Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959 {
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 ret = device_rename(&dev->dev, dev->name);
1006 if (ret) {
1007 memcpy(dev->name, oldname, IFNAMSIZ);
1008 return ret;
1009 }
1010
1011 write_lock_bh(&dev_base_lock);
1012 hlist_del(&dev->name_hlist);
1013 write_unlock_bh(&dev_base_lock);
1014
1015 synchronize_rcu();
1016
1017 write_lock_bh(&dev_base_lock);
1018 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1019 write_unlock_bh(&dev_base_lock);
1020
1021 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1022 ret = notifier_to_errno(ret);
1023
1024 if (ret) {
1025 /* err >= 0 after dev_alloc_name() or stores the first errno */
1026 if (err >= 0) {
1027 err = ret;
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 goto rollback;
1030 } else {
1031 printk(KERN_ERR
1032 "%s: name change rollback failed: %d.\n",
1033 dev->name, ret);
1034 }
1035 }
1036
1037 return err;
1038 }
1039
1040 /**
1041 * dev_set_alias - change ifalias of a device
1042 * @dev: device
1043 * @alias: name up to IFALIASZ
1044 * @len: limit of bytes to copy from info
1045 *
1046 * Set ifalias for a device,
1047 */
1048 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1049 {
1050 ASSERT_RTNL();
1051
1052 if (len >= IFALIASZ)
1053 return -EINVAL;
1054
1055 if (!len) {
1056 if (dev->ifalias) {
1057 kfree(dev->ifalias);
1058 dev->ifalias = NULL;
1059 }
1060 return 0;
1061 }
1062
1063 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1064 if (!dev->ifalias)
1065 return -ENOMEM;
1066
1067 strlcpy(dev->ifalias, alias, len+1);
1068 return len;
1069 }
1070
1071
1072 /**
1073 * netdev_features_change - device changes features
1074 * @dev: device to cause notification
1075 *
1076 * Called to indicate a device has changed features.
1077 */
1078 void netdev_features_change(struct net_device *dev)
1079 {
1080 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1081 }
1082 EXPORT_SYMBOL(netdev_features_change);
1083
1084 /**
1085 * netdev_state_change - device changes state
1086 * @dev: device to cause notification
1087 *
1088 * Called to indicate a device has changed state. This function calls
1089 * the notifier chains for netdev_chain and sends a NEWLINK message
1090 * to the routing socket.
1091 */
1092 void netdev_state_change(struct net_device *dev)
1093 {
1094 if (dev->flags & IFF_UP) {
1095 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1096 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1097 }
1098 }
1099 EXPORT_SYMBOL(netdev_state_change);
1100
1101 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1102 {
1103 return call_netdevice_notifiers(event, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_bonding_change);
1106
1107 /**
1108 * dev_load - load a network module
1109 * @net: the applicable net namespace
1110 * @name: name of interface
1111 *
1112 * If a network interface is not present and the process has suitable
1113 * privileges this function loads the module. If module loading is not
1114 * available in this kernel then it becomes a nop.
1115 */
1116
1117 void dev_load(struct net *net, const char *name)
1118 {
1119 struct net_device *dev;
1120
1121 rcu_read_lock();
1122 dev = dev_get_by_name_rcu(net, name);
1123 rcu_read_unlock();
1124
1125 if (!dev && capable(CAP_NET_ADMIN))
1126 request_module("%s", name);
1127 }
1128 EXPORT_SYMBOL(dev_load);
1129
1130 static int __dev_open(struct net_device *dev)
1131 {
1132 const struct net_device_ops *ops = dev->netdev_ops;
1133 int ret;
1134
1135 ASSERT_RTNL();
1136
1137 /*
1138 * Is it even present?
1139 */
1140 if (!netif_device_present(dev))
1141 return -ENODEV;
1142
1143 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1144 ret = notifier_to_errno(ret);
1145 if (ret)
1146 return ret;
1147
1148 /*
1149 * Call device private open method
1150 */
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 /*
1160 * If it went open OK then:
1161 */
1162
1163 if (ret)
1164 clear_bit(__LINK_STATE_START, &dev->state);
1165 else {
1166 /*
1167 * Set the flags.
1168 */
1169 dev->flags |= IFF_UP;
1170
1171 /*
1172 * Enable NET_DMA
1173 */
1174 net_dmaengine_get();
1175
1176 /*
1177 * Initialize multicasting status
1178 */
1179 dev_set_rx_mode(dev);
1180
1181 /*
1182 * Wakeup transmit queue engine
1183 */
1184 dev_activate(dev);
1185 }
1186
1187 return ret;
1188 }
1189
1190 /**
1191 * dev_open - prepare an interface for use.
1192 * @dev: device to open
1193 *
1194 * Takes a device from down to up state. The device's private open
1195 * function is invoked and then the multicast lists are loaded. Finally
1196 * the device is moved into the up state and a %NETDEV_UP message is
1197 * sent to the netdev notifier chain.
1198 *
1199 * Calling this function on an active interface is a nop. On a failure
1200 * a negative errno code is returned.
1201 */
1202 int dev_open(struct net_device *dev)
1203 {
1204 int ret;
1205
1206 /*
1207 * Is it already up?
1208 */
1209 if (dev->flags & IFF_UP)
1210 return 0;
1211
1212 /*
1213 * Open device
1214 */
1215 ret = __dev_open(dev);
1216 if (ret < 0)
1217 return ret;
1218
1219 /*
1220 * ... and announce new interface.
1221 */
1222 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1223 call_netdevice_notifiers(NETDEV_UP, dev);
1224
1225 return ret;
1226 }
1227 EXPORT_SYMBOL(dev_open);
1228
1229 static int __dev_close(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232
1233 ASSERT_RTNL();
1234 might_sleep();
1235
1236 /*
1237 * Tell people we are going down, so that they can
1238 * prepare to death, when device is still operating.
1239 */
1240 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1241
1242 clear_bit(__LINK_STATE_START, &dev->state);
1243
1244 /* Synchronize to scheduled poll. We cannot touch poll list,
1245 * it can be even on different cpu. So just clear netif_running().
1246 *
1247 * dev->stop() will invoke napi_disable() on all of it's
1248 * napi_struct instances on this device.
1249 */
1250 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1251
1252 dev_deactivate(dev);
1253
1254 /*
1255 * Call the device specific close. This cannot fail.
1256 * Only if device is UP
1257 *
1258 * We allow it to be called even after a DETACH hot-plug
1259 * event.
1260 */
1261 if (ops->ndo_stop)
1262 ops->ndo_stop(dev);
1263
1264 /*
1265 * Device is now down.
1266 */
1267
1268 dev->flags &= ~IFF_UP;
1269
1270 /*
1271 * Shutdown NET_DMA
1272 */
1273 net_dmaengine_put();
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * dev_close - shutdown an interface.
1280 * @dev: device to shutdown
1281 *
1282 * This function moves an active device into down state. A
1283 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1284 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1285 * chain.
1286 */
1287 int dev_close(struct net_device *dev)
1288 {
1289 if (!(dev->flags & IFF_UP))
1290 return 0;
1291
1292 __dev_close(dev);
1293
1294 /*
1295 * Tell people we are down
1296 */
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1298 call_netdevice_notifiers(NETDEV_DOWN, dev);
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL(dev_close);
1303
1304
1305 /**
1306 * dev_disable_lro - disable Large Receive Offload on a device
1307 * @dev: device
1308 *
1309 * Disable Large Receive Offload (LRO) on a net device. Must be
1310 * called under RTNL. This is needed if received packets may be
1311 * forwarded to another interface.
1312 */
1313 void dev_disable_lro(struct net_device *dev)
1314 {
1315 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1316 dev->ethtool_ops->set_flags) {
1317 u32 flags = dev->ethtool_ops->get_flags(dev);
1318 if (flags & ETH_FLAG_LRO) {
1319 flags &= ~ETH_FLAG_LRO;
1320 dev->ethtool_ops->set_flags(dev, flags);
1321 }
1322 }
1323 WARN_ON(dev->features & NETIF_F_LRO);
1324 }
1325 EXPORT_SYMBOL(dev_disable_lro);
1326
1327
1328 static int dev_boot_phase = 1;
1329
1330 /*
1331 * Device change register/unregister. These are not inline or static
1332 * as we export them to the world.
1333 */
1334
1335 /**
1336 * register_netdevice_notifier - register a network notifier block
1337 * @nb: notifier
1338 *
1339 * Register a notifier to be called when network device events occur.
1340 * The notifier passed is linked into the kernel structures and must
1341 * not be reused until it has been unregistered. A negative errno code
1342 * is returned on a failure.
1343 *
1344 * When registered all registration and up events are replayed
1345 * to the new notifier to allow device to have a race free
1346 * view of the network device list.
1347 */
1348
1349 int register_netdevice_notifier(struct notifier_block *nb)
1350 {
1351 struct net_device *dev;
1352 struct net_device *last;
1353 struct net *net;
1354 int err;
1355
1356 rtnl_lock();
1357 err = raw_notifier_chain_register(&netdev_chain, nb);
1358 if (err)
1359 goto unlock;
1360 if (dev_boot_phase)
1361 goto unlock;
1362 for_each_net(net) {
1363 for_each_netdev(net, dev) {
1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1365 err = notifier_to_errno(err);
1366 if (err)
1367 goto rollback;
1368
1369 if (!(dev->flags & IFF_UP))
1370 continue;
1371
1372 nb->notifier_call(nb, NETDEV_UP, dev);
1373 }
1374 }
1375
1376 unlock:
1377 rtnl_unlock();
1378 return err;
1379
1380 rollback:
1381 last = dev;
1382 for_each_net(net) {
1383 for_each_netdev(net, dev) {
1384 if (dev == last)
1385 break;
1386
1387 if (dev->flags & IFF_UP) {
1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_DOWN, dev);
1390 }
1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1393 }
1394 }
1395
1396 raw_notifier_chain_unregister(&netdev_chain, nb);
1397 goto unlock;
1398 }
1399 EXPORT_SYMBOL(register_netdevice_notifier);
1400
1401 /**
1402 * unregister_netdevice_notifier - unregister a network notifier block
1403 * @nb: notifier
1404 *
1405 * Unregister a notifier previously registered by
1406 * register_netdevice_notifier(). The notifier is unlinked into the
1407 * kernel structures and may then be reused. A negative errno code
1408 * is returned on a failure.
1409 */
1410
1411 int unregister_netdevice_notifier(struct notifier_block *nb)
1412 {
1413 int err;
1414
1415 rtnl_lock();
1416 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1417 rtnl_unlock();
1418 return err;
1419 }
1420 EXPORT_SYMBOL(unregister_netdevice_notifier);
1421
1422 /**
1423 * call_netdevice_notifiers - call all network notifier blocks
1424 * @val: value passed unmodified to notifier function
1425 * @dev: net_device pointer passed unmodified to notifier function
1426 *
1427 * Call all network notifier blocks. Parameters and return value
1428 * are as for raw_notifier_call_chain().
1429 */
1430
1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1432 {
1433 ASSERT_RTNL();
1434 return raw_notifier_call_chain(&netdev_chain, val, dev);
1435 }
1436
1437 /* When > 0 there are consumers of rx skb time stamps */
1438 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1439
1440 void net_enable_timestamp(void)
1441 {
1442 atomic_inc(&netstamp_needed);
1443 }
1444 EXPORT_SYMBOL(net_enable_timestamp);
1445
1446 void net_disable_timestamp(void)
1447 {
1448 atomic_dec(&netstamp_needed);
1449 }
1450 EXPORT_SYMBOL(net_disable_timestamp);
1451
1452 static inline void net_timestamp_set(struct sk_buff *skb)
1453 {
1454 if (atomic_read(&netstamp_needed))
1455 __net_timestamp(skb);
1456 else
1457 skb->tstamp.tv64 = 0;
1458 }
1459
1460 static inline void net_timestamp_check(struct sk_buff *skb)
1461 {
1462 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1463 __net_timestamp(skb);
1464 }
1465
1466 /**
1467 * dev_forward_skb - loopback an skb to another netif
1468 *
1469 * @dev: destination network device
1470 * @skb: buffer to forward
1471 *
1472 * return values:
1473 * NET_RX_SUCCESS (no congestion)
1474 * NET_RX_DROP (packet was dropped, but freed)
1475 *
1476 * dev_forward_skb can be used for injecting an skb from the
1477 * start_xmit function of one device into the receive queue
1478 * of another device.
1479 *
1480 * The receiving device may be in another namespace, so
1481 * we have to clear all information in the skb that could
1482 * impact namespace isolation.
1483 */
1484 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1485 {
1486 skb_orphan(skb);
1487
1488 if (!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len))) {
1490 kfree_skb(skb);
1491 return NET_RX_DROP;
1492 }
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1498 }
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1500
1501 /*
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1504 */
1505
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 {
1508 struct packet_type *ptype;
1509
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp_set(skb);
1513 #else
1514 net_timestamp_set(skb);
1515 #endif
1516
1517 rcu_read_lock();
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1520 * they originated from - MvS (miquels@drinkel.ow.org)
1521 */
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1526 if (!skb2)
1527 break;
1528
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1532 */
1533 skb_reset_mac_header(skb2);
1534
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1539 "buggy, dev %s\n",
1540 skb2->protocol, dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550 }
1551
1552
1553 static inline void __netif_reschedule(struct Qdisc *q)
1554 {
1555 struct softnet_data *sd;
1556 unsigned long flags;
1557
1558 local_irq_save(flags);
1559 sd = &__get_cpu_var(softnet_data);
1560 q->next_sched = NULL;
1561 *sd->output_queue_tailp = q;
1562 sd->output_queue_tailp = &q->next_sched;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
1566
1567 void __netif_schedule(struct Qdisc *q)
1568 {
1569 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1570 __netif_reschedule(q);
1571 }
1572 EXPORT_SYMBOL(__netif_schedule);
1573
1574 void dev_kfree_skb_irq(struct sk_buff *skb)
1575 {
1576 if (atomic_dec_and_test(&skb->users)) {
1577 struct softnet_data *sd;
1578 unsigned long flags;
1579
1580 local_irq_save(flags);
1581 sd = &__get_cpu_var(softnet_data);
1582 skb->next = sd->completion_queue;
1583 sd->completion_queue = skb;
1584 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1585 local_irq_restore(flags);
1586 }
1587 }
1588 EXPORT_SYMBOL(dev_kfree_skb_irq);
1589
1590 void dev_kfree_skb_any(struct sk_buff *skb)
1591 {
1592 if (in_irq() || irqs_disabled())
1593 dev_kfree_skb_irq(skb);
1594 else
1595 dev_kfree_skb(skb);
1596 }
1597 EXPORT_SYMBOL(dev_kfree_skb_any);
1598
1599
1600 /**
1601 * netif_device_detach - mark device as removed
1602 * @dev: network device
1603 *
1604 * Mark device as removed from system and therefore no longer available.
1605 */
1606 void netif_device_detach(struct net_device *dev)
1607 {
1608 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1609 netif_running(dev)) {
1610 netif_tx_stop_all_queues(dev);
1611 }
1612 }
1613 EXPORT_SYMBOL(netif_device_detach);
1614
1615 /**
1616 * netif_device_attach - mark device as attached
1617 * @dev: network device
1618 *
1619 * Mark device as attached from system and restart if needed.
1620 */
1621 void netif_device_attach(struct net_device *dev)
1622 {
1623 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1624 netif_running(dev)) {
1625 netif_tx_wake_all_queues(dev);
1626 __netdev_watchdog_up(dev);
1627 }
1628 }
1629 EXPORT_SYMBOL(netif_device_attach);
1630
1631 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1632 {
1633 return ((features & NETIF_F_GEN_CSUM) ||
1634 ((features & NETIF_F_IP_CSUM) &&
1635 protocol == htons(ETH_P_IP)) ||
1636 ((features & NETIF_F_IPV6_CSUM) &&
1637 protocol == htons(ETH_P_IPV6)) ||
1638 ((features & NETIF_F_FCOE_CRC) &&
1639 protocol == htons(ETH_P_FCOE)));
1640 }
1641
1642 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1643 {
1644 if (can_checksum_protocol(dev->features, skb->protocol))
1645 return true;
1646
1647 if (skb->protocol == htons(ETH_P_8021Q)) {
1648 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1649 if (can_checksum_protocol(dev->features & dev->vlan_features,
1650 veh->h_vlan_encapsulated_proto))
1651 return true;
1652 }
1653
1654 return false;
1655 }
1656
1657 /**
1658 * skb_dev_set -- assign a new device to a buffer
1659 * @skb: buffer for the new device
1660 * @dev: network device
1661 *
1662 * If an skb is owned by a device already, we have to reset
1663 * all data private to the namespace a device belongs to
1664 * before assigning it a new device.
1665 */
1666 #ifdef CONFIG_NET_NS
1667 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1668 {
1669 skb_dst_drop(skb);
1670 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1671 secpath_reset(skb);
1672 nf_reset(skb);
1673 skb_init_secmark(skb);
1674 skb->mark = 0;
1675 skb->priority = 0;
1676 skb->nf_trace = 0;
1677 skb->ipvs_property = 0;
1678 #ifdef CONFIG_NET_SCHED
1679 skb->tc_index = 0;
1680 #endif
1681 }
1682 skb->dev = dev;
1683 }
1684 EXPORT_SYMBOL(skb_set_dev);
1685 #endif /* CONFIG_NET_NS */
1686
1687 /*
1688 * Invalidate hardware checksum when packet is to be mangled, and
1689 * complete checksum manually on outgoing path.
1690 */
1691 int skb_checksum_help(struct sk_buff *skb)
1692 {
1693 __wsum csum;
1694 int ret = 0, offset;
1695
1696 if (skb->ip_summed == CHECKSUM_COMPLETE)
1697 goto out_set_summed;
1698
1699 if (unlikely(skb_shinfo(skb)->gso_size)) {
1700 /* Let GSO fix up the checksum. */
1701 goto out_set_summed;
1702 }
1703
1704 offset = skb->csum_start - skb_headroom(skb);
1705 BUG_ON(offset >= skb_headlen(skb));
1706 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1707
1708 offset += skb->csum_offset;
1709 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1710
1711 if (skb_cloned(skb) &&
1712 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1713 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1714 if (ret)
1715 goto out;
1716 }
1717
1718 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1719 out_set_summed:
1720 skb->ip_summed = CHECKSUM_NONE;
1721 out:
1722 return ret;
1723 }
1724 EXPORT_SYMBOL(skb_checksum_help);
1725
1726 /**
1727 * skb_gso_segment - Perform segmentation on skb.
1728 * @skb: buffer to segment
1729 * @features: features for the output path (see dev->features)
1730 *
1731 * This function segments the given skb and returns a list of segments.
1732 *
1733 * It may return NULL if the skb requires no segmentation. This is
1734 * only possible when GSO is used for verifying header integrity.
1735 */
1736 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1737 {
1738 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1739 struct packet_type *ptype;
1740 __be16 type = skb->protocol;
1741 int err;
1742
1743 skb_reset_mac_header(skb);
1744 skb->mac_len = skb->network_header - skb->mac_header;
1745 __skb_pull(skb, skb->mac_len);
1746
1747 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1748 struct net_device *dev = skb->dev;
1749 struct ethtool_drvinfo info = {};
1750
1751 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1752 dev->ethtool_ops->get_drvinfo(dev, &info);
1753
1754 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1755 "ip_summed=%d",
1756 info.driver, dev ? dev->features : 0L,
1757 skb->sk ? skb->sk->sk_route_caps : 0L,
1758 skb->len, skb->data_len, skb->ip_summed);
1759
1760 if (skb_header_cloned(skb) &&
1761 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1762 return ERR_PTR(err);
1763 }
1764
1765 rcu_read_lock();
1766 list_for_each_entry_rcu(ptype,
1767 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1768 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1770 err = ptype->gso_send_check(skb);
1771 segs = ERR_PTR(err);
1772 if (err || skb_gso_ok(skb, features))
1773 break;
1774 __skb_push(skb, (skb->data -
1775 skb_network_header(skb)));
1776 }
1777 segs = ptype->gso_segment(skb, features);
1778 break;
1779 }
1780 }
1781 rcu_read_unlock();
1782
1783 __skb_push(skb, skb->data - skb_mac_header(skb));
1784
1785 return segs;
1786 }
1787 EXPORT_SYMBOL(skb_gso_segment);
1788
1789 /* Take action when hardware reception checksum errors are detected. */
1790 #ifdef CONFIG_BUG
1791 void netdev_rx_csum_fault(struct net_device *dev)
1792 {
1793 if (net_ratelimit()) {
1794 printk(KERN_ERR "%s: hw csum failure.\n",
1795 dev ? dev->name : "<unknown>");
1796 dump_stack();
1797 }
1798 }
1799 EXPORT_SYMBOL(netdev_rx_csum_fault);
1800 #endif
1801
1802 /* Actually, we should eliminate this check as soon as we know, that:
1803 * 1. IOMMU is present and allows to map all the memory.
1804 * 2. No high memory really exists on this machine.
1805 */
1806
1807 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1808 {
1809 #ifdef CONFIG_HIGHMEM
1810 int i;
1811 if (!(dev->features & NETIF_F_HIGHDMA)) {
1812 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1813 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1814 return 1;
1815 }
1816
1817 if (PCI_DMA_BUS_IS_PHYS) {
1818 struct device *pdev = dev->dev.parent;
1819
1820 if (!pdev)
1821 return 0;
1822 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1823 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1824 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1825 return 1;
1826 }
1827 }
1828 #endif
1829 return 0;
1830 }
1831
1832 struct dev_gso_cb {
1833 void (*destructor)(struct sk_buff *skb);
1834 };
1835
1836 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1837
1838 static void dev_gso_skb_destructor(struct sk_buff *skb)
1839 {
1840 struct dev_gso_cb *cb;
1841
1842 do {
1843 struct sk_buff *nskb = skb->next;
1844
1845 skb->next = nskb->next;
1846 nskb->next = NULL;
1847 kfree_skb(nskb);
1848 } while (skb->next);
1849
1850 cb = DEV_GSO_CB(skb);
1851 if (cb->destructor)
1852 cb->destructor(skb);
1853 }
1854
1855 /**
1856 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1857 * @skb: buffer to segment
1858 *
1859 * This function segments the given skb and stores the list of segments
1860 * in skb->next.
1861 */
1862 static int dev_gso_segment(struct sk_buff *skb)
1863 {
1864 struct net_device *dev = skb->dev;
1865 struct sk_buff *segs;
1866 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1867 NETIF_F_SG : 0);
1868
1869 segs = skb_gso_segment(skb, features);
1870
1871 /* Verifying header integrity only. */
1872 if (!segs)
1873 return 0;
1874
1875 if (IS_ERR(segs))
1876 return PTR_ERR(segs);
1877
1878 skb->next = segs;
1879 DEV_GSO_CB(skb)->destructor = skb->destructor;
1880 skb->destructor = dev_gso_skb_destructor;
1881
1882 return 0;
1883 }
1884
1885 /*
1886 * Try to orphan skb early, right before transmission by the device.
1887 * We cannot orphan skb if tx timestamp is requested, since
1888 * drivers need to call skb_tstamp_tx() to send the timestamp.
1889 */
1890 static inline void skb_orphan_try(struct sk_buff *skb)
1891 {
1892 if (!skb_tx(skb)->flags)
1893 skb_orphan(skb);
1894 }
1895
1896 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1897 struct netdev_queue *txq)
1898 {
1899 const struct net_device_ops *ops = dev->netdev_ops;
1900 int rc = NETDEV_TX_OK;
1901
1902 if (likely(!skb->next)) {
1903 if (!list_empty(&ptype_all))
1904 dev_queue_xmit_nit(skb, dev);
1905
1906 /*
1907 * If device doesnt need skb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(skb);
1912
1913 skb_orphan_try(skb);
1914
1915 if (netif_needs_gso(dev, skb)) {
1916 if (unlikely(dev_gso_segment(skb)))
1917 goto out_kfree_skb;
1918 if (skb->next)
1919 goto gso;
1920 }
1921
1922 rc = ops->ndo_start_xmit(skb, dev);
1923 if (rc == NETDEV_TX_OK)
1924 txq_trans_update(txq);
1925 return rc;
1926 }
1927
1928 gso:
1929 do {
1930 struct sk_buff *nskb = skb->next;
1931
1932 skb->next = nskb->next;
1933 nskb->next = NULL;
1934
1935 /*
1936 * If device doesnt need nskb->dst, release it right now while
1937 * its hot in this cpu cache
1938 */
1939 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1940 skb_dst_drop(nskb);
1941
1942 rc = ops->ndo_start_xmit(nskb, dev);
1943 if (unlikely(rc != NETDEV_TX_OK)) {
1944 if (rc & ~NETDEV_TX_MASK)
1945 goto out_kfree_gso_skb;
1946 nskb->next = skb->next;
1947 skb->next = nskb;
1948 return rc;
1949 }
1950 txq_trans_update(txq);
1951 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1952 return NETDEV_TX_BUSY;
1953 } while (skb->next);
1954
1955 out_kfree_gso_skb:
1956 if (likely(skb->next == NULL))
1957 skb->destructor = DEV_GSO_CB(skb)->destructor;
1958 out_kfree_skb:
1959 kfree_skb(skb);
1960 return rc;
1961 }
1962
1963 static u32 hashrnd __read_mostly;
1964
1965 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1966 {
1967 u32 hash;
1968
1969 if (skb_rx_queue_recorded(skb)) {
1970 hash = skb_get_rx_queue(skb);
1971 while (unlikely(hash >= dev->real_num_tx_queues))
1972 hash -= dev->real_num_tx_queues;
1973 return hash;
1974 }
1975
1976 if (skb->sk && skb->sk->sk_hash)
1977 hash = skb->sk->sk_hash;
1978 else
1979 hash = (__force u16) skb->protocol;
1980
1981 hash = jhash_1word(hash, hashrnd);
1982
1983 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1984 }
1985 EXPORT_SYMBOL(skb_tx_hash);
1986
1987 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1988 {
1989 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1990 if (net_ratelimit()) {
1991 pr_warning("%s selects TX queue %d, but "
1992 "real number of TX queues is %d\n",
1993 dev->name, queue_index, dev->real_num_tx_queues);
1994 }
1995 return 0;
1996 }
1997 return queue_index;
1998 }
1999
2000 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2001 struct sk_buff *skb)
2002 {
2003 u16 queue_index;
2004 struct sock *sk = skb->sk;
2005
2006 if (sk_tx_queue_recorded(sk)) {
2007 queue_index = sk_tx_queue_get(sk);
2008 } else {
2009 const struct net_device_ops *ops = dev->netdev_ops;
2010
2011 if (ops->ndo_select_queue) {
2012 queue_index = ops->ndo_select_queue(dev, skb);
2013 queue_index = dev_cap_txqueue(dev, queue_index);
2014 } else {
2015 queue_index = 0;
2016 if (dev->real_num_tx_queues > 1)
2017 queue_index = skb_tx_hash(dev, skb);
2018
2019 if (sk) {
2020 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2021
2022 if (dst && skb_dst(skb) == dst)
2023 sk_tx_queue_set(sk, queue_index);
2024 }
2025 }
2026 }
2027
2028 skb_set_queue_mapping(skb, queue_index);
2029 return netdev_get_tx_queue(dev, queue_index);
2030 }
2031
2032 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2033 struct net_device *dev,
2034 struct netdev_queue *txq)
2035 {
2036 spinlock_t *root_lock = qdisc_lock(q);
2037 int rc;
2038
2039 spin_lock(root_lock);
2040 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2041 kfree_skb(skb);
2042 rc = NET_XMIT_DROP;
2043 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2044 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2045 /*
2046 * This is a work-conserving queue; there are no old skbs
2047 * waiting to be sent out; and the qdisc is not running -
2048 * xmit the skb directly.
2049 */
2050 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2051 skb_dst_force(skb);
2052 __qdisc_update_bstats(q, skb->len);
2053 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2054 __qdisc_run(q);
2055 else
2056 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2057
2058 rc = NET_XMIT_SUCCESS;
2059 } else {
2060 skb_dst_force(skb);
2061 rc = qdisc_enqueue_root(skb, q);
2062 qdisc_run(q);
2063 }
2064 spin_unlock(root_lock);
2065
2066 return rc;
2067 }
2068
2069 /*
2070 * Returns true if either:
2071 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2072 * 2. skb is fragmented and the device does not support SG, or if
2073 * at least one of fragments is in highmem and device does not
2074 * support DMA from it.
2075 */
2076 static inline int skb_needs_linearize(struct sk_buff *skb,
2077 struct net_device *dev)
2078 {
2079 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2080 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2081 illegal_highdma(dev, skb)));
2082 }
2083
2084 /**
2085 * dev_queue_xmit - transmit a buffer
2086 * @skb: buffer to transmit
2087 *
2088 * Queue a buffer for transmission to a network device. The caller must
2089 * have set the device and priority and built the buffer before calling
2090 * this function. The function can be called from an interrupt.
2091 *
2092 * A negative errno code is returned on a failure. A success does not
2093 * guarantee the frame will be transmitted as it may be dropped due
2094 * to congestion or traffic shaping.
2095 *
2096 * -----------------------------------------------------------------------------------
2097 * I notice this method can also return errors from the queue disciplines,
2098 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2099 * be positive.
2100 *
2101 * Regardless of the return value, the skb is consumed, so it is currently
2102 * difficult to retry a send to this method. (You can bump the ref count
2103 * before sending to hold a reference for retry if you are careful.)
2104 *
2105 * When calling this method, interrupts MUST be enabled. This is because
2106 * the BH enable code must have IRQs enabled so that it will not deadlock.
2107 * --BLG
2108 */
2109 int dev_queue_xmit(struct sk_buff *skb)
2110 {
2111 struct net_device *dev = skb->dev;
2112 struct netdev_queue *txq;
2113 struct Qdisc *q;
2114 int rc = -ENOMEM;
2115
2116 /* GSO will handle the following emulations directly. */
2117 if (netif_needs_gso(dev, skb))
2118 goto gso;
2119
2120 /* Convert a paged skb to linear, if required */
2121 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2122 goto out_kfree_skb;
2123
2124 /* If packet is not checksummed and device does not support
2125 * checksumming for this protocol, complete checksumming here.
2126 */
2127 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2128 skb_set_transport_header(skb, skb->csum_start -
2129 skb_headroom(skb));
2130 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2131 goto out_kfree_skb;
2132 }
2133
2134 gso:
2135 /* Disable soft irqs for various locks below. Also
2136 * stops preemption for RCU.
2137 */
2138 rcu_read_lock_bh();
2139
2140 txq = dev_pick_tx(dev, skb);
2141 q = rcu_dereference_bh(txq->qdisc);
2142
2143 #ifdef CONFIG_NET_CLS_ACT
2144 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2145 #endif
2146 if (q->enqueue) {
2147 rc = __dev_xmit_skb(skb, q, dev, txq);
2148 goto out;
2149 }
2150
2151 /* The device has no queue. Common case for software devices:
2152 loopback, all the sorts of tunnels...
2153
2154 Really, it is unlikely that netif_tx_lock protection is necessary
2155 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2156 counters.)
2157 However, it is possible, that they rely on protection
2158 made by us here.
2159
2160 Check this and shot the lock. It is not prone from deadlocks.
2161 Either shot noqueue qdisc, it is even simpler 8)
2162 */
2163 if (dev->flags & IFF_UP) {
2164 int cpu = smp_processor_id(); /* ok because BHs are off */
2165
2166 if (txq->xmit_lock_owner != cpu) {
2167
2168 HARD_TX_LOCK(dev, txq, cpu);
2169
2170 if (!netif_tx_queue_stopped(txq)) {
2171 rc = dev_hard_start_xmit(skb, dev, txq);
2172 if (dev_xmit_complete(rc)) {
2173 HARD_TX_UNLOCK(dev, txq);
2174 goto out;
2175 }
2176 }
2177 HARD_TX_UNLOCK(dev, txq);
2178 if (net_ratelimit())
2179 printk(KERN_CRIT "Virtual device %s asks to "
2180 "queue packet!\n", dev->name);
2181 } else {
2182 /* Recursion is detected! It is possible,
2183 * unfortunately */
2184 if (net_ratelimit())
2185 printk(KERN_CRIT "Dead loop on virtual device "
2186 "%s, fix it urgently!\n", dev->name);
2187 }
2188 }
2189
2190 rc = -ENETDOWN;
2191 rcu_read_unlock_bh();
2192
2193 out_kfree_skb:
2194 kfree_skb(skb);
2195 return rc;
2196 out:
2197 rcu_read_unlock_bh();
2198 return rc;
2199 }
2200 EXPORT_SYMBOL(dev_queue_xmit);
2201
2202
2203 /*=======================================================================
2204 Receiver routines
2205 =======================================================================*/
2206
2207 int netdev_max_backlog __read_mostly = 1000;
2208 int netdev_tstamp_prequeue __read_mostly = 1;
2209 int netdev_budget __read_mostly = 300;
2210 int weight_p __read_mostly = 64; /* old backlog weight */
2211
2212 /* Called with irq disabled */
2213 static inline void ____napi_schedule(struct softnet_data *sd,
2214 struct napi_struct *napi)
2215 {
2216 list_add_tail(&napi->poll_list, &sd->poll_list);
2217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2218 }
2219
2220 #ifdef CONFIG_RPS
2221
2222 /* One global table that all flow-based protocols share. */
2223 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2224 EXPORT_SYMBOL(rps_sock_flow_table);
2225
2226 /*
2227 * get_rps_cpu is called from netif_receive_skb and returns the target
2228 * CPU from the RPS map of the receiving queue for a given skb.
2229 * rcu_read_lock must be held on entry.
2230 */
2231 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2232 struct rps_dev_flow **rflowp)
2233 {
2234 struct ipv6hdr *ip6;
2235 struct iphdr *ip;
2236 struct netdev_rx_queue *rxqueue;
2237 struct rps_map *map;
2238 struct rps_dev_flow_table *flow_table;
2239 struct rps_sock_flow_table *sock_flow_table;
2240 int cpu = -1;
2241 u8 ip_proto;
2242 u16 tcpu;
2243 u32 addr1, addr2, ihl;
2244 union {
2245 u32 v32;
2246 u16 v16[2];
2247 } ports;
2248
2249 if (skb_rx_queue_recorded(skb)) {
2250 u16 index = skb_get_rx_queue(skb);
2251 if (unlikely(index >= dev->num_rx_queues)) {
2252 if (net_ratelimit()) {
2253 pr_warning("%s received packet on queue "
2254 "%u, but number of RX queues is %u\n",
2255 dev->name, index, dev->num_rx_queues);
2256 }
2257 goto done;
2258 }
2259 rxqueue = dev->_rx + index;
2260 } else
2261 rxqueue = dev->_rx;
2262
2263 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2264 goto done;
2265
2266 if (skb->rxhash)
2267 goto got_hash; /* Skip hash computation on packet header */
2268
2269 switch (skb->protocol) {
2270 case __constant_htons(ETH_P_IP):
2271 if (!pskb_may_pull(skb, sizeof(*ip)))
2272 goto done;
2273
2274 ip = (struct iphdr *) skb->data;
2275 ip_proto = ip->protocol;
2276 addr1 = (__force u32) ip->saddr;
2277 addr2 = (__force u32) ip->daddr;
2278 ihl = ip->ihl;
2279 break;
2280 case __constant_htons(ETH_P_IPV6):
2281 if (!pskb_may_pull(skb, sizeof(*ip6)))
2282 goto done;
2283
2284 ip6 = (struct ipv6hdr *) skb->data;
2285 ip_proto = ip6->nexthdr;
2286 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2287 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2288 ihl = (40 >> 2);
2289 break;
2290 default:
2291 goto done;
2292 }
2293 switch (ip_proto) {
2294 case IPPROTO_TCP:
2295 case IPPROTO_UDP:
2296 case IPPROTO_DCCP:
2297 case IPPROTO_ESP:
2298 case IPPROTO_AH:
2299 case IPPROTO_SCTP:
2300 case IPPROTO_UDPLITE:
2301 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2302 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2303 if (ports.v16[1] < ports.v16[0])
2304 swap(ports.v16[0], ports.v16[1]);
2305 break;
2306 }
2307 default:
2308 ports.v32 = 0;
2309 break;
2310 }
2311
2312 /* get a consistent hash (same value on both flow directions) */
2313 if (addr2 < addr1)
2314 swap(addr1, addr2);
2315 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2316 if (!skb->rxhash)
2317 skb->rxhash = 1;
2318
2319 got_hash:
2320 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2321 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2322 if (flow_table && sock_flow_table) {
2323 u16 next_cpu;
2324 struct rps_dev_flow *rflow;
2325
2326 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2327 tcpu = rflow->cpu;
2328
2329 next_cpu = sock_flow_table->ents[skb->rxhash &
2330 sock_flow_table->mask];
2331
2332 /*
2333 * If the desired CPU (where last recvmsg was done) is
2334 * different from current CPU (one in the rx-queue flow
2335 * table entry), switch if one of the following holds:
2336 * - Current CPU is unset (equal to RPS_NO_CPU).
2337 * - Current CPU is offline.
2338 * - The current CPU's queue tail has advanced beyond the
2339 * last packet that was enqueued using this table entry.
2340 * This guarantees that all previous packets for the flow
2341 * have been dequeued, thus preserving in order delivery.
2342 */
2343 if (unlikely(tcpu != next_cpu) &&
2344 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2345 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2346 rflow->last_qtail)) >= 0)) {
2347 tcpu = rflow->cpu = next_cpu;
2348 if (tcpu != RPS_NO_CPU)
2349 rflow->last_qtail = per_cpu(softnet_data,
2350 tcpu).input_queue_head;
2351 }
2352 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2353 *rflowp = rflow;
2354 cpu = tcpu;
2355 goto done;
2356 }
2357 }
2358
2359 map = rcu_dereference(rxqueue->rps_map);
2360 if (map) {
2361 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2362
2363 if (cpu_online(tcpu)) {
2364 cpu = tcpu;
2365 goto done;
2366 }
2367 }
2368
2369 done:
2370 return cpu;
2371 }
2372
2373 /* Called from hardirq (IPI) context */
2374 static void rps_trigger_softirq(void *data)
2375 {
2376 struct softnet_data *sd = data;
2377
2378 ____napi_schedule(sd, &sd->backlog);
2379 sd->received_rps++;
2380 }
2381
2382 #endif /* CONFIG_RPS */
2383
2384 /*
2385 * Check if this softnet_data structure is another cpu one
2386 * If yes, queue it to our IPI list and return 1
2387 * If no, return 0
2388 */
2389 static int rps_ipi_queued(struct softnet_data *sd)
2390 {
2391 #ifdef CONFIG_RPS
2392 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2393
2394 if (sd != mysd) {
2395 sd->rps_ipi_next = mysd->rps_ipi_list;
2396 mysd->rps_ipi_list = sd;
2397
2398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2399 return 1;
2400 }
2401 #endif /* CONFIG_RPS */
2402 return 0;
2403 }
2404
2405 /*
2406 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2407 * queue (may be a remote CPU queue).
2408 */
2409 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2410 unsigned int *qtail)
2411 {
2412 struct softnet_data *sd;
2413 unsigned long flags;
2414
2415 sd = &per_cpu(softnet_data, cpu);
2416
2417 local_irq_save(flags);
2418
2419 rps_lock(sd);
2420 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2421 if (skb_queue_len(&sd->input_pkt_queue)) {
2422 enqueue:
2423 __skb_queue_tail(&sd->input_pkt_queue, skb);
2424 #ifdef CONFIG_RPS
2425 *qtail = sd->input_queue_head +
2426 skb_queue_len(&sd->input_pkt_queue);
2427 #endif
2428 rps_unlock(sd);
2429 local_irq_restore(flags);
2430 return NET_RX_SUCCESS;
2431 }
2432
2433 /* Schedule NAPI for backlog device
2434 * We can use non atomic operation since we own the queue lock
2435 */
2436 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2437 if (!rps_ipi_queued(sd))
2438 ____napi_schedule(sd, &sd->backlog);
2439 }
2440 goto enqueue;
2441 }
2442
2443 sd->dropped++;
2444 rps_unlock(sd);
2445
2446 local_irq_restore(flags);
2447
2448 kfree_skb(skb);
2449 return NET_RX_DROP;
2450 }
2451
2452 /**
2453 * netif_rx - post buffer to the network code
2454 * @skb: buffer to post
2455 *
2456 * This function receives a packet from a device driver and queues it for
2457 * the upper (protocol) levels to process. It always succeeds. The buffer
2458 * may be dropped during processing for congestion control or by the
2459 * protocol layers.
2460 *
2461 * return values:
2462 * NET_RX_SUCCESS (no congestion)
2463 * NET_RX_DROP (packet was dropped)
2464 *
2465 */
2466
2467 int netif_rx(struct sk_buff *skb)
2468 {
2469 int ret;
2470
2471 /* if netpoll wants it, pretend we never saw it */
2472 if (netpoll_rx(skb))
2473 return NET_RX_DROP;
2474
2475 if (netdev_tstamp_prequeue)
2476 net_timestamp_check(skb);
2477
2478 #ifdef CONFIG_RPS
2479 {
2480 struct rps_dev_flow voidflow, *rflow = &voidflow;
2481 int cpu;
2482
2483 rcu_read_lock();
2484
2485 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2486 if (cpu < 0)
2487 cpu = smp_processor_id();
2488
2489 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2490
2491 rcu_read_unlock();
2492 }
2493 #else
2494 {
2495 unsigned int qtail;
2496 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2497 put_cpu();
2498 }
2499 #endif
2500 return ret;
2501 }
2502 EXPORT_SYMBOL(netif_rx);
2503
2504 int netif_rx_ni(struct sk_buff *skb)
2505 {
2506 int err;
2507
2508 preempt_disable();
2509 err = netif_rx(skb);
2510 if (local_softirq_pending())
2511 do_softirq();
2512 preempt_enable();
2513
2514 return err;
2515 }
2516 EXPORT_SYMBOL(netif_rx_ni);
2517
2518 static void net_tx_action(struct softirq_action *h)
2519 {
2520 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2521
2522 if (sd->completion_queue) {
2523 struct sk_buff *clist;
2524
2525 local_irq_disable();
2526 clist = sd->completion_queue;
2527 sd->completion_queue = NULL;
2528 local_irq_enable();
2529
2530 while (clist) {
2531 struct sk_buff *skb = clist;
2532 clist = clist->next;
2533
2534 WARN_ON(atomic_read(&skb->users));
2535 __kfree_skb(skb);
2536 }
2537 }
2538
2539 if (sd->output_queue) {
2540 struct Qdisc *head;
2541
2542 local_irq_disable();
2543 head = sd->output_queue;
2544 sd->output_queue = NULL;
2545 sd->output_queue_tailp = &sd->output_queue;
2546 local_irq_enable();
2547
2548 while (head) {
2549 struct Qdisc *q = head;
2550 spinlock_t *root_lock;
2551
2552 head = head->next_sched;
2553
2554 root_lock = qdisc_lock(q);
2555 if (spin_trylock(root_lock)) {
2556 smp_mb__before_clear_bit();
2557 clear_bit(__QDISC_STATE_SCHED,
2558 &q->state);
2559 qdisc_run(q);
2560 spin_unlock(root_lock);
2561 } else {
2562 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2563 &q->state)) {
2564 __netif_reschedule(q);
2565 } else {
2566 smp_mb__before_clear_bit();
2567 clear_bit(__QDISC_STATE_SCHED,
2568 &q->state);
2569 }
2570 }
2571 }
2572 }
2573 }
2574
2575 static inline int deliver_skb(struct sk_buff *skb,
2576 struct packet_type *pt_prev,
2577 struct net_device *orig_dev)
2578 {
2579 atomic_inc(&skb->users);
2580 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2581 }
2582
2583 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2584
2585 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2586 /* This hook is defined here for ATM LANE */
2587 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2588 unsigned char *addr) __read_mostly;
2589 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2590 #endif
2591
2592 /*
2593 * If bridge module is loaded call bridging hook.
2594 * returns NULL if packet was consumed.
2595 */
2596 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2597 struct sk_buff *skb) __read_mostly;
2598 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2599
2600 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2601 struct packet_type **pt_prev, int *ret,
2602 struct net_device *orig_dev)
2603 {
2604 struct net_bridge_port *port;
2605
2606 if (skb->pkt_type == PACKET_LOOPBACK ||
2607 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2608 return skb;
2609
2610 if (*pt_prev) {
2611 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2612 *pt_prev = NULL;
2613 }
2614
2615 return br_handle_frame_hook(port, skb);
2616 }
2617 #else
2618 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2619 #endif
2620
2621 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2622 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2623 struct sk_buff *skb) __read_mostly;
2624 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2625
2626 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2627 struct packet_type **pt_prev,
2628 int *ret,
2629 struct net_device *orig_dev)
2630 {
2631 struct macvlan_port *port;
2632
2633 port = rcu_dereference(skb->dev->macvlan_port);
2634 if (!port)
2635 return skb;
2636
2637 if (*pt_prev) {
2638 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2639 *pt_prev = NULL;
2640 }
2641 return macvlan_handle_frame_hook(port, skb);
2642 }
2643 #else
2644 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2645 #endif
2646
2647 #ifdef CONFIG_NET_CLS_ACT
2648 /* TODO: Maybe we should just force sch_ingress to be compiled in
2649 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2650 * a compare and 2 stores extra right now if we dont have it on
2651 * but have CONFIG_NET_CLS_ACT
2652 * NOTE: This doesnt stop any functionality; if you dont have
2653 * the ingress scheduler, you just cant add policies on ingress.
2654 *
2655 */
2656 static int ing_filter(struct sk_buff *skb)
2657 {
2658 struct net_device *dev = skb->dev;
2659 u32 ttl = G_TC_RTTL(skb->tc_verd);
2660 struct netdev_queue *rxq;
2661 int result = TC_ACT_OK;
2662 struct Qdisc *q;
2663
2664 if (MAX_RED_LOOP < ttl++) {
2665 printk(KERN_WARNING
2666 "Redir loop detected Dropping packet (%d->%d)\n",
2667 skb->skb_iif, dev->ifindex);
2668 return TC_ACT_SHOT;
2669 }
2670
2671 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2672 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2673
2674 rxq = &dev->rx_queue;
2675
2676 q = rxq->qdisc;
2677 if (q != &noop_qdisc) {
2678 spin_lock(qdisc_lock(q));
2679 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2680 result = qdisc_enqueue_root(skb, q);
2681 spin_unlock(qdisc_lock(q));
2682 }
2683
2684 return result;
2685 }
2686
2687 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2688 struct packet_type **pt_prev,
2689 int *ret, struct net_device *orig_dev)
2690 {
2691 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2692 goto out;
2693
2694 if (*pt_prev) {
2695 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2696 *pt_prev = NULL;
2697 } else {
2698 /* Huh? Why does turning on AF_PACKET affect this? */
2699 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2700 }
2701
2702 switch (ing_filter(skb)) {
2703 case TC_ACT_SHOT:
2704 case TC_ACT_STOLEN:
2705 kfree_skb(skb);
2706 return NULL;
2707 }
2708
2709 out:
2710 skb->tc_verd = 0;
2711 return skb;
2712 }
2713 #endif
2714
2715 /*
2716 * netif_nit_deliver - deliver received packets to network taps
2717 * @skb: buffer
2718 *
2719 * This function is used to deliver incoming packets to network
2720 * taps. It should be used when the normal netif_receive_skb path
2721 * is bypassed, for example because of VLAN acceleration.
2722 */
2723 void netif_nit_deliver(struct sk_buff *skb)
2724 {
2725 struct packet_type *ptype;
2726
2727 if (list_empty(&ptype_all))
2728 return;
2729
2730 skb_reset_network_header(skb);
2731 skb_reset_transport_header(skb);
2732 skb->mac_len = skb->network_header - skb->mac_header;
2733
2734 rcu_read_lock();
2735 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2736 if (!ptype->dev || ptype->dev == skb->dev)
2737 deliver_skb(skb, ptype, skb->dev);
2738 }
2739 rcu_read_unlock();
2740 }
2741
2742 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2743 struct net_device *master)
2744 {
2745 if (skb->pkt_type == PACKET_HOST) {
2746 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2747
2748 memcpy(dest, master->dev_addr, ETH_ALEN);
2749 }
2750 }
2751
2752 /* On bonding slaves other than the currently active slave, suppress
2753 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2754 * ARP on active-backup slaves with arp_validate enabled.
2755 */
2756 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2757 {
2758 struct net_device *dev = skb->dev;
2759
2760 if (master->priv_flags & IFF_MASTER_ARPMON)
2761 dev->last_rx = jiffies;
2762
2763 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2764 /* Do address unmangle. The local destination address
2765 * will be always the one master has. Provides the right
2766 * functionality in a bridge.
2767 */
2768 skb_bond_set_mac_by_master(skb, master);
2769 }
2770
2771 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2772 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2773 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2774 return 0;
2775
2776 if (master->priv_flags & IFF_MASTER_ALB) {
2777 if (skb->pkt_type != PACKET_BROADCAST &&
2778 skb->pkt_type != PACKET_MULTICAST)
2779 return 0;
2780 }
2781 if (master->priv_flags & IFF_MASTER_8023AD &&
2782 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2783 return 0;
2784
2785 return 1;
2786 }
2787 return 0;
2788 }
2789 EXPORT_SYMBOL(__skb_bond_should_drop);
2790
2791 static int __netif_receive_skb(struct sk_buff *skb)
2792 {
2793 struct packet_type *ptype, *pt_prev;
2794 struct net_device *orig_dev;
2795 struct net_device *master;
2796 struct net_device *null_or_orig;
2797 struct net_device *null_or_bond;
2798 int ret = NET_RX_DROP;
2799 __be16 type;
2800
2801 if (!netdev_tstamp_prequeue)
2802 net_timestamp_check(skb);
2803
2804 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2805 return NET_RX_SUCCESS;
2806
2807 /* if we've gotten here through NAPI, check netpoll */
2808 if (netpoll_receive_skb(skb))
2809 return NET_RX_DROP;
2810
2811 if (!skb->skb_iif)
2812 skb->skb_iif = skb->dev->ifindex;
2813
2814 null_or_orig = NULL;
2815 orig_dev = skb->dev;
2816 master = ACCESS_ONCE(orig_dev->master);
2817 if (master) {
2818 if (skb_bond_should_drop(skb, master))
2819 null_or_orig = orig_dev; /* deliver only exact match */
2820 else
2821 skb->dev = master;
2822 }
2823
2824 __get_cpu_var(softnet_data).processed++;
2825
2826 skb_reset_network_header(skb);
2827 skb_reset_transport_header(skb);
2828 skb->mac_len = skb->network_header - skb->mac_header;
2829
2830 pt_prev = NULL;
2831
2832 rcu_read_lock();
2833
2834 #ifdef CONFIG_NET_CLS_ACT
2835 if (skb->tc_verd & TC_NCLS) {
2836 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2837 goto ncls;
2838 }
2839 #endif
2840
2841 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2842 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2843 ptype->dev == orig_dev) {
2844 if (pt_prev)
2845 ret = deliver_skb(skb, pt_prev, orig_dev);
2846 pt_prev = ptype;
2847 }
2848 }
2849
2850 #ifdef CONFIG_NET_CLS_ACT
2851 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2852 if (!skb)
2853 goto out;
2854 ncls:
2855 #endif
2856
2857 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2858 if (!skb)
2859 goto out;
2860 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2861 if (!skb)
2862 goto out;
2863
2864 /*
2865 * Make sure frames received on VLAN interfaces stacked on
2866 * bonding interfaces still make their way to any base bonding
2867 * device that may have registered for a specific ptype. The
2868 * handler may have to adjust skb->dev and orig_dev.
2869 */
2870 null_or_bond = NULL;
2871 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2872 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2873 null_or_bond = vlan_dev_real_dev(skb->dev);
2874 }
2875
2876 type = skb->protocol;
2877 list_for_each_entry_rcu(ptype,
2878 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2879 if (ptype->type == type && (ptype->dev == null_or_orig ||
2880 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2881 ptype->dev == null_or_bond)) {
2882 if (pt_prev)
2883 ret = deliver_skb(skb, pt_prev, orig_dev);
2884 pt_prev = ptype;
2885 }
2886 }
2887
2888 if (pt_prev) {
2889 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2890 } else {
2891 kfree_skb(skb);
2892 /* Jamal, now you will not able to escape explaining
2893 * me how you were going to use this. :-)
2894 */
2895 ret = NET_RX_DROP;
2896 }
2897
2898 out:
2899 rcu_read_unlock();
2900 return ret;
2901 }
2902
2903 /**
2904 * netif_receive_skb - process receive buffer from network
2905 * @skb: buffer to process
2906 *
2907 * netif_receive_skb() is the main receive data processing function.
2908 * It always succeeds. The buffer may be dropped during processing
2909 * for congestion control or by the protocol layers.
2910 *
2911 * This function may only be called from softirq context and interrupts
2912 * should be enabled.
2913 *
2914 * Return values (usually ignored):
2915 * NET_RX_SUCCESS: no congestion
2916 * NET_RX_DROP: packet was dropped
2917 */
2918 int netif_receive_skb(struct sk_buff *skb)
2919 {
2920 if (netdev_tstamp_prequeue)
2921 net_timestamp_check(skb);
2922
2923 #ifdef CONFIG_RPS
2924 {
2925 struct rps_dev_flow voidflow, *rflow = &voidflow;
2926 int cpu, ret;
2927
2928 rcu_read_lock();
2929
2930 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2931
2932 if (cpu >= 0) {
2933 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2934 rcu_read_unlock();
2935 } else {
2936 rcu_read_unlock();
2937 ret = __netif_receive_skb(skb);
2938 }
2939
2940 return ret;
2941 }
2942 #else
2943 return __netif_receive_skb(skb);
2944 #endif
2945 }
2946 EXPORT_SYMBOL(netif_receive_skb);
2947
2948 /* Network device is going away, flush any packets still pending
2949 * Called with irqs disabled.
2950 */
2951 static void flush_backlog(void *arg)
2952 {
2953 struct net_device *dev = arg;
2954 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2955 struct sk_buff *skb, *tmp;
2956
2957 rps_lock(sd);
2958 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2959 if (skb->dev == dev) {
2960 __skb_unlink(skb, &sd->input_pkt_queue);
2961 kfree_skb(skb);
2962 input_queue_head_add(sd, 1);
2963 }
2964 }
2965 rps_unlock(sd);
2966
2967 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2968 if (skb->dev == dev) {
2969 __skb_unlink(skb, &sd->process_queue);
2970 kfree_skb(skb);
2971 }
2972 }
2973 }
2974
2975 static int napi_gro_complete(struct sk_buff *skb)
2976 {
2977 struct packet_type *ptype;
2978 __be16 type = skb->protocol;
2979 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2980 int err = -ENOENT;
2981
2982 if (NAPI_GRO_CB(skb)->count == 1) {
2983 skb_shinfo(skb)->gso_size = 0;
2984 goto out;
2985 }
2986
2987 rcu_read_lock();
2988 list_for_each_entry_rcu(ptype, head, list) {
2989 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2990 continue;
2991
2992 err = ptype->gro_complete(skb);
2993 break;
2994 }
2995 rcu_read_unlock();
2996
2997 if (err) {
2998 WARN_ON(&ptype->list == head);
2999 kfree_skb(skb);
3000 return NET_RX_SUCCESS;
3001 }
3002
3003 out:
3004 return netif_receive_skb(skb);
3005 }
3006
3007 static void napi_gro_flush(struct napi_struct *napi)
3008 {
3009 struct sk_buff *skb, *next;
3010
3011 for (skb = napi->gro_list; skb; skb = next) {
3012 next = skb->next;
3013 skb->next = NULL;
3014 napi_gro_complete(skb);
3015 }
3016
3017 napi->gro_count = 0;
3018 napi->gro_list = NULL;
3019 }
3020
3021 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3022 {
3023 struct sk_buff **pp = NULL;
3024 struct packet_type *ptype;
3025 __be16 type = skb->protocol;
3026 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3027 int same_flow;
3028 int mac_len;
3029 enum gro_result ret;
3030
3031 if (!(skb->dev->features & NETIF_F_GRO))
3032 goto normal;
3033
3034 if (skb_is_gso(skb) || skb_has_frags(skb))
3035 goto normal;
3036
3037 rcu_read_lock();
3038 list_for_each_entry_rcu(ptype, head, list) {
3039 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3040 continue;
3041
3042 skb_set_network_header(skb, skb_gro_offset(skb));
3043 mac_len = skb->network_header - skb->mac_header;
3044 skb->mac_len = mac_len;
3045 NAPI_GRO_CB(skb)->same_flow = 0;
3046 NAPI_GRO_CB(skb)->flush = 0;
3047 NAPI_GRO_CB(skb)->free = 0;
3048
3049 pp = ptype->gro_receive(&napi->gro_list, skb);
3050 break;
3051 }
3052 rcu_read_unlock();
3053
3054 if (&ptype->list == head)
3055 goto normal;
3056
3057 same_flow = NAPI_GRO_CB(skb)->same_flow;
3058 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3059
3060 if (pp) {
3061 struct sk_buff *nskb = *pp;
3062
3063 *pp = nskb->next;
3064 nskb->next = NULL;
3065 napi_gro_complete(nskb);
3066 napi->gro_count--;
3067 }
3068
3069 if (same_flow)
3070 goto ok;
3071
3072 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3073 goto normal;
3074
3075 napi->gro_count++;
3076 NAPI_GRO_CB(skb)->count = 1;
3077 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3078 skb->next = napi->gro_list;
3079 napi->gro_list = skb;
3080 ret = GRO_HELD;
3081
3082 pull:
3083 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3084 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3085
3086 BUG_ON(skb->end - skb->tail < grow);
3087
3088 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3089
3090 skb->tail += grow;
3091 skb->data_len -= grow;
3092
3093 skb_shinfo(skb)->frags[0].page_offset += grow;
3094 skb_shinfo(skb)->frags[0].size -= grow;
3095
3096 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3097 put_page(skb_shinfo(skb)->frags[0].page);
3098 memmove(skb_shinfo(skb)->frags,
3099 skb_shinfo(skb)->frags + 1,
3100 --skb_shinfo(skb)->nr_frags);
3101 }
3102 }
3103
3104 ok:
3105 return ret;
3106
3107 normal:
3108 ret = GRO_NORMAL;
3109 goto pull;
3110 }
3111 EXPORT_SYMBOL(dev_gro_receive);
3112
3113 static gro_result_t
3114 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3115 {
3116 struct sk_buff *p;
3117
3118 if (netpoll_rx_on(skb))
3119 return GRO_NORMAL;
3120
3121 for (p = napi->gro_list; p; p = p->next) {
3122 NAPI_GRO_CB(p)->same_flow =
3123 (p->dev == skb->dev) &&
3124 !compare_ether_header(skb_mac_header(p),
3125 skb_gro_mac_header(skb));
3126 NAPI_GRO_CB(p)->flush = 0;
3127 }
3128
3129 return dev_gro_receive(napi, skb);
3130 }
3131
3132 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3133 {
3134 switch (ret) {
3135 case GRO_NORMAL:
3136 if (netif_receive_skb(skb))
3137 ret = GRO_DROP;
3138 break;
3139
3140 case GRO_DROP:
3141 case GRO_MERGED_FREE:
3142 kfree_skb(skb);
3143 break;
3144
3145 case GRO_HELD:
3146 case GRO_MERGED:
3147 break;
3148 }
3149
3150 return ret;
3151 }
3152 EXPORT_SYMBOL(napi_skb_finish);
3153
3154 void skb_gro_reset_offset(struct sk_buff *skb)
3155 {
3156 NAPI_GRO_CB(skb)->data_offset = 0;
3157 NAPI_GRO_CB(skb)->frag0 = NULL;
3158 NAPI_GRO_CB(skb)->frag0_len = 0;
3159
3160 if (skb->mac_header == skb->tail &&
3161 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3162 NAPI_GRO_CB(skb)->frag0 =
3163 page_address(skb_shinfo(skb)->frags[0].page) +
3164 skb_shinfo(skb)->frags[0].page_offset;
3165 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3166 }
3167 }
3168 EXPORT_SYMBOL(skb_gro_reset_offset);
3169
3170 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3171 {
3172 skb_gro_reset_offset(skb);
3173
3174 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3175 }
3176 EXPORT_SYMBOL(napi_gro_receive);
3177
3178 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3179 {
3180 __skb_pull(skb, skb_headlen(skb));
3181 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3182
3183 napi->skb = skb;
3184 }
3185 EXPORT_SYMBOL(napi_reuse_skb);
3186
3187 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3188 {
3189 struct sk_buff *skb = napi->skb;
3190
3191 if (!skb) {
3192 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3193 if (skb)
3194 napi->skb = skb;
3195 }
3196 return skb;
3197 }
3198 EXPORT_SYMBOL(napi_get_frags);
3199
3200 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3201 gro_result_t ret)
3202 {
3203 switch (ret) {
3204 case GRO_NORMAL:
3205 case GRO_HELD:
3206 skb->protocol = eth_type_trans(skb, skb->dev);
3207
3208 if (ret == GRO_HELD)
3209 skb_gro_pull(skb, -ETH_HLEN);
3210 else if (netif_receive_skb(skb))
3211 ret = GRO_DROP;
3212 break;
3213
3214 case GRO_DROP:
3215 case GRO_MERGED_FREE:
3216 napi_reuse_skb(napi, skb);
3217 break;
3218
3219 case GRO_MERGED:
3220 break;
3221 }
3222
3223 return ret;
3224 }
3225 EXPORT_SYMBOL(napi_frags_finish);
3226
3227 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3228 {
3229 struct sk_buff *skb = napi->skb;
3230 struct ethhdr *eth;
3231 unsigned int hlen;
3232 unsigned int off;
3233
3234 napi->skb = NULL;
3235
3236 skb_reset_mac_header(skb);
3237 skb_gro_reset_offset(skb);
3238
3239 off = skb_gro_offset(skb);
3240 hlen = off + sizeof(*eth);
3241 eth = skb_gro_header_fast(skb, off);
3242 if (skb_gro_header_hard(skb, hlen)) {
3243 eth = skb_gro_header_slow(skb, hlen, off);
3244 if (unlikely(!eth)) {
3245 napi_reuse_skb(napi, skb);
3246 skb = NULL;
3247 goto out;
3248 }
3249 }
3250
3251 skb_gro_pull(skb, sizeof(*eth));
3252
3253 /*
3254 * This works because the only protocols we care about don't require
3255 * special handling. We'll fix it up properly at the end.
3256 */
3257 skb->protocol = eth->h_proto;
3258
3259 out:
3260 return skb;
3261 }
3262 EXPORT_SYMBOL(napi_frags_skb);
3263
3264 gro_result_t napi_gro_frags(struct napi_struct *napi)
3265 {
3266 struct sk_buff *skb = napi_frags_skb(napi);
3267
3268 if (!skb)
3269 return GRO_DROP;
3270
3271 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3272 }
3273 EXPORT_SYMBOL(napi_gro_frags);
3274
3275 /*
3276 * net_rps_action sends any pending IPI's for rps.
3277 * Note: called with local irq disabled, but exits with local irq enabled.
3278 */
3279 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3280 {
3281 #ifdef CONFIG_RPS
3282 struct softnet_data *remsd = sd->rps_ipi_list;
3283
3284 if (remsd) {
3285 sd->rps_ipi_list = NULL;
3286
3287 local_irq_enable();
3288
3289 /* Send pending IPI's to kick RPS processing on remote cpus. */
3290 while (remsd) {
3291 struct softnet_data *next = remsd->rps_ipi_next;
3292
3293 if (cpu_online(remsd->cpu))
3294 __smp_call_function_single(remsd->cpu,
3295 &remsd->csd, 0);
3296 remsd = next;
3297 }
3298 } else
3299 #endif
3300 local_irq_enable();
3301 }
3302
3303 static int process_backlog(struct napi_struct *napi, int quota)
3304 {
3305 int work = 0;
3306 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3307
3308 #ifdef CONFIG_RPS
3309 /* Check if we have pending ipi, its better to send them now,
3310 * not waiting net_rx_action() end.
3311 */
3312 if (sd->rps_ipi_list) {
3313 local_irq_disable();
3314 net_rps_action_and_irq_enable(sd);
3315 }
3316 #endif
3317 napi->weight = weight_p;
3318 local_irq_disable();
3319 while (work < quota) {
3320 struct sk_buff *skb;
3321 unsigned int qlen;
3322
3323 while ((skb = __skb_dequeue(&sd->process_queue))) {
3324 local_irq_enable();
3325 __netif_receive_skb(skb);
3326 if (++work >= quota)
3327 return work;
3328 local_irq_disable();
3329 }
3330
3331 rps_lock(sd);
3332 qlen = skb_queue_len(&sd->input_pkt_queue);
3333 if (qlen) {
3334 input_queue_head_add(sd, qlen);
3335 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3336 &sd->process_queue);
3337 }
3338 if (qlen < quota - work) {
3339 /*
3340 * Inline a custom version of __napi_complete().
3341 * only current cpu owns and manipulates this napi,
3342 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3343 * we can use a plain write instead of clear_bit(),
3344 * and we dont need an smp_mb() memory barrier.
3345 */
3346 list_del(&napi->poll_list);
3347 napi->state = 0;
3348
3349 quota = work + qlen;
3350 }
3351 rps_unlock(sd);
3352 }
3353 local_irq_enable();
3354
3355 return work;
3356 }
3357
3358 /**
3359 * __napi_schedule - schedule for receive
3360 * @n: entry to schedule
3361 *
3362 * The entry's receive function will be scheduled to run
3363 */
3364 void __napi_schedule(struct napi_struct *n)
3365 {
3366 unsigned long flags;
3367
3368 local_irq_save(flags);
3369 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3370 local_irq_restore(flags);
3371 }
3372 EXPORT_SYMBOL(__napi_schedule);
3373
3374 void __napi_complete(struct napi_struct *n)
3375 {
3376 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3377 BUG_ON(n->gro_list);
3378
3379 list_del(&n->poll_list);
3380 smp_mb__before_clear_bit();
3381 clear_bit(NAPI_STATE_SCHED, &n->state);
3382 }
3383 EXPORT_SYMBOL(__napi_complete);
3384
3385 void napi_complete(struct napi_struct *n)
3386 {
3387 unsigned long flags;
3388
3389 /*
3390 * don't let napi dequeue from the cpu poll list
3391 * just in case its running on a different cpu
3392 */
3393 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3394 return;
3395
3396 napi_gro_flush(n);
3397 local_irq_save(flags);
3398 __napi_complete(n);
3399 local_irq_restore(flags);
3400 }
3401 EXPORT_SYMBOL(napi_complete);
3402
3403 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3404 int (*poll)(struct napi_struct *, int), int weight)
3405 {
3406 INIT_LIST_HEAD(&napi->poll_list);
3407 napi->gro_count = 0;
3408 napi->gro_list = NULL;
3409 napi->skb = NULL;
3410 napi->poll = poll;
3411 napi->weight = weight;
3412 list_add(&napi->dev_list, &dev->napi_list);
3413 napi->dev = dev;
3414 #ifdef CONFIG_NETPOLL
3415 spin_lock_init(&napi->poll_lock);
3416 napi->poll_owner = -1;
3417 #endif
3418 set_bit(NAPI_STATE_SCHED, &napi->state);
3419 }
3420 EXPORT_SYMBOL(netif_napi_add);
3421
3422 void netif_napi_del(struct napi_struct *napi)
3423 {
3424 struct sk_buff *skb, *next;
3425
3426 list_del_init(&napi->dev_list);
3427 napi_free_frags(napi);
3428
3429 for (skb = napi->gro_list; skb; skb = next) {
3430 next = skb->next;
3431 skb->next = NULL;
3432 kfree_skb(skb);
3433 }
3434
3435 napi->gro_list = NULL;
3436 napi->gro_count = 0;
3437 }
3438 EXPORT_SYMBOL(netif_napi_del);
3439
3440 static void net_rx_action(struct softirq_action *h)
3441 {
3442 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3443 unsigned long time_limit = jiffies + 2;
3444 int budget = netdev_budget;
3445 void *have;
3446
3447 local_irq_disable();
3448
3449 while (!list_empty(&sd->poll_list)) {
3450 struct napi_struct *n;
3451 int work, weight;
3452
3453 /* If softirq window is exhuasted then punt.
3454 * Allow this to run for 2 jiffies since which will allow
3455 * an average latency of 1.5/HZ.
3456 */
3457 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3458 goto softnet_break;
3459
3460 local_irq_enable();
3461
3462 /* Even though interrupts have been re-enabled, this
3463 * access is safe because interrupts can only add new
3464 * entries to the tail of this list, and only ->poll()
3465 * calls can remove this head entry from the list.
3466 */
3467 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3468
3469 have = netpoll_poll_lock(n);
3470
3471 weight = n->weight;
3472
3473 /* This NAPI_STATE_SCHED test is for avoiding a race
3474 * with netpoll's poll_napi(). Only the entity which
3475 * obtains the lock and sees NAPI_STATE_SCHED set will
3476 * actually make the ->poll() call. Therefore we avoid
3477 * accidently calling ->poll() when NAPI is not scheduled.
3478 */
3479 work = 0;
3480 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3481 work = n->poll(n, weight);
3482 trace_napi_poll(n);
3483 }
3484
3485 WARN_ON_ONCE(work > weight);
3486
3487 budget -= work;
3488
3489 local_irq_disable();
3490
3491 /* Drivers must not modify the NAPI state if they
3492 * consume the entire weight. In such cases this code
3493 * still "owns" the NAPI instance and therefore can
3494 * move the instance around on the list at-will.
3495 */
3496 if (unlikely(work == weight)) {
3497 if (unlikely(napi_disable_pending(n))) {
3498 local_irq_enable();
3499 napi_complete(n);
3500 local_irq_disable();
3501 } else
3502 list_move_tail(&n->poll_list, &sd->poll_list);
3503 }
3504
3505 netpoll_poll_unlock(have);
3506 }
3507 out:
3508 net_rps_action_and_irq_enable(sd);
3509
3510 #ifdef CONFIG_NET_DMA
3511 /*
3512 * There may not be any more sk_buffs coming right now, so push
3513 * any pending DMA copies to hardware
3514 */
3515 dma_issue_pending_all();
3516 #endif
3517
3518 return;
3519
3520 softnet_break:
3521 sd->time_squeeze++;
3522 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3523 goto out;
3524 }
3525
3526 static gifconf_func_t *gifconf_list[NPROTO];
3527
3528 /**
3529 * register_gifconf - register a SIOCGIF handler
3530 * @family: Address family
3531 * @gifconf: Function handler
3532 *
3533 * Register protocol dependent address dumping routines. The handler
3534 * that is passed must not be freed or reused until it has been replaced
3535 * by another handler.
3536 */
3537 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3538 {
3539 if (family >= NPROTO)
3540 return -EINVAL;
3541 gifconf_list[family] = gifconf;
3542 return 0;
3543 }
3544 EXPORT_SYMBOL(register_gifconf);
3545
3546
3547 /*
3548 * Map an interface index to its name (SIOCGIFNAME)
3549 */
3550
3551 /*
3552 * We need this ioctl for efficient implementation of the
3553 * if_indextoname() function required by the IPv6 API. Without
3554 * it, we would have to search all the interfaces to find a
3555 * match. --pb
3556 */
3557
3558 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3559 {
3560 struct net_device *dev;
3561 struct ifreq ifr;
3562
3563 /*
3564 * Fetch the caller's info block.
3565 */
3566
3567 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3568 return -EFAULT;
3569
3570 rcu_read_lock();
3571 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3572 if (!dev) {
3573 rcu_read_unlock();
3574 return -ENODEV;
3575 }
3576
3577 strcpy(ifr.ifr_name, dev->name);
3578 rcu_read_unlock();
3579
3580 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3581 return -EFAULT;
3582 return 0;
3583 }
3584
3585 /*
3586 * Perform a SIOCGIFCONF call. This structure will change
3587 * size eventually, and there is nothing I can do about it.
3588 * Thus we will need a 'compatibility mode'.
3589 */
3590
3591 static int dev_ifconf(struct net *net, char __user *arg)
3592 {
3593 struct ifconf ifc;
3594 struct net_device *dev;
3595 char __user *pos;
3596 int len;
3597 int total;
3598 int i;
3599
3600 /*
3601 * Fetch the caller's info block.
3602 */
3603
3604 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3605 return -EFAULT;
3606
3607 pos = ifc.ifc_buf;
3608 len = ifc.ifc_len;
3609
3610 /*
3611 * Loop over the interfaces, and write an info block for each.
3612 */
3613
3614 total = 0;
3615 for_each_netdev(net, dev) {
3616 for (i = 0; i < NPROTO; i++) {
3617 if (gifconf_list[i]) {
3618 int done;
3619 if (!pos)
3620 done = gifconf_list[i](dev, NULL, 0);
3621 else
3622 done = gifconf_list[i](dev, pos + total,
3623 len - total);
3624 if (done < 0)
3625 return -EFAULT;
3626 total += done;
3627 }
3628 }
3629 }
3630
3631 /*
3632 * All done. Write the updated control block back to the caller.
3633 */
3634 ifc.ifc_len = total;
3635
3636 /*
3637 * Both BSD and Solaris return 0 here, so we do too.
3638 */
3639 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3640 }
3641
3642 #ifdef CONFIG_PROC_FS
3643 /*
3644 * This is invoked by the /proc filesystem handler to display a device
3645 * in detail.
3646 */
3647 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3648 __acquires(RCU)
3649 {
3650 struct net *net = seq_file_net(seq);
3651 loff_t off;
3652 struct net_device *dev;
3653
3654 rcu_read_lock();
3655 if (!*pos)
3656 return SEQ_START_TOKEN;
3657
3658 off = 1;
3659 for_each_netdev_rcu(net, dev)
3660 if (off++ == *pos)
3661 return dev;
3662
3663 return NULL;
3664 }
3665
3666 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3667 {
3668 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3669 first_net_device(seq_file_net(seq)) :
3670 next_net_device((struct net_device *)v);
3671
3672 ++*pos;
3673 return rcu_dereference(dev);
3674 }
3675
3676 void dev_seq_stop(struct seq_file *seq, void *v)
3677 __releases(RCU)
3678 {
3679 rcu_read_unlock();
3680 }
3681
3682 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3683 {
3684 const struct net_device_stats *stats = dev_get_stats(dev);
3685
3686 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3687 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3688 dev->name, stats->rx_bytes, stats->rx_packets,
3689 stats->rx_errors,
3690 stats->rx_dropped + stats->rx_missed_errors,
3691 stats->rx_fifo_errors,
3692 stats->rx_length_errors + stats->rx_over_errors +
3693 stats->rx_crc_errors + stats->rx_frame_errors,
3694 stats->rx_compressed, stats->multicast,
3695 stats->tx_bytes, stats->tx_packets,
3696 stats->tx_errors, stats->tx_dropped,
3697 stats->tx_fifo_errors, stats->collisions,
3698 stats->tx_carrier_errors +
3699 stats->tx_aborted_errors +
3700 stats->tx_window_errors +
3701 stats->tx_heartbeat_errors,
3702 stats->tx_compressed);
3703 }
3704
3705 /*
3706 * Called from the PROCfs module. This now uses the new arbitrary sized
3707 * /proc/net interface to create /proc/net/dev
3708 */
3709 static int dev_seq_show(struct seq_file *seq, void *v)
3710 {
3711 if (v == SEQ_START_TOKEN)
3712 seq_puts(seq, "Inter-| Receive "
3713 " | Transmit\n"
3714 " face |bytes packets errs drop fifo frame "
3715 "compressed multicast|bytes packets errs "
3716 "drop fifo colls carrier compressed\n");
3717 else
3718 dev_seq_printf_stats(seq, v);
3719 return 0;
3720 }
3721
3722 static struct softnet_data *softnet_get_online(loff_t *pos)
3723 {
3724 struct softnet_data *sd = NULL;
3725
3726 while (*pos < nr_cpu_ids)
3727 if (cpu_online(*pos)) {
3728 sd = &per_cpu(softnet_data, *pos);
3729 break;
3730 } else
3731 ++*pos;
3732 return sd;
3733 }
3734
3735 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3736 {
3737 return softnet_get_online(pos);
3738 }
3739
3740 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3741 {
3742 ++*pos;
3743 return softnet_get_online(pos);
3744 }
3745
3746 static void softnet_seq_stop(struct seq_file *seq, void *v)
3747 {
3748 }
3749
3750 static int softnet_seq_show(struct seq_file *seq, void *v)
3751 {
3752 struct softnet_data *sd = v;
3753
3754 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3755 sd->processed, sd->dropped, sd->time_squeeze, 0,
3756 0, 0, 0, 0, /* was fastroute */
3757 sd->cpu_collision, sd->received_rps);
3758 return 0;
3759 }
3760
3761 static const struct seq_operations dev_seq_ops = {
3762 .start = dev_seq_start,
3763 .next = dev_seq_next,
3764 .stop = dev_seq_stop,
3765 .show = dev_seq_show,
3766 };
3767
3768 static int dev_seq_open(struct inode *inode, struct file *file)
3769 {
3770 return seq_open_net(inode, file, &dev_seq_ops,
3771 sizeof(struct seq_net_private));
3772 }
3773
3774 static const struct file_operations dev_seq_fops = {
3775 .owner = THIS_MODULE,
3776 .open = dev_seq_open,
3777 .read = seq_read,
3778 .llseek = seq_lseek,
3779 .release = seq_release_net,
3780 };
3781
3782 static const struct seq_operations softnet_seq_ops = {
3783 .start = softnet_seq_start,
3784 .next = softnet_seq_next,
3785 .stop = softnet_seq_stop,
3786 .show = softnet_seq_show,
3787 };
3788
3789 static int softnet_seq_open(struct inode *inode, struct file *file)
3790 {
3791 return seq_open(file, &softnet_seq_ops);
3792 }
3793
3794 static const struct file_operations softnet_seq_fops = {
3795 .owner = THIS_MODULE,
3796 .open = softnet_seq_open,
3797 .read = seq_read,
3798 .llseek = seq_lseek,
3799 .release = seq_release,
3800 };
3801
3802 static void *ptype_get_idx(loff_t pos)
3803 {
3804 struct packet_type *pt = NULL;
3805 loff_t i = 0;
3806 int t;
3807
3808 list_for_each_entry_rcu(pt, &ptype_all, list) {
3809 if (i == pos)
3810 return pt;
3811 ++i;
3812 }
3813
3814 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3815 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3816 if (i == pos)
3817 return pt;
3818 ++i;
3819 }
3820 }
3821 return NULL;
3822 }
3823
3824 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3825 __acquires(RCU)
3826 {
3827 rcu_read_lock();
3828 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3829 }
3830
3831 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3832 {
3833 struct packet_type *pt;
3834 struct list_head *nxt;
3835 int hash;
3836
3837 ++*pos;
3838 if (v == SEQ_START_TOKEN)
3839 return ptype_get_idx(0);
3840
3841 pt = v;
3842 nxt = pt->list.next;
3843 if (pt->type == htons(ETH_P_ALL)) {
3844 if (nxt != &ptype_all)
3845 goto found;
3846 hash = 0;
3847 nxt = ptype_base[0].next;
3848 } else
3849 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3850
3851 while (nxt == &ptype_base[hash]) {
3852 if (++hash >= PTYPE_HASH_SIZE)
3853 return NULL;
3854 nxt = ptype_base[hash].next;
3855 }
3856 found:
3857 return list_entry(nxt, struct packet_type, list);
3858 }
3859
3860 static void ptype_seq_stop(struct seq_file *seq, void *v)
3861 __releases(RCU)
3862 {
3863 rcu_read_unlock();
3864 }
3865
3866 static int ptype_seq_show(struct seq_file *seq, void *v)
3867 {
3868 struct packet_type *pt = v;
3869
3870 if (v == SEQ_START_TOKEN)
3871 seq_puts(seq, "Type Device Function\n");
3872 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3873 if (pt->type == htons(ETH_P_ALL))
3874 seq_puts(seq, "ALL ");
3875 else
3876 seq_printf(seq, "%04x", ntohs(pt->type));
3877
3878 seq_printf(seq, " %-8s %pF\n",
3879 pt->dev ? pt->dev->name : "", pt->func);
3880 }
3881
3882 return 0;
3883 }
3884
3885 static const struct seq_operations ptype_seq_ops = {
3886 .start = ptype_seq_start,
3887 .next = ptype_seq_next,
3888 .stop = ptype_seq_stop,
3889 .show = ptype_seq_show,
3890 };
3891
3892 static int ptype_seq_open(struct inode *inode, struct file *file)
3893 {
3894 return seq_open_net(inode, file, &ptype_seq_ops,
3895 sizeof(struct seq_net_private));
3896 }
3897
3898 static const struct file_operations ptype_seq_fops = {
3899 .owner = THIS_MODULE,
3900 .open = ptype_seq_open,
3901 .read = seq_read,
3902 .llseek = seq_lseek,
3903 .release = seq_release_net,
3904 };
3905
3906
3907 static int __net_init dev_proc_net_init(struct net *net)
3908 {
3909 int rc = -ENOMEM;
3910
3911 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3912 goto out;
3913 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3914 goto out_dev;
3915 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3916 goto out_softnet;
3917
3918 if (wext_proc_init(net))
3919 goto out_ptype;
3920 rc = 0;
3921 out:
3922 return rc;
3923 out_ptype:
3924 proc_net_remove(net, "ptype");
3925 out_softnet:
3926 proc_net_remove(net, "softnet_stat");
3927 out_dev:
3928 proc_net_remove(net, "dev");
3929 goto out;
3930 }
3931
3932 static void __net_exit dev_proc_net_exit(struct net *net)
3933 {
3934 wext_proc_exit(net);
3935
3936 proc_net_remove(net, "ptype");
3937 proc_net_remove(net, "softnet_stat");
3938 proc_net_remove(net, "dev");
3939 }
3940
3941 static struct pernet_operations __net_initdata dev_proc_ops = {
3942 .init = dev_proc_net_init,
3943 .exit = dev_proc_net_exit,
3944 };
3945
3946 static int __init dev_proc_init(void)
3947 {
3948 return register_pernet_subsys(&dev_proc_ops);
3949 }
3950 #else
3951 #define dev_proc_init() 0
3952 #endif /* CONFIG_PROC_FS */
3953
3954
3955 /**
3956 * netdev_set_master - set up master/slave pair
3957 * @slave: slave device
3958 * @master: new master device
3959 *
3960 * Changes the master device of the slave. Pass %NULL to break the
3961 * bonding. The caller must hold the RTNL semaphore. On a failure
3962 * a negative errno code is returned. On success the reference counts
3963 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3964 * function returns zero.
3965 */
3966 int netdev_set_master(struct net_device *slave, struct net_device *master)
3967 {
3968 struct net_device *old = slave->master;
3969
3970 ASSERT_RTNL();
3971
3972 if (master) {
3973 if (old)
3974 return -EBUSY;
3975 dev_hold(master);
3976 }
3977
3978 slave->master = master;
3979
3980 if (old) {
3981 synchronize_net();
3982 dev_put(old);
3983 }
3984 if (master)
3985 slave->flags |= IFF_SLAVE;
3986 else
3987 slave->flags &= ~IFF_SLAVE;
3988
3989 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3990 return 0;
3991 }
3992 EXPORT_SYMBOL(netdev_set_master);
3993
3994 static void dev_change_rx_flags(struct net_device *dev, int flags)
3995 {
3996 const struct net_device_ops *ops = dev->netdev_ops;
3997
3998 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3999 ops->ndo_change_rx_flags(dev, flags);
4000 }
4001
4002 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4003 {
4004 unsigned short old_flags = dev->flags;
4005 uid_t uid;
4006 gid_t gid;
4007
4008 ASSERT_RTNL();
4009
4010 dev->flags |= IFF_PROMISC;
4011 dev->promiscuity += inc;
4012 if (dev->promiscuity == 0) {
4013 /*
4014 * Avoid overflow.
4015 * If inc causes overflow, untouch promisc and return error.
4016 */
4017 if (inc < 0)
4018 dev->flags &= ~IFF_PROMISC;
4019 else {
4020 dev->promiscuity -= inc;
4021 printk(KERN_WARNING "%s: promiscuity touches roof, "
4022 "set promiscuity failed, promiscuity feature "
4023 "of device might be broken.\n", dev->name);
4024 return -EOVERFLOW;
4025 }
4026 }
4027 if (dev->flags != old_flags) {
4028 printk(KERN_INFO "device %s %s promiscuous mode\n",
4029 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4030 "left");
4031 if (audit_enabled) {
4032 current_uid_gid(&uid, &gid);
4033 audit_log(current->audit_context, GFP_ATOMIC,
4034 AUDIT_ANOM_PROMISCUOUS,
4035 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4036 dev->name, (dev->flags & IFF_PROMISC),
4037 (old_flags & IFF_PROMISC),
4038 audit_get_loginuid(current),
4039 uid, gid,
4040 audit_get_sessionid(current));
4041 }
4042
4043 dev_change_rx_flags(dev, IFF_PROMISC);
4044 }
4045 return 0;
4046 }
4047
4048 /**
4049 * dev_set_promiscuity - update promiscuity count on a device
4050 * @dev: device
4051 * @inc: modifier
4052 *
4053 * Add or remove promiscuity from a device. While the count in the device
4054 * remains above zero the interface remains promiscuous. Once it hits zero
4055 * the device reverts back to normal filtering operation. A negative inc
4056 * value is used to drop promiscuity on the device.
4057 * Return 0 if successful or a negative errno code on error.
4058 */
4059 int dev_set_promiscuity(struct net_device *dev, int inc)
4060 {
4061 unsigned short old_flags = dev->flags;
4062 int err;
4063
4064 err = __dev_set_promiscuity(dev, inc);
4065 if (err < 0)
4066 return err;
4067 if (dev->flags != old_flags)
4068 dev_set_rx_mode(dev);
4069 return err;
4070 }
4071 EXPORT_SYMBOL(dev_set_promiscuity);
4072
4073 /**
4074 * dev_set_allmulti - update allmulti count on a device
4075 * @dev: device
4076 * @inc: modifier
4077 *
4078 * Add or remove reception of all multicast frames to a device. While the
4079 * count in the device remains above zero the interface remains listening
4080 * to all interfaces. Once it hits zero the device reverts back to normal
4081 * filtering operation. A negative @inc value is used to drop the counter
4082 * when releasing a resource needing all multicasts.
4083 * Return 0 if successful or a negative errno code on error.
4084 */
4085
4086 int dev_set_allmulti(struct net_device *dev, int inc)
4087 {
4088 unsigned short old_flags = dev->flags;
4089
4090 ASSERT_RTNL();
4091
4092 dev->flags |= IFF_ALLMULTI;
4093 dev->allmulti += inc;
4094 if (dev->allmulti == 0) {
4095 /*
4096 * Avoid overflow.
4097 * If inc causes overflow, untouch allmulti and return error.
4098 */
4099 if (inc < 0)
4100 dev->flags &= ~IFF_ALLMULTI;
4101 else {
4102 dev->allmulti -= inc;
4103 printk(KERN_WARNING "%s: allmulti touches roof, "
4104 "set allmulti failed, allmulti feature of "
4105 "device might be broken.\n", dev->name);
4106 return -EOVERFLOW;
4107 }
4108 }
4109 if (dev->flags ^ old_flags) {
4110 dev_change_rx_flags(dev, IFF_ALLMULTI);
4111 dev_set_rx_mode(dev);
4112 }
4113 return 0;
4114 }
4115 EXPORT_SYMBOL(dev_set_allmulti);
4116
4117 /*
4118 * Upload unicast and multicast address lists to device and
4119 * configure RX filtering. When the device doesn't support unicast
4120 * filtering it is put in promiscuous mode while unicast addresses
4121 * are present.
4122 */
4123 void __dev_set_rx_mode(struct net_device *dev)
4124 {
4125 const struct net_device_ops *ops = dev->netdev_ops;
4126
4127 /* dev_open will call this function so the list will stay sane. */
4128 if (!(dev->flags&IFF_UP))
4129 return;
4130
4131 if (!netif_device_present(dev))
4132 return;
4133
4134 if (ops->ndo_set_rx_mode)
4135 ops->ndo_set_rx_mode(dev);
4136 else {
4137 /* Unicast addresses changes may only happen under the rtnl,
4138 * therefore calling __dev_set_promiscuity here is safe.
4139 */
4140 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4141 __dev_set_promiscuity(dev, 1);
4142 dev->uc_promisc = 1;
4143 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4144 __dev_set_promiscuity(dev, -1);
4145 dev->uc_promisc = 0;
4146 }
4147
4148 if (ops->ndo_set_multicast_list)
4149 ops->ndo_set_multicast_list(dev);
4150 }
4151 }
4152
4153 void dev_set_rx_mode(struct net_device *dev)
4154 {
4155 netif_addr_lock_bh(dev);
4156 __dev_set_rx_mode(dev);
4157 netif_addr_unlock_bh(dev);
4158 }
4159
4160 /**
4161 * dev_get_flags - get flags reported to userspace
4162 * @dev: device
4163 *
4164 * Get the combination of flag bits exported through APIs to userspace.
4165 */
4166 unsigned dev_get_flags(const struct net_device *dev)
4167 {
4168 unsigned flags;
4169
4170 flags = (dev->flags & ~(IFF_PROMISC |
4171 IFF_ALLMULTI |
4172 IFF_RUNNING |
4173 IFF_LOWER_UP |
4174 IFF_DORMANT)) |
4175 (dev->gflags & (IFF_PROMISC |
4176 IFF_ALLMULTI));
4177
4178 if (netif_running(dev)) {
4179 if (netif_oper_up(dev))
4180 flags |= IFF_RUNNING;
4181 if (netif_carrier_ok(dev))
4182 flags |= IFF_LOWER_UP;
4183 if (netif_dormant(dev))
4184 flags |= IFF_DORMANT;
4185 }
4186
4187 return flags;
4188 }
4189 EXPORT_SYMBOL(dev_get_flags);
4190
4191 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4192 {
4193 int old_flags = dev->flags;
4194 int ret;
4195
4196 ASSERT_RTNL();
4197
4198 /*
4199 * Set the flags on our device.
4200 */
4201
4202 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4203 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4204 IFF_AUTOMEDIA)) |
4205 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4206 IFF_ALLMULTI));
4207
4208 /*
4209 * Load in the correct multicast list now the flags have changed.
4210 */
4211
4212 if ((old_flags ^ flags) & IFF_MULTICAST)
4213 dev_change_rx_flags(dev, IFF_MULTICAST);
4214
4215 dev_set_rx_mode(dev);
4216
4217 /*
4218 * Have we downed the interface. We handle IFF_UP ourselves
4219 * according to user attempts to set it, rather than blindly
4220 * setting it.
4221 */
4222
4223 ret = 0;
4224 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4225 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4226
4227 if (!ret)
4228 dev_set_rx_mode(dev);
4229 }
4230
4231 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4232 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4233
4234 dev->gflags ^= IFF_PROMISC;
4235 dev_set_promiscuity(dev, inc);
4236 }
4237
4238 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4239 is important. Some (broken) drivers set IFF_PROMISC, when
4240 IFF_ALLMULTI is requested not asking us and not reporting.
4241 */
4242 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4243 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4244
4245 dev->gflags ^= IFF_ALLMULTI;
4246 dev_set_allmulti(dev, inc);
4247 }
4248
4249 return ret;
4250 }
4251
4252 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4253 {
4254 unsigned int changes = dev->flags ^ old_flags;
4255
4256 if (changes & IFF_UP) {
4257 if (dev->flags & IFF_UP)
4258 call_netdevice_notifiers(NETDEV_UP, dev);
4259 else
4260 call_netdevice_notifiers(NETDEV_DOWN, dev);
4261 }
4262
4263 if (dev->flags & IFF_UP &&
4264 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4265 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4266 }
4267
4268 /**
4269 * dev_change_flags - change device settings
4270 * @dev: device
4271 * @flags: device state flags
4272 *
4273 * Change settings on device based state flags. The flags are
4274 * in the userspace exported format.
4275 */
4276 int dev_change_flags(struct net_device *dev, unsigned flags)
4277 {
4278 int ret, changes;
4279 int old_flags = dev->flags;
4280
4281 ret = __dev_change_flags(dev, flags);
4282 if (ret < 0)
4283 return ret;
4284
4285 changes = old_flags ^ dev->flags;
4286 if (changes)
4287 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4288
4289 __dev_notify_flags(dev, old_flags);
4290 return ret;
4291 }
4292 EXPORT_SYMBOL(dev_change_flags);
4293
4294 /**
4295 * dev_set_mtu - Change maximum transfer unit
4296 * @dev: device
4297 * @new_mtu: new transfer unit
4298 *
4299 * Change the maximum transfer size of the network device.
4300 */
4301 int dev_set_mtu(struct net_device *dev, int new_mtu)
4302 {
4303 const struct net_device_ops *ops = dev->netdev_ops;
4304 int err;
4305
4306 if (new_mtu == dev->mtu)
4307 return 0;
4308
4309 /* MTU must be positive. */
4310 if (new_mtu < 0)
4311 return -EINVAL;
4312
4313 if (!netif_device_present(dev))
4314 return -ENODEV;
4315
4316 err = 0;
4317 if (ops->ndo_change_mtu)
4318 err = ops->ndo_change_mtu(dev, new_mtu);
4319 else
4320 dev->mtu = new_mtu;
4321
4322 if (!err && dev->flags & IFF_UP)
4323 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4324 return err;
4325 }
4326 EXPORT_SYMBOL(dev_set_mtu);
4327
4328 /**
4329 * dev_set_mac_address - Change Media Access Control Address
4330 * @dev: device
4331 * @sa: new address
4332 *
4333 * Change the hardware (MAC) address of the device
4334 */
4335 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4336 {
4337 const struct net_device_ops *ops = dev->netdev_ops;
4338 int err;
4339
4340 if (!ops->ndo_set_mac_address)
4341 return -EOPNOTSUPP;
4342 if (sa->sa_family != dev->type)
4343 return -EINVAL;
4344 if (!netif_device_present(dev))
4345 return -ENODEV;
4346 err = ops->ndo_set_mac_address(dev, sa);
4347 if (!err)
4348 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4349 return err;
4350 }
4351 EXPORT_SYMBOL(dev_set_mac_address);
4352
4353 /*
4354 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4355 */
4356 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4357 {
4358 int err;
4359 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4360
4361 if (!dev)
4362 return -ENODEV;
4363
4364 switch (cmd) {
4365 case SIOCGIFFLAGS: /* Get interface flags */
4366 ifr->ifr_flags = (short) dev_get_flags(dev);
4367 return 0;
4368
4369 case SIOCGIFMETRIC: /* Get the metric on the interface
4370 (currently unused) */
4371 ifr->ifr_metric = 0;
4372 return 0;
4373
4374 case SIOCGIFMTU: /* Get the MTU of a device */
4375 ifr->ifr_mtu = dev->mtu;
4376 return 0;
4377
4378 case SIOCGIFHWADDR:
4379 if (!dev->addr_len)
4380 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4381 else
4382 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4383 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4384 ifr->ifr_hwaddr.sa_family = dev->type;
4385 return 0;
4386
4387 case SIOCGIFSLAVE:
4388 err = -EINVAL;
4389 break;
4390
4391 case SIOCGIFMAP:
4392 ifr->ifr_map.mem_start = dev->mem_start;
4393 ifr->ifr_map.mem_end = dev->mem_end;
4394 ifr->ifr_map.base_addr = dev->base_addr;
4395 ifr->ifr_map.irq = dev->irq;
4396 ifr->ifr_map.dma = dev->dma;
4397 ifr->ifr_map.port = dev->if_port;
4398 return 0;
4399
4400 case SIOCGIFINDEX:
4401 ifr->ifr_ifindex = dev->ifindex;
4402 return 0;
4403
4404 case SIOCGIFTXQLEN:
4405 ifr->ifr_qlen = dev->tx_queue_len;
4406 return 0;
4407
4408 default:
4409 /* dev_ioctl() should ensure this case
4410 * is never reached
4411 */
4412 WARN_ON(1);
4413 err = -EINVAL;
4414 break;
4415
4416 }
4417 return err;
4418 }
4419
4420 /*
4421 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4422 */
4423 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4424 {
4425 int err;
4426 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4427 const struct net_device_ops *ops;
4428
4429 if (!dev)
4430 return -ENODEV;
4431
4432 ops = dev->netdev_ops;
4433
4434 switch (cmd) {
4435 case SIOCSIFFLAGS: /* Set interface flags */
4436 return dev_change_flags(dev, ifr->ifr_flags);
4437
4438 case SIOCSIFMETRIC: /* Set the metric on the interface
4439 (currently unused) */
4440 return -EOPNOTSUPP;
4441
4442 case SIOCSIFMTU: /* Set the MTU of a device */
4443 return dev_set_mtu(dev, ifr->ifr_mtu);
4444
4445 case SIOCSIFHWADDR:
4446 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4447
4448 case SIOCSIFHWBROADCAST:
4449 if (ifr->ifr_hwaddr.sa_family != dev->type)
4450 return -EINVAL;
4451 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4452 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4453 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4454 return 0;
4455
4456 case SIOCSIFMAP:
4457 if (ops->ndo_set_config) {
4458 if (!netif_device_present(dev))
4459 return -ENODEV;
4460 return ops->ndo_set_config(dev, &ifr->ifr_map);
4461 }
4462 return -EOPNOTSUPP;
4463
4464 case SIOCADDMULTI:
4465 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4466 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4467 return -EINVAL;
4468 if (!netif_device_present(dev))
4469 return -ENODEV;
4470 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4471
4472 case SIOCDELMULTI:
4473 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4474 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4475 return -EINVAL;
4476 if (!netif_device_present(dev))
4477 return -ENODEV;
4478 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4479
4480 case SIOCSIFTXQLEN:
4481 if (ifr->ifr_qlen < 0)
4482 return -EINVAL;
4483 dev->tx_queue_len = ifr->ifr_qlen;
4484 return 0;
4485
4486 case SIOCSIFNAME:
4487 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4488 return dev_change_name(dev, ifr->ifr_newname);
4489
4490 /*
4491 * Unknown or private ioctl
4492 */
4493 default:
4494 if ((cmd >= SIOCDEVPRIVATE &&
4495 cmd <= SIOCDEVPRIVATE + 15) ||
4496 cmd == SIOCBONDENSLAVE ||
4497 cmd == SIOCBONDRELEASE ||
4498 cmd == SIOCBONDSETHWADDR ||
4499 cmd == SIOCBONDSLAVEINFOQUERY ||
4500 cmd == SIOCBONDINFOQUERY ||
4501 cmd == SIOCBONDCHANGEACTIVE ||
4502 cmd == SIOCGMIIPHY ||
4503 cmd == SIOCGMIIREG ||
4504 cmd == SIOCSMIIREG ||
4505 cmd == SIOCBRADDIF ||
4506 cmd == SIOCBRDELIF ||
4507 cmd == SIOCSHWTSTAMP ||
4508 cmd == SIOCWANDEV) {
4509 err = -EOPNOTSUPP;
4510 if (ops->ndo_do_ioctl) {
4511 if (netif_device_present(dev))
4512 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4513 else
4514 err = -ENODEV;
4515 }
4516 } else
4517 err = -EINVAL;
4518
4519 }
4520 return err;
4521 }
4522
4523 /*
4524 * This function handles all "interface"-type I/O control requests. The actual
4525 * 'doing' part of this is dev_ifsioc above.
4526 */
4527
4528 /**
4529 * dev_ioctl - network device ioctl
4530 * @net: the applicable net namespace
4531 * @cmd: command to issue
4532 * @arg: pointer to a struct ifreq in user space
4533 *
4534 * Issue ioctl functions to devices. This is normally called by the
4535 * user space syscall interfaces but can sometimes be useful for
4536 * other purposes. The return value is the return from the syscall if
4537 * positive or a negative errno code on error.
4538 */
4539
4540 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4541 {
4542 struct ifreq ifr;
4543 int ret;
4544 char *colon;
4545
4546 /* One special case: SIOCGIFCONF takes ifconf argument
4547 and requires shared lock, because it sleeps writing
4548 to user space.
4549 */
4550
4551 if (cmd == SIOCGIFCONF) {
4552 rtnl_lock();
4553 ret = dev_ifconf(net, (char __user *) arg);
4554 rtnl_unlock();
4555 return ret;
4556 }
4557 if (cmd == SIOCGIFNAME)
4558 return dev_ifname(net, (struct ifreq __user *)arg);
4559
4560 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4561 return -EFAULT;
4562
4563 ifr.ifr_name[IFNAMSIZ-1] = 0;
4564
4565 colon = strchr(ifr.ifr_name, ':');
4566 if (colon)
4567 *colon = 0;
4568
4569 /*
4570 * See which interface the caller is talking about.
4571 */
4572
4573 switch (cmd) {
4574 /*
4575 * These ioctl calls:
4576 * - can be done by all.
4577 * - atomic and do not require locking.
4578 * - return a value
4579 */
4580 case SIOCGIFFLAGS:
4581 case SIOCGIFMETRIC:
4582 case SIOCGIFMTU:
4583 case SIOCGIFHWADDR:
4584 case SIOCGIFSLAVE:
4585 case SIOCGIFMAP:
4586 case SIOCGIFINDEX:
4587 case SIOCGIFTXQLEN:
4588 dev_load(net, ifr.ifr_name);
4589 rcu_read_lock();
4590 ret = dev_ifsioc_locked(net, &ifr, cmd);
4591 rcu_read_unlock();
4592 if (!ret) {
4593 if (colon)
4594 *colon = ':';
4595 if (copy_to_user(arg, &ifr,
4596 sizeof(struct ifreq)))
4597 ret = -EFAULT;
4598 }
4599 return ret;
4600
4601 case SIOCETHTOOL:
4602 dev_load(net, ifr.ifr_name);
4603 rtnl_lock();
4604 ret = dev_ethtool(net, &ifr);
4605 rtnl_unlock();
4606 if (!ret) {
4607 if (colon)
4608 *colon = ':';
4609 if (copy_to_user(arg, &ifr,
4610 sizeof(struct ifreq)))
4611 ret = -EFAULT;
4612 }
4613 return ret;
4614
4615 /*
4616 * These ioctl calls:
4617 * - require superuser power.
4618 * - require strict serialization.
4619 * - return a value
4620 */
4621 case SIOCGMIIPHY:
4622 case SIOCGMIIREG:
4623 case SIOCSIFNAME:
4624 if (!capable(CAP_NET_ADMIN))
4625 return -EPERM;
4626 dev_load(net, ifr.ifr_name);
4627 rtnl_lock();
4628 ret = dev_ifsioc(net, &ifr, cmd);
4629 rtnl_unlock();
4630 if (!ret) {
4631 if (colon)
4632 *colon = ':';
4633 if (copy_to_user(arg, &ifr,
4634 sizeof(struct ifreq)))
4635 ret = -EFAULT;
4636 }
4637 return ret;
4638
4639 /*
4640 * These ioctl calls:
4641 * - require superuser power.
4642 * - require strict serialization.
4643 * - do not return a value
4644 */
4645 case SIOCSIFFLAGS:
4646 case SIOCSIFMETRIC:
4647 case SIOCSIFMTU:
4648 case SIOCSIFMAP:
4649 case SIOCSIFHWADDR:
4650 case SIOCSIFSLAVE:
4651 case SIOCADDMULTI:
4652 case SIOCDELMULTI:
4653 case SIOCSIFHWBROADCAST:
4654 case SIOCSIFTXQLEN:
4655 case SIOCSMIIREG:
4656 case SIOCBONDENSLAVE:
4657 case SIOCBONDRELEASE:
4658 case SIOCBONDSETHWADDR:
4659 case SIOCBONDCHANGEACTIVE:
4660 case SIOCBRADDIF:
4661 case SIOCBRDELIF:
4662 case SIOCSHWTSTAMP:
4663 if (!capable(CAP_NET_ADMIN))
4664 return -EPERM;
4665 /* fall through */
4666 case SIOCBONDSLAVEINFOQUERY:
4667 case SIOCBONDINFOQUERY:
4668 dev_load(net, ifr.ifr_name);
4669 rtnl_lock();
4670 ret = dev_ifsioc(net, &ifr, cmd);
4671 rtnl_unlock();
4672 return ret;
4673
4674 case SIOCGIFMEM:
4675 /* Get the per device memory space. We can add this but
4676 * currently do not support it */
4677 case SIOCSIFMEM:
4678 /* Set the per device memory buffer space.
4679 * Not applicable in our case */
4680 case SIOCSIFLINK:
4681 return -EINVAL;
4682
4683 /*
4684 * Unknown or private ioctl.
4685 */
4686 default:
4687 if (cmd == SIOCWANDEV ||
4688 (cmd >= SIOCDEVPRIVATE &&
4689 cmd <= SIOCDEVPRIVATE + 15)) {
4690 dev_load(net, ifr.ifr_name);
4691 rtnl_lock();
4692 ret = dev_ifsioc(net, &ifr, cmd);
4693 rtnl_unlock();
4694 if (!ret && copy_to_user(arg, &ifr,
4695 sizeof(struct ifreq)))
4696 ret = -EFAULT;
4697 return ret;
4698 }
4699 /* Take care of Wireless Extensions */
4700 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4701 return wext_handle_ioctl(net, &ifr, cmd, arg);
4702 return -EINVAL;
4703 }
4704 }
4705
4706
4707 /**
4708 * dev_new_index - allocate an ifindex
4709 * @net: the applicable net namespace
4710 *
4711 * Returns a suitable unique value for a new device interface
4712 * number. The caller must hold the rtnl semaphore or the
4713 * dev_base_lock to be sure it remains unique.
4714 */
4715 static int dev_new_index(struct net *net)
4716 {
4717 static int ifindex;
4718 for (;;) {
4719 if (++ifindex <= 0)
4720 ifindex = 1;
4721 if (!__dev_get_by_index(net, ifindex))
4722 return ifindex;
4723 }
4724 }
4725
4726 /* Delayed registration/unregisteration */
4727 static LIST_HEAD(net_todo_list);
4728
4729 static void net_set_todo(struct net_device *dev)
4730 {
4731 list_add_tail(&dev->todo_list, &net_todo_list);
4732 }
4733
4734 static void rollback_registered_many(struct list_head *head)
4735 {
4736 struct net_device *dev, *tmp;
4737
4738 BUG_ON(dev_boot_phase);
4739 ASSERT_RTNL();
4740
4741 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4742 /* Some devices call without registering
4743 * for initialization unwind. Remove those
4744 * devices and proceed with the remaining.
4745 */
4746 if (dev->reg_state == NETREG_UNINITIALIZED) {
4747 pr_debug("unregister_netdevice: device %s/%p never "
4748 "was registered\n", dev->name, dev);
4749
4750 WARN_ON(1);
4751 list_del(&dev->unreg_list);
4752 continue;
4753 }
4754
4755 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4756
4757 /* If device is running, close it first. */
4758 dev_close(dev);
4759
4760 /* And unlink it from device chain. */
4761 unlist_netdevice(dev);
4762
4763 dev->reg_state = NETREG_UNREGISTERING;
4764 }
4765
4766 synchronize_net();
4767
4768 list_for_each_entry(dev, head, unreg_list) {
4769 /* Shutdown queueing discipline. */
4770 dev_shutdown(dev);
4771
4772
4773 /* Notify protocols, that we are about to destroy
4774 this device. They should clean all the things.
4775 */
4776 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4777
4778 if (!dev->rtnl_link_ops ||
4779 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4780 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4781
4782 /*
4783 * Flush the unicast and multicast chains
4784 */
4785 dev_uc_flush(dev);
4786 dev_mc_flush(dev);
4787
4788 if (dev->netdev_ops->ndo_uninit)
4789 dev->netdev_ops->ndo_uninit(dev);
4790
4791 /* Notifier chain MUST detach us from master device. */
4792 WARN_ON(dev->master);
4793
4794 /* Remove entries from kobject tree */
4795 netdev_unregister_kobject(dev);
4796 }
4797
4798 /* Process any work delayed until the end of the batch */
4799 dev = list_first_entry(head, struct net_device, unreg_list);
4800 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4801
4802 synchronize_net();
4803
4804 list_for_each_entry(dev, head, unreg_list)
4805 dev_put(dev);
4806 }
4807
4808 static void rollback_registered(struct net_device *dev)
4809 {
4810 LIST_HEAD(single);
4811
4812 list_add(&dev->unreg_list, &single);
4813 rollback_registered_many(&single);
4814 }
4815
4816 static void __netdev_init_queue_locks_one(struct net_device *dev,
4817 struct netdev_queue *dev_queue,
4818 void *_unused)
4819 {
4820 spin_lock_init(&dev_queue->_xmit_lock);
4821 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4822 dev_queue->xmit_lock_owner = -1;
4823 }
4824
4825 static void netdev_init_queue_locks(struct net_device *dev)
4826 {
4827 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4828 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4829 }
4830
4831 unsigned long netdev_fix_features(unsigned long features, const char *name)
4832 {
4833 /* Fix illegal SG+CSUM combinations. */
4834 if ((features & NETIF_F_SG) &&
4835 !(features & NETIF_F_ALL_CSUM)) {
4836 if (name)
4837 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4838 "checksum feature.\n", name);
4839 features &= ~NETIF_F_SG;
4840 }
4841
4842 /* TSO requires that SG is present as well. */
4843 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4844 if (name)
4845 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4846 "SG feature.\n", name);
4847 features &= ~NETIF_F_TSO;
4848 }
4849
4850 if (features & NETIF_F_UFO) {
4851 if (!(features & NETIF_F_GEN_CSUM)) {
4852 if (name)
4853 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4854 "since no NETIF_F_HW_CSUM feature.\n",
4855 name);
4856 features &= ~NETIF_F_UFO;
4857 }
4858
4859 if (!(features & NETIF_F_SG)) {
4860 if (name)
4861 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4862 "since no NETIF_F_SG feature.\n", name);
4863 features &= ~NETIF_F_UFO;
4864 }
4865 }
4866
4867 return features;
4868 }
4869 EXPORT_SYMBOL(netdev_fix_features);
4870
4871 /**
4872 * netif_stacked_transfer_operstate - transfer operstate
4873 * @rootdev: the root or lower level device to transfer state from
4874 * @dev: the device to transfer operstate to
4875 *
4876 * Transfer operational state from root to device. This is normally
4877 * called when a stacking relationship exists between the root
4878 * device and the device(a leaf device).
4879 */
4880 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4881 struct net_device *dev)
4882 {
4883 if (rootdev->operstate == IF_OPER_DORMANT)
4884 netif_dormant_on(dev);
4885 else
4886 netif_dormant_off(dev);
4887
4888 if (netif_carrier_ok(rootdev)) {
4889 if (!netif_carrier_ok(dev))
4890 netif_carrier_on(dev);
4891 } else {
4892 if (netif_carrier_ok(dev))
4893 netif_carrier_off(dev);
4894 }
4895 }
4896 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4897
4898 /**
4899 * register_netdevice - register a network device
4900 * @dev: device to register
4901 *
4902 * Take a completed network device structure and add it to the kernel
4903 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4904 * chain. 0 is returned on success. A negative errno code is returned
4905 * on a failure to set up the device, or if the name is a duplicate.
4906 *
4907 * Callers must hold the rtnl semaphore. You may want
4908 * register_netdev() instead of this.
4909 *
4910 * BUGS:
4911 * The locking appears insufficient to guarantee two parallel registers
4912 * will not get the same name.
4913 */
4914
4915 int register_netdevice(struct net_device *dev)
4916 {
4917 int ret;
4918 struct net *net = dev_net(dev);
4919
4920 BUG_ON(dev_boot_phase);
4921 ASSERT_RTNL();
4922
4923 might_sleep();
4924
4925 /* When net_device's are persistent, this will be fatal. */
4926 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4927 BUG_ON(!net);
4928
4929 spin_lock_init(&dev->addr_list_lock);
4930 netdev_set_addr_lockdep_class(dev);
4931 netdev_init_queue_locks(dev);
4932
4933 dev->iflink = -1;
4934
4935 #ifdef CONFIG_RPS
4936 if (!dev->num_rx_queues) {
4937 /*
4938 * Allocate a single RX queue if driver never called
4939 * alloc_netdev_mq
4940 */
4941
4942 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4943 if (!dev->_rx) {
4944 ret = -ENOMEM;
4945 goto out;
4946 }
4947
4948 dev->_rx->first = dev->_rx;
4949 atomic_set(&dev->_rx->count, 1);
4950 dev->num_rx_queues = 1;
4951 }
4952 #endif
4953 /* Init, if this function is available */
4954 if (dev->netdev_ops->ndo_init) {
4955 ret = dev->netdev_ops->ndo_init(dev);
4956 if (ret) {
4957 if (ret > 0)
4958 ret = -EIO;
4959 goto out;
4960 }
4961 }
4962
4963 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4964 if (ret)
4965 goto err_uninit;
4966
4967 dev->ifindex = dev_new_index(net);
4968 if (dev->iflink == -1)
4969 dev->iflink = dev->ifindex;
4970
4971 /* Fix illegal checksum combinations */
4972 if ((dev->features & NETIF_F_HW_CSUM) &&
4973 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4974 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4975 dev->name);
4976 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4977 }
4978
4979 if ((dev->features & NETIF_F_NO_CSUM) &&
4980 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4981 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4982 dev->name);
4983 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4984 }
4985
4986 dev->features = netdev_fix_features(dev->features, dev->name);
4987
4988 /* Enable software GSO if SG is supported. */
4989 if (dev->features & NETIF_F_SG)
4990 dev->features |= NETIF_F_GSO;
4991
4992 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4993 ret = notifier_to_errno(ret);
4994 if (ret)
4995 goto err_uninit;
4996
4997 ret = netdev_register_kobject(dev);
4998 if (ret)
4999 goto err_uninit;
5000 dev->reg_state = NETREG_REGISTERED;
5001
5002 /*
5003 * Default initial state at registry is that the
5004 * device is present.
5005 */
5006
5007 set_bit(__LINK_STATE_PRESENT, &dev->state);
5008
5009 dev_init_scheduler(dev);
5010 dev_hold(dev);
5011 list_netdevice(dev);
5012
5013 /* Notify protocols, that a new device appeared. */
5014 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5015 ret = notifier_to_errno(ret);
5016 if (ret) {
5017 rollback_registered(dev);
5018 dev->reg_state = NETREG_UNREGISTERED;
5019 }
5020 /*
5021 * Prevent userspace races by waiting until the network
5022 * device is fully setup before sending notifications.
5023 */
5024 if (!dev->rtnl_link_ops ||
5025 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5026 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5027
5028 out:
5029 return ret;
5030
5031 err_uninit:
5032 if (dev->netdev_ops->ndo_uninit)
5033 dev->netdev_ops->ndo_uninit(dev);
5034 goto out;
5035 }
5036 EXPORT_SYMBOL(register_netdevice);
5037
5038 /**
5039 * init_dummy_netdev - init a dummy network device for NAPI
5040 * @dev: device to init
5041 *
5042 * This takes a network device structure and initialize the minimum
5043 * amount of fields so it can be used to schedule NAPI polls without
5044 * registering a full blown interface. This is to be used by drivers
5045 * that need to tie several hardware interfaces to a single NAPI
5046 * poll scheduler due to HW limitations.
5047 */
5048 int init_dummy_netdev(struct net_device *dev)
5049 {
5050 /* Clear everything. Note we don't initialize spinlocks
5051 * are they aren't supposed to be taken by any of the
5052 * NAPI code and this dummy netdev is supposed to be
5053 * only ever used for NAPI polls
5054 */
5055 memset(dev, 0, sizeof(struct net_device));
5056
5057 /* make sure we BUG if trying to hit standard
5058 * register/unregister code path
5059 */
5060 dev->reg_state = NETREG_DUMMY;
5061
5062 /* initialize the ref count */
5063 atomic_set(&dev->refcnt, 1);
5064
5065 /* NAPI wants this */
5066 INIT_LIST_HEAD(&dev->napi_list);
5067
5068 /* a dummy interface is started by default */
5069 set_bit(__LINK_STATE_PRESENT, &dev->state);
5070 set_bit(__LINK_STATE_START, &dev->state);
5071
5072 return 0;
5073 }
5074 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5075
5076
5077 /**
5078 * register_netdev - register a network device
5079 * @dev: device to register
5080 *
5081 * Take a completed network device structure and add it to the kernel
5082 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5083 * chain. 0 is returned on success. A negative errno code is returned
5084 * on a failure to set up the device, or if the name is a duplicate.
5085 *
5086 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5087 * and expands the device name if you passed a format string to
5088 * alloc_netdev.
5089 */
5090 int register_netdev(struct net_device *dev)
5091 {
5092 int err;
5093
5094 rtnl_lock();
5095
5096 /*
5097 * If the name is a format string the caller wants us to do a
5098 * name allocation.
5099 */
5100 if (strchr(dev->name, '%')) {
5101 err = dev_alloc_name(dev, dev->name);
5102 if (err < 0)
5103 goto out;
5104 }
5105
5106 err = register_netdevice(dev);
5107 out:
5108 rtnl_unlock();
5109 return err;
5110 }
5111 EXPORT_SYMBOL(register_netdev);
5112
5113 /*
5114 * netdev_wait_allrefs - wait until all references are gone.
5115 *
5116 * This is called when unregistering network devices.
5117 *
5118 * Any protocol or device that holds a reference should register
5119 * for netdevice notification, and cleanup and put back the
5120 * reference if they receive an UNREGISTER event.
5121 * We can get stuck here if buggy protocols don't correctly
5122 * call dev_put.
5123 */
5124 static void netdev_wait_allrefs(struct net_device *dev)
5125 {
5126 unsigned long rebroadcast_time, warning_time;
5127
5128 linkwatch_forget_dev(dev);
5129
5130 rebroadcast_time = warning_time = jiffies;
5131 while (atomic_read(&dev->refcnt) != 0) {
5132 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5133 rtnl_lock();
5134
5135 /* Rebroadcast unregister notification */
5136 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5137 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5138 * should have already handle it the first time */
5139
5140 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5141 &dev->state)) {
5142 /* We must not have linkwatch events
5143 * pending on unregister. If this
5144 * happens, we simply run the queue
5145 * unscheduled, resulting in a noop
5146 * for this device.
5147 */
5148 linkwatch_run_queue();
5149 }
5150
5151 __rtnl_unlock();
5152
5153 rebroadcast_time = jiffies;
5154 }
5155
5156 msleep(250);
5157
5158 if (time_after(jiffies, warning_time + 10 * HZ)) {
5159 printk(KERN_EMERG "unregister_netdevice: "
5160 "waiting for %s to become free. Usage "
5161 "count = %d\n",
5162 dev->name, atomic_read(&dev->refcnt));
5163 warning_time = jiffies;
5164 }
5165 }
5166 }
5167
5168 /* The sequence is:
5169 *
5170 * rtnl_lock();
5171 * ...
5172 * register_netdevice(x1);
5173 * register_netdevice(x2);
5174 * ...
5175 * unregister_netdevice(y1);
5176 * unregister_netdevice(y2);
5177 * ...
5178 * rtnl_unlock();
5179 * free_netdev(y1);
5180 * free_netdev(y2);
5181 *
5182 * We are invoked by rtnl_unlock().
5183 * This allows us to deal with problems:
5184 * 1) We can delete sysfs objects which invoke hotplug
5185 * without deadlocking with linkwatch via keventd.
5186 * 2) Since we run with the RTNL semaphore not held, we can sleep
5187 * safely in order to wait for the netdev refcnt to drop to zero.
5188 *
5189 * We must not return until all unregister events added during
5190 * the interval the lock was held have been completed.
5191 */
5192 void netdev_run_todo(void)
5193 {
5194 struct list_head list;
5195
5196 /* Snapshot list, allow later requests */
5197 list_replace_init(&net_todo_list, &list);
5198
5199 __rtnl_unlock();
5200
5201 while (!list_empty(&list)) {
5202 struct net_device *dev
5203 = list_first_entry(&list, struct net_device, todo_list);
5204 list_del(&dev->todo_list);
5205
5206 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5207 printk(KERN_ERR "network todo '%s' but state %d\n",
5208 dev->name, dev->reg_state);
5209 dump_stack();
5210 continue;
5211 }
5212
5213 dev->reg_state = NETREG_UNREGISTERED;
5214
5215 on_each_cpu(flush_backlog, dev, 1);
5216
5217 netdev_wait_allrefs(dev);
5218
5219 /* paranoia */
5220 BUG_ON(atomic_read(&dev->refcnt));
5221 WARN_ON(dev->ip_ptr);
5222 WARN_ON(dev->ip6_ptr);
5223 WARN_ON(dev->dn_ptr);
5224
5225 if (dev->destructor)
5226 dev->destructor(dev);
5227
5228 /* Free network device */
5229 kobject_put(&dev->dev.kobj);
5230 }
5231 }
5232
5233 /**
5234 * dev_txq_stats_fold - fold tx_queues stats
5235 * @dev: device to get statistics from
5236 * @stats: struct net_device_stats to hold results
5237 */
5238 void dev_txq_stats_fold(const struct net_device *dev,
5239 struct net_device_stats *stats)
5240 {
5241 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5242 unsigned int i;
5243 struct netdev_queue *txq;
5244
5245 for (i = 0; i < dev->num_tx_queues; i++) {
5246 txq = netdev_get_tx_queue(dev, i);
5247 tx_bytes += txq->tx_bytes;
5248 tx_packets += txq->tx_packets;
5249 tx_dropped += txq->tx_dropped;
5250 }
5251 if (tx_bytes || tx_packets || tx_dropped) {
5252 stats->tx_bytes = tx_bytes;
5253 stats->tx_packets = tx_packets;
5254 stats->tx_dropped = tx_dropped;
5255 }
5256 }
5257 EXPORT_SYMBOL(dev_txq_stats_fold);
5258
5259 /**
5260 * dev_get_stats - get network device statistics
5261 * @dev: device to get statistics from
5262 *
5263 * Get network statistics from device. The device driver may provide
5264 * its own method by setting dev->netdev_ops->get_stats; otherwise
5265 * the internal statistics structure is used.
5266 */
5267 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5268 {
5269 const struct net_device_ops *ops = dev->netdev_ops;
5270
5271 if (ops->ndo_get_stats)
5272 return ops->ndo_get_stats(dev);
5273
5274 dev_txq_stats_fold(dev, &dev->stats);
5275 return &dev->stats;
5276 }
5277 EXPORT_SYMBOL(dev_get_stats);
5278
5279 static void netdev_init_one_queue(struct net_device *dev,
5280 struct netdev_queue *queue,
5281 void *_unused)
5282 {
5283 queue->dev = dev;
5284 }
5285
5286 static void netdev_init_queues(struct net_device *dev)
5287 {
5288 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5289 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5290 spin_lock_init(&dev->tx_global_lock);
5291 }
5292
5293 /**
5294 * alloc_netdev_mq - allocate network device
5295 * @sizeof_priv: size of private data to allocate space for
5296 * @name: device name format string
5297 * @setup: callback to initialize device
5298 * @queue_count: the number of subqueues to allocate
5299 *
5300 * Allocates a struct net_device with private data area for driver use
5301 * and performs basic initialization. Also allocates subquue structs
5302 * for each queue on the device at the end of the netdevice.
5303 */
5304 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5305 void (*setup)(struct net_device *), unsigned int queue_count)
5306 {
5307 struct netdev_queue *tx;
5308 struct net_device *dev;
5309 size_t alloc_size;
5310 struct net_device *p;
5311 #ifdef CONFIG_RPS
5312 struct netdev_rx_queue *rx;
5313 int i;
5314 #endif
5315
5316 BUG_ON(strlen(name) >= sizeof(dev->name));
5317
5318 alloc_size = sizeof(struct net_device);
5319 if (sizeof_priv) {
5320 /* ensure 32-byte alignment of private area */
5321 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5322 alloc_size += sizeof_priv;
5323 }
5324 /* ensure 32-byte alignment of whole construct */
5325 alloc_size += NETDEV_ALIGN - 1;
5326
5327 p = kzalloc(alloc_size, GFP_KERNEL);
5328 if (!p) {
5329 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5330 return NULL;
5331 }
5332
5333 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5334 if (!tx) {
5335 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5336 "tx qdiscs.\n");
5337 goto free_p;
5338 }
5339
5340 #ifdef CONFIG_RPS
5341 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5342 if (!rx) {
5343 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5344 "rx queues.\n");
5345 goto free_tx;
5346 }
5347
5348 atomic_set(&rx->count, queue_count);
5349
5350 /*
5351 * Set a pointer to first element in the array which holds the
5352 * reference count.
5353 */
5354 for (i = 0; i < queue_count; i++)
5355 rx[i].first = rx;
5356 #endif
5357
5358 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5359 dev->padded = (char *)dev - (char *)p;
5360
5361 if (dev_addr_init(dev))
5362 goto free_rx;
5363
5364 dev_mc_init(dev);
5365 dev_uc_init(dev);
5366
5367 dev_net_set(dev, &init_net);
5368
5369 dev->_tx = tx;
5370 dev->num_tx_queues = queue_count;
5371 dev->real_num_tx_queues = queue_count;
5372
5373 #ifdef CONFIG_RPS
5374 dev->_rx = rx;
5375 dev->num_rx_queues = queue_count;
5376 #endif
5377
5378 dev->gso_max_size = GSO_MAX_SIZE;
5379
5380 netdev_init_queues(dev);
5381
5382 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5383 dev->ethtool_ntuple_list.count = 0;
5384 INIT_LIST_HEAD(&dev->napi_list);
5385 INIT_LIST_HEAD(&dev->unreg_list);
5386 INIT_LIST_HEAD(&dev->link_watch_list);
5387 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5388 setup(dev);
5389 strcpy(dev->name, name);
5390 return dev;
5391
5392 free_rx:
5393 #ifdef CONFIG_RPS
5394 kfree(rx);
5395 free_tx:
5396 #endif
5397 kfree(tx);
5398 free_p:
5399 kfree(p);
5400 return NULL;
5401 }
5402 EXPORT_SYMBOL(alloc_netdev_mq);
5403
5404 /**
5405 * free_netdev - free network device
5406 * @dev: device
5407 *
5408 * This function does the last stage of destroying an allocated device
5409 * interface. The reference to the device object is released.
5410 * If this is the last reference then it will be freed.
5411 */
5412 void free_netdev(struct net_device *dev)
5413 {
5414 struct napi_struct *p, *n;
5415
5416 release_net(dev_net(dev));
5417
5418 kfree(dev->_tx);
5419
5420 /* Flush device addresses */
5421 dev_addr_flush(dev);
5422
5423 /* Clear ethtool n-tuple list */
5424 ethtool_ntuple_flush(dev);
5425
5426 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5427 netif_napi_del(p);
5428
5429 /* Compatibility with error handling in drivers */
5430 if (dev->reg_state == NETREG_UNINITIALIZED) {
5431 kfree((char *)dev - dev->padded);
5432 return;
5433 }
5434
5435 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5436 dev->reg_state = NETREG_RELEASED;
5437
5438 /* will free via device release */
5439 put_device(&dev->dev);
5440 }
5441 EXPORT_SYMBOL(free_netdev);
5442
5443 /**
5444 * synchronize_net - Synchronize with packet receive processing
5445 *
5446 * Wait for packets currently being received to be done.
5447 * Does not block later packets from starting.
5448 */
5449 void synchronize_net(void)
5450 {
5451 might_sleep();
5452 synchronize_rcu();
5453 }
5454 EXPORT_SYMBOL(synchronize_net);
5455
5456 /**
5457 * unregister_netdevice_queue - remove device from the kernel
5458 * @dev: device
5459 * @head: list
5460 *
5461 * This function shuts down a device interface and removes it
5462 * from the kernel tables.
5463 * If head not NULL, device is queued to be unregistered later.
5464 *
5465 * Callers must hold the rtnl semaphore. You may want
5466 * unregister_netdev() instead of this.
5467 */
5468
5469 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5470 {
5471 ASSERT_RTNL();
5472
5473 if (head) {
5474 list_move_tail(&dev->unreg_list, head);
5475 } else {
5476 rollback_registered(dev);
5477 /* Finish processing unregister after unlock */
5478 net_set_todo(dev);
5479 }
5480 }
5481 EXPORT_SYMBOL(unregister_netdevice_queue);
5482
5483 /**
5484 * unregister_netdevice_many - unregister many devices
5485 * @head: list of devices
5486 */
5487 void unregister_netdevice_many(struct list_head *head)
5488 {
5489 struct net_device *dev;
5490
5491 if (!list_empty(head)) {
5492 rollback_registered_many(head);
5493 list_for_each_entry(dev, head, unreg_list)
5494 net_set_todo(dev);
5495 }
5496 }
5497 EXPORT_SYMBOL(unregister_netdevice_many);
5498
5499 /**
5500 * unregister_netdev - remove device from the kernel
5501 * @dev: device
5502 *
5503 * This function shuts down a device interface and removes it
5504 * from the kernel tables.
5505 *
5506 * This is just a wrapper for unregister_netdevice that takes
5507 * the rtnl semaphore. In general you want to use this and not
5508 * unregister_netdevice.
5509 */
5510 void unregister_netdev(struct net_device *dev)
5511 {
5512 rtnl_lock();
5513 unregister_netdevice(dev);
5514 rtnl_unlock();
5515 }
5516 EXPORT_SYMBOL(unregister_netdev);
5517
5518 /**
5519 * dev_change_net_namespace - move device to different nethost namespace
5520 * @dev: device
5521 * @net: network namespace
5522 * @pat: If not NULL name pattern to try if the current device name
5523 * is already taken in the destination network namespace.
5524 *
5525 * This function shuts down a device interface and moves it
5526 * to a new network namespace. On success 0 is returned, on
5527 * a failure a netagive errno code is returned.
5528 *
5529 * Callers must hold the rtnl semaphore.
5530 */
5531
5532 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5533 {
5534 int err;
5535
5536 ASSERT_RTNL();
5537
5538 /* Don't allow namespace local devices to be moved. */
5539 err = -EINVAL;
5540 if (dev->features & NETIF_F_NETNS_LOCAL)
5541 goto out;
5542
5543 /* Ensure the device has been registrered */
5544 err = -EINVAL;
5545 if (dev->reg_state != NETREG_REGISTERED)
5546 goto out;
5547
5548 /* Get out if there is nothing todo */
5549 err = 0;
5550 if (net_eq(dev_net(dev), net))
5551 goto out;
5552
5553 /* Pick the destination device name, and ensure
5554 * we can use it in the destination network namespace.
5555 */
5556 err = -EEXIST;
5557 if (__dev_get_by_name(net, dev->name)) {
5558 /* We get here if we can't use the current device name */
5559 if (!pat)
5560 goto out;
5561 if (dev_get_valid_name(net, pat, dev->name, 1))
5562 goto out;
5563 }
5564
5565 /*
5566 * And now a mini version of register_netdevice unregister_netdevice.
5567 */
5568
5569 /* If device is running close it first. */
5570 dev_close(dev);
5571
5572 /* And unlink it from device chain */
5573 err = -ENODEV;
5574 unlist_netdevice(dev);
5575
5576 synchronize_net();
5577
5578 /* Shutdown queueing discipline. */
5579 dev_shutdown(dev);
5580
5581 /* Notify protocols, that we are about to destroy
5582 this device. They should clean all the things.
5583 */
5584 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5585 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5586
5587 /*
5588 * Flush the unicast and multicast chains
5589 */
5590 dev_uc_flush(dev);
5591 dev_mc_flush(dev);
5592
5593 /* Actually switch the network namespace */
5594 dev_net_set(dev, net);
5595
5596 /* If there is an ifindex conflict assign a new one */
5597 if (__dev_get_by_index(net, dev->ifindex)) {
5598 int iflink = (dev->iflink == dev->ifindex);
5599 dev->ifindex = dev_new_index(net);
5600 if (iflink)
5601 dev->iflink = dev->ifindex;
5602 }
5603
5604 /* Fixup kobjects */
5605 err = device_rename(&dev->dev, dev->name);
5606 WARN_ON(err);
5607
5608 /* Add the device back in the hashes */
5609 list_netdevice(dev);
5610
5611 /* Notify protocols, that a new device appeared. */
5612 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5613
5614 /*
5615 * Prevent userspace races by waiting until the network
5616 * device is fully setup before sending notifications.
5617 */
5618 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5619
5620 synchronize_net();
5621 err = 0;
5622 out:
5623 return err;
5624 }
5625 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5626
5627 static int dev_cpu_callback(struct notifier_block *nfb,
5628 unsigned long action,
5629 void *ocpu)
5630 {
5631 struct sk_buff **list_skb;
5632 struct sk_buff *skb;
5633 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5634 struct softnet_data *sd, *oldsd;
5635
5636 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5637 return NOTIFY_OK;
5638
5639 local_irq_disable();
5640 cpu = smp_processor_id();
5641 sd = &per_cpu(softnet_data, cpu);
5642 oldsd = &per_cpu(softnet_data, oldcpu);
5643
5644 /* Find end of our completion_queue. */
5645 list_skb = &sd->completion_queue;
5646 while (*list_skb)
5647 list_skb = &(*list_skb)->next;
5648 /* Append completion queue from offline CPU. */
5649 *list_skb = oldsd->completion_queue;
5650 oldsd->completion_queue = NULL;
5651
5652 /* Append output queue from offline CPU. */
5653 if (oldsd->output_queue) {
5654 *sd->output_queue_tailp = oldsd->output_queue;
5655 sd->output_queue_tailp = oldsd->output_queue_tailp;
5656 oldsd->output_queue = NULL;
5657 oldsd->output_queue_tailp = &oldsd->output_queue;
5658 }
5659
5660 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5661 local_irq_enable();
5662
5663 /* Process offline CPU's input_pkt_queue */
5664 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5665 netif_rx(skb);
5666 input_queue_head_add(oldsd, 1);
5667 }
5668 while ((skb = __skb_dequeue(&oldsd->process_queue)))
5669 netif_rx(skb);
5670
5671 return NOTIFY_OK;
5672 }
5673
5674
5675 /**
5676 * netdev_increment_features - increment feature set by one
5677 * @all: current feature set
5678 * @one: new feature set
5679 * @mask: mask feature set
5680 *
5681 * Computes a new feature set after adding a device with feature set
5682 * @one to the master device with current feature set @all. Will not
5683 * enable anything that is off in @mask. Returns the new feature set.
5684 */
5685 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5686 unsigned long mask)
5687 {
5688 /* If device needs checksumming, downgrade to it. */
5689 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5690 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5691 else if (mask & NETIF_F_ALL_CSUM) {
5692 /* If one device supports v4/v6 checksumming, set for all. */
5693 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5694 !(all & NETIF_F_GEN_CSUM)) {
5695 all &= ~NETIF_F_ALL_CSUM;
5696 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5697 }
5698
5699 /* If one device supports hw checksumming, set for all. */
5700 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5701 all &= ~NETIF_F_ALL_CSUM;
5702 all |= NETIF_F_HW_CSUM;
5703 }
5704 }
5705
5706 one |= NETIF_F_ALL_CSUM;
5707
5708 one |= all & NETIF_F_ONE_FOR_ALL;
5709 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5710 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5711
5712 return all;
5713 }
5714 EXPORT_SYMBOL(netdev_increment_features);
5715
5716 static struct hlist_head *netdev_create_hash(void)
5717 {
5718 int i;
5719 struct hlist_head *hash;
5720
5721 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5722 if (hash != NULL)
5723 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5724 INIT_HLIST_HEAD(&hash[i]);
5725
5726 return hash;
5727 }
5728
5729 /* Initialize per network namespace state */
5730 static int __net_init netdev_init(struct net *net)
5731 {
5732 INIT_LIST_HEAD(&net->dev_base_head);
5733
5734 net->dev_name_head = netdev_create_hash();
5735 if (net->dev_name_head == NULL)
5736 goto err_name;
5737
5738 net->dev_index_head = netdev_create_hash();
5739 if (net->dev_index_head == NULL)
5740 goto err_idx;
5741
5742 return 0;
5743
5744 err_idx:
5745 kfree(net->dev_name_head);
5746 err_name:
5747 return -ENOMEM;
5748 }
5749
5750 /**
5751 * netdev_drivername - network driver for the device
5752 * @dev: network device
5753 * @buffer: buffer for resulting name
5754 * @len: size of buffer
5755 *
5756 * Determine network driver for device.
5757 */
5758 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5759 {
5760 const struct device_driver *driver;
5761 const struct device *parent;
5762
5763 if (len <= 0 || !buffer)
5764 return buffer;
5765 buffer[0] = 0;
5766
5767 parent = dev->dev.parent;
5768
5769 if (!parent)
5770 return buffer;
5771
5772 driver = parent->driver;
5773 if (driver && driver->name)
5774 strlcpy(buffer, driver->name, len);
5775 return buffer;
5776 }
5777
5778 static void __net_exit netdev_exit(struct net *net)
5779 {
5780 kfree(net->dev_name_head);
5781 kfree(net->dev_index_head);
5782 }
5783
5784 static struct pernet_operations __net_initdata netdev_net_ops = {
5785 .init = netdev_init,
5786 .exit = netdev_exit,
5787 };
5788
5789 static void __net_exit default_device_exit(struct net *net)
5790 {
5791 struct net_device *dev, *aux;
5792 /*
5793 * Push all migratable network devices back to the
5794 * initial network namespace
5795 */
5796 rtnl_lock();
5797 for_each_netdev_safe(net, dev, aux) {
5798 int err;
5799 char fb_name[IFNAMSIZ];
5800
5801 /* Ignore unmoveable devices (i.e. loopback) */
5802 if (dev->features & NETIF_F_NETNS_LOCAL)
5803 continue;
5804
5805 /* Leave virtual devices for the generic cleanup */
5806 if (dev->rtnl_link_ops)
5807 continue;
5808
5809 /* Push remaing network devices to init_net */
5810 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5811 err = dev_change_net_namespace(dev, &init_net, fb_name);
5812 if (err) {
5813 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5814 __func__, dev->name, err);
5815 BUG();
5816 }
5817 }
5818 rtnl_unlock();
5819 }
5820
5821 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5822 {
5823 /* At exit all network devices most be removed from a network
5824 * namespace. Do this in the reverse order of registeration.
5825 * Do this across as many network namespaces as possible to
5826 * improve batching efficiency.
5827 */
5828 struct net_device *dev;
5829 struct net *net;
5830 LIST_HEAD(dev_kill_list);
5831
5832 rtnl_lock();
5833 list_for_each_entry(net, net_list, exit_list) {
5834 for_each_netdev_reverse(net, dev) {
5835 if (dev->rtnl_link_ops)
5836 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5837 else
5838 unregister_netdevice_queue(dev, &dev_kill_list);
5839 }
5840 }
5841 unregister_netdevice_many(&dev_kill_list);
5842 rtnl_unlock();
5843 }
5844
5845 static struct pernet_operations __net_initdata default_device_ops = {
5846 .exit = default_device_exit,
5847 .exit_batch = default_device_exit_batch,
5848 };
5849
5850 /*
5851 * Initialize the DEV module. At boot time this walks the device list and
5852 * unhooks any devices that fail to initialise (normally hardware not
5853 * present) and leaves us with a valid list of present and active devices.
5854 *
5855 */
5856
5857 /*
5858 * This is called single threaded during boot, so no need
5859 * to take the rtnl semaphore.
5860 */
5861 static int __init net_dev_init(void)
5862 {
5863 int i, rc = -ENOMEM;
5864
5865 BUG_ON(!dev_boot_phase);
5866
5867 if (dev_proc_init())
5868 goto out;
5869
5870 if (netdev_kobject_init())
5871 goto out;
5872
5873 INIT_LIST_HEAD(&ptype_all);
5874 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5875 INIT_LIST_HEAD(&ptype_base[i]);
5876
5877 if (register_pernet_subsys(&netdev_net_ops))
5878 goto out;
5879
5880 /*
5881 * Initialise the packet receive queues.
5882 */
5883
5884 for_each_possible_cpu(i) {
5885 struct softnet_data *sd = &per_cpu(softnet_data, i);
5886
5887 memset(sd, 0, sizeof(*sd));
5888 skb_queue_head_init(&sd->input_pkt_queue);
5889 skb_queue_head_init(&sd->process_queue);
5890 sd->completion_queue = NULL;
5891 INIT_LIST_HEAD(&sd->poll_list);
5892 sd->output_queue = NULL;
5893 sd->output_queue_tailp = &sd->output_queue;
5894 #ifdef CONFIG_RPS
5895 sd->csd.func = rps_trigger_softirq;
5896 sd->csd.info = sd;
5897 sd->csd.flags = 0;
5898 sd->cpu = i;
5899 #endif
5900
5901 sd->backlog.poll = process_backlog;
5902 sd->backlog.weight = weight_p;
5903 sd->backlog.gro_list = NULL;
5904 sd->backlog.gro_count = 0;
5905 }
5906
5907 dev_boot_phase = 0;
5908
5909 /* The loopback device is special if any other network devices
5910 * is present in a network namespace the loopback device must
5911 * be present. Since we now dynamically allocate and free the
5912 * loopback device ensure this invariant is maintained by
5913 * keeping the loopback device as the first device on the
5914 * list of network devices. Ensuring the loopback devices
5915 * is the first device that appears and the last network device
5916 * that disappears.
5917 */
5918 if (register_pernet_device(&loopback_net_ops))
5919 goto out;
5920
5921 if (register_pernet_device(&default_device_ops))
5922 goto out;
5923
5924 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5925 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5926
5927 hotcpu_notifier(dev_cpu_callback, 0);
5928 dst_init();
5929 dev_mcast_init();
5930 rc = 0;
5931 out:
5932 return rc;
5933 }
5934
5935 subsys_initcall(net_dev_init);
5936
5937 static int __init initialize_hashrnd(void)
5938 {
5939 get_random_bytes(&hashrnd, sizeof(hashrnd));
5940 return 0;
5941 }
5942
5943 late_initcall_sync(initialize_hashrnd);
5944
This page took 0.174507 seconds and 6 git commands to generate.