net: af_unix: implement splice for stream af_unix sockets
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 #include <linux/inetdevice.h>
42 #include <net/addrconf.h>
43
44 #define DEBUG
45 #define NEIGH_DEBUG 1
46 #define neigh_dbg(level, fmt, ...) \
47 do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50 } while (0)
51
52 #define PNEIGH_HASHMASK 0xF
53
54 static void neigh_timer_handler(unsigned long arg);
55 static void __neigh_notify(struct neighbour *n, int type, int flags);
56 static void neigh_update_notify(struct neighbour *neigh);
57 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59 #ifdef CONFIG_PROC_FS
60 static const struct file_operations neigh_stat_seq_fops;
61 #endif
62
63 /*
64 Neighbour hash table buckets are protected with rwlock tbl->lock.
65
66 - All the scans/updates to hash buckets MUST be made under this lock.
67 - NOTHING clever should be made under this lock: no callbacks
68 to protocol backends, no attempts to send something to network.
69 It will result in deadlocks, if backend/driver wants to use neighbour
70 cache.
71 - If the entry requires some non-trivial actions, increase
72 its reference count and release table lock.
73
74 Neighbour entries are protected:
75 - with reference count.
76 - with rwlock neigh->lock
77
78 Reference count prevents destruction.
79
80 neigh->lock mainly serializes ll address data and its validity state.
81 However, the same lock is used to protect another entry fields:
82 - timer
83 - resolution queue
84
85 Again, nothing clever shall be made under neigh->lock,
86 the most complicated procedure, which we allow is dev->hard_header.
87 It is supposed, that dev->hard_header is simplistic and does
88 not make callbacks to neighbour tables.
89 */
90
91 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
92 {
93 kfree_skb(skb);
94 return -ENETDOWN;
95 }
96
97 static void neigh_cleanup_and_release(struct neighbour *neigh)
98 {
99 if (neigh->parms->neigh_cleanup)
100 neigh->parms->neigh_cleanup(neigh);
101
102 __neigh_notify(neigh, RTM_DELNEIGH, 0);
103 neigh_release(neigh);
104 }
105
106 /*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 return base ? (prandom_u32() % base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117
118
119 static int neigh_forced_gc(struct neigh_table *tbl)
120 {
121 int shrunk = 0;
122 int i;
123 struct neigh_hash_table *nht;
124
125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
126
127 write_lock_bh(&tbl->lock);
128 nht = rcu_dereference_protected(tbl->nht,
129 lockdep_is_held(&tbl->lock));
130 for (i = 0; i < (1 << nht->hash_shift); i++) {
131 struct neighbour *n;
132 struct neighbour __rcu **np;
133
134 np = &nht->hash_buckets[i];
135 while ((n = rcu_dereference_protected(*np,
136 lockdep_is_held(&tbl->lock))) != NULL) {
137 /* Neighbour record may be discarded if:
138 * - nobody refers to it.
139 * - it is not permanent
140 */
141 write_lock(&n->lock);
142 if (atomic_read(&n->refcnt) == 1 &&
143 !(n->nud_state & NUD_PERMANENT)) {
144 rcu_assign_pointer(*np,
145 rcu_dereference_protected(n->next,
146 lockdep_is_held(&tbl->lock)));
147 n->dead = 1;
148 shrunk = 1;
149 write_unlock(&n->lock);
150 neigh_cleanup_and_release(n);
151 continue;
152 }
153 write_unlock(&n->lock);
154 np = &n->next;
155 }
156 }
157
158 tbl->last_flush = jiffies;
159
160 write_unlock_bh(&tbl->lock);
161
162 return shrunk;
163 }
164
165 static void neigh_add_timer(struct neighbour *n, unsigned long when)
166 {
167 neigh_hold(n);
168 if (unlikely(mod_timer(&n->timer, when))) {
169 printk("NEIGH: BUG, double timer add, state is %x\n",
170 n->nud_state);
171 dump_stack();
172 }
173 }
174
175 static int neigh_del_timer(struct neighbour *n)
176 {
177 if ((n->nud_state & NUD_IN_TIMER) &&
178 del_timer(&n->timer)) {
179 neigh_release(n);
180 return 1;
181 }
182 return 0;
183 }
184
185 static void pneigh_queue_purge(struct sk_buff_head *list)
186 {
187 struct sk_buff *skb;
188
189 while ((skb = skb_dequeue(list)) != NULL) {
190 dev_put(skb->dev);
191 kfree_skb(skb);
192 }
193 }
194
195 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
196 {
197 int i;
198 struct neigh_hash_table *nht;
199
200 nht = rcu_dereference_protected(tbl->nht,
201 lockdep_is_held(&tbl->lock));
202
203 for (i = 0; i < (1 << nht->hash_shift); i++) {
204 struct neighbour *n;
205 struct neighbour __rcu **np = &nht->hash_buckets[i];
206
207 while ((n = rcu_dereference_protected(*np,
208 lockdep_is_held(&tbl->lock))) != NULL) {
209 if (dev && n->dev != dev) {
210 np = &n->next;
211 continue;
212 }
213 rcu_assign_pointer(*np,
214 rcu_dereference_protected(n->next,
215 lockdep_is_held(&tbl->lock)));
216 write_lock(&n->lock);
217 neigh_del_timer(n);
218 n->dead = 1;
219
220 if (atomic_read(&n->refcnt) != 1) {
221 /* The most unpleasant situation.
222 We must destroy neighbour entry,
223 but someone still uses it.
224
225 The destroy will be delayed until
226 the last user releases us, but
227 we must kill timers etc. and move
228 it to safe state.
229 */
230 __skb_queue_purge(&n->arp_queue);
231 n->arp_queue_len_bytes = 0;
232 n->output = neigh_blackhole;
233 if (n->nud_state & NUD_VALID)
234 n->nud_state = NUD_NOARP;
235 else
236 n->nud_state = NUD_NONE;
237 neigh_dbg(2, "neigh %p is stray\n", n);
238 }
239 write_unlock(&n->lock);
240 neigh_cleanup_and_release(n);
241 }
242 }
243 }
244
245 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 write_unlock_bh(&tbl->lock);
250 }
251 EXPORT_SYMBOL(neigh_changeaddr);
252
253 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
254 {
255 write_lock_bh(&tbl->lock);
256 neigh_flush_dev(tbl, dev);
257 pneigh_ifdown(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259
260 del_timer_sync(&tbl->proxy_timer);
261 pneigh_queue_purge(&tbl->proxy_queue);
262 return 0;
263 }
264 EXPORT_SYMBOL(neigh_ifdown);
265
266 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
267 {
268 struct neighbour *n = NULL;
269 unsigned long now = jiffies;
270 int entries;
271
272 entries = atomic_inc_return(&tbl->entries) - 1;
273 if (entries >= tbl->gc_thresh3 ||
274 (entries >= tbl->gc_thresh2 &&
275 time_after(now, tbl->last_flush + 5 * HZ))) {
276 if (!neigh_forced_gc(tbl) &&
277 entries >= tbl->gc_thresh3)
278 goto out_entries;
279 }
280
281 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
282 if (!n)
283 goto out_entries;
284
285 __skb_queue_head_init(&n->arp_queue);
286 rwlock_init(&n->lock);
287 seqlock_init(&n->ha_lock);
288 n->updated = n->used = now;
289 n->nud_state = NUD_NONE;
290 n->output = neigh_blackhole;
291 seqlock_init(&n->hh.hh_lock);
292 n->parms = neigh_parms_clone(&tbl->parms);
293 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
294
295 NEIGH_CACHE_STAT_INC(tbl, allocs);
296 n->tbl = tbl;
297 atomic_set(&n->refcnt, 1);
298 n->dead = 1;
299 out:
300 return n;
301
302 out_entries:
303 atomic_dec(&tbl->entries);
304 goto out;
305 }
306
307 static void neigh_get_hash_rnd(u32 *x)
308 {
309 get_random_bytes(x, sizeof(*x));
310 *x |= 1;
311 }
312
313 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
314 {
315 size_t size = (1 << shift) * sizeof(struct neighbour *);
316 struct neigh_hash_table *ret;
317 struct neighbour __rcu **buckets;
318 int i;
319
320 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
321 if (!ret)
322 return NULL;
323 if (size <= PAGE_SIZE)
324 buckets = kzalloc(size, GFP_ATOMIC);
325 else
326 buckets = (struct neighbour __rcu **)
327 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
328 get_order(size));
329 if (!buckets) {
330 kfree(ret);
331 return NULL;
332 }
333 ret->hash_buckets = buckets;
334 ret->hash_shift = shift;
335 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
336 neigh_get_hash_rnd(&ret->hash_rnd[i]);
337 return ret;
338 }
339
340 static void neigh_hash_free_rcu(struct rcu_head *head)
341 {
342 struct neigh_hash_table *nht = container_of(head,
343 struct neigh_hash_table,
344 rcu);
345 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
346 struct neighbour __rcu **buckets = nht->hash_buckets;
347
348 if (size <= PAGE_SIZE)
349 kfree(buckets);
350 else
351 free_pages((unsigned long)buckets, get_order(size));
352 kfree(nht);
353 }
354
355 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
356 unsigned long new_shift)
357 {
358 unsigned int i, hash;
359 struct neigh_hash_table *new_nht, *old_nht;
360
361 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
362
363 old_nht = rcu_dereference_protected(tbl->nht,
364 lockdep_is_held(&tbl->lock));
365 new_nht = neigh_hash_alloc(new_shift);
366 if (!new_nht)
367 return old_nht;
368
369 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
370 struct neighbour *n, *next;
371
372 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
373 lockdep_is_held(&tbl->lock));
374 n != NULL;
375 n = next) {
376 hash = tbl->hash(n->primary_key, n->dev,
377 new_nht->hash_rnd);
378
379 hash >>= (32 - new_nht->hash_shift);
380 next = rcu_dereference_protected(n->next,
381 lockdep_is_held(&tbl->lock));
382
383 rcu_assign_pointer(n->next,
384 rcu_dereference_protected(
385 new_nht->hash_buckets[hash],
386 lockdep_is_held(&tbl->lock)));
387 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
388 }
389 }
390
391 rcu_assign_pointer(tbl->nht, new_nht);
392 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
393 return new_nht;
394 }
395
396 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
397 struct net_device *dev)
398 {
399 struct neighbour *n;
400
401 NEIGH_CACHE_STAT_INC(tbl, lookups);
402
403 rcu_read_lock_bh();
404 n = __neigh_lookup_noref(tbl, pkey, dev);
405 if (n) {
406 if (!atomic_inc_not_zero(&n->refcnt))
407 n = NULL;
408 NEIGH_CACHE_STAT_INC(tbl, hits);
409 }
410
411 rcu_read_unlock_bh();
412 return n;
413 }
414 EXPORT_SYMBOL(neigh_lookup);
415
416 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
417 const void *pkey)
418 {
419 struct neighbour *n;
420 int key_len = tbl->key_len;
421 u32 hash_val;
422 struct neigh_hash_table *nht;
423
424 NEIGH_CACHE_STAT_INC(tbl, lookups);
425
426 rcu_read_lock_bh();
427 nht = rcu_dereference_bh(tbl->nht);
428 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
429
430 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
431 n != NULL;
432 n = rcu_dereference_bh(n->next)) {
433 if (!memcmp(n->primary_key, pkey, key_len) &&
434 net_eq(dev_net(n->dev), net)) {
435 if (!atomic_inc_not_zero(&n->refcnt))
436 n = NULL;
437 NEIGH_CACHE_STAT_INC(tbl, hits);
438 break;
439 }
440 }
441
442 rcu_read_unlock_bh();
443 return n;
444 }
445 EXPORT_SYMBOL(neigh_lookup_nodev);
446
447 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
448 struct net_device *dev, bool want_ref)
449 {
450 u32 hash_val;
451 int key_len = tbl->key_len;
452 int error;
453 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
454 struct neigh_hash_table *nht;
455
456 if (!n) {
457 rc = ERR_PTR(-ENOBUFS);
458 goto out;
459 }
460
461 memcpy(n->primary_key, pkey, key_len);
462 n->dev = dev;
463 dev_hold(dev);
464
465 /* Protocol specific setup. */
466 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
467 rc = ERR_PTR(error);
468 goto out_neigh_release;
469 }
470
471 if (dev->netdev_ops->ndo_neigh_construct) {
472 error = dev->netdev_ops->ndo_neigh_construct(n);
473 if (error < 0) {
474 rc = ERR_PTR(error);
475 goto out_neigh_release;
476 }
477 }
478
479 /* Device specific setup. */
480 if (n->parms->neigh_setup &&
481 (error = n->parms->neigh_setup(n)) < 0) {
482 rc = ERR_PTR(error);
483 goto out_neigh_release;
484 }
485
486 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
487
488 write_lock_bh(&tbl->lock);
489 nht = rcu_dereference_protected(tbl->nht,
490 lockdep_is_held(&tbl->lock));
491
492 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
493 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
494
495 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
496
497 if (n->parms->dead) {
498 rc = ERR_PTR(-EINVAL);
499 goto out_tbl_unlock;
500 }
501
502 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
503 lockdep_is_held(&tbl->lock));
504 n1 != NULL;
505 n1 = rcu_dereference_protected(n1->next,
506 lockdep_is_held(&tbl->lock))) {
507 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
508 if (want_ref)
509 neigh_hold(n1);
510 rc = n1;
511 goto out_tbl_unlock;
512 }
513 }
514
515 n->dead = 0;
516 if (want_ref)
517 neigh_hold(n);
518 rcu_assign_pointer(n->next,
519 rcu_dereference_protected(nht->hash_buckets[hash_val],
520 lockdep_is_held(&tbl->lock)));
521 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
522 write_unlock_bh(&tbl->lock);
523 neigh_dbg(2, "neigh %p is created\n", n);
524 rc = n;
525 out:
526 return rc;
527 out_tbl_unlock:
528 write_unlock_bh(&tbl->lock);
529 out_neigh_release:
530 neigh_release(n);
531 goto out;
532 }
533 EXPORT_SYMBOL(__neigh_create);
534
535 static u32 pneigh_hash(const void *pkey, int key_len)
536 {
537 u32 hash_val = *(u32 *)(pkey + key_len - 4);
538 hash_val ^= (hash_val >> 16);
539 hash_val ^= hash_val >> 8;
540 hash_val ^= hash_val >> 4;
541 hash_val &= PNEIGH_HASHMASK;
542 return hash_val;
543 }
544
545 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
546 struct net *net,
547 const void *pkey,
548 int key_len,
549 struct net_device *dev)
550 {
551 while (n) {
552 if (!memcmp(n->key, pkey, key_len) &&
553 net_eq(pneigh_net(n), net) &&
554 (n->dev == dev || !n->dev))
555 return n;
556 n = n->next;
557 }
558 return NULL;
559 }
560
561 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
562 struct net *net, const void *pkey, struct net_device *dev)
563 {
564 int key_len = tbl->key_len;
565 u32 hash_val = pneigh_hash(pkey, key_len);
566
567 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
568 net, pkey, key_len, dev);
569 }
570 EXPORT_SYMBOL_GPL(__pneigh_lookup);
571
572 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
573 struct net *net, const void *pkey,
574 struct net_device *dev, int creat)
575 {
576 struct pneigh_entry *n;
577 int key_len = tbl->key_len;
578 u32 hash_val = pneigh_hash(pkey, key_len);
579
580 read_lock_bh(&tbl->lock);
581 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
582 net, pkey, key_len, dev);
583 read_unlock_bh(&tbl->lock);
584
585 if (n || !creat)
586 goto out;
587
588 ASSERT_RTNL();
589
590 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
591 if (!n)
592 goto out;
593
594 write_pnet(&n->net, net);
595 memcpy(n->key, pkey, key_len);
596 n->dev = dev;
597 if (dev)
598 dev_hold(dev);
599
600 if (tbl->pconstructor && tbl->pconstructor(n)) {
601 if (dev)
602 dev_put(dev);
603 kfree(n);
604 n = NULL;
605 goto out;
606 }
607
608 write_lock_bh(&tbl->lock);
609 n->next = tbl->phash_buckets[hash_val];
610 tbl->phash_buckets[hash_val] = n;
611 write_unlock_bh(&tbl->lock);
612 out:
613 return n;
614 }
615 EXPORT_SYMBOL(pneigh_lookup);
616
617
618 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
619 struct net_device *dev)
620 {
621 struct pneigh_entry *n, **np;
622 int key_len = tbl->key_len;
623 u32 hash_val = pneigh_hash(pkey, key_len);
624
625 write_lock_bh(&tbl->lock);
626 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
627 np = &n->next) {
628 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
629 net_eq(pneigh_net(n), net)) {
630 *np = n->next;
631 write_unlock_bh(&tbl->lock);
632 if (tbl->pdestructor)
633 tbl->pdestructor(n);
634 if (n->dev)
635 dev_put(n->dev);
636 kfree(n);
637 return 0;
638 }
639 }
640 write_unlock_bh(&tbl->lock);
641 return -ENOENT;
642 }
643
644 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
645 {
646 struct pneigh_entry *n, **np;
647 u32 h;
648
649 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
650 np = &tbl->phash_buckets[h];
651 while ((n = *np) != NULL) {
652 if (!dev || n->dev == dev) {
653 *np = n->next;
654 if (tbl->pdestructor)
655 tbl->pdestructor(n);
656 if (n->dev)
657 dev_put(n->dev);
658 kfree(n);
659 continue;
660 }
661 np = &n->next;
662 }
663 }
664 return -ENOENT;
665 }
666
667 static void neigh_parms_destroy(struct neigh_parms *parms);
668
669 static inline void neigh_parms_put(struct neigh_parms *parms)
670 {
671 if (atomic_dec_and_test(&parms->refcnt))
672 neigh_parms_destroy(parms);
673 }
674
675 /*
676 * neighbour must already be out of the table;
677 *
678 */
679 void neigh_destroy(struct neighbour *neigh)
680 {
681 struct net_device *dev = neigh->dev;
682
683 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
684
685 if (!neigh->dead) {
686 pr_warn("Destroying alive neighbour %p\n", neigh);
687 dump_stack();
688 return;
689 }
690
691 if (neigh_del_timer(neigh))
692 pr_warn("Impossible event\n");
693
694 write_lock_bh(&neigh->lock);
695 __skb_queue_purge(&neigh->arp_queue);
696 write_unlock_bh(&neigh->lock);
697 neigh->arp_queue_len_bytes = 0;
698
699 if (dev->netdev_ops->ndo_neigh_destroy)
700 dev->netdev_ops->ndo_neigh_destroy(neigh);
701
702 dev_put(dev);
703 neigh_parms_put(neigh->parms);
704
705 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
706
707 atomic_dec(&neigh->tbl->entries);
708 kfree_rcu(neigh, rcu);
709 }
710 EXPORT_SYMBOL(neigh_destroy);
711
712 /* Neighbour state is suspicious;
713 disable fast path.
714
715 Called with write_locked neigh.
716 */
717 static void neigh_suspect(struct neighbour *neigh)
718 {
719 neigh_dbg(2, "neigh %p is suspected\n", neigh);
720
721 neigh->output = neigh->ops->output;
722 }
723
724 /* Neighbour state is OK;
725 enable fast path.
726
727 Called with write_locked neigh.
728 */
729 static void neigh_connect(struct neighbour *neigh)
730 {
731 neigh_dbg(2, "neigh %p is connected\n", neigh);
732
733 neigh->output = neigh->ops->connected_output;
734 }
735
736 static void neigh_periodic_work(struct work_struct *work)
737 {
738 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
739 struct neighbour *n;
740 struct neighbour __rcu **np;
741 unsigned int i;
742 struct neigh_hash_table *nht;
743
744 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
745
746 write_lock_bh(&tbl->lock);
747 nht = rcu_dereference_protected(tbl->nht,
748 lockdep_is_held(&tbl->lock));
749
750 /*
751 * periodically recompute ReachableTime from random function
752 */
753
754 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
755 struct neigh_parms *p;
756 tbl->last_rand = jiffies;
757 list_for_each_entry(p, &tbl->parms_list, list)
758 p->reachable_time =
759 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
760 }
761
762 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
763 goto out;
764
765 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
766 np = &nht->hash_buckets[i];
767
768 while ((n = rcu_dereference_protected(*np,
769 lockdep_is_held(&tbl->lock))) != NULL) {
770 unsigned int state;
771
772 write_lock(&n->lock);
773
774 state = n->nud_state;
775 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
776 write_unlock(&n->lock);
777 goto next_elt;
778 }
779
780 if (time_before(n->used, n->confirmed))
781 n->used = n->confirmed;
782
783 if (atomic_read(&n->refcnt) == 1 &&
784 (state == NUD_FAILED ||
785 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
786 *np = n->next;
787 n->dead = 1;
788 write_unlock(&n->lock);
789 neigh_cleanup_and_release(n);
790 continue;
791 }
792 write_unlock(&n->lock);
793
794 next_elt:
795 np = &n->next;
796 }
797 /*
798 * It's fine to release lock here, even if hash table
799 * grows while we are preempted.
800 */
801 write_unlock_bh(&tbl->lock);
802 cond_resched();
803 write_lock_bh(&tbl->lock);
804 nht = rcu_dereference_protected(tbl->nht,
805 lockdep_is_held(&tbl->lock));
806 }
807 out:
808 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
809 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
810 * BASE_REACHABLE_TIME.
811 */
812 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
813 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
814 write_unlock_bh(&tbl->lock);
815 }
816
817 static __inline__ int neigh_max_probes(struct neighbour *n)
818 {
819 struct neigh_parms *p = n->parms;
820 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
821 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
822 NEIGH_VAR(p, MCAST_PROBES));
823 }
824
825 static void neigh_invalidate(struct neighbour *neigh)
826 __releases(neigh->lock)
827 __acquires(neigh->lock)
828 {
829 struct sk_buff *skb;
830
831 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
832 neigh_dbg(2, "neigh %p is failed\n", neigh);
833 neigh->updated = jiffies;
834
835 /* It is very thin place. report_unreachable is very complicated
836 routine. Particularly, it can hit the same neighbour entry!
837
838 So that, we try to be accurate and avoid dead loop. --ANK
839 */
840 while (neigh->nud_state == NUD_FAILED &&
841 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
842 write_unlock(&neigh->lock);
843 neigh->ops->error_report(neigh, skb);
844 write_lock(&neigh->lock);
845 }
846 __skb_queue_purge(&neigh->arp_queue);
847 neigh->arp_queue_len_bytes = 0;
848 }
849
850 static void neigh_probe(struct neighbour *neigh)
851 __releases(neigh->lock)
852 {
853 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
854 /* keep skb alive even if arp_queue overflows */
855 if (skb)
856 skb = skb_copy(skb, GFP_ATOMIC);
857 write_unlock(&neigh->lock);
858 neigh->ops->solicit(neigh, skb);
859 atomic_inc(&neigh->probes);
860 kfree_skb(skb);
861 }
862
863 /* Called when a timer expires for a neighbour entry. */
864
865 static void neigh_timer_handler(unsigned long arg)
866 {
867 unsigned long now, next;
868 struct neighbour *neigh = (struct neighbour *)arg;
869 unsigned int state;
870 int notify = 0;
871
872 write_lock(&neigh->lock);
873
874 state = neigh->nud_state;
875 now = jiffies;
876 next = now + HZ;
877
878 if (!(state & NUD_IN_TIMER))
879 goto out;
880
881 if (state & NUD_REACHABLE) {
882 if (time_before_eq(now,
883 neigh->confirmed + neigh->parms->reachable_time)) {
884 neigh_dbg(2, "neigh %p is still alive\n", neigh);
885 next = neigh->confirmed + neigh->parms->reachable_time;
886 } else if (time_before_eq(now,
887 neigh->used +
888 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
889 neigh_dbg(2, "neigh %p is delayed\n", neigh);
890 neigh->nud_state = NUD_DELAY;
891 neigh->updated = jiffies;
892 neigh_suspect(neigh);
893 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
894 } else {
895 neigh_dbg(2, "neigh %p is suspected\n", neigh);
896 neigh->nud_state = NUD_STALE;
897 neigh->updated = jiffies;
898 neigh_suspect(neigh);
899 notify = 1;
900 }
901 } else if (state & NUD_DELAY) {
902 if (time_before_eq(now,
903 neigh->confirmed +
904 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
905 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
906 neigh->nud_state = NUD_REACHABLE;
907 neigh->updated = jiffies;
908 neigh_connect(neigh);
909 notify = 1;
910 next = neigh->confirmed + neigh->parms->reachable_time;
911 } else {
912 neigh_dbg(2, "neigh %p is probed\n", neigh);
913 neigh->nud_state = NUD_PROBE;
914 neigh->updated = jiffies;
915 atomic_set(&neigh->probes, 0);
916 notify = 1;
917 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
918 }
919 } else {
920 /* NUD_PROBE|NUD_INCOMPLETE */
921 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
922 }
923
924 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
925 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
926 neigh->nud_state = NUD_FAILED;
927 notify = 1;
928 neigh_invalidate(neigh);
929 goto out;
930 }
931
932 if (neigh->nud_state & NUD_IN_TIMER) {
933 if (time_before(next, jiffies + HZ/2))
934 next = jiffies + HZ/2;
935 if (!mod_timer(&neigh->timer, next))
936 neigh_hold(neigh);
937 }
938 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
939 neigh_probe(neigh);
940 } else {
941 out:
942 write_unlock(&neigh->lock);
943 }
944
945 if (notify)
946 neigh_update_notify(neigh);
947
948 neigh_release(neigh);
949 }
950
951 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
952 {
953 int rc;
954 bool immediate_probe = false;
955
956 write_lock_bh(&neigh->lock);
957
958 rc = 0;
959 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
960 goto out_unlock_bh;
961
962 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
963 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
964 NEIGH_VAR(neigh->parms, APP_PROBES)) {
965 unsigned long next, now = jiffies;
966
967 atomic_set(&neigh->probes,
968 NEIGH_VAR(neigh->parms, UCAST_PROBES));
969 neigh->nud_state = NUD_INCOMPLETE;
970 neigh->updated = now;
971 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
972 HZ/2);
973 neigh_add_timer(neigh, next);
974 immediate_probe = true;
975 } else {
976 neigh->nud_state = NUD_FAILED;
977 neigh->updated = jiffies;
978 write_unlock_bh(&neigh->lock);
979
980 kfree_skb(skb);
981 return 1;
982 }
983 } else if (neigh->nud_state & NUD_STALE) {
984 neigh_dbg(2, "neigh %p is delayed\n", neigh);
985 neigh->nud_state = NUD_DELAY;
986 neigh->updated = jiffies;
987 neigh_add_timer(neigh, jiffies +
988 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
989 }
990
991 if (neigh->nud_state == NUD_INCOMPLETE) {
992 if (skb) {
993 while (neigh->arp_queue_len_bytes + skb->truesize >
994 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
995 struct sk_buff *buff;
996
997 buff = __skb_dequeue(&neigh->arp_queue);
998 if (!buff)
999 break;
1000 neigh->arp_queue_len_bytes -= buff->truesize;
1001 kfree_skb(buff);
1002 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1003 }
1004 skb_dst_force(skb);
1005 __skb_queue_tail(&neigh->arp_queue, skb);
1006 neigh->arp_queue_len_bytes += skb->truesize;
1007 }
1008 rc = 1;
1009 }
1010 out_unlock_bh:
1011 if (immediate_probe)
1012 neigh_probe(neigh);
1013 else
1014 write_unlock(&neigh->lock);
1015 local_bh_enable();
1016 return rc;
1017 }
1018 EXPORT_SYMBOL(__neigh_event_send);
1019
1020 static void neigh_update_hhs(struct neighbour *neigh)
1021 {
1022 struct hh_cache *hh;
1023 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1024 = NULL;
1025
1026 if (neigh->dev->header_ops)
1027 update = neigh->dev->header_ops->cache_update;
1028
1029 if (update) {
1030 hh = &neigh->hh;
1031 if (hh->hh_len) {
1032 write_seqlock_bh(&hh->hh_lock);
1033 update(hh, neigh->dev, neigh->ha);
1034 write_sequnlock_bh(&hh->hh_lock);
1035 }
1036 }
1037 }
1038
1039
1040
1041 /* Generic update routine.
1042 -- lladdr is new lladdr or NULL, if it is not supplied.
1043 -- new is new state.
1044 -- flags
1045 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1046 if it is different.
1047 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1048 lladdr instead of overriding it
1049 if it is different.
1050 It also allows to retain current state
1051 if lladdr is unchanged.
1052 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1053
1054 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1055 NTF_ROUTER flag.
1056 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1057 a router.
1058
1059 Caller MUST hold reference count on the entry.
1060 */
1061
1062 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1063 u32 flags)
1064 {
1065 u8 old;
1066 int err;
1067 int notify = 0;
1068 struct net_device *dev;
1069 int update_isrouter = 0;
1070
1071 write_lock_bh(&neigh->lock);
1072
1073 dev = neigh->dev;
1074 old = neigh->nud_state;
1075 err = -EPERM;
1076
1077 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1078 (old & (NUD_NOARP | NUD_PERMANENT)))
1079 goto out;
1080
1081 if (!(new & NUD_VALID)) {
1082 neigh_del_timer(neigh);
1083 if (old & NUD_CONNECTED)
1084 neigh_suspect(neigh);
1085 neigh->nud_state = new;
1086 err = 0;
1087 notify = old & NUD_VALID;
1088 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1089 (new & NUD_FAILED)) {
1090 neigh_invalidate(neigh);
1091 notify = 1;
1092 }
1093 goto out;
1094 }
1095
1096 /* Compare new lladdr with cached one */
1097 if (!dev->addr_len) {
1098 /* First case: device needs no address. */
1099 lladdr = neigh->ha;
1100 } else if (lladdr) {
1101 /* The second case: if something is already cached
1102 and a new address is proposed:
1103 - compare new & old
1104 - if they are different, check override flag
1105 */
1106 if ((old & NUD_VALID) &&
1107 !memcmp(lladdr, neigh->ha, dev->addr_len))
1108 lladdr = neigh->ha;
1109 } else {
1110 /* No address is supplied; if we know something,
1111 use it, otherwise discard the request.
1112 */
1113 err = -EINVAL;
1114 if (!(old & NUD_VALID))
1115 goto out;
1116 lladdr = neigh->ha;
1117 }
1118
1119 if (new & NUD_CONNECTED)
1120 neigh->confirmed = jiffies;
1121 neigh->updated = jiffies;
1122
1123 /* If entry was valid and address is not changed,
1124 do not change entry state, if new one is STALE.
1125 */
1126 err = 0;
1127 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1128 if (old & NUD_VALID) {
1129 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1130 update_isrouter = 0;
1131 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1132 (old & NUD_CONNECTED)) {
1133 lladdr = neigh->ha;
1134 new = NUD_STALE;
1135 } else
1136 goto out;
1137 } else {
1138 if (lladdr == neigh->ha && new == NUD_STALE &&
1139 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1140 (old & NUD_CONNECTED))
1141 )
1142 new = old;
1143 }
1144 }
1145
1146 if (new != old) {
1147 neigh_del_timer(neigh);
1148 if (new & NUD_PROBE)
1149 atomic_set(&neigh->probes, 0);
1150 if (new & NUD_IN_TIMER)
1151 neigh_add_timer(neigh, (jiffies +
1152 ((new & NUD_REACHABLE) ?
1153 neigh->parms->reachable_time :
1154 0)));
1155 neigh->nud_state = new;
1156 notify = 1;
1157 }
1158
1159 if (lladdr != neigh->ha) {
1160 write_seqlock(&neigh->ha_lock);
1161 memcpy(&neigh->ha, lladdr, dev->addr_len);
1162 write_sequnlock(&neigh->ha_lock);
1163 neigh_update_hhs(neigh);
1164 if (!(new & NUD_CONNECTED))
1165 neigh->confirmed = jiffies -
1166 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1167 notify = 1;
1168 }
1169 if (new == old)
1170 goto out;
1171 if (new & NUD_CONNECTED)
1172 neigh_connect(neigh);
1173 else
1174 neigh_suspect(neigh);
1175 if (!(old & NUD_VALID)) {
1176 struct sk_buff *skb;
1177
1178 /* Again: avoid dead loop if something went wrong */
1179
1180 while (neigh->nud_state & NUD_VALID &&
1181 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1182 struct dst_entry *dst = skb_dst(skb);
1183 struct neighbour *n2, *n1 = neigh;
1184 write_unlock_bh(&neigh->lock);
1185
1186 rcu_read_lock();
1187
1188 /* Why not just use 'neigh' as-is? The problem is that
1189 * things such as shaper, eql, and sch_teql can end up
1190 * using alternative, different, neigh objects to output
1191 * the packet in the output path. So what we need to do
1192 * here is re-lookup the top-level neigh in the path so
1193 * we can reinject the packet there.
1194 */
1195 n2 = NULL;
1196 if (dst) {
1197 n2 = dst_neigh_lookup_skb(dst, skb);
1198 if (n2)
1199 n1 = n2;
1200 }
1201 n1->output(n1, skb);
1202 if (n2)
1203 neigh_release(n2);
1204 rcu_read_unlock();
1205
1206 write_lock_bh(&neigh->lock);
1207 }
1208 __skb_queue_purge(&neigh->arp_queue);
1209 neigh->arp_queue_len_bytes = 0;
1210 }
1211 out:
1212 if (update_isrouter) {
1213 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1214 (neigh->flags | NTF_ROUTER) :
1215 (neigh->flags & ~NTF_ROUTER);
1216 }
1217 write_unlock_bh(&neigh->lock);
1218
1219 if (notify)
1220 neigh_update_notify(neigh);
1221
1222 return err;
1223 }
1224 EXPORT_SYMBOL(neigh_update);
1225
1226 /* Update the neigh to listen temporarily for probe responses, even if it is
1227 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1228 */
1229 void __neigh_set_probe_once(struct neighbour *neigh)
1230 {
1231 neigh->updated = jiffies;
1232 if (!(neigh->nud_state & NUD_FAILED))
1233 return;
1234 neigh->nud_state = NUD_INCOMPLETE;
1235 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1236 neigh_add_timer(neigh,
1237 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1238 }
1239 EXPORT_SYMBOL(__neigh_set_probe_once);
1240
1241 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1242 u8 *lladdr, void *saddr,
1243 struct net_device *dev)
1244 {
1245 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1246 lladdr || !dev->addr_len);
1247 if (neigh)
1248 neigh_update(neigh, lladdr, NUD_STALE,
1249 NEIGH_UPDATE_F_OVERRIDE);
1250 return neigh;
1251 }
1252 EXPORT_SYMBOL(neigh_event_ns);
1253
1254 /* called with read_lock_bh(&n->lock); */
1255 static void neigh_hh_init(struct neighbour *n)
1256 {
1257 struct net_device *dev = n->dev;
1258 __be16 prot = n->tbl->protocol;
1259 struct hh_cache *hh = &n->hh;
1260
1261 write_lock_bh(&n->lock);
1262
1263 /* Only one thread can come in here and initialize the
1264 * hh_cache entry.
1265 */
1266 if (!hh->hh_len)
1267 dev->header_ops->cache(n, hh, prot);
1268
1269 write_unlock_bh(&n->lock);
1270 }
1271
1272 /* Slow and careful. */
1273
1274 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1275 {
1276 int rc = 0;
1277
1278 if (!neigh_event_send(neigh, skb)) {
1279 int err;
1280 struct net_device *dev = neigh->dev;
1281 unsigned int seq;
1282
1283 if (dev->header_ops->cache && !neigh->hh.hh_len)
1284 neigh_hh_init(neigh);
1285
1286 do {
1287 __skb_pull(skb, skb_network_offset(skb));
1288 seq = read_seqbegin(&neigh->ha_lock);
1289 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1290 neigh->ha, NULL, skb->len);
1291 } while (read_seqretry(&neigh->ha_lock, seq));
1292
1293 if (err >= 0)
1294 rc = dev_queue_xmit(skb);
1295 else
1296 goto out_kfree_skb;
1297 }
1298 out:
1299 return rc;
1300 out_kfree_skb:
1301 rc = -EINVAL;
1302 kfree_skb(skb);
1303 goto out;
1304 }
1305 EXPORT_SYMBOL(neigh_resolve_output);
1306
1307 /* As fast as possible without hh cache */
1308
1309 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1310 {
1311 struct net_device *dev = neigh->dev;
1312 unsigned int seq;
1313 int err;
1314
1315 do {
1316 __skb_pull(skb, skb_network_offset(skb));
1317 seq = read_seqbegin(&neigh->ha_lock);
1318 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1319 neigh->ha, NULL, skb->len);
1320 } while (read_seqretry(&neigh->ha_lock, seq));
1321
1322 if (err >= 0)
1323 err = dev_queue_xmit(skb);
1324 else {
1325 err = -EINVAL;
1326 kfree_skb(skb);
1327 }
1328 return err;
1329 }
1330 EXPORT_SYMBOL(neigh_connected_output);
1331
1332 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1333 {
1334 return dev_queue_xmit(skb);
1335 }
1336 EXPORT_SYMBOL(neigh_direct_output);
1337
1338 static void neigh_proxy_process(unsigned long arg)
1339 {
1340 struct neigh_table *tbl = (struct neigh_table *)arg;
1341 long sched_next = 0;
1342 unsigned long now = jiffies;
1343 struct sk_buff *skb, *n;
1344
1345 spin_lock(&tbl->proxy_queue.lock);
1346
1347 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1348 long tdif = NEIGH_CB(skb)->sched_next - now;
1349
1350 if (tdif <= 0) {
1351 struct net_device *dev = skb->dev;
1352
1353 __skb_unlink(skb, &tbl->proxy_queue);
1354 if (tbl->proxy_redo && netif_running(dev)) {
1355 rcu_read_lock();
1356 tbl->proxy_redo(skb);
1357 rcu_read_unlock();
1358 } else {
1359 kfree_skb(skb);
1360 }
1361
1362 dev_put(dev);
1363 } else if (!sched_next || tdif < sched_next)
1364 sched_next = tdif;
1365 }
1366 del_timer(&tbl->proxy_timer);
1367 if (sched_next)
1368 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1369 spin_unlock(&tbl->proxy_queue.lock);
1370 }
1371
1372 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1373 struct sk_buff *skb)
1374 {
1375 unsigned long now = jiffies;
1376
1377 unsigned long sched_next = now + (prandom_u32() %
1378 NEIGH_VAR(p, PROXY_DELAY));
1379
1380 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1381 kfree_skb(skb);
1382 return;
1383 }
1384
1385 NEIGH_CB(skb)->sched_next = sched_next;
1386 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1387
1388 spin_lock(&tbl->proxy_queue.lock);
1389 if (del_timer(&tbl->proxy_timer)) {
1390 if (time_before(tbl->proxy_timer.expires, sched_next))
1391 sched_next = tbl->proxy_timer.expires;
1392 }
1393 skb_dst_drop(skb);
1394 dev_hold(skb->dev);
1395 __skb_queue_tail(&tbl->proxy_queue, skb);
1396 mod_timer(&tbl->proxy_timer, sched_next);
1397 spin_unlock(&tbl->proxy_queue.lock);
1398 }
1399 EXPORT_SYMBOL(pneigh_enqueue);
1400
1401 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1402 struct net *net, int ifindex)
1403 {
1404 struct neigh_parms *p;
1405
1406 list_for_each_entry(p, &tbl->parms_list, list) {
1407 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1408 (!p->dev && !ifindex && net_eq(net, &init_net)))
1409 return p;
1410 }
1411
1412 return NULL;
1413 }
1414
1415 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1416 struct neigh_table *tbl)
1417 {
1418 struct neigh_parms *p;
1419 struct net *net = dev_net(dev);
1420 const struct net_device_ops *ops = dev->netdev_ops;
1421
1422 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1423 if (p) {
1424 p->tbl = tbl;
1425 atomic_set(&p->refcnt, 1);
1426 p->reachable_time =
1427 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1428 dev_hold(dev);
1429 p->dev = dev;
1430 write_pnet(&p->net, net);
1431 p->sysctl_table = NULL;
1432
1433 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1434 dev_put(dev);
1435 kfree(p);
1436 return NULL;
1437 }
1438
1439 write_lock_bh(&tbl->lock);
1440 list_add(&p->list, &tbl->parms.list);
1441 write_unlock_bh(&tbl->lock);
1442
1443 neigh_parms_data_state_cleanall(p);
1444 }
1445 return p;
1446 }
1447 EXPORT_SYMBOL(neigh_parms_alloc);
1448
1449 static void neigh_rcu_free_parms(struct rcu_head *head)
1450 {
1451 struct neigh_parms *parms =
1452 container_of(head, struct neigh_parms, rcu_head);
1453
1454 neigh_parms_put(parms);
1455 }
1456
1457 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1458 {
1459 if (!parms || parms == &tbl->parms)
1460 return;
1461 write_lock_bh(&tbl->lock);
1462 list_del(&parms->list);
1463 parms->dead = 1;
1464 write_unlock_bh(&tbl->lock);
1465 if (parms->dev)
1466 dev_put(parms->dev);
1467 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1468 }
1469 EXPORT_SYMBOL(neigh_parms_release);
1470
1471 static void neigh_parms_destroy(struct neigh_parms *parms)
1472 {
1473 kfree(parms);
1474 }
1475
1476 static struct lock_class_key neigh_table_proxy_queue_class;
1477
1478 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1479
1480 void neigh_table_init(int index, struct neigh_table *tbl)
1481 {
1482 unsigned long now = jiffies;
1483 unsigned long phsize;
1484
1485 INIT_LIST_HEAD(&tbl->parms_list);
1486 list_add(&tbl->parms.list, &tbl->parms_list);
1487 write_pnet(&tbl->parms.net, &init_net);
1488 atomic_set(&tbl->parms.refcnt, 1);
1489 tbl->parms.reachable_time =
1490 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1491
1492 tbl->stats = alloc_percpu(struct neigh_statistics);
1493 if (!tbl->stats)
1494 panic("cannot create neighbour cache statistics");
1495
1496 #ifdef CONFIG_PROC_FS
1497 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1498 &neigh_stat_seq_fops, tbl))
1499 panic("cannot create neighbour proc dir entry");
1500 #endif
1501
1502 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1503
1504 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1505 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1506
1507 if (!tbl->nht || !tbl->phash_buckets)
1508 panic("cannot allocate neighbour cache hashes");
1509
1510 if (!tbl->entry_size)
1511 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1512 tbl->key_len, NEIGH_PRIV_ALIGN);
1513 else
1514 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1515
1516 rwlock_init(&tbl->lock);
1517 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1518 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1519 tbl->parms.reachable_time);
1520 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1521 skb_queue_head_init_class(&tbl->proxy_queue,
1522 &neigh_table_proxy_queue_class);
1523
1524 tbl->last_flush = now;
1525 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1526
1527 neigh_tables[index] = tbl;
1528 }
1529 EXPORT_SYMBOL(neigh_table_init);
1530
1531 int neigh_table_clear(int index, struct neigh_table *tbl)
1532 {
1533 neigh_tables[index] = NULL;
1534 /* It is not clean... Fix it to unload IPv6 module safely */
1535 cancel_delayed_work_sync(&tbl->gc_work);
1536 del_timer_sync(&tbl->proxy_timer);
1537 pneigh_queue_purge(&tbl->proxy_queue);
1538 neigh_ifdown(tbl, NULL);
1539 if (atomic_read(&tbl->entries))
1540 pr_crit("neighbour leakage\n");
1541
1542 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1543 neigh_hash_free_rcu);
1544 tbl->nht = NULL;
1545
1546 kfree(tbl->phash_buckets);
1547 tbl->phash_buckets = NULL;
1548
1549 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1550
1551 free_percpu(tbl->stats);
1552 tbl->stats = NULL;
1553
1554 return 0;
1555 }
1556 EXPORT_SYMBOL(neigh_table_clear);
1557
1558 static struct neigh_table *neigh_find_table(int family)
1559 {
1560 struct neigh_table *tbl = NULL;
1561
1562 switch (family) {
1563 case AF_INET:
1564 tbl = neigh_tables[NEIGH_ARP_TABLE];
1565 break;
1566 case AF_INET6:
1567 tbl = neigh_tables[NEIGH_ND_TABLE];
1568 break;
1569 case AF_DECnet:
1570 tbl = neigh_tables[NEIGH_DN_TABLE];
1571 break;
1572 }
1573
1574 return tbl;
1575 }
1576
1577 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1578 {
1579 struct net *net = sock_net(skb->sk);
1580 struct ndmsg *ndm;
1581 struct nlattr *dst_attr;
1582 struct neigh_table *tbl;
1583 struct neighbour *neigh;
1584 struct net_device *dev = NULL;
1585 int err = -EINVAL;
1586
1587 ASSERT_RTNL();
1588 if (nlmsg_len(nlh) < sizeof(*ndm))
1589 goto out;
1590
1591 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1592 if (dst_attr == NULL)
1593 goto out;
1594
1595 ndm = nlmsg_data(nlh);
1596 if (ndm->ndm_ifindex) {
1597 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1598 if (dev == NULL) {
1599 err = -ENODEV;
1600 goto out;
1601 }
1602 }
1603
1604 tbl = neigh_find_table(ndm->ndm_family);
1605 if (tbl == NULL)
1606 return -EAFNOSUPPORT;
1607
1608 if (nla_len(dst_attr) < tbl->key_len)
1609 goto out;
1610
1611 if (ndm->ndm_flags & NTF_PROXY) {
1612 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1613 goto out;
1614 }
1615
1616 if (dev == NULL)
1617 goto out;
1618
1619 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1620 if (neigh == NULL) {
1621 err = -ENOENT;
1622 goto out;
1623 }
1624
1625 err = neigh_update(neigh, NULL, NUD_FAILED,
1626 NEIGH_UPDATE_F_OVERRIDE |
1627 NEIGH_UPDATE_F_ADMIN);
1628 neigh_release(neigh);
1629
1630 out:
1631 return err;
1632 }
1633
1634 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1635 {
1636 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1637 struct net *net = sock_net(skb->sk);
1638 struct ndmsg *ndm;
1639 struct nlattr *tb[NDA_MAX+1];
1640 struct neigh_table *tbl;
1641 struct net_device *dev = NULL;
1642 struct neighbour *neigh;
1643 void *dst, *lladdr;
1644 int err;
1645
1646 ASSERT_RTNL();
1647 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1648 if (err < 0)
1649 goto out;
1650
1651 err = -EINVAL;
1652 if (tb[NDA_DST] == NULL)
1653 goto out;
1654
1655 ndm = nlmsg_data(nlh);
1656 if (ndm->ndm_ifindex) {
1657 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1658 if (dev == NULL) {
1659 err = -ENODEV;
1660 goto out;
1661 }
1662
1663 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1664 goto out;
1665 }
1666
1667 tbl = neigh_find_table(ndm->ndm_family);
1668 if (tbl == NULL)
1669 return -EAFNOSUPPORT;
1670
1671 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1672 goto out;
1673 dst = nla_data(tb[NDA_DST]);
1674 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1675
1676 if (ndm->ndm_flags & NTF_PROXY) {
1677 struct pneigh_entry *pn;
1678
1679 err = -ENOBUFS;
1680 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1681 if (pn) {
1682 pn->flags = ndm->ndm_flags;
1683 err = 0;
1684 }
1685 goto out;
1686 }
1687
1688 if (dev == NULL)
1689 goto out;
1690
1691 neigh = neigh_lookup(tbl, dst, dev);
1692 if (neigh == NULL) {
1693 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1694 err = -ENOENT;
1695 goto out;
1696 }
1697
1698 neigh = __neigh_lookup_errno(tbl, dst, dev);
1699 if (IS_ERR(neigh)) {
1700 err = PTR_ERR(neigh);
1701 goto out;
1702 }
1703 } else {
1704 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1705 err = -EEXIST;
1706 neigh_release(neigh);
1707 goto out;
1708 }
1709
1710 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1711 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1712 }
1713
1714 if (ndm->ndm_flags & NTF_USE) {
1715 neigh_event_send(neigh, NULL);
1716 err = 0;
1717 } else
1718 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1719 neigh_release(neigh);
1720
1721 out:
1722 return err;
1723 }
1724
1725 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1726 {
1727 struct nlattr *nest;
1728
1729 nest = nla_nest_start(skb, NDTA_PARMS);
1730 if (nest == NULL)
1731 return -ENOBUFS;
1732
1733 if ((parms->dev &&
1734 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1735 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1736 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1737 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1738 /* approximative value for deprecated QUEUE_LEN (in packets) */
1739 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1740 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1741 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1742 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1743 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1744 NEIGH_VAR(parms, UCAST_PROBES)) ||
1745 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1746 NEIGH_VAR(parms, MCAST_PROBES)) ||
1747 nla_put_u32(skb, NDTPA_MCAST_REPROBES,
1748 NEIGH_VAR(parms, MCAST_REPROBES)) ||
1749 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1750 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1751 NEIGH_VAR(parms, BASE_REACHABLE_TIME)) ||
1752 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1753 NEIGH_VAR(parms, GC_STALETIME)) ||
1754 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1755 NEIGH_VAR(parms, DELAY_PROBE_TIME)) ||
1756 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1757 NEIGH_VAR(parms, RETRANS_TIME)) ||
1758 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1759 NEIGH_VAR(parms, ANYCAST_DELAY)) ||
1760 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1761 NEIGH_VAR(parms, PROXY_DELAY)) ||
1762 nla_put_msecs(skb, NDTPA_LOCKTIME,
1763 NEIGH_VAR(parms, LOCKTIME)))
1764 goto nla_put_failure;
1765 return nla_nest_end(skb, nest);
1766
1767 nla_put_failure:
1768 nla_nest_cancel(skb, nest);
1769 return -EMSGSIZE;
1770 }
1771
1772 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1773 u32 pid, u32 seq, int type, int flags)
1774 {
1775 struct nlmsghdr *nlh;
1776 struct ndtmsg *ndtmsg;
1777
1778 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1779 if (nlh == NULL)
1780 return -EMSGSIZE;
1781
1782 ndtmsg = nlmsg_data(nlh);
1783
1784 read_lock_bh(&tbl->lock);
1785 ndtmsg->ndtm_family = tbl->family;
1786 ndtmsg->ndtm_pad1 = 0;
1787 ndtmsg->ndtm_pad2 = 0;
1788
1789 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1790 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1791 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1792 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1793 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1794 goto nla_put_failure;
1795 {
1796 unsigned long now = jiffies;
1797 unsigned int flush_delta = now - tbl->last_flush;
1798 unsigned int rand_delta = now - tbl->last_rand;
1799 struct neigh_hash_table *nht;
1800 struct ndt_config ndc = {
1801 .ndtc_key_len = tbl->key_len,
1802 .ndtc_entry_size = tbl->entry_size,
1803 .ndtc_entries = atomic_read(&tbl->entries),
1804 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1805 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1806 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1807 };
1808
1809 rcu_read_lock_bh();
1810 nht = rcu_dereference_bh(tbl->nht);
1811 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1812 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1813 rcu_read_unlock_bh();
1814
1815 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1816 goto nla_put_failure;
1817 }
1818
1819 {
1820 int cpu;
1821 struct ndt_stats ndst;
1822
1823 memset(&ndst, 0, sizeof(ndst));
1824
1825 for_each_possible_cpu(cpu) {
1826 struct neigh_statistics *st;
1827
1828 st = per_cpu_ptr(tbl->stats, cpu);
1829 ndst.ndts_allocs += st->allocs;
1830 ndst.ndts_destroys += st->destroys;
1831 ndst.ndts_hash_grows += st->hash_grows;
1832 ndst.ndts_res_failed += st->res_failed;
1833 ndst.ndts_lookups += st->lookups;
1834 ndst.ndts_hits += st->hits;
1835 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1836 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1837 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1838 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1839 }
1840
1841 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1842 goto nla_put_failure;
1843 }
1844
1845 BUG_ON(tbl->parms.dev);
1846 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1847 goto nla_put_failure;
1848
1849 read_unlock_bh(&tbl->lock);
1850 nlmsg_end(skb, nlh);
1851 return 0;
1852
1853 nla_put_failure:
1854 read_unlock_bh(&tbl->lock);
1855 nlmsg_cancel(skb, nlh);
1856 return -EMSGSIZE;
1857 }
1858
1859 static int neightbl_fill_param_info(struct sk_buff *skb,
1860 struct neigh_table *tbl,
1861 struct neigh_parms *parms,
1862 u32 pid, u32 seq, int type,
1863 unsigned int flags)
1864 {
1865 struct ndtmsg *ndtmsg;
1866 struct nlmsghdr *nlh;
1867
1868 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1869 if (nlh == NULL)
1870 return -EMSGSIZE;
1871
1872 ndtmsg = nlmsg_data(nlh);
1873
1874 read_lock_bh(&tbl->lock);
1875 ndtmsg->ndtm_family = tbl->family;
1876 ndtmsg->ndtm_pad1 = 0;
1877 ndtmsg->ndtm_pad2 = 0;
1878
1879 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1880 neightbl_fill_parms(skb, parms) < 0)
1881 goto errout;
1882
1883 read_unlock_bh(&tbl->lock);
1884 nlmsg_end(skb, nlh);
1885 return 0;
1886 errout:
1887 read_unlock_bh(&tbl->lock);
1888 nlmsg_cancel(skb, nlh);
1889 return -EMSGSIZE;
1890 }
1891
1892 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1893 [NDTA_NAME] = { .type = NLA_STRING },
1894 [NDTA_THRESH1] = { .type = NLA_U32 },
1895 [NDTA_THRESH2] = { .type = NLA_U32 },
1896 [NDTA_THRESH3] = { .type = NLA_U32 },
1897 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1898 [NDTA_PARMS] = { .type = NLA_NESTED },
1899 };
1900
1901 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1902 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1903 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1904 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1905 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1906 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1907 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1908 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
1909 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1910 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1911 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1912 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1913 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1914 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1915 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1916 };
1917
1918 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1919 {
1920 struct net *net = sock_net(skb->sk);
1921 struct neigh_table *tbl;
1922 struct ndtmsg *ndtmsg;
1923 struct nlattr *tb[NDTA_MAX+1];
1924 bool found = false;
1925 int err, tidx;
1926
1927 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1928 nl_neightbl_policy);
1929 if (err < 0)
1930 goto errout;
1931
1932 if (tb[NDTA_NAME] == NULL) {
1933 err = -EINVAL;
1934 goto errout;
1935 }
1936
1937 ndtmsg = nlmsg_data(nlh);
1938
1939 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
1940 tbl = neigh_tables[tidx];
1941 if (!tbl)
1942 continue;
1943 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1944 continue;
1945 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
1946 found = true;
1947 break;
1948 }
1949 }
1950
1951 if (!found)
1952 return -ENOENT;
1953
1954 /*
1955 * We acquire tbl->lock to be nice to the periodic timers and
1956 * make sure they always see a consistent set of values.
1957 */
1958 write_lock_bh(&tbl->lock);
1959
1960 if (tb[NDTA_PARMS]) {
1961 struct nlattr *tbp[NDTPA_MAX+1];
1962 struct neigh_parms *p;
1963 int i, ifindex = 0;
1964
1965 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1966 nl_ntbl_parm_policy);
1967 if (err < 0)
1968 goto errout_tbl_lock;
1969
1970 if (tbp[NDTPA_IFINDEX])
1971 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1972
1973 p = lookup_neigh_parms(tbl, net, ifindex);
1974 if (p == NULL) {
1975 err = -ENOENT;
1976 goto errout_tbl_lock;
1977 }
1978
1979 for (i = 1; i <= NDTPA_MAX; i++) {
1980 if (tbp[i] == NULL)
1981 continue;
1982
1983 switch (i) {
1984 case NDTPA_QUEUE_LEN:
1985 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
1986 nla_get_u32(tbp[i]) *
1987 SKB_TRUESIZE(ETH_FRAME_LEN));
1988 break;
1989 case NDTPA_QUEUE_LENBYTES:
1990 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
1991 nla_get_u32(tbp[i]));
1992 break;
1993 case NDTPA_PROXY_QLEN:
1994 NEIGH_VAR_SET(p, PROXY_QLEN,
1995 nla_get_u32(tbp[i]));
1996 break;
1997 case NDTPA_APP_PROBES:
1998 NEIGH_VAR_SET(p, APP_PROBES,
1999 nla_get_u32(tbp[i]));
2000 break;
2001 case NDTPA_UCAST_PROBES:
2002 NEIGH_VAR_SET(p, UCAST_PROBES,
2003 nla_get_u32(tbp[i]));
2004 break;
2005 case NDTPA_MCAST_PROBES:
2006 NEIGH_VAR_SET(p, MCAST_PROBES,
2007 nla_get_u32(tbp[i]));
2008 break;
2009 case NDTPA_MCAST_REPROBES:
2010 NEIGH_VAR_SET(p, MCAST_REPROBES,
2011 nla_get_u32(tbp[i]));
2012 break;
2013 case NDTPA_BASE_REACHABLE_TIME:
2014 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2015 nla_get_msecs(tbp[i]));
2016 /* update reachable_time as well, otherwise, the change will
2017 * only be effective after the next time neigh_periodic_work
2018 * decides to recompute it (can be multiple minutes)
2019 */
2020 p->reachable_time =
2021 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2022 break;
2023 case NDTPA_GC_STALETIME:
2024 NEIGH_VAR_SET(p, GC_STALETIME,
2025 nla_get_msecs(tbp[i]));
2026 break;
2027 case NDTPA_DELAY_PROBE_TIME:
2028 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2029 nla_get_msecs(tbp[i]));
2030 break;
2031 case NDTPA_RETRANS_TIME:
2032 NEIGH_VAR_SET(p, RETRANS_TIME,
2033 nla_get_msecs(tbp[i]));
2034 break;
2035 case NDTPA_ANYCAST_DELAY:
2036 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2037 nla_get_msecs(tbp[i]));
2038 break;
2039 case NDTPA_PROXY_DELAY:
2040 NEIGH_VAR_SET(p, PROXY_DELAY,
2041 nla_get_msecs(tbp[i]));
2042 break;
2043 case NDTPA_LOCKTIME:
2044 NEIGH_VAR_SET(p, LOCKTIME,
2045 nla_get_msecs(tbp[i]));
2046 break;
2047 }
2048 }
2049 }
2050
2051 err = -ENOENT;
2052 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2053 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2054 !net_eq(net, &init_net))
2055 goto errout_tbl_lock;
2056
2057 if (tb[NDTA_THRESH1])
2058 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2059
2060 if (tb[NDTA_THRESH2])
2061 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2062
2063 if (tb[NDTA_THRESH3])
2064 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2065
2066 if (tb[NDTA_GC_INTERVAL])
2067 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2068
2069 err = 0;
2070
2071 errout_tbl_lock:
2072 write_unlock_bh(&tbl->lock);
2073 errout:
2074 return err;
2075 }
2076
2077 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2078 {
2079 struct net *net = sock_net(skb->sk);
2080 int family, tidx, nidx = 0;
2081 int tbl_skip = cb->args[0];
2082 int neigh_skip = cb->args[1];
2083 struct neigh_table *tbl;
2084
2085 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2086
2087 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2088 struct neigh_parms *p;
2089
2090 tbl = neigh_tables[tidx];
2091 if (!tbl)
2092 continue;
2093
2094 if (tidx < tbl_skip || (family && tbl->family != family))
2095 continue;
2096
2097 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2098 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2099 NLM_F_MULTI) < 0)
2100 break;
2101
2102 nidx = 0;
2103 p = list_next_entry(&tbl->parms, list);
2104 list_for_each_entry_from(p, &tbl->parms_list, list) {
2105 if (!net_eq(neigh_parms_net(p), net))
2106 continue;
2107
2108 if (nidx < neigh_skip)
2109 goto next;
2110
2111 if (neightbl_fill_param_info(skb, tbl, p,
2112 NETLINK_CB(cb->skb).portid,
2113 cb->nlh->nlmsg_seq,
2114 RTM_NEWNEIGHTBL,
2115 NLM_F_MULTI) < 0)
2116 goto out;
2117 next:
2118 nidx++;
2119 }
2120
2121 neigh_skip = 0;
2122 }
2123 out:
2124 cb->args[0] = tidx;
2125 cb->args[1] = nidx;
2126
2127 return skb->len;
2128 }
2129
2130 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2131 u32 pid, u32 seq, int type, unsigned int flags)
2132 {
2133 unsigned long now = jiffies;
2134 struct nda_cacheinfo ci;
2135 struct nlmsghdr *nlh;
2136 struct ndmsg *ndm;
2137
2138 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2139 if (nlh == NULL)
2140 return -EMSGSIZE;
2141
2142 ndm = nlmsg_data(nlh);
2143 ndm->ndm_family = neigh->ops->family;
2144 ndm->ndm_pad1 = 0;
2145 ndm->ndm_pad2 = 0;
2146 ndm->ndm_flags = neigh->flags;
2147 ndm->ndm_type = neigh->type;
2148 ndm->ndm_ifindex = neigh->dev->ifindex;
2149
2150 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2151 goto nla_put_failure;
2152
2153 read_lock_bh(&neigh->lock);
2154 ndm->ndm_state = neigh->nud_state;
2155 if (neigh->nud_state & NUD_VALID) {
2156 char haddr[MAX_ADDR_LEN];
2157
2158 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2159 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2160 read_unlock_bh(&neigh->lock);
2161 goto nla_put_failure;
2162 }
2163 }
2164
2165 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2166 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2167 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2168 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2169 read_unlock_bh(&neigh->lock);
2170
2171 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2172 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2173 goto nla_put_failure;
2174
2175 nlmsg_end(skb, nlh);
2176 return 0;
2177
2178 nla_put_failure:
2179 nlmsg_cancel(skb, nlh);
2180 return -EMSGSIZE;
2181 }
2182
2183 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2184 u32 pid, u32 seq, int type, unsigned int flags,
2185 struct neigh_table *tbl)
2186 {
2187 struct nlmsghdr *nlh;
2188 struct ndmsg *ndm;
2189
2190 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2191 if (nlh == NULL)
2192 return -EMSGSIZE;
2193
2194 ndm = nlmsg_data(nlh);
2195 ndm->ndm_family = tbl->family;
2196 ndm->ndm_pad1 = 0;
2197 ndm->ndm_pad2 = 0;
2198 ndm->ndm_flags = pn->flags | NTF_PROXY;
2199 ndm->ndm_type = RTN_UNICAST;
2200 ndm->ndm_ifindex = pn->dev->ifindex;
2201 ndm->ndm_state = NUD_NONE;
2202
2203 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2204 goto nla_put_failure;
2205
2206 nlmsg_end(skb, nlh);
2207 return 0;
2208
2209 nla_put_failure:
2210 nlmsg_cancel(skb, nlh);
2211 return -EMSGSIZE;
2212 }
2213
2214 static void neigh_update_notify(struct neighbour *neigh)
2215 {
2216 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2217 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2218 }
2219
2220 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2221 struct netlink_callback *cb)
2222 {
2223 struct net *net = sock_net(skb->sk);
2224 struct neighbour *n;
2225 int rc, h, s_h = cb->args[1];
2226 int idx, s_idx = idx = cb->args[2];
2227 struct neigh_hash_table *nht;
2228
2229 rcu_read_lock_bh();
2230 nht = rcu_dereference_bh(tbl->nht);
2231
2232 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2233 if (h > s_h)
2234 s_idx = 0;
2235 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2236 n != NULL;
2237 n = rcu_dereference_bh(n->next)) {
2238 if (!net_eq(dev_net(n->dev), net))
2239 continue;
2240 if (idx < s_idx)
2241 goto next;
2242 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2243 cb->nlh->nlmsg_seq,
2244 RTM_NEWNEIGH,
2245 NLM_F_MULTI) < 0) {
2246 rc = -1;
2247 goto out;
2248 }
2249 next:
2250 idx++;
2251 }
2252 }
2253 rc = skb->len;
2254 out:
2255 rcu_read_unlock_bh();
2256 cb->args[1] = h;
2257 cb->args[2] = idx;
2258 return rc;
2259 }
2260
2261 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2262 struct netlink_callback *cb)
2263 {
2264 struct pneigh_entry *n;
2265 struct net *net = sock_net(skb->sk);
2266 int rc, h, s_h = cb->args[3];
2267 int idx, s_idx = idx = cb->args[4];
2268
2269 read_lock_bh(&tbl->lock);
2270
2271 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2272 if (h > s_h)
2273 s_idx = 0;
2274 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2275 if (dev_net(n->dev) != net)
2276 continue;
2277 if (idx < s_idx)
2278 goto next;
2279 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2280 cb->nlh->nlmsg_seq,
2281 RTM_NEWNEIGH,
2282 NLM_F_MULTI, tbl) < 0) {
2283 read_unlock_bh(&tbl->lock);
2284 rc = -1;
2285 goto out;
2286 }
2287 next:
2288 idx++;
2289 }
2290 }
2291
2292 read_unlock_bh(&tbl->lock);
2293 rc = skb->len;
2294 out:
2295 cb->args[3] = h;
2296 cb->args[4] = idx;
2297 return rc;
2298
2299 }
2300
2301 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2302 {
2303 struct neigh_table *tbl;
2304 int t, family, s_t;
2305 int proxy = 0;
2306 int err;
2307
2308 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2309
2310 /* check for full ndmsg structure presence, family member is
2311 * the same for both structures
2312 */
2313 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2314 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2315 proxy = 1;
2316
2317 s_t = cb->args[0];
2318
2319 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2320 tbl = neigh_tables[t];
2321
2322 if (!tbl)
2323 continue;
2324 if (t < s_t || (family && tbl->family != family))
2325 continue;
2326 if (t > s_t)
2327 memset(&cb->args[1], 0, sizeof(cb->args) -
2328 sizeof(cb->args[0]));
2329 if (proxy)
2330 err = pneigh_dump_table(tbl, skb, cb);
2331 else
2332 err = neigh_dump_table(tbl, skb, cb);
2333 if (err < 0)
2334 break;
2335 }
2336
2337 cb->args[0] = t;
2338 return skb->len;
2339 }
2340
2341 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2342 {
2343 int chain;
2344 struct neigh_hash_table *nht;
2345
2346 rcu_read_lock_bh();
2347 nht = rcu_dereference_bh(tbl->nht);
2348
2349 read_lock(&tbl->lock); /* avoid resizes */
2350 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2351 struct neighbour *n;
2352
2353 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2354 n != NULL;
2355 n = rcu_dereference_bh(n->next))
2356 cb(n, cookie);
2357 }
2358 read_unlock(&tbl->lock);
2359 rcu_read_unlock_bh();
2360 }
2361 EXPORT_SYMBOL(neigh_for_each);
2362
2363 /* The tbl->lock must be held as a writer and BH disabled. */
2364 void __neigh_for_each_release(struct neigh_table *tbl,
2365 int (*cb)(struct neighbour *))
2366 {
2367 int chain;
2368 struct neigh_hash_table *nht;
2369
2370 nht = rcu_dereference_protected(tbl->nht,
2371 lockdep_is_held(&tbl->lock));
2372 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2373 struct neighbour *n;
2374 struct neighbour __rcu **np;
2375
2376 np = &nht->hash_buckets[chain];
2377 while ((n = rcu_dereference_protected(*np,
2378 lockdep_is_held(&tbl->lock))) != NULL) {
2379 int release;
2380
2381 write_lock(&n->lock);
2382 release = cb(n);
2383 if (release) {
2384 rcu_assign_pointer(*np,
2385 rcu_dereference_protected(n->next,
2386 lockdep_is_held(&tbl->lock)));
2387 n->dead = 1;
2388 } else
2389 np = &n->next;
2390 write_unlock(&n->lock);
2391 if (release)
2392 neigh_cleanup_and_release(n);
2393 }
2394 }
2395 }
2396 EXPORT_SYMBOL(__neigh_for_each_release);
2397
2398 int neigh_xmit(int index, struct net_device *dev,
2399 const void *addr, struct sk_buff *skb)
2400 {
2401 int err = -EAFNOSUPPORT;
2402 if (likely(index < NEIGH_NR_TABLES)) {
2403 struct neigh_table *tbl;
2404 struct neighbour *neigh;
2405
2406 tbl = neigh_tables[index];
2407 if (!tbl)
2408 goto out;
2409 neigh = __neigh_lookup_noref(tbl, addr, dev);
2410 if (!neigh)
2411 neigh = __neigh_create(tbl, addr, dev, false);
2412 err = PTR_ERR(neigh);
2413 if (IS_ERR(neigh))
2414 goto out_kfree_skb;
2415 err = neigh->output(neigh, skb);
2416 }
2417 else if (index == NEIGH_LINK_TABLE) {
2418 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
2419 addr, NULL, skb->len);
2420 if (err < 0)
2421 goto out_kfree_skb;
2422 err = dev_queue_xmit(skb);
2423 }
2424 out:
2425 return err;
2426 out_kfree_skb:
2427 kfree_skb(skb);
2428 goto out;
2429 }
2430 EXPORT_SYMBOL(neigh_xmit);
2431
2432 #ifdef CONFIG_PROC_FS
2433
2434 static struct neighbour *neigh_get_first(struct seq_file *seq)
2435 {
2436 struct neigh_seq_state *state = seq->private;
2437 struct net *net = seq_file_net(seq);
2438 struct neigh_hash_table *nht = state->nht;
2439 struct neighbour *n = NULL;
2440 int bucket = state->bucket;
2441
2442 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2443 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2444 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2445
2446 while (n) {
2447 if (!net_eq(dev_net(n->dev), net))
2448 goto next;
2449 if (state->neigh_sub_iter) {
2450 loff_t fakep = 0;
2451 void *v;
2452
2453 v = state->neigh_sub_iter(state, n, &fakep);
2454 if (!v)
2455 goto next;
2456 }
2457 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2458 break;
2459 if (n->nud_state & ~NUD_NOARP)
2460 break;
2461 next:
2462 n = rcu_dereference_bh(n->next);
2463 }
2464
2465 if (n)
2466 break;
2467 }
2468 state->bucket = bucket;
2469
2470 return n;
2471 }
2472
2473 static struct neighbour *neigh_get_next(struct seq_file *seq,
2474 struct neighbour *n,
2475 loff_t *pos)
2476 {
2477 struct neigh_seq_state *state = seq->private;
2478 struct net *net = seq_file_net(seq);
2479 struct neigh_hash_table *nht = state->nht;
2480
2481 if (state->neigh_sub_iter) {
2482 void *v = state->neigh_sub_iter(state, n, pos);
2483 if (v)
2484 return n;
2485 }
2486 n = rcu_dereference_bh(n->next);
2487
2488 while (1) {
2489 while (n) {
2490 if (!net_eq(dev_net(n->dev), net))
2491 goto next;
2492 if (state->neigh_sub_iter) {
2493 void *v = state->neigh_sub_iter(state, n, pos);
2494 if (v)
2495 return n;
2496 goto next;
2497 }
2498 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2499 break;
2500
2501 if (n->nud_state & ~NUD_NOARP)
2502 break;
2503 next:
2504 n = rcu_dereference_bh(n->next);
2505 }
2506
2507 if (n)
2508 break;
2509
2510 if (++state->bucket >= (1 << nht->hash_shift))
2511 break;
2512
2513 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2514 }
2515
2516 if (n && pos)
2517 --(*pos);
2518 return n;
2519 }
2520
2521 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2522 {
2523 struct neighbour *n = neigh_get_first(seq);
2524
2525 if (n) {
2526 --(*pos);
2527 while (*pos) {
2528 n = neigh_get_next(seq, n, pos);
2529 if (!n)
2530 break;
2531 }
2532 }
2533 return *pos ? NULL : n;
2534 }
2535
2536 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2537 {
2538 struct neigh_seq_state *state = seq->private;
2539 struct net *net = seq_file_net(seq);
2540 struct neigh_table *tbl = state->tbl;
2541 struct pneigh_entry *pn = NULL;
2542 int bucket = state->bucket;
2543
2544 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2545 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2546 pn = tbl->phash_buckets[bucket];
2547 while (pn && !net_eq(pneigh_net(pn), net))
2548 pn = pn->next;
2549 if (pn)
2550 break;
2551 }
2552 state->bucket = bucket;
2553
2554 return pn;
2555 }
2556
2557 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2558 struct pneigh_entry *pn,
2559 loff_t *pos)
2560 {
2561 struct neigh_seq_state *state = seq->private;
2562 struct net *net = seq_file_net(seq);
2563 struct neigh_table *tbl = state->tbl;
2564
2565 do {
2566 pn = pn->next;
2567 } while (pn && !net_eq(pneigh_net(pn), net));
2568
2569 while (!pn) {
2570 if (++state->bucket > PNEIGH_HASHMASK)
2571 break;
2572 pn = tbl->phash_buckets[state->bucket];
2573 while (pn && !net_eq(pneigh_net(pn), net))
2574 pn = pn->next;
2575 if (pn)
2576 break;
2577 }
2578
2579 if (pn && pos)
2580 --(*pos);
2581
2582 return pn;
2583 }
2584
2585 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2586 {
2587 struct pneigh_entry *pn = pneigh_get_first(seq);
2588
2589 if (pn) {
2590 --(*pos);
2591 while (*pos) {
2592 pn = pneigh_get_next(seq, pn, pos);
2593 if (!pn)
2594 break;
2595 }
2596 }
2597 return *pos ? NULL : pn;
2598 }
2599
2600 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2601 {
2602 struct neigh_seq_state *state = seq->private;
2603 void *rc;
2604 loff_t idxpos = *pos;
2605
2606 rc = neigh_get_idx(seq, &idxpos);
2607 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2608 rc = pneigh_get_idx(seq, &idxpos);
2609
2610 return rc;
2611 }
2612
2613 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2614 __acquires(rcu_bh)
2615 {
2616 struct neigh_seq_state *state = seq->private;
2617
2618 state->tbl = tbl;
2619 state->bucket = 0;
2620 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2621
2622 rcu_read_lock_bh();
2623 state->nht = rcu_dereference_bh(tbl->nht);
2624
2625 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2626 }
2627 EXPORT_SYMBOL(neigh_seq_start);
2628
2629 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2630 {
2631 struct neigh_seq_state *state;
2632 void *rc;
2633
2634 if (v == SEQ_START_TOKEN) {
2635 rc = neigh_get_first(seq);
2636 goto out;
2637 }
2638
2639 state = seq->private;
2640 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2641 rc = neigh_get_next(seq, v, NULL);
2642 if (rc)
2643 goto out;
2644 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2645 rc = pneigh_get_first(seq);
2646 } else {
2647 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2648 rc = pneigh_get_next(seq, v, NULL);
2649 }
2650 out:
2651 ++(*pos);
2652 return rc;
2653 }
2654 EXPORT_SYMBOL(neigh_seq_next);
2655
2656 void neigh_seq_stop(struct seq_file *seq, void *v)
2657 __releases(rcu_bh)
2658 {
2659 rcu_read_unlock_bh();
2660 }
2661 EXPORT_SYMBOL(neigh_seq_stop);
2662
2663 /* statistics via seq_file */
2664
2665 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2666 {
2667 struct neigh_table *tbl = seq->private;
2668 int cpu;
2669
2670 if (*pos == 0)
2671 return SEQ_START_TOKEN;
2672
2673 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2674 if (!cpu_possible(cpu))
2675 continue;
2676 *pos = cpu+1;
2677 return per_cpu_ptr(tbl->stats, cpu);
2678 }
2679 return NULL;
2680 }
2681
2682 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2683 {
2684 struct neigh_table *tbl = seq->private;
2685 int cpu;
2686
2687 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2688 if (!cpu_possible(cpu))
2689 continue;
2690 *pos = cpu+1;
2691 return per_cpu_ptr(tbl->stats, cpu);
2692 }
2693 return NULL;
2694 }
2695
2696 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2697 {
2698
2699 }
2700
2701 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2702 {
2703 struct neigh_table *tbl = seq->private;
2704 struct neigh_statistics *st = v;
2705
2706 if (v == SEQ_START_TOKEN) {
2707 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2708 return 0;
2709 }
2710
2711 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2712 "%08lx %08lx %08lx %08lx %08lx\n",
2713 atomic_read(&tbl->entries),
2714
2715 st->allocs,
2716 st->destroys,
2717 st->hash_grows,
2718
2719 st->lookups,
2720 st->hits,
2721
2722 st->res_failed,
2723
2724 st->rcv_probes_mcast,
2725 st->rcv_probes_ucast,
2726
2727 st->periodic_gc_runs,
2728 st->forced_gc_runs,
2729 st->unres_discards
2730 );
2731
2732 return 0;
2733 }
2734
2735 static const struct seq_operations neigh_stat_seq_ops = {
2736 .start = neigh_stat_seq_start,
2737 .next = neigh_stat_seq_next,
2738 .stop = neigh_stat_seq_stop,
2739 .show = neigh_stat_seq_show,
2740 };
2741
2742 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2743 {
2744 int ret = seq_open(file, &neigh_stat_seq_ops);
2745
2746 if (!ret) {
2747 struct seq_file *sf = file->private_data;
2748 sf->private = PDE_DATA(inode);
2749 }
2750 return ret;
2751 };
2752
2753 static const struct file_operations neigh_stat_seq_fops = {
2754 .owner = THIS_MODULE,
2755 .open = neigh_stat_seq_open,
2756 .read = seq_read,
2757 .llseek = seq_lseek,
2758 .release = seq_release,
2759 };
2760
2761 #endif /* CONFIG_PROC_FS */
2762
2763 static inline size_t neigh_nlmsg_size(void)
2764 {
2765 return NLMSG_ALIGN(sizeof(struct ndmsg))
2766 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2767 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2768 + nla_total_size(sizeof(struct nda_cacheinfo))
2769 + nla_total_size(4); /* NDA_PROBES */
2770 }
2771
2772 static void __neigh_notify(struct neighbour *n, int type, int flags)
2773 {
2774 struct net *net = dev_net(n->dev);
2775 struct sk_buff *skb;
2776 int err = -ENOBUFS;
2777
2778 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2779 if (skb == NULL)
2780 goto errout;
2781
2782 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2783 if (err < 0) {
2784 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2785 WARN_ON(err == -EMSGSIZE);
2786 kfree_skb(skb);
2787 goto errout;
2788 }
2789 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2790 return;
2791 errout:
2792 if (err < 0)
2793 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2794 }
2795
2796 void neigh_app_ns(struct neighbour *n)
2797 {
2798 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2799 }
2800 EXPORT_SYMBOL(neigh_app_ns);
2801
2802 #ifdef CONFIG_SYSCTL
2803 static int zero;
2804 static int int_max = INT_MAX;
2805 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2806
2807 static int proc_unres_qlen(struct ctl_table *ctl, int write,
2808 void __user *buffer, size_t *lenp, loff_t *ppos)
2809 {
2810 int size, ret;
2811 struct ctl_table tmp = *ctl;
2812
2813 tmp.extra1 = &zero;
2814 tmp.extra2 = &unres_qlen_max;
2815 tmp.data = &size;
2816
2817 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2818 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2819
2820 if (write && !ret)
2821 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2822 return ret;
2823 }
2824
2825 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2826 int family)
2827 {
2828 switch (family) {
2829 case AF_INET:
2830 return __in_dev_arp_parms_get_rcu(dev);
2831 case AF_INET6:
2832 return __in6_dev_nd_parms_get_rcu(dev);
2833 }
2834 return NULL;
2835 }
2836
2837 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2838 int index)
2839 {
2840 struct net_device *dev;
2841 int family = neigh_parms_family(p);
2842
2843 rcu_read_lock();
2844 for_each_netdev_rcu(net, dev) {
2845 struct neigh_parms *dst_p =
2846 neigh_get_dev_parms_rcu(dev, family);
2847
2848 if (dst_p && !test_bit(index, dst_p->data_state))
2849 dst_p->data[index] = p->data[index];
2850 }
2851 rcu_read_unlock();
2852 }
2853
2854 static void neigh_proc_update(struct ctl_table *ctl, int write)
2855 {
2856 struct net_device *dev = ctl->extra1;
2857 struct neigh_parms *p = ctl->extra2;
2858 struct net *net = neigh_parms_net(p);
2859 int index = (int *) ctl->data - p->data;
2860
2861 if (!write)
2862 return;
2863
2864 set_bit(index, p->data_state);
2865 if (!dev) /* NULL dev means this is default value */
2866 neigh_copy_dflt_parms(net, p, index);
2867 }
2868
2869 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2870 void __user *buffer,
2871 size_t *lenp, loff_t *ppos)
2872 {
2873 struct ctl_table tmp = *ctl;
2874 int ret;
2875
2876 tmp.extra1 = &zero;
2877 tmp.extra2 = &int_max;
2878
2879 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2880 neigh_proc_update(ctl, write);
2881 return ret;
2882 }
2883
2884 int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2885 void __user *buffer, size_t *lenp, loff_t *ppos)
2886 {
2887 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2888
2889 neigh_proc_update(ctl, write);
2890 return ret;
2891 }
2892 EXPORT_SYMBOL(neigh_proc_dointvec);
2893
2894 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2895 void __user *buffer,
2896 size_t *lenp, loff_t *ppos)
2897 {
2898 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2899
2900 neigh_proc_update(ctl, write);
2901 return ret;
2902 }
2903 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2904
2905 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2906 void __user *buffer,
2907 size_t *lenp, loff_t *ppos)
2908 {
2909 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2910
2911 neigh_proc_update(ctl, write);
2912 return ret;
2913 }
2914
2915 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2916 void __user *buffer,
2917 size_t *lenp, loff_t *ppos)
2918 {
2919 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2920
2921 neigh_proc_update(ctl, write);
2922 return ret;
2923 }
2924 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2925
2926 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2927 void __user *buffer,
2928 size_t *lenp, loff_t *ppos)
2929 {
2930 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2931
2932 neigh_proc_update(ctl, write);
2933 return ret;
2934 }
2935
2936 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
2937 void __user *buffer,
2938 size_t *lenp, loff_t *ppos)
2939 {
2940 struct neigh_parms *p = ctl->extra2;
2941 int ret;
2942
2943 if (strcmp(ctl->procname, "base_reachable_time") == 0)
2944 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2945 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
2946 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2947 else
2948 ret = -1;
2949
2950 if (write && ret == 0) {
2951 /* update reachable_time as well, otherwise, the change will
2952 * only be effective after the next time neigh_periodic_work
2953 * decides to recompute it
2954 */
2955 p->reachable_time =
2956 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2957 }
2958 return ret;
2959 }
2960
2961 #define NEIGH_PARMS_DATA_OFFSET(index) \
2962 (&((struct neigh_parms *) 0)->data[index])
2963
2964 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
2965 [NEIGH_VAR_ ## attr] = { \
2966 .procname = name, \
2967 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
2968 .maxlen = sizeof(int), \
2969 .mode = mval, \
2970 .proc_handler = proc, \
2971 }
2972
2973 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
2974 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
2975
2976 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
2977 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
2978
2979 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
2980 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
2981
2982 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
2983 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2984
2985 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
2986 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2987
2988 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
2989 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
2990
2991 static struct neigh_sysctl_table {
2992 struct ctl_table_header *sysctl_header;
2993 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2994 } neigh_sysctl_template __read_mostly = {
2995 .neigh_vars = {
2996 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
2997 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
2998 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
2999 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3000 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3001 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3002 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3003 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3004 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3005 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3006 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3007 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3008 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3009 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3010 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3011 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3012 [NEIGH_VAR_GC_INTERVAL] = {
3013 .procname = "gc_interval",
3014 .maxlen = sizeof(int),
3015 .mode = 0644,
3016 .proc_handler = proc_dointvec_jiffies,
3017 },
3018 [NEIGH_VAR_GC_THRESH1] = {
3019 .procname = "gc_thresh1",
3020 .maxlen = sizeof(int),
3021 .mode = 0644,
3022 .extra1 = &zero,
3023 .extra2 = &int_max,
3024 .proc_handler = proc_dointvec_minmax,
3025 },
3026 [NEIGH_VAR_GC_THRESH2] = {
3027 .procname = "gc_thresh2",
3028 .maxlen = sizeof(int),
3029 .mode = 0644,
3030 .extra1 = &zero,
3031 .extra2 = &int_max,
3032 .proc_handler = proc_dointvec_minmax,
3033 },
3034 [NEIGH_VAR_GC_THRESH3] = {
3035 .procname = "gc_thresh3",
3036 .maxlen = sizeof(int),
3037 .mode = 0644,
3038 .extra1 = &zero,
3039 .extra2 = &int_max,
3040 .proc_handler = proc_dointvec_minmax,
3041 },
3042 {},
3043 },
3044 };
3045
3046 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3047 proc_handler *handler)
3048 {
3049 int i;
3050 struct neigh_sysctl_table *t;
3051 const char *dev_name_source;
3052 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3053 char *p_name;
3054
3055 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3056 if (!t)
3057 goto err;
3058
3059 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3060 t->neigh_vars[i].data += (long) p;
3061 t->neigh_vars[i].extra1 = dev;
3062 t->neigh_vars[i].extra2 = p;
3063 }
3064
3065 if (dev) {
3066 dev_name_source = dev->name;
3067 /* Terminate the table early */
3068 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3069 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3070 } else {
3071 struct neigh_table *tbl = p->tbl;
3072 dev_name_source = "default";
3073 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3074 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3075 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3076 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3077 }
3078
3079 if (handler) {
3080 /* RetransTime */
3081 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3082 /* ReachableTime */
3083 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3084 /* RetransTime (in milliseconds)*/
3085 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3086 /* ReachableTime (in milliseconds) */
3087 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3088 } else {
3089 /* Those handlers will update p->reachable_time after
3090 * base_reachable_time(_ms) is set to ensure the new timer starts being
3091 * applied after the next neighbour update instead of waiting for
3092 * neigh_periodic_work to update its value (can be multiple minutes)
3093 * So any handler that replaces them should do this as well
3094 */
3095 /* ReachableTime */
3096 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3097 neigh_proc_base_reachable_time;
3098 /* ReachableTime (in milliseconds) */
3099 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3100 neigh_proc_base_reachable_time;
3101 }
3102
3103 /* Don't export sysctls to unprivileged users */
3104 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3105 t->neigh_vars[0].procname = NULL;
3106
3107 switch (neigh_parms_family(p)) {
3108 case AF_INET:
3109 p_name = "ipv4";
3110 break;
3111 case AF_INET6:
3112 p_name = "ipv6";
3113 break;
3114 default:
3115 BUG();
3116 }
3117
3118 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3119 p_name, dev_name_source);
3120 t->sysctl_header =
3121 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3122 if (!t->sysctl_header)
3123 goto free;
3124
3125 p->sysctl_table = t;
3126 return 0;
3127
3128 free:
3129 kfree(t);
3130 err:
3131 return -ENOBUFS;
3132 }
3133 EXPORT_SYMBOL(neigh_sysctl_register);
3134
3135 void neigh_sysctl_unregister(struct neigh_parms *p)
3136 {
3137 if (p->sysctl_table) {
3138 struct neigh_sysctl_table *t = p->sysctl_table;
3139 p->sysctl_table = NULL;
3140 unregister_net_sysctl_table(t->sysctl_header);
3141 kfree(t);
3142 }
3143 }
3144 EXPORT_SYMBOL(neigh_sysctl_unregister);
3145
3146 #endif /* CONFIG_SYSCTL */
3147
3148 static int __init neigh_init(void)
3149 {
3150 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3151 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3152 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3153
3154 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3155 NULL);
3156 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3157
3158 return 0;
3159 }
3160
3161 subsys_initcall(neigh_init);
3162
This page took 0.153438 seconds and 5 git commands to generate.