vcan: whitespace fixes
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /*
136 * The list of packet types we will receive (as opposed to discard)
137 * and the routines to invoke.
138 *
139 * Why 16. Because with 16 the only overlap we get on a hash of the
140 * low nibble of the protocol value is RARP/SNAP/X.25.
141 *
142 * NOTE: That is no longer true with the addition of VLAN tags. Not
143 * sure which should go first, but I bet it won't make much
144 * difference if we are running VLANs. The good news is that
145 * this protocol won't be in the list unless compiled in, so
146 * the average user (w/out VLANs) will not be adversely affected.
147 * --BLG
148 *
149 * 0800 IP
150 * 8100 802.1Q VLAN
151 * 0001 802.3
152 * 0002 AX.25
153 * 0004 802.2
154 * 8035 RARP
155 * 0005 SNAP
156 * 0805 X.25
157 * 0806 ARP
158 * 8137 IPX
159 * 0009 Localtalk
160 * 86DD IPv6
161 */
162
163 #define PTYPE_HASH_SIZE (16)
164 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
165
166 static DEFINE_SPINLOCK(ptype_lock);
167 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168 static struct list_head ptype_all __read_mostly; /* Taps */
169
170 #ifdef CONFIG_NET_DMA
171 struct net_dma {
172 struct dma_client client;
173 spinlock_t lock;
174 cpumask_t channel_mask;
175 struct dma_chan **channels;
176 };
177
178 static enum dma_state_client
179 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
180 enum dma_state state);
181
182 static struct net_dma net_dma = {
183 .client = {
184 .event_callback = netdev_dma_event,
185 },
186 };
187 #endif
188
189 /*
190 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
191 * semaphore.
192 *
193 * Pure readers hold dev_base_lock for reading.
194 *
195 * Writers must hold the rtnl semaphore while they loop through the
196 * dev_base_head list, and hold dev_base_lock for writing when they do the
197 * actual updates. This allows pure readers to access the list even
198 * while a writer is preparing to update it.
199 *
200 * To put it another way, dev_base_lock is held for writing only to
201 * protect against pure readers; the rtnl semaphore provides the
202 * protection against other writers.
203 *
204 * See, for example usages, register_netdevice() and
205 * unregister_netdevice(), which must be called with the rtnl
206 * semaphore held.
207 */
208 DEFINE_RWLOCK(dev_base_lock);
209
210 EXPORT_SYMBOL(dev_base_lock);
211
212 #define NETDEV_HASHBITS 8
213 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
214
215 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
216 {
217 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
218 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
219 }
220
221 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
222 {
223 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del(&dev->dev_list);
249 hlist_del(&dev->name_hlist);
250 hlist_del(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU(struct softnet_data, softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
286 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
287 ARPHRD_NONE};
288
289 static const char *netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
303 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
304 "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 /**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384 void dev_add_pack(struct packet_type *pt)
385 {
386 int hash;
387
388 spin_lock_bh(&ptype_lock);
389 if (pt->type == htons(ETH_P_ALL))
390 list_add_rcu(&pt->list, &ptype_all);
391 else {
392 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
393 list_add_rcu(&pt->list, &ptype_base[hash]);
394 }
395 spin_unlock_bh(&ptype_lock);
396 }
397
398 /**
399 * __dev_remove_pack - remove packet handler
400 * @pt: packet type declaration
401 *
402 * Remove a protocol handler that was previously added to the kernel
403 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
404 * from the kernel lists and can be freed or reused once this function
405 * returns.
406 *
407 * The packet type might still be in use by receivers
408 * and must not be freed until after all the CPU's have gone
409 * through a quiescent state.
410 */
411 void __dev_remove_pack(struct packet_type *pt)
412 {
413 struct list_head *head;
414 struct packet_type *pt1;
415
416 spin_lock_bh(&ptype_lock);
417
418 if (pt->type == htons(ETH_P_ALL))
419 head = &ptype_all;
420 else
421 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
431 out:
432 spin_unlock_bh(&ptype_lock);
433 }
434 /**
435 * dev_remove_pack - remove packet handler
436 * @pt: packet type declaration
437 *
438 * Remove a protocol handler that was previously added to the kernel
439 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
440 * from the kernel lists and can be freed or reused once this function
441 * returns.
442 *
443 * This call sleeps to guarantee that no CPU is looking at the packet
444 * type after return.
445 */
446 void dev_remove_pack(struct packet_type *pt)
447 {
448 __dev_remove_pack(pt);
449
450 synchronize_net();
451 }
452
453 /******************************************************************************
454
455 Device Boot-time Settings Routines
456
457 *******************************************************************************/
458
459 /* Boot time configuration table */
460 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
461
462 /**
463 * netdev_boot_setup_add - add new setup entry
464 * @name: name of the device
465 * @map: configured settings for the device
466 *
467 * Adds new setup entry to the dev_boot_setup list. The function
468 * returns 0 on error and 1 on success. This is a generic routine to
469 * all netdevices.
470 */
471 static int netdev_boot_setup_add(char *name, struct ifmap *map)
472 {
473 struct netdev_boot_setup *s;
474 int i;
475
476 s = dev_boot_setup;
477 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
478 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
479 memset(s[i].name, 0, sizeof(s[i].name));
480 strlcpy(s[i].name, name, IFNAMSIZ);
481 memcpy(&s[i].map, map, sizeof(s[i].map));
482 break;
483 }
484 }
485
486 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
487 }
488
489 /**
490 * netdev_boot_setup_check - check boot time settings
491 * @dev: the netdevice
492 *
493 * Check boot time settings for the device.
494 * The found settings are set for the device to be used
495 * later in the device probing.
496 * Returns 0 if no settings found, 1 if they are.
497 */
498 int netdev_boot_setup_check(struct net_device *dev)
499 {
500 struct netdev_boot_setup *s = dev_boot_setup;
501 int i;
502
503 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
504 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
505 !strcmp(dev->name, s[i].name)) {
506 dev->irq = s[i].map.irq;
507 dev->base_addr = s[i].map.base_addr;
508 dev->mem_start = s[i].map.mem_start;
509 dev->mem_end = s[i].map.mem_end;
510 return 1;
511 }
512 }
513 return 0;
514 }
515
516
517 /**
518 * netdev_boot_base - get address from boot time settings
519 * @prefix: prefix for network device
520 * @unit: id for network device
521 *
522 * Check boot time settings for the base address of device.
523 * The found settings are set for the device to be used
524 * later in the device probing.
525 * Returns 0 if no settings found.
526 */
527 unsigned long netdev_boot_base(const char *prefix, int unit)
528 {
529 const struct netdev_boot_setup *s = dev_boot_setup;
530 char name[IFNAMSIZ];
531 int i;
532
533 sprintf(name, "%s%d", prefix, unit);
534
535 /*
536 * If device already registered then return base of 1
537 * to indicate not to probe for this interface
538 */
539 if (__dev_get_by_name(&init_net, name))
540 return 1;
541
542 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
543 if (!strcmp(name, s[i].name))
544 return s[i].map.base_addr;
545 return 0;
546 }
547
548 /*
549 * Saves at boot time configured settings for any netdevice.
550 */
551 int __init netdev_boot_setup(char *str)
552 {
553 int ints[5];
554 struct ifmap map;
555
556 str = get_options(str, ARRAY_SIZE(ints), ints);
557 if (!str || !*str)
558 return 0;
559
560 /* Save settings */
561 memset(&map, 0, sizeof(map));
562 if (ints[0] > 0)
563 map.irq = ints[1];
564 if (ints[0] > 1)
565 map.base_addr = ints[2];
566 if (ints[0] > 2)
567 map.mem_start = ints[3];
568 if (ints[0] > 3)
569 map.mem_end = ints[4];
570
571 /* Add new entry to the list */
572 return netdev_boot_setup_add(str, &map);
573 }
574
575 __setup("netdev=", netdev_boot_setup);
576
577 /*******************************************************************************
578
579 Device Interface Subroutines
580
581 *******************************************************************************/
582
583 /**
584 * __dev_get_by_name - find a device by its name
585 * @net: the applicable net namespace
586 * @name: name to find
587 *
588 * Find an interface by name. Must be called under RTNL semaphore
589 * or @dev_base_lock. If the name is found a pointer to the device
590 * is returned. If the name is not found then %NULL is returned. The
591 * reference counters are not incremented so the caller must be
592 * careful with locks.
593 */
594
595 struct net_device *__dev_get_by_name(struct net *net, const char *name)
596 {
597 struct hlist_node *p;
598
599 hlist_for_each(p, dev_name_hash(net, name)) {
600 struct net_device *dev
601 = hlist_entry(p, struct net_device, name_hlist);
602 if (!strncmp(dev->name, name, IFNAMSIZ))
603 return dev;
604 }
605 return NULL;
606 }
607
608 /**
609 * dev_get_by_name - find a device by its name
610 * @net: the applicable net namespace
611 * @name: name to find
612 *
613 * Find an interface by name. This can be called from any
614 * context and does its own locking. The returned handle has
615 * the usage count incremented and the caller must use dev_put() to
616 * release it when it is no longer needed. %NULL is returned if no
617 * matching device is found.
618 */
619
620 struct net_device *dev_get_by_name(struct net *net, const char *name)
621 {
622 struct net_device *dev;
623
624 read_lock(&dev_base_lock);
625 dev = __dev_get_by_name(net, name);
626 if (dev)
627 dev_hold(dev);
628 read_unlock(&dev_base_lock);
629 return dev;
630 }
631
632 /**
633 * __dev_get_by_index - find a device by its ifindex
634 * @net: the applicable net namespace
635 * @ifindex: index of device
636 *
637 * Search for an interface by index. Returns %NULL if the device
638 * is not found or a pointer to the device. The device has not
639 * had its reference counter increased so the caller must be careful
640 * about locking. The caller must hold either the RTNL semaphore
641 * or @dev_base_lock.
642 */
643
644 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
645 {
646 struct hlist_node *p;
647
648 hlist_for_each(p, dev_index_hash(net, ifindex)) {
649 struct net_device *dev
650 = hlist_entry(p, struct net_device, index_hlist);
651 if (dev->ifindex == ifindex)
652 return dev;
653 }
654 return NULL;
655 }
656
657
658 /**
659 * dev_get_by_index - find a device by its ifindex
660 * @net: the applicable net namespace
661 * @ifindex: index of device
662 *
663 * Search for an interface by index. Returns NULL if the device
664 * is not found or a pointer to the device. The device returned has
665 * had a reference added and the pointer is safe until the user calls
666 * dev_put to indicate they have finished with it.
667 */
668
669 struct net_device *dev_get_by_index(struct net *net, int ifindex)
670 {
671 struct net_device *dev;
672
673 read_lock(&dev_base_lock);
674 dev = __dev_get_by_index(net, ifindex);
675 if (dev)
676 dev_hold(dev);
677 read_unlock(&dev_base_lock);
678 return dev;
679 }
680
681 /**
682 * dev_getbyhwaddr - find a device by its hardware address
683 * @net: the applicable net namespace
684 * @type: media type of device
685 * @ha: hardware address
686 *
687 * Search for an interface by MAC address. Returns NULL if the device
688 * is not found or a pointer to the device. The caller must hold the
689 * rtnl semaphore. The returned device has not had its ref count increased
690 * and the caller must therefore be careful about locking
691 *
692 * BUGS:
693 * If the API was consistent this would be __dev_get_by_hwaddr
694 */
695
696 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701
702 for_each_netdev(net, dev)
703 if (dev->type == type &&
704 !memcmp(dev->dev_addr, ha, dev->addr_len))
705 return dev;
706
707 return NULL;
708 }
709
710 EXPORT_SYMBOL(dev_getbyhwaddr);
711
712 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
713 {
714 struct net_device *dev;
715
716 ASSERT_RTNL();
717 for_each_netdev(net, dev)
718 if (dev->type == type)
719 return dev;
720
721 return NULL;
722 }
723
724 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
725
726 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
727 {
728 struct net_device *dev;
729
730 rtnl_lock();
731 dev = __dev_getfirstbyhwtype(net, type);
732 if (dev)
733 dev_hold(dev);
734 rtnl_unlock();
735 return dev;
736 }
737
738 EXPORT_SYMBOL(dev_getfirstbyhwtype);
739
740 /**
741 * dev_get_by_flags - find any device with given flags
742 * @net: the applicable net namespace
743 * @if_flags: IFF_* values
744 * @mask: bitmask of bits in if_flags to check
745 *
746 * Search for any interface with the given flags. Returns NULL if a device
747 * is not found or a pointer to the device. The device returned has
748 * had a reference added and the pointer is safe until the user calls
749 * dev_put to indicate they have finished with it.
750 */
751
752 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
753 {
754 struct net_device *dev, *ret;
755
756 ret = NULL;
757 read_lock(&dev_base_lock);
758 for_each_netdev(net, dev) {
759 if (((dev->flags ^ if_flags) & mask) == 0) {
760 dev_hold(dev);
761 ret = dev;
762 break;
763 }
764 }
765 read_unlock(&dev_base_lock);
766 return ret;
767 }
768
769 /**
770 * dev_valid_name - check if name is okay for network device
771 * @name: name string
772 *
773 * Network device names need to be valid file names to
774 * to allow sysfs to work. We also disallow any kind of
775 * whitespace.
776 */
777 int dev_valid_name(const char *name)
778 {
779 if (*name == '\0')
780 return 0;
781 if (strlen(name) >= IFNAMSIZ)
782 return 0;
783 if (!strcmp(name, ".") || !strcmp(name, ".."))
784 return 0;
785
786 while (*name) {
787 if (*name == '/' || isspace(*name))
788 return 0;
789 name++;
790 }
791 return 1;
792 }
793
794 /**
795 * __dev_alloc_name - allocate a name for a device
796 * @net: network namespace to allocate the device name in
797 * @name: name format string
798 * @buf: scratch buffer and result name string
799 *
800 * Passed a format string - eg "lt%d" it will try and find a suitable
801 * id. It scans list of devices to build up a free map, then chooses
802 * the first empty slot. The caller must hold the dev_base or rtnl lock
803 * while allocating the name and adding the device in order to avoid
804 * duplicates.
805 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
806 * Returns the number of the unit assigned or a negative errno code.
807 */
808
809 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
810 {
811 int i = 0;
812 const char *p;
813 const int max_netdevices = 8*PAGE_SIZE;
814 unsigned long *inuse;
815 struct net_device *d;
816
817 p = strnchr(name, IFNAMSIZ-1, '%');
818 if (p) {
819 /*
820 * Verify the string as this thing may have come from
821 * the user. There must be either one "%d" and no other "%"
822 * characters.
823 */
824 if (p[1] != 'd' || strchr(p + 2, '%'))
825 return -EINVAL;
826
827 /* Use one page as a bit array of possible slots */
828 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
829 if (!inuse)
830 return -ENOMEM;
831
832 for_each_netdev(net, d) {
833 if (!sscanf(d->name, name, &i))
834 continue;
835 if (i < 0 || i >= max_netdevices)
836 continue;
837
838 /* avoid cases where sscanf is not exact inverse of printf */
839 snprintf(buf, IFNAMSIZ, name, i);
840 if (!strncmp(buf, d->name, IFNAMSIZ))
841 set_bit(i, inuse);
842 }
843
844 i = find_first_zero_bit(inuse, max_netdevices);
845 free_page((unsigned long) inuse);
846 }
847
848 snprintf(buf, IFNAMSIZ, name, i);
849 if (!__dev_get_by_name(net, buf))
850 return i;
851
852 /* It is possible to run out of possible slots
853 * when the name is long and there isn't enough space left
854 * for the digits, or if all bits are used.
855 */
856 return -ENFILE;
857 }
858
859 /**
860 * dev_alloc_name - allocate a name for a device
861 * @dev: device
862 * @name: name format string
863 *
864 * Passed a format string - eg "lt%d" it will try and find a suitable
865 * id. It scans list of devices to build up a free map, then chooses
866 * the first empty slot. The caller must hold the dev_base or rtnl lock
867 * while allocating the name and adding the device in order to avoid
868 * duplicates.
869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
870 * Returns the number of the unit assigned or a negative errno code.
871 */
872
873 int dev_alloc_name(struct net_device *dev, const char *name)
874 {
875 char buf[IFNAMSIZ];
876 struct net *net;
877 int ret;
878
879 BUG_ON(!dev_net(dev));
880 net = dev_net(dev);
881 ret = __dev_alloc_name(net, name, buf);
882 if (ret >= 0)
883 strlcpy(dev->name, buf, IFNAMSIZ);
884 return ret;
885 }
886
887
888 /**
889 * dev_change_name - change name of a device
890 * @dev: device
891 * @newname: name (or format string) must be at least IFNAMSIZ
892 *
893 * Change name of a device, can pass format strings "eth%d".
894 * for wildcarding.
895 */
896 int dev_change_name(struct net_device *dev, const char *newname)
897 {
898 char oldname[IFNAMSIZ];
899 int err = 0;
900 int ret;
901 struct net *net;
902
903 ASSERT_RTNL();
904 BUG_ON(!dev_net(dev));
905
906 net = dev_net(dev);
907 if (dev->flags & IFF_UP)
908 return -EBUSY;
909
910 if (!dev_valid_name(newname))
911 return -EINVAL;
912
913 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
914 return 0;
915
916 memcpy(oldname, dev->name, IFNAMSIZ);
917
918 if (strchr(newname, '%')) {
919 err = dev_alloc_name(dev, newname);
920 if (err < 0)
921 return err;
922 }
923 else if (__dev_get_by_name(net, newname))
924 return -EEXIST;
925 else
926 strlcpy(dev->name, newname, IFNAMSIZ);
927
928 rollback:
929 /* For now only devices in the initial network namespace
930 * are in sysfs.
931 */
932 if (net == &init_net) {
933 ret = device_rename(&dev->dev, dev->name);
934 if (ret) {
935 memcpy(dev->name, oldname, IFNAMSIZ);
936 return ret;
937 }
938 }
939
940 write_lock_bh(&dev_base_lock);
941 hlist_del(&dev->name_hlist);
942 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
943 write_unlock_bh(&dev_base_lock);
944
945 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
946 ret = notifier_to_errno(ret);
947
948 if (ret) {
949 if (err) {
950 printk(KERN_ERR
951 "%s: name change rollback failed: %d.\n",
952 dev->name, ret);
953 } else {
954 err = ret;
955 memcpy(dev->name, oldname, IFNAMSIZ);
956 goto rollback;
957 }
958 }
959
960 return err;
961 }
962
963 /**
964 * dev_set_alias - change ifalias of a device
965 * @dev: device
966 * @alias: name up to IFALIASZ
967 * @len: limit of bytes to copy from info
968 *
969 * Set ifalias for a device,
970 */
971 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
972 {
973 ASSERT_RTNL();
974
975 if (len >= IFALIASZ)
976 return -EINVAL;
977
978 if (!len) {
979 if (dev->ifalias) {
980 kfree(dev->ifalias);
981 dev->ifalias = NULL;
982 }
983 return 0;
984 }
985
986 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
987 if (!dev->ifalias)
988 return -ENOMEM;
989
990 strlcpy(dev->ifalias, alias, len+1);
991 return len;
992 }
993
994
995 /**
996 * netdev_features_change - device changes features
997 * @dev: device to cause notification
998 *
999 * Called to indicate a device has changed features.
1000 */
1001 void netdev_features_change(struct net_device *dev)
1002 {
1003 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1004 }
1005 EXPORT_SYMBOL(netdev_features_change);
1006
1007 /**
1008 * netdev_state_change - device changes state
1009 * @dev: device to cause notification
1010 *
1011 * Called to indicate a device has changed state. This function calls
1012 * the notifier chains for netdev_chain and sends a NEWLINK message
1013 * to the routing socket.
1014 */
1015 void netdev_state_change(struct net_device *dev)
1016 {
1017 if (dev->flags & IFF_UP) {
1018 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1019 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1020 }
1021 }
1022
1023 void netdev_bonding_change(struct net_device *dev)
1024 {
1025 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1026 }
1027 EXPORT_SYMBOL(netdev_bonding_change);
1028
1029 /**
1030 * dev_load - load a network module
1031 * @net: the applicable net namespace
1032 * @name: name of interface
1033 *
1034 * If a network interface is not present and the process has suitable
1035 * privileges this function loads the module. If module loading is not
1036 * available in this kernel then it becomes a nop.
1037 */
1038
1039 void dev_load(struct net *net, const char *name)
1040 {
1041 struct net_device *dev;
1042
1043 read_lock(&dev_base_lock);
1044 dev = __dev_get_by_name(net, name);
1045 read_unlock(&dev_base_lock);
1046
1047 if (!dev && capable(CAP_SYS_MODULE))
1048 request_module("%s", name);
1049 }
1050
1051 /**
1052 * dev_open - prepare an interface for use.
1053 * @dev: device to open
1054 *
1055 * Takes a device from down to up state. The device's private open
1056 * function is invoked and then the multicast lists are loaded. Finally
1057 * the device is moved into the up state and a %NETDEV_UP message is
1058 * sent to the netdev notifier chain.
1059 *
1060 * Calling this function on an active interface is a nop. On a failure
1061 * a negative errno code is returned.
1062 */
1063 int dev_open(struct net_device *dev)
1064 {
1065 const struct net_device_ops *ops = dev->netdev_ops;
1066 int ret = 0;
1067
1068 ASSERT_RTNL();
1069
1070 /*
1071 * Is it already up?
1072 */
1073
1074 if (dev->flags & IFF_UP)
1075 return 0;
1076
1077 /*
1078 * Is it even present?
1079 */
1080 if (!netif_device_present(dev))
1081 return -ENODEV;
1082
1083 /*
1084 * Call device private open method
1085 */
1086 set_bit(__LINK_STATE_START, &dev->state);
1087
1088 if (ops->ndo_validate_addr)
1089 ret = ops->ndo_validate_addr(dev);
1090
1091 if (!ret && ops->ndo_open)
1092 ret = ops->ndo_open(dev);
1093
1094 /*
1095 * If it went open OK then:
1096 */
1097
1098 if (ret)
1099 clear_bit(__LINK_STATE_START, &dev->state);
1100 else {
1101 /*
1102 * Set the flags.
1103 */
1104 dev->flags |= IFF_UP;
1105
1106 /*
1107 * Initialize multicasting status
1108 */
1109 dev_set_rx_mode(dev);
1110
1111 /*
1112 * Wakeup transmit queue engine
1113 */
1114 dev_activate(dev);
1115
1116 /*
1117 * ... and announce new interface.
1118 */
1119 call_netdevice_notifiers(NETDEV_UP, dev);
1120 }
1121
1122 return ret;
1123 }
1124
1125 /**
1126 * dev_close - shutdown an interface.
1127 * @dev: device to shutdown
1128 *
1129 * This function moves an active device into down state. A
1130 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1131 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1132 * chain.
1133 */
1134 int dev_close(struct net_device *dev)
1135 {
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 ASSERT_RTNL();
1138
1139 might_sleep();
1140
1141 if (!(dev->flags & IFF_UP))
1142 return 0;
1143
1144 /*
1145 * Tell people we are going down, so that they can
1146 * prepare to death, when device is still operating.
1147 */
1148 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1149
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151
1152 /* Synchronize to scheduled poll. We cannot touch poll list,
1153 * it can be even on different cpu. So just clear netif_running().
1154 *
1155 * dev->stop() will invoke napi_disable() on all of it's
1156 * napi_struct instances on this device.
1157 */
1158 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1159
1160 dev_deactivate(dev);
1161
1162 /*
1163 * Call the device specific close. This cannot fail.
1164 * Only if device is UP
1165 *
1166 * We allow it to be called even after a DETACH hot-plug
1167 * event.
1168 */
1169 if (ops->ndo_stop)
1170 ops->ndo_stop(dev);
1171
1172 /*
1173 * Device is now down.
1174 */
1175
1176 dev->flags &= ~IFF_UP;
1177
1178 /*
1179 * Tell people we are down
1180 */
1181 call_netdevice_notifiers(NETDEV_DOWN, dev);
1182
1183 return 0;
1184 }
1185
1186
1187 /**
1188 * dev_disable_lro - disable Large Receive Offload on a device
1189 * @dev: device
1190 *
1191 * Disable Large Receive Offload (LRO) on a net device. Must be
1192 * called under RTNL. This is needed if received packets may be
1193 * forwarded to another interface.
1194 */
1195 void dev_disable_lro(struct net_device *dev)
1196 {
1197 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1198 dev->ethtool_ops->set_flags) {
1199 u32 flags = dev->ethtool_ops->get_flags(dev);
1200 if (flags & ETH_FLAG_LRO) {
1201 flags &= ~ETH_FLAG_LRO;
1202 dev->ethtool_ops->set_flags(dev, flags);
1203 }
1204 }
1205 WARN_ON(dev->features & NETIF_F_LRO);
1206 }
1207 EXPORT_SYMBOL(dev_disable_lro);
1208
1209
1210 static int dev_boot_phase = 1;
1211
1212 /*
1213 * Device change register/unregister. These are not inline or static
1214 * as we export them to the world.
1215 */
1216
1217 /**
1218 * register_netdevice_notifier - register a network notifier block
1219 * @nb: notifier
1220 *
1221 * Register a notifier to be called when network device events occur.
1222 * The notifier passed is linked into the kernel structures and must
1223 * not be reused until it has been unregistered. A negative errno code
1224 * is returned on a failure.
1225 *
1226 * When registered all registration and up events are replayed
1227 * to the new notifier to allow device to have a race free
1228 * view of the network device list.
1229 */
1230
1231 int register_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 struct net_device *dev;
1234 struct net_device *last;
1235 struct net *net;
1236 int err;
1237
1238 rtnl_lock();
1239 err = raw_notifier_chain_register(&netdev_chain, nb);
1240 if (err)
1241 goto unlock;
1242 if (dev_boot_phase)
1243 goto unlock;
1244 for_each_net(net) {
1245 for_each_netdev(net, dev) {
1246 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1247 err = notifier_to_errno(err);
1248 if (err)
1249 goto rollback;
1250
1251 if (!(dev->flags & IFF_UP))
1252 continue;
1253
1254 nb->notifier_call(nb, NETDEV_UP, dev);
1255 }
1256 }
1257
1258 unlock:
1259 rtnl_unlock();
1260 return err;
1261
1262 rollback:
1263 last = dev;
1264 for_each_net(net) {
1265 for_each_netdev(net, dev) {
1266 if (dev == last)
1267 break;
1268
1269 if (dev->flags & IFF_UP) {
1270 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1271 nb->notifier_call(nb, NETDEV_DOWN, dev);
1272 }
1273 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1274 }
1275 }
1276
1277 raw_notifier_chain_unregister(&netdev_chain, nb);
1278 goto unlock;
1279 }
1280
1281 /**
1282 * unregister_netdevice_notifier - unregister a network notifier block
1283 * @nb: notifier
1284 *
1285 * Unregister a notifier previously registered by
1286 * register_netdevice_notifier(). The notifier is unlinked into the
1287 * kernel structures and may then be reused. A negative errno code
1288 * is returned on a failure.
1289 */
1290
1291 int unregister_netdevice_notifier(struct notifier_block *nb)
1292 {
1293 int err;
1294
1295 rtnl_lock();
1296 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1297 rtnl_unlock();
1298 return err;
1299 }
1300
1301 /**
1302 * call_netdevice_notifiers - call all network notifier blocks
1303 * @val: value passed unmodified to notifier function
1304 * @dev: net_device pointer passed unmodified to notifier function
1305 *
1306 * Call all network notifier blocks. Parameters and return value
1307 * are as for raw_notifier_call_chain().
1308 */
1309
1310 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1311 {
1312 return raw_notifier_call_chain(&netdev_chain, val, dev);
1313 }
1314
1315 /* When > 0 there are consumers of rx skb time stamps */
1316 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1317
1318 void net_enable_timestamp(void)
1319 {
1320 atomic_inc(&netstamp_needed);
1321 }
1322
1323 void net_disable_timestamp(void)
1324 {
1325 atomic_dec(&netstamp_needed);
1326 }
1327
1328 static inline void net_timestamp(struct sk_buff *skb)
1329 {
1330 if (atomic_read(&netstamp_needed))
1331 __net_timestamp(skb);
1332 else
1333 skb->tstamp.tv64 = 0;
1334 }
1335
1336 /*
1337 * Support routine. Sends outgoing frames to any network
1338 * taps currently in use.
1339 */
1340
1341 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1342 {
1343 struct packet_type *ptype;
1344
1345 net_timestamp(skb);
1346
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1349 /* Never send packets back to the socket
1350 * they originated from - MvS (miquels@drinkel.ow.org)
1351 */
1352 if ((ptype->dev == dev || !ptype->dev) &&
1353 (ptype->af_packet_priv == NULL ||
1354 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1355 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1356 if (!skb2)
1357 break;
1358
1359 /* skb->nh should be correctly
1360 set by sender, so that the second statement is
1361 just protection against buggy protocols.
1362 */
1363 skb_reset_mac_header(skb2);
1364
1365 if (skb_network_header(skb2) < skb2->data ||
1366 skb2->network_header > skb2->tail) {
1367 if (net_ratelimit())
1368 printk(KERN_CRIT "protocol %04x is "
1369 "buggy, dev %s\n",
1370 skb2->protocol, dev->name);
1371 skb_reset_network_header(skb2);
1372 }
1373
1374 skb2->transport_header = skb2->network_header;
1375 skb2->pkt_type = PACKET_OUTGOING;
1376 ptype->func(skb2, skb->dev, ptype, skb->dev);
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382
1383 static inline void __netif_reschedule(struct Qdisc *q)
1384 {
1385 struct softnet_data *sd;
1386 unsigned long flags;
1387
1388 local_irq_save(flags);
1389 sd = &__get_cpu_var(softnet_data);
1390 q->next_sched = sd->output_queue;
1391 sd->output_queue = q;
1392 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1393 local_irq_restore(flags);
1394 }
1395
1396 void __netif_schedule(struct Qdisc *q)
1397 {
1398 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1399 __netif_reschedule(q);
1400 }
1401 EXPORT_SYMBOL(__netif_schedule);
1402
1403 void dev_kfree_skb_irq(struct sk_buff *skb)
1404 {
1405 if (atomic_dec_and_test(&skb->users)) {
1406 struct softnet_data *sd;
1407 unsigned long flags;
1408
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 skb->next = sd->completion_queue;
1412 sd->completion_queue = skb;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1415 }
1416 }
1417 EXPORT_SYMBOL(dev_kfree_skb_irq);
1418
1419 void dev_kfree_skb_any(struct sk_buff *skb)
1420 {
1421 if (in_irq() || irqs_disabled())
1422 dev_kfree_skb_irq(skb);
1423 else
1424 dev_kfree_skb(skb);
1425 }
1426 EXPORT_SYMBOL(dev_kfree_skb_any);
1427
1428
1429 /**
1430 * netif_device_detach - mark device as removed
1431 * @dev: network device
1432 *
1433 * Mark device as removed from system and therefore no longer available.
1434 */
1435 void netif_device_detach(struct net_device *dev)
1436 {
1437 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1438 netif_running(dev)) {
1439 netif_stop_queue(dev);
1440 }
1441 }
1442 EXPORT_SYMBOL(netif_device_detach);
1443
1444 /**
1445 * netif_device_attach - mark device as attached
1446 * @dev: network device
1447 *
1448 * Mark device as attached from system and restart if needed.
1449 */
1450 void netif_device_attach(struct net_device *dev)
1451 {
1452 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1453 netif_running(dev)) {
1454 netif_wake_queue(dev);
1455 __netdev_watchdog_up(dev);
1456 }
1457 }
1458 EXPORT_SYMBOL(netif_device_attach);
1459
1460 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1461 {
1462 return ((features & NETIF_F_GEN_CSUM) ||
1463 ((features & NETIF_F_IP_CSUM) &&
1464 protocol == htons(ETH_P_IP)) ||
1465 ((features & NETIF_F_IPV6_CSUM) &&
1466 protocol == htons(ETH_P_IPV6)));
1467 }
1468
1469 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1470 {
1471 if (can_checksum_protocol(dev->features, skb->protocol))
1472 return true;
1473
1474 if (skb->protocol == htons(ETH_P_8021Q)) {
1475 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1476 if (can_checksum_protocol(dev->features & dev->vlan_features,
1477 veh->h_vlan_encapsulated_proto))
1478 return true;
1479 }
1480
1481 return false;
1482 }
1483
1484 /*
1485 * Invalidate hardware checksum when packet is to be mangled, and
1486 * complete checksum manually on outgoing path.
1487 */
1488 int skb_checksum_help(struct sk_buff *skb)
1489 {
1490 __wsum csum;
1491 int ret = 0, offset;
1492
1493 if (skb->ip_summed == CHECKSUM_COMPLETE)
1494 goto out_set_summed;
1495
1496 if (unlikely(skb_shinfo(skb)->gso_size)) {
1497 /* Let GSO fix up the checksum. */
1498 goto out_set_summed;
1499 }
1500
1501 offset = skb->csum_start - skb_headroom(skb);
1502 BUG_ON(offset >= skb_headlen(skb));
1503 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1504
1505 offset += skb->csum_offset;
1506 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1507
1508 if (skb_cloned(skb) &&
1509 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1510 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1511 if (ret)
1512 goto out;
1513 }
1514
1515 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1516 out_set_summed:
1517 skb->ip_summed = CHECKSUM_NONE;
1518 out:
1519 return ret;
1520 }
1521
1522 /**
1523 * skb_gso_segment - Perform segmentation on skb.
1524 * @skb: buffer to segment
1525 * @features: features for the output path (see dev->features)
1526 *
1527 * This function segments the given skb and returns a list of segments.
1528 *
1529 * It may return NULL if the skb requires no segmentation. This is
1530 * only possible when GSO is used for verifying header integrity.
1531 */
1532 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1533 {
1534 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1535 struct packet_type *ptype;
1536 __be16 type = skb->protocol;
1537 int err;
1538
1539 skb_reset_mac_header(skb);
1540 skb->mac_len = skb->network_header - skb->mac_header;
1541 __skb_pull(skb, skb->mac_len);
1542
1543 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1544 if (skb_header_cloned(skb) &&
1545 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1546 return ERR_PTR(err);
1547 }
1548
1549 rcu_read_lock();
1550 list_for_each_entry_rcu(ptype,
1551 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1552 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1553 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1554 err = ptype->gso_send_check(skb);
1555 segs = ERR_PTR(err);
1556 if (err || skb_gso_ok(skb, features))
1557 break;
1558 __skb_push(skb, (skb->data -
1559 skb_network_header(skb)));
1560 }
1561 segs = ptype->gso_segment(skb, features);
1562 break;
1563 }
1564 }
1565 rcu_read_unlock();
1566
1567 __skb_push(skb, skb->data - skb_mac_header(skb));
1568
1569 return segs;
1570 }
1571
1572 EXPORT_SYMBOL(skb_gso_segment);
1573
1574 /* Take action when hardware reception checksum errors are detected. */
1575 #ifdef CONFIG_BUG
1576 void netdev_rx_csum_fault(struct net_device *dev)
1577 {
1578 if (net_ratelimit()) {
1579 printk(KERN_ERR "%s: hw csum failure.\n",
1580 dev ? dev->name : "<unknown>");
1581 dump_stack();
1582 }
1583 }
1584 EXPORT_SYMBOL(netdev_rx_csum_fault);
1585 #endif
1586
1587 /* Actually, we should eliminate this check as soon as we know, that:
1588 * 1. IOMMU is present and allows to map all the memory.
1589 * 2. No high memory really exists on this machine.
1590 */
1591
1592 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1593 {
1594 #ifdef CONFIG_HIGHMEM
1595 int i;
1596
1597 if (dev->features & NETIF_F_HIGHDMA)
1598 return 0;
1599
1600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1601 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1602 return 1;
1603
1604 #endif
1605 return 0;
1606 }
1607
1608 struct dev_gso_cb {
1609 void (*destructor)(struct sk_buff *skb);
1610 };
1611
1612 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1613
1614 static void dev_gso_skb_destructor(struct sk_buff *skb)
1615 {
1616 struct dev_gso_cb *cb;
1617
1618 do {
1619 struct sk_buff *nskb = skb->next;
1620
1621 skb->next = nskb->next;
1622 nskb->next = NULL;
1623 kfree_skb(nskb);
1624 } while (skb->next);
1625
1626 cb = DEV_GSO_CB(skb);
1627 if (cb->destructor)
1628 cb->destructor(skb);
1629 }
1630
1631 /**
1632 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1633 * @skb: buffer to segment
1634 *
1635 * This function segments the given skb and stores the list of segments
1636 * in skb->next.
1637 */
1638 static int dev_gso_segment(struct sk_buff *skb)
1639 {
1640 struct net_device *dev = skb->dev;
1641 struct sk_buff *segs;
1642 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1643 NETIF_F_SG : 0);
1644
1645 segs = skb_gso_segment(skb, features);
1646
1647 /* Verifying header integrity only. */
1648 if (!segs)
1649 return 0;
1650
1651 if (IS_ERR(segs))
1652 return PTR_ERR(segs);
1653
1654 skb->next = segs;
1655 DEV_GSO_CB(skb)->destructor = skb->destructor;
1656 skb->destructor = dev_gso_skb_destructor;
1657
1658 return 0;
1659 }
1660
1661 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1662 struct netdev_queue *txq)
1663 {
1664 const struct net_device_ops *ops = dev->netdev_ops;
1665
1666 prefetch(&dev->netdev_ops->ndo_start_xmit);
1667 if (likely(!skb->next)) {
1668 if (!list_empty(&ptype_all))
1669 dev_queue_xmit_nit(skb, dev);
1670
1671 if (netif_needs_gso(dev, skb)) {
1672 if (unlikely(dev_gso_segment(skb)))
1673 goto out_kfree_skb;
1674 if (skb->next)
1675 goto gso;
1676 }
1677
1678 return ops->ndo_start_xmit(skb, dev);
1679 }
1680
1681 gso:
1682 do {
1683 struct sk_buff *nskb = skb->next;
1684 int rc;
1685
1686 skb->next = nskb->next;
1687 nskb->next = NULL;
1688 rc = ops->ndo_start_xmit(nskb, dev);
1689 if (unlikely(rc)) {
1690 nskb->next = skb->next;
1691 skb->next = nskb;
1692 return rc;
1693 }
1694 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1695 return NETDEV_TX_BUSY;
1696 } while (skb->next);
1697
1698 skb->destructor = DEV_GSO_CB(skb)->destructor;
1699
1700 out_kfree_skb:
1701 kfree_skb(skb);
1702 return 0;
1703 }
1704
1705 static u32 simple_tx_hashrnd;
1706 static int simple_tx_hashrnd_initialized = 0;
1707
1708 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1709 {
1710 u32 addr1, addr2, ports;
1711 u32 hash, ihl;
1712 u8 ip_proto = 0;
1713
1714 if (unlikely(!simple_tx_hashrnd_initialized)) {
1715 get_random_bytes(&simple_tx_hashrnd, 4);
1716 simple_tx_hashrnd_initialized = 1;
1717 }
1718
1719 switch (skb->protocol) {
1720 case htons(ETH_P_IP):
1721 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1722 ip_proto = ip_hdr(skb)->protocol;
1723 addr1 = ip_hdr(skb)->saddr;
1724 addr2 = ip_hdr(skb)->daddr;
1725 ihl = ip_hdr(skb)->ihl;
1726 break;
1727 case htons(ETH_P_IPV6):
1728 ip_proto = ipv6_hdr(skb)->nexthdr;
1729 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1730 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1731 ihl = (40 >> 2);
1732 break;
1733 default:
1734 return 0;
1735 }
1736
1737
1738 switch (ip_proto) {
1739 case IPPROTO_TCP:
1740 case IPPROTO_UDP:
1741 case IPPROTO_DCCP:
1742 case IPPROTO_ESP:
1743 case IPPROTO_AH:
1744 case IPPROTO_SCTP:
1745 case IPPROTO_UDPLITE:
1746 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1747 break;
1748
1749 default:
1750 ports = 0;
1751 break;
1752 }
1753
1754 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1755
1756 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1757 }
1758
1759 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1760 struct sk_buff *skb)
1761 {
1762 const struct net_device_ops *ops = dev->netdev_ops;
1763 u16 queue_index = 0;
1764
1765 if (ops->ndo_select_queue)
1766 queue_index = ops->ndo_select_queue(dev, skb);
1767 else if (dev->real_num_tx_queues > 1)
1768 queue_index = simple_tx_hash(dev, skb);
1769
1770 skb_set_queue_mapping(skb, queue_index);
1771 return netdev_get_tx_queue(dev, queue_index);
1772 }
1773
1774 /**
1775 * dev_queue_xmit - transmit a buffer
1776 * @skb: buffer to transmit
1777 *
1778 * Queue a buffer for transmission to a network device. The caller must
1779 * have set the device and priority and built the buffer before calling
1780 * this function. The function can be called from an interrupt.
1781 *
1782 * A negative errno code is returned on a failure. A success does not
1783 * guarantee the frame will be transmitted as it may be dropped due
1784 * to congestion or traffic shaping.
1785 *
1786 * -----------------------------------------------------------------------------------
1787 * I notice this method can also return errors from the queue disciplines,
1788 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1789 * be positive.
1790 *
1791 * Regardless of the return value, the skb is consumed, so it is currently
1792 * difficult to retry a send to this method. (You can bump the ref count
1793 * before sending to hold a reference for retry if you are careful.)
1794 *
1795 * When calling this method, interrupts MUST be enabled. This is because
1796 * the BH enable code must have IRQs enabled so that it will not deadlock.
1797 * --BLG
1798 */
1799 int dev_queue_xmit(struct sk_buff *skb)
1800 {
1801 struct net_device *dev = skb->dev;
1802 struct netdev_queue *txq;
1803 struct Qdisc *q;
1804 int rc = -ENOMEM;
1805
1806 /* GSO will handle the following emulations directly. */
1807 if (netif_needs_gso(dev, skb))
1808 goto gso;
1809
1810 if (skb_shinfo(skb)->frag_list &&
1811 !(dev->features & NETIF_F_FRAGLIST) &&
1812 __skb_linearize(skb))
1813 goto out_kfree_skb;
1814
1815 /* Fragmented skb is linearized if device does not support SG,
1816 * or if at least one of fragments is in highmem and device
1817 * does not support DMA from it.
1818 */
1819 if (skb_shinfo(skb)->nr_frags &&
1820 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1821 __skb_linearize(skb))
1822 goto out_kfree_skb;
1823
1824 /* If packet is not checksummed and device does not support
1825 * checksumming for this protocol, complete checksumming here.
1826 */
1827 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1828 skb_set_transport_header(skb, skb->csum_start -
1829 skb_headroom(skb));
1830 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1831 goto out_kfree_skb;
1832 }
1833
1834 gso:
1835 /* Disable soft irqs for various locks below. Also
1836 * stops preemption for RCU.
1837 */
1838 rcu_read_lock_bh();
1839
1840 txq = dev_pick_tx(dev, skb);
1841 q = rcu_dereference(txq->qdisc);
1842
1843 #ifdef CONFIG_NET_CLS_ACT
1844 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1845 #endif
1846 if (q->enqueue) {
1847 spinlock_t *root_lock = qdisc_lock(q);
1848
1849 spin_lock(root_lock);
1850
1851 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1852 kfree_skb(skb);
1853 rc = NET_XMIT_DROP;
1854 } else {
1855 rc = qdisc_enqueue_root(skb, q);
1856 qdisc_run(q);
1857 }
1858 spin_unlock(root_lock);
1859
1860 goto out;
1861 }
1862
1863 /* The device has no queue. Common case for software devices:
1864 loopback, all the sorts of tunnels...
1865
1866 Really, it is unlikely that netif_tx_lock protection is necessary
1867 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1868 counters.)
1869 However, it is possible, that they rely on protection
1870 made by us here.
1871
1872 Check this and shot the lock. It is not prone from deadlocks.
1873 Either shot noqueue qdisc, it is even simpler 8)
1874 */
1875 if (dev->flags & IFF_UP) {
1876 int cpu = smp_processor_id(); /* ok because BHs are off */
1877
1878 if (txq->xmit_lock_owner != cpu) {
1879
1880 HARD_TX_LOCK(dev, txq, cpu);
1881
1882 if (!netif_tx_queue_stopped(txq)) {
1883 rc = 0;
1884 if (!dev_hard_start_xmit(skb, dev, txq)) {
1885 HARD_TX_UNLOCK(dev, txq);
1886 goto out;
1887 }
1888 }
1889 HARD_TX_UNLOCK(dev, txq);
1890 if (net_ratelimit())
1891 printk(KERN_CRIT "Virtual device %s asks to "
1892 "queue packet!\n", dev->name);
1893 } else {
1894 /* Recursion is detected! It is possible,
1895 * unfortunately */
1896 if (net_ratelimit())
1897 printk(KERN_CRIT "Dead loop on virtual device "
1898 "%s, fix it urgently!\n", dev->name);
1899 }
1900 }
1901
1902 rc = -ENETDOWN;
1903 rcu_read_unlock_bh();
1904
1905 out_kfree_skb:
1906 kfree_skb(skb);
1907 return rc;
1908 out:
1909 rcu_read_unlock_bh();
1910 return rc;
1911 }
1912
1913
1914 /*=======================================================================
1915 Receiver routines
1916 =======================================================================*/
1917
1918 int netdev_max_backlog __read_mostly = 1000;
1919 int netdev_budget __read_mostly = 300;
1920 int weight_p __read_mostly = 64; /* old backlog weight */
1921
1922 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1923
1924
1925 /**
1926 * netif_rx - post buffer to the network code
1927 * @skb: buffer to post
1928 *
1929 * This function receives a packet from a device driver and queues it for
1930 * the upper (protocol) levels to process. It always succeeds. The buffer
1931 * may be dropped during processing for congestion control or by the
1932 * protocol layers.
1933 *
1934 * return values:
1935 * NET_RX_SUCCESS (no congestion)
1936 * NET_RX_DROP (packet was dropped)
1937 *
1938 */
1939
1940 int netif_rx(struct sk_buff *skb)
1941 {
1942 struct softnet_data *queue;
1943 unsigned long flags;
1944
1945 /* if netpoll wants it, pretend we never saw it */
1946 if (netpoll_rx(skb))
1947 return NET_RX_DROP;
1948
1949 if (!skb->tstamp.tv64)
1950 net_timestamp(skb);
1951
1952 /*
1953 * The code is rearranged so that the path is the most
1954 * short when CPU is congested, but is still operating.
1955 */
1956 local_irq_save(flags);
1957 queue = &__get_cpu_var(softnet_data);
1958
1959 __get_cpu_var(netdev_rx_stat).total++;
1960 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1961 if (queue->input_pkt_queue.qlen) {
1962 enqueue:
1963 __skb_queue_tail(&queue->input_pkt_queue, skb);
1964 local_irq_restore(flags);
1965 return NET_RX_SUCCESS;
1966 }
1967
1968 napi_schedule(&queue->backlog);
1969 goto enqueue;
1970 }
1971
1972 __get_cpu_var(netdev_rx_stat).dropped++;
1973 local_irq_restore(flags);
1974
1975 kfree_skb(skb);
1976 return NET_RX_DROP;
1977 }
1978
1979 int netif_rx_ni(struct sk_buff *skb)
1980 {
1981 int err;
1982
1983 preempt_disable();
1984 err = netif_rx(skb);
1985 if (local_softirq_pending())
1986 do_softirq();
1987 preempt_enable();
1988
1989 return err;
1990 }
1991
1992 EXPORT_SYMBOL(netif_rx_ni);
1993
1994 static void net_tx_action(struct softirq_action *h)
1995 {
1996 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1997
1998 if (sd->completion_queue) {
1999 struct sk_buff *clist;
2000
2001 local_irq_disable();
2002 clist = sd->completion_queue;
2003 sd->completion_queue = NULL;
2004 local_irq_enable();
2005
2006 while (clist) {
2007 struct sk_buff *skb = clist;
2008 clist = clist->next;
2009
2010 WARN_ON(atomic_read(&skb->users));
2011 __kfree_skb(skb);
2012 }
2013 }
2014
2015 if (sd->output_queue) {
2016 struct Qdisc *head;
2017
2018 local_irq_disable();
2019 head = sd->output_queue;
2020 sd->output_queue = NULL;
2021 local_irq_enable();
2022
2023 while (head) {
2024 struct Qdisc *q = head;
2025 spinlock_t *root_lock;
2026
2027 head = head->next_sched;
2028
2029 root_lock = qdisc_lock(q);
2030 if (spin_trylock(root_lock)) {
2031 smp_mb__before_clear_bit();
2032 clear_bit(__QDISC_STATE_SCHED,
2033 &q->state);
2034 qdisc_run(q);
2035 spin_unlock(root_lock);
2036 } else {
2037 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2038 &q->state)) {
2039 __netif_reschedule(q);
2040 } else {
2041 smp_mb__before_clear_bit();
2042 clear_bit(__QDISC_STATE_SCHED,
2043 &q->state);
2044 }
2045 }
2046 }
2047 }
2048 }
2049
2050 static inline int deliver_skb(struct sk_buff *skb,
2051 struct packet_type *pt_prev,
2052 struct net_device *orig_dev)
2053 {
2054 atomic_inc(&skb->users);
2055 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2056 }
2057
2058 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2059 /* These hooks defined here for ATM */
2060 struct net_bridge;
2061 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2062 unsigned char *addr);
2063 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2064
2065 /*
2066 * If bridge module is loaded call bridging hook.
2067 * returns NULL if packet was consumed.
2068 */
2069 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2070 struct sk_buff *skb) __read_mostly;
2071 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2072 struct packet_type **pt_prev, int *ret,
2073 struct net_device *orig_dev)
2074 {
2075 struct net_bridge_port *port;
2076
2077 if (skb->pkt_type == PACKET_LOOPBACK ||
2078 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2079 return skb;
2080
2081 if (*pt_prev) {
2082 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2083 *pt_prev = NULL;
2084 }
2085
2086 return br_handle_frame_hook(port, skb);
2087 }
2088 #else
2089 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2090 #endif
2091
2092 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2093 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2094 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2095
2096 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2097 struct packet_type **pt_prev,
2098 int *ret,
2099 struct net_device *orig_dev)
2100 {
2101 if (skb->dev->macvlan_port == NULL)
2102 return skb;
2103
2104 if (*pt_prev) {
2105 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2106 *pt_prev = NULL;
2107 }
2108 return macvlan_handle_frame_hook(skb);
2109 }
2110 #else
2111 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2112 #endif
2113
2114 #ifdef CONFIG_NET_CLS_ACT
2115 /* TODO: Maybe we should just force sch_ingress to be compiled in
2116 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2117 * a compare and 2 stores extra right now if we dont have it on
2118 * but have CONFIG_NET_CLS_ACT
2119 * NOTE: This doesnt stop any functionality; if you dont have
2120 * the ingress scheduler, you just cant add policies on ingress.
2121 *
2122 */
2123 static int ing_filter(struct sk_buff *skb)
2124 {
2125 struct net_device *dev = skb->dev;
2126 u32 ttl = G_TC_RTTL(skb->tc_verd);
2127 struct netdev_queue *rxq;
2128 int result = TC_ACT_OK;
2129 struct Qdisc *q;
2130
2131 if (MAX_RED_LOOP < ttl++) {
2132 printk(KERN_WARNING
2133 "Redir loop detected Dropping packet (%d->%d)\n",
2134 skb->iif, dev->ifindex);
2135 return TC_ACT_SHOT;
2136 }
2137
2138 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2139 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2140
2141 rxq = &dev->rx_queue;
2142
2143 q = rxq->qdisc;
2144 if (q != &noop_qdisc) {
2145 spin_lock(qdisc_lock(q));
2146 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2147 result = qdisc_enqueue_root(skb, q);
2148 spin_unlock(qdisc_lock(q));
2149 }
2150
2151 return result;
2152 }
2153
2154 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2155 struct packet_type **pt_prev,
2156 int *ret, struct net_device *orig_dev)
2157 {
2158 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2159 goto out;
2160
2161 if (*pt_prev) {
2162 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2163 *pt_prev = NULL;
2164 } else {
2165 /* Huh? Why does turning on AF_PACKET affect this? */
2166 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2167 }
2168
2169 switch (ing_filter(skb)) {
2170 case TC_ACT_SHOT:
2171 case TC_ACT_STOLEN:
2172 kfree_skb(skb);
2173 return NULL;
2174 }
2175
2176 out:
2177 skb->tc_verd = 0;
2178 return skb;
2179 }
2180 #endif
2181
2182 /*
2183 * netif_nit_deliver - deliver received packets to network taps
2184 * @skb: buffer
2185 *
2186 * This function is used to deliver incoming packets to network
2187 * taps. It should be used when the normal netif_receive_skb path
2188 * is bypassed, for example because of VLAN acceleration.
2189 */
2190 void netif_nit_deliver(struct sk_buff *skb)
2191 {
2192 struct packet_type *ptype;
2193
2194 if (list_empty(&ptype_all))
2195 return;
2196
2197 skb_reset_network_header(skb);
2198 skb_reset_transport_header(skb);
2199 skb->mac_len = skb->network_header - skb->mac_header;
2200
2201 rcu_read_lock();
2202 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2203 if (!ptype->dev || ptype->dev == skb->dev)
2204 deliver_skb(skb, ptype, skb->dev);
2205 }
2206 rcu_read_unlock();
2207 }
2208
2209 /**
2210 * netif_receive_skb - process receive buffer from network
2211 * @skb: buffer to process
2212 *
2213 * netif_receive_skb() is the main receive data processing function.
2214 * It always succeeds. The buffer may be dropped during processing
2215 * for congestion control or by the protocol layers.
2216 *
2217 * This function may only be called from softirq context and interrupts
2218 * should be enabled.
2219 *
2220 * Return values (usually ignored):
2221 * NET_RX_SUCCESS: no congestion
2222 * NET_RX_DROP: packet was dropped
2223 */
2224 int netif_receive_skb(struct sk_buff *skb)
2225 {
2226 struct packet_type *ptype, *pt_prev;
2227 struct net_device *orig_dev;
2228 struct net_device *null_or_orig;
2229 int ret = NET_RX_DROP;
2230 __be16 type;
2231
2232 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2233 return NET_RX_SUCCESS;
2234
2235 /* if we've gotten here through NAPI, check netpoll */
2236 if (netpoll_receive_skb(skb))
2237 return NET_RX_DROP;
2238
2239 if (!skb->tstamp.tv64)
2240 net_timestamp(skb);
2241
2242 if (!skb->iif)
2243 skb->iif = skb->dev->ifindex;
2244
2245 null_or_orig = NULL;
2246 orig_dev = skb->dev;
2247 if (orig_dev->master) {
2248 if (skb_bond_should_drop(skb))
2249 null_or_orig = orig_dev; /* deliver only exact match */
2250 else
2251 skb->dev = orig_dev->master;
2252 }
2253
2254 __get_cpu_var(netdev_rx_stat).total++;
2255
2256 skb_reset_network_header(skb);
2257 skb_reset_transport_header(skb);
2258 skb->mac_len = skb->network_header - skb->mac_header;
2259
2260 pt_prev = NULL;
2261
2262 rcu_read_lock();
2263
2264 /* Don't receive packets in an exiting network namespace */
2265 if (!net_alive(dev_net(skb->dev))) {
2266 kfree_skb(skb);
2267 goto out;
2268 }
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 if (skb->tc_verd & TC_NCLS) {
2272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2273 goto ncls;
2274 }
2275 #endif
2276
2277 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2278 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2279 ptype->dev == orig_dev) {
2280 if (pt_prev)
2281 ret = deliver_skb(skb, pt_prev, orig_dev);
2282 pt_prev = ptype;
2283 }
2284 }
2285
2286 #ifdef CONFIG_NET_CLS_ACT
2287 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 ncls:
2291 #endif
2292
2293 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2294 if (!skb)
2295 goto out;
2296 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299
2300 type = skb->protocol;
2301 list_for_each_entry_rcu(ptype,
2302 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2303 if (ptype->type == type &&
2304 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2305 ptype->dev == orig_dev)) {
2306 if (pt_prev)
2307 ret = deliver_skb(skb, pt_prev, orig_dev);
2308 pt_prev = ptype;
2309 }
2310 }
2311
2312 if (pt_prev) {
2313 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2314 } else {
2315 kfree_skb(skb);
2316 /* Jamal, now you will not able to escape explaining
2317 * me how you were going to use this. :-)
2318 */
2319 ret = NET_RX_DROP;
2320 }
2321
2322 out:
2323 rcu_read_unlock();
2324 return ret;
2325 }
2326
2327 /* Network device is going away, flush any packets still pending */
2328 static void flush_backlog(void *arg)
2329 {
2330 struct net_device *dev = arg;
2331 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2332 struct sk_buff *skb, *tmp;
2333
2334 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2335 if (skb->dev == dev) {
2336 __skb_unlink(skb, &queue->input_pkt_queue);
2337 kfree_skb(skb);
2338 }
2339 }
2340
2341 static int napi_gro_complete(struct sk_buff *skb)
2342 {
2343 struct packet_type *ptype;
2344 __be16 type = skb->protocol;
2345 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2346 int err = -ENOENT;
2347
2348 if (!skb_shinfo(skb)->frag_list)
2349 goto out;
2350
2351 rcu_read_lock();
2352 list_for_each_entry_rcu(ptype, head, list) {
2353 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2354 continue;
2355
2356 err = ptype->gro_complete(skb);
2357 break;
2358 }
2359 rcu_read_unlock();
2360
2361 if (err) {
2362 WARN_ON(&ptype->list == head);
2363 kfree_skb(skb);
2364 return NET_RX_SUCCESS;
2365 }
2366
2367 out:
2368 __skb_push(skb, -skb_network_offset(skb));
2369 return netif_receive_skb(skb);
2370 }
2371
2372 void napi_gro_flush(struct napi_struct *napi)
2373 {
2374 struct sk_buff *skb, *next;
2375
2376 for (skb = napi->gro_list; skb; skb = next) {
2377 next = skb->next;
2378 skb->next = NULL;
2379 napi_gro_complete(skb);
2380 }
2381
2382 napi->gro_list = NULL;
2383 }
2384 EXPORT_SYMBOL(napi_gro_flush);
2385
2386 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2387 {
2388 struct sk_buff **pp = NULL;
2389 struct packet_type *ptype;
2390 __be16 type = skb->protocol;
2391 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2392 int count = 0;
2393 int mac_len;
2394
2395 if (!(skb->dev->features & NETIF_F_GRO))
2396 goto normal;
2397
2398 rcu_read_lock();
2399 list_for_each_entry_rcu(ptype, head, list) {
2400 struct sk_buff *p;
2401
2402 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2403 continue;
2404
2405 skb_reset_network_header(skb);
2406 mac_len = skb->network_header - skb->mac_header;
2407 skb->mac_len = mac_len;
2408 NAPI_GRO_CB(skb)->same_flow = 0;
2409 NAPI_GRO_CB(skb)->flush = 0;
2410
2411 for (p = napi->gro_list; p; p = p->next) {
2412 count++;
2413 NAPI_GRO_CB(p)->same_flow =
2414 p->mac_len == mac_len &&
2415 !memcmp(skb_mac_header(p), skb_mac_header(skb),
2416 mac_len);
2417 NAPI_GRO_CB(p)->flush = 0;
2418 }
2419
2420 pp = ptype->gro_receive(&napi->gro_list, skb);
2421 break;
2422 }
2423 rcu_read_unlock();
2424
2425 if (&ptype->list == head)
2426 goto normal;
2427
2428 if (pp) {
2429 struct sk_buff *nskb = *pp;
2430
2431 *pp = nskb->next;
2432 nskb->next = NULL;
2433 napi_gro_complete(nskb);
2434 count--;
2435 }
2436
2437 if (NAPI_GRO_CB(skb)->same_flow)
2438 goto ok;
2439
2440 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2441 __skb_push(skb, -skb_network_offset(skb));
2442 goto normal;
2443 }
2444
2445 NAPI_GRO_CB(skb)->count = 1;
2446 skb->next = napi->gro_list;
2447 napi->gro_list = skb;
2448
2449 ok:
2450 return NET_RX_SUCCESS;
2451
2452 normal:
2453 return netif_receive_skb(skb);
2454 }
2455 EXPORT_SYMBOL(napi_gro_receive);
2456
2457 static int process_backlog(struct napi_struct *napi, int quota)
2458 {
2459 int work = 0;
2460 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2461 unsigned long start_time = jiffies;
2462
2463 napi->weight = weight_p;
2464 do {
2465 struct sk_buff *skb;
2466
2467 local_irq_disable();
2468 skb = __skb_dequeue(&queue->input_pkt_queue);
2469 if (!skb) {
2470 __napi_complete(napi);
2471 local_irq_enable();
2472 break;
2473 }
2474 local_irq_enable();
2475
2476 napi_gro_receive(napi, skb);
2477 } while (++work < quota && jiffies == start_time);
2478
2479 napi_gro_flush(napi);
2480
2481 return work;
2482 }
2483
2484 /**
2485 * __napi_schedule - schedule for receive
2486 * @n: entry to schedule
2487 *
2488 * The entry's receive function will be scheduled to run
2489 */
2490 void __napi_schedule(struct napi_struct *n)
2491 {
2492 unsigned long flags;
2493
2494 local_irq_save(flags);
2495 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2496 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2497 local_irq_restore(flags);
2498 }
2499 EXPORT_SYMBOL(__napi_schedule);
2500
2501 void __napi_complete(struct napi_struct *n)
2502 {
2503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2504 BUG_ON(n->gro_list);
2505
2506 list_del(&n->poll_list);
2507 smp_mb__before_clear_bit();
2508 clear_bit(NAPI_STATE_SCHED, &n->state);
2509 }
2510 EXPORT_SYMBOL(__napi_complete);
2511
2512 void napi_complete(struct napi_struct *n)
2513 {
2514 unsigned long flags;
2515
2516 /*
2517 * don't let napi dequeue from the cpu poll list
2518 * just in case its running on a different cpu
2519 */
2520 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2521 return;
2522
2523 napi_gro_flush(n);
2524 local_irq_save(flags);
2525 __napi_complete(n);
2526 local_irq_restore(flags);
2527 }
2528 EXPORT_SYMBOL(napi_complete);
2529
2530 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2531 int (*poll)(struct napi_struct *, int), int weight)
2532 {
2533 INIT_LIST_HEAD(&napi->poll_list);
2534 napi->gro_list = NULL;
2535 napi->poll = poll;
2536 napi->weight = weight;
2537 list_add(&napi->dev_list, &dev->napi_list);
2538 #ifdef CONFIG_NETPOLL
2539 napi->dev = dev;
2540 spin_lock_init(&napi->poll_lock);
2541 napi->poll_owner = -1;
2542 #endif
2543 set_bit(NAPI_STATE_SCHED, &napi->state);
2544 }
2545 EXPORT_SYMBOL(netif_napi_add);
2546
2547 void netif_napi_del(struct napi_struct *napi)
2548 {
2549 struct sk_buff *skb, *next;
2550
2551 list_del(&napi->dev_list);
2552
2553 for (skb = napi->gro_list; skb; skb = next) {
2554 next = skb->next;
2555 skb->next = NULL;
2556 kfree_skb(skb);
2557 }
2558
2559 napi->gro_list = NULL;
2560 }
2561 EXPORT_SYMBOL(netif_napi_del);
2562
2563
2564 static void net_rx_action(struct softirq_action *h)
2565 {
2566 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2567 unsigned long time_limit = jiffies + 2;
2568 int budget = netdev_budget;
2569 void *have;
2570
2571 local_irq_disable();
2572
2573 while (!list_empty(list)) {
2574 struct napi_struct *n;
2575 int work, weight;
2576
2577 /* If softirq window is exhuasted then punt.
2578 * Allow this to run for 2 jiffies since which will allow
2579 * an average latency of 1.5/HZ.
2580 */
2581 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2582 goto softnet_break;
2583
2584 local_irq_enable();
2585
2586 /* Even though interrupts have been re-enabled, this
2587 * access is safe because interrupts can only add new
2588 * entries to the tail of this list, and only ->poll()
2589 * calls can remove this head entry from the list.
2590 */
2591 n = list_entry(list->next, struct napi_struct, poll_list);
2592
2593 have = netpoll_poll_lock(n);
2594
2595 weight = n->weight;
2596
2597 /* This NAPI_STATE_SCHED test is for avoiding a race
2598 * with netpoll's poll_napi(). Only the entity which
2599 * obtains the lock and sees NAPI_STATE_SCHED set will
2600 * actually make the ->poll() call. Therefore we avoid
2601 * accidently calling ->poll() when NAPI is not scheduled.
2602 */
2603 work = 0;
2604 if (test_bit(NAPI_STATE_SCHED, &n->state))
2605 work = n->poll(n, weight);
2606
2607 WARN_ON_ONCE(work > weight);
2608
2609 budget -= work;
2610
2611 local_irq_disable();
2612
2613 /* Drivers must not modify the NAPI state if they
2614 * consume the entire weight. In such cases this code
2615 * still "owns" the NAPI instance and therefore can
2616 * move the instance around on the list at-will.
2617 */
2618 if (unlikely(work == weight)) {
2619 if (unlikely(napi_disable_pending(n)))
2620 __napi_complete(n);
2621 else
2622 list_move_tail(&n->poll_list, list);
2623 }
2624
2625 netpoll_poll_unlock(have);
2626 }
2627 out:
2628 local_irq_enable();
2629
2630 #ifdef CONFIG_NET_DMA
2631 /*
2632 * There may not be any more sk_buffs coming right now, so push
2633 * any pending DMA copies to hardware
2634 */
2635 if (!cpus_empty(net_dma.channel_mask)) {
2636 int chan_idx;
2637 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2638 struct dma_chan *chan = net_dma.channels[chan_idx];
2639 if (chan)
2640 dma_async_memcpy_issue_pending(chan);
2641 }
2642 }
2643 #endif
2644
2645 return;
2646
2647 softnet_break:
2648 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2649 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2650 goto out;
2651 }
2652
2653 static gifconf_func_t * gifconf_list [NPROTO];
2654
2655 /**
2656 * register_gifconf - register a SIOCGIF handler
2657 * @family: Address family
2658 * @gifconf: Function handler
2659 *
2660 * Register protocol dependent address dumping routines. The handler
2661 * that is passed must not be freed or reused until it has been replaced
2662 * by another handler.
2663 */
2664 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2665 {
2666 if (family >= NPROTO)
2667 return -EINVAL;
2668 gifconf_list[family] = gifconf;
2669 return 0;
2670 }
2671
2672
2673 /*
2674 * Map an interface index to its name (SIOCGIFNAME)
2675 */
2676
2677 /*
2678 * We need this ioctl for efficient implementation of the
2679 * if_indextoname() function required by the IPv6 API. Without
2680 * it, we would have to search all the interfaces to find a
2681 * match. --pb
2682 */
2683
2684 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2685 {
2686 struct net_device *dev;
2687 struct ifreq ifr;
2688
2689 /*
2690 * Fetch the caller's info block.
2691 */
2692
2693 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2694 return -EFAULT;
2695
2696 read_lock(&dev_base_lock);
2697 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2698 if (!dev) {
2699 read_unlock(&dev_base_lock);
2700 return -ENODEV;
2701 }
2702
2703 strcpy(ifr.ifr_name, dev->name);
2704 read_unlock(&dev_base_lock);
2705
2706 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2707 return -EFAULT;
2708 return 0;
2709 }
2710
2711 /*
2712 * Perform a SIOCGIFCONF call. This structure will change
2713 * size eventually, and there is nothing I can do about it.
2714 * Thus we will need a 'compatibility mode'.
2715 */
2716
2717 static int dev_ifconf(struct net *net, char __user *arg)
2718 {
2719 struct ifconf ifc;
2720 struct net_device *dev;
2721 char __user *pos;
2722 int len;
2723 int total;
2724 int i;
2725
2726 /*
2727 * Fetch the caller's info block.
2728 */
2729
2730 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2731 return -EFAULT;
2732
2733 pos = ifc.ifc_buf;
2734 len = ifc.ifc_len;
2735
2736 /*
2737 * Loop over the interfaces, and write an info block for each.
2738 */
2739
2740 total = 0;
2741 for_each_netdev(net, dev) {
2742 for (i = 0; i < NPROTO; i++) {
2743 if (gifconf_list[i]) {
2744 int done;
2745 if (!pos)
2746 done = gifconf_list[i](dev, NULL, 0);
2747 else
2748 done = gifconf_list[i](dev, pos + total,
2749 len - total);
2750 if (done < 0)
2751 return -EFAULT;
2752 total += done;
2753 }
2754 }
2755 }
2756
2757 /*
2758 * All done. Write the updated control block back to the caller.
2759 */
2760 ifc.ifc_len = total;
2761
2762 /*
2763 * Both BSD and Solaris return 0 here, so we do too.
2764 */
2765 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2766 }
2767
2768 #ifdef CONFIG_PROC_FS
2769 /*
2770 * This is invoked by the /proc filesystem handler to display a device
2771 * in detail.
2772 */
2773 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2774 __acquires(dev_base_lock)
2775 {
2776 struct net *net = seq_file_net(seq);
2777 loff_t off;
2778 struct net_device *dev;
2779
2780 read_lock(&dev_base_lock);
2781 if (!*pos)
2782 return SEQ_START_TOKEN;
2783
2784 off = 1;
2785 for_each_netdev(net, dev)
2786 if (off++ == *pos)
2787 return dev;
2788
2789 return NULL;
2790 }
2791
2792 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2793 {
2794 struct net *net = seq_file_net(seq);
2795 ++*pos;
2796 return v == SEQ_START_TOKEN ?
2797 first_net_device(net) : next_net_device((struct net_device *)v);
2798 }
2799
2800 void dev_seq_stop(struct seq_file *seq, void *v)
2801 __releases(dev_base_lock)
2802 {
2803 read_unlock(&dev_base_lock);
2804 }
2805
2806 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2807 {
2808 const struct net_device_stats *stats = dev_get_stats(dev);
2809
2810 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2811 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2812 dev->name, stats->rx_bytes, stats->rx_packets,
2813 stats->rx_errors,
2814 stats->rx_dropped + stats->rx_missed_errors,
2815 stats->rx_fifo_errors,
2816 stats->rx_length_errors + stats->rx_over_errors +
2817 stats->rx_crc_errors + stats->rx_frame_errors,
2818 stats->rx_compressed, stats->multicast,
2819 stats->tx_bytes, stats->tx_packets,
2820 stats->tx_errors, stats->tx_dropped,
2821 stats->tx_fifo_errors, stats->collisions,
2822 stats->tx_carrier_errors +
2823 stats->tx_aborted_errors +
2824 stats->tx_window_errors +
2825 stats->tx_heartbeat_errors,
2826 stats->tx_compressed);
2827 }
2828
2829 /*
2830 * Called from the PROCfs module. This now uses the new arbitrary sized
2831 * /proc/net interface to create /proc/net/dev
2832 */
2833 static int dev_seq_show(struct seq_file *seq, void *v)
2834 {
2835 if (v == SEQ_START_TOKEN)
2836 seq_puts(seq, "Inter-| Receive "
2837 " | Transmit\n"
2838 " face |bytes packets errs drop fifo frame "
2839 "compressed multicast|bytes packets errs "
2840 "drop fifo colls carrier compressed\n");
2841 else
2842 dev_seq_printf_stats(seq, v);
2843 return 0;
2844 }
2845
2846 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2847 {
2848 struct netif_rx_stats *rc = NULL;
2849
2850 while (*pos < nr_cpu_ids)
2851 if (cpu_online(*pos)) {
2852 rc = &per_cpu(netdev_rx_stat, *pos);
2853 break;
2854 } else
2855 ++*pos;
2856 return rc;
2857 }
2858
2859 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2860 {
2861 return softnet_get_online(pos);
2862 }
2863
2864 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2865 {
2866 ++*pos;
2867 return softnet_get_online(pos);
2868 }
2869
2870 static void softnet_seq_stop(struct seq_file *seq, void *v)
2871 {
2872 }
2873
2874 static int softnet_seq_show(struct seq_file *seq, void *v)
2875 {
2876 struct netif_rx_stats *s = v;
2877
2878 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2879 s->total, s->dropped, s->time_squeeze, 0,
2880 0, 0, 0, 0, /* was fastroute */
2881 s->cpu_collision );
2882 return 0;
2883 }
2884
2885 static const struct seq_operations dev_seq_ops = {
2886 .start = dev_seq_start,
2887 .next = dev_seq_next,
2888 .stop = dev_seq_stop,
2889 .show = dev_seq_show,
2890 };
2891
2892 static int dev_seq_open(struct inode *inode, struct file *file)
2893 {
2894 return seq_open_net(inode, file, &dev_seq_ops,
2895 sizeof(struct seq_net_private));
2896 }
2897
2898 static const struct file_operations dev_seq_fops = {
2899 .owner = THIS_MODULE,
2900 .open = dev_seq_open,
2901 .read = seq_read,
2902 .llseek = seq_lseek,
2903 .release = seq_release_net,
2904 };
2905
2906 static const struct seq_operations softnet_seq_ops = {
2907 .start = softnet_seq_start,
2908 .next = softnet_seq_next,
2909 .stop = softnet_seq_stop,
2910 .show = softnet_seq_show,
2911 };
2912
2913 static int softnet_seq_open(struct inode *inode, struct file *file)
2914 {
2915 return seq_open(file, &softnet_seq_ops);
2916 }
2917
2918 static const struct file_operations softnet_seq_fops = {
2919 .owner = THIS_MODULE,
2920 .open = softnet_seq_open,
2921 .read = seq_read,
2922 .llseek = seq_lseek,
2923 .release = seq_release,
2924 };
2925
2926 static void *ptype_get_idx(loff_t pos)
2927 {
2928 struct packet_type *pt = NULL;
2929 loff_t i = 0;
2930 int t;
2931
2932 list_for_each_entry_rcu(pt, &ptype_all, list) {
2933 if (i == pos)
2934 return pt;
2935 ++i;
2936 }
2937
2938 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2939 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2940 if (i == pos)
2941 return pt;
2942 ++i;
2943 }
2944 }
2945 return NULL;
2946 }
2947
2948 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2949 __acquires(RCU)
2950 {
2951 rcu_read_lock();
2952 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2953 }
2954
2955 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2956 {
2957 struct packet_type *pt;
2958 struct list_head *nxt;
2959 int hash;
2960
2961 ++*pos;
2962 if (v == SEQ_START_TOKEN)
2963 return ptype_get_idx(0);
2964
2965 pt = v;
2966 nxt = pt->list.next;
2967 if (pt->type == htons(ETH_P_ALL)) {
2968 if (nxt != &ptype_all)
2969 goto found;
2970 hash = 0;
2971 nxt = ptype_base[0].next;
2972 } else
2973 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2974
2975 while (nxt == &ptype_base[hash]) {
2976 if (++hash >= PTYPE_HASH_SIZE)
2977 return NULL;
2978 nxt = ptype_base[hash].next;
2979 }
2980 found:
2981 return list_entry(nxt, struct packet_type, list);
2982 }
2983
2984 static void ptype_seq_stop(struct seq_file *seq, void *v)
2985 __releases(RCU)
2986 {
2987 rcu_read_unlock();
2988 }
2989
2990 static int ptype_seq_show(struct seq_file *seq, void *v)
2991 {
2992 struct packet_type *pt = v;
2993
2994 if (v == SEQ_START_TOKEN)
2995 seq_puts(seq, "Type Device Function\n");
2996 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2997 if (pt->type == htons(ETH_P_ALL))
2998 seq_puts(seq, "ALL ");
2999 else
3000 seq_printf(seq, "%04x", ntohs(pt->type));
3001
3002 seq_printf(seq, " %-8s %pF\n",
3003 pt->dev ? pt->dev->name : "", pt->func);
3004 }
3005
3006 return 0;
3007 }
3008
3009 static const struct seq_operations ptype_seq_ops = {
3010 .start = ptype_seq_start,
3011 .next = ptype_seq_next,
3012 .stop = ptype_seq_stop,
3013 .show = ptype_seq_show,
3014 };
3015
3016 static int ptype_seq_open(struct inode *inode, struct file *file)
3017 {
3018 return seq_open_net(inode, file, &ptype_seq_ops,
3019 sizeof(struct seq_net_private));
3020 }
3021
3022 static const struct file_operations ptype_seq_fops = {
3023 .owner = THIS_MODULE,
3024 .open = ptype_seq_open,
3025 .read = seq_read,
3026 .llseek = seq_lseek,
3027 .release = seq_release_net,
3028 };
3029
3030
3031 static int __net_init dev_proc_net_init(struct net *net)
3032 {
3033 int rc = -ENOMEM;
3034
3035 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3036 goto out;
3037 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3038 goto out_dev;
3039 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3040 goto out_softnet;
3041
3042 if (wext_proc_init(net))
3043 goto out_ptype;
3044 rc = 0;
3045 out:
3046 return rc;
3047 out_ptype:
3048 proc_net_remove(net, "ptype");
3049 out_softnet:
3050 proc_net_remove(net, "softnet_stat");
3051 out_dev:
3052 proc_net_remove(net, "dev");
3053 goto out;
3054 }
3055
3056 static void __net_exit dev_proc_net_exit(struct net *net)
3057 {
3058 wext_proc_exit(net);
3059
3060 proc_net_remove(net, "ptype");
3061 proc_net_remove(net, "softnet_stat");
3062 proc_net_remove(net, "dev");
3063 }
3064
3065 static struct pernet_operations __net_initdata dev_proc_ops = {
3066 .init = dev_proc_net_init,
3067 .exit = dev_proc_net_exit,
3068 };
3069
3070 static int __init dev_proc_init(void)
3071 {
3072 return register_pernet_subsys(&dev_proc_ops);
3073 }
3074 #else
3075 #define dev_proc_init() 0
3076 #endif /* CONFIG_PROC_FS */
3077
3078
3079 /**
3080 * netdev_set_master - set up master/slave pair
3081 * @slave: slave device
3082 * @master: new master device
3083 *
3084 * Changes the master device of the slave. Pass %NULL to break the
3085 * bonding. The caller must hold the RTNL semaphore. On a failure
3086 * a negative errno code is returned. On success the reference counts
3087 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3088 * function returns zero.
3089 */
3090 int netdev_set_master(struct net_device *slave, struct net_device *master)
3091 {
3092 struct net_device *old = slave->master;
3093
3094 ASSERT_RTNL();
3095
3096 if (master) {
3097 if (old)
3098 return -EBUSY;
3099 dev_hold(master);
3100 }
3101
3102 slave->master = master;
3103
3104 synchronize_net();
3105
3106 if (old)
3107 dev_put(old);
3108
3109 if (master)
3110 slave->flags |= IFF_SLAVE;
3111 else
3112 slave->flags &= ~IFF_SLAVE;
3113
3114 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3115 return 0;
3116 }
3117
3118 static void dev_change_rx_flags(struct net_device *dev, int flags)
3119 {
3120 const struct net_device_ops *ops = dev->netdev_ops;
3121
3122 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3123 ops->ndo_change_rx_flags(dev, flags);
3124 }
3125
3126 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3127 {
3128 unsigned short old_flags = dev->flags;
3129
3130 ASSERT_RTNL();
3131
3132 dev->flags |= IFF_PROMISC;
3133 dev->promiscuity += inc;
3134 if (dev->promiscuity == 0) {
3135 /*
3136 * Avoid overflow.
3137 * If inc causes overflow, untouch promisc and return error.
3138 */
3139 if (inc < 0)
3140 dev->flags &= ~IFF_PROMISC;
3141 else {
3142 dev->promiscuity -= inc;
3143 printk(KERN_WARNING "%s: promiscuity touches roof, "
3144 "set promiscuity failed, promiscuity feature "
3145 "of device might be broken.\n", dev->name);
3146 return -EOVERFLOW;
3147 }
3148 }
3149 if (dev->flags != old_flags) {
3150 printk(KERN_INFO "device %s %s promiscuous mode\n",
3151 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3152 "left");
3153 if (audit_enabled)
3154 audit_log(current->audit_context, GFP_ATOMIC,
3155 AUDIT_ANOM_PROMISCUOUS,
3156 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3157 dev->name, (dev->flags & IFF_PROMISC),
3158 (old_flags & IFF_PROMISC),
3159 audit_get_loginuid(current),
3160 current->uid, current->gid,
3161 audit_get_sessionid(current));
3162
3163 dev_change_rx_flags(dev, IFF_PROMISC);
3164 }
3165 return 0;
3166 }
3167
3168 /**
3169 * dev_set_promiscuity - update promiscuity count on a device
3170 * @dev: device
3171 * @inc: modifier
3172 *
3173 * Add or remove promiscuity from a device. While the count in the device
3174 * remains above zero the interface remains promiscuous. Once it hits zero
3175 * the device reverts back to normal filtering operation. A negative inc
3176 * value is used to drop promiscuity on the device.
3177 * Return 0 if successful or a negative errno code on error.
3178 */
3179 int dev_set_promiscuity(struct net_device *dev, int inc)
3180 {
3181 unsigned short old_flags = dev->flags;
3182 int err;
3183
3184 err = __dev_set_promiscuity(dev, inc);
3185 if (err < 0)
3186 return err;
3187 if (dev->flags != old_flags)
3188 dev_set_rx_mode(dev);
3189 return err;
3190 }
3191
3192 /**
3193 * dev_set_allmulti - update allmulti count on a device
3194 * @dev: device
3195 * @inc: modifier
3196 *
3197 * Add or remove reception of all multicast frames to a device. While the
3198 * count in the device remains above zero the interface remains listening
3199 * to all interfaces. Once it hits zero the device reverts back to normal
3200 * filtering operation. A negative @inc value is used to drop the counter
3201 * when releasing a resource needing all multicasts.
3202 * Return 0 if successful or a negative errno code on error.
3203 */
3204
3205 int dev_set_allmulti(struct net_device *dev, int inc)
3206 {
3207 unsigned short old_flags = dev->flags;
3208
3209 ASSERT_RTNL();
3210
3211 dev->flags |= IFF_ALLMULTI;
3212 dev->allmulti += inc;
3213 if (dev->allmulti == 0) {
3214 /*
3215 * Avoid overflow.
3216 * If inc causes overflow, untouch allmulti and return error.
3217 */
3218 if (inc < 0)
3219 dev->flags &= ~IFF_ALLMULTI;
3220 else {
3221 dev->allmulti -= inc;
3222 printk(KERN_WARNING "%s: allmulti touches roof, "
3223 "set allmulti failed, allmulti feature of "
3224 "device might be broken.\n", dev->name);
3225 return -EOVERFLOW;
3226 }
3227 }
3228 if (dev->flags ^ old_flags) {
3229 dev_change_rx_flags(dev, IFF_ALLMULTI);
3230 dev_set_rx_mode(dev);
3231 }
3232 return 0;
3233 }
3234
3235 /*
3236 * Upload unicast and multicast address lists to device and
3237 * configure RX filtering. When the device doesn't support unicast
3238 * filtering it is put in promiscuous mode while unicast addresses
3239 * are present.
3240 */
3241 void __dev_set_rx_mode(struct net_device *dev)
3242 {
3243 const struct net_device_ops *ops = dev->netdev_ops;
3244
3245 /* dev_open will call this function so the list will stay sane. */
3246 if (!(dev->flags&IFF_UP))
3247 return;
3248
3249 if (!netif_device_present(dev))
3250 return;
3251
3252 if (ops->ndo_set_rx_mode)
3253 ops->ndo_set_rx_mode(dev);
3254 else {
3255 /* Unicast addresses changes may only happen under the rtnl,
3256 * therefore calling __dev_set_promiscuity here is safe.
3257 */
3258 if (dev->uc_count > 0 && !dev->uc_promisc) {
3259 __dev_set_promiscuity(dev, 1);
3260 dev->uc_promisc = 1;
3261 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3262 __dev_set_promiscuity(dev, -1);
3263 dev->uc_promisc = 0;
3264 }
3265
3266 if (ops->ndo_set_multicast_list)
3267 ops->ndo_set_multicast_list(dev);
3268 }
3269 }
3270
3271 void dev_set_rx_mode(struct net_device *dev)
3272 {
3273 netif_addr_lock_bh(dev);
3274 __dev_set_rx_mode(dev);
3275 netif_addr_unlock_bh(dev);
3276 }
3277
3278 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3279 void *addr, int alen, int glbl)
3280 {
3281 struct dev_addr_list *da;
3282
3283 for (; (da = *list) != NULL; list = &da->next) {
3284 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3285 alen == da->da_addrlen) {
3286 if (glbl) {
3287 int old_glbl = da->da_gusers;
3288 da->da_gusers = 0;
3289 if (old_glbl == 0)
3290 break;
3291 }
3292 if (--da->da_users)
3293 return 0;
3294
3295 *list = da->next;
3296 kfree(da);
3297 (*count)--;
3298 return 0;
3299 }
3300 }
3301 return -ENOENT;
3302 }
3303
3304 int __dev_addr_add(struct dev_addr_list **list, int *count,
3305 void *addr, int alen, int glbl)
3306 {
3307 struct dev_addr_list *da;
3308
3309 for (da = *list; da != NULL; da = da->next) {
3310 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3311 da->da_addrlen == alen) {
3312 if (glbl) {
3313 int old_glbl = da->da_gusers;
3314 da->da_gusers = 1;
3315 if (old_glbl)
3316 return 0;
3317 }
3318 da->da_users++;
3319 return 0;
3320 }
3321 }
3322
3323 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3324 if (da == NULL)
3325 return -ENOMEM;
3326 memcpy(da->da_addr, addr, alen);
3327 da->da_addrlen = alen;
3328 da->da_users = 1;
3329 da->da_gusers = glbl ? 1 : 0;
3330 da->next = *list;
3331 *list = da;
3332 (*count)++;
3333 return 0;
3334 }
3335
3336 /**
3337 * dev_unicast_delete - Release secondary unicast address.
3338 * @dev: device
3339 * @addr: address to delete
3340 * @alen: length of @addr
3341 *
3342 * Release reference to a secondary unicast address and remove it
3343 * from the device if the reference count drops to zero.
3344 *
3345 * The caller must hold the rtnl_mutex.
3346 */
3347 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3348 {
3349 int err;
3350
3351 ASSERT_RTNL();
3352
3353 netif_addr_lock_bh(dev);
3354 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3355 if (!err)
3356 __dev_set_rx_mode(dev);
3357 netif_addr_unlock_bh(dev);
3358 return err;
3359 }
3360 EXPORT_SYMBOL(dev_unicast_delete);
3361
3362 /**
3363 * dev_unicast_add - add a secondary unicast address
3364 * @dev: device
3365 * @addr: address to add
3366 * @alen: length of @addr
3367 *
3368 * Add a secondary unicast address to the device or increase
3369 * the reference count if it already exists.
3370 *
3371 * The caller must hold the rtnl_mutex.
3372 */
3373 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3374 {
3375 int err;
3376
3377 ASSERT_RTNL();
3378
3379 netif_addr_lock_bh(dev);
3380 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3381 if (!err)
3382 __dev_set_rx_mode(dev);
3383 netif_addr_unlock_bh(dev);
3384 return err;
3385 }
3386 EXPORT_SYMBOL(dev_unicast_add);
3387
3388 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3389 struct dev_addr_list **from, int *from_count)
3390 {
3391 struct dev_addr_list *da, *next;
3392 int err = 0;
3393
3394 da = *from;
3395 while (da != NULL) {
3396 next = da->next;
3397 if (!da->da_synced) {
3398 err = __dev_addr_add(to, to_count,
3399 da->da_addr, da->da_addrlen, 0);
3400 if (err < 0)
3401 break;
3402 da->da_synced = 1;
3403 da->da_users++;
3404 } else if (da->da_users == 1) {
3405 __dev_addr_delete(to, to_count,
3406 da->da_addr, da->da_addrlen, 0);
3407 __dev_addr_delete(from, from_count,
3408 da->da_addr, da->da_addrlen, 0);
3409 }
3410 da = next;
3411 }
3412 return err;
3413 }
3414
3415 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3416 struct dev_addr_list **from, int *from_count)
3417 {
3418 struct dev_addr_list *da, *next;
3419
3420 da = *from;
3421 while (da != NULL) {
3422 next = da->next;
3423 if (da->da_synced) {
3424 __dev_addr_delete(to, to_count,
3425 da->da_addr, da->da_addrlen, 0);
3426 da->da_synced = 0;
3427 __dev_addr_delete(from, from_count,
3428 da->da_addr, da->da_addrlen, 0);
3429 }
3430 da = next;
3431 }
3432 }
3433
3434 /**
3435 * dev_unicast_sync - Synchronize device's unicast list to another device
3436 * @to: destination device
3437 * @from: source device
3438 *
3439 * Add newly added addresses to the destination device and release
3440 * addresses that have no users left. The source device must be
3441 * locked by netif_tx_lock_bh.
3442 *
3443 * This function is intended to be called from the dev->set_rx_mode
3444 * function of layered software devices.
3445 */
3446 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3447 {
3448 int err = 0;
3449
3450 netif_addr_lock_bh(to);
3451 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3452 &from->uc_list, &from->uc_count);
3453 if (!err)
3454 __dev_set_rx_mode(to);
3455 netif_addr_unlock_bh(to);
3456 return err;
3457 }
3458 EXPORT_SYMBOL(dev_unicast_sync);
3459
3460 /**
3461 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3462 * @to: destination device
3463 * @from: source device
3464 *
3465 * Remove all addresses that were added to the destination device by
3466 * dev_unicast_sync(). This function is intended to be called from the
3467 * dev->stop function of layered software devices.
3468 */
3469 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3470 {
3471 netif_addr_lock_bh(from);
3472 netif_addr_lock(to);
3473
3474 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3475 &from->uc_list, &from->uc_count);
3476 __dev_set_rx_mode(to);
3477
3478 netif_addr_unlock(to);
3479 netif_addr_unlock_bh(from);
3480 }
3481 EXPORT_SYMBOL(dev_unicast_unsync);
3482
3483 static void __dev_addr_discard(struct dev_addr_list **list)
3484 {
3485 struct dev_addr_list *tmp;
3486
3487 while (*list != NULL) {
3488 tmp = *list;
3489 *list = tmp->next;
3490 if (tmp->da_users > tmp->da_gusers)
3491 printk("__dev_addr_discard: address leakage! "
3492 "da_users=%d\n", tmp->da_users);
3493 kfree(tmp);
3494 }
3495 }
3496
3497 static void dev_addr_discard(struct net_device *dev)
3498 {
3499 netif_addr_lock_bh(dev);
3500
3501 __dev_addr_discard(&dev->uc_list);
3502 dev->uc_count = 0;
3503
3504 __dev_addr_discard(&dev->mc_list);
3505 dev->mc_count = 0;
3506
3507 netif_addr_unlock_bh(dev);
3508 }
3509
3510 /**
3511 * dev_get_flags - get flags reported to userspace
3512 * @dev: device
3513 *
3514 * Get the combination of flag bits exported through APIs to userspace.
3515 */
3516 unsigned dev_get_flags(const struct net_device *dev)
3517 {
3518 unsigned flags;
3519
3520 flags = (dev->flags & ~(IFF_PROMISC |
3521 IFF_ALLMULTI |
3522 IFF_RUNNING |
3523 IFF_LOWER_UP |
3524 IFF_DORMANT)) |
3525 (dev->gflags & (IFF_PROMISC |
3526 IFF_ALLMULTI));
3527
3528 if (netif_running(dev)) {
3529 if (netif_oper_up(dev))
3530 flags |= IFF_RUNNING;
3531 if (netif_carrier_ok(dev))
3532 flags |= IFF_LOWER_UP;
3533 if (netif_dormant(dev))
3534 flags |= IFF_DORMANT;
3535 }
3536
3537 return flags;
3538 }
3539
3540 /**
3541 * dev_change_flags - change device settings
3542 * @dev: device
3543 * @flags: device state flags
3544 *
3545 * Change settings on device based state flags. The flags are
3546 * in the userspace exported format.
3547 */
3548 int dev_change_flags(struct net_device *dev, unsigned flags)
3549 {
3550 int ret, changes;
3551 int old_flags = dev->flags;
3552
3553 ASSERT_RTNL();
3554
3555 /*
3556 * Set the flags on our device.
3557 */
3558
3559 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3560 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3561 IFF_AUTOMEDIA)) |
3562 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3563 IFF_ALLMULTI));
3564
3565 /*
3566 * Load in the correct multicast list now the flags have changed.
3567 */
3568
3569 if ((old_flags ^ flags) & IFF_MULTICAST)
3570 dev_change_rx_flags(dev, IFF_MULTICAST);
3571
3572 dev_set_rx_mode(dev);
3573
3574 /*
3575 * Have we downed the interface. We handle IFF_UP ourselves
3576 * according to user attempts to set it, rather than blindly
3577 * setting it.
3578 */
3579
3580 ret = 0;
3581 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3582 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3583
3584 if (!ret)
3585 dev_set_rx_mode(dev);
3586 }
3587
3588 if (dev->flags & IFF_UP &&
3589 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3590 IFF_VOLATILE)))
3591 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3592
3593 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3594 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3595 dev->gflags ^= IFF_PROMISC;
3596 dev_set_promiscuity(dev, inc);
3597 }
3598
3599 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3600 is important. Some (broken) drivers set IFF_PROMISC, when
3601 IFF_ALLMULTI is requested not asking us and not reporting.
3602 */
3603 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3604 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3605 dev->gflags ^= IFF_ALLMULTI;
3606 dev_set_allmulti(dev, inc);
3607 }
3608
3609 /* Exclude state transition flags, already notified */
3610 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3611 if (changes)
3612 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3613
3614 return ret;
3615 }
3616
3617 /**
3618 * dev_set_mtu - Change maximum transfer unit
3619 * @dev: device
3620 * @new_mtu: new transfer unit
3621 *
3622 * Change the maximum transfer size of the network device.
3623 */
3624 int dev_set_mtu(struct net_device *dev, int new_mtu)
3625 {
3626 const struct net_device_ops *ops = dev->netdev_ops;
3627 int err;
3628
3629 if (new_mtu == dev->mtu)
3630 return 0;
3631
3632 /* MTU must be positive. */
3633 if (new_mtu < 0)
3634 return -EINVAL;
3635
3636 if (!netif_device_present(dev))
3637 return -ENODEV;
3638
3639 err = 0;
3640 if (ops->ndo_change_mtu)
3641 err = ops->ndo_change_mtu(dev, new_mtu);
3642 else
3643 dev->mtu = new_mtu;
3644
3645 if (!err && dev->flags & IFF_UP)
3646 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3647 return err;
3648 }
3649
3650 /**
3651 * dev_set_mac_address - Change Media Access Control Address
3652 * @dev: device
3653 * @sa: new address
3654 *
3655 * Change the hardware (MAC) address of the device
3656 */
3657 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3658 {
3659 const struct net_device_ops *ops = dev->netdev_ops;
3660 int err;
3661
3662 if (!ops->ndo_set_mac_address)
3663 return -EOPNOTSUPP;
3664 if (sa->sa_family != dev->type)
3665 return -EINVAL;
3666 if (!netif_device_present(dev))
3667 return -ENODEV;
3668 err = ops->ndo_set_mac_address(dev, sa);
3669 if (!err)
3670 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3671 return err;
3672 }
3673
3674 /*
3675 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3676 */
3677 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3678 {
3679 int err;
3680 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3681
3682 if (!dev)
3683 return -ENODEV;
3684
3685 switch (cmd) {
3686 case SIOCGIFFLAGS: /* Get interface flags */
3687 ifr->ifr_flags = dev_get_flags(dev);
3688 return 0;
3689
3690 case SIOCGIFMETRIC: /* Get the metric on the interface
3691 (currently unused) */
3692 ifr->ifr_metric = 0;
3693 return 0;
3694
3695 case SIOCGIFMTU: /* Get the MTU of a device */
3696 ifr->ifr_mtu = dev->mtu;
3697 return 0;
3698
3699 case SIOCGIFHWADDR:
3700 if (!dev->addr_len)
3701 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3702 else
3703 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3704 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3705 ifr->ifr_hwaddr.sa_family = dev->type;
3706 return 0;
3707
3708 case SIOCGIFSLAVE:
3709 err = -EINVAL;
3710 break;
3711
3712 case SIOCGIFMAP:
3713 ifr->ifr_map.mem_start = dev->mem_start;
3714 ifr->ifr_map.mem_end = dev->mem_end;
3715 ifr->ifr_map.base_addr = dev->base_addr;
3716 ifr->ifr_map.irq = dev->irq;
3717 ifr->ifr_map.dma = dev->dma;
3718 ifr->ifr_map.port = dev->if_port;
3719 return 0;
3720
3721 case SIOCGIFINDEX:
3722 ifr->ifr_ifindex = dev->ifindex;
3723 return 0;
3724
3725 case SIOCGIFTXQLEN:
3726 ifr->ifr_qlen = dev->tx_queue_len;
3727 return 0;
3728
3729 default:
3730 /* dev_ioctl() should ensure this case
3731 * is never reached
3732 */
3733 WARN_ON(1);
3734 err = -EINVAL;
3735 break;
3736
3737 }
3738 return err;
3739 }
3740
3741 /*
3742 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3743 */
3744 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3745 {
3746 int err;
3747 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3748 const struct net_device_ops *ops = dev->netdev_ops;
3749
3750 if (!dev)
3751 return -ENODEV;
3752
3753 switch (cmd) {
3754 case SIOCSIFFLAGS: /* Set interface flags */
3755 return dev_change_flags(dev, ifr->ifr_flags);
3756
3757 case SIOCSIFMETRIC: /* Set the metric on the interface
3758 (currently unused) */
3759 return -EOPNOTSUPP;
3760
3761 case SIOCSIFMTU: /* Set the MTU of a device */
3762 return dev_set_mtu(dev, ifr->ifr_mtu);
3763
3764 case SIOCSIFHWADDR:
3765 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3766
3767 case SIOCSIFHWBROADCAST:
3768 if (ifr->ifr_hwaddr.sa_family != dev->type)
3769 return -EINVAL;
3770 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3771 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3772 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3773 return 0;
3774
3775 case SIOCSIFMAP:
3776 if (ops->ndo_set_config) {
3777 if (!netif_device_present(dev))
3778 return -ENODEV;
3779 return ops->ndo_set_config(dev, &ifr->ifr_map);
3780 }
3781 return -EOPNOTSUPP;
3782
3783 case SIOCADDMULTI:
3784 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3785 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3786 return -EINVAL;
3787 if (!netif_device_present(dev))
3788 return -ENODEV;
3789 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3790 dev->addr_len, 1);
3791
3792 case SIOCDELMULTI:
3793 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3794 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3795 return -EINVAL;
3796 if (!netif_device_present(dev))
3797 return -ENODEV;
3798 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3799 dev->addr_len, 1);
3800
3801 case SIOCSIFTXQLEN:
3802 if (ifr->ifr_qlen < 0)
3803 return -EINVAL;
3804 dev->tx_queue_len = ifr->ifr_qlen;
3805 return 0;
3806
3807 case SIOCSIFNAME:
3808 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3809 return dev_change_name(dev, ifr->ifr_newname);
3810
3811 /*
3812 * Unknown or private ioctl
3813 */
3814
3815 default:
3816 if ((cmd >= SIOCDEVPRIVATE &&
3817 cmd <= SIOCDEVPRIVATE + 15) ||
3818 cmd == SIOCBONDENSLAVE ||
3819 cmd == SIOCBONDRELEASE ||
3820 cmd == SIOCBONDSETHWADDR ||
3821 cmd == SIOCBONDSLAVEINFOQUERY ||
3822 cmd == SIOCBONDINFOQUERY ||
3823 cmd == SIOCBONDCHANGEACTIVE ||
3824 cmd == SIOCGMIIPHY ||
3825 cmd == SIOCGMIIREG ||
3826 cmd == SIOCSMIIREG ||
3827 cmd == SIOCBRADDIF ||
3828 cmd == SIOCBRDELIF ||
3829 cmd == SIOCWANDEV) {
3830 err = -EOPNOTSUPP;
3831 if (ops->ndo_do_ioctl) {
3832 if (netif_device_present(dev))
3833 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3834 else
3835 err = -ENODEV;
3836 }
3837 } else
3838 err = -EINVAL;
3839
3840 }
3841 return err;
3842 }
3843
3844 /*
3845 * This function handles all "interface"-type I/O control requests. The actual
3846 * 'doing' part of this is dev_ifsioc above.
3847 */
3848
3849 /**
3850 * dev_ioctl - network device ioctl
3851 * @net: the applicable net namespace
3852 * @cmd: command to issue
3853 * @arg: pointer to a struct ifreq in user space
3854 *
3855 * Issue ioctl functions to devices. This is normally called by the
3856 * user space syscall interfaces but can sometimes be useful for
3857 * other purposes. The return value is the return from the syscall if
3858 * positive or a negative errno code on error.
3859 */
3860
3861 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3862 {
3863 struct ifreq ifr;
3864 int ret;
3865 char *colon;
3866
3867 /* One special case: SIOCGIFCONF takes ifconf argument
3868 and requires shared lock, because it sleeps writing
3869 to user space.
3870 */
3871
3872 if (cmd == SIOCGIFCONF) {
3873 rtnl_lock();
3874 ret = dev_ifconf(net, (char __user *) arg);
3875 rtnl_unlock();
3876 return ret;
3877 }
3878 if (cmd == SIOCGIFNAME)
3879 return dev_ifname(net, (struct ifreq __user *)arg);
3880
3881 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3882 return -EFAULT;
3883
3884 ifr.ifr_name[IFNAMSIZ-1] = 0;
3885
3886 colon = strchr(ifr.ifr_name, ':');
3887 if (colon)
3888 *colon = 0;
3889
3890 /*
3891 * See which interface the caller is talking about.
3892 */
3893
3894 switch (cmd) {
3895 /*
3896 * These ioctl calls:
3897 * - can be done by all.
3898 * - atomic and do not require locking.
3899 * - return a value
3900 */
3901 case SIOCGIFFLAGS:
3902 case SIOCGIFMETRIC:
3903 case SIOCGIFMTU:
3904 case SIOCGIFHWADDR:
3905 case SIOCGIFSLAVE:
3906 case SIOCGIFMAP:
3907 case SIOCGIFINDEX:
3908 case SIOCGIFTXQLEN:
3909 dev_load(net, ifr.ifr_name);
3910 read_lock(&dev_base_lock);
3911 ret = dev_ifsioc_locked(net, &ifr, cmd);
3912 read_unlock(&dev_base_lock);
3913 if (!ret) {
3914 if (colon)
3915 *colon = ':';
3916 if (copy_to_user(arg, &ifr,
3917 sizeof(struct ifreq)))
3918 ret = -EFAULT;
3919 }
3920 return ret;
3921
3922 case SIOCETHTOOL:
3923 dev_load(net, ifr.ifr_name);
3924 rtnl_lock();
3925 ret = dev_ethtool(net, &ifr);
3926 rtnl_unlock();
3927 if (!ret) {
3928 if (colon)
3929 *colon = ':';
3930 if (copy_to_user(arg, &ifr,
3931 sizeof(struct ifreq)))
3932 ret = -EFAULT;
3933 }
3934 return ret;
3935
3936 /*
3937 * These ioctl calls:
3938 * - require superuser power.
3939 * - require strict serialization.
3940 * - return a value
3941 */
3942 case SIOCGMIIPHY:
3943 case SIOCGMIIREG:
3944 case SIOCSIFNAME:
3945 if (!capable(CAP_NET_ADMIN))
3946 return -EPERM;
3947 dev_load(net, ifr.ifr_name);
3948 rtnl_lock();
3949 ret = dev_ifsioc(net, &ifr, cmd);
3950 rtnl_unlock();
3951 if (!ret) {
3952 if (colon)
3953 *colon = ':';
3954 if (copy_to_user(arg, &ifr,
3955 sizeof(struct ifreq)))
3956 ret = -EFAULT;
3957 }
3958 return ret;
3959
3960 /*
3961 * These ioctl calls:
3962 * - require superuser power.
3963 * - require strict serialization.
3964 * - do not return a value
3965 */
3966 case SIOCSIFFLAGS:
3967 case SIOCSIFMETRIC:
3968 case SIOCSIFMTU:
3969 case SIOCSIFMAP:
3970 case SIOCSIFHWADDR:
3971 case SIOCSIFSLAVE:
3972 case SIOCADDMULTI:
3973 case SIOCDELMULTI:
3974 case SIOCSIFHWBROADCAST:
3975 case SIOCSIFTXQLEN:
3976 case SIOCSMIIREG:
3977 case SIOCBONDENSLAVE:
3978 case SIOCBONDRELEASE:
3979 case SIOCBONDSETHWADDR:
3980 case SIOCBONDCHANGEACTIVE:
3981 case SIOCBRADDIF:
3982 case SIOCBRDELIF:
3983 if (!capable(CAP_NET_ADMIN))
3984 return -EPERM;
3985 /* fall through */
3986 case SIOCBONDSLAVEINFOQUERY:
3987 case SIOCBONDINFOQUERY:
3988 dev_load(net, ifr.ifr_name);
3989 rtnl_lock();
3990 ret = dev_ifsioc(net, &ifr, cmd);
3991 rtnl_unlock();
3992 return ret;
3993
3994 case SIOCGIFMEM:
3995 /* Get the per device memory space. We can add this but
3996 * currently do not support it */
3997 case SIOCSIFMEM:
3998 /* Set the per device memory buffer space.
3999 * Not applicable in our case */
4000 case SIOCSIFLINK:
4001 return -EINVAL;
4002
4003 /*
4004 * Unknown or private ioctl.
4005 */
4006 default:
4007 if (cmd == SIOCWANDEV ||
4008 (cmd >= SIOCDEVPRIVATE &&
4009 cmd <= SIOCDEVPRIVATE + 15)) {
4010 dev_load(net, ifr.ifr_name);
4011 rtnl_lock();
4012 ret = dev_ifsioc(net, &ifr, cmd);
4013 rtnl_unlock();
4014 if (!ret && copy_to_user(arg, &ifr,
4015 sizeof(struct ifreq)))
4016 ret = -EFAULT;
4017 return ret;
4018 }
4019 /* Take care of Wireless Extensions */
4020 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4021 return wext_handle_ioctl(net, &ifr, cmd, arg);
4022 return -EINVAL;
4023 }
4024 }
4025
4026
4027 /**
4028 * dev_new_index - allocate an ifindex
4029 * @net: the applicable net namespace
4030 *
4031 * Returns a suitable unique value for a new device interface
4032 * number. The caller must hold the rtnl semaphore or the
4033 * dev_base_lock to be sure it remains unique.
4034 */
4035 static int dev_new_index(struct net *net)
4036 {
4037 static int ifindex;
4038 for (;;) {
4039 if (++ifindex <= 0)
4040 ifindex = 1;
4041 if (!__dev_get_by_index(net, ifindex))
4042 return ifindex;
4043 }
4044 }
4045
4046 /* Delayed registration/unregisteration */
4047 static LIST_HEAD(net_todo_list);
4048
4049 static void net_set_todo(struct net_device *dev)
4050 {
4051 list_add_tail(&dev->todo_list, &net_todo_list);
4052 }
4053
4054 static void rollback_registered(struct net_device *dev)
4055 {
4056 BUG_ON(dev_boot_phase);
4057 ASSERT_RTNL();
4058
4059 /* Some devices call without registering for initialization unwind. */
4060 if (dev->reg_state == NETREG_UNINITIALIZED) {
4061 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4062 "was registered\n", dev->name, dev);
4063
4064 WARN_ON(1);
4065 return;
4066 }
4067
4068 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4069
4070 /* If device is running, close it first. */
4071 dev_close(dev);
4072
4073 /* And unlink it from device chain. */
4074 unlist_netdevice(dev);
4075
4076 dev->reg_state = NETREG_UNREGISTERING;
4077
4078 synchronize_net();
4079
4080 /* Shutdown queueing discipline. */
4081 dev_shutdown(dev);
4082
4083
4084 /* Notify protocols, that we are about to destroy
4085 this device. They should clean all the things.
4086 */
4087 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4088
4089 /*
4090 * Flush the unicast and multicast chains
4091 */
4092 dev_addr_discard(dev);
4093
4094 if (dev->netdev_ops->ndo_uninit)
4095 dev->netdev_ops->ndo_uninit(dev);
4096
4097 /* Notifier chain MUST detach us from master device. */
4098 WARN_ON(dev->master);
4099
4100 /* Remove entries from kobject tree */
4101 netdev_unregister_kobject(dev);
4102
4103 synchronize_net();
4104
4105 dev_put(dev);
4106 }
4107
4108 static void __netdev_init_queue_locks_one(struct net_device *dev,
4109 struct netdev_queue *dev_queue,
4110 void *_unused)
4111 {
4112 spin_lock_init(&dev_queue->_xmit_lock);
4113 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4114 dev_queue->xmit_lock_owner = -1;
4115 }
4116
4117 static void netdev_init_queue_locks(struct net_device *dev)
4118 {
4119 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4120 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4121 }
4122
4123 unsigned long netdev_fix_features(unsigned long features, const char *name)
4124 {
4125 /* Fix illegal SG+CSUM combinations. */
4126 if ((features & NETIF_F_SG) &&
4127 !(features & NETIF_F_ALL_CSUM)) {
4128 if (name)
4129 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4130 "checksum feature.\n", name);
4131 features &= ~NETIF_F_SG;
4132 }
4133
4134 /* TSO requires that SG is present as well. */
4135 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4136 if (name)
4137 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4138 "SG feature.\n", name);
4139 features &= ~NETIF_F_TSO;
4140 }
4141
4142 if (features & NETIF_F_UFO) {
4143 if (!(features & NETIF_F_GEN_CSUM)) {
4144 if (name)
4145 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4146 "since no NETIF_F_HW_CSUM feature.\n",
4147 name);
4148 features &= ~NETIF_F_UFO;
4149 }
4150
4151 if (!(features & NETIF_F_SG)) {
4152 if (name)
4153 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4154 "since no NETIF_F_SG feature.\n", name);
4155 features &= ~NETIF_F_UFO;
4156 }
4157 }
4158
4159 return features;
4160 }
4161 EXPORT_SYMBOL(netdev_fix_features);
4162
4163 /**
4164 * register_netdevice - register a network device
4165 * @dev: device to register
4166 *
4167 * Take a completed network device structure and add it to the kernel
4168 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4169 * chain. 0 is returned on success. A negative errno code is returned
4170 * on a failure to set up the device, or if the name is a duplicate.
4171 *
4172 * Callers must hold the rtnl semaphore. You may want
4173 * register_netdev() instead of this.
4174 *
4175 * BUGS:
4176 * The locking appears insufficient to guarantee two parallel registers
4177 * will not get the same name.
4178 */
4179
4180 int register_netdevice(struct net_device *dev)
4181 {
4182 struct hlist_head *head;
4183 struct hlist_node *p;
4184 int ret;
4185 struct net *net = dev_net(dev);
4186
4187 BUG_ON(dev_boot_phase);
4188 ASSERT_RTNL();
4189
4190 might_sleep();
4191
4192 /* When net_device's are persistent, this will be fatal. */
4193 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4194 BUG_ON(!net);
4195
4196 spin_lock_init(&dev->addr_list_lock);
4197 netdev_set_addr_lockdep_class(dev);
4198 netdev_init_queue_locks(dev);
4199
4200 dev->iflink = -1;
4201
4202 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4203 /* Netdevice_ops API compatiability support.
4204 * This is temporary until all network devices are converted.
4205 */
4206 if (dev->netdev_ops) {
4207 const struct net_device_ops *ops = dev->netdev_ops;
4208
4209 dev->init = ops->ndo_init;
4210 dev->uninit = ops->ndo_uninit;
4211 dev->open = ops->ndo_open;
4212 dev->change_rx_flags = ops->ndo_change_rx_flags;
4213 dev->set_rx_mode = ops->ndo_set_rx_mode;
4214 dev->set_multicast_list = ops->ndo_set_multicast_list;
4215 dev->set_mac_address = ops->ndo_set_mac_address;
4216 dev->validate_addr = ops->ndo_validate_addr;
4217 dev->do_ioctl = ops->ndo_do_ioctl;
4218 dev->set_config = ops->ndo_set_config;
4219 dev->change_mtu = ops->ndo_change_mtu;
4220 dev->tx_timeout = ops->ndo_tx_timeout;
4221 dev->get_stats = ops->ndo_get_stats;
4222 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4223 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4224 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4225 #ifdef CONFIG_NET_POLL_CONTROLLER
4226 dev->poll_controller = ops->ndo_poll_controller;
4227 #endif
4228 } else {
4229 char drivername[64];
4230 pr_info("%s (%s): not using net_device_ops yet\n",
4231 dev->name, netdev_drivername(dev, drivername, 64));
4232
4233 /* This works only because net_device_ops and the
4234 compatiablity structure are the same. */
4235 dev->netdev_ops = (void *) &(dev->init);
4236 }
4237 #endif
4238
4239 /* Init, if this function is available */
4240 if (dev->netdev_ops->ndo_init) {
4241 ret = dev->netdev_ops->ndo_init(dev);
4242 if (ret) {
4243 if (ret > 0)
4244 ret = -EIO;
4245 goto out;
4246 }
4247 }
4248
4249 if (!dev_valid_name(dev->name)) {
4250 ret = -EINVAL;
4251 goto err_uninit;
4252 }
4253
4254 dev->ifindex = dev_new_index(net);
4255 if (dev->iflink == -1)
4256 dev->iflink = dev->ifindex;
4257
4258 /* Check for existence of name */
4259 head = dev_name_hash(net, dev->name);
4260 hlist_for_each(p, head) {
4261 struct net_device *d
4262 = hlist_entry(p, struct net_device, name_hlist);
4263 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4264 ret = -EEXIST;
4265 goto err_uninit;
4266 }
4267 }
4268
4269 /* Fix illegal checksum combinations */
4270 if ((dev->features & NETIF_F_HW_CSUM) &&
4271 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4272 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4273 dev->name);
4274 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4275 }
4276
4277 if ((dev->features & NETIF_F_NO_CSUM) &&
4278 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4279 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4280 dev->name);
4281 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4282 }
4283
4284 dev->features = netdev_fix_features(dev->features, dev->name);
4285
4286 /* Enable software GSO if SG is supported. */
4287 if (dev->features & NETIF_F_SG)
4288 dev->features |= NETIF_F_GSO;
4289
4290 netdev_initialize_kobject(dev);
4291 ret = netdev_register_kobject(dev);
4292 if (ret)
4293 goto err_uninit;
4294 dev->reg_state = NETREG_REGISTERED;
4295
4296 /*
4297 * Default initial state at registry is that the
4298 * device is present.
4299 */
4300
4301 set_bit(__LINK_STATE_PRESENT, &dev->state);
4302
4303 dev_init_scheduler(dev);
4304 dev_hold(dev);
4305 list_netdevice(dev);
4306
4307 /* Notify protocols, that a new device appeared. */
4308 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4309 ret = notifier_to_errno(ret);
4310 if (ret) {
4311 rollback_registered(dev);
4312 dev->reg_state = NETREG_UNREGISTERED;
4313 }
4314
4315 out:
4316 return ret;
4317
4318 err_uninit:
4319 if (dev->netdev_ops->ndo_uninit)
4320 dev->netdev_ops->ndo_uninit(dev);
4321 goto out;
4322 }
4323
4324 /**
4325 * register_netdev - register a network device
4326 * @dev: device to register
4327 *
4328 * Take a completed network device structure and add it to the kernel
4329 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4330 * chain. 0 is returned on success. A negative errno code is returned
4331 * on a failure to set up the device, or if the name is a duplicate.
4332 *
4333 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4334 * and expands the device name if you passed a format string to
4335 * alloc_netdev.
4336 */
4337 int register_netdev(struct net_device *dev)
4338 {
4339 int err;
4340
4341 rtnl_lock();
4342
4343 /*
4344 * If the name is a format string the caller wants us to do a
4345 * name allocation.
4346 */
4347 if (strchr(dev->name, '%')) {
4348 err = dev_alloc_name(dev, dev->name);
4349 if (err < 0)
4350 goto out;
4351 }
4352
4353 err = register_netdevice(dev);
4354 out:
4355 rtnl_unlock();
4356 return err;
4357 }
4358 EXPORT_SYMBOL(register_netdev);
4359
4360 /*
4361 * netdev_wait_allrefs - wait until all references are gone.
4362 *
4363 * This is called when unregistering network devices.
4364 *
4365 * Any protocol or device that holds a reference should register
4366 * for netdevice notification, and cleanup and put back the
4367 * reference if they receive an UNREGISTER event.
4368 * We can get stuck here if buggy protocols don't correctly
4369 * call dev_put.
4370 */
4371 static void netdev_wait_allrefs(struct net_device *dev)
4372 {
4373 unsigned long rebroadcast_time, warning_time;
4374
4375 rebroadcast_time = warning_time = jiffies;
4376 while (atomic_read(&dev->refcnt) != 0) {
4377 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4378 rtnl_lock();
4379
4380 /* Rebroadcast unregister notification */
4381 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4382
4383 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4384 &dev->state)) {
4385 /* We must not have linkwatch events
4386 * pending on unregister. If this
4387 * happens, we simply run the queue
4388 * unscheduled, resulting in a noop
4389 * for this device.
4390 */
4391 linkwatch_run_queue();
4392 }
4393
4394 __rtnl_unlock();
4395
4396 rebroadcast_time = jiffies;
4397 }
4398
4399 msleep(250);
4400
4401 if (time_after(jiffies, warning_time + 10 * HZ)) {
4402 printk(KERN_EMERG "unregister_netdevice: "
4403 "waiting for %s to become free. Usage "
4404 "count = %d\n",
4405 dev->name, atomic_read(&dev->refcnt));
4406 warning_time = jiffies;
4407 }
4408 }
4409 }
4410
4411 /* The sequence is:
4412 *
4413 * rtnl_lock();
4414 * ...
4415 * register_netdevice(x1);
4416 * register_netdevice(x2);
4417 * ...
4418 * unregister_netdevice(y1);
4419 * unregister_netdevice(y2);
4420 * ...
4421 * rtnl_unlock();
4422 * free_netdev(y1);
4423 * free_netdev(y2);
4424 *
4425 * We are invoked by rtnl_unlock().
4426 * This allows us to deal with problems:
4427 * 1) We can delete sysfs objects which invoke hotplug
4428 * without deadlocking with linkwatch via keventd.
4429 * 2) Since we run with the RTNL semaphore not held, we can sleep
4430 * safely in order to wait for the netdev refcnt to drop to zero.
4431 *
4432 * We must not return until all unregister events added during
4433 * the interval the lock was held have been completed.
4434 */
4435 void netdev_run_todo(void)
4436 {
4437 struct list_head list;
4438
4439 /* Snapshot list, allow later requests */
4440 list_replace_init(&net_todo_list, &list);
4441
4442 __rtnl_unlock();
4443
4444 while (!list_empty(&list)) {
4445 struct net_device *dev
4446 = list_entry(list.next, struct net_device, todo_list);
4447 list_del(&dev->todo_list);
4448
4449 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4450 printk(KERN_ERR "network todo '%s' but state %d\n",
4451 dev->name, dev->reg_state);
4452 dump_stack();
4453 continue;
4454 }
4455
4456 dev->reg_state = NETREG_UNREGISTERED;
4457
4458 on_each_cpu(flush_backlog, dev, 1);
4459
4460 netdev_wait_allrefs(dev);
4461
4462 /* paranoia */
4463 BUG_ON(atomic_read(&dev->refcnt));
4464 WARN_ON(dev->ip_ptr);
4465 WARN_ON(dev->ip6_ptr);
4466 WARN_ON(dev->dn_ptr);
4467
4468 if (dev->destructor)
4469 dev->destructor(dev);
4470
4471 /* Free network device */
4472 kobject_put(&dev->dev.kobj);
4473 }
4474 }
4475
4476 /**
4477 * dev_get_stats - get network device statistics
4478 * @dev: device to get statistics from
4479 *
4480 * Get network statistics from device. The device driver may provide
4481 * its own method by setting dev->netdev_ops->get_stats; otherwise
4482 * the internal statistics structure is used.
4483 */
4484 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4485 {
4486 const struct net_device_ops *ops = dev->netdev_ops;
4487
4488 if (ops->ndo_get_stats)
4489 return ops->ndo_get_stats(dev);
4490 else
4491 return &dev->stats;
4492 }
4493 EXPORT_SYMBOL(dev_get_stats);
4494
4495 static void netdev_init_one_queue(struct net_device *dev,
4496 struct netdev_queue *queue,
4497 void *_unused)
4498 {
4499 queue->dev = dev;
4500 }
4501
4502 static void netdev_init_queues(struct net_device *dev)
4503 {
4504 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4505 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4506 spin_lock_init(&dev->tx_global_lock);
4507 }
4508
4509 /**
4510 * alloc_netdev_mq - allocate network device
4511 * @sizeof_priv: size of private data to allocate space for
4512 * @name: device name format string
4513 * @setup: callback to initialize device
4514 * @queue_count: the number of subqueues to allocate
4515 *
4516 * Allocates a struct net_device with private data area for driver use
4517 * and performs basic initialization. Also allocates subquue structs
4518 * for each queue on the device at the end of the netdevice.
4519 */
4520 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4521 void (*setup)(struct net_device *), unsigned int queue_count)
4522 {
4523 struct netdev_queue *tx;
4524 struct net_device *dev;
4525 size_t alloc_size;
4526 void *p;
4527
4528 BUG_ON(strlen(name) >= sizeof(dev->name));
4529
4530 alloc_size = sizeof(struct net_device);
4531 if (sizeof_priv) {
4532 /* ensure 32-byte alignment of private area */
4533 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4534 alloc_size += sizeof_priv;
4535 }
4536 /* ensure 32-byte alignment of whole construct */
4537 alloc_size += NETDEV_ALIGN_CONST;
4538
4539 p = kzalloc(alloc_size, GFP_KERNEL);
4540 if (!p) {
4541 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4542 return NULL;
4543 }
4544
4545 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4546 if (!tx) {
4547 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4548 "tx qdiscs.\n");
4549 kfree(p);
4550 return NULL;
4551 }
4552
4553 dev = (struct net_device *)
4554 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4555 dev->padded = (char *)dev - (char *)p;
4556 dev_net_set(dev, &init_net);
4557
4558 dev->_tx = tx;
4559 dev->num_tx_queues = queue_count;
4560 dev->real_num_tx_queues = queue_count;
4561
4562 dev->gso_max_size = GSO_MAX_SIZE;
4563
4564 netdev_init_queues(dev);
4565
4566 INIT_LIST_HEAD(&dev->napi_list);
4567 setup(dev);
4568 strcpy(dev->name, name);
4569 return dev;
4570 }
4571 EXPORT_SYMBOL(alloc_netdev_mq);
4572
4573 /**
4574 * free_netdev - free network device
4575 * @dev: device
4576 *
4577 * This function does the last stage of destroying an allocated device
4578 * interface. The reference to the device object is released.
4579 * If this is the last reference then it will be freed.
4580 */
4581 void free_netdev(struct net_device *dev)
4582 {
4583 struct napi_struct *p, *n;
4584
4585 release_net(dev_net(dev));
4586
4587 kfree(dev->_tx);
4588
4589 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4590 netif_napi_del(p);
4591
4592 /* Compatibility with error handling in drivers */
4593 if (dev->reg_state == NETREG_UNINITIALIZED) {
4594 kfree((char *)dev - dev->padded);
4595 return;
4596 }
4597
4598 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4599 dev->reg_state = NETREG_RELEASED;
4600
4601 /* will free via device release */
4602 put_device(&dev->dev);
4603 }
4604
4605 /**
4606 * synchronize_net - Synchronize with packet receive processing
4607 *
4608 * Wait for packets currently being received to be done.
4609 * Does not block later packets from starting.
4610 */
4611 void synchronize_net(void)
4612 {
4613 might_sleep();
4614 synchronize_rcu();
4615 }
4616
4617 /**
4618 * unregister_netdevice - remove device from the kernel
4619 * @dev: device
4620 *
4621 * This function shuts down a device interface and removes it
4622 * from the kernel tables.
4623 *
4624 * Callers must hold the rtnl semaphore. You may want
4625 * unregister_netdev() instead of this.
4626 */
4627
4628 void unregister_netdevice(struct net_device *dev)
4629 {
4630 ASSERT_RTNL();
4631
4632 rollback_registered(dev);
4633 /* Finish processing unregister after unlock */
4634 net_set_todo(dev);
4635 }
4636
4637 /**
4638 * unregister_netdev - remove device from the kernel
4639 * @dev: device
4640 *
4641 * This function shuts down a device interface and removes it
4642 * from the kernel tables.
4643 *
4644 * This is just a wrapper for unregister_netdevice that takes
4645 * the rtnl semaphore. In general you want to use this and not
4646 * unregister_netdevice.
4647 */
4648 void unregister_netdev(struct net_device *dev)
4649 {
4650 rtnl_lock();
4651 unregister_netdevice(dev);
4652 rtnl_unlock();
4653 }
4654
4655 EXPORT_SYMBOL(unregister_netdev);
4656
4657 /**
4658 * dev_change_net_namespace - move device to different nethost namespace
4659 * @dev: device
4660 * @net: network namespace
4661 * @pat: If not NULL name pattern to try if the current device name
4662 * is already taken in the destination network namespace.
4663 *
4664 * This function shuts down a device interface and moves it
4665 * to a new network namespace. On success 0 is returned, on
4666 * a failure a netagive errno code is returned.
4667 *
4668 * Callers must hold the rtnl semaphore.
4669 */
4670
4671 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4672 {
4673 char buf[IFNAMSIZ];
4674 const char *destname;
4675 int err;
4676
4677 ASSERT_RTNL();
4678
4679 /* Don't allow namespace local devices to be moved. */
4680 err = -EINVAL;
4681 if (dev->features & NETIF_F_NETNS_LOCAL)
4682 goto out;
4683
4684 #ifdef CONFIG_SYSFS
4685 /* Don't allow real devices to be moved when sysfs
4686 * is enabled.
4687 */
4688 err = -EINVAL;
4689 if (dev->dev.parent)
4690 goto out;
4691 #endif
4692
4693 /* Ensure the device has been registrered */
4694 err = -EINVAL;
4695 if (dev->reg_state != NETREG_REGISTERED)
4696 goto out;
4697
4698 /* Get out if there is nothing todo */
4699 err = 0;
4700 if (net_eq(dev_net(dev), net))
4701 goto out;
4702
4703 /* Pick the destination device name, and ensure
4704 * we can use it in the destination network namespace.
4705 */
4706 err = -EEXIST;
4707 destname = dev->name;
4708 if (__dev_get_by_name(net, destname)) {
4709 /* We get here if we can't use the current device name */
4710 if (!pat)
4711 goto out;
4712 if (!dev_valid_name(pat))
4713 goto out;
4714 if (strchr(pat, '%')) {
4715 if (__dev_alloc_name(net, pat, buf) < 0)
4716 goto out;
4717 destname = buf;
4718 } else
4719 destname = pat;
4720 if (__dev_get_by_name(net, destname))
4721 goto out;
4722 }
4723
4724 /*
4725 * And now a mini version of register_netdevice unregister_netdevice.
4726 */
4727
4728 /* If device is running close it first. */
4729 dev_close(dev);
4730
4731 /* And unlink it from device chain */
4732 err = -ENODEV;
4733 unlist_netdevice(dev);
4734
4735 synchronize_net();
4736
4737 /* Shutdown queueing discipline. */
4738 dev_shutdown(dev);
4739
4740 /* Notify protocols, that we are about to destroy
4741 this device. They should clean all the things.
4742 */
4743 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4744
4745 /*
4746 * Flush the unicast and multicast chains
4747 */
4748 dev_addr_discard(dev);
4749
4750 netdev_unregister_kobject(dev);
4751
4752 /* Actually switch the network namespace */
4753 dev_net_set(dev, net);
4754
4755 /* Assign the new device name */
4756 if (destname != dev->name)
4757 strcpy(dev->name, destname);
4758
4759 /* If there is an ifindex conflict assign a new one */
4760 if (__dev_get_by_index(net, dev->ifindex)) {
4761 int iflink = (dev->iflink == dev->ifindex);
4762 dev->ifindex = dev_new_index(net);
4763 if (iflink)
4764 dev->iflink = dev->ifindex;
4765 }
4766
4767 /* Fixup kobjects */
4768 err = netdev_register_kobject(dev);
4769 WARN_ON(err);
4770
4771 /* Add the device back in the hashes */
4772 list_netdevice(dev);
4773
4774 /* Notify protocols, that a new device appeared. */
4775 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4776
4777 synchronize_net();
4778 err = 0;
4779 out:
4780 return err;
4781 }
4782
4783 static int dev_cpu_callback(struct notifier_block *nfb,
4784 unsigned long action,
4785 void *ocpu)
4786 {
4787 struct sk_buff **list_skb;
4788 struct Qdisc **list_net;
4789 struct sk_buff *skb;
4790 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4791 struct softnet_data *sd, *oldsd;
4792
4793 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4794 return NOTIFY_OK;
4795
4796 local_irq_disable();
4797 cpu = smp_processor_id();
4798 sd = &per_cpu(softnet_data, cpu);
4799 oldsd = &per_cpu(softnet_data, oldcpu);
4800
4801 /* Find end of our completion_queue. */
4802 list_skb = &sd->completion_queue;
4803 while (*list_skb)
4804 list_skb = &(*list_skb)->next;
4805 /* Append completion queue from offline CPU. */
4806 *list_skb = oldsd->completion_queue;
4807 oldsd->completion_queue = NULL;
4808
4809 /* Find end of our output_queue. */
4810 list_net = &sd->output_queue;
4811 while (*list_net)
4812 list_net = &(*list_net)->next_sched;
4813 /* Append output queue from offline CPU. */
4814 *list_net = oldsd->output_queue;
4815 oldsd->output_queue = NULL;
4816
4817 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4818 local_irq_enable();
4819
4820 /* Process offline CPU's input_pkt_queue */
4821 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4822 netif_rx(skb);
4823
4824 return NOTIFY_OK;
4825 }
4826
4827 #ifdef CONFIG_NET_DMA
4828 /**
4829 * net_dma_rebalance - try to maintain one DMA channel per CPU
4830 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4831 *
4832 * This is called when the number of channels allocated to the net_dma client
4833 * changes. The net_dma client tries to have one DMA channel per CPU.
4834 */
4835
4836 static void net_dma_rebalance(struct net_dma *net_dma)
4837 {
4838 unsigned int cpu, i, n, chan_idx;
4839 struct dma_chan *chan;
4840
4841 if (cpus_empty(net_dma->channel_mask)) {
4842 for_each_online_cpu(cpu)
4843 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4844 return;
4845 }
4846
4847 i = 0;
4848 cpu = first_cpu(cpu_online_map);
4849
4850 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4851 chan = net_dma->channels[chan_idx];
4852
4853 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4854 + (i < (num_online_cpus() %
4855 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4856
4857 while(n) {
4858 per_cpu(softnet_data, cpu).net_dma = chan;
4859 cpu = next_cpu(cpu, cpu_online_map);
4860 n--;
4861 }
4862 i++;
4863 }
4864 }
4865
4866 /**
4867 * netdev_dma_event - event callback for the net_dma_client
4868 * @client: should always be net_dma_client
4869 * @chan: DMA channel for the event
4870 * @state: DMA state to be handled
4871 */
4872 static enum dma_state_client
4873 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4874 enum dma_state state)
4875 {
4876 int i, found = 0, pos = -1;
4877 struct net_dma *net_dma =
4878 container_of(client, struct net_dma, client);
4879 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4880
4881 spin_lock(&net_dma->lock);
4882 switch (state) {
4883 case DMA_RESOURCE_AVAILABLE:
4884 for (i = 0; i < nr_cpu_ids; i++)
4885 if (net_dma->channels[i] == chan) {
4886 found = 1;
4887 break;
4888 } else if (net_dma->channels[i] == NULL && pos < 0)
4889 pos = i;
4890
4891 if (!found && pos >= 0) {
4892 ack = DMA_ACK;
4893 net_dma->channels[pos] = chan;
4894 cpu_set(pos, net_dma->channel_mask);
4895 net_dma_rebalance(net_dma);
4896 }
4897 break;
4898 case DMA_RESOURCE_REMOVED:
4899 for (i = 0; i < nr_cpu_ids; i++)
4900 if (net_dma->channels[i] == chan) {
4901 found = 1;
4902 pos = i;
4903 break;
4904 }
4905
4906 if (found) {
4907 ack = DMA_ACK;
4908 cpu_clear(pos, net_dma->channel_mask);
4909 net_dma->channels[i] = NULL;
4910 net_dma_rebalance(net_dma);
4911 }
4912 break;
4913 default:
4914 break;
4915 }
4916 spin_unlock(&net_dma->lock);
4917
4918 return ack;
4919 }
4920
4921 /**
4922 * netdev_dma_register - register the networking subsystem as a DMA client
4923 */
4924 static int __init netdev_dma_register(void)
4925 {
4926 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4927 GFP_KERNEL);
4928 if (unlikely(!net_dma.channels)) {
4929 printk(KERN_NOTICE
4930 "netdev_dma: no memory for net_dma.channels\n");
4931 return -ENOMEM;
4932 }
4933 spin_lock_init(&net_dma.lock);
4934 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4935 dma_async_client_register(&net_dma.client);
4936 dma_async_client_chan_request(&net_dma.client);
4937 return 0;
4938 }
4939
4940 #else
4941 static int __init netdev_dma_register(void) { return -ENODEV; }
4942 #endif /* CONFIG_NET_DMA */
4943
4944 /**
4945 * netdev_increment_features - increment feature set by one
4946 * @all: current feature set
4947 * @one: new feature set
4948 * @mask: mask feature set
4949 *
4950 * Computes a new feature set after adding a device with feature set
4951 * @one to the master device with current feature set @all. Will not
4952 * enable anything that is off in @mask. Returns the new feature set.
4953 */
4954 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4955 unsigned long mask)
4956 {
4957 /* If device needs checksumming, downgrade to it. */
4958 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4959 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4960 else if (mask & NETIF_F_ALL_CSUM) {
4961 /* If one device supports v4/v6 checksumming, set for all. */
4962 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4963 !(all & NETIF_F_GEN_CSUM)) {
4964 all &= ~NETIF_F_ALL_CSUM;
4965 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4966 }
4967
4968 /* If one device supports hw checksumming, set for all. */
4969 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4970 all &= ~NETIF_F_ALL_CSUM;
4971 all |= NETIF_F_HW_CSUM;
4972 }
4973 }
4974
4975 one |= NETIF_F_ALL_CSUM;
4976
4977 one |= all & NETIF_F_ONE_FOR_ALL;
4978 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4979 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4980
4981 return all;
4982 }
4983 EXPORT_SYMBOL(netdev_increment_features);
4984
4985 static struct hlist_head *netdev_create_hash(void)
4986 {
4987 int i;
4988 struct hlist_head *hash;
4989
4990 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4991 if (hash != NULL)
4992 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4993 INIT_HLIST_HEAD(&hash[i]);
4994
4995 return hash;
4996 }
4997
4998 /* Initialize per network namespace state */
4999 static int __net_init netdev_init(struct net *net)
5000 {
5001 INIT_LIST_HEAD(&net->dev_base_head);
5002
5003 net->dev_name_head = netdev_create_hash();
5004 if (net->dev_name_head == NULL)
5005 goto err_name;
5006
5007 net->dev_index_head = netdev_create_hash();
5008 if (net->dev_index_head == NULL)
5009 goto err_idx;
5010
5011 return 0;
5012
5013 err_idx:
5014 kfree(net->dev_name_head);
5015 err_name:
5016 return -ENOMEM;
5017 }
5018
5019 /**
5020 * netdev_drivername - network driver for the device
5021 * @dev: network device
5022 * @buffer: buffer for resulting name
5023 * @len: size of buffer
5024 *
5025 * Determine network driver for device.
5026 */
5027 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5028 {
5029 const struct device_driver *driver;
5030 const struct device *parent;
5031
5032 if (len <= 0 || !buffer)
5033 return buffer;
5034 buffer[0] = 0;
5035
5036 parent = dev->dev.parent;
5037
5038 if (!parent)
5039 return buffer;
5040
5041 driver = parent->driver;
5042 if (driver && driver->name)
5043 strlcpy(buffer, driver->name, len);
5044 return buffer;
5045 }
5046
5047 static void __net_exit netdev_exit(struct net *net)
5048 {
5049 kfree(net->dev_name_head);
5050 kfree(net->dev_index_head);
5051 }
5052
5053 static struct pernet_operations __net_initdata netdev_net_ops = {
5054 .init = netdev_init,
5055 .exit = netdev_exit,
5056 };
5057
5058 static void __net_exit default_device_exit(struct net *net)
5059 {
5060 struct net_device *dev, *next;
5061 /*
5062 * Push all migratable of the network devices back to the
5063 * initial network namespace
5064 */
5065 rtnl_lock();
5066 for_each_netdev_safe(net, dev, next) {
5067 int err;
5068 char fb_name[IFNAMSIZ];
5069
5070 /* Ignore unmoveable devices (i.e. loopback) */
5071 if (dev->features & NETIF_F_NETNS_LOCAL)
5072 continue;
5073
5074 /* Delete virtual devices */
5075 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5076 dev->rtnl_link_ops->dellink(dev);
5077 continue;
5078 }
5079
5080 /* Push remaing network devices to init_net */
5081 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5082 err = dev_change_net_namespace(dev, &init_net, fb_name);
5083 if (err) {
5084 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5085 __func__, dev->name, err);
5086 BUG();
5087 }
5088 }
5089 rtnl_unlock();
5090 }
5091
5092 static struct pernet_operations __net_initdata default_device_ops = {
5093 .exit = default_device_exit,
5094 };
5095
5096 /*
5097 * Initialize the DEV module. At boot time this walks the device list and
5098 * unhooks any devices that fail to initialise (normally hardware not
5099 * present) and leaves us with a valid list of present and active devices.
5100 *
5101 */
5102
5103 /*
5104 * This is called single threaded during boot, so no need
5105 * to take the rtnl semaphore.
5106 */
5107 static int __init net_dev_init(void)
5108 {
5109 int i, rc = -ENOMEM;
5110
5111 BUG_ON(!dev_boot_phase);
5112
5113 if (dev_proc_init())
5114 goto out;
5115
5116 if (netdev_kobject_init())
5117 goto out;
5118
5119 INIT_LIST_HEAD(&ptype_all);
5120 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5121 INIT_LIST_HEAD(&ptype_base[i]);
5122
5123 if (register_pernet_subsys(&netdev_net_ops))
5124 goto out;
5125
5126 /*
5127 * Initialise the packet receive queues.
5128 */
5129
5130 for_each_possible_cpu(i) {
5131 struct softnet_data *queue;
5132
5133 queue = &per_cpu(softnet_data, i);
5134 skb_queue_head_init(&queue->input_pkt_queue);
5135 queue->completion_queue = NULL;
5136 INIT_LIST_HEAD(&queue->poll_list);
5137
5138 queue->backlog.poll = process_backlog;
5139 queue->backlog.weight = weight_p;
5140 queue->backlog.gro_list = NULL;
5141 }
5142
5143 dev_boot_phase = 0;
5144
5145 /* The loopback device is special if any other network devices
5146 * is present in a network namespace the loopback device must
5147 * be present. Since we now dynamically allocate and free the
5148 * loopback device ensure this invariant is maintained by
5149 * keeping the loopback device as the first device on the
5150 * list of network devices. Ensuring the loopback devices
5151 * is the first device that appears and the last network device
5152 * that disappears.
5153 */
5154 if (register_pernet_device(&loopback_net_ops))
5155 goto out;
5156
5157 if (register_pernet_device(&default_device_ops))
5158 goto out;
5159
5160 netdev_dma_register();
5161
5162 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5163 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5164
5165 hotcpu_notifier(dev_cpu_callback, 0);
5166 dst_init();
5167 dev_mcast_init();
5168 rc = 0;
5169 out:
5170 return rc;
5171 }
5172
5173 subsys_initcall(net_dev_init);
5174
5175 EXPORT_SYMBOL(__dev_get_by_index);
5176 EXPORT_SYMBOL(__dev_get_by_name);
5177 EXPORT_SYMBOL(__dev_remove_pack);
5178 EXPORT_SYMBOL(dev_valid_name);
5179 EXPORT_SYMBOL(dev_add_pack);
5180 EXPORT_SYMBOL(dev_alloc_name);
5181 EXPORT_SYMBOL(dev_close);
5182 EXPORT_SYMBOL(dev_get_by_flags);
5183 EXPORT_SYMBOL(dev_get_by_index);
5184 EXPORT_SYMBOL(dev_get_by_name);
5185 EXPORT_SYMBOL(dev_open);
5186 EXPORT_SYMBOL(dev_queue_xmit);
5187 EXPORT_SYMBOL(dev_remove_pack);
5188 EXPORT_SYMBOL(dev_set_allmulti);
5189 EXPORT_SYMBOL(dev_set_promiscuity);
5190 EXPORT_SYMBOL(dev_change_flags);
5191 EXPORT_SYMBOL(dev_set_mtu);
5192 EXPORT_SYMBOL(dev_set_mac_address);
5193 EXPORT_SYMBOL(free_netdev);
5194 EXPORT_SYMBOL(netdev_boot_setup_check);
5195 EXPORT_SYMBOL(netdev_set_master);
5196 EXPORT_SYMBOL(netdev_state_change);
5197 EXPORT_SYMBOL(netif_receive_skb);
5198 EXPORT_SYMBOL(netif_rx);
5199 EXPORT_SYMBOL(register_gifconf);
5200 EXPORT_SYMBOL(register_netdevice);
5201 EXPORT_SYMBOL(register_netdevice_notifier);
5202 EXPORT_SYMBOL(skb_checksum_help);
5203 EXPORT_SYMBOL(synchronize_net);
5204 EXPORT_SYMBOL(unregister_netdevice);
5205 EXPORT_SYMBOL(unregister_netdevice_notifier);
5206 EXPORT_SYMBOL(net_enable_timestamp);
5207 EXPORT_SYMBOL(net_disable_timestamp);
5208 EXPORT_SYMBOL(dev_get_flags);
5209
5210 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5211 EXPORT_SYMBOL(br_handle_frame_hook);
5212 EXPORT_SYMBOL(br_fdb_get_hook);
5213 EXPORT_SYMBOL(br_fdb_put_hook);
5214 #endif
5215
5216 EXPORT_SYMBOL(dev_load);
5217
5218 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.164989 seconds and 6 git commands to generate.