netvm: set PF_MEMALLOC as appropriate during SKB processing
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1062
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1067 }
1068 return 0;
1069 }
1070
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1074
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1077 }
1078
1079
1080 /**
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed features.
1085 */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091
1092 /**
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1095 *
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1099 */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114
1115 /**
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1119 *
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1123 */
1124
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 struct net_device *dev;
1128 int no_module;
1129
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1133
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 name);
1141 }
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 const struct net_device_ops *ops = dev->netdev_ops;
1148 int ret;
1149
1150 ASSERT_RTNL();
1151
1152 if (!netif_device_present(dev))
1153 return -ENODEV;
1154
1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 ret = notifier_to_errno(ret);
1157 if (ret)
1158 return ret;
1159
1160 set_bit(__LINK_STATE_START, &dev->state);
1161
1162 if (ops->ndo_validate_addr)
1163 ret = ops->ndo_validate_addr(dev);
1164
1165 if (!ret && ops->ndo_open)
1166 ret = ops->ndo_open(dev);
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 dev->flags |= IFF_UP;
1172 net_dmaengine_get();
1173 dev_set_rx_mode(dev);
1174 dev_activate(dev);
1175 }
1176
1177 return ret;
1178 }
1179
1180 /**
1181 * dev_open - prepare an interface for use.
1182 * @dev: device to open
1183 *
1184 * Takes a device from down to up state. The device's private open
1185 * function is invoked and then the multicast lists are loaded. Finally
1186 * the device is moved into the up state and a %NETDEV_UP message is
1187 * sent to the netdev notifier chain.
1188 *
1189 * Calling this function on an active interface is a nop. On a failure
1190 * a negative errno code is returned.
1191 */
1192 int dev_open(struct net_device *dev)
1193 {
1194 int ret;
1195
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 ret = __dev_open(dev);
1200 if (ret < 0)
1201 return ret;
1202
1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1204 call_netdevice_notifiers(NETDEV_UP, dev);
1205
1206 return ret;
1207 }
1208 EXPORT_SYMBOL(dev_open);
1209
1210 static int __dev_close_many(struct list_head *head)
1211 {
1212 struct net_device *dev;
1213
1214 ASSERT_RTNL();
1215 might_sleep();
1216
1217 list_for_each_entry(dev, head, unreg_list) {
1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1219
1220 clear_bit(__LINK_STATE_START, &dev->state);
1221
1222 /* Synchronize to scheduled poll. We cannot touch poll list, it
1223 * can be even on different cpu. So just clear netif_running().
1224 *
1225 * dev->stop() will invoke napi_disable() on all of it's
1226 * napi_struct instances on this device.
1227 */
1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1229 }
1230
1231 dev_deactivate_many(head);
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 const struct net_device_ops *ops = dev->netdev_ops;
1235
1236 /*
1237 * Call the device specific close. This cannot fail.
1238 * Only if device is UP
1239 *
1240 * We allow it to be called even after a DETACH hot-plug
1241 * event.
1242 */
1243 if (ops->ndo_stop)
1244 ops->ndo_stop(dev);
1245
1246 dev->flags &= ~IFF_UP;
1247 net_dmaengine_put();
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int __dev_close(struct net_device *dev)
1254 {
1255 int retval;
1256 LIST_HEAD(single);
1257
1258 list_add(&dev->unreg_list, &single);
1259 retval = __dev_close_many(&single);
1260 list_del(&single);
1261 return retval;
1262 }
1263
1264 static int dev_close_many(struct list_head *head)
1265 {
1266 struct net_device *dev, *tmp;
1267 LIST_HEAD(tmp_list);
1268
1269 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1270 if (!(dev->flags & IFF_UP))
1271 list_move(&dev->unreg_list, &tmp_list);
1272
1273 __dev_close_many(head);
1274
1275 list_for_each_entry(dev, head, unreg_list) {
1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1277 call_netdevice_notifiers(NETDEV_DOWN, dev);
1278 }
1279
1280 /* rollback_registered_many needs the complete original list */
1281 list_splice(&tmp_list, head);
1282 return 0;
1283 }
1284
1285 /**
1286 * dev_close - shutdown an interface.
1287 * @dev: device to shutdown
1288 *
1289 * This function moves an active device into down state. A
1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1292 * chain.
1293 */
1294 int dev_close(struct net_device *dev)
1295 {
1296 if (dev->flags & IFF_UP) {
1297 LIST_HEAD(single);
1298
1299 list_add(&dev->unreg_list, &single);
1300 dev_close_many(&single);
1301 list_del(&single);
1302 }
1303 return 0;
1304 }
1305 EXPORT_SYMBOL(dev_close);
1306
1307
1308 /**
1309 * dev_disable_lro - disable Large Receive Offload on a device
1310 * @dev: device
1311 *
1312 * Disable Large Receive Offload (LRO) on a net device. Must be
1313 * called under RTNL. This is needed if received packets may be
1314 * forwarded to another interface.
1315 */
1316 void dev_disable_lro(struct net_device *dev)
1317 {
1318 /*
1319 * If we're trying to disable lro on a vlan device
1320 * use the underlying physical device instead
1321 */
1322 if (is_vlan_dev(dev))
1323 dev = vlan_dev_real_dev(dev);
1324
1325 dev->wanted_features &= ~NETIF_F_LRO;
1326 netdev_update_features(dev);
1327
1328 if (unlikely(dev->features & NETIF_F_LRO))
1329 netdev_WARN(dev, "failed to disable LRO!\n");
1330 }
1331 EXPORT_SYMBOL(dev_disable_lro);
1332
1333
1334 static int dev_boot_phase = 1;
1335
1336 /**
1337 * register_netdevice_notifier - register a network notifier block
1338 * @nb: notifier
1339 *
1340 * Register a notifier to be called when network device events occur.
1341 * The notifier passed is linked into the kernel structures and must
1342 * not be reused until it has been unregistered. A negative errno code
1343 * is returned on a failure.
1344 *
1345 * When registered all registration and up events are replayed
1346 * to the new notifier to allow device to have a race free
1347 * view of the network device list.
1348 */
1349
1350 int register_netdevice_notifier(struct notifier_block *nb)
1351 {
1352 struct net_device *dev;
1353 struct net_device *last;
1354 struct net *net;
1355 int err;
1356
1357 rtnl_lock();
1358 err = raw_notifier_chain_register(&netdev_chain, nb);
1359 if (err)
1360 goto unlock;
1361 if (dev_boot_phase)
1362 goto unlock;
1363 for_each_net(net) {
1364 for_each_netdev(net, dev) {
1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1366 err = notifier_to_errno(err);
1367 if (err)
1368 goto rollback;
1369
1370 if (!(dev->flags & IFF_UP))
1371 continue;
1372
1373 nb->notifier_call(nb, NETDEV_UP, dev);
1374 }
1375 }
1376
1377 unlock:
1378 rtnl_unlock();
1379 return err;
1380
1381 rollback:
1382 last = dev;
1383 for_each_net(net) {
1384 for_each_netdev(net, dev) {
1385 if (dev == last)
1386 goto outroll;
1387
1388 if (dev->flags & IFF_UP) {
1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1390 nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 }
1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 }
1395 }
1396
1397 outroll:
1398 raw_notifier_chain_unregister(&netdev_chain, nb);
1399 goto unlock;
1400 }
1401 EXPORT_SYMBOL(register_netdevice_notifier);
1402
1403 /**
1404 * unregister_netdevice_notifier - unregister a network notifier block
1405 * @nb: notifier
1406 *
1407 * Unregister a notifier previously registered by
1408 * register_netdevice_notifier(). The notifier is unlinked into the
1409 * kernel structures and may then be reused. A negative errno code
1410 * is returned on a failure.
1411 *
1412 * After unregistering unregister and down device events are synthesized
1413 * for all devices on the device list to the removed notifier to remove
1414 * the need for special case cleanup code.
1415 */
1416
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 struct net_device *dev;
1420 struct net *net;
1421 int err;
1422
1423 rtnl_lock();
1424 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1425 if (err)
1426 goto unlock;
1427
1428 for_each_net(net) {
1429 for_each_netdev(net, dev) {
1430 if (dev->flags & IFF_UP) {
1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1432 nb->notifier_call(nb, NETDEV_DOWN, dev);
1433 }
1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1436 }
1437 }
1438 unlock:
1439 rtnl_unlock();
1440 return err;
1441 }
1442 EXPORT_SYMBOL(unregister_netdevice_notifier);
1443
1444 /**
1445 * call_netdevice_notifiers - call all network notifier blocks
1446 * @val: value passed unmodified to notifier function
1447 * @dev: net_device pointer passed unmodified to notifier function
1448 *
1449 * Call all network notifier blocks. Parameters and return value
1450 * are as for raw_notifier_call_chain().
1451 */
1452
1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1454 {
1455 ASSERT_RTNL();
1456 return raw_notifier_call_chain(&netdev_chain, val, dev);
1457 }
1458 EXPORT_SYMBOL(call_netdevice_notifiers);
1459
1460 static struct static_key netstamp_needed __read_mostly;
1461 #ifdef HAVE_JUMP_LABEL
1462 /* We are not allowed to call static_key_slow_dec() from irq context
1463 * If net_disable_timestamp() is called from irq context, defer the
1464 * static_key_slow_dec() calls.
1465 */
1466 static atomic_t netstamp_needed_deferred;
1467 #endif
1468
1469 void net_enable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1473
1474 if (deferred) {
1475 while (--deferred)
1476 static_key_slow_dec(&netstamp_needed);
1477 return;
1478 }
1479 #endif
1480 WARN_ON(in_interrupt());
1481 static_key_slow_inc(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_enable_timestamp);
1484
1485 void net_disable_timestamp(void)
1486 {
1487 #ifdef HAVE_JUMP_LABEL
1488 if (in_interrupt()) {
1489 atomic_inc(&netstamp_needed_deferred);
1490 return;
1491 }
1492 #endif
1493 static_key_slow_dec(&netstamp_needed);
1494 }
1495 EXPORT_SYMBOL(net_disable_timestamp);
1496
1497 static inline void net_timestamp_set(struct sk_buff *skb)
1498 {
1499 skb->tstamp.tv64 = 0;
1500 if (static_key_false(&netstamp_needed))
1501 __net_timestamp(skb);
1502 }
1503
1504 #define net_timestamp_check(COND, SKB) \
1505 if (static_key_false(&netstamp_needed)) { \
1506 if ((COND) && !(SKB)->tstamp.tv64) \
1507 __net_timestamp(SKB); \
1508 } \
1509
1510 static int net_hwtstamp_validate(struct ifreq *ifr)
1511 {
1512 struct hwtstamp_config cfg;
1513 enum hwtstamp_tx_types tx_type;
1514 enum hwtstamp_rx_filters rx_filter;
1515 int tx_type_valid = 0;
1516 int rx_filter_valid = 0;
1517
1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1519 return -EFAULT;
1520
1521 if (cfg.flags) /* reserved for future extensions */
1522 return -EINVAL;
1523
1524 tx_type = cfg.tx_type;
1525 rx_filter = cfg.rx_filter;
1526
1527 switch (tx_type) {
1528 case HWTSTAMP_TX_OFF:
1529 case HWTSTAMP_TX_ON:
1530 case HWTSTAMP_TX_ONESTEP_SYNC:
1531 tx_type_valid = 1;
1532 break;
1533 }
1534
1535 switch (rx_filter) {
1536 case HWTSTAMP_FILTER_NONE:
1537 case HWTSTAMP_FILTER_ALL:
1538 case HWTSTAMP_FILTER_SOME:
1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1548 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1549 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1551 rx_filter_valid = 1;
1552 break;
1553 }
1554
1555 if (!tx_type_valid || !rx_filter_valid)
1556 return -ERANGE;
1557
1558 return 0;
1559 }
1560
1561 static inline bool is_skb_forwardable(struct net_device *dev,
1562 struct sk_buff *skb)
1563 {
1564 unsigned int len;
1565
1566 if (!(dev->flags & IFF_UP))
1567 return false;
1568
1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1570 if (skb->len <= len)
1571 return true;
1572
1573 /* if TSO is enabled, we don't care about the length as the packet
1574 * could be forwarded without being segmented before
1575 */
1576 if (skb_is_gso(skb))
1577 return true;
1578
1579 return false;
1580 }
1581
1582 /**
1583 * dev_forward_skb - loopback an skb to another netif
1584 *
1585 * @dev: destination network device
1586 * @skb: buffer to forward
1587 *
1588 * return values:
1589 * NET_RX_SUCCESS (no congestion)
1590 * NET_RX_DROP (packet was dropped, but freed)
1591 *
1592 * dev_forward_skb can be used for injecting an skb from the
1593 * start_xmit function of one device into the receive queue
1594 * of another device.
1595 *
1596 * The receiving device may be in another namespace, so
1597 * we have to clear all information in the skb that could
1598 * impact namespace isolation.
1599 */
1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1604 atomic_long_inc(&dev->rx_dropped);
1605 kfree_skb(skb);
1606 return NET_RX_DROP;
1607 }
1608 }
1609
1610 skb_orphan(skb);
1611 nf_reset(skb);
1612
1613 if (unlikely(!is_skb_forwardable(dev, skb))) {
1614 atomic_long_inc(&dev->rx_dropped);
1615 kfree_skb(skb);
1616 return NET_RX_DROP;
1617 }
1618 skb->skb_iif = 0;
1619 skb->dev = dev;
1620 skb_dst_drop(skb);
1621 skb->tstamp.tv64 = 0;
1622 skb->pkt_type = PACKET_HOST;
1623 skb->protocol = eth_type_trans(skb, dev);
1624 skb->mark = 0;
1625 secpath_reset(skb);
1626 nf_reset(skb);
1627 return netif_rx(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630
1631 static inline int deliver_skb(struct sk_buff *skb,
1632 struct packet_type *pt_prev,
1633 struct net_device *orig_dev)
1634 {
1635 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1636 return -ENOMEM;
1637 atomic_inc(&skb->users);
1638 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1639 }
1640
1641 /*
1642 * Support routine. Sends outgoing frames to any network
1643 * taps currently in use.
1644 */
1645
1646 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1647 {
1648 struct packet_type *ptype;
1649 struct sk_buff *skb2 = NULL;
1650 struct packet_type *pt_prev = NULL;
1651
1652 rcu_read_lock();
1653 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1654 /* Never send packets back to the socket
1655 * they originated from - MvS (miquels@drinkel.ow.org)
1656 */
1657 if ((ptype->dev == dev || !ptype->dev) &&
1658 (ptype->af_packet_priv == NULL ||
1659 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1660 if (pt_prev) {
1661 deliver_skb(skb2, pt_prev, skb->dev);
1662 pt_prev = ptype;
1663 continue;
1664 }
1665
1666 skb2 = skb_clone(skb, GFP_ATOMIC);
1667 if (!skb2)
1668 break;
1669
1670 net_timestamp_set(skb2);
1671
1672 /* skb->nh should be correctly
1673 set by sender, so that the second statement is
1674 just protection against buggy protocols.
1675 */
1676 skb_reset_mac_header(skb2);
1677
1678 if (skb_network_header(skb2) < skb2->data ||
1679 skb2->network_header > skb2->tail) {
1680 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1681 ntohs(skb2->protocol),
1682 dev->name);
1683 skb_reset_network_header(skb2);
1684 }
1685
1686 skb2->transport_header = skb2->network_header;
1687 skb2->pkt_type = PACKET_OUTGOING;
1688 pt_prev = ptype;
1689 }
1690 }
1691 if (pt_prev)
1692 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1693 rcu_read_unlock();
1694 }
1695
1696 /**
1697 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1698 * @dev: Network device
1699 * @txq: number of queues available
1700 *
1701 * If real_num_tx_queues is changed the tc mappings may no longer be
1702 * valid. To resolve this verify the tc mapping remains valid and if
1703 * not NULL the mapping. With no priorities mapping to this
1704 * offset/count pair it will no longer be used. In the worst case TC0
1705 * is invalid nothing can be done so disable priority mappings. If is
1706 * expected that drivers will fix this mapping if they can before
1707 * calling netif_set_real_num_tx_queues.
1708 */
1709 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1710 {
1711 int i;
1712 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1713
1714 /* If TC0 is invalidated disable TC mapping */
1715 if (tc->offset + tc->count > txq) {
1716 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1717 dev->num_tc = 0;
1718 return;
1719 }
1720
1721 /* Invalidated prio to tc mappings set to TC0 */
1722 for (i = 1; i < TC_BITMASK + 1; i++) {
1723 int q = netdev_get_prio_tc_map(dev, i);
1724
1725 tc = &dev->tc_to_txq[q];
1726 if (tc->offset + tc->count > txq) {
1727 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1728 i, q);
1729 netdev_set_prio_tc_map(dev, i, 0);
1730 }
1731 }
1732 }
1733
1734 /*
1735 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1736 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1737 */
1738 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1739 {
1740 int rc;
1741
1742 if (txq < 1 || txq > dev->num_tx_queues)
1743 return -EINVAL;
1744
1745 if (dev->reg_state == NETREG_REGISTERED ||
1746 dev->reg_state == NETREG_UNREGISTERING) {
1747 ASSERT_RTNL();
1748
1749 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1750 txq);
1751 if (rc)
1752 return rc;
1753
1754 if (dev->num_tc)
1755 netif_setup_tc(dev, txq);
1756
1757 if (txq < dev->real_num_tx_queues)
1758 qdisc_reset_all_tx_gt(dev, txq);
1759 }
1760
1761 dev->real_num_tx_queues = txq;
1762 return 0;
1763 }
1764 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1765
1766 #ifdef CONFIG_RPS
1767 /**
1768 * netif_set_real_num_rx_queues - set actual number of RX queues used
1769 * @dev: Network device
1770 * @rxq: Actual number of RX queues
1771 *
1772 * This must be called either with the rtnl_lock held or before
1773 * registration of the net device. Returns 0 on success, or a
1774 * negative error code. If called before registration, it always
1775 * succeeds.
1776 */
1777 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1778 {
1779 int rc;
1780
1781 if (rxq < 1 || rxq > dev->num_rx_queues)
1782 return -EINVAL;
1783
1784 if (dev->reg_state == NETREG_REGISTERED) {
1785 ASSERT_RTNL();
1786
1787 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1788 rxq);
1789 if (rc)
1790 return rc;
1791 }
1792
1793 dev->real_num_rx_queues = rxq;
1794 return 0;
1795 }
1796 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1797 #endif
1798
1799 /**
1800 * netif_get_num_default_rss_queues - default number of RSS queues
1801 *
1802 * This routine should set an upper limit on the number of RSS queues
1803 * used by default by multiqueue devices.
1804 */
1805 int netif_get_num_default_rss_queues(void)
1806 {
1807 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1808 }
1809 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1810
1811 static inline void __netif_reschedule(struct Qdisc *q)
1812 {
1813 struct softnet_data *sd;
1814 unsigned long flags;
1815
1816 local_irq_save(flags);
1817 sd = &__get_cpu_var(softnet_data);
1818 q->next_sched = NULL;
1819 *sd->output_queue_tailp = q;
1820 sd->output_queue_tailp = &q->next_sched;
1821 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1822 local_irq_restore(flags);
1823 }
1824
1825 void __netif_schedule(struct Qdisc *q)
1826 {
1827 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1828 __netif_reschedule(q);
1829 }
1830 EXPORT_SYMBOL(__netif_schedule);
1831
1832 void dev_kfree_skb_irq(struct sk_buff *skb)
1833 {
1834 if (atomic_dec_and_test(&skb->users)) {
1835 struct softnet_data *sd;
1836 unsigned long flags;
1837
1838 local_irq_save(flags);
1839 sd = &__get_cpu_var(softnet_data);
1840 skb->next = sd->completion_queue;
1841 sd->completion_queue = skb;
1842 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1843 local_irq_restore(flags);
1844 }
1845 }
1846 EXPORT_SYMBOL(dev_kfree_skb_irq);
1847
1848 void dev_kfree_skb_any(struct sk_buff *skb)
1849 {
1850 if (in_irq() || irqs_disabled())
1851 dev_kfree_skb_irq(skb);
1852 else
1853 dev_kfree_skb(skb);
1854 }
1855 EXPORT_SYMBOL(dev_kfree_skb_any);
1856
1857
1858 /**
1859 * netif_device_detach - mark device as removed
1860 * @dev: network device
1861 *
1862 * Mark device as removed from system and therefore no longer available.
1863 */
1864 void netif_device_detach(struct net_device *dev)
1865 {
1866 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1867 netif_running(dev)) {
1868 netif_tx_stop_all_queues(dev);
1869 }
1870 }
1871 EXPORT_SYMBOL(netif_device_detach);
1872
1873 /**
1874 * netif_device_attach - mark device as attached
1875 * @dev: network device
1876 *
1877 * Mark device as attached from system and restart if needed.
1878 */
1879 void netif_device_attach(struct net_device *dev)
1880 {
1881 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1882 netif_running(dev)) {
1883 netif_tx_wake_all_queues(dev);
1884 __netdev_watchdog_up(dev);
1885 }
1886 }
1887 EXPORT_SYMBOL(netif_device_attach);
1888
1889 static void skb_warn_bad_offload(const struct sk_buff *skb)
1890 {
1891 static const netdev_features_t null_features = 0;
1892 struct net_device *dev = skb->dev;
1893 const char *driver = "";
1894
1895 if (dev && dev->dev.parent)
1896 driver = dev_driver_string(dev->dev.parent);
1897
1898 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1899 "gso_type=%d ip_summed=%d\n",
1900 driver, dev ? &dev->features : &null_features,
1901 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1902 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1903 skb_shinfo(skb)->gso_type, skb->ip_summed);
1904 }
1905
1906 /*
1907 * Invalidate hardware checksum when packet is to be mangled, and
1908 * complete checksum manually on outgoing path.
1909 */
1910 int skb_checksum_help(struct sk_buff *skb)
1911 {
1912 __wsum csum;
1913 int ret = 0, offset;
1914
1915 if (skb->ip_summed == CHECKSUM_COMPLETE)
1916 goto out_set_summed;
1917
1918 if (unlikely(skb_shinfo(skb)->gso_size)) {
1919 skb_warn_bad_offload(skb);
1920 return -EINVAL;
1921 }
1922
1923 offset = skb_checksum_start_offset(skb);
1924 BUG_ON(offset >= skb_headlen(skb));
1925 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1926
1927 offset += skb->csum_offset;
1928 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1929
1930 if (skb_cloned(skb) &&
1931 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1932 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1933 if (ret)
1934 goto out;
1935 }
1936
1937 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1938 out_set_summed:
1939 skb->ip_summed = CHECKSUM_NONE;
1940 out:
1941 return ret;
1942 }
1943 EXPORT_SYMBOL(skb_checksum_help);
1944
1945 /**
1946 * skb_gso_segment - Perform segmentation on skb.
1947 * @skb: buffer to segment
1948 * @features: features for the output path (see dev->features)
1949 *
1950 * This function segments the given skb and returns a list of segments.
1951 *
1952 * It may return NULL if the skb requires no segmentation. This is
1953 * only possible when GSO is used for verifying header integrity.
1954 */
1955 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1956 netdev_features_t features)
1957 {
1958 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1959 struct packet_type *ptype;
1960 __be16 type = skb->protocol;
1961 int vlan_depth = ETH_HLEN;
1962 int err;
1963
1964 while (type == htons(ETH_P_8021Q)) {
1965 struct vlan_hdr *vh;
1966
1967 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1968 return ERR_PTR(-EINVAL);
1969
1970 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1971 type = vh->h_vlan_encapsulated_proto;
1972 vlan_depth += VLAN_HLEN;
1973 }
1974
1975 skb_reset_mac_header(skb);
1976 skb->mac_len = skb->network_header - skb->mac_header;
1977 __skb_pull(skb, skb->mac_len);
1978
1979 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1980 skb_warn_bad_offload(skb);
1981
1982 if (skb_header_cloned(skb) &&
1983 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1984 return ERR_PTR(err);
1985 }
1986
1987 rcu_read_lock();
1988 list_for_each_entry_rcu(ptype,
1989 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1990 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1991 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1992 err = ptype->gso_send_check(skb);
1993 segs = ERR_PTR(err);
1994 if (err || skb_gso_ok(skb, features))
1995 break;
1996 __skb_push(skb, (skb->data -
1997 skb_network_header(skb)));
1998 }
1999 segs = ptype->gso_segment(skb, features);
2000 break;
2001 }
2002 }
2003 rcu_read_unlock();
2004
2005 __skb_push(skb, skb->data - skb_mac_header(skb));
2006
2007 return segs;
2008 }
2009 EXPORT_SYMBOL(skb_gso_segment);
2010
2011 /* Take action when hardware reception checksum errors are detected. */
2012 #ifdef CONFIG_BUG
2013 void netdev_rx_csum_fault(struct net_device *dev)
2014 {
2015 if (net_ratelimit()) {
2016 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2017 dump_stack();
2018 }
2019 }
2020 EXPORT_SYMBOL(netdev_rx_csum_fault);
2021 #endif
2022
2023 /* Actually, we should eliminate this check as soon as we know, that:
2024 * 1. IOMMU is present and allows to map all the memory.
2025 * 2. No high memory really exists on this machine.
2026 */
2027
2028 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2029 {
2030 #ifdef CONFIG_HIGHMEM
2031 int i;
2032 if (!(dev->features & NETIF_F_HIGHDMA)) {
2033 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2034 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2035 if (PageHighMem(skb_frag_page(frag)))
2036 return 1;
2037 }
2038 }
2039
2040 if (PCI_DMA_BUS_IS_PHYS) {
2041 struct device *pdev = dev->dev.parent;
2042
2043 if (!pdev)
2044 return 0;
2045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2046 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2047 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2048 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2049 return 1;
2050 }
2051 }
2052 #endif
2053 return 0;
2054 }
2055
2056 struct dev_gso_cb {
2057 void (*destructor)(struct sk_buff *skb);
2058 };
2059
2060 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2061
2062 static void dev_gso_skb_destructor(struct sk_buff *skb)
2063 {
2064 struct dev_gso_cb *cb;
2065
2066 do {
2067 struct sk_buff *nskb = skb->next;
2068
2069 skb->next = nskb->next;
2070 nskb->next = NULL;
2071 kfree_skb(nskb);
2072 } while (skb->next);
2073
2074 cb = DEV_GSO_CB(skb);
2075 if (cb->destructor)
2076 cb->destructor(skb);
2077 }
2078
2079 /**
2080 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2081 * @skb: buffer to segment
2082 * @features: device features as applicable to this skb
2083 *
2084 * This function segments the given skb and stores the list of segments
2085 * in skb->next.
2086 */
2087 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2088 {
2089 struct sk_buff *segs;
2090
2091 segs = skb_gso_segment(skb, features);
2092
2093 /* Verifying header integrity only. */
2094 if (!segs)
2095 return 0;
2096
2097 if (IS_ERR(segs))
2098 return PTR_ERR(segs);
2099
2100 skb->next = segs;
2101 DEV_GSO_CB(skb)->destructor = skb->destructor;
2102 skb->destructor = dev_gso_skb_destructor;
2103
2104 return 0;
2105 }
2106
2107 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2108 {
2109 return ((features & NETIF_F_GEN_CSUM) ||
2110 ((features & NETIF_F_V4_CSUM) &&
2111 protocol == htons(ETH_P_IP)) ||
2112 ((features & NETIF_F_V6_CSUM) &&
2113 protocol == htons(ETH_P_IPV6)) ||
2114 ((features & NETIF_F_FCOE_CRC) &&
2115 protocol == htons(ETH_P_FCOE)));
2116 }
2117
2118 static netdev_features_t harmonize_features(struct sk_buff *skb,
2119 __be16 protocol, netdev_features_t features)
2120 {
2121 if (!can_checksum_protocol(features, protocol)) {
2122 features &= ~NETIF_F_ALL_CSUM;
2123 features &= ~NETIF_F_SG;
2124 } else if (illegal_highdma(skb->dev, skb)) {
2125 features &= ~NETIF_F_SG;
2126 }
2127
2128 return features;
2129 }
2130
2131 netdev_features_t netif_skb_features(struct sk_buff *skb)
2132 {
2133 __be16 protocol = skb->protocol;
2134 netdev_features_t features = skb->dev->features;
2135
2136 if (protocol == htons(ETH_P_8021Q)) {
2137 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2138 protocol = veh->h_vlan_encapsulated_proto;
2139 } else if (!vlan_tx_tag_present(skb)) {
2140 return harmonize_features(skb, protocol, features);
2141 }
2142
2143 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2144
2145 if (protocol != htons(ETH_P_8021Q)) {
2146 return harmonize_features(skb, protocol, features);
2147 } else {
2148 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2149 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2150 return harmonize_features(skb, protocol, features);
2151 }
2152 }
2153 EXPORT_SYMBOL(netif_skb_features);
2154
2155 /*
2156 * Returns true if either:
2157 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2158 * 2. skb is fragmented and the device does not support SG, or if
2159 * at least one of fragments is in highmem and device does not
2160 * support DMA from it.
2161 */
2162 static inline int skb_needs_linearize(struct sk_buff *skb,
2163 int features)
2164 {
2165 return skb_is_nonlinear(skb) &&
2166 ((skb_has_frag_list(skb) &&
2167 !(features & NETIF_F_FRAGLIST)) ||
2168 (skb_shinfo(skb)->nr_frags &&
2169 !(features & NETIF_F_SG)));
2170 }
2171
2172 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2173 struct netdev_queue *txq)
2174 {
2175 const struct net_device_ops *ops = dev->netdev_ops;
2176 int rc = NETDEV_TX_OK;
2177 unsigned int skb_len;
2178
2179 if (likely(!skb->next)) {
2180 netdev_features_t features;
2181
2182 /*
2183 * If device doesn't need skb->dst, release it right now while
2184 * its hot in this cpu cache
2185 */
2186 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2187 skb_dst_drop(skb);
2188
2189 if (!list_empty(&ptype_all))
2190 dev_queue_xmit_nit(skb, dev);
2191
2192 features = netif_skb_features(skb);
2193
2194 if (vlan_tx_tag_present(skb) &&
2195 !(features & NETIF_F_HW_VLAN_TX)) {
2196 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2197 if (unlikely(!skb))
2198 goto out;
2199
2200 skb->vlan_tci = 0;
2201 }
2202
2203 if (netif_needs_gso(skb, features)) {
2204 if (unlikely(dev_gso_segment(skb, features)))
2205 goto out_kfree_skb;
2206 if (skb->next)
2207 goto gso;
2208 } else {
2209 if (skb_needs_linearize(skb, features) &&
2210 __skb_linearize(skb))
2211 goto out_kfree_skb;
2212
2213 /* If packet is not checksummed and device does not
2214 * support checksumming for this protocol, complete
2215 * checksumming here.
2216 */
2217 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2218 skb_set_transport_header(skb,
2219 skb_checksum_start_offset(skb));
2220 if (!(features & NETIF_F_ALL_CSUM) &&
2221 skb_checksum_help(skb))
2222 goto out_kfree_skb;
2223 }
2224 }
2225
2226 skb_len = skb->len;
2227 rc = ops->ndo_start_xmit(skb, dev);
2228 trace_net_dev_xmit(skb, rc, dev, skb_len);
2229 if (rc == NETDEV_TX_OK)
2230 txq_trans_update(txq);
2231 return rc;
2232 }
2233
2234 gso:
2235 do {
2236 struct sk_buff *nskb = skb->next;
2237
2238 skb->next = nskb->next;
2239 nskb->next = NULL;
2240
2241 /*
2242 * If device doesn't need nskb->dst, release it right now while
2243 * its hot in this cpu cache
2244 */
2245 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2246 skb_dst_drop(nskb);
2247
2248 skb_len = nskb->len;
2249 rc = ops->ndo_start_xmit(nskb, dev);
2250 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2251 if (unlikely(rc != NETDEV_TX_OK)) {
2252 if (rc & ~NETDEV_TX_MASK)
2253 goto out_kfree_gso_skb;
2254 nskb->next = skb->next;
2255 skb->next = nskb;
2256 return rc;
2257 }
2258 txq_trans_update(txq);
2259 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2260 return NETDEV_TX_BUSY;
2261 } while (skb->next);
2262
2263 out_kfree_gso_skb:
2264 if (likely(skb->next == NULL))
2265 skb->destructor = DEV_GSO_CB(skb)->destructor;
2266 out_kfree_skb:
2267 kfree_skb(skb);
2268 out:
2269 return rc;
2270 }
2271
2272 static u32 hashrnd __read_mostly;
2273
2274 /*
2275 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2276 * to be used as a distribution range.
2277 */
2278 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2279 unsigned int num_tx_queues)
2280 {
2281 u32 hash;
2282 u16 qoffset = 0;
2283 u16 qcount = num_tx_queues;
2284
2285 if (skb_rx_queue_recorded(skb)) {
2286 hash = skb_get_rx_queue(skb);
2287 while (unlikely(hash >= num_tx_queues))
2288 hash -= num_tx_queues;
2289 return hash;
2290 }
2291
2292 if (dev->num_tc) {
2293 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2294 qoffset = dev->tc_to_txq[tc].offset;
2295 qcount = dev->tc_to_txq[tc].count;
2296 }
2297
2298 if (skb->sk && skb->sk->sk_hash)
2299 hash = skb->sk->sk_hash;
2300 else
2301 hash = (__force u16) skb->protocol;
2302 hash = jhash_1word(hash, hashrnd);
2303
2304 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2305 }
2306 EXPORT_SYMBOL(__skb_tx_hash);
2307
2308 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2311 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2312 dev->name, queue_index,
2313 dev->real_num_tx_queues);
2314 return 0;
2315 }
2316 return queue_index;
2317 }
2318
2319 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2320 {
2321 #ifdef CONFIG_XPS
2322 struct xps_dev_maps *dev_maps;
2323 struct xps_map *map;
2324 int queue_index = -1;
2325
2326 rcu_read_lock();
2327 dev_maps = rcu_dereference(dev->xps_maps);
2328 if (dev_maps) {
2329 map = rcu_dereference(
2330 dev_maps->cpu_map[raw_smp_processor_id()]);
2331 if (map) {
2332 if (map->len == 1)
2333 queue_index = map->queues[0];
2334 else {
2335 u32 hash;
2336 if (skb->sk && skb->sk->sk_hash)
2337 hash = skb->sk->sk_hash;
2338 else
2339 hash = (__force u16) skb->protocol ^
2340 skb->rxhash;
2341 hash = jhash_1word(hash, hashrnd);
2342 queue_index = map->queues[
2343 ((u64)hash * map->len) >> 32];
2344 }
2345 if (unlikely(queue_index >= dev->real_num_tx_queues))
2346 queue_index = -1;
2347 }
2348 }
2349 rcu_read_unlock();
2350
2351 return queue_index;
2352 #else
2353 return -1;
2354 #endif
2355 }
2356
2357 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2358 struct sk_buff *skb)
2359 {
2360 int queue_index;
2361 const struct net_device_ops *ops = dev->netdev_ops;
2362
2363 if (dev->real_num_tx_queues == 1)
2364 queue_index = 0;
2365 else if (ops->ndo_select_queue) {
2366 queue_index = ops->ndo_select_queue(dev, skb);
2367 queue_index = dev_cap_txqueue(dev, queue_index);
2368 } else {
2369 struct sock *sk = skb->sk;
2370 queue_index = sk_tx_queue_get(sk);
2371
2372 if (queue_index < 0 || skb->ooo_okay ||
2373 queue_index >= dev->real_num_tx_queues) {
2374 int old_index = queue_index;
2375
2376 queue_index = get_xps_queue(dev, skb);
2377 if (queue_index < 0)
2378 queue_index = skb_tx_hash(dev, skb);
2379
2380 if (queue_index != old_index && sk) {
2381 struct dst_entry *dst =
2382 rcu_dereference_check(sk->sk_dst_cache, 1);
2383
2384 if (dst && skb_dst(skb) == dst)
2385 sk_tx_queue_set(sk, queue_index);
2386 }
2387 }
2388 }
2389
2390 skb_set_queue_mapping(skb, queue_index);
2391 return netdev_get_tx_queue(dev, queue_index);
2392 }
2393
2394 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2395 struct net_device *dev,
2396 struct netdev_queue *txq)
2397 {
2398 spinlock_t *root_lock = qdisc_lock(q);
2399 bool contended;
2400 int rc;
2401
2402 qdisc_skb_cb(skb)->pkt_len = skb->len;
2403 qdisc_calculate_pkt_len(skb, q);
2404 /*
2405 * Heuristic to force contended enqueues to serialize on a
2406 * separate lock before trying to get qdisc main lock.
2407 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2408 * and dequeue packets faster.
2409 */
2410 contended = qdisc_is_running(q);
2411 if (unlikely(contended))
2412 spin_lock(&q->busylock);
2413
2414 spin_lock(root_lock);
2415 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2416 kfree_skb(skb);
2417 rc = NET_XMIT_DROP;
2418 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2419 qdisc_run_begin(q)) {
2420 /*
2421 * This is a work-conserving queue; there are no old skbs
2422 * waiting to be sent out; and the qdisc is not running -
2423 * xmit the skb directly.
2424 */
2425 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2426 skb_dst_force(skb);
2427
2428 qdisc_bstats_update(q, skb);
2429
2430 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2431 if (unlikely(contended)) {
2432 spin_unlock(&q->busylock);
2433 contended = false;
2434 }
2435 __qdisc_run(q);
2436 } else
2437 qdisc_run_end(q);
2438
2439 rc = NET_XMIT_SUCCESS;
2440 } else {
2441 skb_dst_force(skb);
2442 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2443 if (qdisc_run_begin(q)) {
2444 if (unlikely(contended)) {
2445 spin_unlock(&q->busylock);
2446 contended = false;
2447 }
2448 __qdisc_run(q);
2449 }
2450 }
2451 spin_unlock(root_lock);
2452 if (unlikely(contended))
2453 spin_unlock(&q->busylock);
2454 return rc;
2455 }
2456
2457 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2458 static void skb_update_prio(struct sk_buff *skb)
2459 {
2460 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2461
2462 if (!skb->priority && skb->sk && map) {
2463 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2464
2465 if (prioidx < map->priomap_len)
2466 skb->priority = map->priomap[prioidx];
2467 }
2468 }
2469 #else
2470 #define skb_update_prio(skb)
2471 #endif
2472
2473 static DEFINE_PER_CPU(int, xmit_recursion);
2474 #define RECURSION_LIMIT 10
2475
2476 /**
2477 * dev_loopback_xmit - loop back @skb
2478 * @skb: buffer to transmit
2479 */
2480 int dev_loopback_xmit(struct sk_buff *skb)
2481 {
2482 skb_reset_mac_header(skb);
2483 __skb_pull(skb, skb_network_offset(skb));
2484 skb->pkt_type = PACKET_LOOPBACK;
2485 skb->ip_summed = CHECKSUM_UNNECESSARY;
2486 WARN_ON(!skb_dst(skb));
2487 skb_dst_force(skb);
2488 netif_rx_ni(skb);
2489 return 0;
2490 }
2491 EXPORT_SYMBOL(dev_loopback_xmit);
2492
2493 /**
2494 * dev_queue_xmit - transmit a buffer
2495 * @skb: buffer to transmit
2496 *
2497 * Queue a buffer for transmission to a network device. The caller must
2498 * have set the device and priority and built the buffer before calling
2499 * this function. The function can be called from an interrupt.
2500 *
2501 * A negative errno code is returned on a failure. A success does not
2502 * guarantee the frame will be transmitted as it may be dropped due
2503 * to congestion or traffic shaping.
2504 *
2505 * -----------------------------------------------------------------------------------
2506 * I notice this method can also return errors from the queue disciplines,
2507 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2508 * be positive.
2509 *
2510 * Regardless of the return value, the skb is consumed, so it is currently
2511 * difficult to retry a send to this method. (You can bump the ref count
2512 * before sending to hold a reference for retry if you are careful.)
2513 *
2514 * When calling this method, interrupts MUST be enabled. This is because
2515 * the BH enable code must have IRQs enabled so that it will not deadlock.
2516 * --BLG
2517 */
2518 int dev_queue_xmit(struct sk_buff *skb)
2519 {
2520 struct net_device *dev = skb->dev;
2521 struct netdev_queue *txq;
2522 struct Qdisc *q;
2523 int rc = -ENOMEM;
2524
2525 /* Disable soft irqs for various locks below. Also
2526 * stops preemption for RCU.
2527 */
2528 rcu_read_lock_bh();
2529
2530 skb_update_prio(skb);
2531
2532 txq = dev_pick_tx(dev, skb);
2533 q = rcu_dereference_bh(txq->qdisc);
2534
2535 #ifdef CONFIG_NET_CLS_ACT
2536 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2537 #endif
2538 trace_net_dev_queue(skb);
2539 if (q->enqueue) {
2540 rc = __dev_xmit_skb(skb, q, dev, txq);
2541 goto out;
2542 }
2543
2544 /* The device has no queue. Common case for software devices:
2545 loopback, all the sorts of tunnels...
2546
2547 Really, it is unlikely that netif_tx_lock protection is necessary
2548 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2549 counters.)
2550 However, it is possible, that they rely on protection
2551 made by us here.
2552
2553 Check this and shot the lock. It is not prone from deadlocks.
2554 Either shot noqueue qdisc, it is even simpler 8)
2555 */
2556 if (dev->flags & IFF_UP) {
2557 int cpu = smp_processor_id(); /* ok because BHs are off */
2558
2559 if (txq->xmit_lock_owner != cpu) {
2560
2561 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2562 goto recursion_alert;
2563
2564 HARD_TX_LOCK(dev, txq, cpu);
2565
2566 if (!netif_xmit_stopped(txq)) {
2567 __this_cpu_inc(xmit_recursion);
2568 rc = dev_hard_start_xmit(skb, dev, txq);
2569 __this_cpu_dec(xmit_recursion);
2570 if (dev_xmit_complete(rc)) {
2571 HARD_TX_UNLOCK(dev, txq);
2572 goto out;
2573 }
2574 }
2575 HARD_TX_UNLOCK(dev, txq);
2576 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2577 dev->name);
2578 } else {
2579 /* Recursion is detected! It is possible,
2580 * unfortunately
2581 */
2582 recursion_alert:
2583 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2584 dev->name);
2585 }
2586 }
2587
2588 rc = -ENETDOWN;
2589 rcu_read_unlock_bh();
2590
2591 kfree_skb(skb);
2592 return rc;
2593 out:
2594 rcu_read_unlock_bh();
2595 return rc;
2596 }
2597 EXPORT_SYMBOL(dev_queue_xmit);
2598
2599
2600 /*=======================================================================
2601 Receiver routines
2602 =======================================================================*/
2603
2604 int netdev_max_backlog __read_mostly = 1000;
2605 int netdev_tstamp_prequeue __read_mostly = 1;
2606 int netdev_budget __read_mostly = 300;
2607 int weight_p __read_mostly = 64; /* old backlog weight */
2608
2609 /* Called with irq disabled */
2610 static inline void ____napi_schedule(struct softnet_data *sd,
2611 struct napi_struct *napi)
2612 {
2613 list_add_tail(&napi->poll_list, &sd->poll_list);
2614 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2615 }
2616
2617 /*
2618 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2619 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2620 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2621 * if hash is a canonical 4-tuple hash over transport ports.
2622 */
2623 void __skb_get_rxhash(struct sk_buff *skb)
2624 {
2625 struct flow_keys keys;
2626 u32 hash;
2627
2628 if (!skb_flow_dissect(skb, &keys))
2629 return;
2630
2631 if (keys.ports) {
2632 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2633 swap(keys.port16[0], keys.port16[1]);
2634 skb->l4_rxhash = 1;
2635 }
2636
2637 /* get a consistent hash (same value on both flow directions) */
2638 if ((__force u32)keys.dst < (__force u32)keys.src)
2639 swap(keys.dst, keys.src);
2640
2641 hash = jhash_3words((__force u32)keys.dst,
2642 (__force u32)keys.src,
2643 (__force u32)keys.ports, hashrnd);
2644 if (!hash)
2645 hash = 1;
2646
2647 skb->rxhash = hash;
2648 }
2649 EXPORT_SYMBOL(__skb_get_rxhash);
2650
2651 #ifdef CONFIG_RPS
2652
2653 /* One global table that all flow-based protocols share. */
2654 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2655 EXPORT_SYMBOL(rps_sock_flow_table);
2656
2657 struct static_key rps_needed __read_mostly;
2658
2659 static struct rps_dev_flow *
2660 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2661 struct rps_dev_flow *rflow, u16 next_cpu)
2662 {
2663 if (next_cpu != RPS_NO_CPU) {
2664 #ifdef CONFIG_RFS_ACCEL
2665 struct netdev_rx_queue *rxqueue;
2666 struct rps_dev_flow_table *flow_table;
2667 struct rps_dev_flow *old_rflow;
2668 u32 flow_id;
2669 u16 rxq_index;
2670 int rc;
2671
2672 /* Should we steer this flow to a different hardware queue? */
2673 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2674 !(dev->features & NETIF_F_NTUPLE))
2675 goto out;
2676 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2677 if (rxq_index == skb_get_rx_queue(skb))
2678 goto out;
2679
2680 rxqueue = dev->_rx + rxq_index;
2681 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2682 if (!flow_table)
2683 goto out;
2684 flow_id = skb->rxhash & flow_table->mask;
2685 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2686 rxq_index, flow_id);
2687 if (rc < 0)
2688 goto out;
2689 old_rflow = rflow;
2690 rflow = &flow_table->flows[flow_id];
2691 rflow->filter = rc;
2692 if (old_rflow->filter == rflow->filter)
2693 old_rflow->filter = RPS_NO_FILTER;
2694 out:
2695 #endif
2696 rflow->last_qtail =
2697 per_cpu(softnet_data, next_cpu).input_queue_head;
2698 }
2699
2700 rflow->cpu = next_cpu;
2701 return rflow;
2702 }
2703
2704 /*
2705 * get_rps_cpu is called from netif_receive_skb and returns the target
2706 * CPU from the RPS map of the receiving queue for a given skb.
2707 * rcu_read_lock must be held on entry.
2708 */
2709 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2710 struct rps_dev_flow **rflowp)
2711 {
2712 struct netdev_rx_queue *rxqueue;
2713 struct rps_map *map;
2714 struct rps_dev_flow_table *flow_table;
2715 struct rps_sock_flow_table *sock_flow_table;
2716 int cpu = -1;
2717 u16 tcpu;
2718
2719 if (skb_rx_queue_recorded(skb)) {
2720 u16 index = skb_get_rx_queue(skb);
2721 if (unlikely(index >= dev->real_num_rx_queues)) {
2722 WARN_ONCE(dev->real_num_rx_queues > 1,
2723 "%s received packet on queue %u, but number "
2724 "of RX queues is %u\n",
2725 dev->name, index, dev->real_num_rx_queues);
2726 goto done;
2727 }
2728 rxqueue = dev->_rx + index;
2729 } else
2730 rxqueue = dev->_rx;
2731
2732 map = rcu_dereference(rxqueue->rps_map);
2733 if (map) {
2734 if (map->len == 1 &&
2735 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2736 tcpu = map->cpus[0];
2737 if (cpu_online(tcpu))
2738 cpu = tcpu;
2739 goto done;
2740 }
2741 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2742 goto done;
2743 }
2744
2745 skb_reset_network_header(skb);
2746 if (!skb_get_rxhash(skb))
2747 goto done;
2748
2749 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2750 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2751 if (flow_table && sock_flow_table) {
2752 u16 next_cpu;
2753 struct rps_dev_flow *rflow;
2754
2755 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2756 tcpu = rflow->cpu;
2757
2758 next_cpu = sock_flow_table->ents[skb->rxhash &
2759 sock_flow_table->mask];
2760
2761 /*
2762 * If the desired CPU (where last recvmsg was done) is
2763 * different from current CPU (one in the rx-queue flow
2764 * table entry), switch if one of the following holds:
2765 * - Current CPU is unset (equal to RPS_NO_CPU).
2766 * - Current CPU is offline.
2767 * - The current CPU's queue tail has advanced beyond the
2768 * last packet that was enqueued using this table entry.
2769 * This guarantees that all previous packets for the flow
2770 * have been dequeued, thus preserving in order delivery.
2771 */
2772 if (unlikely(tcpu != next_cpu) &&
2773 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2774 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2775 rflow->last_qtail)) >= 0))
2776 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2777
2778 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2779 *rflowp = rflow;
2780 cpu = tcpu;
2781 goto done;
2782 }
2783 }
2784
2785 if (map) {
2786 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2787
2788 if (cpu_online(tcpu)) {
2789 cpu = tcpu;
2790 goto done;
2791 }
2792 }
2793
2794 done:
2795 return cpu;
2796 }
2797
2798 #ifdef CONFIG_RFS_ACCEL
2799
2800 /**
2801 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2802 * @dev: Device on which the filter was set
2803 * @rxq_index: RX queue index
2804 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2805 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2806 *
2807 * Drivers that implement ndo_rx_flow_steer() should periodically call
2808 * this function for each installed filter and remove the filters for
2809 * which it returns %true.
2810 */
2811 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2812 u32 flow_id, u16 filter_id)
2813 {
2814 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2815 struct rps_dev_flow_table *flow_table;
2816 struct rps_dev_flow *rflow;
2817 bool expire = true;
2818 int cpu;
2819
2820 rcu_read_lock();
2821 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2822 if (flow_table && flow_id <= flow_table->mask) {
2823 rflow = &flow_table->flows[flow_id];
2824 cpu = ACCESS_ONCE(rflow->cpu);
2825 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2826 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2827 rflow->last_qtail) <
2828 (int)(10 * flow_table->mask)))
2829 expire = false;
2830 }
2831 rcu_read_unlock();
2832 return expire;
2833 }
2834 EXPORT_SYMBOL(rps_may_expire_flow);
2835
2836 #endif /* CONFIG_RFS_ACCEL */
2837
2838 /* Called from hardirq (IPI) context */
2839 static void rps_trigger_softirq(void *data)
2840 {
2841 struct softnet_data *sd = data;
2842
2843 ____napi_schedule(sd, &sd->backlog);
2844 sd->received_rps++;
2845 }
2846
2847 #endif /* CONFIG_RPS */
2848
2849 /*
2850 * Check if this softnet_data structure is another cpu one
2851 * If yes, queue it to our IPI list and return 1
2852 * If no, return 0
2853 */
2854 static int rps_ipi_queued(struct softnet_data *sd)
2855 {
2856 #ifdef CONFIG_RPS
2857 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2858
2859 if (sd != mysd) {
2860 sd->rps_ipi_next = mysd->rps_ipi_list;
2861 mysd->rps_ipi_list = sd;
2862
2863 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2864 return 1;
2865 }
2866 #endif /* CONFIG_RPS */
2867 return 0;
2868 }
2869
2870 /*
2871 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2872 * queue (may be a remote CPU queue).
2873 */
2874 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2875 unsigned int *qtail)
2876 {
2877 struct softnet_data *sd;
2878 unsigned long flags;
2879
2880 sd = &per_cpu(softnet_data, cpu);
2881
2882 local_irq_save(flags);
2883
2884 rps_lock(sd);
2885 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2886 if (skb_queue_len(&sd->input_pkt_queue)) {
2887 enqueue:
2888 __skb_queue_tail(&sd->input_pkt_queue, skb);
2889 input_queue_tail_incr_save(sd, qtail);
2890 rps_unlock(sd);
2891 local_irq_restore(flags);
2892 return NET_RX_SUCCESS;
2893 }
2894
2895 /* Schedule NAPI for backlog device
2896 * We can use non atomic operation since we own the queue lock
2897 */
2898 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2899 if (!rps_ipi_queued(sd))
2900 ____napi_schedule(sd, &sd->backlog);
2901 }
2902 goto enqueue;
2903 }
2904
2905 sd->dropped++;
2906 rps_unlock(sd);
2907
2908 local_irq_restore(flags);
2909
2910 atomic_long_inc(&skb->dev->rx_dropped);
2911 kfree_skb(skb);
2912 return NET_RX_DROP;
2913 }
2914
2915 /**
2916 * netif_rx - post buffer to the network code
2917 * @skb: buffer to post
2918 *
2919 * This function receives a packet from a device driver and queues it for
2920 * the upper (protocol) levels to process. It always succeeds. The buffer
2921 * may be dropped during processing for congestion control or by the
2922 * protocol layers.
2923 *
2924 * return values:
2925 * NET_RX_SUCCESS (no congestion)
2926 * NET_RX_DROP (packet was dropped)
2927 *
2928 */
2929
2930 int netif_rx(struct sk_buff *skb)
2931 {
2932 int ret;
2933
2934 /* if netpoll wants it, pretend we never saw it */
2935 if (netpoll_rx(skb))
2936 return NET_RX_DROP;
2937
2938 net_timestamp_check(netdev_tstamp_prequeue, skb);
2939
2940 trace_netif_rx(skb);
2941 #ifdef CONFIG_RPS
2942 if (static_key_false(&rps_needed)) {
2943 struct rps_dev_flow voidflow, *rflow = &voidflow;
2944 int cpu;
2945
2946 preempt_disable();
2947 rcu_read_lock();
2948
2949 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2950 if (cpu < 0)
2951 cpu = smp_processor_id();
2952
2953 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2954
2955 rcu_read_unlock();
2956 preempt_enable();
2957 } else
2958 #endif
2959 {
2960 unsigned int qtail;
2961 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2962 put_cpu();
2963 }
2964 return ret;
2965 }
2966 EXPORT_SYMBOL(netif_rx);
2967
2968 int netif_rx_ni(struct sk_buff *skb)
2969 {
2970 int err;
2971
2972 preempt_disable();
2973 err = netif_rx(skb);
2974 if (local_softirq_pending())
2975 do_softirq();
2976 preempt_enable();
2977
2978 return err;
2979 }
2980 EXPORT_SYMBOL(netif_rx_ni);
2981
2982 static void net_tx_action(struct softirq_action *h)
2983 {
2984 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2985
2986 if (sd->completion_queue) {
2987 struct sk_buff *clist;
2988
2989 local_irq_disable();
2990 clist = sd->completion_queue;
2991 sd->completion_queue = NULL;
2992 local_irq_enable();
2993
2994 while (clist) {
2995 struct sk_buff *skb = clist;
2996 clist = clist->next;
2997
2998 WARN_ON(atomic_read(&skb->users));
2999 trace_kfree_skb(skb, net_tx_action);
3000 __kfree_skb(skb);
3001 }
3002 }
3003
3004 if (sd->output_queue) {
3005 struct Qdisc *head;
3006
3007 local_irq_disable();
3008 head = sd->output_queue;
3009 sd->output_queue = NULL;
3010 sd->output_queue_tailp = &sd->output_queue;
3011 local_irq_enable();
3012
3013 while (head) {
3014 struct Qdisc *q = head;
3015 spinlock_t *root_lock;
3016
3017 head = head->next_sched;
3018
3019 root_lock = qdisc_lock(q);
3020 if (spin_trylock(root_lock)) {
3021 smp_mb__before_clear_bit();
3022 clear_bit(__QDISC_STATE_SCHED,
3023 &q->state);
3024 qdisc_run(q);
3025 spin_unlock(root_lock);
3026 } else {
3027 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3028 &q->state)) {
3029 __netif_reschedule(q);
3030 } else {
3031 smp_mb__before_clear_bit();
3032 clear_bit(__QDISC_STATE_SCHED,
3033 &q->state);
3034 }
3035 }
3036 }
3037 }
3038 }
3039
3040 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3041 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3042 /* This hook is defined here for ATM LANE */
3043 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3044 unsigned char *addr) __read_mostly;
3045 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3046 #endif
3047
3048 #ifdef CONFIG_NET_CLS_ACT
3049 /* TODO: Maybe we should just force sch_ingress to be compiled in
3050 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3051 * a compare and 2 stores extra right now if we dont have it on
3052 * but have CONFIG_NET_CLS_ACT
3053 * NOTE: This doesn't stop any functionality; if you dont have
3054 * the ingress scheduler, you just can't add policies on ingress.
3055 *
3056 */
3057 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3058 {
3059 struct net_device *dev = skb->dev;
3060 u32 ttl = G_TC_RTTL(skb->tc_verd);
3061 int result = TC_ACT_OK;
3062 struct Qdisc *q;
3063
3064 if (unlikely(MAX_RED_LOOP < ttl++)) {
3065 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3066 skb->skb_iif, dev->ifindex);
3067 return TC_ACT_SHOT;
3068 }
3069
3070 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3071 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3072
3073 q = rxq->qdisc;
3074 if (q != &noop_qdisc) {
3075 spin_lock(qdisc_lock(q));
3076 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3077 result = qdisc_enqueue_root(skb, q);
3078 spin_unlock(qdisc_lock(q));
3079 }
3080
3081 return result;
3082 }
3083
3084 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3085 struct packet_type **pt_prev,
3086 int *ret, struct net_device *orig_dev)
3087 {
3088 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3089
3090 if (!rxq || rxq->qdisc == &noop_qdisc)
3091 goto out;
3092
3093 if (*pt_prev) {
3094 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3095 *pt_prev = NULL;
3096 }
3097
3098 switch (ing_filter(skb, rxq)) {
3099 case TC_ACT_SHOT:
3100 case TC_ACT_STOLEN:
3101 kfree_skb(skb);
3102 return NULL;
3103 }
3104
3105 out:
3106 skb->tc_verd = 0;
3107 return skb;
3108 }
3109 #endif
3110
3111 /**
3112 * netdev_rx_handler_register - register receive handler
3113 * @dev: device to register a handler for
3114 * @rx_handler: receive handler to register
3115 * @rx_handler_data: data pointer that is used by rx handler
3116 *
3117 * Register a receive hander for a device. This handler will then be
3118 * called from __netif_receive_skb. A negative errno code is returned
3119 * on a failure.
3120 *
3121 * The caller must hold the rtnl_mutex.
3122 *
3123 * For a general description of rx_handler, see enum rx_handler_result.
3124 */
3125 int netdev_rx_handler_register(struct net_device *dev,
3126 rx_handler_func_t *rx_handler,
3127 void *rx_handler_data)
3128 {
3129 ASSERT_RTNL();
3130
3131 if (dev->rx_handler)
3132 return -EBUSY;
3133
3134 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3135 rcu_assign_pointer(dev->rx_handler, rx_handler);
3136
3137 return 0;
3138 }
3139 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3140
3141 /**
3142 * netdev_rx_handler_unregister - unregister receive handler
3143 * @dev: device to unregister a handler from
3144 *
3145 * Unregister a receive hander from a device.
3146 *
3147 * The caller must hold the rtnl_mutex.
3148 */
3149 void netdev_rx_handler_unregister(struct net_device *dev)
3150 {
3151
3152 ASSERT_RTNL();
3153 RCU_INIT_POINTER(dev->rx_handler, NULL);
3154 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3155 }
3156 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3157
3158 /*
3159 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3160 * the special handling of PFMEMALLOC skbs.
3161 */
3162 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3163 {
3164 switch (skb->protocol) {
3165 case __constant_htons(ETH_P_ARP):
3166 case __constant_htons(ETH_P_IP):
3167 case __constant_htons(ETH_P_IPV6):
3168 case __constant_htons(ETH_P_8021Q):
3169 return true;
3170 default:
3171 return false;
3172 }
3173 }
3174
3175 static int __netif_receive_skb(struct sk_buff *skb)
3176 {
3177 struct packet_type *ptype, *pt_prev;
3178 rx_handler_func_t *rx_handler;
3179 struct net_device *orig_dev;
3180 struct net_device *null_or_dev;
3181 bool deliver_exact = false;
3182 int ret = NET_RX_DROP;
3183 __be16 type;
3184 unsigned long pflags = current->flags;
3185
3186 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3187
3188 trace_netif_receive_skb(skb);
3189
3190 /*
3191 * PFMEMALLOC skbs are special, they should
3192 * - be delivered to SOCK_MEMALLOC sockets only
3193 * - stay away from userspace
3194 * - have bounded memory usage
3195 *
3196 * Use PF_MEMALLOC as this saves us from propagating the allocation
3197 * context down to all allocation sites.
3198 */
3199 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3200 current->flags |= PF_MEMALLOC;
3201
3202 /* if we've gotten here through NAPI, check netpoll */
3203 if (netpoll_receive_skb(skb))
3204 goto out;
3205
3206 orig_dev = skb->dev;
3207
3208 skb_reset_network_header(skb);
3209 skb_reset_transport_header(skb);
3210 skb_reset_mac_len(skb);
3211
3212 pt_prev = NULL;
3213
3214 rcu_read_lock();
3215
3216 another_round:
3217 skb->skb_iif = skb->dev->ifindex;
3218
3219 __this_cpu_inc(softnet_data.processed);
3220
3221 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3222 skb = vlan_untag(skb);
3223 if (unlikely(!skb))
3224 goto unlock;
3225 }
3226
3227 #ifdef CONFIG_NET_CLS_ACT
3228 if (skb->tc_verd & TC_NCLS) {
3229 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3230 goto ncls;
3231 }
3232 #endif
3233
3234 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3235 goto skip_taps;
3236
3237 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3238 if (!ptype->dev || ptype->dev == skb->dev) {
3239 if (pt_prev)
3240 ret = deliver_skb(skb, pt_prev, orig_dev);
3241 pt_prev = ptype;
3242 }
3243 }
3244
3245 skip_taps:
3246 #ifdef CONFIG_NET_CLS_ACT
3247 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3248 if (!skb)
3249 goto unlock;
3250 ncls:
3251 #endif
3252
3253 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3254 && !skb_pfmemalloc_protocol(skb))
3255 goto drop;
3256
3257 rx_handler = rcu_dereference(skb->dev->rx_handler);
3258 if (vlan_tx_tag_present(skb)) {
3259 if (pt_prev) {
3260 ret = deliver_skb(skb, pt_prev, orig_dev);
3261 pt_prev = NULL;
3262 }
3263 if (vlan_do_receive(&skb, !rx_handler))
3264 goto another_round;
3265 else if (unlikely(!skb))
3266 goto unlock;
3267 }
3268
3269 if (rx_handler) {
3270 if (pt_prev) {
3271 ret = deliver_skb(skb, pt_prev, orig_dev);
3272 pt_prev = NULL;
3273 }
3274 switch (rx_handler(&skb)) {
3275 case RX_HANDLER_CONSUMED:
3276 goto unlock;
3277 case RX_HANDLER_ANOTHER:
3278 goto another_round;
3279 case RX_HANDLER_EXACT:
3280 deliver_exact = true;
3281 case RX_HANDLER_PASS:
3282 break;
3283 default:
3284 BUG();
3285 }
3286 }
3287
3288 /* deliver only exact match when indicated */
3289 null_or_dev = deliver_exact ? skb->dev : NULL;
3290
3291 type = skb->protocol;
3292 list_for_each_entry_rcu(ptype,
3293 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3294 if (ptype->type == type &&
3295 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3296 ptype->dev == orig_dev)) {
3297 if (pt_prev)
3298 ret = deliver_skb(skb, pt_prev, orig_dev);
3299 pt_prev = ptype;
3300 }
3301 }
3302
3303 if (pt_prev) {
3304 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3305 ret = -ENOMEM;
3306 else
3307 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3308 } else {
3309 drop:
3310 atomic_long_inc(&skb->dev->rx_dropped);
3311 kfree_skb(skb);
3312 /* Jamal, now you will not able to escape explaining
3313 * me how you were going to use this. :-)
3314 */
3315 ret = NET_RX_DROP;
3316 }
3317
3318 unlock:
3319 rcu_read_unlock();
3320 out:
3321 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3322 return ret;
3323 }
3324
3325 /**
3326 * netif_receive_skb - process receive buffer from network
3327 * @skb: buffer to process
3328 *
3329 * netif_receive_skb() is the main receive data processing function.
3330 * It always succeeds. The buffer may be dropped during processing
3331 * for congestion control or by the protocol layers.
3332 *
3333 * This function may only be called from softirq context and interrupts
3334 * should be enabled.
3335 *
3336 * Return values (usually ignored):
3337 * NET_RX_SUCCESS: no congestion
3338 * NET_RX_DROP: packet was dropped
3339 */
3340 int netif_receive_skb(struct sk_buff *skb)
3341 {
3342 net_timestamp_check(netdev_tstamp_prequeue, skb);
3343
3344 if (skb_defer_rx_timestamp(skb))
3345 return NET_RX_SUCCESS;
3346
3347 #ifdef CONFIG_RPS
3348 if (static_key_false(&rps_needed)) {
3349 struct rps_dev_flow voidflow, *rflow = &voidflow;
3350 int cpu, ret;
3351
3352 rcu_read_lock();
3353
3354 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3355
3356 if (cpu >= 0) {
3357 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3358 rcu_read_unlock();
3359 return ret;
3360 }
3361 rcu_read_unlock();
3362 }
3363 #endif
3364 return __netif_receive_skb(skb);
3365 }
3366 EXPORT_SYMBOL(netif_receive_skb);
3367
3368 /* Network device is going away, flush any packets still pending
3369 * Called with irqs disabled.
3370 */
3371 static void flush_backlog(void *arg)
3372 {
3373 struct net_device *dev = arg;
3374 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3375 struct sk_buff *skb, *tmp;
3376
3377 rps_lock(sd);
3378 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3379 if (skb->dev == dev) {
3380 __skb_unlink(skb, &sd->input_pkt_queue);
3381 kfree_skb(skb);
3382 input_queue_head_incr(sd);
3383 }
3384 }
3385 rps_unlock(sd);
3386
3387 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3388 if (skb->dev == dev) {
3389 __skb_unlink(skb, &sd->process_queue);
3390 kfree_skb(skb);
3391 input_queue_head_incr(sd);
3392 }
3393 }
3394 }
3395
3396 static int napi_gro_complete(struct sk_buff *skb)
3397 {
3398 struct packet_type *ptype;
3399 __be16 type = skb->protocol;
3400 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3401 int err = -ENOENT;
3402
3403 if (NAPI_GRO_CB(skb)->count == 1) {
3404 skb_shinfo(skb)->gso_size = 0;
3405 goto out;
3406 }
3407
3408 rcu_read_lock();
3409 list_for_each_entry_rcu(ptype, head, list) {
3410 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3411 continue;
3412
3413 err = ptype->gro_complete(skb);
3414 break;
3415 }
3416 rcu_read_unlock();
3417
3418 if (err) {
3419 WARN_ON(&ptype->list == head);
3420 kfree_skb(skb);
3421 return NET_RX_SUCCESS;
3422 }
3423
3424 out:
3425 return netif_receive_skb(skb);
3426 }
3427
3428 inline void napi_gro_flush(struct napi_struct *napi)
3429 {
3430 struct sk_buff *skb, *next;
3431
3432 for (skb = napi->gro_list; skb; skb = next) {
3433 next = skb->next;
3434 skb->next = NULL;
3435 napi_gro_complete(skb);
3436 }
3437
3438 napi->gro_count = 0;
3439 napi->gro_list = NULL;
3440 }
3441 EXPORT_SYMBOL(napi_gro_flush);
3442
3443 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3444 {
3445 struct sk_buff **pp = NULL;
3446 struct packet_type *ptype;
3447 __be16 type = skb->protocol;
3448 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3449 int same_flow;
3450 int mac_len;
3451 enum gro_result ret;
3452
3453 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3454 goto normal;
3455
3456 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3457 goto normal;
3458
3459 rcu_read_lock();
3460 list_for_each_entry_rcu(ptype, head, list) {
3461 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3462 continue;
3463
3464 skb_set_network_header(skb, skb_gro_offset(skb));
3465 mac_len = skb->network_header - skb->mac_header;
3466 skb->mac_len = mac_len;
3467 NAPI_GRO_CB(skb)->same_flow = 0;
3468 NAPI_GRO_CB(skb)->flush = 0;
3469 NAPI_GRO_CB(skb)->free = 0;
3470
3471 pp = ptype->gro_receive(&napi->gro_list, skb);
3472 break;
3473 }
3474 rcu_read_unlock();
3475
3476 if (&ptype->list == head)
3477 goto normal;
3478
3479 same_flow = NAPI_GRO_CB(skb)->same_flow;
3480 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3481
3482 if (pp) {
3483 struct sk_buff *nskb = *pp;
3484
3485 *pp = nskb->next;
3486 nskb->next = NULL;
3487 napi_gro_complete(nskb);
3488 napi->gro_count--;
3489 }
3490
3491 if (same_flow)
3492 goto ok;
3493
3494 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3495 goto normal;
3496
3497 napi->gro_count++;
3498 NAPI_GRO_CB(skb)->count = 1;
3499 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3500 skb->next = napi->gro_list;
3501 napi->gro_list = skb;
3502 ret = GRO_HELD;
3503
3504 pull:
3505 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3506 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3507
3508 BUG_ON(skb->end - skb->tail < grow);
3509
3510 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3511
3512 skb->tail += grow;
3513 skb->data_len -= grow;
3514
3515 skb_shinfo(skb)->frags[0].page_offset += grow;
3516 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3517
3518 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3519 skb_frag_unref(skb, 0);
3520 memmove(skb_shinfo(skb)->frags,
3521 skb_shinfo(skb)->frags + 1,
3522 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3523 }
3524 }
3525
3526 ok:
3527 return ret;
3528
3529 normal:
3530 ret = GRO_NORMAL;
3531 goto pull;
3532 }
3533 EXPORT_SYMBOL(dev_gro_receive);
3534
3535 static inline gro_result_t
3536 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3537 {
3538 struct sk_buff *p;
3539 unsigned int maclen = skb->dev->hard_header_len;
3540
3541 for (p = napi->gro_list; p; p = p->next) {
3542 unsigned long diffs;
3543
3544 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3545 diffs |= p->vlan_tci ^ skb->vlan_tci;
3546 if (maclen == ETH_HLEN)
3547 diffs |= compare_ether_header(skb_mac_header(p),
3548 skb_gro_mac_header(skb));
3549 else if (!diffs)
3550 diffs = memcmp(skb_mac_header(p),
3551 skb_gro_mac_header(skb),
3552 maclen);
3553 NAPI_GRO_CB(p)->same_flow = !diffs;
3554 NAPI_GRO_CB(p)->flush = 0;
3555 }
3556
3557 return dev_gro_receive(napi, skb);
3558 }
3559
3560 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3561 {
3562 switch (ret) {
3563 case GRO_NORMAL:
3564 if (netif_receive_skb(skb))
3565 ret = GRO_DROP;
3566 break;
3567
3568 case GRO_DROP:
3569 kfree_skb(skb);
3570 break;
3571
3572 case GRO_MERGED_FREE:
3573 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3574 kmem_cache_free(skbuff_head_cache, skb);
3575 else
3576 __kfree_skb(skb);
3577 break;
3578
3579 case GRO_HELD:
3580 case GRO_MERGED:
3581 break;
3582 }
3583
3584 return ret;
3585 }
3586 EXPORT_SYMBOL(napi_skb_finish);
3587
3588 void skb_gro_reset_offset(struct sk_buff *skb)
3589 {
3590 NAPI_GRO_CB(skb)->data_offset = 0;
3591 NAPI_GRO_CB(skb)->frag0 = NULL;
3592 NAPI_GRO_CB(skb)->frag0_len = 0;
3593
3594 if (skb->mac_header == skb->tail &&
3595 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3596 NAPI_GRO_CB(skb)->frag0 =
3597 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3598 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3599 }
3600 }
3601 EXPORT_SYMBOL(skb_gro_reset_offset);
3602
3603 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3604 {
3605 skb_gro_reset_offset(skb);
3606
3607 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3608 }
3609 EXPORT_SYMBOL(napi_gro_receive);
3610
3611 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3612 {
3613 __skb_pull(skb, skb_headlen(skb));
3614 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3615 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3616 skb->vlan_tci = 0;
3617 skb->dev = napi->dev;
3618 skb->skb_iif = 0;
3619
3620 napi->skb = skb;
3621 }
3622
3623 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3624 {
3625 struct sk_buff *skb = napi->skb;
3626
3627 if (!skb) {
3628 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3629 if (skb)
3630 napi->skb = skb;
3631 }
3632 return skb;
3633 }
3634 EXPORT_SYMBOL(napi_get_frags);
3635
3636 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3637 gro_result_t ret)
3638 {
3639 switch (ret) {
3640 case GRO_NORMAL:
3641 case GRO_HELD:
3642 skb->protocol = eth_type_trans(skb, skb->dev);
3643
3644 if (ret == GRO_HELD)
3645 skb_gro_pull(skb, -ETH_HLEN);
3646 else if (netif_receive_skb(skb))
3647 ret = GRO_DROP;
3648 break;
3649
3650 case GRO_DROP:
3651 case GRO_MERGED_FREE:
3652 napi_reuse_skb(napi, skb);
3653 break;
3654
3655 case GRO_MERGED:
3656 break;
3657 }
3658
3659 return ret;
3660 }
3661 EXPORT_SYMBOL(napi_frags_finish);
3662
3663 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3664 {
3665 struct sk_buff *skb = napi->skb;
3666 struct ethhdr *eth;
3667 unsigned int hlen;
3668 unsigned int off;
3669
3670 napi->skb = NULL;
3671
3672 skb_reset_mac_header(skb);
3673 skb_gro_reset_offset(skb);
3674
3675 off = skb_gro_offset(skb);
3676 hlen = off + sizeof(*eth);
3677 eth = skb_gro_header_fast(skb, off);
3678 if (skb_gro_header_hard(skb, hlen)) {
3679 eth = skb_gro_header_slow(skb, hlen, off);
3680 if (unlikely(!eth)) {
3681 napi_reuse_skb(napi, skb);
3682 skb = NULL;
3683 goto out;
3684 }
3685 }
3686
3687 skb_gro_pull(skb, sizeof(*eth));
3688
3689 /*
3690 * This works because the only protocols we care about don't require
3691 * special handling. We'll fix it up properly at the end.
3692 */
3693 skb->protocol = eth->h_proto;
3694
3695 out:
3696 return skb;
3697 }
3698
3699 gro_result_t napi_gro_frags(struct napi_struct *napi)
3700 {
3701 struct sk_buff *skb = napi_frags_skb(napi);
3702
3703 if (!skb)
3704 return GRO_DROP;
3705
3706 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3707 }
3708 EXPORT_SYMBOL(napi_gro_frags);
3709
3710 /*
3711 * net_rps_action sends any pending IPI's for rps.
3712 * Note: called with local irq disabled, but exits with local irq enabled.
3713 */
3714 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3715 {
3716 #ifdef CONFIG_RPS
3717 struct softnet_data *remsd = sd->rps_ipi_list;
3718
3719 if (remsd) {
3720 sd->rps_ipi_list = NULL;
3721
3722 local_irq_enable();
3723
3724 /* Send pending IPI's to kick RPS processing on remote cpus. */
3725 while (remsd) {
3726 struct softnet_data *next = remsd->rps_ipi_next;
3727
3728 if (cpu_online(remsd->cpu))
3729 __smp_call_function_single(remsd->cpu,
3730 &remsd->csd, 0);
3731 remsd = next;
3732 }
3733 } else
3734 #endif
3735 local_irq_enable();
3736 }
3737
3738 static int process_backlog(struct napi_struct *napi, int quota)
3739 {
3740 int work = 0;
3741 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3742
3743 #ifdef CONFIG_RPS
3744 /* Check if we have pending ipi, its better to send them now,
3745 * not waiting net_rx_action() end.
3746 */
3747 if (sd->rps_ipi_list) {
3748 local_irq_disable();
3749 net_rps_action_and_irq_enable(sd);
3750 }
3751 #endif
3752 napi->weight = weight_p;
3753 local_irq_disable();
3754 while (work < quota) {
3755 struct sk_buff *skb;
3756 unsigned int qlen;
3757
3758 while ((skb = __skb_dequeue(&sd->process_queue))) {
3759 local_irq_enable();
3760 __netif_receive_skb(skb);
3761 local_irq_disable();
3762 input_queue_head_incr(sd);
3763 if (++work >= quota) {
3764 local_irq_enable();
3765 return work;
3766 }
3767 }
3768
3769 rps_lock(sd);
3770 qlen = skb_queue_len(&sd->input_pkt_queue);
3771 if (qlen)
3772 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3773 &sd->process_queue);
3774
3775 if (qlen < quota - work) {
3776 /*
3777 * Inline a custom version of __napi_complete().
3778 * only current cpu owns and manipulates this napi,
3779 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3780 * we can use a plain write instead of clear_bit(),
3781 * and we dont need an smp_mb() memory barrier.
3782 */
3783 list_del(&napi->poll_list);
3784 napi->state = 0;
3785
3786 quota = work + qlen;
3787 }
3788 rps_unlock(sd);
3789 }
3790 local_irq_enable();
3791
3792 return work;
3793 }
3794
3795 /**
3796 * __napi_schedule - schedule for receive
3797 * @n: entry to schedule
3798 *
3799 * The entry's receive function will be scheduled to run
3800 */
3801 void __napi_schedule(struct napi_struct *n)
3802 {
3803 unsigned long flags;
3804
3805 local_irq_save(flags);
3806 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3807 local_irq_restore(flags);
3808 }
3809 EXPORT_SYMBOL(__napi_schedule);
3810
3811 void __napi_complete(struct napi_struct *n)
3812 {
3813 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3814 BUG_ON(n->gro_list);
3815
3816 list_del(&n->poll_list);
3817 smp_mb__before_clear_bit();
3818 clear_bit(NAPI_STATE_SCHED, &n->state);
3819 }
3820 EXPORT_SYMBOL(__napi_complete);
3821
3822 void napi_complete(struct napi_struct *n)
3823 {
3824 unsigned long flags;
3825
3826 /*
3827 * don't let napi dequeue from the cpu poll list
3828 * just in case its running on a different cpu
3829 */
3830 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3831 return;
3832
3833 napi_gro_flush(n);
3834 local_irq_save(flags);
3835 __napi_complete(n);
3836 local_irq_restore(flags);
3837 }
3838 EXPORT_SYMBOL(napi_complete);
3839
3840 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3841 int (*poll)(struct napi_struct *, int), int weight)
3842 {
3843 INIT_LIST_HEAD(&napi->poll_list);
3844 napi->gro_count = 0;
3845 napi->gro_list = NULL;
3846 napi->skb = NULL;
3847 napi->poll = poll;
3848 napi->weight = weight;
3849 list_add(&napi->dev_list, &dev->napi_list);
3850 napi->dev = dev;
3851 #ifdef CONFIG_NETPOLL
3852 spin_lock_init(&napi->poll_lock);
3853 napi->poll_owner = -1;
3854 #endif
3855 set_bit(NAPI_STATE_SCHED, &napi->state);
3856 }
3857 EXPORT_SYMBOL(netif_napi_add);
3858
3859 void netif_napi_del(struct napi_struct *napi)
3860 {
3861 struct sk_buff *skb, *next;
3862
3863 list_del_init(&napi->dev_list);
3864 napi_free_frags(napi);
3865
3866 for (skb = napi->gro_list; skb; skb = next) {
3867 next = skb->next;
3868 skb->next = NULL;
3869 kfree_skb(skb);
3870 }
3871
3872 napi->gro_list = NULL;
3873 napi->gro_count = 0;
3874 }
3875 EXPORT_SYMBOL(netif_napi_del);
3876
3877 static void net_rx_action(struct softirq_action *h)
3878 {
3879 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3880 unsigned long time_limit = jiffies + 2;
3881 int budget = netdev_budget;
3882 void *have;
3883
3884 local_irq_disable();
3885
3886 while (!list_empty(&sd->poll_list)) {
3887 struct napi_struct *n;
3888 int work, weight;
3889
3890 /* If softirq window is exhuasted then punt.
3891 * Allow this to run for 2 jiffies since which will allow
3892 * an average latency of 1.5/HZ.
3893 */
3894 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3895 goto softnet_break;
3896
3897 local_irq_enable();
3898
3899 /* Even though interrupts have been re-enabled, this
3900 * access is safe because interrupts can only add new
3901 * entries to the tail of this list, and only ->poll()
3902 * calls can remove this head entry from the list.
3903 */
3904 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3905
3906 have = netpoll_poll_lock(n);
3907
3908 weight = n->weight;
3909
3910 /* This NAPI_STATE_SCHED test is for avoiding a race
3911 * with netpoll's poll_napi(). Only the entity which
3912 * obtains the lock and sees NAPI_STATE_SCHED set will
3913 * actually make the ->poll() call. Therefore we avoid
3914 * accidentally calling ->poll() when NAPI is not scheduled.
3915 */
3916 work = 0;
3917 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3918 work = n->poll(n, weight);
3919 trace_napi_poll(n);
3920 }
3921
3922 WARN_ON_ONCE(work > weight);
3923
3924 budget -= work;
3925
3926 local_irq_disable();
3927
3928 /* Drivers must not modify the NAPI state if they
3929 * consume the entire weight. In such cases this code
3930 * still "owns" the NAPI instance and therefore can
3931 * move the instance around on the list at-will.
3932 */
3933 if (unlikely(work == weight)) {
3934 if (unlikely(napi_disable_pending(n))) {
3935 local_irq_enable();
3936 napi_complete(n);
3937 local_irq_disable();
3938 } else
3939 list_move_tail(&n->poll_list, &sd->poll_list);
3940 }
3941
3942 netpoll_poll_unlock(have);
3943 }
3944 out:
3945 net_rps_action_and_irq_enable(sd);
3946
3947 #ifdef CONFIG_NET_DMA
3948 /*
3949 * There may not be any more sk_buffs coming right now, so push
3950 * any pending DMA copies to hardware
3951 */
3952 dma_issue_pending_all();
3953 #endif
3954
3955 return;
3956
3957 softnet_break:
3958 sd->time_squeeze++;
3959 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3960 goto out;
3961 }
3962
3963 static gifconf_func_t *gifconf_list[NPROTO];
3964
3965 /**
3966 * register_gifconf - register a SIOCGIF handler
3967 * @family: Address family
3968 * @gifconf: Function handler
3969 *
3970 * Register protocol dependent address dumping routines. The handler
3971 * that is passed must not be freed or reused until it has been replaced
3972 * by another handler.
3973 */
3974 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3975 {
3976 if (family >= NPROTO)
3977 return -EINVAL;
3978 gifconf_list[family] = gifconf;
3979 return 0;
3980 }
3981 EXPORT_SYMBOL(register_gifconf);
3982
3983
3984 /*
3985 * Map an interface index to its name (SIOCGIFNAME)
3986 */
3987
3988 /*
3989 * We need this ioctl for efficient implementation of the
3990 * if_indextoname() function required by the IPv6 API. Without
3991 * it, we would have to search all the interfaces to find a
3992 * match. --pb
3993 */
3994
3995 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3996 {
3997 struct net_device *dev;
3998 struct ifreq ifr;
3999
4000 /*
4001 * Fetch the caller's info block.
4002 */
4003
4004 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4005 return -EFAULT;
4006
4007 rcu_read_lock();
4008 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4009 if (!dev) {
4010 rcu_read_unlock();
4011 return -ENODEV;
4012 }
4013
4014 strcpy(ifr.ifr_name, dev->name);
4015 rcu_read_unlock();
4016
4017 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4018 return -EFAULT;
4019 return 0;
4020 }
4021
4022 /*
4023 * Perform a SIOCGIFCONF call. This structure will change
4024 * size eventually, and there is nothing I can do about it.
4025 * Thus we will need a 'compatibility mode'.
4026 */
4027
4028 static int dev_ifconf(struct net *net, char __user *arg)
4029 {
4030 struct ifconf ifc;
4031 struct net_device *dev;
4032 char __user *pos;
4033 int len;
4034 int total;
4035 int i;
4036
4037 /*
4038 * Fetch the caller's info block.
4039 */
4040
4041 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4042 return -EFAULT;
4043
4044 pos = ifc.ifc_buf;
4045 len = ifc.ifc_len;
4046
4047 /*
4048 * Loop over the interfaces, and write an info block for each.
4049 */
4050
4051 total = 0;
4052 for_each_netdev(net, dev) {
4053 for (i = 0; i < NPROTO; i++) {
4054 if (gifconf_list[i]) {
4055 int done;
4056 if (!pos)
4057 done = gifconf_list[i](dev, NULL, 0);
4058 else
4059 done = gifconf_list[i](dev, pos + total,
4060 len - total);
4061 if (done < 0)
4062 return -EFAULT;
4063 total += done;
4064 }
4065 }
4066 }
4067
4068 /*
4069 * All done. Write the updated control block back to the caller.
4070 */
4071 ifc.ifc_len = total;
4072
4073 /*
4074 * Both BSD and Solaris return 0 here, so we do too.
4075 */
4076 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4077 }
4078
4079 #ifdef CONFIG_PROC_FS
4080
4081 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4082
4083 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4084 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4085 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4086
4087 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4088 {
4089 struct net *net = seq_file_net(seq);
4090 struct net_device *dev;
4091 struct hlist_node *p;
4092 struct hlist_head *h;
4093 unsigned int count = 0, offset = get_offset(*pos);
4094
4095 h = &net->dev_name_head[get_bucket(*pos)];
4096 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4097 if (++count == offset)
4098 return dev;
4099 }
4100
4101 return NULL;
4102 }
4103
4104 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4105 {
4106 struct net_device *dev;
4107 unsigned int bucket;
4108
4109 do {
4110 dev = dev_from_same_bucket(seq, pos);
4111 if (dev)
4112 return dev;
4113
4114 bucket = get_bucket(*pos) + 1;
4115 *pos = set_bucket_offset(bucket, 1);
4116 } while (bucket < NETDEV_HASHENTRIES);
4117
4118 return NULL;
4119 }
4120
4121 /*
4122 * This is invoked by the /proc filesystem handler to display a device
4123 * in detail.
4124 */
4125 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4126 __acquires(RCU)
4127 {
4128 rcu_read_lock();
4129 if (!*pos)
4130 return SEQ_START_TOKEN;
4131
4132 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4133 return NULL;
4134
4135 return dev_from_bucket(seq, pos);
4136 }
4137
4138 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4139 {
4140 ++*pos;
4141 return dev_from_bucket(seq, pos);
4142 }
4143
4144 void dev_seq_stop(struct seq_file *seq, void *v)
4145 __releases(RCU)
4146 {
4147 rcu_read_unlock();
4148 }
4149
4150 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4151 {
4152 struct rtnl_link_stats64 temp;
4153 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4154
4155 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4156 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4157 dev->name, stats->rx_bytes, stats->rx_packets,
4158 stats->rx_errors,
4159 stats->rx_dropped + stats->rx_missed_errors,
4160 stats->rx_fifo_errors,
4161 stats->rx_length_errors + stats->rx_over_errors +
4162 stats->rx_crc_errors + stats->rx_frame_errors,
4163 stats->rx_compressed, stats->multicast,
4164 stats->tx_bytes, stats->tx_packets,
4165 stats->tx_errors, stats->tx_dropped,
4166 stats->tx_fifo_errors, stats->collisions,
4167 stats->tx_carrier_errors +
4168 stats->tx_aborted_errors +
4169 stats->tx_window_errors +
4170 stats->tx_heartbeat_errors,
4171 stats->tx_compressed);
4172 }
4173
4174 /*
4175 * Called from the PROCfs module. This now uses the new arbitrary sized
4176 * /proc/net interface to create /proc/net/dev
4177 */
4178 static int dev_seq_show(struct seq_file *seq, void *v)
4179 {
4180 if (v == SEQ_START_TOKEN)
4181 seq_puts(seq, "Inter-| Receive "
4182 " | Transmit\n"
4183 " face |bytes packets errs drop fifo frame "
4184 "compressed multicast|bytes packets errs "
4185 "drop fifo colls carrier compressed\n");
4186 else
4187 dev_seq_printf_stats(seq, v);
4188 return 0;
4189 }
4190
4191 static struct softnet_data *softnet_get_online(loff_t *pos)
4192 {
4193 struct softnet_data *sd = NULL;
4194
4195 while (*pos < nr_cpu_ids)
4196 if (cpu_online(*pos)) {
4197 sd = &per_cpu(softnet_data, *pos);
4198 break;
4199 } else
4200 ++*pos;
4201 return sd;
4202 }
4203
4204 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4205 {
4206 return softnet_get_online(pos);
4207 }
4208
4209 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4210 {
4211 ++*pos;
4212 return softnet_get_online(pos);
4213 }
4214
4215 static void softnet_seq_stop(struct seq_file *seq, void *v)
4216 {
4217 }
4218
4219 static int softnet_seq_show(struct seq_file *seq, void *v)
4220 {
4221 struct softnet_data *sd = v;
4222
4223 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4224 sd->processed, sd->dropped, sd->time_squeeze, 0,
4225 0, 0, 0, 0, /* was fastroute */
4226 sd->cpu_collision, sd->received_rps);
4227 return 0;
4228 }
4229
4230 static const struct seq_operations dev_seq_ops = {
4231 .start = dev_seq_start,
4232 .next = dev_seq_next,
4233 .stop = dev_seq_stop,
4234 .show = dev_seq_show,
4235 };
4236
4237 static int dev_seq_open(struct inode *inode, struct file *file)
4238 {
4239 return seq_open_net(inode, file, &dev_seq_ops,
4240 sizeof(struct seq_net_private));
4241 }
4242
4243 static const struct file_operations dev_seq_fops = {
4244 .owner = THIS_MODULE,
4245 .open = dev_seq_open,
4246 .read = seq_read,
4247 .llseek = seq_lseek,
4248 .release = seq_release_net,
4249 };
4250
4251 static const struct seq_operations softnet_seq_ops = {
4252 .start = softnet_seq_start,
4253 .next = softnet_seq_next,
4254 .stop = softnet_seq_stop,
4255 .show = softnet_seq_show,
4256 };
4257
4258 static int softnet_seq_open(struct inode *inode, struct file *file)
4259 {
4260 return seq_open(file, &softnet_seq_ops);
4261 }
4262
4263 static const struct file_operations softnet_seq_fops = {
4264 .owner = THIS_MODULE,
4265 .open = softnet_seq_open,
4266 .read = seq_read,
4267 .llseek = seq_lseek,
4268 .release = seq_release,
4269 };
4270
4271 static void *ptype_get_idx(loff_t pos)
4272 {
4273 struct packet_type *pt = NULL;
4274 loff_t i = 0;
4275 int t;
4276
4277 list_for_each_entry_rcu(pt, &ptype_all, list) {
4278 if (i == pos)
4279 return pt;
4280 ++i;
4281 }
4282
4283 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4284 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4285 if (i == pos)
4286 return pt;
4287 ++i;
4288 }
4289 }
4290 return NULL;
4291 }
4292
4293 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4294 __acquires(RCU)
4295 {
4296 rcu_read_lock();
4297 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4298 }
4299
4300 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4301 {
4302 struct packet_type *pt;
4303 struct list_head *nxt;
4304 int hash;
4305
4306 ++*pos;
4307 if (v == SEQ_START_TOKEN)
4308 return ptype_get_idx(0);
4309
4310 pt = v;
4311 nxt = pt->list.next;
4312 if (pt->type == htons(ETH_P_ALL)) {
4313 if (nxt != &ptype_all)
4314 goto found;
4315 hash = 0;
4316 nxt = ptype_base[0].next;
4317 } else
4318 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4319
4320 while (nxt == &ptype_base[hash]) {
4321 if (++hash >= PTYPE_HASH_SIZE)
4322 return NULL;
4323 nxt = ptype_base[hash].next;
4324 }
4325 found:
4326 return list_entry(nxt, struct packet_type, list);
4327 }
4328
4329 static void ptype_seq_stop(struct seq_file *seq, void *v)
4330 __releases(RCU)
4331 {
4332 rcu_read_unlock();
4333 }
4334
4335 static int ptype_seq_show(struct seq_file *seq, void *v)
4336 {
4337 struct packet_type *pt = v;
4338
4339 if (v == SEQ_START_TOKEN)
4340 seq_puts(seq, "Type Device Function\n");
4341 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4342 if (pt->type == htons(ETH_P_ALL))
4343 seq_puts(seq, "ALL ");
4344 else
4345 seq_printf(seq, "%04x", ntohs(pt->type));
4346
4347 seq_printf(seq, " %-8s %pF\n",
4348 pt->dev ? pt->dev->name : "", pt->func);
4349 }
4350
4351 return 0;
4352 }
4353
4354 static const struct seq_operations ptype_seq_ops = {
4355 .start = ptype_seq_start,
4356 .next = ptype_seq_next,
4357 .stop = ptype_seq_stop,
4358 .show = ptype_seq_show,
4359 };
4360
4361 static int ptype_seq_open(struct inode *inode, struct file *file)
4362 {
4363 return seq_open_net(inode, file, &ptype_seq_ops,
4364 sizeof(struct seq_net_private));
4365 }
4366
4367 static const struct file_operations ptype_seq_fops = {
4368 .owner = THIS_MODULE,
4369 .open = ptype_seq_open,
4370 .read = seq_read,
4371 .llseek = seq_lseek,
4372 .release = seq_release_net,
4373 };
4374
4375
4376 static int __net_init dev_proc_net_init(struct net *net)
4377 {
4378 int rc = -ENOMEM;
4379
4380 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4381 goto out;
4382 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4383 goto out_dev;
4384 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4385 goto out_softnet;
4386
4387 if (wext_proc_init(net))
4388 goto out_ptype;
4389 rc = 0;
4390 out:
4391 return rc;
4392 out_ptype:
4393 proc_net_remove(net, "ptype");
4394 out_softnet:
4395 proc_net_remove(net, "softnet_stat");
4396 out_dev:
4397 proc_net_remove(net, "dev");
4398 goto out;
4399 }
4400
4401 static void __net_exit dev_proc_net_exit(struct net *net)
4402 {
4403 wext_proc_exit(net);
4404
4405 proc_net_remove(net, "ptype");
4406 proc_net_remove(net, "softnet_stat");
4407 proc_net_remove(net, "dev");
4408 }
4409
4410 static struct pernet_operations __net_initdata dev_proc_ops = {
4411 .init = dev_proc_net_init,
4412 .exit = dev_proc_net_exit,
4413 };
4414
4415 static int __init dev_proc_init(void)
4416 {
4417 return register_pernet_subsys(&dev_proc_ops);
4418 }
4419 #else
4420 #define dev_proc_init() 0
4421 #endif /* CONFIG_PROC_FS */
4422
4423
4424 /**
4425 * netdev_set_master - set up master pointer
4426 * @slave: slave device
4427 * @master: new master device
4428 *
4429 * Changes the master device of the slave. Pass %NULL to break the
4430 * bonding. The caller must hold the RTNL semaphore. On a failure
4431 * a negative errno code is returned. On success the reference counts
4432 * are adjusted and the function returns zero.
4433 */
4434 int netdev_set_master(struct net_device *slave, struct net_device *master)
4435 {
4436 struct net_device *old = slave->master;
4437
4438 ASSERT_RTNL();
4439
4440 if (master) {
4441 if (old)
4442 return -EBUSY;
4443 dev_hold(master);
4444 }
4445
4446 slave->master = master;
4447
4448 if (old)
4449 dev_put(old);
4450 return 0;
4451 }
4452 EXPORT_SYMBOL(netdev_set_master);
4453
4454 /**
4455 * netdev_set_bond_master - set up bonding master/slave pair
4456 * @slave: slave device
4457 * @master: new master device
4458 *
4459 * Changes the master device of the slave. Pass %NULL to break the
4460 * bonding. The caller must hold the RTNL semaphore. On a failure
4461 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4462 * to the routing socket and the function returns zero.
4463 */
4464 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4465 {
4466 int err;
4467
4468 ASSERT_RTNL();
4469
4470 err = netdev_set_master(slave, master);
4471 if (err)
4472 return err;
4473 if (master)
4474 slave->flags |= IFF_SLAVE;
4475 else
4476 slave->flags &= ~IFF_SLAVE;
4477
4478 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4479 return 0;
4480 }
4481 EXPORT_SYMBOL(netdev_set_bond_master);
4482
4483 static void dev_change_rx_flags(struct net_device *dev, int flags)
4484 {
4485 const struct net_device_ops *ops = dev->netdev_ops;
4486
4487 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4488 ops->ndo_change_rx_flags(dev, flags);
4489 }
4490
4491 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4492 {
4493 unsigned int old_flags = dev->flags;
4494 uid_t uid;
4495 gid_t gid;
4496
4497 ASSERT_RTNL();
4498
4499 dev->flags |= IFF_PROMISC;
4500 dev->promiscuity += inc;
4501 if (dev->promiscuity == 0) {
4502 /*
4503 * Avoid overflow.
4504 * If inc causes overflow, untouch promisc and return error.
4505 */
4506 if (inc < 0)
4507 dev->flags &= ~IFF_PROMISC;
4508 else {
4509 dev->promiscuity -= inc;
4510 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4511 dev->name);
4512 return -EOVERFLOW;
4513 }
4514 }
4515 if (dev->flags != old_flags) {
4516 pr_info("device %s %s promiscuous mode\n",
4517 dev->name,
4518 dev->flags & IFF_PROMISC ? "entered" : "left");
4519 if (audit_enabled) {
4520 current_uid_gid(&uid, &gid);
4521 audit_log(current->audit_context, GFP_ATOMIC,
4522 AUDIT_ANOM_PROMISCUOUS,
4523 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4524 dev->name, (dev->flags & IFF_PROMISC),
4525 (old_flags & IFF_PROMISC),
4526 audit_get_loginuid(current),
4527 uid, gid,
4528 audit_get_sessionid(current));
4529 }
4530
4531 dev_change_rx_flags(dev, IFF_PROMISC);
4532 }
4533 return 0;
4534 }
4535
4536 /**
4537 * dev_set_promiscuity - update promiscuity count on a device
4538 * @dev: device
4539 * @inc: modifier
4540 *
4541 * Add or remove promiscuity from a device. While the count in the device
4542 * remains above zero the interface remains promiscuous. Once it hits zero
4543 * the device reverts back to normal filtering operation. A negative inc
4544 * value is used to drop promiscuity on the device.
4545 * Return 0 if successful or a negative errno code on error.
4546 */
4547 int dev_set_promiscuity(struct net_device *dev, int inc)
4548 {
4549 unsigned int old_flags = dev->flags;
4550 int err;
4551
4552 err = __dev_set_promiscuity(dev, inc);
4553 if (err < 0)
4554 return err;
4555 if (dev->flags != old_flags)
4556 dev_set_rx_mode(dev);
4557 return err;
4558 }
4559 EXPORT_SYMBOL(dev_set_promiscuity);
4560
4561 /**
4562 * dev_set_allmulti - update allmulti count on a device
4563 * @dev: device
4564 * @inc: modifier
4565 *
4566 * Add or remove reception of all multicast frames to a device. While the
4567 * count in the device remains above zero the interface remains listening
4568 * to all interfaces. Once it hits zero the device reverts back to normal
4569 * filtering operation. A negative @inc value is used to drop the counter
4570 * when releasing a resource needing all multicasts.
4571 * Return 0 if successful or a negative errno code on error.
4572 */
4573
4574 int dev_set_allmulti(struct net_device *dev, int inc)
4575 {
4576 unsigned int old_flags = dev->flags;
4577
4578 ASSERT_RTNL();
4579
4580 dev->flags |= IFF_ALLMULTI;
4581 dev->allmulti += inc;
4582 if (dev->allmulti == 0) {
4583 /*
4584 * Avoid overflow.
4585 * If inc causes overflow, untouch allmulti and return error.
4586 */
4587 if (inc < 0)
4588 dev->flags &= ~IFF_ALLMULTI;
4589 else {
4590 dev->allmulti -= inc;
4591 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4592 dev->name);
4593 return -EOVERFLOW;
4594 }
4595 }
4596 if (dev->flags ^ old_flags) {
4597 dev_change_rx_flags(dev, IFF_ALLMULTI);
4598 dev_set_rx_mode(dev);
4599 }
4600 return 0;
4601 }
4602 EXPORT_SYMBOL(dev_set_allmulti);
4603
4604 /*
4605 * Upload unicast and multicast address lists to device and
4606 * configure RX filtering. When the device doesn't support unicast
4607 * filtering it is put in promiscuous mode while unicast addresses
4608 * are present.
4609 */
4610 void __dev_set_rx_mode(struct net_device *dev)
4611 {
4612 const struct net_device_ops *ops = dev->netdev_ops;
4613
4614 /* dev_open will call this function so the list will stay sane. */
4615 if (!(dev->flags&IFF_UP))
4616 return;
4617
4618 if (!netif_device_present(dev))
4619 return;
4620
4621 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4622 /* Unicast addresses changes may only happen under the rtnl,
4623 * therefore calling __dev_set_promiscuity here is safe.
4624 */
4625 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4626 __dev_set_promiscuity(dev, 1);
4627 dev->uc_promisc = true;
4628 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4629 __dev_set_promiscuity(dev, -1);
4630 dev->uc_promisc = false;
4631 }
4632 }
4633
4634 if (ops->ndo_set_rx_mode)
4635 ops->ndo_set_rx_mode(dev);
4636 }
4637
4638 void dev_set_rx_mode(struct net_device *dev)
4639 {
4640 netif_addr_lock_bh(dev);
4641 __dev_set_rx_mode(dev);
4642 netif_addr_unlock_bh(dev);
4643 }
4644
4645 /**
4646 * dev_get_flags - get flags reported to userspace
4647 * @dev: device
4648 *
4649 * Get the combination of flag bits exported through APIs to userspace.
4650 */
4651 unsigned int dev_get_flags(const struct net_device *dev)
4652 {
4653 unsigned int flags;
4654
4655 flags = (dev->flags & ~(IFF_PROMISC |
4656 IFF_ALLMULTI |
4657 IFF_RUNNING |
4658 IFF_LOWER_UP |
4659 IFF_DORMANT)) |
4660 (dev->gflags & (IFF_PROMISC |
4661 IFF_ALLMULTI));
4662
4663 if (netif_running(dev)) {
4664 if (netif_oper_up(dev))
4665 flags |= IFF_RUNNING;
4666 if (netif_carrier_ok(dev))
4667 flags |= IFF_LOWER_UP;
4668 if (netif_dormant(dev))
4669 flags |= IFF_DORMANT;
4670 }
4671
4672 return flags;
4673 }
4674 EXPORT_SYMBOL(dev_get_flags);
4675
4676 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4677 {
4678 unsigned int old_flags = dev->flags;
4679 int ret;
4680
4681 ASSERT_RTNL();
4682
4683 /*
4684 * Set the flags on our device.
4685 */
4686
4687 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4688 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4689 IFF_AUTOMEDIA)) |
4690 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4691 IFF_ALLMULTI));
4692
4693 /*
4694 * Load in the correct multicast list now the flags have changed.
4695 */
4696
4697 if ((old_flags ^ flags) & IFF_MULTICAST)
4698 dev_change_rx_flags(dev, IFF_MULTICAST);
4699
4700 dev_set_rx_mode(dev);
4701
4702 /*
4703 * Have we downed the interface. We handle IFF_UP ourselves
4704 * according to user attempts to set it, rather than blindly
4705 * setting it.
4706 */
4707
4708 ret = 0;
4709 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4710 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4711
4712 if (!ret)
4713 dev_set_rx_mode(dev);
4714 }
4715
4716 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4717 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4718
4719 dev->gflags ^= IFF_PROMISC;
4720 dev_set_promiscuity(dev, inc);
4721 }
4722
4723 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4724 is important. Some (broken) drivers set IFF_PROMISC, when
4725 IFF_ALLMULTI is requested not asking us and not reporting.
4726 */
4727 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4728 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4729
4730 dev->gflags ^= IFF_ALLMULTI;
4731 dev_set_allmulti(dev, inc);
4732 }
4733
4734 return ret;
4735 }
4736
4737 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4738 {
4739 unsigned int changes = dev->flags ^ old_flags;
4740
4741 if (changes & IFF_UP) {
4742 if (dev->flags & IFF_UP)
4743 call_netdevice_notifiers(NETDEV_UP, dev);
4744 else
4745 call_netdevice_notifiers(NETDEV_DOWN, dev);
4746 }
4747
4748 if (dev->flags & IFF_UP &&
4749 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4750 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4751 }
4752
4753 /**
4754 * dev_change_flags - change device settings
4755 * @dev: device
4756 * @flags: device state flags
4757 *
4758 * Change settings on device based state flags. The flags are
4759 * in the userspace exported format.
4760 */
4761 int dev_change_flags(struct net_device *dev, unsigned int flags)
4762 {
4763 int ret;
4764 unsigned int changes, old_flags = dev->flags;
4765
4766 ret = __dev_change_flags(dev, flags);
4767 if (ret < 0)
4768 return ret;
4769
4770 changes = old_flags ^ dev->flags;
4771 if (changes)
4772 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4773
4774 __dev_notify_flags(dev, old_flags);
4775 return ret;
4776 }
4777 EXPORT_SYMBOL(dev_change_flags);
4778
4779 /**
4780 * dev_set_mtu - Change maximum transfer unit
4781 * @dev: device
4782 * @new_mtu: new transfer unit
4783 *
4784 * Change the maximum transfer size of the network device.
4785 */
4786 int dev_set_mtu(struct net_device *dev, int new_mtu)
4787 {
4788 const struct net_device_ops *ops = dev->netdev_ops;
4789 int err;
4790
4791 if (new_mtu == dev->mtu)
4792 return 0;
4793
4794 /* MTU must be positive. */
4795 if (new_mtu < 0)
4796 return -EINVAL;
4797
4798 if (!netif_device_present(dev))
4799 return -ENODEV;
4800
4801 err = 0;
4802 if (ops->ndo_change_mtu)
4803 err = ops->ndo_change_mtu(dev, new_mtu);
4804 else
4805 dev->mtu = new_mtu;
4806
4807 if (!err && dev->flags & IFF_UP)
4808 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4809 return err;
4810 }
4811 EXPORT_SYMBOL(dev_set_mtu);
4812
4813 /**
4814 * dev_set_group - Change group this device belongs to
4815 * @dev: device
4816 * @new_group: group this device should belong to
4817 */
4818 void dev_set_group(struct net_device *dev, int new_group)
4819 {
4820 dev->group = new_group;
4821 }
4822 EXPORT_SYMBOL(dev_set_group);
4823
4824 /**
4825 * dev_set_mac_address - Change Media Access Control Address
4826 * @dev: device
4827 * @sa: new address
4828 *
4829 * Change the hardware (MAC) address of the device
4830 */
4831 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4832 {
4833 const struct net_device_ops *ops = dev->netdev_ops;
4834 int err;
4835
4836 if (!ops->ndo_set_mac_address)
4837 return -EOPNOTSUPP;
4838 if (sa->sa_family != dev->type)
4839 return -EINVAL;
4840 if (!netif_device_present(dev))
4841 return -ENODEV;
4842 err = ops->ndo_set_mac_address(dev, sa);
4843 if (!err)
4844 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4845 return err;
4846 }
4847 EXPORT_SYMBOL(dev_set_mac_address);
4848
4849 /*
4850 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4851 */
4852 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4853 {
4854 int err;
4855 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4856
4857 if (!dev)
4858 return -ENODEV;
4859
4860 switch (cmd) {
4861 case SIOCGIFFLAGS: /* Get interface flags */
4862 ifr->ifr_flags = (short) dev_get_flags(dev);
4863 return 0;
4864
4865 case SIOCGIFMETRIC: /* Get the metric on the interface
4866 (currently unused) */
4867 ifr->ifr_metric = 0;
4868 return 0;
4869
4870 case SIOCGIFMTU: /* Get the MTU of a device */
4871 ifr->ifr_mtu = dev->mtu;
4872 return 0;
4873
4874 case SIOCGIFHWADDR:
4875 if (!dev->addr_len)
4876 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4877 else
4878 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4879 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4880 ifr->ifr_hwaddr.sa_family = dev->type;
4881 return 0;
4882
4883 case SIOCGIFSLAVE:
4884 err = -EINVAL;
4885 break;
4886
4887 case SIOCGIFMAP:
4888 ifr->ifr_map.mem_start = dev->mem_start;
4889 ifr->ifr_map.mem_end = dev->mem_end;
4890 ifr->ifr_map.base_addr = dev->base_addr;
4891 ifr->ifr_map.irq = dev->irq;
4892 ifr->ifr_map.dma = dev->dma;
4893 ifr->ifr_map.port = dev->if_port;
4894 return 0;
4895
4896 case SIOCGIFINDEX:
4897 ifr->ifr_ifindex = dev->ifindex;
4898 return 0;
4899
4900 case SIOCGIFTXQLEN:
4901 ifr->ifr_qlen = dev->tx_queue_len;
4902 return 0;
4903
4904 default:
4905 /* dev_ioctl() should ensure this case
4906 * is never reached
4907 */
4908 WARN_ON(1);
4909 err = -ENOTTY;
4910 break;
4911
4912 }
4913 return err;
4914 }
4915
4916 /*
4917 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4918 */
4919 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4920 {
4921 int err;
4922 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4923 const struct net_device_ops *ops;
4924
4925 if (!dev)
4926 return -ENODEV;
4927
4928 ops = dev->netdev_ops;
4929
4930 switch (cmd) {
4931 case SIOCSIFFLAGS: /* Set interface flags */
4932 return dev_change_flags(dev, ifr->ifr_flags);
4933
4934 case SIOCSIFMETRIC: /* Set the metric on the interface
4935 (currently unused) */
4936 return -EOPNOTSUPP;
4937
4938 case SIOCSIFMTU: /* Set the MTU of a device */
4939 return dev_set_mtu(dev, ifr->ifr_mtu);
4940
4941 case SIOCSIFHWADDR:
4942 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4943
4944 case SIOCSIFHWBROADCAST:
4945 if (ifr->ifr_hwaddr.sa_family != dev->type)
4946 return -EINVAL;
4947 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4948 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4949 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4950 return 0;
4951
4952 case SIOCSIFMAP:
4953 if (ops->ndo_set_config) {
4954 if (!netif_device_present(dev))
4955 return -ENODEV;
4956 return ops->ndo_set_config(dev, &ifr->ifr_map);
4957 }
4958 return -EOPNOTSUPP;
4959
4960 case SIOCADDMULTI:
4961 if (!ops->ndo_set_rx_mode ||
4962 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4963 return -EINVAL;
4964 if (!netif_device_present(dev))
4965 return -ENODEV;
4966 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4967
4968 case SIOCDELMULTI:
4969 if (!ops->ndo_set_rx_mode ||
4970 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4971 return -EINVAL;
4972 if (!netif_device_present(dev))
4973 return -ENODEV;
4974 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4975
4976 case SIOCSIFTXQLEN:
4977 if (ifr->ifr_qlen < 0)
4978 return -EINVAL;
4979 dev->tx_queue_len = ifr->ifr_qlen;
4980 return 0;
4981
4982 case SIOCSIFNAME:
4983 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4984 return dev_change_name(dev, ifr->ifr_newname);
4985
4986 case SIOCSHWTSTAMP:
4987 err = net_hwtstamp_validate(ifr);
4988 if (err)
4989 return err;
4990 /* fall through */
4991
4992 /*
4993 * Unknown or private ioctl
4994 */
4995 default:
4996 if ((cmd >= SIOCDEVPRIVATE &&
4997 cmd <= SIOCDEVPRIVATE + 15) ||
4998 cmd == SIOCBONDENSLAVE ||
4999 cmd == SIOCBONDRELEASE ||
5000 cmd == SIOCBONDSETHWADDR ||
5001 cmd == SIOCBONDSLAVEINFOQUERY ||
5002 cmd == SIOCBONDINFOQUERY ||
5003 cmd == SIOCBONDCHANGEACTIVE ||
5004 cmd == SIOCGMIIPHY ||
5005 cmd == SIOCGMIIREG ||
5006 cmd == SIOCSMIIREG ||
5007 cmd == SIOCBRADDIF ||
5008 cmd == SIOCBRDELIF ||
5009 cmd == SIOCSHWTSTAMP ||
5010 cmd == SIOCWANDEV) {
5011 err = -EOPNOTSUPP;
5012 if (ops->ndo_do_ioctl) {
5013 if (netif_device_present(dev))
5014 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5015 else
5016 err = -ENODEV;
5017 }
5018 } else
5019 err = -EINVAL;
5020
5021 }
5022 return err;
5023 }
5024
5025 /*
5026 * This function handles all "interface"-type I/O control requests. The actual
5027 * 'doing' part of this is dev_ifsioc above.
5028 */
5029
5030 /**
5031 * dev_ioctl - network device ioctl
5032 * @net: the applicable net namespace
5033 * @cmd: command to issue
5034 * @arg: pointer to a struct ifreq in user space
5035 *
5036 * Issue ioctl functions to devices. This is normally called by the
5037 * user space syscall interfaces but can sometimes be useful for
5038 * other purposes. The return value is the return from the syscall if
5039 * positive or a negative errno code on error.
5040 */
5041
5042 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5043 {
5044 struct ifreq ifr;
5045 int ret;
5046 char *colon;
5047
5048 /* One special case: SIOCGIFCONF takes ifconf argument
5049 and requires shared lock, because it sleeps writing
5050 to user space.
5051 */
5052
5053 if (cmd == SIOCGIFCONF) {
5054 rtnl_lock();
5055 ret = dev_ifconf(net, (char __user *) arg);
5056 rtnl_unlock();
5057 return ret;
5058 }
5059 if (cmd == SIOCGIFNAME)
5060 return dev_ifname(net, (struct ifreq __user *)arg);
5061
5062 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5063 return -EFAULT;
5064
5065 ifr.ifr_name[IFNAMSIZ-1] = 0;
5066
5067 colon = strchr(ifr.ifr_name, ':');
5068 if (colon)
5069 *colon = 0;
5070
5071 /*
5072 * See which interface the caller is talking about.
5073 */
5074
5075 switch (cmd) {
5076 /*
5077 * These ioctl calls:
5078 * - can be done by all.
5079 * - atomic and do not require locking.
5080 * - return a value
5081 */
5082 case SIOCGIFFLAGS:
5083 case SIOCGIFMETRIC:
5084 case SIOCGIFMTU:
5085 case SIOCGIFHWADDR:
5086 case SIOCGIFSLAVE:
5087 case SIOCGIFMAP:
5088 case SIOCGIFINDEX:
5089 case SIOCGIFTXQLEN:
5090 dev_load(net, ifr.ifr_name);
5091 rcu_read_lock();
5092 ret = dev_ifsioc_locked(net, &ifr, cmd);
5093 rcu_read_unlock();
5094 if (!ret) {
5095 if (colon)
5096 *colon = ':';
5097 if (copy_to_user(arg, &ifr,
5098 sizeof(struct ifreq)))
5099 ret = -EFAULT;
5100 }
5101 return ret;
5102
5103 case SIOCETHTOOL:
5104 dev_load(net, ifr.ifr_name);
5105 rtnl_lock();
5106 ret = dev_ethtool(net, &ifr);
5107 rtnl_unlock();
5108 if (!ret) {
5109 if (colon)
5110 *colon = ':';
5111 if (copy_to_user(arg, &ifr,
5112 sizeof(struct ifreq)))
5113 ret = -EFAULT;
5114 }
5115 return ret;
5116
5117 /*
5118 * These ioctl calls:
5119 * - require superuser power.
5120 * - require strict serialization.
5121 * - return a value
5122 */
5123 case SIOCGMIIPHY:
5124 case SIOCGMIIREG:
5125 case SIOCSIFNAME:
5126 if (!capable(CAP_NET_ADMIN))
5127 return -EPERM;
5128 dev_load(net, ifr.ifr_name);
5129 rtnl_lock();
5130 ret = dev_ifsioc(net, &ifr, cmd);
5131 rtnl_unlock();
5132 if (!ret) {
5133 if (colon)
5134 *colon = ':';
5135 if (copy_to_user(arg, &ifr,
5136 sizeof(struct ifreq)))
5137 ret = -EFAULT;
5138 }
5139 return ret;
5140
5141 /*
5142 * These ioctl calls:
5143 * - require superuser power.
5144 * - require strict serialization.
5145 * - do not return a value
5146 */
5147 case SIOCSIFFLAGS:
5148 case SIOCSIFMETRIC:
5149 case SIOCSIFMTU:
5150 case SIOCSIFMAP:
5151 case SIOCSIFHWADDR:
5152 case SIOCSIFSLAVE:
5153 case SIOCADDMULTI:
5154 case SIOCDELMULTI:
5155 case SIOCSIFHWBROADCAST:
5156 case SIOCSIFTXQLEN:
5157 case SIOCSMIIREG:
5158 case SIOCBONDENSLAVE:
5159 case SIOCBONDRELEASE:
5160 case SIOCBONDSETHWADDR:
5161 case SIOCBONDCHANGEACTIVE:
5162 case SIOCBRADDIF:
5163 case SIOCBRDELIF:
5164 case SIOCSHWTSTAMP:
5165 if (!capable(CAP_NET_ADMIN))
5166 return -EPERM;
5167 /* fall through */
5168 case SIOCBONDSLAVEINFOQUERY:
5169 case SIOCBONDINFOQUERY:
5170 dev_load(net, ifr.ifr_name);
5171 rtnl_lock();
5172 ret = dev_ifsioc(net, &ifr, cmd);
5173 rtnl_unlock();
5174 return ret;
5175
5176 case SIOCGIFMEM:
5177 /* Get the per device memory space. We can add this but
5178 * currently do not support it */
5179 case SIOCSIFMEM:
5180 /* Set the per device memory buffer space.
5181 * Not applicable in our case */
5182 case SIOCSIFLINK:
5183 return -ENOTTY;
5184
5185 /*
5186 * Unknown or private ioctl.
5187 */
5188 default:
5189 if (cmd == SIOCWANDEV ||
5190 (cmd >= SIOCDEVPRIVATE &&
5191 cmd <= SIOCDEVPRIVATE + 15)) {
5192 dev_load(net, ifr.ifr_name);
5193 rtnl_lock();
5194 ret = dev_ifsioc(net, &ifr, cmd);
5195 rtnl_unlock();
5196 if (!ret && copy_to_user(arg, &ifr,
5197 sizeof(struct ifreq)))
5198 ret = -EFAULT;
5199 return ret;
5200 }
5201 /* Take care of Wireless Extensions */
5202 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5203 return wext_handle_ioctl(net, &ifr, cmd, arg);
5204 return -ENOTTY;
5205 }
5206 }
5207
5208
5209 /**
5210 * dev_new_index - allocate an ifindex
5211 * @net: the applicable net namespace
5212 *
5213 * Returns a suitable unique value for a new device interface
5214 * number. The caller must hold the rtnl semaphore or the
5215 * dev_base_lock to be sure it remains unique.
5216 */
5217 static int dev_new_index(struct net *net)
5218 {
5219 static int ifindex;
5220 for (;;) {
5221 if (++ifindex <= 0)
5222 ifindex = 1;
5223 if (!__dev_get_by_index(net, ifindex))
5224 return ifindex;
5225 }
5226 }
5227
5228 /* Delayed registration/unregisteration */
5229 static LIST_HEAD(net_todo_list);
5230
5231 static void net_set_todo(struct net_device *dev)
5232 {
5233 list_add_tail(&dev->todo_list, &net_todo_list);
5234 }
5235
5236 static void rollback_registered_many(struct list_head *head)
5237 {
5238 struct net_device *dev, *tmp;
5239
5240 BUG_ON(dev_boot_phase);
5241 ASSERT_RTNL();
5242
5243 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5244 /* Some devices call without registering
5245 * for initialization unwind. Remove those
5246 * devices and proceed with the remaining.
5247 */
5248 if (dev->reg_state == NETREG_UNINITIALIZED) {
5249 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5250 dev->name, dev);
5251
5252 WARN_ON(1);
5253 list_del(&dev->unreg_list);
5254 continue;
5255 }
5256 dev->dismantle = true;
5257 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5258 }
5259
5260 /* If device is running, close it first. */
5261 dev_close_many(head);
5262
5263 list_for_each_entry(dev, head, unreg_list) {
5264 /* And unlink it from device chain. */
5265 unlist_netdevice(dev);
5266
5267 dev->reg_state = NETREG_UNREGISTERING;
5268 }
5269
5270 synchronize_net();
5271
5272 list_for_each_entry(dev, head, unreg_list) {
5273 /* Shutdown queueing discipline. */
5274 dev_shutdown(dev);
5275
5276
5277 /* Notify protocols, that we are about to destroy
5278 this device. They should clean all the things.
5279 */
5280 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5281
5282 if (!dev->rtnl_link_ops ||
5283 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5284 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5285
5286 /*
5287 * Flush the unicast and multicast chains
5288 */
5289 dev_uc_flush(dev);
5290 dev_mc_flush(dev);
5291
5292 if (dev->netdev_ops->ndo_uninit)
5293 dev->netdev_ops->ndo_uninit(dev);
5294
5295 /* Notifier chain MUST detach us from master device. */
5296 WARN_ON(dev->master);
5297
5298 /* Remove entries from kobject tree */
5299 netdev_unregister_kobject(dev);
5300 }
5301
5302 /* Process any work delayed until the end of the batch */
5303 dev = list_first_entry(head, struct net_device, unreg_list);
5304 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5305
5306 synchronize_net();
5307
5308 list_for_each_entry(dev, head, unreg_list)
5309 dev_put(dev);
5310 }
5311
5312 static void rollback_registered(struct net_device *dev)
5313 {
5314 LIST_HEAD(single);
5315
5316 list_add(&dev->unreg_list, &single);
5317 rollback_registered_many(&single);
5318 list_del(&single);
5319 }
5320
5321 static netdev_features_t netdev_fix_features(struct net_device *dev,
5322 netdev_features_t features)
5323 {
5324 /* Fix illegal checksum combinations */
5325 if ((features & NETIF_F_HW_CSUM) &&
5326 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5327 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5328 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5329 }
5330
5331 /* Fix illegal SG+CSUM combinations. */
5332 if ((features & NETIF_F_SG) &&
5333 !(features & NETIF_F_ALL_CSUM)) {
5334 netdev_dbg(dev,
5335 "Dropping NETIF_F_SG since no checksum feature.\n");
5336 features &= ~NETIF_F_SG;
5337 }
5338
5339 /* TSO requires that SG is present as well. */
5340 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5341 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5342 features &= ~NETIF_F_ALL_TSO;
5343 }
5344
5345 /* TSO ECN requires that TSO is present as well. */
5346 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5347 features &= ~NETIF_F_TSO_ECN;
5348
5349 /* Software GSO depends on SG. */
5350 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5351 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5352 features &= ~NETIF_F_GSO;
5353 }
5354
5355 /* UFO needs SG and checksumming */
5356 if (features & NETIF_F_UFO) {
5357 /* maybe split UFO into V4 and V6? */
5358 if (!((features & NETIF_F_GEN_CSUM) ||
5359 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5360 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5361 netdev_dbg(dev,
5362 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5363 features &= ~NETIF_F_UFO;
5364 }
5365
5366 if (!(features & NETIF_F_SG)) {
5367 netdev_dbg(dev,
5368 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5369 features &= ~NETIF_F_UFO;
5370 }
5371 }
5372
5373 return features;
5374 }
5375
5376 int __netdev_update_features(struct net_device *dev)
5377 {
5378 netdev_features_t features;
5379 int err = 0;
5380
5381 ASSERT_RTNL();
5382
5383 features = netdev_get_wanted_features(dev);
5384
5385 if (dev->netdev_ops->ndo_fix_features)
5386 features = dev->netdev_ops->ndo_fix_features(dev, features);
5387
5388 /* driver might be less strict about feature dependencies */
5389 features = netdev_fix_features(dev, features);
5390
5391 if (dev->features == features)
5392 return 0;
5393
5394 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5395 &dev->features, &features);
5396
5397 if (dev->netdev_ops->ndo_set_features)
5398 err = dev->netdev_ops->ndo_set_features(dev, features);
5399
5400 if (unlikely(err < 0)) {
5401 netdev_err(dev,
5402 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5403 err, &features, &dev->features);
5404 return -1;
5405 }
5406
5407 if (!err)
5408 dev->features = features;
5409
5410 return 1;
5411 }
5412
5413 /**
5414 * netdev_update_features - recalculate device features
5415 * @dev: the device to check
5416 *
5417 * Recalculate dev->features set and send notifications if it
5418 * has changed. Should be called after driver or hardware dependent
5419 * conditions might have changed that influence the features.
5420 */
5421 void netdev_update_features(struct net_device *dev)
5422 {
5423 if (__netdev_update_features(dev))
5424 netdev_features_change(dev);
5425 }
5426 EXPORT_SYMBOL(netdev_update_features);
5427
5428 /**
5429 * netdev_change_features - recalculate device features
5430 * @dev: the device to check
5431 *
5432 * Recalculate dev->features set and send notifications even
5433 * if they have not changed. Should be called instead of
5434 * netdev_update_features() if also dev->vlan_features might
5435 * have changed to allow the changes to be propagated to stacked
5436 * VLAN devices.
5437 */
5438 void netdev_change_features(struct net_device *dev)
5439 {
5440 __netdev_update_features(dev);
5441 netdev_features_change(dev);
5442 }
5443 EXPORT_SYMBOL(netdev_change_features);
5444
5445 /**
5446 * netif_stacked_transfer_operstate - transfer operstate
5447 * @rootdev: the root or lower level device to transfer state from
5448 * @dev: the device to transfer operstate to
5449 *
5450 * Transfer operational state from root to device. This is normally
5451 * called when a stacking relationship exists between the root
5452 * device and the device(a leaf device).
5453 */
5454 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5455 struct net_device *dev)
5456 {
5457 if (rootdev->operstate == IF_OPER_DORMANT)
5458 netif_dormant_on(dev);
5459 else
5460 netif_dormant_off(dev);
5461
5462 if (netif_carrier_ok(rootdev)) {
5463 if (!netif_carrier_ok(dev))
5464 netif_carrier_on(dev);
5465 } else {
5466 if (netif_carrier_ok(dev))
5467 netif_carrier_off(dev);
5468 }
5469 }
5470 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5471
5472 #ifdef CONFIG_RPS
5473 static int netif_alloc_rx_queues(struct net_device *dev)
5474 {
5475 unsigned int i, count = dev->num_rx_queues;
5476 struct netdev_rx_queue *rx;
5477
5478 BUG_ON(count < 1);
5479
5480 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5481 if (!rx) {
5482 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5483 return -ENOMEM;
5484 }
5485 dev->_rx = rx;
5486
5487 for (i = 0; i < count; i++)
5488 rx[i].dev = dev;
5489 return 0;
5490 }
5491 #endif
5492
5493 static void netdev_init_one_queue(struct net_device *dev,
5494 struct netdev_queue *queue, void *_unused)
5495 {
5496 /* Initialize queue lock */
5497 spin_lock_init(&queue->_xmit_lock);
5498 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5499 queue->xmit_lock_owner = -1;
5500 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5501 queue->dev = dev;
5502 #ifdef CONFIG_BQL
5503 dql_init(&queue->dql, HZ);
5504 #endif
5505 }
5506
5507 static int netif_alloc_netdev_queues(struct net_device *dev)
5508 {
5509 unsigned int count = dev->num_tx_queues;
5510 struct netdev_queue *tx;
5511
5512 BUG_ON(count < 1);
5513
5514 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5515 if (!tx) {
5516 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5517 return -ENOMEM;
5518 }
5519 dev->_tx = tx;
5520
5521 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5522 spin_lock_init(&dev->tx_global_lock);
5523
5524 return 0;
5525 }
5526
5527 /**
5528 * register_netdevice - register a network device
5529 * @dev: device to register
5530 *
5531 * Take a completed network device structure and add it to the kernel
5532 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5533 * chain. 0 is returned on success. A negative errno code is returned
5534 * on a failure to set up the device, or if the name is a duplicate.
5535 *
5536 * Callers must hold the rtnl semaphore. You may want
5537 * register_netdev() instead of this.
5538 *
5539 * BUGS:
5540 * The locking appears insufficient to guarantee two parallel registers
5541 * will not get the same name.
5542 */
5543
5544 int register_netdevice(struct net_device *dev)
5545 {
5546 int ret;
5547 struct net *net = dev_net(dev);
5548
5549 BUG_ON(dev_boot_phase);
5550 ASSERT_RTNL();
5551
5552 might_sleep();
5553
5554 /* When net_device's are persistent, this will be fatal. */
5555 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5556 BUG_ON(!net);
5557
5558 spin_lock_init(&dev->addr_list_lock);
5559 netdev_set_addr_lockdep_class(dev);
5560
5561 dev->iflink = -1;
5562
5563 ret = dev_get_valid_name(dev, dev->name);
5564 if (ret < 0)
5565 goto out;
5566
5567 /* Init, if this function is available */
5568 if (dev->netdev_ops->ndo_init) {
5569 ret = dev->netdev_ops->ndo_init(dev);
5570 if (ret) {
5571 if (ret > 0)
5572 ret = -EIO;
5573 goto out;
5574 }
5575 }
5576
5577 dev->ifindex = dev_new_index(net);
5578 if (dev->iflink == -1)
5579 dev->iflink = dev->ifindex;
5580
5581 /* Transfer changeable features to wanted_features and enable
5582 * software offloads (GSO and GRO).
5583 */
5584 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5585 dev->features |= NETIF_F_SOFT_FEATURES;
5586 dev->wanted_features = dev->features & dev->hw_features;
5587
5588 /* Turn on no cache copy if HW is doing checksum */
5589 if (!(dev->flags & IFF_LOOPBACK)) {
5590 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5591 if (dev->features & NETIF_F_ALL_CSUM) {
5592 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5593 dev->features |= NETIF_F_NOCACHE_COPY;
5594 }
5595 }
5596
5597 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5598 */
5599 dev->vlan_features |= NETIF_F_HIGHDMA;
5600
5601 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5602 ret = notifier_to_errno(ret);
5603 if (ret)
5604 goto err_uninit;
5605
5606 ret = netdev_register_kobject(dev);
5607 if (ret)
5608 goto err_uninit;
5609 dev->reg_state = NETREG_REGISTERED;
5610
5611 __netdev_update_features(dev);
5612
5613 /*
5614 * Default initial state at registry is that the
5615 * device is present.
5616 */
5617
5618 set_bit(__LINK_STATE_PRESENT, &dev->state);
5619
5620 dev_init_scheduler(dev);
5621 dev_hold(dev);
5622 list_netdevice(dev);
5623
5624 /* Notify protocols, that a new device appeared. */
5625 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5626 ret = notifier_to_errno(ret);
5627 if (ret) {
5628 rollback_registered(dev);
5629 dev->reg_state = NETREG_UNREGISTERED;
5630 }
5631 /*
5632 * Prevent userspace races by waiting until the network
5633 * device is fully setup before sending notifications.
5634 */
5635 if (!dev->rtnl_link_ops ||
5636 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5637 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5638
5639 out:
5640 return ret;
5641
5642 err_uninit:
5643 if (dev->netdev_ops->ndo_uninit)
5644 dev->netdev_ops->ndo_uninit(dev);
5645 goto out;
5646 }
5647 EXPORT_SYMBOL(register_netdevice);
5648
5649 /**
5650 * init_dummy_netdev - init a dummy network device for NAPI
5651 * @dev: device to init
5652 *
5653 * This takes a network device structure and initialize the minimum
5654 * amount of fields so it can be used to schedule NAPI polls without
5655 * registering a full blown interface. This is to be used by drivers
5656 * that need to tie several hardware interfaces to a single NAPI
5657 * poll scheduler due to HW limitations.
5658 */
5659 int init_dummy_netdev(struct net_device *dev)
5660 {
5661 /* Clear everything. Note we don't initialize spinlocks
5662 * are they aren't supposed to be taken by any of the
5663 * NAPI code and this dummy netdev is supposed to be
5664 * only ever used for NAPI polls
5665 */
5666 memset(dev, 0, sizeof(struct net_device));
5667
5668 /* make sure we BUG if trying to hit standard
5669 * register/unregister code path
5670 */
5671 dev->reg_state = NETREG_DUMMY;
5672
5673 /* NAPI wants this */
5674 INIT_LIST_HEAD(&dev->napi_list);
5675
5676 /* a dummy interface is started by default */
5677 set_bit(__LINK_STATE_PRESENT, &dev->state);
5678 set_bit(__LINK_STATE_START, &dev->state);
5679
5680 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5681 * because users of this 'device' dont need to change
5682 * its refcount.
5683 */
5684
5685 return 0;
5686 }
5687 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5688
5689
5690 /**
5691 * register_netdev - register a network device
5692 * @dev: device to register
5693 *
5694 * Take a completed network device structure and add it to the kernel
5695 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5696 * chain. 0 is returned on success. A negative errno code is returned
5697 * on a failure to set up the device, or if the name is a duplicate.
5698 *
5699 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5700 * and expands the device name if you passed a format string to
5701 * alloc_netdev.
5702 */
5703 int register_netdev(struct net_device *dev)
5704 {
5705 int err;
5706
5707 rtnl_lock();
5708 err = register_netdevice(dev);
5709 rtnl_unlock();
5710 return err;
5711 }
5712 EXPORT_SYMBOL(register_netdev);
5713
5714 int netdev_refcnt_read(const struct net_device *dev)
5715 {
5716 int i, refcnt = 0;
5717
5718 for_each_possible_cpu(i)
5719 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5720 return refcnt;
5721 }
5722 EXPORT_SYMBOL(netdev_refcnt_read);
5723
5724 /**
5725 * netdev_wait_allrefs - wait until all references are gone.
5726 *
5727 * This is called when unregistering network devices.
5728 *
5729 * Any protocol or device that holds a reference should register
5730 * for netdevice notification, and cleanup and put back the
5731 * reference if they receive an UNREGISTER event.
5732 * We can get stuck here if buggy protocols don't correctly
5733 * call dev_put.
5734 */
5735 static void netdev_wait_allrefs(struct net_device *dev)
5736 {
5737 unsigned long rebroadcast_time, warning_time;
5738 int refcnt;
5739
5740 linkwatch_forget_dev(dev);
5741
5742 rebroadcast_time = warning_time = jiffies;
5743 refcnt = netdev_refcnt_read(dev);
5744
5745 while (refcnt != 0) {
5746 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5747 rtnl_lock();
5748
5749 /* Rebroadcast unregister notification */
5750 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5751 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5752 * should have already handle it the first time */
5753
5754 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5755 &dev->state)) {
5756 /* We must not have linkwatch events
5757 * pending on unregister. If this
5758 * happens, we simply run the queue
5759 * unscheduled, resulting in a noop
5760 * for this device.
5761 */
5762 linkwatch_run_queue();
5763 }
5764
5765 __rtnl_unlock();
5766
5767 rebroadcast_time = jiffies;
5768 }
5769
5770 msleep(250);
5771
5772 refcnt = netdev_refcnt_read(dev);
5773
5774 if (time_after(jiffies, warning_time + 10 * HZ)) {
5775 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5776 dev->name, refcnt);
5777 warning_time = jiffies;
5778 }
5779 }
5780 }
5781
5782 /* The sequence is:
5783 *
5784 * rtnl_lock();
5785 * ...
5786 * register_netdevice(x1);
5787 * register_netdevice(x2);
5788 * ...
5789 * unregister_netdevice(y1);
5790 * unregister_netdevice(y2);
5791 * ...
5792 * rtnl_unlock();
5793 * free_netdev(y1);
5794 * free_netdev(y2);
5795 *
5796 * We are invoked by rtnl_unlock().
5797 * This allows us to deal with problems:
5798 * 1) We can delete sysfs objects which invoke hotplug
5799 * without deadlocking with linkwatch via keventd.
5800 * 2) Since we run with the RTNL semaphore not held, we can sleep
5801 * safely in order to wait for the netdev refcnt to drop to zero.
5802 *
5803 * We must not return until all unregister events added during
5804 * the interval the lock was held have been completed.
5805 */
5806 void netdev_run_todo(void)
5807 {
5808 struct list_head list;
5809
5810 /* Snapshot list, allow later requests */
5811 list_replace_init(&net_todo_list, &list);
5812
5813 __rtnl_unlock();
5814
5815 /* Wait for rcu callbacks to finish before attempting to drain
5816 * the device list. This usually avoids a 250ms wait.
5817 */
5818 if (!list_empty(&list))
5819 rcu_barrier();
5820
5821 while (!list_empty(&list)) {
5822 struct net_device *dev
5823 = list_first_entry(&list, struct net_device, todo_list);
5824 list_del(&dev->todo_list);
5825
5826 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5827 pr_err("network todo '%s' but state %d\n",
5828 dev->name, dev->reg_state);
5829 dump_stack();
5830 continue;
5831 }
5832
5833 dev->reg_state = NETREG_UNREGISTERED;
5834
5835 on_each_cpu(flush_backlog, dev, 1);
5836
5837 netdev_wait_allrefs(dev);
5838
5839 /* paranoia */
5840 BUG_ON(netdev_refcnt_read(dev));
5841 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5842 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5843 WARN_ON(dev->dn_ptr);
5844
5845 if (dev->destructor)
5846 dev->destructor(dev);
5847
5848 /* Free network device */
5849 kobject_put(&dev->dev.kobj);
5850 }
5851 }
5852
5853 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5854 * fields in the same order, with only the type differing.
5855 */
5856 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5857 const struct net_device_stats *netdev_stats)
5858 {
5859 #if BITS_PER_LONG == 64
5860 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5861 memcpy(stats64, netdev_stats, sizeof(*stats64));
5862 #else
5863 size_t i, n = sizeof(*stats64) / sizeof(u64);
5864 const unsigned long *src = (const unsigned long *)netdev_stats;
5865 u64 *dst = (u64 *)stats64;
5866
5867 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5868 sizeof(*stats64) / sizeof(u64));
5869 for (i = 0; i < n; i++)
5870 dst[i] = src[i];
5871 #endif
5872 }
5873 EXPORT_SYMBOL(netdev_stats_to_stats64);
5874
5875 /**
5876 * dev_get_stats - get network device statistics
5877 * @dev: device to get statistics from
5878 * @storage: place to store stats
5879 *
5880 * Get network statistics from device. Return @storage.
5881 * The device driver may provide its own method by setting
5882 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5883 * otherwise the internal statistics structure is used.
5884 */
5885 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5886 struct rtnl_link_stats64 *storage)
5887 {
5888 const struct net_device_ops *ops = dev->netdev_ops;
5889
5890 if (ops->ndo_get_stats64) {
5891 memset(storage, 0, sizeof(*storage));
5892 ops->ndo_get_stats64(dev, storage);
5893 } else if (ops->ndo_get_stats) {
5894 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5895 } else {
5896 netdev_stats_to_stats64(storage, &dev->stats);
5897 }
5898 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5899 return storage;
5900 }
5901 EXPORT_SYMBOL(dev_get_stats);
5902
5903 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5904 {
5905 struct netdev_queue *queue = dev_ingress_queue(dev);
5906
5907 #ifdef CONFIG_NET_CLS_ACT
5908 if (queue)
5909 return queue;
5910 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5911 if (!queue)
5912 return NULL;
5913 netdev_init_one_queue(dev, queue, NULL);
5914 queue->qdisc = &noop_qdisc;
5915 queue->qdisc_sleeping = &noop_qdisc;
5916 rcu_assign_pointer(dev->ingress_queue, queue);
5917 #endif
5918 return queue;
5919 }
5920
5921 /**
5922 * alloc_netdev_mqs - allocate network device
5923 * @sizeof_priv: size of private data to allocate space for
5924 * @name: device name format string
5925 * @setup: callback to initialize device
5926 * @txqs: the number of TX subqueues to allocate
5927 * @rxqs: the number of RX subqueues to allocate
5928 *
5929 * Allocates a struct net_device with private data area for driver use
5930 * and performs basic initialization. Also allocates subquue structs
5931 * for each queue on the device.
5932 */
5933 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5934 void (*setup)(struct net_device *),
5935 unsigned int txqs, unsigned int rxqs)
5936 {
5937 struct net_device *dev;
5938 size_t alloc_size;
5939 struct net_device *p;
5940
5941 BUG_ON(strlen(name) >= sizeof(dev->name));
5942
5943 if (txqs < 1) {
5944 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5945 return NULL;
5946 }
5947
5948 #ifdef CONFIG_RPS
5949 if (rxqs < 1) {
5950 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5951 return NULL;
5952 }
5953 #endif
5954
5955 alloc_size = sizeof(struct net_device);
5956 if (sizeof_priv) {
5957 /* ensure 32-byte alignment of private area */
5958 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5959 alloc_size += sizeof_priv;
5960 }
5961 /* ensure 32-byte alignment of whole construct */
5962 alloc_size += NETDEV_ALIGN - 1;
5963
5964 p = kzalloc(alloc_size, GFP_KERNEL);
5965 if (!p) {
5966 pr_err("alloc_netdev: Unable to allocate device\n");
5967 return NULL;
5968 }
5969
5970 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5971 dev->padded = (char *)dev - (char *)p;
5972
5973 dev->pcpu_refcnt = alloc_percpu(int);
5974 if (!dev->pcpu_refcnt)
5975 goto free_p;
5976
5977 if (dev_addr_init(dev))
5978 goto free_pcpu;
5979
5980 dev_mc_init(dev);
5981 dev_uc_init(dev);
5982
5983 dev_net_set(dev, &init_net);
5984
5985 dev->gso_max_size = GSO_MAX_SIZE;
5986
5987 INIT_LIST_HEAD(&dev->napi_list);
5988 INIT_LIST_HEAD(&dev->unreg_list);
5989 INIT_LIST_HEAD(&dev->link_watch_list);
5990 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5991 setup(dev);
5992
5993 dev->num_tx_queues = txqs;
5994 dev->real_num_tx_queues = txqs;
5995 if (netif_alloc_netdev_queues(dev))
5996 goto free_all;
5997
5998 #ifdef CONFIG_RPS
5999 dev->num_rx_queues = rxqs;
6000 dev->real_num_rx_queues = rxqs;
6001 if (netif_alloc_rx_queues(dev))
6002 goto free_all;
6003 #endif
6004
6005 strcpy(dev->name, name);
6006 dev->group = INIT_NETDEV_GROUP;
6007 return dev;
6008
6009 free_all:
6010 free_netdev(dev);
6011 return NULL;
6012
6013 free_pcpu:
6014 free_percpu(dev->pcpu_refcnt);
6015 kfree(dev->_tx);
6016 #ifdef CONFIG_RPS
6017 kfree(dev->_rx);
6018 #endif
6019
6020 free_p:
6021 kfree(p);
6022 return NULL;
6023 }
6024 EXPORT_SYMBOL(alloc_netdev_mqs);
6025
6026 /**
6027 * free_netdev - free network device
6028 * @dev: device
6029 *
6030 * This function does the last stage of destroying an allocated device
6031 * interface. The reference to the device object is released.
6032 * If this is the last reference then it will be freed.
6033 */
6034 void free_netdev(struct net_device *dev)
6035 {
6036 struct napi_struct *p, *n;
6037
6038 release_net(dev_net(dev));
6039
6040 kfree(dev->_tx);
6041 #ifdef CONFIG_RPS
6042 kfree(dev->_rx);
6043 #endif
6044
6045 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6046
6047 /* Flush device addresses */
6048 dev_addr_flush(dev);
6049
6050 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6051 netif_napi_del(p);
6052
6053 free_percpu(dev->pcpu_refcnt);
6054 dev->pcpu_refcnt = NULL;
6055
6056 /* Compatibility with error handling in drivers */
6057 if (dev->reg_state == NETREG_UNINITIALIZED) {
6058 kfree((char *)dev - dev->padded);
6059 return;
6060 }
6061
6062 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6063 dev->reg_state = NETREG_RELEASED;
6064
6065 /* will free via device release */
6066 put_device(&dev->dev);
6067 }
6068 EXPORT_SYMBOL(free_netdev);
6069
6070 /**
6071 * synchronize_net - Synchronize with packet receive processing
6072 *
6073 * Wait for packets currently being received to be done.
6074 * Does not block later packets from starting.
6075 */
6076 void synchronize_net(void)
6077 {
6078 might_sleep();
6079 if (rtnl_is_locked())
6080 synchronize_rcu_expedited();
6081 else
6082 synchronize_rcu();
6083 }
6084 EXPORT_SYMBOL(synchronize_net);
6085
6086 /**
6087 * unregister_netdevice_queue - remove device from the kernel
6088 * @dev: device
6089 * @head: list
6090 *
6091 * This function shuts down a device interface and removes it
6092 * from the kernel tables.
6093 * If head not NULL, device is queued to be unregistered later.
6094 *
6095 * Callers must hold the rtnl semaphore. You may want
6096 * unregister_netdev() instead of this.
6097 */
6098
6099 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6100 {
6101 ASSERT_RTNL();
6102
6103 if (head) {
6104 list_move_tail(&dev->unreg_list, head);
6105 } else {
6106 rollback_registered(dev);
6107 /* Finish processing unregister after unlock */
6108 net_set_todo(dev);
6109 }
6110 }
6111 EXPORT_SYMBOL(unregister_netdevice_queue);
6112
6113 /**
6114 * unregister_netdevice_many - unregister many devices
6115 * @head: list of devices
6116 */
6117 void unregister_netdevice_many(struct list_head *head)
6118 {
6119 struct net_device *dev;
6120
6121 if (!list_empty(head)) {
6122 rollback_registered_many(head);
6123 list_for_each_entry(dev, head, unreg_list)
6124 net_set_todo(dev);
6125 }
6126 }
6127 EXPORT_SYMBOL(unregister_netdevice_many);
6128
6129 /**
6130 * unregister_netdev - remove device from the kernel
6131 * @dev: device
6132 *
6133 * This function shuts down a device interface and removes it
6134 * from the kernel tables.
6135 *
6136 * This is just a wrapper for unregister_netdevice that takes
6137 * the rtnl semaphore. In general you want to use this and not
6138 * unregister_netdevice.
6139 */
6140 void unregister_netdev(struct net_device *dev)
6141 {
6142 rtnl_lock();
6143 unregister_netdevice(dev);
6144 rtnl_unlock();
6145 }
6146 EXPORT_SYMBOL(unregister_netdev);
6147
6148 /**
6149 * dev_change_net_namespace - move device to different nethost namespace
6150 * @dev: device
6151 * @net: network namespace
6152 * @pat: If not NULL name pattern to try if the current device name
6153 * is already taken in the destination network namespace.
6154 *
6155 * This function shuts down a device interface and moves it
6156 * to a new network namespace. On success 0 is returned, on
6157 * a failure a netagive errno code is returned.
6158 *
6159 * Callers must hold the rtnl semaphore.
6160 */
6161
6162 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6163 {
6164 int err;
6165
6166 ASSERT_RTNL();
6167
6168 /* Don't allow namespace local devices to be moved. */
6169 err = -EINVAL;
6170 if (dev->features & NETIF_F_NETNS_LOCAL)
6171 goto out;
6172
6173 /* Ensure the device has been registrered */
6174 err = -EINVAL;
6175 if (dev->reg_state != NETREG_REGISTERED)
6176 goto out;
6177
6178 /* Get out if there is nothing todo */
6179 err = 0;
6180 if (net_eq(dev_net(dev), net))
6181 goto out;
6182
6183 /* Pick the destination device name, and ensure
6184 * we can use it in the destination network namespace.
6185 */
6186 err = -EEXIST;
6187 if (__dev_get_by_name(net, dev->name)) {
6188 /* We get here if we can't use the current device name */
6189 if (!pat)
6190 goto out;
6191 if (dev_get_valid_name(dev, pat) < 0)
6192 goto out;
6193 }
6194
6195 /*
6196 * And now a mini version of register_netdevice unregister_netdevice.
6197 */
6198
6199 /* If device is running close it first. */
6200 dev_close(dev);
6201
6202 /* And unlink it from device chain */
6203 err = -ENODEV;
6204 unlist_netdevice(dev);
6205
6206 synchronize_net();
6207
6208 /* Shutdown queueing discipline. */
6209 dev_shutdown(dev);
6210
6211 /* Notify protocols, that we are about to destroy
6212 this device. They should clean all the things.
6213
6214 Note that dev->reg_state stays at NETREG_REGISTERED.
6215 This is wanted because this way 8021q and macvlan know
6216 the device is just moving and can keep their slaves up.
6217 */
6218 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6219 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6220 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6221
6222 /*
6223 * Flush the unicast and multicast chains
6224 */
6225 dev_uc_flush(dev);
6226 dev_mc_flush(dev);
6227
6228 /* Actually switch the network namespace */
6229 dev_net_set(dev, net);
6230
6231 /* If there is an ifindex conflict assign a new one */
6232 if (__dev_get_by_index(net, dev->ifindex)) {
6233 int iflink = (dev->iflink == dev->ifindex);
6234 dev->ifindex = dev_new_index(net);
6235 if (iflink)
6236 dev->iflink = dev->ifindex;
6237 }
6238
6239 /* Fixup kobjects */
6240 err = device_rename(&dev->dev, dev->name);
6241 WARN_ON(err);
6242
6243 /* Add the device back in the hashes */
6244 list_netdevice(dev);
6245
6246 /* Notify protocols, that a new device appeared. */
6247 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6248
6249 /*
6250 * Prevent userspace races by waiting until the network
6251 * device is fully setup before sending notifications.
6252 */
6253 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6254
6255 synchronize_net();
6256 err = 0;
6257 out:
6258 return err;
6259 }
6260 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6261
6262 static int dev_cpu_callback(struct notifier_block *nfb,
6263 unsigned long action,
6264 void *ocpu)
6265 {
6266 struct sk_buff **list_skb;
6267 struct sk_buff *skb;
6268 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6269 struct softnet_data *sd, *oldsd;
6270
6271 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6272 return NOTIFY_OK;
6273
6274 local_irq_disable();
6275 cpu = smp_processor_id();
6276 sd = &per_cpu(softnet_data, cpu);
6277 oldsd = &per_cpu(softnet_data, oldcpu);
6278
6279 /* Find end of our completion_queue. */
6280 list_skb = &sd->completion_queue;
6281 while (*list_skb)
6282 list_skb = &(*list_skb)->next;
6283 /* Append completion queue from offline CPU. */
6284 *list_skb = oldsd->completion_queue;
6285 oldsd->completion_queue = NULL;
6286
6287 /* Append output queue from offline CPU. */
6288 if (oldsd->output_queue) {
6289 *sd->output_queue_tailp = oldsd->output_queue;
6290 sd->output_queue_tailp = oldsd->output_queue_tailp;
6291 oldsd->output_queue = NULL;
6292 oldsd->output_queue_tailp = &oldsd->output_queue;
6293 }
6294 /* Append NAPI poll list from offline CPU. */
6295 if (!list_empty(&oldsd->poll_list)) {
6296 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6297 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6298 }
6299
6300 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6301 local_irq_enable();
6302
6303 /* Process offline CPU's input_pkt_queue */
6304 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6305 netif_rx(skb);
6306 input_queue_head_incr(oldsd);
6307 }
6308 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6309 netif_rx(skb);
6310 input_queue_head_incr(oldsd);
6311 }
6312
6313 return NOTIFY_OK;
6314 }
6315
6316
6317 /**
6318 * netdev_increment_features - increment feature set by one
6319 * @all: current feature set
6320 * @one: new feature set
6321 * @mask: mask feature set
6322 *
6323 * Computes a new feature set after adding a device with feature set
6324 * @one to the master device with current feature set @all. Will not
6325 * enable anything that is off in @mask. Returns the new feature set.
6326 */
6327 netdev_features_t netdev_increment_features(netdev_features_t all,
6328 netdev_features_t one, netdev_features_t mask)
6329 {
6330 if (mask & NETIF_F_GEN_CSUM)
6331 mask |= NETIF_F_ALL_CSUM;
6332 mask |= NETIF_F_VLAN_CHALLENGED;
6333
6334 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6335 all &= one | ~NETIF_F_ALL_FOR_ALL;
6336
6337 /* If one device supports hw checksumming, set for all. */
6338 if (all & NETIF_F_GEN_CSUM)
6339 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6340
6341 return all;
6342 }
6343 EXPORT_SYMBOL(netdev_increment_features);
6344
6345 static struct hlist_head *netdev_create_hash(void)
6346 {
6347 int i;
6348 struct hlist_head *hash;
6349
6350 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6351 if (hash != NULL)
6352 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6353 INIT_HLIST_HEAD(&hash[i]);
6354
6355 return hash;
6356 }
6357
6358 /* Initialize per network namespace state */
6359 static int __net_init netdev_init(struct net *net)
6360 {
6361 if (net != &init_net)
6362 INIT_LIST_HEAD(&net->dev_base_head);
6363
6364 net->dev_name_head = netdev_create_hash();
6365 if (net->dev_name_head == NULL)
6366 goto err_name;
6367
6368 net->dev_index_head = netdev_create_hash();
6369 if (net->dev_index_head == NULL)
6370 goto err_idx;
6371
6372 return 0;
6373
6374 err_idx:
6375 kfree(net->dev_name_head);
6376 err_name:
6377 return -ENOMEM;
6378 }
6379
6380 /**
6381 * netdev_drivername - network driver for the device
6382 * @dev: network device
6383 *
6384 * Determine network driver for device.
6385 */
6386 const char *netdev_drivername(const struct net_device *dev)
6387 {
6388 const struct device_driver *driver;
6389 const struct device *parent;
6390 const char *empty = "";
6391
6392 parent = dev->dev.parent;
6393 if (!parent)
6394 return empty;
6395
6396 driver = parent->driver;
6397 if (driver && driver->name)
6398 return driver->name;
6399 return empty;
6400 }
6401
6402 int __netdev_printk(const char *level, const struct net_device *dev,
6403 struct va_format *vaf)
6404 {
6405 int r;
6406
6407 if (dev && dev->dev.parent)
6408 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6409 netdev_name(dev), vaf);
6410 else if (dev)
6411 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6412 else
6413 r = printk("%s(NULL net_device): %pV", level, vaf);
6414
6415 return r;
6416 }
6417 EXPORT_SYMBOL(__netdev_printk);
6418
6419 int netdev_printk(const char *level, const struct net_device *dev,
6420 const char *format, ...)
6421 {
6422 struct va_format vaf;
6423 va_list args;
6424 int r;
6425
6426 va_start(args, format);
6427
6428 vaf.fmt = format;
6429 vaf.va = &args;
6430
6431 r = __netdev_printk(level, dev, &vaf);
6432 va_end(args);
6433
6434 return r;
6435 }
6436 EXPORT_SYMBOL(netdev_printk);
6437
6438 #define define_netdev_printk_level(func, level) \
6439 int func(const struct net_device *dev, const char *fmt, ...) \
6440 { \
6441 int r; \
6442 struct va_format vaf; \
6443 va_list args; \
6444 \
6445 va_start(args, fmt); \
6446 \
6447 vaf.fmt = fmt; \
6448 vaf.va = &args; \
6449 \
6450 r = __netdev_printk(level, dev, &vaf); \
6451 va_end(args); \
6452 \
6453 return r; \
6454 } \
6455 EXPORT_SYMBOL(func);
6456
6457 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6458 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6459 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6460 define_netdev_printk_level(netdev_err, KERN_ERR);
6461 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6462 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6463 define_netdev_printk_level(netdev_info, KERN_INFO);
6464
6465 static void __net_exit netdev_exit(struct net *net)
6466 {
6467 kfree(net->dev_name_head);
6468 kfree(net->dev_index_head);
6469 }
6470
6471 static struct pernet_operations __net_initdata netdev_net_ops = {
6472 .init = netdev_init,
6473 .exit = netdev_exit,
6474 };
6475
6476 static void __net_exit default_device_exit(struct net *net)
6477 {
6478 struct net_device *dev, *aux;
6479 /*
6480 * Push all migratable network devices back to the
6481 * initial network namespace
6482 */
6483 rtnl_lock();
6484 for_each_netdev_safe(net, dev, aux) {
6485 int err;
6486 char fb_name[IFNAMSIZ];
6487
6488 /* Ignore unmoveable devices (i.e. loopback) */
6489 if (dev->features & NETIF_F_NETNS_LOCAL)
6490 continue;
6491
6492 /* Leave virtual devices for the generic cleanup */
6493 if (dev->rtnl_link_ops)
6494 continue;
6495
6496 /* Push remaining network devices to init_net */
6497 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6498 err = dev_change_net_namespace(dev, &init_net, fb_name);
6499 if (err) {
6500 pr_emerg("%s: failed to move %s to init_net: %d\n",
6501 __func__, dev->name, err);
6502 BUG();
6503 }
6504 }
6505 rtnl_unlock();
6506 }
6507
6508 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6509 {
6510 /* At exit all network devices most be removed from a network
6511 * namespace. Do this in the reverse order of registration.
6512 * Do this across as many network namespaces as possible to
6513 * improve batching efficiency.
6514 */
6515 struct net_device *dev;
6516 struct net *net;
6517 LIST_HEAD(dev_kill_list);
6518
6519 rtnl_lock();
6520 list_for_each_entry(net, net_list, exit_list) {
6521 for_each_netdev_reverse(net, dev) {
6522 if (dev->rtnl_link_ops)
6523 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6524 else
6525 unregister_netdevice_queue(dev, &dev_kill_list);
6526 }
6527 }
6528 unregister_netdevice_many(&dev_kill_list);
6529 list_del(&dev_kill_list);
6530 rtnl_unlock();
6531 }
6532
6533 static struct pernet_operations __net_initdata default_device_ops = {
6534 .exit = default_device_exit,
6535 .exit_batch = default_device_exit_batch,
6536 };
6537
6538 /*
6539 * Initialize the DEV module. At boot time this walks the device list and
6540 * unhooks any devices that fail to initialise (normally hardware not
6541 * present) and leaves us with a valid list of present and active devices.
6542 *
6543 */
6544
6545 /*
6546 * This is called single threaded during boot, so no need
6547 * to take the rtnl semaphore.
6548 */
6549 static int __init net_dev_init(void)
6550 {
6551 int i, rc = -ENOMEM;
6552
6553 BUG_ON(!dev_boot_phase);
6554
6555 if (dev_proc_init())
6556 goto out;
6557
6558 if (netdev_kobject_init())
6559 goto out;
6560
6561 INIT_LIST_HEAD(&ptype_all);
6562 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6563 INIT_LIST_HEAD(&ptype_base[i]);
6564
6565 if (register_pernet_subsys(&netdev_net_ops))
6566 goto out;
6567
6568 /*
6569 * Initialise the packet receive queues.
6570 */
6571
6572 for_each_possible_cpu(i) {
6573 struct softnet_data *sd = &per_cpu(softnet_data, i);
6574
6575 memset(sd, 0, sizeof(*sd));
6576 skb_queue_head_init(&sd->input_pkt_queue);
6577 skb_queue_head_init(&sd->process_queue);
6578 sd->completion_queue = NULL;
6579 INIT_LIST_HEAD(&sd->poll_list);
6580 sd->output_queue = NULL;
6581 sd->output_queue_tailp = &sd->output_queue;
6582 #ifdef CONFIG_RPS
6583 sd->csd.func = rps_trigger_softirq;
6584 sd->csd.info = sd;
6585 sd->csd.flags = 0;
6586 sd->cpu = i;
6587 #endif
6588
6589 sd->backlog.poll = process_backlog;
6590 sd->backlog.weight = weight_p;
6591 sd->backlog.gro_list = NULL;
6592 sd->backlog.gro_count = 0;
6593 }
6594
6595 dev_boot_phase = 0;
6596
6597 /* The loopback device is special if any other network devices
6598 * is present in a network namespace the loopback device must
6599 * be present. Since we now dynamically allocate and free the
6600 * loopback device ensure this invariant is maintained by
6601 * keeping the loopback device as the first device on the
6602 * list of network devices. Ensuring the loopback devices
6603 * is the first device that appears and the last network device
6604 * that disappears.
6605 */
6606 if (register_pernet_device(&loopback_net_ops))
6607 goto out;
6608
6609 if (register_pernet_device(&default_device_ops))
6610 goto out;
6611
6612 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6613 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6614
6615 hotcpu_notifier(dev_cpu_callback, 0);
6616 dst_init();
6617 dev_mcast_init();
6618 rc = 0;
6619 out:
6620 return rc;
6621 }
6622
6623 subsys_initcall(net_dev_init);
6624
6625 static int __init initialize_hashrnd(void)
6626 {
6627 get_random_bytes(&hashrnd, sizeof(hashrnd));
6628 return 0;
6629 }
6630
6631 late_initcall_sync(initialize_hashrnd);
6632
This page took 0.228527 seconds and 6 git commands to generate.