Merge branches 'video' and 'video-edid' into release
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal
227 * caller must respect a RCU grace period before freeing/reusing dev
228 */
229 static void unlist_netdevice(struct net_device *dev)
230 {
231 ASSERT_RTNL();
232
233 /* Unlink dev from the device chain */
234 write_lock_bh(&dev_base_lock);
235 list_del_rcu(&dev->dev_list);
236 hlist_del_rcu(&dev->name_hlist);
237 hlist_del_rcu(&dev->index_hlist);
238 write_unlock_bh(&dev_base_lock);
239 }
240
241 /*
242 * Our notifier list
243 */
244
245 static RAW_NOTIFIER_HEAD(netdev_chain);
246
247 /*
248 * Device drivers call our routines to queue packets here. We empty the
249 * queue in the local softnet handler.
250 */
251
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 EXPORT_PER_CPU_SYMBOL(softnet_data);
254
255 #ifdef CONFIG_LOCKDEP
256 /*
257 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
258 * according to dev->type
259 */
260 static const unsigned short netdev_lock_type[] =
261 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
262 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
263 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
264 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
265 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
266 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
267 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
268 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
269 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
270 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
271 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
272 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
273 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
274 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
275 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
276 ARPHRD_VOID, ARPHRD_NONE};
277
278 static const char *const netdev_lock_name[] =
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
293 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
294 "_xmit_VOID", "_xmit_NONE"};
295
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298
299 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 {
301 int i;
302
303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 if (netdev_lock_type[i] == dev_type)
305 return i;
306 /* the last key is used by default */
307 return ARRAY_SIZE(netdev_lock_type) - 1;
308 }
309
310 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
311 unsigned short dev_type)
312 {
313 int i;
314
315 i = netdev_lock_pos(dev_type);
316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 netdev_lock_name[i]);
318 }
319
320 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 {
322 int i;
323
324 i = netdev_lock_pos(dev->type);
325 lockdep_set_class_and_name(&dev->addr_list_lock,
326 &netdev_addr_lock_key[i],
327 netdev_lock_name[i]);
328 }
329 #else
330 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
331 unsigned short dev_type)
332 {
333 }
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 }
337 #endif
338
339 /*******************************************************************************
340
341 Protocol management and registration routines
342
343 *******************************************************************************/
344
345 /*
346 * Add a protocol ID to the list. Now that the input handler is
347 * smarter we can dispense with all the messy stuff that used to be
348 * here.
349 *
350 * BEWARE!!! Protocol handlers, mangling input packets,
351 * MUST BE last in hash buckets and checking protocol handlers
352 * MUST start from promiscuous ptype_all chain in net_bh.
353 * It is true now, do not change it.
354 * Explanation follows: if protocol handler, mangling packet, will
355 * be the first on list, it is not able to sense, that packet
356 * is cloned and should be copied-on-write, so that it will
357 * change it and subsequent readers will get broken packet.
358 * --ANK (980803)
359 */
360
361 /**
362 * dev_add_pack - add packet handler
363 * @pt: packet type declaration
364 *
365 * Add a protocol handler to the networking stack. The passed &packet_type
366 * is linked into kernel lists and may not be freed until it has been
367 * removed from the kernel lists.
368 *
369 * This call does not sleep therefore it can not
370 * guarantee all CPU's that are in middle of receiving packets
371 * will see the new packet type (until the next received packet).
372 */
373
374 void dev_add_pack(struct packet_type *pt)
375 {
376 int hash;
377
378 spin_lock_bh(&ptype_lock);
379 if (pt->type == htons(ETH_P_ALL))
380 list_add_rcu(&pt->list, &ptype_all);
381 else {
382 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
383 list_add_rcu(&pt->list, &ptype_base[hash]);
384 }
385 spin_unlock_bh(&ptype_lock);
386 }
387 EXPORT_SYMBOL(dev_add_pack);
388
389 /**
390 * __dev_remove_pack - remove packet handler
391 * @pt: packet type declaration
392 *
393 * Remove a protocol handler that was previously added to the kernel
394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
395 * from the kernel lists and can be freed or reused once this function
396 * returns.
397 *
398 * The packet type might still be in use by receivers
399 * and must not be freed until after all the CPU's have gone
400 * through a quiescent state.
401 */
402 void __dev_remove_pack(struct packet_type *pt)
403 {
404 struct list_head *head;
405 struct packet_type *pt1;
406
407 spin_lock_bh(&ptype_lock);
408
409 if (pt->type == htons(ETH_P_ALL))
410 head = &ptype_all;
411 else
412 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
422 out:
423 spin_unlock_bh(&ptype_lock);
424 }
425 EXPORT_SYMBOL(__dev_remove_pack);
426
427 /**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439 void dev_remove_pack(struct packet_type *pt)
440 {
441 __dev_remove_pack(pt);
442
443 synchronize_net();
444 }
445 EXPORT_SYMBOL(dev_remove_pack);
446
447 /******************************************************************************
448
449 Device Boot-time Settings Routines
450
451 *******************************************************************************/
452
453 /* Boot time configuration table */
454 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455
456 /**
457 * netdev_boot_setup_add - add new setup entry
458 * @name: name of the device
459 * @map: configured settings for the device
460 *
461 * Adds new setup entry to the dev_boot_setup list. The function
462 * returns 0 on error and 1 on success. This is a generic routine to
463 * all netdevices.
464 */
465 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 {
467 struct netdev_boot_setup *s;
468 int i;
469
470 s = dev_boot_setup;
471 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
472 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
473 memset(s[i].name, 0, sizeof(s[i].name));
474 strlcpy(s[i].name, name, IFNAMSIZ);
475 memcpy(&s[i].map, map, sizeof(s[i].map));
476 break;
477 }
478 }
479
480 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481 }
482
483 /**
484 * netdev_boot_setup_check - check boot time settings
485 * @dev: the netdevice
486 *
487 * Check boot time settings for the device.
488 * The found settings are set for the device to be used
489 * later in the device probing.
490 * Returns 0 if no settings found, 1 if they are.
491 */
492 int netdev_boot_setup_check(struct net_device *dev)
493 {
494 struct netdev_boot_setup *s = dev_boot_setup;
495 int i;
496
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
499 !strcmp(dev->name, s[i].name)) {
500 dev->irq = s[i].map.irq;
501 dev->base_addr = s[i].map.base_addr;
502 dev->mem_start = s[i].map.mem_start;
503 dev->mem_end = s[i].map.mem_end;
504 return 1;
505 }
506 }
507 return 0;
508 }
509 EXPORT_SYMBOL(netdev_boot_setup_check);
510
511
512 /**
513 * netdev_boot_base - get address from boot time settings
514 * @prefix: prefix for network device
515 * @unit: id for network device
516 *
517 * Check boot time settings for the base address of device.
518 * The found settings are set for the device to be used
519 * later in the device probing.
520 * Returns 0 if no settings found.
521 */
522 unsigned long netdev_boot_base(const char *prefix, int unit)
523 {
524 const struct netdev_boot_setup *s = dev_boot_setup;
525 char name[IFNAMSIZ];
526 int i;
527
528 sprintf(name, "%s%d", prefix, unit);
529
530 /*
531 * If device already registered then return base of 1
532 * to indicate not to probe for this interface
533 */
534 if (__dev_get_by_name(&init_net, name))
535 return 1;
536
537 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
538 if (!strcmp(name, s[i].name))
539 return s[i].map.base_addr;
540 return 0;
541 }
542
543 /*
544 * Saves at boot time configured settings for any netdevice.
545 */
546 int __init netdev_boot_setup(char *str)
547 {
548 int ints[5];
549 struct ifmap map;
550
551 str = get_options(str, ARRAY_SIZE(ints), ints);
552 if (!str || !*str)
553 return 0;
554
555 /* Save settings */
556 memset(&map, 0, sizeof(map));
557 if (ints[0] > 0)
558 map.irq = ints[1];
559 if (ints[0] > 1)
560 map.base_addr = ints[2];
561 if (ints[0] > 2)
562 map.mem_start = ints[3];
563 if (ints[0] > 3)
564 map.mem_end = ints[4];
565
566 /* Add new entry to the list */
567 return netdev_boot_setup_add(str, &map);
568 }
569
570 __setup("netdev=", netdev_boot_setup);
571
572 /*******************************************************************************
573
574 Device Interface Subroutines
575
576 *******************************************************************************/
577
578 /**
579 * __dev_get_by_name - find a device by its name
580 * @net: the applicable net namespace
581 * @name: name to find
582 *
583 * Find an interface by name. Must be called under RTNL semaphore
584 * or @dev_base_lock. If the name is found a pointer to the device
585 * is returned. If the name is not found then %NULL is returned. The
586 * reference counters are not incremented so the caller must be
587 * careful with locks.
588 */
589
590 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 {
592 struct hlist_node *p;
593 struct net_device *dev;
594 struct hlist_head *head = dev_name_hash(net, name);
595
596 hlist_for_each_entry(dev, p, head, name_hlist)
597 if (!strncmp(dev->name, name, IFNAMSIZ))
598 return dev;
599
600 return NULL;
601 }
602 EXPORT_SYMBOL(__dev_get_by_name);
603
604 /**
605 * dev_get_by_name_rcu - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name.
610 * If the name is found a pointer to the device is returned.
611 * If the name is not found then %NULL is returned.
612 * The reference counters are not incremented so the caller must be
613 * careful with locks. The caller must hold RCU lock.
614 */
615
616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(dev_get_by_name_rcu);
629
630 /**
631 * dev_get_by_name - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name. This can be called from any
636 * context and does its own locking. The returned handle has
637 * the usage count incremented and the caller must use dev_put() to
638 * release it when it is no longer needed. %NULL is returned if no
639 * matching device is found.
640 */
641
642 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 {
644 struct net_device *dev;
645
646 rcu_read_lock();
647 dev = dev_get_by_name_rcu(net, name);
648 if (dev)
649 dev_hold(dev);
650 rcu_read_unlock();
651 return dev;
652 }
653 EXPORT_SYMBOL(dev_get_by_name);
654
655 /**
656 * __dev_get_by_index - find a device by its ifindex
657 * @net: the applicable net namespace
658 * @ifindex: index of device
659 *
660 * Search for an interface by index. Returns %NULL if the device
661 * is not found or a pointer to the device. The device has not
662 * had its reference counter increased so the caller must be careful
663 * about locking. The caller must hold either the RTNL semaphore
664 * or @dev_base_lock.
665 */
666
667 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 {
669 struct hlist_node *p;
670 struct net_device *dev;
671 struct hlist_head *head = dev_index_hash(net, ifindex);
672
673 hlist_for_each_entry(dev, p, head, index_hlist)
674 if (dev->ifindex == ifindex)
675 return dev;
676
677 return NULL;
678 }
679 EXPORT_SYMBOL(__dev_get_by_index);
680
681 /**
682 * dev_get_by_index_rcu - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 {
694 struct hlist_node *p;
695 struct net_device *dev;
696 struct hlist_head *head = dev_index_hash(net, ifindex);
697
698 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
699 if (dev->ifindex == ifindex)
700 return dev;
701
702 return NULL;
703 }
704 EXPORT_SYMBOL(dev_get_by_index_rcu);
705
706
707 /**
708 * dev_get_by_index - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns NULL if the device
713 * is not found or a pointer to the device. The device returned has
714 * had a reference added and the pointer is safe until the user calls
715 * dev_put to indicate they have finished with it.
716 */
717
718 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 {
720 struct net_device *dev;
721
722 rcu_read_lock();
723 dev = dev_get_by_index_rcu(net, ifindex);
724 if (dev)
725 dev_hold(dev);
726 rcu_read_unlock();
727 return dev;
728 }
729 EXPORT_SYMBOL(dev_get_by_index);
730
731 /**
732 * dev_getbyhwaddr - find a device by its hardware address
733 * @net: the applicable net namespace
734 * @type: media type of device
735 * @ha: hardware address
736 *
737 * Search for an interface by MAC address. Returns NULL if the device
738 * is not found or a pointer to the device. The caller must hold the
739 * rtnl semaphore. The returned device has not had its ref count increased
740 * and the caller must therefore be careful about locking
741 *
742 * BUGS:
743 * If the API was consistent this would be __dev_get_by_hwaddr
744 */
745
746 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 {
748 struct net_device *dev;
749
750 ASSERT_RTNL();
751
752 for_each_netdev(net, dev)
753 if (dev->type == type &&
754 !memcmp(dev->dev_addr, ha, dev->addr_len))
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(dev_getbyhwaddr);
760
761 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766 for_each_netdev(net, dev)
767 if (dev->type == type)
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773
774 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 rtnl_lock();
779 dev = __dev_getfirstbyhwtype(net, type);
780 if (dev)
781 dev_hold(dev);
782 rtnl_unlock();
783 return dev;
784 }
785 EXPORT_SYMBOL(dev_getfirstbyhwtype);
786
787 /**
788 * dev_get_by_flags - find any device with given flags
789 * @net: the applicable net namespace
790 * @if_flags: IFF_* values
791 * @mask: bitmask of bits in if_flags to check
792 *
793 * Search for any interface with the given flags. Returns NULL if a device
794 * is not found or a pointer to the device. The device returned has
795 * had a reference added and the pointer is safe until the user calls
796 * dev_put to indicate they have finished with it.
797 */
798
799 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
800 unsigned short mask)
801 {
802 struct net_device *dev, *ret;
803
804 ret = NULL;
805 rcu_read_lock();
806 for_each_netdev_rcu(net, dev) {
807 if (((dev->flags ^ if_flags) & mask) == 0) {
808 dev_hold(dev);
809 ret = dev;
810 break;
811 }
812 }
813 rcu_read_unlock();
814 return ret;
815 }
816 EXPORT_SYMBOL(dev_get_by_flags);
817
818 /**
819 * dev_valid_name - check if name is okay for network device
820 * @name: name string
821 *
822 * Network device names need to be valid file names to
823 * to allow sysfs to work. We also disallow any kind of
824 * whitespace.
825 */
826 int dev_valid_name(const char *name)
827 {
828 if (*name == '\0')
829 return 0;
830 if (strlen(name) >= IFNAMSIZ)
831 return 0;
832 if (!strcmp(name, ".") || !strcmp(name, ".."))
833 return 0;
834
835 while (*name) {
836 if (*name == '/' || isspace(*name))
837 return 0;
838 name++;
839 }
840 return 1;
841 }
842 EXPORT_SYMBOL(dev_valid_name);
843
844 /**
845 * __dev_alloc_name - allocate a name for a device
846 * @net: network namespace to allocate the device name in
847 * @name: name format string
848 * @buf: scratch buffer and result name string
849 *
850 * Passed a format string - eg "lt%d" it will try and find a suitable
851 * id. It scans list of devices to build up a free map, then chooses
852 * the first empty slot. The caller must hold the dev_base or rtnl lock
853 * while allocating the name and adding the device in order to avoid
854 * duplicates.
855 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
856 * Returns the number of the unit assigned or a negative errno code.
857 */
858
859 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
860 {
861 int i = 0;
862 const char *p;
863 const int max_netdevices = 8*PAGE_SIZE;
864 unsigned long *inuse;
865 struct net_device *d;
866
867 p = strnchr(name, IFNAMSIZ-1, '%');
868 if (p) {
869 /*
870 * Verify the string as this thing may have come from
871 * the user. There must be either one "%d" and no other "%"
872 * characters.
873 */
874 if (p[1] != 'd' || strchr(p + 2, '%'))
875 return -EINVAL;
876
877 /* Use one page as a bit array of possible slots */
878 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
879 if (!inuse)
880 return -ENOMEM;
881
882 for_each_netdev(net, d) {
883 if (!sscanf(d->name, name, &i))
884 continue;
885 if (i < 0 || i >= max_netdevices)
886 continue;
887
888 /* avoid cases where sscanf is not exact inverse of printf */
889 snprintf(buf, IFNAMSIZ, name, i);
890 if (!strncmp(buf, d->name, IFNAMSIZ))
891 set_bit(i, inuse);
892 }
893
894 i = find_first_zero_bit(inuse, max_netdevices);
895 free_page((unsigned long) inuse);
896 }
897
898 if (buf != name)
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!__dev_get_by_name(net, buf))
901 return i;
902
903 /* It is possible to run out of possible slots
904 * when the name is long and there isn't enough space left
905 * for the digits, or if all bits are used.
906 */
907 return -ENFILE;
908 }
909
910 /**
911 * dev_alloc_name - allocate a name for a device
912 * @dev: device
913 * @name: name format string
914 *
915 * Passed a format string - eg "lt%d" it will try and find a suitable
916 * id. It scans list of devices to build up a free map, then chooses
917 * the first empty slot. The caller must hold the dev_base or rtnl lock
918 * while allocating the name and adding the device in order to avoid
919 * duplicates.
920 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
921 * Returns the number of the unit assigned or a negative errno code.
922 */
923
924 int dev_alloc_name(struct net_device *dev, const char *name)
925 {
926 char buf[IFNAMSIZ];
927 struct net *net;
928 int ret;
929
930 BUG_ON(!dev_net(dev));
931 net = dev_net(dev);
932 ret = __dev_alloc_name(net, name, buf);
933 if (ret >= 0)
934 strlcpy(dev->name, buf, IFNAMSIZ);
935 return ret;
936 }
937 EXPORT_SYMBOL(dev_alloc_name);
938
939 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
940 bool fmt)
941 {
942 if (!dev_valid_name(name))
943 return -EINVAL;
944
945 if (fmt && strchr(name, '%'))
946 return __dev_alloc_name(net, name, buf);
947 else if (__dev_get_by_name(net, name))
948 return -EEXIST;
949 else if (buf != name)
950 strlcpy(buf, name, IFNAMSIZ);
951
952 return 0;
953 }
954
955 /**
956 * dev_change_name - change name of a device
957 * @dev: device
958 * @newname: name (or format string) must be at least IFNAMSIZ
959 *
960 * Change name of a device, can pass format strings "eth%d".
961 * for wildcarding.
962 */
963 int dev_change_name(struct net_device *dev, const char *newname)
964 {
965 char oldname[IFNAMSIZ];
966 int err = 0;
967 int ret;
968 struct net *net;
969
970 ASSERT_RTNL();
971 BUG_ON(!dev_net(dev));
972
973 net = dev_net(dev);
974 if (dev->flags & IFF_UP)
975 return -EBUSY;
976
977 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
978 return 0;
979
980 memcpy(oldname, dev->name, IFNAMSIZ);
981
982 err = dev_get_valid_name(net, newname, dev->name, 1);
983 if (err < 0)
984 return err;
985
986 rollback:
987 /* For now only devices in the initial network namespace
988 * are in sysfs.
989 */
990 if (net_eq(net, &init_net)) {
991 ret = device_rename(&dev->dev, dev->name);
992 if (ret) {
993 memcpy(dev->name, oldname, IFNAMSIZ);
994 return ret;
995 }
996 }
997
998 write_lock_bh(&dev_base_lock);
999 hlist_del(&dev->name_hlist);
1000 write_unlock_bh(&dev_base_lock);
1001
1002 synchronize_rcu();
1003
1004 write_lock_bh(&dev_base_lock);
1005 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1006 write_unlock_bh(&dev_base_lock);
1007
1008 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1009 ret = notifier_to_errno(ret);
1010
1011 if (ret) {
1012 /* err >= 0 after dev_alloc_name() or stores the first errno */
1013 if (err >= 0) {
1014 err = ret;
1015 memcpy(dev->name, oldname, IFNAMSIZ);
1016 goto rollback;
1017 } else {
1018 printk(KERN_ERR
1019 "%s: name change rollback failed: %d.\n",
1020 dev->name, ret);
1021 }
1022 }
1023
1024 return err;
1025 }
1026
1027 /**
1028 * dev_set_alias - change ifalias of a device
1029 * @dev: device
1030 * @alias: name up to IFALIASZ
1031 * @len: limit of bytes to copy from info
1032 *
1033 * Set ifalias for a device,
1034 */
1035 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036 {
1037 ASSERT_RTNL();
1038
1039 if (len >= IFALIASZ)
1040 return -EINVAL;
1041
1042 if (!len) {
1043 if (dev->ifalias) {
1044 kfree(dev->ifalias);
1045 dev->ifalias = NULL;
1046 }
1047 return 0;
1048 }
1049
1050 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1051 if (!dev->ifalias)
1052 return -ENOMEM;
1053
1054 strlcpy(dev->ifalias, alias, len+1);
1055 return len;
1056 }
1057
1058
1059 /**
1060 * netdev_features_change - device changes features
1061 * @dev: device to cause notification
1062 *
1063 * Called to indicate a device has changed features.
1064 */
1065 void netdev_features_change(struct net_device *dev)
1066 {
1067 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1068 }
1069 EXPORT_SYMBOL(netdev_features_change);
1070
1071 /**
1072 * netdev_state_change - device changes state
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed state. This function calls
1076 * the notifier chains for netdev_chain and sends a NEWLINK message
1077 * to the routing socket.
1078 */
1079 void netdev_state_change(struct net_device *dev)
1080 {
1081 if (dev->flags & IFF_UP) {
1082 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1083 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1084 }
1085 }
1086 EXPORT_SYMBOL(netdev_state_change);
1087
1088 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1089 {
1090 call_netdevice_notifiers(event, dev);
1091 }
1092 EXPORT_SYMBOL(netdev_bonding_change);
1093
1094 /**
1095 * dev_load - load a network module
1096 * @net: the applicable net namespace
1097 * @name: name of interface
1098 *
1099 * If a network interface is not present and the process has suitable
1100 * privileges this function loads the module. If module loading is not
1101 * available in this kernel then it becomes a nop.
1102 */
1103
1104 void dev_load(struct net *net, const char *name)
1105 {
1106 struct net_device *dev;
1107
1108 rcu_read_lock();
1109 dev = dev_get_by_name_rcu(net, name);
1110 rcu_read_unlock();
1111
1112 if (!dev && capable(CAP_NET_ADMIN))
1113 request_module("%s", name);
1114 }
1115 EXPORT_SYMBOL(dev_load);
1116
1117 static int __dev_open(struct net_device *dev)
1118 {
1119 const struct net_device_ops *ops = dev->netdev_ops;
1120 int ret;
1121
1122 ASSERT_RTNL();
1123
1124 /*
1125 * Is it even present?
1126 */
1127 if (!netif_device_present(dev))
1128 return -ENODEV;
1129
1130 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1131 ret = notifier_to_errno(ret);
1132 if (ret)
1133 return ret;
1134
1135 /*
1136 * Call device private open method
1137 */
1138 set_bit(__LINK_STATE_START, &dev->state);
1139
1140 if (ops->ndo_validate_addr)
1141 ret = ops->ndo_validate_addr(dev);
1142
1143 if (!ret && ops->ndo_open)
1144 ret = ops->ndo_open(dev);
1145
1146 /*
1147 * If it went open OK then:
1148 */
1149
1150 if (ret)
1151 clear_bit(__LINK_STATE_START, &dev->state);
1152 else {
1153 /*
1154 * Set the flags.
1155 */
1156 dev->flags |= IFF_UP;
1157
1158 /*
1159 * Enable NET_DMA
1160 */
1161 net_dmaengine_get();
1162
1163 /*
1164 * Initialize multicasting status
1165 */
1166 dev_set_rx_mode(dev);
1167
1168 /*
1169 * Wakeup transmit queue engine
1170 */
1171 dev_activate(dev);
1172 }
1173
1174 return ret;
1175 }
1176
1177 /**
1178 * dev_open - prepare an interface for use.
1179 * @dev: device to open
1180 *
1181 * Takes a device from down to up state. The device's private open
1182 * function is invoked and then the multicast lists are loaded. Finally
1183 * the device is moved into the up state and a %NETDEV_UP message is
1184 * sent to the netdev notifier chain.
1185 *
1186 * Calling this function on an active interface is a nop. On a failure
1187 * a negative errno code is returned.
1188 */
1189 int dev_open(struct net_device *dev)
1190 {
1191 int ret;
1192
1193 /*
1194 * Is it already up?
1195 */
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 /*
1200 * Open device
1201 */
1202 ret = __dev_open(dev);
1203 if (ret < 0)
1204 return ret;
1205
1206 /*
1207 * ... and announce new interface.
1208 */
1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 call_netdevice_notifiers(NETDEV_UP, dev);
1211
1212 return ret;
1213 }
1214 EXPORT_SYMBOL(dev_open);
1215
1216 static int __dev_close(struct net_device *dev)
1217 {
1218 const struct net_device_ops *ops = dev->netdev_ops;
1219
1220 ASSERT_RTNL();
1221 might_sleep();
1222
1223 /*
1224 * Tell people we are going down, so that they can
1225 * prepare to death, when device is still operating.
1226 */
1227 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1228
1229 clear_bit(__LINK_STATE_START, &dev->state);
1230
1231 /* Synchronize to scheduled poll. We cannot touch poll list,
1232 * it can be even on different cpu. So just clear netif_running().
1233 *
1234 * dev->stop() will invoke napi_disable() on all of it's
1235 * napi_struct instances on this device.
1236 */
1237 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1238
1239 dev_deactivate(dev);
1240
1241 /*
1242 * Call the device specific close. This cannot fail.
1243 * Only if device is UP
1244 *
1245 * We allow it to be called even after a DETACH hot-plug
1246 * event.
1247 */
1248 if (ops->ndo_stop)
1249 ops->ndo_stop(dev);
1250
1251 /*
1252 * Device is now down.
1253 */
1254
1255 dev->flags &= ~IFF_UP;
1256
1257 /*
1258 * Shutdown NET_DMA
1259 */
1260 net_dmaengine_put();
1261
1262 return 0;
1263 }
1264
1265 /**
1266 * dev_close - shutdown an interface.
1267 * @dev: device to shutdown
1268 *
1269 * This function moves an active device into down state. A
1270 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1271 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1272 * chain.
1273 */
1274 int dev_close(struct net_device *dev)
1275 {
1276 if (!(dev->flags & IFF_UP))
1277 return 0;
1278
1279 __dev_close(dev);
1280
1281 /*
1282 * Tell people we are down
1283 */
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1285 call_netdevice_notifiers(NETDEV_DOWN, dev);
1286
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(dev_close);
1290
1291
1292 /**
1293 * dev_disable_lro - disable Large Receive Offload on a device
1294 * @dev: device
1295 *
1296 * Disable Large Receive Offload (LRO) on a net device. Must be
1297 * called under RTNL. This is needed if received packets may be
1298 * forwarded to another interface.
1299 */
1300 void dev_disable_lro(struct net_device *dev)
1301 {
1302 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1303 dev->ethtool_ops->set_flags) {
1304 u32 flags = dev->ethtool_ops->get_flags(dev);
1305 if (flags & ETH_FLAG_LRO) {
1306 flags &= ~ETH_FLAG_LRO;
1307 dev->ethtool_ops->set_flags(dev, flags);
1308 }
1309 }
1310 WARN_ON(dev->features & NETIF_F_LRO);
1311 }
1312 EXPORT_SYMBOL(dev_disable_lro);
1313
1314
1315 static int dev_boot_phase = 1;
1316
1317 /*
1318 * Device change register/unregister. These are not inline or static
1319 * as we export them to the world.
1320 */
1321
1322 /**
1323 * register_netdevice_notifier - register a network notifier block
1324 * @nb: notifier
1325 *
1326 * Register a notifier to be called when network device events occur.
1327 * The notifier passed is linked into the kernel structures and must
1328 * not be reused until it has been unregistered. A negative errno code
1329 * is returned on a failure.
1330 *
1331 * When registered all registration and up events are replayed
1332 * to the new notifier to allow device to have a race free
1333 * view of the network device list.
1334 */
1335
1336 int register_netdevice_notifier(struct notifier_block *nb)
1337 {
1338 struct net_device *dev;
1339 struct net_device *last;
1340 struct net *net;
1341 int err;
1342
1343 rtnl_lock();
1344 err = raw_notifier_chain_register(&netdev_chain, nb);
1345 if (err)
1346 goto unlock;
1347 if (dev_boot_phase)
1348 goto unlock;
1349 for_each_net(net) {
1350 for_each_netdev(net, dev) {
1351 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1352 err = notifier_to_errno(err);
1353 if (err)
1354 goto rollback;
1355
1356 if (!(dev->flags & IFF_UP))
1357 continue;
1358
1359 nb->notifier_call(nb, NETDEV_UP, dev);
1360 }
1361 }
1362
1363 unlock:
1364 rtnl_unlock();
1365 return err;
1366
1367 rollback:
1368 last = dev;
1369 for_each_net(net) {
1370 for_each_netdev(net, dev) {
1371 if (dev == last)
1372 break;
1373
1374 if (dev->flags & IFF_UP) {
1375 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1376 nb->notifier_call(nb, NETDEV_DOWN, dev);
1377 }
1378 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1379 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1380 }
1381 }
1382
1383 raw_notifier_chain_unregister(&netdev_chain, nb);
1384 goto unlock;
1385 }
1386 EXPORT_SYMBOL(register_netdevice_notifier);
1387
1388 /**
1389 * unregister_netdevice_notifier - unregister a network notifier block
1390 * @nb: notifier
1391 *
1392 * Unregister a notifier previously registered by
1393 * register_netdevice_notifier(). The notifier is unlinked into the
1394 * kernel structures and may then be reused. A negative errno code
1395 * is returned on a failure.
1396 */
1397
1398 int unregister_netdevice_notifier(struct notifier_block *nb)
1399 {
1400 int err;
1401
1402 rtnl_lock();
1403 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1404 rtnl_unlock();
1405 return err;
1406 }
1407 EXPORT_SYMBOL(unregister_netdevice_notifier);
1408
1409 /**
1410 * call_netdevice_notifiers - call all network notifier blocks
1411 * @val: value passed unmodified to notifier function
1412 * @dev: net_device pointer passed unmodified to notifier function
1413 *
1414 * Call all network notifier blocks. Parameters and return value
1415 * are as for raw_notifier_call_chain().
1416 */
1417
1418 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1419 {
1420 return raw_notifier_call_chain(&netdev_chain, val, dev);
1421 }
1422
1423 /* When > 0 there are consumers of rx skb time stamps */
1424 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1425
1426 void net_enable_timestamp(void)
1427 {
1428 atomic_inc(&netstamp_needed);
1429 }
1430 EXPORT_SYMBOL(net_enable_timestamp);
1431
1432 void net_disable_timestamp(void)
1433 {
1434 atomic_dec(&netstamp_needed);
1435 }
1436 EXPORT_SYMBOL(net_disable_timestamp);
1437
1438 static inline void net_timestamp(struct sk_buff *skb)
1439 {
1440 if (atomic_read(&netstamp_needed))
1441 __net_timestamp(skb);
1442 else
1443 skb->tstamp.tv64 = 0;
1444 }
1445
1446 /**
1447 * dev_forward_skb - loopback an skb to another netif
1448 *
1449 * @dev: destination network device
1450 * @skb: buffer to forward
1451 *
1452 * return values:
1453 * NET_RX_SUCCESS (no congestion)
1454 * NET_RX_DROP (packet was dropped, but freed)
1455 *
1456 * dev_forward_skb can be used for injecting an skb from the
1457 * start_xmit function of one device into the receive queue
1458 * of another device.
1459 *
1460 * The receiving device may be in another namespace, so
1461 * we have to clear all information in the skb that could
1462 * impact namespace isolation.
1463 */
1464 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1465 {
1466 skb_orphan(skb);
1467
1468 if (!(dev->flags & IFF_UP) ||
1469 (skb->len > (dev->mtu + dev->hard_header_len))) {
1470 kfree_skb(skb);
1471 return NET_RX_DROP;
1472 }
1473 skb_set_dev(skb, dev);
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
1477 return netif_rx(skb);
1478 }
1479 EXPORT_SYMBOL_GPL(dev_forward_skb);
1480
1481 /*
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1484 */
1485
1486 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1487 {
1488 struct packet_type *ptype;
1489
1490 #ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493 #else
1494 net_timestamp(skb);
1495 #endif
1496
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1501 */
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1506 if (!skb2)
1507 break;
1508
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1512 */
1513 skb_reset_mac_header(skb2);
1514
1515 if (skb_network_header(skb2) < skb2->data ||
1516 skb2->network_header > skb2->tail) {
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
1521 skb_reset_network_header(skb2);
1522 }
1523
1524 skb2->transport_header = skb2->network_header;
1525 skb2->pkt_type = PACKET_OUTGOING;
1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1527 }
1528 }
1529 rcu_read_unlock();
1530 }
1531
1532
1533 static inline void __netif_reschedule(struct Qdisc *q)
1534 {
1535 struct softnet_data *sd;
1536 unsigned long flags;
1537
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1544 }
1545
1546 void __netif_schedule(struct Qdisc *q)
1547 {
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
1550 }
1551 EXPORT_SYMBOL(__netif_schedule);
1552
1553 void dev_kfree_skb_irq(struct sk_buff *skb)
1554 {
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
1558
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
1566 }
1567 EXPORT_SYMBOL(dev_kfree_skb_irq);
1568
1569 void dev_kfree_skb_any(struct sk_buff *skb)
1570 {
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1575 }
1576 EXPORT_SYMBOL(dev_kfree_skb_any);
1577
1578
1579 /**
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1582 *
1583 * Mark device as removed from system and therefore no longer available.
1584 */
1585 void netif_device_detach(struct net_device *dev)
1586 {
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
1589 netif_tx_stop_all_queues(dev);
1590 }
1591 }
1592 EXPORT_SYMBOL(netif_device_detach);
1593
1594 /**
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1597 *
1598 * Mark device as attached from system and restart if needed.
1599 */
1600 void netif_device_attach(struct net_device *dev)
1601 {
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
1604 netif_tx_wake_all_queues(dev);
1605 __netdev_watchdog_up(dev);
1606 }
1607 }
1608 EXPORT_SYMBOL(netif_device_attach);
1609
1610 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1611 {
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
1619 }
1620
1621 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1622 {
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1625
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635
1636 /**
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1640 *
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1644 */
1645 #ifdef CONFIG_NET_NS
1646 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1647 {
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657 #ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659 #endif
1660 }
1661 skb->dev = dev;
1662 }
1663 EXPORT_SYMBOL(skb_set_dev);
1664 #endif /* CONFIG_NET_NS */
1665
1666 /*
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1669 */
1670 int skb_checksum_help(struct sk_buff *skb)
1671 {
1672 __wsum csum;
1673 int ret = 0, offset;
1674
1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
1676 goto out_set_summed;
1677
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1681 }
1682
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1686
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1689
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1695 }
1696
1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1698 out_set_summed:
1699 skb->ip_summed = CHECKSUM_NONE;
1700 out:
1701 return ret;
1702 }
1703 EXPORT_SYMBOL(skb_checksum_help);
1704
1705 /**
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
1708 * @features: features for the output path (see dev->features)
1709 *
1710 * This function segments the given skb and returns a list of segments.
1711 *
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
1714 */
1715 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1716 {
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
1719 __be16 type = skb->protocol;
1720 int err;
1721
1722 skb_reset_mac_header(skb);
1723 skb->mac_len = skb->network_header - skb->mac_header;
1724 __skb_pull(skb, skb->mac_len);
1725
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1729
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1732
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1738
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1742 }
1743
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
1755 }
1756 segs = ptype->gso_segment(skb, features);
1757 break;
1758 }
1759 }
1760 rcu_read_unlock();
1761
1762 __skb_push(skb, skb->data - skb_mac_header(skb));
1763
1764 return segs;
1765 }
1766 EXPORT_SYMBOL(skb_gso_segment);
1767
1768 /* Take action when hardware reception checksum errors are detected. */
1769 #ifdef CONFIG_BUG
1770 void netdev_rx_csum_fault(struct net_device *dev)
1771 {
1772 if (net_ratelimit()) {
1773 printk(KERN_ERR "%s: hw csum failure.\n",
1774 dev ? dev->name : "<unknown>");
1775 dump_stack();
1776 }
1777 }
1778 EXPORT_SYMBOL(netdev_rx_csum_fault);
1779 #endif
1780
1781 /* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1784 */
1785
1786 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1787 {
1788 #ifdef CONFIG_HIGHMEM
1789 int i;
1790
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1793
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1797
1798 #endif
1799 return 0;
1800 }
1801
1802 struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1804 };
1805
1806 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1807
1808 static void dev_gso_skb_destructor(struct sk_buff *skb)
1809 {
1810 struct dev_gso_cb *cb;
1811
1812 do {
1813 struct sk_buff *nskb = skb->next;
1814
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1819
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1823 }
1824
1825 /**
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1828 *
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1831 */
1832 static int dev_gso_segment(struct sk_buff *skb)
1833 {
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1838
1839 segs = skb_gso_segment(skb, features);
1840
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
1844
1845 if (IS_ERR(segs))
1846 return PTR_ERR(segs);
1847
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1851
1852 return 0;
1853 }
1854
1855 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
1857 {
1858 const struct net_device_ops *ops = dev->netdev_ops;
1859 int rc = NETDEV_TX_OK;
1860
1861 if (likely(!skb->next)) {
1862 if (!list_empty(&ptype_all))
1863 dev_queue_xmit_nit(skb, dev);
1864
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1870 }
1871
1872 /*
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1875 */
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1878
1879 rc = ops->ndo_start_xmit(skb, dev);
1880 if (rc == NETDEV_TX_OK)
1881 txq_trans_update(txq);
1882 /*
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1888 *
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1895 */
1896 return rc;
1897 }
1898
1899 gso:
1900 do {
1901 struct sk_buff *nskb = skb->next;
1902
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
1905
1906 /*
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1912
1913 rc = ops->ndo_start_xmit(nskb, dev);
1914 if (unlikely(rc != NETDEV_TX_OK)) {
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
1917 nskb->next = skb->next;
1918 skb->next = nskb;
1919 return rc;
1920 }
1921 txq_trans_update(txq);
1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1923 return NETDEV_TX_BUSY;
1924 } while (skb->next);
1925
1926 out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
1929 out_kfree_skb:
1930 kfree_skb(skb);
1931 return rc;
1932 }
1933
1934 static u32 skb_tx_hashrnd;
1935
1936 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1937 {
1938 u32 hash;
1939
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
1942 while (unlikely(hash >= dev->real_num_tx_queues))
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1945 }
1946
1947 if (skb->sk && skb->sk->sk_hash)
1948 hash = skb->sk->sk_hash;
1949 else
1950 hash = skb->protocol;
1951
1952 hash = jhash_1word(hash, skb_tx_hashrnd);
1953
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1955 }
1956 EXPORT_SYMBOL(skb_tx_hash);
1957
1958 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1959 {
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
1962 WARN(1, "%s selects TX queue %d, but "
1963 "real number of TX queues is %d\n",
1964 dev->name, queue_index,
1965 dev->real_num_tx_queues);
1966 }
1967 return 0;
1968 }
1969 return queue_index;
1970 }
1971
1972 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1973 struct sk_buff *skb)
1974 {
1975 u16 queue_index;
1976 struct sock *sk = skb->sk;
1977
1978 if (sk_tx_queue_recorded(sk)) {
1979 queue_index = sk_tx_queue_get(sk);
1980 } else {
1981 const struct net_device_ops *ops = dev->netdev_ops;
1982
1983 if (ops->ndo_select_queue) {
1984 queue_index = ops->ndo_select_queue(dev, skb);
1985 queue_index = dev_cap_txqueue(dev, queue_index);
1986 } else {
1987 queue_index = 0;
1988 if (dev->real_num_tx_queues > 1)
1989 queue_index = skb_tx_hash(dev, skb);
1990
1991 if (sk) {
1992 struct dst_entry *dst = rcu_dereference_bh(sk->sk_dst_cache);
1993
1994 if (dst && skb_dst(skb) == dst)
1995 sk_tx_queue_set(sk, queue_index);
1996 }
1997 }
1998 }
1999
2000 skb_set_queue_mapping(skb, queue_index);
2001 return netdev_get_tx_queue(dev, queue_index);
2002 }
2003
2004 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2005 struct net_device *dev,
2006 struct netdev_queue *txq)
2007 {
2008 spinlock_t *root_lock = qdisc_lock(q);
2009 int rc;
2010
2011 spin_lock(root_lock);
2012 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2013 kfree_skb(skb);
2014 rc = NET_XMIT_DROP;
2015 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2016 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2017 /*
2018 * This is a work-conserving queue; there are no old skbs
2019 * waiting to be sent out; and the qdisc is not running -
2020 * xmit the skb directly.
2021 */
2022 __qdisc_update_bstats(q, skb->len);
2023 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2024 __qdisc_run(q);
2025 else
2026 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2027
2028 rc = NET_XMIT_SUCCESS;
2029 } else {
2030 rc = qdisc_enqueue_root(skb, q);
2031 qdisc_run(q);
2032 }
2033 spin_unlock(root_lock);
2034
2035 return rc;
2036 }
2037
2038 /*
2039 * Returns true if either:
2040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2041 * 2. skb is fragmented and the device does not support SG, or if
2042 * at least one of fragments is in highmem and device does not
2043 * support DMA from it.
2044 */
2045 static inline int skb_needs_linearize(struct sk_buff *skb,
2046 struct net_device *dev)
2047 {
2048 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2049 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2050 illegal_highdma(dev, skb)));
2051 }
2052
2053 /**
2054 * dev_queue_xmit - transmit a buffer
2055 * @skb: buffer to transmit
2056 *
2057 * Queue a buffer for transmission to a network device. The caller must
2058 * have set the device and priority and built the buffer before calling
2059 * this function. The function can be called from an interrupt.
2060 *
2061 * A negative errno code is returned on a failure. A success does not
2062 * guarantee the frame will be transmitted as it may be dropped due
2063 * to congestion or traffic shaping.
2064 *
2065 * -----------------------------------------------------------------------------------
2066 * I notice this method can also return errors from the queue disciplines,
2067 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2068 * be positive.
2069 *
2070 * Regardless of the return value, the skb is consumed, so it is currently
2071 * difficult to retry a send to this method. (You can bump the ref count
2072 * before sending to hold a reference for retry if you are careful.)
2073 *
2074 * When calling this method, interrupts MUST be enabled. This is because
2075 * the BH enable code must have IRQs enabled so that it will not deadlock.
2076 * --BLG
2077 */
2078 int dev_queue_xmit(struct sk_buff *skb)
2079 {
2080 struct net_device *dev = skb->dev;
2081 struct netdev_queue *txq;
2082 struct Qdisc *q;
2083 int rc = -ENOMEM;
2084
2085 /* GSO will handle the following emulations directly. */
2086 if (netif_needs_gso(dev, skb))
2087 goto gso;
2088
2089 /* Convert a paged skb to linear, if required */
2090 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2091 goto out_kfree_skb;
2092
2093 /* If packet is not checksummed and device does not support
2094 * checksumming for this protocol, complete checksumming here.
2095 */
2096 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2097 skb_set_transport_header(skb, skb->csum_start -
2098 skb_headroom(skb));
2099 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2100 goto out_kfree_skb;
2101 }
2102
2103 gso:
2104 /* Disable soft irqs for various locks below. Also
2105 * stops preemption for RCU.
2106 */
2107 rcu_read_lock_bh();
2108
2109 txq = dev_pick_tx(dev, skb);
2110 q = rcu_dereference_bh(txq->qdisc);
2111
2112 #ifdef CONFIG_NET_CLS_ACT
2113 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2114 #endif
2115 if (q->enqueue) {
2116 rc = __dev_xmit_skb(skb, q, dev, txq);
2117 goto out;
2118 }
2119
2120 /* The device has no queue. Common case for software devices:
2121 loopback, all the sorts of tunnels...
2122
2123 Really, it is unlikely that netif_tx_lock protection is necessary
2124 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2125 counters.)
2126 However, it is possible, that they rely on protection
2127 made by us here.
2128
2129 Check this and shot the lock. It is not prone from deadlocks.
2130 Either shot noqueue qdisc, it is even simpler 8)
2131 */
2132 if (dev->flags & IFF_UP) {
2133 int cpu = smp_processor_id(); /* ok because BHs are off */
2134
2135 if (txq->xmit_lock_owner != cpu) {
2136
2137 HARD_TX_LOCK(dev, txq, cpu);
2138
2139 if (!netif_tx_queue_stopped(txq)) {
2140 rc = dev_hard_start_xmit(skb, dev, txq);
2141 if (dev_xmit_complete(rc)) {
2142 HARD_TX_UNLOCK(dev, txq);
2143 goto out;
2144 }
2145 }
2146 HARD_TX_UNLOCK(dev, txq);
2147 if (net_ratelimit())
2148 printk(KERN_CRIT "Virtual device %s asks to "
2149 "queue packet!\n", dev->name);
2150 } else {
2151 /* Recursion is detected! It is possible,
2152 * unfortunately */
2153 if (net_ratelimit())
2154 printk(KERN_CRIT "Dead loop on virtual device "
2155 "%s, fix it urgently!\n", dev->name);
2156 }
2157 }
2158
2159 rc = -ENETDOWN;
2160 rcu_read_unlock_bh();
2161
2162 out_kfree_skb:
2163 kfree_skb(skb);
2164 return rc;
2165 out:
2166 rcu_read_unlock_bh();
2167 return rc;
2168 }
2169 EXPORT_SYMBOL(dev_queue_xmit);
2170
2171
2172 /*=======================================================================
2173 Receiver routines
2174 =======================================================================*/
2175
2176 int netdev_max_backlog __read_mostly = 1000;
2177 int netdev_budget __read_mostly = 300;
2178 int weight_p __read_mostly = 64; /* old backlog weight */
2179
2180 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2181
2182
2183 /**
2184 * netif_rx - post buffer to the network code
2185 * @skb: buffer to post
2186 *
2187 * This function receives a packet from a device driver and queues it for
2188 * the upper (protocol) levels to process. It always succeeds. The buffer
2189 * may be dropped during processing for congestion control or by the
2190 * protocol layers.
2191 *
2192 * return values:
2193 * NET_RX_SUCCESS (no congestion)
2194 * NET_RX_DROP (packet was dropped)
2195 *
2196 */
2197
2198 int netif_rx(struct sk_buff *skb)
2199 {
2200 struct softnet_data *queue;
2201 unsigned long flags;
2202
2203 /* if netpoll wants it, pretend we never saw it */
2204 if (netpoll_rx(skb))
2205 return NET_RX_DROP;
2206
2207 if (!skb->tstamp.tv64)
2208 net_timestamp(skb);
2209
2210 /*
2211 * The code is rearranged so that the path is the most
2212 * short when CPU is congested, but is still operating.
2213 */
2214 local_irq_save(flags);
2215 queue = &__get_cpu_var(softnet_data);
2216
2217 __get_cpu_var(netdev_rx_stat).total++;
2218 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2219 if (queue->input_pkt_queue.qlen) {
2220 enqueue:
2221 __skb_queue_tail(&queue->input_pkt_queue, skb);
2222 local_irq_restore(flags);
2223 return NET_RX_SUCCESS;
2224 }
2225
2226 napi_schedule(&queue->backlog);
2227 goto enqueue;
2228 }
2229
2230 __get_cpu_var(netdev_rx_stat).dropped++;
2231 local_irq_restore(flags);
2232
2233 kfree_skb(skb);
2234 return NET_RX_DROP;
2235 }
2236 EXPORT_SYMBOL(netif_rx);
2237
2238 int netif_rx_ni(struct sk_buff *skb)
2239 {
2240 int err;
2241
2242 preempt_disable();
2243 err = netif_rx(skb);
2244 if (local_softirq_pending())
2245 do_softirq();
2246 preempt_enable();
2247
2248 return err;
2249 }
2250 EXPORT_SYMBOL(netif_rx_ni);
2251
2252 static void net_tx_action(struct softirq_action *h)
2253 {
2254 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2255
2256 if (sd->completion_queue) {
2257 struct sk_buff *clist;
2258
2259 local_irq_disable();
2260 clist = sd->completion_queue;
2261 sd->completion_queue = NULL;
2262 local_irq_enable();
2263
2264 while (clist) {
2265 struct sk_buff *skb = clist;
2266 clist = clist->next;
2267
2268 WARN_ON(atomic_read(&skb->users));
2269 __kfree_skb(skb);
2270 }
2271 }
2272
2273 if (sd->output_queue) {
2274 struct Qdisc *head;
2275
2276 local_irq_disable();
2277 head = sd->output_queue;
2278 sd->output_queue = NULL;
2279 local_irq_enable();
2280
2281 while (head) {
2282 struct Qdisc *q = head;
2283 spinlock_t *root_lock;
2284
2285 head = head->next_sched;
2286
2287 root_lock = qdisc_lock(q);
2288 if (spin_trylock(root_lock)) {
2289 smp_mb__before_clear_bit();
2290 clear_bit(__QDISC_STATE_SCHED,
2291 &q->state);
2292 qdisc_run(q);
2293 spin_unlock(root_lock);
2294 } else {
2295 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2296 &q->state)) {
2297 __netif_reschedule(q);
2298 } else {
2299 smp_mb__before_clear_bit();
2300 clear_bit(__QDISC_STATE_SCHED,
2301 &q->state);
2302 }
2303 }
2304 }
2305 }
2306 }
2307
2308 static inline int deliver_skb(struct sk_buff *skb,
2309 struct packet_type *pt_prev,
2310 struct net_device *orig_dev)
2311 {
2312 atomic_inc(&skb->users);
2313 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2314 }
2315
2316 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2317
2318 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2319 /* This hook is defined here for ATM LANE */
2320 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2321 unsigned char *addr) __read_mostly;
2322 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2323 #endif
2324
2325 /*
2326 * If bridge module is loaded call bridging hook.
2327 * returns NULL if packet was consumed.
2328 */
2329 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2330 struct sk_buff *skb) __read_mostly;
2331 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2332
2333 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2334 struct packet_type **pt_prev, int *ret,
2335 struct net_device *orig_dev)
2336 {
2337 struct net_bridge_port *port;
2338
2339 if (skb->pkt_type == PACKET_LOOPBACK ||
2340 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2341 return skb;
2342
2343 if (*pt_prev) {
2344 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2345 *pt_prev = NULL;
2346 }
2347
2348 return br_handle_frame_hook(port, skb);
2349 }
2350 #else
2351 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2352 #endif
2353
2354 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2355 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2356 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2357
2358 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2359 struct packet_type **pt_prev,
2360 int *ret,
2361 struct net_device *orig_dev)
2362 {
2363 if (skb->dev->macvlan_port == NULL)
2364 return skb;
2365
2366 if (*pt_prev) {
2367 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2368 *pt_prev = NULL;
2369 }
2370 return macvlan_handle_frame_hook(skb);
2371 }
2372 #else
2373 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2374 #endif
2375
2376 #ifdef CONFIG_NET_CLS_ACT
2377 /* TODO: Maybe we should just force sch_ingress to be compiled in
2378 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2379 * a compare and 2 stores extra right now if we dont have it on
2380 * but have CONFIG_NET_CLS_ACT
2381 * NOTE: This doesnt stop any functionality; if you dont have
2382 * the ingress scheduler, you just cant add policies on ingress.
2383 *
2384 */
2385 static int ing_filter(struct sk_buff *skb)
2386 {
2387 struct net_device *dev = skb->dev;
2388 u32 ttl = G_TC_RTTL(skb->tc_verd);
2389 struct netdev_queue *rxq;
2390 int result = TC_ACT_OK;
2391 struct Qdisc *q;
2392
2393 if (MAX_RED_LOOP < ttl++) {
2394 printk(KERN_WARNING
2395 "Redir loop detected Dropping packet (%d->%d)\n",
2396 skb->skb_iif, dev->ifindex);
2397 return TC_ACT_SHOT;
2398 }
2399
2400 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2401 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2402
2403 rxq = &dev->rx_queue;
2404
2405 q = rxq->qdisc;
2406 if (q != &noop_qdisc) {
2407 spin_lock(qdisc_lock(q));
2408 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2409 result = qdisc_enqueue_root(skb, q);
2410 spin_unlock(qdisc_lock(q));
2411 }
2412
2413 return result;
2414 }
2415
2416 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2417 struct packet_type **pt_prev,
2418 int *ret, struct net_device *orig_dev)
2419 {
2420 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2421 goto out;
2422
2423 if (*pt_prev) {
2424 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2425 *pt_prev = NULL;
2426 } else {
2427 /* Huh? Why does turning on AF_PACKET affect this? */
2428 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2429 }
2430
2431 switch (ing_filter(skb)) {
2432 case TC_ACT_SHOT:
2433 case TC_ACT_STOLEN:
2434 kfree_skb(skb);
2435 return NULL;
2436 }
2437
2438 out:
2439 skb->tc_verd = 0;
2440 return skb;
2441 }
2442 #endif
2443
2444 /*
2445 * netif_nit_deliver - deliver received packets to network taps
2446 * @skb: buffer
2447 *
2448 * This function is used to deliver incoming packets to network
2449 * taps. It should be used when the normal netif_receive_skb path
2450 * is bypassed, for example because of VLAN acceleration.
2451 */
2452 void netif_nit_deliver(struct sk_buff *skb)
2453 {
2454 struct packet_type *ptype;
2455
2456 if (list_empty(&ptype_all))
2457 return;
2458
2459 skb_reset_network_header(skb);
2460 skb_reset_transport_header(skb);
2461 skb->mac_len = skb->network_header - skb->mac_header;
2462
2463 rcu_read_lock();
2464 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2465 if (!ptype->dev || ptype->dev == skb->dev)
2466 deliver_skb(skb, ptype, skb->dev);
2467 }
2468 rcu_read_unlock();
2469 }
2470
2471 /**
2472 * netif_receive_skb - process receive buffer from network
2473 * @skb: buffer to process
2474 *
2475 * netif_receive_skb() is the main receive data processing function.
2476 * It always succeeds. The buffer may be dropped during processing
2477 * for congestion control or by the protocol layers.
2478 *
2479 * This function may only be called from softirq context and interrupts
2480 * should be enabled.
2481 *
2482 * Return values (usually ignored):
2483 * NET_RX_SUCCESS: no congestion
2484 * NET_RX_DROP: packet was dropped
2485 */
2486 int netif_receive_skb(struct sk_buff *skb)
2487 {
2488 struct packet_type *ptype, *pt_prev;
2489 struct net_device *orig_dev;
2490 struct net_device *master;
2491 struct net_device *null_or_orig;
2492 struct net_device *null_or_bond;
2493 int ret = NET_RX_DROP;
2494 __be16 type;
2495
2496 if (!skb->tstamp.tv64)
2497 net_timestamp(skb);
2498
2499 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2500 return NET_RX_SUCCESS;
2501
2502 /* if we've gotten here through NAPI, check netpoll */
2503 if (netpoll_receive_skb(skb))
2504 return NET_RX_DROP;
2505
2506 if (!skb->skb_iif)
2507 skb->skb_iif = skb->dev->ifindex;
2508
2509 null_or_orig = NULL;
2510 orig_dev = skb->dev;
2511 master = ACCESS_ONCE(orig_dev->master);
2512 if (master) {
2513 if (skb_bond_should_drop(skb, master))
2514 null_or_orig = orig_dev; /* deliver only exact match */
2515 else
2516 skb->dev = master;
2517 }
2518
2519 __get_cpu_var(netdev_rx_stat).total++;
2520
2521 skb_reset_network_header(skb);
2522 skb_reset_transport_header(skb);
2523 skb->mac_len = skb->network_header - skb->mac_header;
2524
2525 pt_prev = NULL;
2526
2527 rcu_read_lock();
2528
2529 #ifdef CONFIG_NET_CLS_ACT
2530 if (skb->tc_verd & TC_NCLS) {
2531 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2532 goto ncls;
2533 }
2534 #endif
2535
2536 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2537 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2538 ptype->dev == orig_dev) {
2539 if (pt_prev)
2540 ret = deliver_skb(skb, pt_prev, orig_dev);
2541 pt_prev = ptype;
2542 }
2543 }
2544
2545 #ifdef CONFIG_NET_CLS_ACT
2546 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2547 if (!skb)
2548 goto out;
2549 ncls:
2550 #endif
2551
2552 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2553 if (!skb)
2554 goto out;
2555 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2556 if (!skb)
2557 goto out;
2558
2559 /*
2560 * Make sure frames received on VLAN interfaces stacked on
2561 * bonding interfaces still make their way to any base bonding
2562 * device that may have registered for a specific ptype. The
2563 * handler may have to adjust skb->dev and orig_dev.
2564 */
2565 null_or_bond = NULL;
2566 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2567 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2568 null_or_bond = vlan_dev_real_dev(skb->dev);
2569 }
2570
2571 type = skb->protocol;
2572 list_for_each_entry_rcu(ptype,
2573 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2574 if (ptype->type == type && (ptype->dev == null_or_orig ||
2575 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2576 ptype->dev == null_or_bond)) {
2577 if (pt_prev)
2578 ret = deliver_skb(skb, pt_prev, orig_dev);
2579 pt_prev = ptype;
2580 }
2581 }
2582
2583 if (pt_prev) {
2584 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2585 } else {
2586 kfree_skb(skb);
2587 /* Jamal, now you will not able to escape explaining
2588 * me how you were going to use this. :-)
2589 */
2590 ret = NET_RX_DROP;
2591 }
2592
2593 out:
2594 rcu_read_unlock();
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(netif_receive_skb);
2598
2599 /* Network device is going away, flush any packets still pending */
2600 static void flush_backlog(void *arg)
2601 {
2602 struct net_device *dev = arg;
2603 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2604 struct sk_buff *skb, *tmp;
2605
2606 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2607 if (skb->dev == dev) {
2608 __skb_unlink(skb, &queue->input_pkt_queue);
2609 kfree_skb(skb);
2610 }
2611 }
2612
2613 static int napi_gro_complete(struct sk_buff *skb)
2614 {
2615 struct packet_type *ptype;
2616 __be16 type = skb->protocol;
2617 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2618 int err = -ENOENT;
2619
2620 if (NAPI_GRO_CB(skb)->count == 1) {
2621 skb_shinfo(skb)->gso_size = 0;
2622 goto out;
2623 }
2624
2625 rcu_read_lock();
2626 list_for_each_entry_rcu(ptype, head, list) {
2627 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2628 continue;
2629
2630 err = ptype->gro_complete(skb);
2631 break;
2632 }
2633 rcu_read_unlock();
2634
2635 if (err) {
2636 WARN_ON(&ptype->list == head);
2637 kfree_skb(skb);
2638 return NET_RX_SUCCESS;
2639 }
2640
2641 out:
2642 return netif_receive_skb(skb);
2643 }
2644
2645 static void napi_gro_flush(struct napi_struct *napi)
2646 {
2647 struct sk_buff *skb, *next;
2648
2649 for (skb = napi->gro_list; skb; skb = next) {
2650 next = skb->next;
2651 skb->next = NULL;
2652 napi_gro_complete(skb);
2653 }
2654
2655 napi->gro_count = 0;
2656 napi->gro_list = NULL;
2657 }
2658
2659 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2660 {
2661 struct sk_buff **pp = NULL;
2662 struct packet_type *ptype;
2663 __be16 type = skb->protocol;
2664 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2665 int same_flow;
2666 int mac_len;
2667 enum gro_result ret;
2668
2669 if (!(skb->dev->features & NETIF_F_GRO))
2670 goto normal;
2671
2672 if (skb_is_gso(skb) || skb_has_frags(skb))
2673 goto normal;
2674
2675 rcu_read_lock();
2676 list_for_each_entry_rcu(ptype, head, list) {
2677 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2678 continue;
2679
2680 skb_set_network_header(skb, skb_gro_offset(skb));
2681 mac_len = skb->network_header - skb->mac_header;
2682 skb->mac_len = mac_len;
2683 NAPI_GRO_CB(skb)->same_flow = 0;
2684 NAPI_GRO_CB(skb)->flush = 0;
2685 NAPI_GRO_CB(skb)->free = 0;
2686
2687 pp = ptype->gro_receive(&napi->gro_list, skb);
2688 break;
2689 }
2690 rcu_read_unlock();
2691
2692 if (&ptype->list == head)
2693 goto normal;
2694
2695 same_flow = NAPI_GRO_CB(skb)->same_flow;
2696 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2697
2698 if (pp) {
2699 struct sk_buff *nskb = *pp;
2700
2701 *pp = nskb->next;
2702 nskb->next = NULL;
2703 napi_gro_complete(nskb);
2704 napi->gro_count--;
2705 }
2706
2707 if (same_flow)
2708 goto ok;
2709
2710 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2711 goto normal;
2712
2713 napi->gro_count++;
2714 NAPI_GRO_CB(skb)->count = 1;
2715 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2716 skb->next = napi->gro_list;
2717 napi->gro_list = skb;
2718 ret = GRO_HELD;
2719
2720 pull:
2721 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2722 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2723
2724 BUG_ON(skb->end - skb->tail < grow);
2725
2726 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2727
2728 skb->tail += grow;
2729 skb->data_len -= grow;
2730
2731 skb_shinfo(skb)->frags[0].page_offset += grow;
2732 skb_shinfo(skb)->frags[0].size -= grow;
2733
2734 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2735 put_page(skb_shinfo(skb)->frags[0].page);
2736 memmove(skb_shinfo(skb)->frags,
2737 skb_shinfo(skb)->frags + 1,
2738 --skb_shinfo(skb)->nr_frags);
2739 }
2740 }
2741
2742 ok:
2743 return ret;
2744
2745 normal:
2746 ret = GRO_NORMAL;
2747 goto pull;
2748 }
2749 EXPORT_SYMBOL(dev_gro_receive);
2750
2751 static gro_result_t
2752 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2753 {
2754 struct sk_buff *p;
2755
2756 if (netpoll_rx_on(skb))
2757 return GRO_NORMAL;
2758
2759 for (p = napi->gro_list; p; p = p->next) {
2760 NAPI_GRO_CB(p)->same_flow =
2761 (p->dev == skb->dev) &&
2762 !compare_ether_header(skb_mac_header(p),
2763 skb_gro_mac_header(skb));
2764 NAPI_GRO_CB(p)->flush = 0;
2765 }
2766
2767 return dev_gro_receive(napi, skb);
2768 }
2769
2770 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2771 {
2772 switch (ret) {
2773 case GRO_NORMAL:
2774 if (netif_receive_skb(skb))
2775 ret = GRO_DROP;
2776 break;
2777
2778 case GRO_DROP:
2779 case GRO_MERGED_FREE:
2780 kfree_skb(skb);
2781 break;
2782
2783 case GRO_HELD:
2784 case GRO_MERGED:
2785 break;
2786 }
2787
2788 return ret;
2789 }
2790 EXPORT_SYMBOL(napi_skb_finish);
2791
2792 void skb_gro_reset_offset(struct sk_buff *skb)
2793 {
2794 NAPI_GRO_CB(skb)->data_offset = 0;
2795 NAPI_GRO_CB(skb)->frag0 = NULL;
2796 NAPI_GRO_CB(skb)->frag0_len = 0;
2797
2798 if (skb->mac_header == skb->tail &&
2799 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2800 NAPI_GRO_CB(skb)->frag0 =
2801 page_address(skb_shinfo(skb)->frags[0].page) +
2802 skb_shinfo(skb)->frags[0].page_offset;
2803 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2804 }
2805 }
2806 EXPORT_SYMBOL(skb_gro_reset_offset);
2807
2808 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2809 {
2810 skb_gro_reset_offset(skb);
2811
2812 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2813 }
2814 EXPORT_SYMBOL(napi_gro_receive);
2815
2816 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2817 {
2818 __skb_pull(skb, skb_headlen(skb));
2819 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2820
2821 napi->skb = skb;
2822 }
2823 EXPORT_SYMBOL(napi_reuse_skb);
2824
2825 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2826 {
2827 struct sk_buff *skb = napi->skb;
2828
2829 if (!skb) {
2830 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2831 if (skb)
2832 napi->skb = skb;
2833 }
2834 return skb;
2835 }
2836 EXPORT_SYMBOL(napi_get_frags);
2837
2838 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2839 gro_result_t ret)
2840 {
2841 switch (ret) {
2842 case GRO_NORMAL:
2843 case GRO_HELD:
2844 skb->protocol = eth_type_trans(skb, skb->dev);
2845
2846 if (ret == GRO_HELD)
2847 skb_gro_pull(skb, -ETH_HLEN);
2848 else if (netif_receive_skb(skb))
2849 ret = GRO_DROP;
2850 break;
2851
2852 case GRO_DROP:
2853 case GRO_MERGED_FREE:
2854 napi_reuse_skb(napi, skb);
2855 break;
2856
2857 case GRO_MERGED:
2858 break;
2859 }
2860
2861 return ret;
2862 }
2863 EXPORT_SYMBOL(napi_frags_finish);
2864
2865 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2866 {
2867 struct sk_buff *skb = napi->skb;
2868 struct ethhdr *eth;
2869 unsigned int hlen;
2870 unsigned int off;
2871
2872 napi->skb = NULL;
2873
2874 skb_reset_mac_header(skb);
2875 skb_gro_reset_offset(skb);
2876
2877 off = skb_gro_offset(skb);
2878 hlen = off + sizeof(*eth);
2879 eth = skb_gro_header_fast(skb, off);
2880 if (skb_gro_header_hard(skb, hlen)) {
2881 eth = skb_gro_header_slow(skb, hlen, off);
2882 if (unlikely(!eth)) {
2883 napi_reuse_skb(napi, skb);
2884 skb = NULL;
2885 goto out;
2886 }
2887 }
2888
2889 skb_gro_pull(skb, sizeof(*eth));
2890
2891 /*
2892 * This works because the only protocols we care about don't require
2893 * special handling. We'll fix it up properly at the end.
2894 */
2895 skb->protocol = eth->h_proto;
2896
2897 out:
2898 return skb;
2899 }
2900 EXPORT_SYMBOL(napi_frags_skb);
2901
2902 gro_result_t napi_gro_frags(struct napi_struct *napi)
2903 {
2904 struct sk_buff *skb = napi_frags_skb(napi);
2905
2906 if (!skb)
2907 return GRO_DROP;
2908
2909 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2910 }
2911 EXPORT_SYMBOL(napi_gro_frags);
2912
2913 static int process_backlog(struct napi_struct *napi, int quota)
2914 {
2915 int work = 0;
2916 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2917 unsigned long start_time = jiffies;
2918
2919 napi->weight = weight_p;
2920 do {
2921 struct sk_buff *skb;
2922
2923 local_irq_disable();
2924 skb = __skb_dequeue(&queue->input_pkt_queue);
2925 if (!skb) {
2926 __napi_complete(napi);
2927 local_irq_enable();
2928 break;
2929 }
2930 local_irq_enable();
2931
2932 netif_receive_skb(skb);
2933 } while (++work < quota && jiffies == start_time);
2934
2935 return work;
2936 }
2937
2938 /**
2939 * __napi_schedule - schedule for receive
2940 * @n: entry to schedule
2941 *
2942 * The entry's receive function will be scheduled to run
2943 */
2944 void __napi_schedule(struct napi_struct *n)
2945 {
2946 unsigned long flags;
2947
2948 local_irq_save(flags);
2949 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2950 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2951 local_irq_restore(flags);
2952 }
2953 EXPORT_SYMBOL(__napi_schedule);
2954
2955 void __napi_complete(struct napi_struct *n)
2956 {
2957 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2958 BUG_ON(n->gro_list);
2959
2960 list_del(&n->poll_list);
2961 smp_mb__before_clear_bit();
2962 clear_bit(NAPI_STATE_SCHED, &n->state);
2963 }
2964 EXPORT_SYMBOL(__napi_complete);
2965
2966 void napi_complete(struct napi_struct *n)
2967 {
2968 unsigned long flags;
2969
2970 /*
2971 * don't let napi dequeue from the cpu poll list
2972 * just in case its running on a different cpu
2973 */
2974 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2975 return;
2976
2977 napi_gro_flush(n);
2978 local_irq_save(flags);
2979 __napi_complete(n);
2980 local_irq_restore(flags);
2981 }
2982 EXPORT_SYMBOL(napi_complete);
2983
2984 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2985 int (*poll)(struct napi_struct *, int), int weight)
2986 {
2987 INIT_LIST_HEAD(&napi->poll_list);
2988 napi->gro_count = 0;
2989 napi->gro_list = NULL;
2990 napi->skb = NULL;
2991 napi->poll = poll;
2992 napi->weight = weight;
2993 list_add(&napi->dev_list, &dev->napi_list);
2994 napi->dev = dev;
2995 #ifdef CONFIG_NETPOLL
2996 spin_lock_init(&napi->poll_lock);
2997 napi->poll_owner = -1;
2998 #endif
2999 set_bit(NAPI_STATE_SCHED, &napi->state);
3000 }
3001 EXPORT_SYMBOL(netif_napi_add);
3002
3003 void netif_napi_del(struct napi_struct *napi)
3004 {
3005 struct sk_buff *skb, *next;
3006
3007 list_del_init(&napi->dev_list);
3008 napi_free_frags(napi);
3009
3010 for (skb = napi->gro_list; skb; skb = next) {
3011 next = skb->next;
3012 skb->next = NULL;
3013 kfree_skb(skb);
3014 }
3015
3016 napi->gro_list = NULL;
3017 napi->gro_count = 0;
3018 }
3019 EXPORT_SYMBOL(netif_napi_del);
3020
3021
3022 static void net_rx_action(struct softirq_action *h)
3023 {
3024 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3025 unsigned long time_limit = jiffies + 2;
3026 int budget = netdev_budget;
3027 void *have;
3028
3029 local_irq_disable();
3030
3031 while (!list_empty(list)) {
3032 struct napi_struct *n;
3033 int work, weight;
3034
3035 /* If softirq window is exhuasted then punt.
3036 * Allow this to run for 2 jiffies since which will allow
3037 * an average latency of 1.5/HZ.
3038 */
3039 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3040 goto softnet_break;
3041
3042 local_irq_enable();
3043
3044 /* Even though interrupts have been re-enabled, this
3045 * access is safe because interrupts can only add new
3046 * entries to the tail of this list, and only ->poll()
3047 * calls can remove this head entry from the list.
3048 */
3049 n = list_first_entry(list, struct napi_struct, poll_list);
3050
3051 have = netpoll_poll_lock(n);
3052
3053 weight = n->weight;
3054
3055 /* This NAPI_STATE_SCHED test is for avoiding a race
3056 * with netpoll's poll_napi(). Only the entity which
3057 * obtains the lock and sees NAPI_STATE_SCHED set will
3058 * actually make the ->poll() call. Therefore we avoid
3059 * accidently calling ->poll() when NAPI is not scheduled.
3060 */
3061 work = 0;
3062 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3063 work = n->poll(n, weight);
3064 trace_napi_poll(n);
3065 }
3066
3067 WARN_ON_ONCE(work > weight);
3068
3069 budget -= work;
3070
3071 local_irq_disable();
3072
3073 /* Drivers must not modify the NAPI state if they
3074 * consume the entire weight. In such cases this code
3075 * still "owns" the NAPI instance and therefore can
3076 * move the instance around on the list at-will.
3077 */
3078 if (unlikely(work == weight)) {
3079 if (unlikely(napi_disable_pending(n))) {
3080 local_irq_enable();
3081 napi_complete(n);
3082 local_irq_disable();
3083 } else
3084 list_move_tail(&n->poll_list, list);
3085 }
3086
3087 netpoll_poll_unlock(have);
3088 }
3089 out:
3090 local_irq_enable();
3091
3092 #ifdef CONFIG_NET_DMA
3093 /*
3094 * There may not be any more sk_buffs coming right now, so push
3095 * any pending DMA copies to hardware
3096 */
3097 dma_issue_pending_all();
3098 #endif
3099
3100 return;
3101
3102 softnet_break:
3103 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3104 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3105 goto out;
3106 }
3107
3108 static gifconf_func_t *gifconf_list[NPROTO];
3109
3110 /**
3111 * register_gifconf - register a SIOCGIF handler
3112 * @family: Address family
3113 * @gifconf: Function handler
3114 *
3115 * Register protocol dependent address dumping routines. The handler
3116 * that is passed must not be freed or reused until it has been replaced
3117 * by another handler.
3118 */
3119 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3120 {
3121 if (family >= NPROTO)
3122 return -EINVAL;
3123 gifconf_list[family] = gifconf;
3124 return 0;
3125 }
3126 EXPORT_SYMBOL(register_gifconf);
3127
3128
3129 /*
3130 * Map an interface index to its name (SIOCGIFNAME)
3131 */
3132
3133 /*
3134 * We need this ioctl for efficient implementation of the
3135 * if_indextoname() function required by the IPv6 API. Without
3136 * it, we would have to search all the interfaces to find a
3137 * match. --pb
3138 */
3139
3140 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3141 {
3142 struct net_device *dev;
3143 struct ifreq ifr;
3144
3145 /*
3146 * Fetch the caller's info block.
3147 */
3148
3149 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3150 return -EFAULT;
3151
3152 rcu_read_lock();
3153 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3154 if (!dev) {
3155 rcu_read_unlock();
3156 return -ENODEV;
3157 }
3158
3159 strcpy(ifr.ifr_name, dev->name);
3160 rcu_read_unlock();
3161
3162 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3163 return -EFAULT;
3164 return 0;
3165 }
3166
3167 /*
3168 * Perform a SIOCGIFCONF call. This structure will change
3169 * size eventually, and there is nothing I can do about it.
3170 * Thus we will need a 'compatibility mode'.
3171 */
3172
3173 static int dev_ifconf(struct net *net, char __user *arg)
3174 {
3175 struct ifconf ifc;
3176 struct net_device *dev;
3177 char __user *pos;
3178 int len;
3179 int total;
3180 int i;
3181
3182 /*
3183 * Fetch the caller's info block.
3184 */
3185
3186 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3187 return -EFAULT;
3188
3189 pos = ifc.ifc_buf;
3190 len = ifc.ifc_len;
3191
3192 /*
3193 * Loop over the interfaces, and write an info block for each.
3194 */
3195
3196 total = 0;
3197 for_each_netdev(net, dev) {
3198 for (i = 0; i < NPROTO; i++) {
3199 if (gifconf_list[i]) {
3200 int done;
3201 if (!pos)
3202 done = gifconf_list[i](dev, NULL, 0);
3203 else
3204 done = gifconf_list[i](dev, pos + total,
3205 len - total);
3206 if (done < 0)
3207 return -EFAULT;
3208 total += done;
3209 }
3210 }
3211 }
3212
3213 /*
3214 * All done. Write the updated control block back to the caller.
3215 */
3216 ifc.ifc_len = total;
3217
3218 /*
3219 * Both BSD and Solaris return 0 here, so we do too.
3220 */
3221 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3222 }
3223
3224 #ifdef CONFIG_PROC_FS
3225 /*
3226 * This is invoked by the /proc filesystem handler to display a device
3227 * in detail.
3228 */
3229 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3230 __acquires(RCU)
3231 {
3232 struct net *net = seq_file_net(seq);
3233 loff_t off;
3234 struct net_device *dev;
3235
3236 rcu_read_lock();
3237 if (!*pos)
3238 return SEQ_START_TOKEN;
3239
3240 off = 1;
3241 for_each_netdev_rcu(net, dev)
3242 if (off++ == *pos)
3243 return dev;
3244
3245 return NULL;
3246 }
3247
3248 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3249 {
3250 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3251 first_net_device(seq_file_net(seq)) :
3252 next_net_device((struct net_device *)v);
3253
3254 ++*pos;
3255 return rcu_dereference(dev);
3256 }
3257
3258 void dev_seq_stop(struct seq_file *seq, void *v)
3259 __releases(RCU)
3260 {
3261 rcu_read_unlock();
3262 }
3263
3264 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3265 {
3266 const struct net_device_stats *stats = dev_get_stats(dev);
3267
3268 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3269 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3270 dev->name, stats->rx_bytes, stats->rx_packets,
3271 stats->rx_errors,
3272 stats->rx_dropped + stats->rx_missed_errors,
3273 stats->rx_fifo_errors,
3274 stats->rx_length_errors + stats->rx_over_errors +
3275 stats->rx_crc_errors + stats->rx_frame_errors,
3276 stats->rx_compressed, stats->multicast,
3277 stats->tx_bytes, stats->tx_packets,
3278 stats->tx_errors, stats->tx_dropped,
3279 stats->tx_fifo_errors, stats->collisions,
3280 stats->tx_carrier_errors +
3281 stats->tx_aborted_errors +
3282 stats->tx_window_errors +
3283 stats->tx_heartbeat_errors,
3284 stats->tx_compressed);
3285 }
3286
3287 /*
3288 * Called from the PROCfs module. This now uses the new arbitrary sized
3289 * /proc/net interface to create /proc/net/dev
3290 */
3291 static int dev_seq_show(struct seq_file *seq, void *v)
3292 {
3293 if (v == SEQ_START_TOKEN)
3294 seq_puts(seq, "Inter-| Receive "
3295 " | Transmit\n"
3296 " face |bytes packets errs drop fifo frame "
3297 "compressed multicast|bytes packets errs "
3298 "drop fifo colls carrier compressed\n");
3299 else
3300 dev_seq_printf_stats(seq, v);
3301 return 0;
3302 }
3303
3304 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3305 {
3306 struct netif_rx_stats *rc = NULL;
3307
3308 while (*pos < nr_cpu_ids)
3309 if (cpu_online(*pos)) {
3310 rc = &per_cpu(netdev_rx_stat, *pos);
3311 break;
3312 } else
3313 ++*pos;
3314 return rc;
3315 }
3316
3317 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3318 {
3319 return softnet_get_online(pos);
3320 }
3321
3322 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3323 {
3324 ++*pos;
3325 return softnet_get_online(pos);
3326 }
3327
3328 static void softnet_seq_stop(struct seq_file *seq, void *v)
3329 {
3330 }
3331
3332 static int softnet_seq_show(struct seq_file *seq, void *v)
3333 {
3334 struct netif_rx_stats *s = v;
3335
3336 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3337 s->total, s->dropped, s->time_squeeze, 0,
3338 0, 0, 0, 0, /* was fastroute */
3339 s->cpu_collision);
3340 return 0;
3341 }
3342
3343 static const struct seq_operations dev_seq_ops = {
3344 .start = dev_seq_start,
3345 .next = dev_seq_next,
3346 .stop = dev_seq_stop,
3347 .show = dev_seq_show,
3348 };
3349
3350 static int dev_seq_open(struct inode *inode, struct file *file)
3351 {
3352 return seq_open_net(inode, file, &dev_seq_ops,
3353 sizeof(struct seq_net_private));
3354 }
3355
3356 static const struct file_operations dev_seq_fops = {
3357 .owner = THIS_MODULE,
3358 .open = dev_seq_open,
3359 .read = seq_read,
3360 .llseek = seq_lseek,
3361 .release = seq_release_net,
3362 };
3363
3364 static const struct seq_operations softnet_seq_ops = {
3365 .start = softnet_seq_start,
3366 .next = softnet_seq_next,
3367 .stop = softnet_seq_stop,
3368 .show = softnet_seq_show,
3369 };
3370
3371 static int softnet_seq_open(struct inode *inode, struct file *file)
3372 {
3373 return seq_open(file, &softnet_seq_ops);
3374 }
3375
3376 static const struct file_operations softnet_seq_fops = {
3377 .owner = THIS_MODULE,
3378 .open = softnet_seq_open,
3379 .read = seq_read,
3380 .llseek = seq_lseek,
3381 .release = seq_release,
3382 };
3383
3384 static void *ptype_get_idx(loff_t pos)
3385 {
3386 struct packet_type *pt = NULL;
3387 loff_t i = 0;
3388 int t;
3389
3390 list_for_each_entry_rcu(pt, &ptype_all, list) {
3391 if (i == pos)
3392 return pt;
3393 ++i;
3394 }
3395
3396 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3397 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3398 if (i == pos)
3399 return pt;
3400 ++i;
3401 }
3402 }
3403 return NULL;
3404 }
3405
3406 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3407 __acquires(RCU)
3408 {
3409 rcu_read_lock();
3410 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3411 }
3412
3413 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3414 {
3415 struct packet_type *pt;
3416 struct list_head *nxt;
3417 int hash;
3418
3419 ++*pos;
3420 if (v == SEQ_START_TOKEN)
3421 return ptype_get_idx(0);
3422
3423 pt = v;
3424 nxt = pt->list.next;
3425 if (pt->type == htons(ETH_P_ALL)) {
3426 if (nxt != &ptype_all)
3427 goto found;
3428 hash = 0;
3429 nxt = ptype_base[0].next;
3430 } else
3431 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3432
3433 while (nxt == &ptype_base[hash]) {
3434 if (++hash >= PTYPE_HASH_SIZE)
3435 return NULL;
3436 nxt = ptype_base[hash].next;
3437 }
3438 found:
3439 return list_entry(nxt, struct packet_type, list);
3440 }
3441
3442 static void ptype_seq_stop(struct seq_file *seq, void *v)
3443 __releases(RCU)
3444 {
3445 rcu_read_unlock();
3446 }
3447
3448 static int ptype_seq_show(struct seq_file *seq, void *v)
3449 {
3450 struct packet_type *pt = v;
3451
3452 if (v == SEQ_START_TOKEN)
3453 seq_puts(seq, "Type Device Function\n");
3454 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3455 if (pt->type == htons(ETH_P_ALL))
3456 seq_puts(seq, "ALL ");
3457 else
3458 seq_printf(seq, "%04x", ntohs(pt->type));
3459
3460 seq_printf(seq, " %-8s %pF\n",
3461 pt->dev ? pt->dev->name : "", pt->func);
3462 }
3463
3464 return 0;
3465 }
3466
3467 static const struct seq_operations ptype_seq_ops = {
3468 .start = ptype_seq_start,
3469 .next = ptype_seq_next,
3470 .stop = ptype_seq_stop,
3471 .show = ptype_seq_show,
3472 };
3473
3474 static int ptype_seq_open(struct inode *inode, struct file *file)
3475 {
3476 return seq_open_net(inode, file, &ptype_seq_ops,
3477 sizeof(struct seq_net_private));
3478 }
3479
3480 static const struct file_operations ptype_seq_fops = {
3481 .owner = THIS_MODULE,
3482 .open = ptype_seq_open,
3483 .read = seq_read,
3484 .llseek = seq_lseek,
3485 .release = seq_release_net,
3486 };
3487
3488
3489 static int __net_init dev_proc_net_init(struct net *net)
3490 {
3491 int rc = -ENOMEM;
3492
3493 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3494 goto out;
3495 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3496 goto out_dev;
3497 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3498 goto out_softnet;
3499
3500 if (wext_proc_init(net))
3501 goto out_ptype;
3502 rc = 0;
3503 out:
3504 return rc;
3505 out_ptype:
3506 proc_net_remove(net, "ptype");
3507 out_softnet:
3508 proc_net_remove(net, "softnet_stat");
3509 out_dev:
3510 proc_net_remove(net, "dev");
3511 goto out;
3512 }
3513
3514 static void __net_exit dev_proc_net_exit(struct net *net)
3515 {
3516 wext_proc_exit(net);
3517
3518 proc_net_remove(net, "ptype");
3519 proc_net_remove(net, "softnet_stat");
3520 proc_net_remove(net, "dev");
3521 }
3522
3523 static struct pernet_operations __net_initdata dev_proc_ops = {
3524 .init = dev_proc_net_init,
3525 .exit = dev_proc_net_exit,
3526 };
3527
3528 static int __init dev_proc_init(void)
3529 {
3530 return register_pernet_subsys(&dev_proc_ops);
3531 }
3532 #else
3533 #define dev_proc_init() 0
3534 #endif /* CONFIG_PROC_FS */
3535
3536
3537 /**
3538 * netdev_set_master - set up master/slave pair
3539 * @slave: slave device
3540 * @master: new master device
3541 *
3542 * Changes the master device of the slave. Pass %NULL to break the
3543 * bonding. The caller must hold the RTNL semaphore. On a failure
3544 * a negative errno code is returned. On success the reference counts
3545 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3546 * function returns zero.
3547 */
3548 int netdev_set_master(struct net_device *slave, struct net_device *master)
3549 {
3550 struct net_device *old = slave->master;
3551
3552 ASSERT_RTNL();
3553
3554 if (master) {
3555 if (old)
3556 return -EBUSY;
3557 dev_hold(master);
3558 }
3559
3560 slave->master = master;
3561
3562 synchronize_net();
3563
3564 if (old)
3565 dev_put(old);
3566
3567 if (master)
3568 slave->flags |= IFF_SLAVE;
3569 else
3570 slave->flags &= ~IFF_SLAVE;
3571
3572 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3573 return 0;
3574 }
3575 EXPORT_SYMBOL(netdev_set_master);
3576
3577 static void dev_change_rx_flags(struct net_device *dev, int flags)
3578 {
3579 const struct net_device_ops *ops = dev->netdev_ops;
3580
3581 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3582 ops->ndo_change_rx_flags(dev, flags);
3583 }
3584
3585 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3586 {
3587 unsigned short old_flags = dev->flags;
3588 uid_t uid;
3589 gid_t gid;
3590
3591 ASSERT_RTNL();
3592
3593 dev->flags |= IFF_PROMISC;
3594 dev->promiscuity += inc;
3595 if (dev->promiscuity == 0) {
3596 /*
3597 * Avoid overflow.
3598 * If inc causes overflow, untouch promisc and return error.
3599 */
3600 if (inc < 0)
3601 dev->flags &= ~IFF_PROMISC;
3602 else {
3603 dev->promiscuity -= inc;
3604 printk(KERN_WARNING "%s: promiscuity touches roof, "
3605 "set promiscuity failed, promiscuity feature "
3606 "of device might be broken.\n", dev->name);
3607 return -EOVERFLOW;
3608 }
3609 }
3610 if (dev->flags != old_flags) {
3611 printk(KERN_INFO "device %s %s promiscuous mode\n",
3612 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3613 "left");
3614 if (audit_enabled) {
3615 current_uid_gid(&uid, &gid);
3616 audit_log(current->audit_context, GFP_ATOMIC,
3617 AUDIT_ANOM_PROMISCUOUS,
3618 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3619 dev->name, (dev->flags & IFF_PROMISC),
3620 (old_flags & IFF_PROMISC),
3621 audit_get_loginuid(current),
3622 uid, gid,
3623 audit_get_sessionid(current));
3624 }
3625
3626 dev_change_rx_flags(dev, IFF_PROMISC);
3627 }
3628 return 0;
3629 }
3630
3631 /**
3632 * dev_set_promiscuity - update promiscuity count on a device
3633 * @dev: device
3634 * @inc: modifier
3635 *
3636 * Add or remove promiscuity from a device. While the count in the device
3637 * remains above zero the interface remains promiscuous. Once it hits zero
3638 * the device reverts back to normal filtering operation. A negative inc
3639 * value is used to drop promiscuity on the device.
3640 * Return 0 if successful or a negative errno code on error.
3641 */
3642 int dev_set_promiscuity(struct net_device *dev, int inc)
3643 {
3644 unsigned short old_flags = dev->flags;
3645 int err;
3646
3647 err = __dev_set_promiscuity(dev, inc);
3648 if (err < 0)
3649 return err;
3650 if (dev->flags != old_flags)
3651 dev_set_rx_mode(dev);
3652 return err;
3653 }
3654 EXPORT_SYMBOL(dev_set_promiscuity);
3655
3656 /**
3657 * dev_set_allmulti - update allmulti count on a device
3658 * @dev: device
3659 * @inc: modifier
3660 *
3661 * Add or remove reception of all multicast frames to a device. While the
3662 * count in the device remains above zero the interface remains listening
3663 * to all interfaces. Once it hits zero the device reverts back to normal
3664 * filtering operation. A negative @inc value is used to drop the counter
3665 * when releasing a resource needing all multicasts.
3666 * Return 0 if successful or a negative errno code on error.
3667 */
3668
3669 int dev_set_allmulti(struct net_device *dev, int inc)
3670 {
3671 unsigned short old_flags = dev->flags;
3672
3673 ASSERT_RTNL();
3674
3675 dev->flags |= IFF_ALLMULTI;
3676 dev->allmulti += inc;
3677 if (dev->allmulti == 0) {
3678 /*
3679 * Avoid overflow.
3680 * If inc causes overflow, untouch allmulti and return error.
3681 */
3682 if (inc < 0)
3683 dev->flags &= ~IFF_ALLMULTI;
3684 else {
3685 dev->allmulti -= inc;
3686 printk(KERN_WARNING "%s: allmulti touches roof, "
3687 "set allmulti failed, allmulti feature of "
3688 "device might be broken.\n", dev->name);
3689 return -EOVERFLOW;
3690 }
3691 }
3692 if (dev->flags ^ old_flags) {
3693 dev_change_rx_flags(dev, IFF_ALLMULTI);
3694 dev_set_rx_mode(dev);
3695 }
3696 return 0;
3697 }
3698 EXPORT_SYMBOL(dev_set_allmulti);
3699
3700 /*
3701 * Upload unicast and multicast address lists to device and
3702 * configure RX filtering. When the device doesn't support unicast
3703 * filtering it is put in promiscuous mode while unicast addresses
3704 * are present.
3705 */
3706 void __dev_set_rx_mode(struct net_device *dev)
3707 {
3708 const struct net_device_ops *ops = dev->netdev_ops;
3709
3710 /* dev_open will call this function so the list will stay sane. */
3711 if (!(dev->flags&IFF_UP))
3712 return;
3713
3714 if (!netif_device_present(dev))
3715 return;
3716
3717 if (ops->ndo_set_rx_mode)
3718 ops->ndo_set_rx_mode(dev);
3719 else {
3720 /* Unicast addresses changes may only happen under the rtnl,
3721 * therefore calling __dev_set_promiscuity here is safe.
3722 */
3723 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3724 __dev_set_promiscuity(dev, 1);
3725 dev->uc_promisc = 1;
3726 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3727 __dev_set_promiscuity(dev, -1);
3728 dev->uc_promisc = 0;
3729 }
3730
3731 if (ops->ndo_set_multicast_list)
3732 ops->ndo_set_multicast_list(dev);
3733 }
3734 }
3735
3736 void dev_set_rx_mode(struct net_device *dev)
3737 {
3738 netif_addr_lock_bh(dev);
3739 __dev_set_rx_mode(dev);
3740 netif_addr_unlock_bh(dev);
3741 }
3742
3743 /* hw addresses list handling functions */
3744
3745 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3746 int addr_len, unsigned char addr_type)
3747 {
3748 struct netdev_hw_addr *ha;
3749 int alloc_size;
3750
3751 if (addr_len > MAX_ADDR_LEN)
3752 return -EINVAL;
3753
3754 list_for_each_entry(ha, &list->list, list) {
3755 if (!memcmp(ha->addr, addr, addr_len) &&
3756 ha->type == addr_type) {
3757 ha->refcount++;
3758 return 0;
3759 }
3760 }
3761
3762
3763 alloc_size = sizeof(*ha);
3764 if (alloc_size < L1_CACHE_BYTES)
3765 alloc_size = L1_CACHE_BYTES;
3766 ha = kmalloc(alloc_size, GFP_ATOMIC);
3767 if (!ha)
3768 return -ENOMEM;
3769 memcpy(ha->addr, addr, addr_len);
3770 ha->type = addr_type;
3771 ha->refcount = 1;
3772 ha->synced = false;
3773 list_add_tail_rcu(&ha->list, &list->list);
3774 list->count++;
3775 return 0;
3776 }
3777
3778 static void ha_rcu_free(struct rcu_head *head)
3779 {
3780 struct netdev_hw_addr *ha;
3781
3782 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3783 kfree(ha);
3784 }
3785
3786 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3787 int addr_len, unsigned char addr_type)
3788 {
3789 struct netdev_hw_addr *ha;
3790
3791 list_for_each_entry(ha, &list->list, list) {
3792 if (!memcmp(ha->addr, addr, addr_len) &&
3793 (ha->type == addr_type || !addr_type)) {
3794 if (--ha->refcount)
3795 return 0;
3796 list_del_rcu(&ha->list);
3797 call_rcu(&ha->rcu_head, ha_rcu_free);
3798 list->count--;
3799 return 0;
3800 }
3801 }
3802 return -ENOENT;
3803 }
3804
3805 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3806 struct netdev_hw_addr_list *from_list,
3807 int addr_len,
3808 unsigned char addr_type)
3809 {
3810 int err;
3811 struct netdev_hw_addr *ha, *ha2;
3812 unsigned char type;
3813
3814 list_for_each_entry(ha, &from_list->list, list) {
3815 type = addr_type ? addr_type : ha->type;
3816 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3817 if (err)
3818 goto unroll;
3819 }
3820 return 0;
3821
3822 unroll:
3823 list_for_each_entry(ha2, &from_list->list, list) {
3824 if (ha2 == ha)
3825 break;
3826 type = addr_type ? addr_type : ha2->type;
3827 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3828 }
3829 return err;
3830 }
3831
3832 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3833 struct netdev_hw_addr_list *from_list,
3834 int addr_len,
3835 unsigned char addr_type)
3836 {
3837 struct netdev_hw_addr *ha;
3838 unsigned char type;
3839
3840 list_for_each_entry(ha, &from_list->list, list) {
3841 type = addr_type ? addr_type : ha->type;
3842 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3843 }
3844 }
3845
3846 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3847 struct netdev_hw_addr_list *from_list,
3848 int addr_len)
3849 {
3850 int err = 0;
3851 struct netdev_hw_addr *ha, *tmp;
3852
3853 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3854 if (!ha->synced) {
3855 err = __hw_addr_add(to_list, ha->addr,
3856 addr_len, ha->type);
3857 if (err)
3858 break;
3859 ha->synced = true;
3860 ha->refcount++;
3861 } else if (ha->refcount == 1) {
3862 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3863 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3864 }
3865 }
3866 return err;
3867 }
3868
3869 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3870 struct netdev_hw_addr_list *from_list,
3871 int addr_len)
3872 {
3873 struct netdev_hw_addr *ha, *tmp;
3874
3875 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3876 if (ha->synced) {
3877 __hw_addr_del(to_list, ha->addr,
3878 addr_len, ha->type);
3879 ha->synced = false;
3880 __hw_addr_del(from_list, ha->addr,
3881 addr_len, ha->type);
3882 }
3883 }
3884 }
3885
3886 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3887 {
3888 struct netdev_hw_addr *ha, *tmp;
3889
3890 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3891 list_del_rcu(&ha->list);
3892 call_rcu(&ha->rcu_head, ha_rcu_free);
3893 }
3894 list->count = 0;
3895 }
3896
3897 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3898 {
3899 INIT_LIST_HEAD(&list->list);
3900 list->count = 0;
3901 }
3902
3903 /* Device addresses handling functions */
3904
3905 static void dev_addr_flush(struct net_device *dev)
3906 {
3907 /* rtnl_mutex must be held here */
3908
3909 __hw_addr_flush(&dev->dev_addrs);
3910 dev->dev_addr = NULL;
3911 }
3912
3913 static int dev_addr_init(struct net_device *dev)
3914 {
3915 unsigned char addr[MAX_ADDR_LEN];
3916 struct netdev_hw_addr *ha;
3917 int err;
3918
3919 /* rtnl_mutex must be held here */
3920
3921 __hw_addr_init(&dev->dev_addrs);
3922 memset(addr, 0, sizeof(addr));
3923 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3924 NETDEV_HW_ADDR_T_LAN);
3925 if (!err) {
3926 /*
3927 * Get the first (previously created) address from the list
3928 * and set dev_addr pointer to this location.
3929 */
3930 ha = list_first_entry(&dev->dev_addrs.list,
3931 struct netdev_hw_addr, list);
3932 dev->dev_addr = ha->addr;
3933 }
3934 return err;
3935 }
3936
3937 /**
3938 * dev_addr_add - Add a device address
3939 * @dev: device
3940 * @addr: address to add
3941 * @addr_type: address type
3942 *
3943 * Add a device address to the device or increase the reference count if
3944 * it already exists.
3945 *
3946 * The caller must hold the rtnl_mutex.
3947 */
3948 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3949 unsigned char addr_type)
3950 {
3951 int err;
3952
3953 ASSERT_RTNL();
3954
3955 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3956 if (!err)
3957 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3958 return err;
3959 }
3960 EXPORT_SYMBOL(dev_addr_add);
3961
3962 /**
3963 * dev_addr_del - Release a device address.
3964 * @dev: device
3965 * @addr: address to delete
3966 * @addr_type: address type
3967 *
3968 * Release reference to a device address and remove it from the device
3969 * if the reference count drops to zero.
3970 *
3971 * The caller must hold the rtnl_mutex.
3972 */
3973 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3974 unsigned char addr_type)
3975 {
3976 int err;
3977 struct netdev_hw_addr *ha;
3978
3979 ASSERT_RTNL();
3980
3981 /*
3982 * We can not remove the first address from the list because
3983 * dev->dev_addr points to that.
3984 */
3985 ha = list_first_entry(&dev->dev_addrs.list,
3986 struct netdev_hw_addr, list);
3987 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3988 return -ENOENT;
3989
3990 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3991 addr_type);
3992 if (!err)
3993 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3994 return err;
3995 }
3996 EXPORT_SYMBOL(dev_addr_del);
3997
3998 /**
3999 * dev_addr_add_multiple - Add device addresses from another device
4000 * @to_dev: device to which addresses will be added
4001 * @from_dev: device from which addresses will be added
4002 * @addr_type: address type - 0 means type will be used from from_dev
4003 *
4004 * Add device addresses of the one device to another.
4005 **
4006 * The caller must hold the rtnl_mutex.
4007 */
4008 int dev_addr_add_multiple(struct net_device *to_dev,
4009 struct net_device *from_dev,
4010 unsigned char addr_type)
4011 {
4012 int err;
4013
4014 ASSERT_RTNL();
4015
4016 if (from_dev->addr_len != to_dev->addr_len)
4017 return -EINVAL;
4018 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4019 to_dev->addr_len, addr_type);
4020 if (!err)
4021 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4022 return err;
4023 }
4024 EXPORT_SYMBOL(dev_addr_add_multiple);
4025
4026 /**
4027 * dev_addr_del_multiple - Delete device addresses by another device
4028 * @to_dev: device where the addresses will be deleted
4029 * @from_dev: device by which addresses the addresses will be deleted
4030 * @addr_type: address type - 0 means type will used from from_dev
4031 *
4032 * Deletes addresses in to device by the list of addresses in from device.
4033 *
4034 * The caller must hold the rtnl_mutex.
4035 */
4036 int dev_addr_del_multiple(struct net_device *to_dev,
4037 struct net_device *from_dev,
4038 unsigned char addr_type)
4039 {
4040 ASSERT_RTNL();
4041
4042 if (from_dev->addr_len != to_dev->addr_len)
4043 return -EINVAL;
4044 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4045 to_dev->addr_len, addr_type);
4046 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4047 return 0;
4048 }
4049 EXPORT_SYMBOL(dev_addr_del_multiple);
4050
4051 /* multicast addresses handling functions */
4052
4053 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4054 void *addr, int alen, int glbl)
4055 {
4056 struct dev_addr_list *da;
4057
4058 for (; (da = *list) != NULL; list = &da->next) {
4059 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4060 alen == da->da_addrlen) {
4061 if (glbl) {
4062 int old_glbl = da->da_gusers;
4063 da->da_gusers = 0;
4064 if (old_glbl == 0)
4065 break;
4066 }
4067 if (--da->da_users)
4068 return 0;
4069
4070 *list = da->next;
4071 kfree(da);
4072 (*count)--;
4073 return 0;
4074 }
4075 }
4076 return -ENOENT;
4077 }
4078
4079 int __dev_addr_add(struct dev_addr_list **list, int *count,
4080 void *addr, int alen, int glbl)
4081 {
4082 struct dev_addr_list *da;
4083
4084 for (da = *list; da != NULL; da = da->next) {
4085 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4086 da->da_addrlen == alen) {
4087 if (glbl) {
4088 int old_glbl = da->da_gusers;
4089 da->da_gusers = 1;
4090 if (old_glbl)
4091 return 0;
4092 }
4093 da->da_users++;
4094 return 0;
4095 }
4096 }
4097
4098 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4099 if (da == NULL)
4100 return -ENOMEM;
4101 memcpy(da->da_addr, addr, alen);
4102 da->da_addrlen = alen;
4103 da->da_users = 1;
4104 da->da_gusers = glbl ? 1 : 0;
4105 da->next = *list;
4106 *list = da;
4107 (*count)++;
4108 return 0;
4109 }
4110
4111 /**
4112 * dev_unicast_delete - Release secondary unicast address.
4113 * @dev: device
4114 * @addr: address to delete
4115 *
4116 * Release reference to a secondary unicast address and remove it
4117 * from the device if the reference count drops to zero.
4118 *
4119 * The caller must hold the rtnl_mutex.
4120 */
4121 int dev_unicast_delete(struct net_device *dev, void *addr)
4122 {
4123 int err;
4124
4125 ASSERT_RTNL();
4126
4127 netif_addr_lock_bh(dev);
4128 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4129 NETDEV_HW_ADDR_T_UNICAST);
4130 if (!err)
4131 __dev_set_rx_mode(dev);
4132 netif_addr_unlock_bh(dev);
4133 return err;
4134 }
4135 EXPORT_SYMBOL(dev_unicast_delete);
4136
4137 /**
4138 * dev_unicast_add - add a secondary unicast address
4139 * @dev: device
4140 * @addr: address to add
4141 *
4142 * Add a secondary unicast address to the device or increase
4143 * the reference count if it already exists.
4144 *
4145 * The caller must hold the rtnl_mutex.
4146 */
4147 int dev_unicast_add(struct net_device *dev, void *addr)
4148 {
4149 int err;
4150
4151 ASSERT_RTNL();
4152
4153 netif_addr_lock_bh(dev);
4154 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4155 NETDEV_HW_ADDR_T_UNICAST);
4156 if (!err)
4157 __dev_set_rx_mode(dev);
4158 netif_addr_unlock_bh(dev);
4159 return err;
4160 }
4161 EXPORT_SYMBOL(dev_unicast_add);
4162
4163 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4164 struct dev_addr_list **from, int *from_count)
4165 {
4166 struct dev_addr_list *da, *next;
4167 int err = 0;
4168
4169 da = *from;
4170 while (da != NULL) {
4171 next = da->next;
4172 if (!da->da_synced) {
4173 err = __dev_addr_add(to, to_count,
4174 da->da_addr, da->da_addrlen, 0);
4175 if (err < 0)
4176 break;
4177 da->da_synced = 1;
4178 da->da_users++;
4179 } else if (da->da_users == 1) {
4180 __dev_addr_delete(to, to_count,
4181 da->da_addr, da->da_addrlen, 0);
4182 __dev_addr_delete(from, from_count,
4183 da->da_addr, da->da_addrlen, 0);
4184 }
4185 da = next;
4186 }
4187 return err;
4188 }
4189 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4190
4191 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4192 struct dev_addr_list **from, int *from_count)
4193 {
4194 struct dev_addr_list *da, *next;
4195
4196 da = *from;
4197 while (da != NULL) {
4198 next = da->next;
4199 if (da->da_synced) {
4200 __dev_addr_delete(to, to_count,
4201 da->da_addr, da->da_addrlen, 0);
4202 da->da_synced = 0;
4203 __dev_addr_delete(from, from_count,
4204 da->da_addr, da->da_addrlen, 0);
4205 }
4206 da = next;
4207 }
4208 }
4209 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4210
4211 /**
4212 * dev_unicast_sync - Synchronize device's unicast list to another device
4213 * @to: destination device
4214 * @from: source device
4215 *
4216 * Add newly added addresses to the destination device and release
4217 * addresses that have no users left. The source device must be
4218 * locked by netif_tx_lock_bh.
4219 *
4220 * This function is intended to be called from the dev->set_rx_mode
4221 * function of layered software devices.
4222 */
4223 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4224 {
4225 int err = 0;
4226
4227 if (to->addr_len != from->addr_len)
4228 return -EINVAL;
4229
4230 netif_addr_lock_bh(to);
4231 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4232 if (!err)
4233 __dev_set_rx_mode(to);
4234 netif_addr_unlock_bh(to);
4235 return err;
4236 }
4237 EXPORT_SYMBOL(dev_unicast_sync);
4238
4239 /**
4240 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4241 * @to: destination device
4242 * @from: source device
4243 *
4244 * Remove all addresses that were added to the destination device by
4245 * dev_unicast_sync(). This function is intended to be called from the
4246 * dev->stop function of layered software devices.
4247 */
4248 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4249 {
4250 if (to->addr_len != from->addr_len)
4251 return;
4252
4253 netif_addr_lock_bh(from);
4254 netif_addr_lock(to);
4255 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4256 __dev_set_rx_mode(to);
4257 netif_addr_unlock(to);
4258 netif_addr_unlock_bh(from);
4259 }
4260 EXPORT_SYMBOL(dev_unicast_unsync);
4261
4262 static void dev_unicast_flush(struct net_device *dev)
4263 {
4264 netif_addr_lock_bh(dev);
4265 __hw_addr_flush(&dev->uc);
4266 netif_addr_unlock_bh(dev);
4267 }
4268
4269 static void dev_unicast_init(struct net_device *dev)
4270 {
4271 __hw_addr_init(&dev->uc);
4272 }
4273
4274
4275 static void __dev_addr_discard(struct dev_addr_list **list)
4276 {
4277 struct dev_addr_list *tmp;
4278
4279 while (*list != NULL) {
4280 tmp = *list;
4281 *list = tmp->next;
4282 if (tmp->da_users > tmp->da_gusers)
4283 printk("__dev_addr_discard: address leakage! "
4284 "da_users=%d\n", tmp->da_users);
4285 kfree(tmp);
4286 }
4287 }
4288
4289 static void dev_addr_discard(struct net_device *dev)
4290 {
4291 netif_addr_lock_bh(dev);
4292
4293 __dev_addr_discard(&dev->mc_list);
4294 netdev_mc_count(dev) = 0;
4295
4296 netif_addr_unlock_bh(dev);
4297 }
4298
4299 /**
4300 * dev_get_flags - get flags reported to userspace
4301 * @dev: device
4302 *
4303 * Get the combination of flag bits exported through APIs to userspace.
4304 */
4305 unsigned dev_get_flags(const struct net_device *dev)
4306 {
4307 unsigned flags;
4308
4309 flags = (dev->flags & ~(IFF_PROMISC |
4310 IFF_ALLMULTI |
4311 IFF_RUNNING |
4312 IFF_LOWER_UP |
4313 IFF_DORMANT)) |
4314 (dev->gflags & (IFF_PROMISC |
4315 IFF_ALLMULTI));
4316
4317 if (netif_running(dev)) {
4318 if (netif_oper_up(dev))
4319 flags |= IFF_RUNNING;
4320 if (netif_carrier_ok(dev))
4321 flags |= IFF_LOWER_UP;
4322 if (netif_dormant(dev))
4323 flags |= IFF_DORMANT;
4324 }
4325
4326 return flags;
4327 }
4328 EXPORT_SYMBOL(dev_get_flags);
4329
4330 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4331 {
4332 int old_flags = dev->flags;
4333 int ret;
4334
4335 ASSERT_RTNL();
4336
4337 /*
4338 * Set the flags on our device.
4339 */
4340
4341 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4342 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4343 IFF_AUTOMEDIA)) |
4344 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4345 IFF_ALLMULTI));
4346
4347 /*
4348 * Load in the correct multicast list now the flags have changed.
4349 */
4350
4351 if ((old_flags ^ flags) & IFF_MULTICAST)
4352 dev_change_rx_flags(dev, IFF_MULTICAST);
4353
4354 dev_set_rx_mode(dev);
4355
4356 /*
4357 * Have we downed the interface. We handle IFF_UP ourselves
4358 * according to user attempts to set it, rather than blindly
4359 * setting it.
4360 */
4361
4362 ret = 0;
4363 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4364 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4365
4366 if (!ret)
4367 dev_set_rx_mode(dev);
4368 }
4369
4370 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4371 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4372
4373 dev->gflags ^= IFF_PROMISC;
4374 dev_set_promiscuity(dev, inc);
4375 }
4376
4377 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4378 is important. Some (broken) drivers set IFF_PROMISC, when
4379 IFF_ALLMULTI is requested not asking us and not reporting.
4380 */
4381 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4382 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4383
4384 dev->gflags ^= IFF_ALLMULTI;
4385 dev_set_allmulti(dev, inc);
4386 }
4387
4388 return ret;
4389 }
4390
4391 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4392 {
4393 unsigned int changes = dev->flags ^ old_flags;
4394
4395 if (changes & IFF_UP) {
4396 if (dev->flags & IFF_UP)
4397 call_netdevice_notifiers(NETDEV_UP, dev);
4398 else
4399 call_netdevice_notifiers(NETDEV_DOWN, dev);
4400 }
4401
4402 if (dev->flags & IFF_UP &&
4403 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4404 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4405 }
4406
4407 /**
4408 * dev_change_flags - change device settings
4409 * @dev: device
4410 * @flags: device state flags
4411 *
4412 * Change settings on device based state flags. The flags are
4413 * in the userspace exported format.
4414 */
4415 int dev_change_flags(struct net_device *dev, unsigned flags)
4416 {
4417 int ret, changes;
4418 int old_flags = dev->flags;
4419
4420 ret = __dev_change_flags(dev, flags);
4421 if (ret < 0)
4422 return ret;
4423
4424 changes = old_flags ^ dev->flags;
4425 if (changes)
4426 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4427
4428 __dev_notify_flags(dev, old_flags);
4429 return ret;
4430 }
4431 EXPORT_SYMBOL(dev_change_flags);
4432
4433 /**
4434 * dev_set_mtu - Change maximum transfer unit
4435 * @dev: device
4436 * @new_mtu: new transfer unit
4437 *
4438 * Change the maximum transfer size of the network device.
4439 */
4440 int dev_set_mtu(struct net_device *dev, int new_mtu)
4441 {
4442 const struct net_device_ops *ops = dev->netdev_ops;
4443 int err;
4444
4445 if (new_mtu == dev->mtu)
4446 return 0;
4447
4448 /* MTU must be positive. */
4449 if (new_mtu < 0)
4450 return -EINVAL;
4451
4452 if (!netif_device_present(dev))
4453 return -ENODEV;
4454
4455 err = 0;
4456 if (ops->ndo_change_mtu)
4457 err = ops->ndo_change_mtu(dev, new_mtu);
4458 else
4459 dev->mtu = new_mtu;
4460
4461 if (!err && dev->flags & IFF_UP)
4462 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4463 return err;
4464 }
4465 EXPORT_SYMBOL(dev_set_mtu);
4466
4467 /**
4468 * dev_set_mac_address - Change Media Access Control Address
4469 * @dev: device
4470 * @sa: new address
4471 *
4472 * Change the hardware (MAC) address of the device
4473 */
4474 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4475 {
4476 const struct net_device_ops *ops = dev->netdev_ops;
4477 int err;
4478
4479 if (!ops->ndo_set_mac_address)
4480 return -EOPNOTSUPP;
4481 if (sa->sa_family != dev->type)
4482 return -EINVAL;
4483 if (!netif_device_present(dev))
4484 return -ENODEV;
4485 err = ops->ndo_set_mac_address(dev, sa);
4486 if (!err)
4487 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4488 return err;
4489 }
4490 EXPORT_SYMBOL(dev_set_mac_address);
4491
4492 /*
4493 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4494 */
4495 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4496 {
4497 int err;
4498 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4499
4500 if (!dev)
4501 return -ENODEV;
4502
4503 switch (cmd) {
4504 case SIOCGIFFLAGS: /* Get interface flags */
4505 ifr->ifr_flags = (short) dev_get_flags(dev);
4506 return 0;
4507
4508 case SIOCGIFMETRIC: /* Get the metric on the interface
4509 (currently unused) */
4510 ifr->ifr_metric = 0;
4511 return 0;
4512
4513 case SIOCGIFMTU: /* Get the MTU of a device */
4514 ifr->ifr_mtu = dev->mtu;
4515 return 0;
4516
4517 case SIOCGIFHWADDR:
4518 if (!dev->addr_len)
4519 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4520 else
4521 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4522 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4523 ifr->ifr_hwaddr.sa_family = dev->type;
4524 return 0;
4525
4526 case SIOCGIFSLAVE:
4527 err = -EINVAL;
4528 break;
4529
4530 case SIOCGIFMAP:
4531 ifr->ifr_map.mem_start = dev->mem_start;
4532 ifr->ifr_map.mem_end = dev->mem_end;
4533 ifr->ifr_map.base_addr = dev->base_addr;
4534 ifr->ifr_map.irq = dev->irq;
4535 ifr->ifr_map.dma = dev->dma;
4536 ifr->ifr_map.port = dev->if_port;
4537 return 0;
4538
4539 case SIOCGIFINDEX:
4540 ifr->ifr_ifindex = dev->ifindex;
4541 return 0;
4542
4543 case SIOCGIFTXQLEN:
4544 ifr->ifr_qlen = dev->tx_queue_len;
4545 return 0;
4546
4547 default:
4548 /* dev_ioctl() should ensure this case
4549 * is never reached
4550 */
4551 WARN_ON(1);
4552 err = -EINVAL;
4553 break;
4554
4555 }
4556 return err;
4557 }
4558
4559 /*
4560 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4561 */
4562 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4563 {
4564 int err;
4565 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4566 const struct net_device_ops *ops;
4567
4568 if (!dev)
4569 return -ENODEV;
4570
4571 ops = dev->netdev_ops;
4572
4573 switch (cmd) {
4574 case SIOCSIFFLAGS: /* Set interface flags */
4575 return dev_change_flags(dev, ifr->ifr_flags);
4576
4577 case SIOCSIFMETRIC: /* Set the metric on the interface
4578 (currently unused) */
4579 return -EOPNOTSUPP;
4580
4581 case SIOCSIFMTU: /* Set the MTU of a device */
4582 return dev_set_mtu(dev, ifr->ifr_mtu);
4583
4584 case SIOCSIFHWADDR:
4585 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4586
4587 case SIOCSIFHWBROADCAST:
4588 if (ifr->ifr_hwaddr.sa_family != dev->type)
4589 return -EINVAL;
4590 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4591 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4592 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4593 return 0;
4594
4595 case SIOCSIFMAP:
4596 if (ops->ndo_set_config) {
4597 if (!netif_device_present(dev))
4598 return -ENODEV;
4599 return ops->ndo_set_config(dev, &ifr->ifr_map);
4600 }
4601 return -EOPNOTSUPP;
4602
4603 case SIOCADDMULTI:
4604 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4605 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4606 return -EINVAL;
4607 if (!netif_device_present(dev))
4608 return -ENODEV;
4609 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4610 dev->addr_len, 1);
4611
4612 case SIOCDELMULTI:
4613 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4614 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4615 return -EINVAL;
4616 if (!netif_device_present(dev))
4617 return -ENODEV;
4618 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4619 dev->addr_len, 1);
4620
4621 case SIOCSIFTXQLEN:
4622 if (ifr->ifr_qlen < 0)
4623 return -EINVAL;
4624 dev->tx_queue_len = ifr->ifr_qlen;
4625 return 0;
4626
4627 case SIOCSIFNAME:
4628 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4629 return dev_change_name(dev, ifr->ifr_newname);
4630
4631 /*
4632 * Unknown or private ioctl
4633 */
4634 default:
4635 if ((cmd >= SIOCDEVPRIVATE &&
4636 cmd <= SIOCDEVPRIVATE + 15) ||
4637 cmd == SIOCBONDENSLAVE ||
4638 cmd == SIOCBONDRELEASE ||
4639 cmd == SIOCBONDSETHWADDR ||
4640 cmd == SIOCBONDSLAVEINFOQUERY ||
4641 cmd == SIOCBONDINFOQUERY ||
4642 cmd == SIOCBONDCHANGEACTIVE ||
4643 cmd == SIOCGMIIPHY ||
4644 cmd == SIOCGMIIREG ||
4645 cmd == SIOCSMIIREG ||
4646 cmd == SIOCBRADDIF ||
4647 cmd == SIOCBRDELIF ||
4648 cmd == SIOCSHWTSTAMP ||
4649 cmd == SIOCWANDEV) {
4650 err = -EOPNOTSUPP;
4651 if (ops->ndo_do_ioctl) {
4652 if (netif_device_present(dev))
4653 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4654 else
4655 err = -ENODEV;
4656 }
4657 } else
4658 err = -EINVAL;
4659
4660 }
4661 return err;
4662 }
4663
4664 /*
4665 * This function handles all "interface"-type I/O control requests. The actual
4666 * 'doing' part of this is dev_ifsioc above.
4667 */
4668
4669 /**
4670 * dev_ioctl - network device ioctl
4671 * @net: the applicable net namespace
4672 * @cmd: command to issue
4673 * @arg: pointer to a struct ifreq in user space
4674 *
4675 * Issue ioctl functions to devices. This is normally called by the
4676 * user space syscall interfaces but can sometimes be useful for
4677 * other purposes. The return value is the return from the syscall if
4678 * positive or a negative errno code on error.
4679 */
4680
4681 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4682 {
4683 struct ifreq ifr;
4684 int ret;
4685 char *colon;
4686
4687 /* One special case: SIOCGIFCONF takes ifconf argument
4688 and requires shared lock, because it sleeps writing
4689 to user space.
4690 */
4691
4692 if (cmd == SIOCGIFCONF) {
4693 rtnl_lock();
4694 ret = dev_ifconf(net, (char __user *) arg);
4695 rtnl_unlock();
4696 return ret;
4697 }
4698 if (cmd == SIOCGIFNAME)
4699 return dev_ifname(net, (struct ifreq __user *)arg);
4700
4701 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4702 return -EFAULT;
4703
4704 ifr.ifr_name[IFNAMSIZ-1] = 0;
4705
4706 colon = strchr(ifr.ifr_name, ':');
4707 if (colon)
4708 *colon = 0;
4709
4710 /*
4711 * See which interface the caller is talking about.
4712 */
4713
4714 switch (cmd) {
4715 /*
4716 * These ioctl calls:
4717 * - can be done by all.
4718 * - atomic and do not require locking.
4719 * - return a value
4720 */
4721 case SIOCGIFFLAGS:
4722 case SIOCGIFMETRIC:
4723 case SIOCGIFMTU:
4724 case SIOCGIFHWADDR:
4725 case SIOCGIFSLAVE:
4726 case SIOCGIFMAP:
4727 case SIOCGIFINDEX:
4728 case SIOCGIFTXQLEN:
4729 dev_load(net, ifr.ifr_name);
4730 rcu_read_lock();
4731 ret = dev_ifsioc_locked(net, &ifr, cmd);
4732 rcu_read_unlock();
4733 if (!ret) {
4734 if (colon)
4735 *colon = ':';
4736 if (copy_to_user(arg, &ifr,
4737 sizeof(struct ifreq)))
4738 ret = -EFAULT;
4739 }
4740 return ret;
4741
4742 case SIOCETHTOOL:
4743 dev_load(net, ifr.ifr_name);
4744 rtnl_lock();
4745 ret = dev_ethtool(net, &ifr);
4746 rtnl_unlock();
4747 if (!ret) {
4748 if (colon)
4749 *colon = ':';
4750 if (copy_to_user(arg, &ifr,
4751 sizeof(struct ifreq)))
4752 ret = -EFAULT;
4753 }
4754 return ret;
4755
4756 /*
4757 * These ioctl calls:
4758 * - require superuser power.
4759 * - require strict serialization.
4760 * - return a value
4761 */
4762 case SIOCGMIIPHY:
4763 case SIOCGMIIREG:
4764 case SIOCSIFNAME:
4765 if (!capable(CAP_NET_ADMIN))
4766 return -EPERM;
4767 dev_load(net, ifr.ifr_name);
4768 rtnl_lock();
4769 ret = dev_ifsioc(net, &ifr, cmd);
4770 rtnl_unlock();
4771 if (!ret) {
4772 if (colon)
4773 *colon = ':';
4774 if (copy_to_user(arg, &ifr,
4775 sizeof(struct ifreq)))
4776 ret = -EFAULT;
4777 }
4778 return ret;
4779
4780 /*
4781 * These ioctl calls:
4782 * - require superuser power.
4783 * - require strict serialization.
4784 * - do not return a value
4785 */
4786 case SIOCSIFFLAGS:
4787 case SIOCSIFMETRIC:
4788 case SIOCSIFMTU:
4789 case SIOCSIFMAP:
4790 case SIOCSIFHWADDR:
4791 case SIOCSIFSLAVE:
4792 case SIOCADDMULTI:
4793 case SIOCDELMULTI:
4794 case SIOCSIFHWBROADCAST:
4795 case SIOCSIFTXQLEN:
4796 case SIOCSMIIREG:
4797 case SIOCBONDENSLAVE:
4798 case SIOCBONDRELEASE:
4799 case SIOCBONDSETHWADDR:
4800 case SIOCBONDCHANGEACTIVE:
4801 case SIOCBRADDIF:
4802 case SIOCBRDELIF:
4803 case SIOCSHWTSTAMP:
4804 if (!capable(CAP_NET_ADMIN))
4805 return -EPERM;
4806 /* fall through */
4807 case SIOCBONDSLAVEINFOQUERY:
4808 case SIOCBONDINFOQUERY:
4809 dev_load(net, ifr.ifr_name);
4810 rtnl_lock();
4811 ret = dev_ifsioc(net, &ifr, cmd);
4812 rtnl_unlock();
4813 return ret;
4814
4815 case SIOCGIFMEM:
4816 /* Get the per device memory space. We can add this but
4817 * currently do not support it */
4818 case SIOCSIFMEM:
4819 /* Set the per device memory buffer space.
4820 * Not applicable in our case */
4821 case SIOCSIFLINK:
4822 return -EINVAL;
4823
4824 /*
4825 * Unknown or private ioctl.
4826 */
4827 default:
4828 if (cmd == SIOCWANDEV ||
4829 (cmd >= SIOCDEVPRIVATE &&
4830 cmd <= SIOCDEVPRIVATE + 15)) {
4831 dev_load(net, ifr.ifr_name);
4832 rtnl_lock();
4833 ret = dev_ifsioc(net, &ifr, cmd);
4834 rtnl_unlock();
4835 if (!ret && copy_to_user(arg, &ifr,
4836 sizeof(struct ifreq)))
4837 ret = -EFAULT;
4838 return ret;
4839 }
4840 /* Take care of Wireless Extensions */
4841 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4842 return wext_handle_ioctl(net, &ifr, cmd, arg);
4843 return -EINVAL;
4844 }
4845 }
4846
4847
4848 /**
4849 * dev_new_index - allocate an ifindex
4850 * @net: the applicable net namespace
4851 *
4852 * Returns a suitable unique value for a new device interface
4853 * number. The caller must hold the rtnl semaphore or the
4854 * dev_base_lock to be sure it remains unique.
4855 */
4856 static int dev_new_index(struct net *net)
4857 {
4858 static int ifindex;
4859 for (;;) {
4860 if (++ifindex <= 0)
4861 ifindex = 1;
4862 if (!__dev_get_by_index(net, ifindex))
4863 return ifindex;
4864 }
4865 }
4866
4867 /* Delayed registration/unregisteration */
4868 static LIST_HEAD(net_todo_list);
4869
4870 static void net_set_todo(struct net_device *dev)
4871 {
4872 list_add_tail(&dev->todo_list, &net_todo_list);
4873 }
4874
4875 static void rollback_registered_many(struct list_head *head)
4876 {
4877 struct net_device *dev, *tmp;
4878
4879 BUG_ON(dev_boot_phase);
4880 ASSERT_RTNL();
4881
4882 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4883 /* Some devices call without registering
4884 * for initialization unwind. Remove those
4885 * devices and proceed with the remaining.
4886 */
4887 if (dev->reg_state == NETREG_UNINITIALIZED) {
4888 pr_debug("unregister_netdevice: device %s/%p never "
4889 "was registered\n", dev->name, dev);
4890
4891 WARN_ON(1);
4892 list_del(&dev->unreg_list);
4893 continue;
4894 }
4895
4896 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4897
4898 /* If device is running, close it first. */
4899 dev_close(dev);
4900
4901 /* And unlink it from device chain. */
4902 unlist_netdevice(dev);
4903
4904 dev->reg_state = NETREG_UNREGISTERING;
4905 }
4906
4907 synchronize_net();
4908
4909 list_for_each_entry(dev, head, unreg_list) {
4910 /* Shutdown queueing discipline. */
4911 dev_shutdown(dev);
4912
4913
4914 /* Notify protocols, that we are about to destroy
4915 this device. They should clean all the things.
4916 */
4917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4918
4919 if (!dev->rtnl_link_ops ||
4920 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4921 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4922
4923 /*
4924 * Flush the unicast and multicast chains
4925 */
4926 dev_unicast_flush(dev);
4927 dev_addr_discard(dev);
4928
4929 if (dev->netdev_ops->ndo_uninit)
4930 dev->netdev_ops->ndo_uninit(dev);
4931
4932 /* Notifier chain MUST detach us from master device. */
4933 WARN_ON(dev->master);
4934
4935 /* Remove entries from kobject tree */
4936 netdev_unregister_kobject(dev);
4937 }
4938
4939 /* Process any work delayed until the end of the batch */
4940 dev = list_first_entry(head, struct net_device, unreg_list);
4941 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4942
4943 synchronize_net();
4944
4945 list_for_each_entry(dev, head, unreg_list)
4946 dev_put(dev);
4947 }
4948
4949 static void rollback_registered(struct net_device *dev)
4950 {
4951 LIST_HEAD(single);
4952
4953 list_add(&dev->unreg_list, &single);
4954 rollback_registered_many(&single);
4955 }
4956
4957 static void __netdev_init_queue_locks_one(struct net_device *dev,
4958 struct netdev_queue *dev_queue,
4959 void *_unused)
4960 {
4961 spin_lock_init(&dev_queue->_xmit_lock);
4962 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4963 dev_queue->xmit_lock_owner = -1;
4964 }
4965
4966 static void netdev_init_queue_locks(struct net_device *dev)
4967 {
4968 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4969 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4970 }
4971
4972 unsigned long netdev_fix_features(unsigned long features, const char *name)
4973 {
4974 /* Fix illegal SG+CSUM combinations. */
4975 if ((features & NETIF_F_SG) &&
4976 !(features & NETIF_F_ALL_CSUM)) {
4977 if (name)
4978 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4979 "checksum feature.\n", name);
4980 features &= ~NETIF_F_SG;
4981 }
4982
4983 /* TSO requires that SG is present as well. */
4984 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4985 if (name)
4986 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4987 "SG feature.\n", name);
4988 features &= ~NETIF_F_TSO;
4989 }
4990
4991 if (features & NETIF_F_UFO) {
4992 if (!(features & NETIF_F_GEN_CSUM)) {
4993 if (name)
4994 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4995 "since no NETIF_F_HW_CSUM feature.\n",
4996 name);
4997 features &= ~NETIF_F_UFO;
4998 }
4999
5000 if (!(features & NETIF_F_SG)) {
5001 if (name)
5002 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5003 "since no NETIF_F_SG feature.\n", name);
5004 features &= ~NETIF_F_UFO;
5005 }
5006 }
5007
5008 return features;
5009 }
5010 EXPORT_SYMBOL(netdev_fix_features);
5011
5012 /**
5013 * netif_stacked_transfer_operstate - transfer operstate
5014 * @rootdev: the root or lower level device to transfer state from
5015 * @dev: the device to transfer operstate to
5016 *
5017 * Transfer operational state from root to device. This is normally
5018 * called when a stacking relationship exists between the root
5019 * device and the device(a leaf device).
5020 */
5021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5022 struct net_device *dev)
5023 {
5024 if (rootdev->operstate == IF_OPER_DORMANT)
5025 netif_dormant_on(dev);
5026 else
5027 netif_dormant_off(dev);
5028
5029 if (netif_carrier_ok(rootdev)) {
5030 if (!netif_carrier_ok(dev))
5031 netif_carrier_on(dev);
5032 } else {
5033 if (netif_carrier_ok(dev))
5034 netif_carrier_off(dev);
5035 }
5036 }
5037 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5038
5039 /**
5040 * register_netdevice - register a network device
5041 * @dev: device to register
5042 *
5043 * Take a completed network device structure and add it to the kernel
5044 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5045 * chain. 0 is returned on success. A negative errno code is returned
5046 * on a failure to set up the device, or if the name is a duplicate.
5047 *
5048 * Callers must hold the rtnl semaphore. You may want
5049 * register_netdev() instead of this.
5050 *
5051 * BUGS:
5052 * The locking appears insufficient to guarantee two parallel registers
5053 * will not get the same name.
5054 */
5055
5056 int register_netdevice(struct net_device *dev)
5057 {
5058 int ret;
5059 struct net *net = dev_net(dev);
5060
5061 BUG_ON(dev_boot_phase);
5062 ASSERT_RTNL();
5063
5064 might_sleep();
5065
5066 /* When net_device's are persistent, this will be fatal. */
5067 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5068 BUG_ON(!net);
5069
5070 spin_lock_init(&dev->addr_list_lock);
5071 netdev_set_addr_lockdep_class(dev);
5072 netdev_init_queue_locks(dev);
5073
5074 dev->iflink = -1;
5075
5076 /* Init, if this function is available */
5077 if (dev->netdev_ops->ndo_init) {
5078 ret = dev->netdev_ops->ndo_init(dev);
5079 if (ret) {
5080 if (ret > 0)
5081 ret = -EIO;
5082 goto out;
5083 }
5084 }
5085
5086 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5087 if (ret)
5088 goto err_uninit;
5089
5090 dev->ifindex = dev_new_index(net);
5091 if (dev->iflink == -1)
5092 dev->iflink = dev->ifindex;
5093
5094 /* Fix illegal checksum combinations */
5095 if ((dev->features & NETIF_F_HW_CSUM) &&
5096 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5097 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5098 dev->name);
5099 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5100 }
5101
5102 if ((dev->features & NETIF_F_NO_CSUM) &&
5103 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5104 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5105 dev->name);
5106 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5107 }
5108
5109 dev->features = netdev_fix_features(dev->features, dev->name);
5110
5111 /* Enable software GSO if SG is supported. */
5112 if (dev->features & NETIF_F_SG)
5113 dev->features |= NETIF_F_GSO;
5114
5115 netdev_initialize_kobject(dev);
5116
5117 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5118 ret = notifier_to_errno(ret);
5119 if (ret)
5120 goto err_uninit;
5121
5122 ret = netdev_register_kobject(dev);
5123 if (ret)
5124 goto err_uninit;
5125 dev->reg_state = NETREG_REGISTERED;
5126
5127 /*
5128 * Default initial state at registry is that the
5129 * device is present.
5130 */
5131
5132 set_bit(__LINK_STATE_PRESENT, &dev->state);
5133
5134 dev_init_scheduler(dev);
5135 dev_hold(dev);
5136 list_netdevice(dev);
5137
5138 /* Notify protocols, that a new device appeared. */
5139 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5140 ret = notifier_to_errno(ret);
5141 if (ret) {
5142 rollback_registered(dev);
5143 dev->reg_state = NETREG_UNREGISTERED;
5144 }
5145 /*
5146 * Prevent userspace races by waiting until the network
5147 * device is fully setup before sending notifications.
5148 */
5149 if (!dev->rtnl_link_ops ||
5150 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5151 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5152
5153 out:
5154 return ret;
5155
5156 err_uninit:
5157 if (dev->netdev_ops->ndo_uninit)
5158 dev->netdev_ops->ndo_uninit(dev);
5159 goto out;
5160 }
5161 EXPORT_SYMBOL(register_netdevice);
5162
5163 /**
5164 * init_dummy_netdev - init a dummy network device for NAPI
5165 * @dev: device to init
5166 *
5167 * This takes a network device structure and initialize the minimum
5168 * amount of fields so it can be used to schedule NAPI polls without
5169 * registering a full blown interface. This is to be used by drivers
5170 * that need to tie several hardware interfaces to a single NAPI
5171 * poll scheduler due to HW limitations.
5172 */
5173 int init_dummy_netdev(struct net_device *dev)
5174 {
5175 /* Clear everything. Note we don't initialize spinlocks
5176 * are they aren't supposed to be taken by any of the
5177 * NAPI code and this dummy netdev is supposed to be
5178 * only ever used for NAPI polls
5179 */
5180 memset(dev, 0, sizeof(struct net_device));
5181
5182 /* make sure we BUG if trying to hit standard
5183 * register/unregister code path
5184 */
5185 dev->reg_state = NETREG_DUMMY;
5186
5187 /* initialize the ref count */
5188 atomic_set(&dev->refcnt, 1);
5189
5190 /* NAPI wants this */
5191 INIT_LIST_HEAD(&dev->napi_list);
5192
5193 /* a dummy interface is started by default */
5194 set_bit(__LINK_STATE_PRESENT, &dev->state);
5195 set_bit(__LINK_STATE_START, &dev->state);
5196
5197 return 0;
5198 }
5199 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5200
5201
5202 /**
5203 * register_netdev - register a network device
5204 * @dev: device to register
5205 *
5206 * Take a completed network device structure and add it to the kernel
5207 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5208 * chain. 0 is returned on success. A negative errno code is returned
5209 * on a failure to set up the device, or if the name is a duplicate.
5210 *
5211 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5212 * and expands the device name if you passed a format string to
5213 * alloc_netdev.
5214 */
5215 int register_netdev(struct net_device *dev)
5216 {
5217 int err;
5218
5219 rtnl_lock();
5220
5221 /*
5222 * If the name is a format string the caller wants us to do a
5223 * name allocation.
5224 */
5225 if (strchr(dev->name, '%')) {
5226 err = dev_alloc_name(dev, dev->name);
5227 if (err < 0)
5228 goto out;
5229 }
5230
5231 err = register_netdevice(dev);
5232 out:
5233 rtnl_unlock();
5234 return err;
5235 }
5236 EXPORT_SYMBOL(register_netdev);
5237
5238 /*
5239 * netdev_wait_allrefs - wait until all references are gone.
5240 *
5241 * This is called when unregistering network devices.
5242 *
5243 * Any protocol or device that holds a reference should register
5244 * for netdevice notification, and cleanup and put back the
5245 * reference if they receive an UNREGISTER event.
5246 * We can get stuck here if buggy protocols don't correctly
5247 * call dev_put.
5248 */
5249 static void netdev_wait_allrefs(struct net_device *dev)
5250 {
5251 unsigned long rebroadcast_time, warning_time;
5252
5253 linkwatch_forget_dev(dev);
5254
5255 rebroadcast_time = warning_time = jiffies;
5256 while (atomic_read(&dev->refcnt) != 0) {
5257 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5258 rtnl_lock();
5259
5260 /* Rebroadcast unregister notification */
5261 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5262 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5263 * should have already handle it the first time */
5264
5265 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5266 &dev->state)) {
5267 /* We must not have linkwatch events
5268 * pending on unregister. If this
5269 * happens, we simply run the queue
5270 * unscheduled, resulting in a noop
5271 * for this device.
5272 */
5273 linkwatch_run_queue();
5274 }
5275
5276 __rtnl_unlock();
5277
5278 rebroadcast_time = jiffies;
5279 }
5280
5281 msleep(250);
5282
5283 if (time_after(jiffies, warning_time + 10 * HZ)) {
5284 printk(KERN_EMERG "unregister_netdevice: "
5285 "waiting for %s to become free. Usage "
5286 "count = %d\n",
5287 dev->name, atomic_read(&dev->refcnt));
5288 warning_time = jiffies;
5289 }
5290 }
5291 }
5292
5293 /* The sequence is:
5294 *
5295 * rtnl_lock();
5296 * ...
5297 * register_netdevice(x1);
5298 * register_netdevice(x2);
5299 * ...
5300 * unregister_netdevice(y1);
5301 * unregister_netdevice(y2);
5302 * ...
5303 * rtnl_unlock();
5304 * free_netdev(y1);
5305 * free_netdev(y2);
5306 *
5307 * We are invoked by rtnl_unlock().
5308 * This allows us to deal with problems:
5309 * 1) We can delete sysfs objects which invoke hotplug
5310 * without deadlocking with linkwatch via keventd.
5311 * 2) Since we run with the RTNL semaphore not held, we can sleep
5312 * safely in order to wait for the netdev refcnt to drop to zero.
5313 *
5314 * We must not return until all unregister events added during
5315 * the interval the lock was held have been completed.
5316 */
5317 void netdev_run_todo(void)
5318 {
5319 struct list_head list;
5320
5321 /* Snapshot list, allow later requests */
5322 list_replace_init(&net_todo_list, &list);
5323
5324 __rtnl_unlock();
5325
5326 while (!list_empty(&list)) {
5327 struct net_device *dev
5328 = list_first_entry(&list, struct net_device, todo_list);
5329 list_del(&dev->todo_list);
5330
5331 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5332 printk(KERN_ERR "network todo '%s' but state %d\n",
5333 dev->name, dev->reg_state);
5334 dump_stack();
5335 continue;
5336 }
5337
5338 dev->reg_state = NETREG_UNREGISTERED;
5339
5340 on_each_cpu(flush_backlog, dev, 1);
5341
5342 netdev_wait_allrefs(dev);
5343
5344 /* paranoia */
5345 BUG_ON(atomic_read(&dev->refcnt));
5346 WARN_ON(dev->ip_ptr);
5347 WARN_ON(dev->ip6_ptr);
5348 WARN_ON(dev->dn_ptr);
5349
5350 if (dev->destructor)
5351 dev->destructor(dev);
5352
5353 /* Free network device */
5354 kobject_put(&dev->dev.kobj);
5355 }
5356 }
5357
5358 /**
5359 * dev_txq_stats_fold - fold tx_queues stats
5360 * @dev: device to get statistics from
5361 * @stats: struct net_device_stats to hold results
5362 */
5363 void dev_txq_stats_fold(const struct net_device *dev,
5364 struct net_device_stats *stats)
5365 {
5366 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5367 unsigned int i;
5368 struct netdev_queue *txq;
5369
5370 for (i = 0; i < dev->num_tx_queues; i++) {
5371 txq = netdev_get_tx_queue(dev, i);
5372 tx_bytes += txq->tx_bytes;
5373 tx_packets += txq->tx_packets;
5374 tx_dropped += txq->tx_dropped;
5375 }
5376 if (tx_bytes || tx_packets || tx_dropped) {
5377 stats->tx_bytes = tx_bytes;
5378 stats->tx_packets = tx_packets;
5379 stats->tx_dropped = tx_dropped;
5380 }
5381 }
5382 EXPORT_SYMBOL(dev_txq_stats_fold);
5383
5384 /**
5385 * dev_get_stats - get network device statistics
5386 * @dev: device to get statistics from
5387 *
5388 * Get network statistics from device. The device driver may provide
5389 * its own method by setting dev->netdev_ops->get_stats; otherwise
5390 * the internal statistics structure is used.
5391 */
5392 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5393 {
5394 const struct net_device_ops *ops = dev->netdev_ops;
5395
5396 if (ops->ndo_get_stats)
5397 return ops->ndo_get_stats(dev);
5398
5399 dev_txq_stats_fold(dev, &dev->stats);
5400 return &dev->stats;
5401 }
5402 EXPORT_SYMBOL(dev_get_stats);
5403
5404 static void netdev_init_one_queue(struct net_device *dev,
5405 struct netdev_queue *queue,
5406 void *_unused)
5407 {
5408 queue->dev = dev;
5409 }
5410
5411 static void netdev_init_queues(struct net_device *dev)
5412 {
5413 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5414 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5415 spin_lock_init(&dev->tx_global_lock);
5416 }
5417
5418 /**
5419 * alloc_netdev_mq - allocate network device
5420 * @sizeof_priv: size of private data to allocate space for
5421 * @name: device name format string
5422 * @setup: callback to initialize device
5423 * @queue_count: the number of subqueues to allocate
5424 *
5425 * Allocates a struct net_device with private data area for driver use
5426 * and performs basic initialization. Also allocates subquue structs
5427 * for each queue on the device at the end of the netdevice.
5428 */
5429 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5430 void (*setup)(struct net_device *), unsigned int queue_count)
5431 {
5432 struct netdev_queue *tx;
5433 struct net_device *dev;
5434 size_t alloc_size;
5435 struct net_device *p;
5436
5437 BUG_ON(strlen(name) >= sizeof(dev->name));
5438
5439 alloc_size = sizeof(struct net_device);
5440 if (sizeof_priv) {
5441 /* ensure 32-byte alignment of private area */
5442 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5443 alloc_size += sizeof_priv;
5444 }
5445 /* ensure 32-byte alignment of whole construct */
5446 alloc_size += NETDEV_ALIGN - 1;
5447
5448 p = kzalloc(alloc_size, GFP_KERNEL);
5449 if (!p) {
5450 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5451 return NULL;
5452 }
5453
5454 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5455 if (!tx) {
5456 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5457 "tx qdiscs.\n");
5458 goto free_p;
5459 }
5460
5461 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5462 dev->padded = (char *)dev - (char *)p;
5463
5464 if (dev_addr_init(dev))
5465 goto free_tx;
5466
5467 dev_unicast_init(dev);
5468
5469 dev_net_set(dev, &init_net);
5470
5471 dev->_tx = tx;
5472 dev->num_tx_queues = queue_count;
5473 dev->real_num_tx_queues = queue_count;
5474
5475 dev->gso_max_size = GSO_MAX_SIZE;
5476
5477 netdev_init_queues(dev);
5478
5479 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5480 dev->ethtool_ntuple_list.count = 0;
5481 INIT_LIST_HEAD(&dev->napi_list);
5482 INIT_LIST_HEAD(&dev->unreg_list);
5483 INIT_LIST_HEAD(&dev->link_watch_list);
5484 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5485 setup(dev);
5486 strcpy(dev->name, name);
5487 return dev;
5488
5489 free_tx:
5490 kfree(tx);
5491
5492 free_p:
5493 kfree(p);
5494 return NULL;
5495 }
5496 EXPORT_SYMBOL(alloc_netdev_mq);
5497
5498 /**
5499 * free_netdev - free network device
5500 * @dev: device
5501 *
5502 * This function does the last stage of destroying an allocated device
5503 * interface. The reference to the device object is released.
5504 * If this is the last reference then it will be freed.
5505 */
5506 void free_netdev(struct net_device *dev)
5507 {
5508 struct napi_struct *p, *n;
5509
5510 release_net(dev_net(dev));
5511
5512 kfree(dev->_tx);
5513
5514 /* Flush device addresses */
5515 dev_addr_flush(dev);
5516
5517 /* Clear ethtool n-tuple list */
5518 ethtool_ntuple_flush(dev);
5519
5520 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5521 netif_napi_del(p);
5522
5523 /* Compatibility with error handling in drivers */
5524 if (dev->reg_state == NETREG_UNINITIALIZED) {
5525 kfree((char *)dev - dev->padded);
5526 return;
5527 }
5528
5529 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5530 dev->reg_state = NETREG_RELEASED;
5531
5532 /* will free via device release */
5533 put_device(&dev->dev);
5534 }
5535 EXPORT_SYMBOL(free_netdev);
5536
5537 /**
5538 * synchronize_net - Synchronize with packet receive processing
5539 *
5540 * Wait for packets currently being received to be done.
5541 * Does not block later packets from starting.
5542 */
5543 void synchronize_net(void)
5544 {
5545 might_sleep();
5546 synchronize_rcu();
5547 }
5548 EXPORT_SYMBOL(synchronize_net);
5549
5550 /**
5551 * unregister_netdevice_queue - remove device from the kernel
5552 * @dev: device
5553 * @head: list
5554 *
5555 * This function shuts down a device interface and removes it
5556 * from the kernel tables.
5557 * If head not NULL, device is queued to be unregistered later.
5558 *
5559 * Callers must hold the rtnl semaphore. You may want
5560 * unregister_netdev() instead of this.
5561 */
5562
5563 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5564 {
5565 ASSERT_RTNL();
5566
5567 if (head) {
5568 list_move_tail(&dev->unreg_list, head);
5569 } else {
5570 rollback_registered(dev);
5571 /* Finish processing unregister after unlock */
5572 net_set_todo(dev);
5573 }
5574 }
5575 EXPORT_SYMBOL(unregister_netdevice_queue);
5576
5577 /**
5578 * unregister_netdevice_many - unregister many devices
5579 * @head: list of devices
5580 */
5581 void unregister_netdevice_many(struct list_head *head)
5582 {
5583 struct net_device *dev;
5584
5585 if (!list_empty(head)) {
5586 rollback_registered_many(head);
5587 list_for_each_entry(dev, head, unreg_list)
5588 net_set_todo(dev);
5589 }
5590 }
5591 EXPORT_SYMBOL(unregister_netdevice_many);
5592
5593 /**
5594 * unregister_netdev - remove device from the kernel
5595 * @dev: device
5596 *
5597 * This function shuts down a device interface and removes it
5598 * from the kernel tables.
5599 *
5600 * This is just a wrapper for unregister_netdevice that takes
5601 * the rtnl semaphore. In general you want to use this and not
5602 * unregister_netdevice.
5603 */
5604 void unregister_netdev(struct net_device *dev)
5605 {
5606 rtnl_lock();
5607 unregister_netdevice(dev);
5608 rtnl_unlock();
5609 }
5610 EXPORT_SYMBOL(unregister_netdev);
5611
5612 /**
5613 * dev_change_net_namespace - move device to different nethost namespace
5614 * @dev: device
5615 * @net: network namespace
5616 * @pat: If not NULL name pattern to try if the current device name
5617 * is already taken in the destination network namespace.
5618 *
5619 * This function shuts down a device interface and moves it
5620 * to a new network namespace. On success 0 is returned, on
5621 * a failure a netagive errno code is returned.
5622 *
5623 * Callers must hold the rtnl semaphore.
5624 */
5625
5626 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5627 {
5628 int err;
5629
5630 ASSERT_RTNL();
5631
5632 /* Don't allow namespace local devices to be moved. */
5633 err = -EINVAL;
5634 if (dev->features & NETIF_F_NETNS_LOCAL)
5635 goto out;
5636
5637 #ifdef CONFIG_SYSFS
5638 /* Don't allow real devices to be moved when sysfs
5639 * is enabled.
5640 */
5641 err = -EINVAL;
5642 if (dev->dev.parent)
5643 goto out;
5644 #endif
5645
5646 /* Ensure the device has been registrered */
5647 err = -EINVAL;
5648 if (dev->reg_state != NETREG_REGISTERED)
5649 goto out;
5650
5651 /* Get out if there is nothing todo */
5652 err = 0;
5653 if (net_eq(dev_net(dev), net))
5654 goto out;
5655
5656 /* Pick the destination device name, and ensure
5657 * we can use it in the destination network namespace.
5658 */
5659 err = -EEXIST;
5660 if (__dev_get_by_name(net, dev->name)) {
5661 /* We get here if we can't use the current device name */
5662 if (!pat)
5663 goto out;
5664 if (dev_get_valid_name(net, pat, dev->name, 1))
5665 goto out;
5666 }
5667
5668 /*
5669 * And now a mini version of register_netdevice unregister_netdevice.
5670 */
5671
5672 /* If device is running close it first. */
5673 dev_close(dev);
5674
5675 /* And unlink it from device chain */
5676 err = -ENODEV;
5677 unlist_netdevice(dev);
5678
5679 synchronize_net();
5680
5681 /* Shutdown queueing discipline. */
5682 dev_shutdown(dev);
5683
5684 /* Notify protocols, that we are about to destroy
5685 this device. They should clean all the things.
5686 */
5687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5688 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5689
5690 /*
5691 * Flush the unicast and multicast chains
5692 */
5693 dev_unicast_flush(dev);
5694 dev_addr_discard(dev);
5695
5696 netdev_unregister_kobject(dev);
5697
5698 /* Actually switch the network namespace */
5699 dev_net_set(dev, net);
5700
5701 /* If there is an ifindex conflict assign a new one */
5702 if (__dev_get_by_index(net, dev->ifindex)) {
5703 int iflink = (dev->iflink == dev->ifindex);
5704 dev->ifindex = dev_new_index(net);
5705 if (iflink)
5706 dev->iflink = dev->ifindex;
5707 }
5708
5709 /* Fixup kobjects */
5710 err = netdev_register_kobject(dev);
5711 WARN_ON(err);
5712
5713 /* Add the device back in the hashes */
5714 list_netdevice(dev);
5715
5716 /* Notify protocols, that a new device appeared. */
5717 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5718
5719 /*
5720 * Prevent userspace races by waiting until the network
5721 * device is fully setup before sending notifications.
5722 */
5723 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5724
5725 synchronize_net();
5726 err = 0;
5727 out:
5728 return err;
5729 }
5730 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5731
5732 static int dev_cpu_callback(struct notifier_block *nfb,
5733 unsigned long action,
5734 void *ocpu)
5735 {
5736 struct sk_buff **list_skb;
5737 struct Qdisc **list_net;
5738 struct sk_buff *skb;
5739 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5740 struct softnet_data *sd, *oldsd;
5741
5742 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5743 return NOTIFY_OK;
5744
5745 local_irq_disable();
5746 cpu = smp_processor_id();
5747 sd = &per_cpu(softnet_data, cpu);
5748 oldsd = &per_cpu(softnet_data, oldcpu);
5749
5750 /* Find end of our completion_queue. */
5751 list_skb = &sd->completion_queue;
5752 while (*list_skb)
5753 list_skb = &(*list_skb)->next;
5754 /* Append completion queue from offline CPU. */
5755 *list_skb = oldsd->completion_queue;
5756 oldsd->completion_queue = NULL;
5757
5758 /* Find end of our output_queue. */
5759 list_net = &sd->output_queue;
5760 while (*list_net)
5761 list_net = &(*list_net)->next_sched;
5762 /* Append output queue from offline CPU. */
5763 *list_net = oldsd->output_queue;
5764 oldsd->output_queue = NULL;
5765
5766 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5767 local_irq_enable();
5768
5769 /* Process offline CPU's input_pkt_queue */
5770 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5771 netif_rx(skb);
5772
5773 return NOTIFY_OK;
5774 }
5775
5776
5777 /**
5778 * netdev_increment_features - increment feature set by one
5779 * @all: current feature set
5780 * @one: new feature set
5781 * @mask: mask feature set
5782 *
5783 * Computes a new feature set after adding a device with feature set
5784 * @one to the master device with current feature set @all. Will not
5785 * enable anything that is off in @mask. Returns the new feature set.
5786 */
5787 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5788 unsigned long mask)
5789 {
5790 /* If device needs checksumming, downgrade to it. */
5791 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5792 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5793 else if (mask & NETIF_F_ALL_CSUM) {
5794 /* If one device supports v4/v6 checksumming, set for all. */
5795 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5796 !(all & NETIF_F_GEN_CSUM)) {
5797 all &= ~NETIF_F_ALL_CSUM;
5798 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5799 }
5800
5801 /* If one device supports hw checksumming, set for all. */
5802 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5803 all &= ~NETIF_F_ALL_CSUM;
5804 all |= NETIF_F_HW_CSUM;
5805 }
5806 }
5807
5808 one |= NETIF_F_ALL_CSUM;
5809
5810 one |= all & NETIF_F_ONE_FOR_ALL;
5811 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5812 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5813
5814 return all;
5815 }
5816 EXPORT_SYMBOL(netdev_increment_features);
5817
5818 static struct hlist_head *netdev_create_hash(void)
5819 {
5820 int i;
5821 struct hlist_head *hash;
5822
5823 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5824 if (hash != NULL)
5825 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5826 INIT_HLIST_HEAD(&hash[i]);
5827
5828 return hash;
5829 }
5830
5831 /* Initialize per network namespace state */
5832 static int __net_init netdev_init(struct net *net)
5833 {
5834 INIT_LIST_HEAD(&net->dev_base_head);
5835
5836 net->dev_name_head = netdev_create_hash();
5837 if (net->dev_name_head == NULL)
5838 goto err_name;
5839
5840 net->dev_index_head = netdev_create_hash();
5841 if (net->dev_index_head == NULL)
5842 goto err_idx;
5843
5844 return 0;
5845
5846 err_idx:
5847 kfree(net->dev_name_head);
5848 err_name:
5849 return -ENOMEM;
5850 }
5851
5852 /**
5853 * netdev_drivername - network driver for the device
5854 * @dev: network device
5855 * @buffer: buffer for resulting name
5856 * @len: size of buffer
5857 *
5858 * Determine network driver for device.
5859 */
5860 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5861 {
5862 const struct device_driver *driver;
5863 const struct device *parent;
5864
5865 if (len <= 0 || !buffer)
5866 return buffer;
5867 buffer[0] = 0;
5868
5869 parent = dev->dev.parent;
5870
5871 if (!parent)
5872 return buffer;
5873
5874 driver = parent->driver;
5875 if (driver && driver->name)
5876 strlcpy(buffer, driver->name, len);
5877 return buffer;
5878 }
5879
5880 static void __net_exit netdev_exit(struct net *net)
5881 {
5882 kfree(net->dev_name_head);
5883 kfree(net->dev_index_head);
5884 }
5885
5886 static struct pernet_operations __net_initdata netdev_net_ops = {
5887 .init = netdev_init,
5888 .exit = netdev_exit,
5889 };
5890
5891 static void __net_exit default_device_exit(struct net *net)
5892 {
5893 struct net_device *dev, *aux;
5894 /*
5895 * Push all migratable network devices back to the
5896 * initial network namespace
5897 */
5898 rtnl_lock();
5899 for_each_netdev_safe(net, dev, aux) {
5900 int err;
5901 char fb_name[IFNAMSIZ];
5902
5903 /* Ignore unmoveable devices (i.e. loopback) */
5904 if (dev->features & NETIF_F_NETNS_LOCAL)
5905 continue;
5906
5907 /* Leave virtual devices for the generic cleanup */
5908 if (dev->rtnl_link_ops)
5909 continue;
5910
5911 /* Push remaing network devices to init_net */
5912 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5913 err = dev_change_net_namespace(dev, &init_net, fb_name);
5914 if (err) {
5915 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5916 __func__, dev->name, err);
5917 BUG();
5918 }
5919 }
5920 rtnl_unlock();
5921 }
5922
5923 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5924 {
5925 /* At exit all network devices most be removed from a network
5926 * namespace. Do this in the reverse order of registeration.
5927 * Do this across as many network namespaces as possible to
5928 * improve batching efficiency.
5929 */
5930 struct net_device *dev;
5931 struct net *net;
5932 LIST_HEAD(dev_kill_list);
5933
5934 rtnl_lock();
5935 list_for_each_entry(net, net_list, exit_list) {
5936 for_each_netdev_reverse(net, dev) {
5937 if (dev->rtnl_link_ops)
5938 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5939 else
5940 unregister_netdevice_queue(dev, &dev_kill_list);
5941 }
5942 }
5943 unregister_netdevice_many(&dev_kill_list);
5944 rtnl_unlock();
5945 }
5946
5947 static struct pernet_operations __net_initdata default_device_ops = {
5948 .exit = default_device_exit,
5949 .exit_batch = default_device_exit_batch,
5950 };
5951
5952 /*
5953 * Initialize the DEV module. At boot time this walks the device list and
5954 * unhooks any devices that fail to initialise (normally hardware not
5955 * present) and leaves us with a valid list of present and active devices.
5956 *
5957 */
5958
5959 /*
5960 * This is called single threaded during boot, so no need
5961 * to take the rtnl semaphore.
5962 */
5963 static int __init net_dev_init(void)
5964 {
5965 int i, rc = -ENOMEM;
5966
5967 BUG_ON(!dev_boot_phase);
5968
5969 if (dev_proc_init())
5970 goto out;
5971
5972 if (netdev_kobject_init())
5973 goto out;
5974
5975 INIT_LIST_HEAD(&ptype_all);
5976 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5977 INIT_LIST_HEAD(&ptype_base[i]);
5978
5979 if (register_pernet_subsys(&netdev_net_ops))
5980 goto out;
5981
5982 /*
5983 * Initialise the packet receive queues.
5984 */
5985
5986 for_each_possible_cpu(i) {
5987 struct softnet_data *queue;
5988
5989 queue = &per_cpu(softnet_data, i);
5990 skb_queue_head_init(&queue->input_pkt_queue);
5991 queue->completion_queue = NULL;
5992 INIT_LIST_HEAD(&queue->poll_list);
5993
5994 queue->backlog.poll = process_backlog;
5995 queue->backlog.weight = weight_p;
5996 queue->backlog.gro_list = NULL;
5997 queue->backlog.gro_count = 0;
5998 }
5999
6000 dev_boot_phase = 0;
6001
6002 /* The loopback device is special if any other network devices
6003 * is present in a network namespace the loopback device must
6004 * be present. Since we now dynamically allocate and free the
6005 * loopback device ensure this invariant is maintained by
6006 * keeping the loopback device as the first device on the
6007 * list of network devices. Ensuring the loopback devices
6008 * is the first device that appears and the last network device
6009 * that disappears.
6010 */
6011 if (register_pernet_device(&loopback_net_ops))
6012 goto out;
6013
6014 if (register_pernet_device(&default_device_ops))
6015 goto out;
6016
6017 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6018 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6019
6020 hotcpu_notifier(dev_cpu_callback, 0);
6021 dst_init();
6022 dev_mcast_init();
6023 rc = 0;
6024 out:
6025 return rc;
6026 }
6027
6028 subsys_initcall(net_dev_init);
6029
6030 static int __init initialize_hashrnd(void)
6031 {
6032 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6033 return 0;
6034 }
6035
6036 late_initcall_sync(initialize_hashrnd);
6037
This page took 0.282955 seconds and 6 git commands to generate.