* Actually switch the network namespace */
5607 dev_net_set(dev, net);
5608
5609 /* If there is an ifindex conflict assign a new one */
5610 if (__dev_get_by_index(net, dev->ifindex)) {
5611 int iflink = (dev->iflink == dev->ifindex);
5612 dev->ifindex = dev_new_index(net);
5613 if (iflink)
5614 dev->iflink = dev->ifindex;
5615 }
5616
5617 /* Fixup kobjects */
5618 err = device_rename(&dev->dev, dev->name);
5619 WARN_ON(err);
5620
5621 /* Add the device back in the hashes */
5622 list_netdevice(dev);
5623
5624 /* Notify protocols, that a new device appeared. */
5625 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5626
5627 /*
5628 * Prevent userspace races by waiting until the network
5629 * device is fully setup before sending notifications.
5630 */
5631 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5632
5633 synchronize_net();
5634 err = 0;
5635 out:
5636 return err;
5637 }
5638 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5639
5640 static int dev_cpu_callback(struct notifier_block *nfb,
5641 unsigned long action,
5642 void *ocpu)
5643 {
5644 struct sk_buff **list_skb;
5645 struct sk_buff *skb;
5646 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5647 struct softnet_data *sd, *oldsd;
5648
5649 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5650 return NOTIFY_OK;
5651
5652 local_irq_disable();
5653 cpu = smp_processor_id();
5654 sd = &per_cpu(softnet_data, cpu);
5655 oldsd = &per_cpu(softnet_data, oldcpu);
5656
5657 /* Find end of our completion_queue. */
5658 list_skb = &sd->completion_queue;
5659 while (*list_skb)
5660 list_skb = &(*list_skb)->next;
5661 /* Append completion queue from offline CPU. */
5662 *list_skb = oldsd->completion_queue;
5663 oldsd->completion_queue = NULL;
5664
5665 /* Append output queue from offline CPU. */
5666 if (oldsd->output_queue) {
5667 *sd->output_queue_tailp = oldsd->output_queue;
5668 sd->output_queue_tailp = oldsd->output_queue_tailp;
5669 oldsd->output_queue = NULL;
5670 oldsd->output_queue_tailp = &oldsd->output_queue;
5671 }
5672
5673 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5674 local_irq_enable();
5675
5676 /* Process offline CPU's input_pkt_queue */
5677 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5678 netif_rx(skb);
5679 input_queue_head_incr(oldsd);
5680 }
5681 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5682 netif_rx(skb);
5683 input_queue_head_incr(oldsd);
5684 }
5685
5686 return NOTIFY_OK;
5687 }
5688
5689
5690 /**
5691 * netdev_increment_features - increment feature set by one
5692 * @all: current feature set
5693 * @one: new feature set
5694 * @mask: mask feature set
5695 *
5696 * Computes a new feature set after adding a device with feature set
5697 * @one to the master device with current feature set @all. Will not
5698 * enable anything that is off in @mask. Returns the new feature set.
5699 */
5700 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5701 unsigned long mask)
5702 {
5703 /* If device needs checksumming, downgrade to it. */
5704 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5705 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5706 else if (mask & NETIF_F_ALL_CSUM) {
5707 /* If one device supports v4/v6 checksumming, set for all. */
5708 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5709 !(all & NETIF_F_GEN_CSUM)) {
5710 all &= ~NETIF_F_ALL_CSUM;
5711 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5712 }
5713
5714 /* If one device supports hw checksumming, set for all. */
5715 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5716 all &= ~NETIF_F_ALL_CSUM;
5717 all |= NETIF_F_HW_CSUM;
5718 }
5719 }
5720
5721 one |= NETIF_F_ALL_CSUM;
5722
5723 one |= all & NETIF_F_ONE_FOR_ALL;
5724 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5725 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5726
5727 return all;
5728 }
5729 EXPORT_SYMBOL(netdev_increment_features);
5730
5731 static struct hlist_head *netdev_create_hash(void)
5732 {
5733 int i;
5734 struct hlist_head *hash;
5735
5736 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5737 if (hash != NULL)
5738 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5739 INIT_HLIST_HEAD(&hash[i]);
5740
5741 return hash;
5742 }
5743
5744 /* Initialize per network namespace state */
5745 static int __net_init netdev_init(struct net *net)
5746 {
5747 INIT_LIST_HEAD(&net->dev_base_head);
5748
5749 net->dev_name_head = netdev_create_hash();
5750 if (net->dev_name_head == NULL)
5751 goto err_name;
5752
5753 net->dev_index_head = netdev_create_hash();
5754 if (net->dev_index_head == NULL)
5755 goto err_idx;
5756
5757 return 0;
5758
5759 err_idx:
5760 kfree(net->dev_name_head);
5761 err_name:
5762 return -ENOMEM;
5763 }
5764
5765 /**
5766 * netdev_drivername - network driver for the device
5767 * @dev: network device
5768 * @buffer: buffer for resulting name
5769 * @len: size of buffer
5770 *
5771 * Determine network driver for device.
5772 */
5773 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5774 {
5775 const struct device_driver *driver;
5776 const struct device *parent;
5777
5778 if (len <= 0 || !buffer)
5779 return buffer;
5780 buffer[0] = 0;
5781
5782 parent = dev->dev.parent;
5783
5784 if (!parent)
5785 return buffer;
5786
5787 driver = parent->driver;
5788 if (driver && driver->name)
5789 strlcpy(buffer, driver->name, len);
5790 return buffer;
5791 }
5792
5793 static void __net_exit netdev_exit(struct net *net)
5794 {
5795 kfree(net->dev_name_head);
5796 kfree(net->dev_index_head);
5797 }
5798
5799 static struct pernet_operations __net_initdata netdev_net_ops = {
5800 .init = netdev_init,
5801 .exit = netdev_exit,
5802 };
5803
5804 static void __net_exit default_device_exit(struct net *net)
5805 {
5806 struct net_device *dev, *aux;
5807 /*
5808 * Push all migratable network devices back to the
5809 * initial network namespace
5810 */
5811 rtnl_lock();
5812 for_each_netdev_safe(net, dev, aux) {
5813 int err;
5814 char fb_name[IFNAMSIZ];
5815
5816 /* Ignore unmoveable devices (i.e. loopback) */
5817 if (dev->features & NETIF_F_NETNS_LOCAL)
5818 continue;
5819
5820 /* Leave virtual devices for the generic cleanup */
5821 if (dev->rtnl_link_ops)
5822 continue;
5823
5824 /* Push remaing network devices to init_net */
5825 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5826 err = dev_change_net_namespace(dev, &init_net, fb_name);
5827 if (err) {
5828 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5829 __func__, dev->name, err);
5830 BUG();
5831 }
5832 }
5833 rtnl_unlock();
5834 }
5835
5836 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5837 {
5838 /* At exit all network devices most be removed from a network
5839 * namespace. Do this in the reverse order of registeration.
5840 * Do this across as many network namespaces as possible to
5841 * improve batching efficiency.
5842 */
5843 struct net_device *dev;
5844 struct net *net;
5845 LIST_HEAD(dev_kill_list);
5846
5847 rtnl_lock();
5848 list_for_each_entry(net, net_list, exit_list) {
5849 for_each_netdev_reverse(net, dev) {
5850 if (dev->rtnl_link_ops)
5851 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5852 else
5853 unregister_netdevice_queue(dev, &dev_kill_list);
5854 }
5855 }
5856 unregister_netdevice_many(&dev_kill_list);
5857 rtnl_unlock();
5858 }
5859
5860 static struct pernet_operations __net_initdata default_device_ops = {
5861 .exit = default_device_exit,
5862 .exit_batch = default_device_exit_batch,
5863 };
5864
5865 /*
5866 * Initialize the DEV module. At boot time this walks the device list and
5867 * unhooks any devices that fail to initialise (normally hardware not
5868 * present) and leaves us with a valid list of present and active devices.
5869 *
5870 */
5871
5872 /*
5873 * This is called single threaded during boot, so no need
5874 * to take the rtnl semaphore.
5875 */
5876 static int __init net_dev_init(void)
5877 {
5878 int i, rc = -ENOMEM;
5879
5880 BUG_ON(!dev_boot_phase);
5881
5882 if (dev_proc_init())
5883 goto out;
5884
5885 if (netdev_kobject_init())
5886 goto out;
5887
5888 INIT_LIST_HEAD(&ptype_all);
5889 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5890 INIT_LIST_HEAD(&ptype_base[i]);
5891
5892 if (register_pernet_subsys(&netdev_net_ops))
5893 goto out;
5894
5895 /*
5896 * Initialise the packet receive queues.
5897 */
5898
5899 for_each_possible_cpu(i) {
5900 struct softnet_data *sd = &per_cpu(softnet_data, i);
5901
5902 memset(sd, 0, sizeof(*sd));
5903 skb_queue_head_init(&sd->input_pkt_queue);
5904 skb_queue_head_init(&sd->process_queue);
5905 sd->completion_queue = NULL;
5906 INIT_LIST_HEAD(&sd->poll_list);
5907 sd->output_queue = NULL;
5908 sd->output_queue_tailp = &sd->output_queue;
5909 #ifdef CONFIG_RPS
5910 sd->csd.func = rps_trigger_softirq;
5911 sd->csd.info = sd;
5912 sd->csd.flags = 0;
5913 sd->cpu = i;
5914 #endif
5915
5916 sd->backlog.poll = process_backlog;
5917 sd->backlog.weight = weight_p;
5918 sd->backlog.gro_list = NULL;
5919 sd->backlog.gro_count = 0;
5920 }
5921
5922 dev_boot_phase = 0;
5923
5924 /* The loopback device is special if any other network devices
5925 * is present in a network namespace the loopback device must
5926 * be present. Since we now dynamically allocate and free the
5927 * loopback device ensure this invariant is maintained by
5928 * keeping the loopback device as the first device on the
5929 * list of network devices. Ensuring the loopback devices
5930 * is the first device that appears and the last network device
5931 * that disappears.
5932 */
5933 if (register_pernet_device(&loopback_net_ops))
5934 goto out;
5935
5936 if (register_pernet_device(&default_device_ops))
5937 goto out;
5938
5939 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5940 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5941
5942 hotcpu_notifier(dev_cpu_callback, 0);
5943 dst_init();
5944 dev_mcast_init();
5945 rc = 0;
5946 out:
5947 return rc;
5948 }
5949
5950 subsys_initcall(net_dev_init);
5951
5952 static int __init initialize_hashrnd(void)
5953 {
5954 get_random_bytes(&hashrnd, sizeof(hashrnd));
5955 return 0;
5956 }
5957
5958 late_initcall_sync(initialize_hashrnd);
5959
This page took 0.213178 seconds and 6 git commands to generate.