net: Increase xmit RECURSION_LIMIT to 10.
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK0 NEIGH_PRINTK
45 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
46 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47
48 #if NEIGH_DEBUG >= 1
49 #undef NEIGH_PRINTK1
50 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #endif
52 #if NEIGH_DEBUG >= 2
53 #undef NEIGH_PRINTK2
54 #define NEIGH_PRINTK2 NEIGH_PRINTK
55 #endif
56
57 #define PNEIGH_HASHMASK 0xF
58
59 static void neigh_timer_handler(unsigned long arg);
60 static void __neigh_notify(struct neighbour *n, int type, int flags);
61 static void neigh_update_notify(struct neighbour *neigh);
62 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
79
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
83
84 Reference count prevents destruction.
85
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
90
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
95
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
98 */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104 kfree_skb(skb);
105 return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
112
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
115 }
116
117 /*
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
121 */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125 return base ? (net_random() % base) + (base >> 1) : 0;
126 }
127 EXPORT_SYMBOL(neigh_rand_reach_time);
128
129
130 static int neigh_forced_gc(struct neigh_table *tbl)
131 {
132 int shrunk = 0;
133 int i;
134 struct neigh_hash_table *nht;
135
136 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
137
138 write_lock_bh(&tbl->lock);
139 nht = rcu_dereference_protected(tbl->nht,
140 lockdep_is_held(&tbl->lock));
141 for (i = 0; i <= nht->hash_mask; i++) {
142 struct neighbour *n;
143 struct neighbour __rcu **np;
144
145 np = &nht->hash_buckets[i];
146 while ((n = rcu_dereference_protected(*np,
147 lockdep_is_held(&tbl->lock))) != NULL) {
148 /* Neighbour record may be discarded if:
149 * - nobody refers to it.
150 * - it is not permanent
151 */
152 write_lock(&n->lock);
153 if (atomic_read(&n->refcnt) == 1 &&
154 !(n->nud_state & NUD_PERMANENT)) {
155 rcu_assign_pointer(*np,
156 rcu_dereference_protected(n->next,
157 lockdep_is_held(&tbl->lock)));
158 n->dead = 1;
159 shrunk = 1;
160 write_unlock(&n->lock);
161 neigh_cleanup_and_release(n);
162 continue;
163 }
164 write_unlock(&n->lock);
165 np = &n->next;
166 }
167 }
168
169 tbl->last_flush = jiffies;
170
171 write_unlock_bh(&tbl->lock);
172
173 return shrunk;
174 }
175
176 static void neigh_add_timer(struct neighbour *n, unsigned long when)
177 {
178 neigh_hold(n);
179 if (unlikely(mod_timer(&n->timer, when))) {
180 printk("NEIGH: BUG, double timer add, state is %x\n",
181 n->nud_state);
182 dump_stack();
183 }
184 }
185
186 static int neigh_del_timer(struct neighbour *n)
187 {
188 if ((n->nud_state & NUD_IN_TIMER) &&
189 del_timer(&n->timer)) {
190 neigh_release(n);
191 return 1;
192 }
193 return 0;
194 }
195
196 static void pneigh_queue_purge(struct sk_buff_head *list)
197 {
198 struct sk_buff *skb;
199
200 while ((skb = skb_dequeue(list)) != NULL) {
201 dev_put(skb->dev);
202 kfree_skb(skb);
203 }
204 }
205
206 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
207 {
208 int i;
209 struct neigh_hash_table *nht;
210
211 nht = rcu_dereference_protected(tbl->nht,
212 lockdep_is_held(&tbl->lock));
213
214 for (i = 0; i <= nht->hash_mask; i++) {
215 struct neighbour *n;
216 struct neighbour __rcu **np = &nht->hash_buckets[i];
217
218 while ((n = rcu_dereference_protected(*np,
219 lockdep_is_held(&tbl->lock))) != NULL) {
220 if (dev && n->dev != dev) {
221 np = &n->next;
222 continue;
223 }
224 rcu_assign_pointer(*np,
225 rcu_dereference_protected(n->next,
226 lockdep_is_held(&tbl->lock)));
227 write_lock(&n->lock);
228 neigh_del_timer(n);
229 n->dead = 1;
230
231 if (atomic_read(&n->refcnt) != 1) {
232 /* The most unpleasant situation.
233 We must destroy neighbour entry,
234 but someone still uses it.
235
236 The destroy will be delayed until
237 the last user releases us, but
238 we must kill timers etc. and move
239 it to safe state.
240 */
241 skb_queue_purge(&n->arp_queue);
242 n->output = neigh_blackhole;
243 if (n->nud_state & NUD_VALID)
244 n->nud_state = NUD_NOARP;
245 else
246 n->nud_state = NUD_NONE;
247 NEIGH_PRINTK2("neigh %p is stray.\n", n);
248 }
249 write_unlock(&n->lock);
250 neigh_cleanup_and_release(n);
251 }
252 }
253 }
254
255 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
256 {
257 write_lock_bh(&tbl->lock);
258 neigh_flush_dev(tbl, dev);
259 write_unlock_bh(&tbl->lock);
260 }
261 EXPORT_SYMBOL(neigh_changeaddr);
262
263 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
264 {
265 write_lock_bh(&tbl->lock);
266 neigh_flush_dev(tbl, dev);
267 pneigh_ifdown(tbl, dev);
268 write_unlock_bh(&tbl->lock);
269
270 del_timer_sync(&tbl->proxy_timer);
271 pneigh_queue_purge(&tbl->proxy_queue);
272 return 0;
273 }
274 EXPORT_SYMBOL(neigh_ifdown);
275
276 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
277 {
278 struct neighbour *n = NULL;
279 unsigned long now = jiffies;
280 int entries;
281
282 entries = atomic_inc_return(&tbl->entries) - 1;
283 if (entries >= tbl->gc_thresh3 ||
284 (entries >= tbl->gc_thresh2 &&
285 time_after(now, tbl->last_flush + 5 * HZ))) {
286 if (!neigh_forced_gc(tbl) &&
287 entries >= tbl->gc_thresh3)
288 goto out_entries;
289 }
290
291 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
292 if (!n)
293 goto out_entries;
294
295 skb_queue_head_init(&n->arp_queue);
296 rwlock_init(&n->lock);
297 seqlock_init(&n->ha_lock);
298 n->updated = n->used = now;
299 n->nud_state = NUD_NONE;
300 n->output = neigh_blackhole;
301 n->parms = neigh_parms_clone(&tbl->parms);
302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
303
304 NEIGH_CACHE_STAT_INC(tbl, allocs);
305 n->tbl = tbl;
306 atomic_set(&n->refcnt, 1);
307 n->dead = 1;
308 out:
309 return n;
310
311 out_entries:
312 atomic_dec(&tbl->entries);
313 goto out;
314 }
315
316 static struct neigh_hash_table *neigh_hash_alloc(unsigned int entries)
317 {
318 size_t size = entries * sizeof(struct neighbour *);
319 struct neigh_hash_table *ret;
320 struct neighbour **buckets;
321
322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 if (!ret)
324 return NULL;
325 if (size <= PAGE_SIZE)
326 buckets = kzalloc(size, GFP_ATOMIC);
327 else
328 buckets = (struct neighbour **)
329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 get_order(size));
331 if (!buckets) {
332 kfree(ret);
333 return NULL;
334 }
335 rcu_assign_pointer(ret->hash_buckets, buckets);
336 ret->hash_mask = entries - 1;
337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 return ret;
339 }
340
341 static void neigh_hash_free_rcu(struct rcu_head *head)
342 {
343 struct neigh_hash_table *nht = container_of(head,
344 struct neigh_hash_table,
345 rcu);
346 size_t size = (nht->hash_mask + 1) * sizeof(struct neighbour *);
347 struct neighbour **buckets = nht->hash_buckets;
348
349 if (size <= PAGE_SIZE)
350 kfree(buckets);
351 else
352 free_pages((unsigned long)buckets, get_order(size));
353 kfree(nht);
354 }
355
356 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
357 unsigned long new_entries)
358 {
359 unsigned int i, hash;
360 struct neigh_hash_table *new_nht, *old_nht;
361
362 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
363
364 BUG_ON(!is_power_of_2(new_entries));
365 old_nht = rcu_dereference_protected(tbl->nht,
366 lockdep_is_held(&tbl->lock));
367 new_nht = neigh_hash_alloc(new_entries);
368 if (!new_nht)
369 return old_nht;
370
371 for (i = 0; i <= old_nht->hash_mask; i++) {
372 struct neighbour *n, *next;
373
374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 lockdep_is_held(&tbl->lock));
376 n != NULL;
377 n = next) {
378 hash = tbl->hash(n->primary_key, n->dev,
379 new_nht->hash_rnd);
380
381 hash &= new_nht->hash_mask;
382 next = rcu_dereference_protected(n->next,
383 lockdep_is_held(&tbl->lock));
384
385 rcu_assign_pointer(n->next,
386 rcu_dereference_protected(
387 new_nht->hash_buckets[hash],
388 lockdep_is_held(&tbl->lock)));
389 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
390 }
391 }
392
393 rcu_assign_pointer(tbl->nht, new_nht);
394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 return new_nht;
396 }
397
398 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 struct net_device *dev)
400 {
401 struct neighbour *n;
402 int key_len = tbl->key_len;
403 u32 hash_val;
404 struct neigh_hash_table *nht;
405
406 NEIGH_CACHE_STAT_INC(tbl, lookups);
407
408 rcu_read_lock_bh();
409 nht = rcu_dereference_bh(tbl->nht);
410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
411
412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 n != NULL;
414 n = rcu_dereference_bh(n->next)) {
415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 if (!atomic_inc_not_zero(&n->refcnt))
417 n = NULL;
418 NEIGH_CACHE_STAT_INC(tbl, hits);
419 break;
420 }
421 }
422
423 rcu_read_unlock_bh();
424 return n;
425 }
426 EXPORT_SYMBOL(neigh_lookup);
427
428 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 const void *pkey)
430 {
431 struct neighbour *n;
432 int key_len = tbl->key_len;
433 u32 hash_val;
434 struct neigh_hash_table *nht;
435
436 NEIGH_CACHE_STAT_INC(tbl, lookups);
437
438 rcu_read_lock_bh();
439 nht = rcu_dereference_bh(tbl->nht);
440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) & nht->hash_mask;
441
442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 n != NULL;
444 n = rcu_dereference_bh(n->next)) {
445 if (!memcmp(n->primary_key, pkey, key_len) &&
446 net_eq(dev_net(n->dev), net)) {
447 if (!atomic_inc_not_zero(&n->refcnt))
448 n = NULL;
449 NEIGH_CACHE_STAT_INC(tbl, hits);
450 break;
451 }
452 }
453
454 rcu_read_unlock_bh();
455 return n;
456 }
457 EXPORT_SYMBOL(neigh_lookup_nodev);
458
459 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 struct net_device *dev)
461 {
462 u32 hash_val;
463 int key_len = tbl->key_len;
464 int error;
465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 struct neigh_hash_table *nht;
467
468 if (!n) {
469 rc = ERR_PTR(-ENOBUFS);
470 goto out;
471 }
472
473 memcpy(n->primary_key, pkey, key_len);
474 n->dev = dev;
475 dev_hold(dev);
476
477 /* Protocol specific setup. */
478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
479 rc = ERR_PTR(error);
480 goto out_neigh_release;
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (nht->hash_mask + 1))
497 nht = neigh_hash_grow(tbl, (nht->hash_mask + 1) << 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask;
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 neigh_hold(n1);
513 rc = n1;
514 goto out_tbl_unlock;
515 }
516 }
517
518 n->dead = 0;
519 neigh_hold(n);
520 rcu_assign_pointer(n->next,
521 rcu_dereference_protected(nht->hash_buckets[hash_val],
522 lockdep_is_held(&tbl->lock)));
523 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 write_unlock_bh(&tbl->lock);
525 NEIGH_PRINTK2("neigh %p is created.\n", n);
526 rc = n;
527 out:
528 return rc;
529 out_tbl_unlock:
530 write_unlock_bh(&tbl->lock);
531 out_neigh_release:
532 neigh_release(n);
533 goto out;
534 }
535 EXPORT_SYMBOL(neigh_create);
536
537 static u32 pneigh_hash(const void *pkey, int key_len)
538 {
539 u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 hash_val ^= (hash_val >> 16);
541 hash_val ^= hash_val >> 8;
542 hash_val ^= hash_val >> 4;
543 hash_val &= PNEIGH_HASHMASK;
544 return hash_val;
545 }
546
547 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 struct net *net,
549 const void *pkey,
550 int key_len,
551 struct net_device *dev)
552 {
553 while (n) {
554 if (!memcmp(n->key, pkey, key_len) &&
555 net_eq(pneigh_net(n), net) &&
556 (n->dev == dev || !n->dev))
557 return n;
558 n = n->next;
559 }
560 return NULL;
561 }
562
563 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 struct net *net, const void *pkey, struct net_device *dev)
565 {
566 int key_len = tbl->key_len;
567 u32 hash_val = pneigh_hash(pkey, key_len);
568
569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 net, pkey, key_len, dev);
571 }
572 EXPORT_SYMBOL_GPL(__pneigh_lookup);
573
574 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 struct net *net, const void *pkey,
576 struct net_device *dev, int creat)
577 {
578 struct pneigh_entry *n;
579 int key_len = tbl->key_len;
580 u32 hash_val = pneigh_hash(pkey, key_len);
581
582 read_lock_bh(&tbl->lock);
583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585 read_unlock_bh(&tbl->lock);
586
587 if (n || !creat)
588 goto out;
589
590 ASSERT_RTNL();
591
592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 if (!n)
594 goto out;
595
596 write_pnet(&n->net, hold_net(net));
597 memcpy(n->key, pkey, key_len);
598 n->dev = dev;
599 if (dev)
600 dev_hold(dev);
601
602 if (tbl->pconstructor && tbl->pconstructor(n)) {
603 if (dev)
604 dev_put(dev);
605 release_net(net);
606 kfree(n);
607 n = NULL;
608 goto out;
609 }
610
611 write_lock_bh(&tbl->lock);
612 n->next = tbl->phash_buckets[hash_val];
613 tbl->phash_buckets[hash_val] = n;
614 write_unlock_bh(&tbl->lock);
615 out:
616 return n;
617 }
618 EXPORT_SYMBOL(pneigh_lookup);
619
620
621 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 struct net_device *dev)
623 {
624 struct pneigh_entry *n, **np;
625 int key_len = tbl->key_len;
626 u32 hash_val = pneigh_hash(pkey, key_len);
627
628 write_lock_bh(&tbl->lock);
629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 np = &n->next) {
631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 net_eq(pneigh_net(n), net)) {
633 *np = n->next;
634 write_unlock_bh(&tbl->lock);
635 if (tbl->pdestructor)
636 tbl->pdestructor(n);
637 if (n->dev)
638 dev_put(n->dev);
639 release_net(pneigh_net(n));
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646 }
647
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649 {
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 release_net(pneigh_net(n));
663 kfree(n);
664 continue;
665 }
666 np = &n->next;
667 }
668 }
669 return -ENOENT;
670 }
671
672 static void neigh_parms_destroy(struct neigh_parms *parms);
673
674 static inline void neigh_parms_put(struct neigh_parms *parms)
675 {
676 if (atomic_dec_and_test(&parms->refcnt))
677 neigh_parms_destroy(parms);
678 }
679
680 static void neigh_destroy_rcu(struct rcu_head *head)
681 {
682 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
683
684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
685 }
686 /*
687 * neighbour must already be out of the table;
688 *
689 */
690 void neigh_destroy(struct neighbour *neigh)
691 {
692 struct hh_cache *hh;
693
694 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
695
696 if (!neigh->dead) {
697 printk(KERN_WARNING
698 "Destroying alive neighbour %p\n", neigh);
699 dump_stack();
700 return;
701 }
702
703 if (neigh_del_timer(neigh))
704 printk(KERN_WARNING "Impossible event.\n");
705
706 while ((hh = neigh->hh) != NULL) {
707 neigh->hh = hh->hh_next;
708 hh->hh_next = NULL;
709
710 write_seqlock_bh(&hh->hh_lock);
711 hh->hh_output = neigh_blackhole;
712 write_sequnlock_bh(&hh->hh_lock);
713 hh_cache_put(hh);
714 }
715
716 skb_queue_purge(&neigh->arp_queue);
717
718 dev_put(neigh->dev);
719 neigh_parms_put(neigh->parms);
720
721 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
722
723 atomic_dec(&neigh->tbl->entries);
724 call_rcu(&neigh->rcu, neigh_destroy_rcu);
725 }
726 EXPORT_SYMBOL(neigh_destroy);
727
728 /* Neighbour state is suspicious;
729 disable fast path.
730
731 Called with write_locked neigh.
732 */
733 static void neigh_suspect(struct neighbour *neigh)
734 {
735 struct hh_cache *hh;
736
737 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
738
739 neigh->output = neigh->ops->output;
740
741 for (hh = neigh->hh; hh; hh = hh->hh_next)
742 hh->hh_output = neigh->ops->output;
743 }
744
745 /* Neighbour state is OK;
746 enable fast path.
747
748 Called with write_locked neigh.
749 */
750 static void neigh_connect(struct neighbour *neigh)
751 {
752 struct hh_cache *hh;
753
754 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
755
756 neigh->output = neigh->ops->connected_output;
757
758 for (hh = neigh->hh; hh; hh = hh->hh_next)
759 hh->hh_output = neigh->ops->hh_output;
760 }
761
762 static void neigh_periodic_work(struct work_struct *work)
763 {
764 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
765 struct neighbour *n;
766 struct neighbour __rcu **np;
767 unsigned int i;
768 struct neigh_hash_table *nht;
769
770 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
771
772 write_lock_bh(&tbl->lock);
773 nht = rcu_dereference_protected(tbl->nht,
774 lockdep_is_held(&tbl->lock));
775
776 /*
777 * periodically recompute ReachableTime from random function
778 */
779
780 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
781 struct neigh_parms *p;
782 tbl->last_rand = jiffies;
783 for (p = &tbl->parms; p; p = p->next)
784 p->reachable_time =
785 neigh_rand_reach_time(p->base_reachable_time);
786 }
787
788 for (i = 0 ; i <= nht->hash_mask; i++) {
789 np = &nht->hash_buckets[i];
790
791 while ((n = rcu_dereference_protected(*np,
792 lockdep_is_held(&tbl->lock))) != NULL) {
793 unsigned int state;
794
795 write_lock(&n->lock);
796
797 state = n->nud_state;
798 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
799 write_unlock(&n->lock);
800 goto next_elt;
801 }
802
803 if (time_before(n->used, n->confirmed))
804 n->used = n->confirmed;
805
806 if (atomic_read(&n->refcnt) == 1 &&
807 (state == NUD_FAILED ||
808 time_after(jiffies, n->used + n->parms->gc_staletime))) {
809 *np = n->next;
810 n->dead = 1;
811 write_unlock(&n->lock);
812 neigh_cleanup_and_release(n);
813 continue;
814 }
815 write_unlock(&n->lock);
816
817 next_elt:
818 np = &n->next;
819 }
820 /*
821 * It's fine to release lock here, even if hash table
822 * grows while we are preempted.
823 */
824 write_unlock_bh(&tbl->lock);
825 cond_resched();
826 write_lock_bh(&tbl->lock);
827 }
828 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
829 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
830 * base_reachable_time.
831 */
832 schedule_delayed_work(&tbl->gc_work,
833 tbl->parms.base_reachable_time >> 1);
834 write_unlock_bh(&tbl->lock);
835 }
836
837 static __inline__ int neigh_max_probes(struct neighbour *n)
838 {
839 struct neigh_parms *p = n->parms;
840 return (n->nud_state & NUD_PROBE) ?
841 p->ucast_probes :
842 p->ucast_probes + p->app_probes + p->mcast_probes;
843 }
844
845 static void neigh_invalidate(struct neighbour *neigh)
846 __releases(neigh->lock)
847 __acquires(neigh->lock)
848 {
849 struct sk_buff *skb;
850
851 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
852 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
853 neigh->updated = jiffies;
854
855 /* It is very thin place. report_unreachable is very complicated
856 routine. Particularly, it can hit the same neighbour entry!
857
858 So that, we try to be accurate and avoid dead loop. --ANK
859 */
860 while (neigh->nud_state == NUD_FAILED &&
861 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
862 write_unlock(&neigh->lock);
863 neigh->ops->error_report(neigh, skb);
864 write_lock(&neigh->lock);
865 }
866 skb_queue_purge(&neigh->arp_queue);
867 }
868
869 /* Called when a timer expires for a neighbour entry. */
870
871 static void neigh_timer_handler(unsigned long arg)
872 {
873 unsigned long now, next;
874 struct neighbour *neigh = (struct neighbour *)arg;
875 unsigned state;
876 int notify = 0;
877
878 write_lock(&neigh->lock);
879
880 state = neigh->nud_state;
881 now = jiffies;
882 next = now + HZ;
883
884 if (!(state & NUD_IN_TIMER)) {
885 #ifndef CONFIG_SMP
886 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
887 #endif
888 goto out;
889 }
890
891 if (state & NUD_REACHABLE) {
892 if (time_before_eq(now,
893 neigh->confirmed + neigh->parms->reachable_time)) {
894 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
895 next = neigh->confirmed + neigh->parms->reachable_time;
896 } else if (time_before_eq(now,
897 neigh->used + neigh->parms->delay_probe_time)) {
898 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
899 neigh->nud_state = NUD_DELAY;
900 neigh->updated = jiffies;
901 neigh_suspect(neigh);
902 next = now + neigh->parms->delay_probe_time;
903 } else {
904 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
905 neigh->nud_state = NUD_STALE;
906 neigh->updated = jiffies;
907 neigh_suspect(neigh);
908 notify = 1;
909 }
910 } else if (state & NUD_DELAY) {
911 if (time_before_eq(now,
912 neigh->confirmed + neigh->parms->delay_probe_time)) {
913 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
914 neigh->nud_state = NUD_REACHABLE;
915 neigh->updated = jiffies;
916 neigh_connect(neigh);
917 notify = 1;
918 next = neigh->confirmed + neigh->parms->reachable_time;
919 } else {
920 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
921 neigh->nud_state = NUD_PROBE;
922 neigh->updated = jiffies;
923 atomic_set(&neigh->probes, 0);
924 next = now + neigh->parms->retrans_time;
925 }
926 } else {
927 /* NUD_PROBE|NUD_INCOMPLETE */
928 next = now + neigh->parms->retrans_time;
929 }
930
931 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
932 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
933 neigh->nud_state = NUD_FAILED;
934 notify = 1;
935 neigh_invalidate(neigh);
936 }
937
938 if (neigh->nud_state & NUD_IN_TIMER) {
939 if (time_before(next, jiffies + HZ/2))
940 next = jiffies + HZ/2;
941 if (!mod_timer(&neigh->timer, next))
942 neigh_hold(neigh);
943 }
944 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
945 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
946 /* keep skb alive even if arp_queue overflows */
947 if (skb)
948 skb = skb_copy(skb, GFP_ATOMIC);
949 write_unlock(&neigh->lock);
950 neigh->ops->solicit(neigh, skb);
951 atomic_inc(&neigh->probes);
952 kfree_skb(skb);
953 } else {
954 out:
955 write_unlock(&neigh->lock);
956 }
957
958 if (notify)
959 neigh_update_notify(neigh);
960
961 neigh_release(neigh);
962 }
963
964 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
965 {
966 int rc;
967 unsigned long now;
968
969 write_lock_bh(&neigh->lock);
970
971 rc = 0;
972 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
973 goto out_unlock_bh;
974
975 now = jiffies;
976
977 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
978 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
979 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
980 neigh->nud_state = NUD_INCOMPLETE;
981 neigh->updated = jiffies;
982 neigh_add_timer(neigh, now + 1);
983 } else {
984 neigh->nud_state = NUD_FAILED;
985 neigh->updated = jiffies;
986 write_unlock_bh(&neigh->lock);
987
988 kfree_skb(skb);
989 return 1;
990 }
991 } else if (neigh->nud_state & NUD_STALE) {
992 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
993 neigh->nud_state = NUD_DELAY;
994 neigh->updated = jiffies;
995 neigh_add_timer(neigh,
996 jiffies + neigh->parms->delay_probe_time);
997 }
998
999 if (neigh->nud_state == NUD_INCOMPLETE) {
1000 if (skb) {
1001 if (skb_queue_len(&neigh->arp_queue) >=
1002 neigh->parms->queue_len) {
1003 struct sk_buff *buff;
1004 buff = __skb_dequeue(&neigh->arp_queue);
1005 kfree_skb(buff);
1006 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1007 }
1008 skb_dst_force(skb);
1009 __skb_queue_tail(&neigh->arp_queue, skb);
1010 }
1011 rc = 1;
1012 }
1013 out_unlock_bh:
1014 write_unlock_bh(&neigh->lock);
1015 return rc;
1016 }
1017 EXPORT_SYMBOL(__neigh_event_send);
1018
1019 static void neigh_update_hhs(const struct neighbour *neigh)
1020 {
1021 struct hh_cache *hh;
1022 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1023 = NULL;
1024
1025 if (neigh->dev->header_ops)
1026 update = neigh->dev->header_ops->cache_update;
1027
1028 if (update) {
1029 for (hh = neigh->hh; hh; hh = hh->hh_next) {
1030 write_seqlock_bh(&hh->hh_lock);
1031 update(hh, neigh->dev, neigh->ha);
1032 write_sequnlock_bh(&hh->hh_lock);
1033 }
1034 }
1035 }
1036
1037
1038
1039 /* Generic update routine.
1040 -- lladdr is new lladdr or NULL, if it is not supplied.
1041 -- new is new state.
1042 -- flags
1043 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1044 if it is different.
1045 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1046 lladdr instead of overriding it
1047 if it is different.
1048 It also allows to retain current state
1049 if lladdr is unchanged.
1050 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1051
1052 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1053 NTF_ROUTER flag.
1054 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1055 a router.
1056
1057 Caller MUST hold reference count on the entry.
1058 */
1059
1060 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1061 u32 flags)
1062 {
1063 u8 old;
1064 int err;
1065 int notify = 0;
1066 struct net_device *dev;
1067 int update_isrouter = 0;
1068
1069 write_lock_bh(&neigh->lock);
1070
1071 dev = neigh->dev;
1072 old = neigh->nud_state;
1073 err = -EPERM;
1074
1075 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1076 (old & (NUD_NOARP | NUD_PERMANENT)))
1077 goto out;
1078
1079 if (!(new & NUD_VALID)) {
1080 neigh_del_timer(neigh);
1081 if (old & NUD_CONNECTED)
1082 neigh_suspect(neigh);
1083 neigh->nud_state = new;
1084 err = 0;
1085 notify = old & NUD_VALID;
1086 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1087 (new & NUD_FAILED)) {
1088 neigh_invalidate(neigh);
1089 notify = 1;
1090 }
1091 goto out;
1092 }
1093
1094 /* Compare new lladdr with cached one */
1095 if (!dev->addr_len) {
1096 /* First case: device needs no address. */
1097 lladdr = neigh->ha;
1098 } else if (lladdr) {
1099 /* The second case: if something is already cached
1100 and a new address is proposed:
1101 - compare new & old
1102 - if they are different, check override flag
1103 */
1104 if ((old & NUD_VALID) &&
1105 !memcmp(lladdr, neigh->ha, dev->addr_len))
1106 lladdr = neigh->ha;
1107 } else {
1108 /* No address is supplied; if we know something,
1109 use it, otherwise discard the request.
1110 */
1111 err = -EINVAL;
1112 if (!(old & NUD_VALID))
1113 goto out;
1114 lladdr = neigh->ha;
1115 }
1116
1117 if (new & NUD_CONNECTED)
1118 neigh->confirmed = jiffies;
1119 neigh->updated = jiffies;
1120
1121 /* If entry was valid and address is not changed,
1122 do not change entry state, if new one is STALE.
1123 */
1124 err = 0;
1125 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1126 if (old & NUD_VALID) {
1127 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1128 update_isrouter = 0;
1129 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1130 (old & NUD_CONNECTED)) {
1131 lladdr = neigh->ha;
1132 new = NUD_STALE;
1133 } else
1134 goto out;
1135 } else {
1136 if (lladdr == neigh->ha && new == NUD_STALE &&
1137 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1138 (old & NUD_CONNECTED))
1139 )
1140 new = old;
1141 }
1142 }
1143
1144 if (new != old) {
1145 neigh_del_timer(neigh);
1146 if (new & NUD_IN_TIMER)
1147 neigh_add_timer(neigh, (jiffies +
1148 ((new & NUD_REACHABLE) ?
1149 neigh->parms->reachable_time :
1150 0)));
1151 neigh->nud_state = new;
1152 }
1153
1154 if (lladdr != neigh->ha) {
1155 write_seqlock(&neigh->ha_lock);
1156 memcpy(&neigh->ha, lladdr, dev->addr_len);
1157 write_sequnlock(&neigh->ha_lock);
1158 neigh_update_hhs(neigh);
1159 if (!(new & NUD_CONNECTED))
1160 neigh->confirmed = jiffies -
1161 (neigh->parms->base_reachable_time << 1);
1162 notify = 1;
1163 }
1164 if (new == old)
1165 goto out;
1166 if (new & NUD_CONNECTED)
1167 neigh_connect(neigh);
1168 else
1169 neigh_suspect(neigh);
1170 if (!(old & NUD_VALID)) {
1171 struct sk_buff *skb;
1172
1173 /* Again: avoid dead loop if something went wrong */
1174
1175 while (neigh->nud_state & NUD_VALID &&
1176 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1177 struct neighbour *n1 = neigh;
1178 write_unlock_bh(&neigh->lock);
1179 /* On shaper/eql skb->dst->neighbour != neigh :( */
1180 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1181 n1 = skb_dst(skb)->neighbour;
1182 n1->output(skb);
1183 write_lock_bh(&neigh->lock);
1184 }
1185 skb_queue_purge(&neigh->arp_queue);
1186 }
1187 out:
1188 if (update_isrouter) {
1189 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1190 (neigh->flags | NTF_ROUTER) :
1191 (neigh->flags & ~NTF_ROUTER);
1192 }
1193 write_unlock_bh(&neigh->lock);
1194
1195 if (notify)
1196 neigh_update_notify(neigh);
1197
1198 return err;
1199 }
1200 EXPORT_SYMBOL(neigh_update);
1201
1202 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1203 u8 *lladdr, void *saddr,
1204 struct net_device *dev)
1205 {
1206 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1207 lladdr || !dev->addr_len);
1208 if (neigh)
1209 neigh_update(neigh, lladdr, NUD_STALE,
1210 NEIGH_UPDATE_F_OVERRIDE);
1211 return neigh;
1212 }
1213 EXPORT_SYMBOL(neigh_event_ns);
1214
1215 static inline bool neigh_hh_lookup(struct neighbour *n, struct dst_entry *dst,
1216 __be16 protocol)
1217 {
1218 struct hh_cache *hh;
1219
1220 smp_rmb(); /* paired with smp_wmb() in neigh_hh_init() */
1221 for (hh = n->hh; hh; hh = hh->hh_next) {
1222 if (hh->hh_type == protocol) {
1223 atomic_inc(&hh->hh_refcnt);
1224 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL))
1225 hh_cache_put(hh);
1226 return true;
1227 }
1228 }
1229 return false;
1230 }
1231
1232 /* called with read_lock_bh(&n->lock); */
1233 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1234 __be16 protocol)
1235 {
1236 struct hh_cache *hh;
1237 struct net_device *dev = dst->dev;
1238
1239 if (likely(neigh_hh_lookup(n, dst, protocol)))
1240 return;
1241
1242 /* slow path */
1243 hh = kzalloc(sizeof(*hh), GFP_ATOMIC);
1244 if (!hh)
1245 return;
1246
1247 seqlock_init(&hh->hh_lock);
1248 hh->hh_type = protocol;
1249 atomic_set(&hh->hh_refcnt, 2);
1250
1251 if (dev->header_ops->cache(n, hh)) {
1252 kfree(hh);
1253 return;
1254 }
1255
1256 write_lock_bh(&n->lock);
1257
1258 /* must check if another thread already did the insert */
1259 if (neigh_hh_lookup(n, dst, protocol)) {
1260 kfree(hh);
1261 goto end;
1262 }
1263
1264 if (n->nud_state & NUD_CONNECTED)
1265 hh->hh_output = n->ops->hh_output;
1266 else
1267 hh->hh_output = n->ops->output;
1268
1269 hh->hh_next = n->hh;
1270 smp_wmb(); /* paired with smp_rmb() in neigh_hh_lookup() */
1271 n->hh = hh;
1272
1273 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL))
1274 hh_cache_put(hh);
1275 end:
1276 write_unlock_bh(&n->lock);
1277 }
1278
1279 /* This function can be used in contexts, where only old dev_queue_xmit
1280 * worked, f.e. if you want to override normal output path (eql, shaper),
1281 * but resolution is not made yet.
1282 */
1283
1284 int neigh_compat_output(struct sk_buff *skb)
1285 {
1286 struct net_device *dev = skb->dev;
1287
1288 __skb_pull(skb, skb_network_offset(skb));
1289
1290 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1291 skb->len) < 0 &&
1292 dev->header_ops->rebuild(skb))
1293 return 0;
1294
1295 return dev_queue_xmit(skb);
1296 }
1297 EXPORT_SYMBOL(neigh_compat_output);
1298
1299 /* Slow and careful. */
1300
1301 int neigh_resolve_output(struct sk_buff *skb)
1302 {
1303 struct dst_entry *dst = skb_dst(skb);
1304 struct neighbour *neigh;
1305 int rc = 0;
1306
1307 if (!dst || !(neigh = dst->neighbour))
1308 goto discard;
1309
1310 __skb_pull(skb, skb_network_offset(skb));
1311
1312 if (!neigh_event_send(neigh, skb)) {
1313 int err;
1314 struct net_device *dev = neigh->dev;
1315 unsigned int seq;
1316
1317 if (dev->header_ops->cache &&
1318 !dst->hh &&
1319 !(dst->flags & DST_NOCACHE))
1320 neigh_hh_init(neigh, dst, dst->ops->protocol);
1321
1322 do {
1323 seq = read_seqbegin(&neigh->ha_lock);
1324 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1325 neigh->ha, NULL, skb->len);
1326 } while (read_seqretry(&neigh->ha_lock, seq));
1327
1328 if (err >= 0)
1329 rc = neigh->ops->queue_xmit(skb);
1330 else
1331 goto out_kfree_skb;
1332 }
1333 out:
1334 return rc;
1335 discard:
1336 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1337 dst, dst ? dst->neighbour : NULL);
1338 out_kfree_skb:
1339 rc = -EINVAL;
1340 kfree_skb(skb);
1341 goto out;
1342 }
1343 EXPORT_SYMBOL(neigh_resolve_output);
1344
1345 /* As fast as possible without hh cache */
1346
1347 int neigh_connected_output(struct sk_buff *skb)
1348 {
1349 int err;
1350 struct dst_entry *dst = skb_dst(skb);
1351 struct neighbour *neigh = dst->neighbour;
1352 struct net_device *dev = neigh->dev;
1353 unsigned int seq;
1354
1355 __skb_pull(skb, skb_network_offset(skb));
1356
1357 do {
1358 seq = read_seqbegin(&neigh->ha_lock);
1359 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1360 neigh->ha, NULL, skb->len);
1361 } while (read_seqretry(&neigh->ha_lock, seq));
1362
1363 if (err >= 0)
1364 err = neigh->ops->queue_xmit(skb);
1365 else {
1366 err = -EINVAL;
1367 kfree_skb(skb);
1368 }
1369 return err;
1370 }
1371 EXPORT_SYMBOL(neigh_connected_output);
1372
1373 static void neigh_proxy_process(unsigned long arg)
1374 {
1375 struct neigh_table *tbl = (struct neigh_table *)arg;
1376 long sched_next = 0;
1377 unsigned long now = jiffies;
1378 struct sk_buff *skb, *n;
1379
1380 spin_lock(&tbl->proxy_queue.lock);
1381
1382 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1383 long tdif = NEIGH_CB(skb)->sched_next - now;
1384
1385 if (tdif <= 0) {
1386 struct net_device *dev = skb->dev;
1387 __skb_unlink(skb, &tbl->proxy_queue);
1388 if (tbl->proxy_redo && netif_running(dev))
1389 tbl->proxy_redo(skb);
1390 else
1391 kfree_skb(skb);
1392
1393 dev_put(dev);
1394 } else if (!sched_next || tdif < sched_next)
1395 sched_next = tdif;
1396 }
1397 del_timer(&tbl->proxy_timer);
1398 if (sched_next)
1399 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1400 spin_unlock(&tbl->proxy_queue.lock);
1401 }
1402
1403 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1404 struct sk_buff *skb)
1405 {
1406 unsigned long now = jiffies;
1407 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1408
1409 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1410 kfree_skb(skb);
1411 return;
1412 }
1413
1414 NEIGH_CB(skb)->sched_next = sched_next;
1415 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1416
1417 spin_lock(&tbl->proxy_queue.lock);
1418 if (del_timer(&tbl->proxy_timer)) {
1419 if (time_before(tbl->proxy_timer.expires, sched_next))
1420 sched_next = tbl->proxy_timer.expires;
1421 }
1422 skb_dst_drop(skb);
1423 dev_hold(skb->dev);
1424 __skb_queue_tail(&tbl->proxy_queue, skb);
1425 mod_timer(&tbl->proxy_timer, sched_next);
1426 spin_unlock(&tbl->proxy_queue.lock);
1427 }
1428 EXPORT_SYMBOL(pneigh_enqueue);
1429
1430 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1431 struct net *net, int ifindex)
1432 {
1433 struct neigh_parms *p;
1434
1435 for (p = &tbl->parms; p; p = p->next) {
1436 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1437 (!p->dev && !ifindex))
1438 return p;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1445 struct neigh_table *tbl)
1446 {
1447 struct neigh_parms *p, *ref;
1448 struct net *net = dev_net(dev);
1449 const struct net_device_ops *ops = dev->netdev_ops;
1450
1451 ref = lookup_neigh_parms(tbl, net, 0);
1452 if (!ref)
1453 return NULL;
1454
1455 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1456 if (p) {
1457 p->tbl = tbl;
1458 atomic_set(&p->refcnt, 1);
1459 p->reachable_time =
1460 neigh_rand_reach_time(p->base_reachable_time);
1461
1462 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1463 kfree(p);
1464 return NULL;
1465 }
1466
1467 dev_hold(dev);
1468 p->dev = dev;
1469 write_pnet(&p->net, hold_net(net));
1470 p->sysctl_table = NULL;
1471 write_lock_bh(&tbl->lock);
1472 p->next = tbl->parms.next;
1473 tbl->parms.next = p;
1474 write_unlock_bh(&tbl->lock);
1475 }
1476 return p;
1477 }
1478 EXPORT_SYMBOL(neigh_parms_alloc);
1479
1480 static void neigh_rcu_free_parms(struct rcu_head *head)
1481 {
1482 struct neigh_parms *parms =
1483 container_of(head, struct neigh_parms, rcu_head);
1484
1485 neigh_parms_put(parms);
1486 }
1487
1488 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1489 {
1490 struct neigh_parms **p;
1491
1492 if (!parms || parms == &tbl->parms)
1493 return;
1494 write_lock_bh(&tbl->lock);
1495 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1496 if (*p == parms) {
1497 *p = parms->next;
1498 parms->dead = 1;
1499 write_unlock_bh(&tbl->lock);
1500 if (parms->dev)
1501 dev_put(parms->dev);
1502 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1503 return;
1504 }
1505 }
1506 write_unlock_bh(&tbl->lock);
1507 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1508 }
1509 EXPORT_SYMBOL(neigh_parms_release);
1510
1511 static void neigh_parms_destroy(struct neigh_parms *parms)
1512 {
1513 release_net(neigh_parms_net(parms));
1514 kfree(parms);
1515 }
1516
1517 static struct lock_class_key neigh_table_proxy_queue_class;
1518
1519 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1520 {
1521 unsigned long now = jiffies;
1522 unsigned long phsize;
1523
1524 write_pnet(&tbl->parms.net, &init_net);
1525 atomic_set(&tbl->parms.refcnt, 1);
1526 tbl->parms.reachable_time =
1527 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1528
1529 if (!tbl->kmem_cachep)
1530 tbl->kmem_cachep =
1531 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1532 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1533 NULL);
1534 tbl->stats = alloc_percpu(struct neigh_statistics);
1535 if (!tbl->stats)
1536 panic("cannot create neighbour cache statistics");
1537
1538 #ifdef CONFIG_PROC_FS
1539 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1540 &neigh_stat_seq_fops, tbl))
1541 panic("cannot create neighbour proc dir entry");
1542 #endif
1543
1544 tbl->nht = neigh_hash_alloc(8);
1545
1546 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1547 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1548
1549 if (!tbl->nht || !tbl->phash_buckets)
1550 panic("cannot allocate neighbour cache hashes");
1551
1552 rwlock_init(&tbl->lock);
1553 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1554 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1555 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1556 skb_queue_head_init_class(&tbl->proxy_queue,
1557 &neigh_table_proxy_queue_class);
1558
1559 tbl->last_flush = now;
1560 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1561 }
1562 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1563
1564 void neigh_table_init(struct neigh_table *tbl)
1565 {
1566 struct neigh_table *tmp;
1567
1568 neigh_table_init_no_netlink(tbl);
1569 write_lock(&neigh_tbl_lock);
1570 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1571 if (tmp->family == tbl->family)
1572 break;
1573 }
1574 tbl->next = neigh_tables;
1575 neigh_tables = tbl;
1576 write_unlock(&neigh_tbl_lock);
1577
1578 if (unlikely(tmp)) {
1579 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1580 "family %d\n", tbl->family);
1581 dump_stack();
1582 }
1583 }
1584 EXPORT_SYMBOL(neigh_table_init);
1585
1586 int neigh_table_clear(struct neigh_table *tbl)
1587 {
1588 struct neigh_table **tp;
1589
1590 /* It is not clean... Fix it to unload IPv6 module safely */
1591 cancel_delayed_work_sync(&tbl->gc_work);
1592 del_timer_sync(&tbl->proxy_timer);
1593 pneigh_queue_purge(&tbl->proxy_queue);
1594 neigh_ifdown(tbl, NULL);
1595 if (atomic_read(&tbl->entries))
1596 printk(KERN_CRIT "neighbour leakage\n");
1597 write_lock(&neigh_tbl_lock);
1598 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1599 if (*tp == tbl) {
1600 *tp = tbl->next;
1601 break;
1602 }
1603 }
1604 write_unlock(&neigh_tbl_lock);
1605
1606 call_rcu(&tbl->nht->rcu, neigh_hash_free_rcu);
1607 tbl->nht = NULL;
1608
1609 kfree(tbl->phash_buckets);
1610 tbl->phash_buckets = NULL;
1611
1612 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1613
1614 free_percpu(tbl->stats);
1615 tbl->stats = NULL;
1616
1617 kmem_cache_destroy(tbl->kmem_cachep);
1618 tbl->kmem_cachep = NULL;
1619
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(neigh_table_clear);
1623
1624 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1625 {
1626 struct net *net = sock_net(skb->sk);
1627 struct ndmsg *ndm;
1628 struct nlattr *dst_attr;
1629 struct neigh_table *tbl;
1630 struct net_device *dev = NULL;
1631 int err = -EINVAL;
1632
1633 ASSERT_RTNL();
1634 if (nlmsg_len(nlh) < sizeof(*ndm))
1635 goto out;
1636
1637 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1638 if (dst_attr == NULL)
1639 goto out;
1640
1641 ndm = nlmsg_data(nlh);
1642 if (ndm->ndm_ifindex) {
1643 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1644 if (dev == NULL) {
1645 err = -ENODEV;
1646 goto out;
1647 }
1648 }
1649
1650 read_lock(&neigh_tbl_lock);
1651 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1652 struct neighbour *neigh;
1653
1654 if (tbl->family != ndm->ndm_family)
1655 continue;
1656 read_unlock(&neigh_tbl_lock);
1657
1658 if (nla_len(dst_attr) < tbl->key_len)
1659 goto out;
1660
1661 if (ndm->ndm_flags & NTF_PROXY) {
1662 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1663 goto out;
1664 }
1665
1666 if (dev == NULL)
1667 goto out;
1668
1669 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1670 if (neigh == NULL) {
1671 err = -ENOENT;
1672 goto out;
1673 }
1674
1675 err = neigh_update(neigh, NULL, NUD_FAILED,
1676 NEIGH_UPDATE_F_OVERRIDE |
1677 NEIGH_UPDATE_F_ADMIN);
1678 neigh_release(neigh);
1679 goto out;
1680 }
1681 read_unlock(&neigh_tbl_lock);
1682 err = -EAFNOSUPPORT;
1683
1684 out:
1685 return err;
1686 }
1687
1688 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1689 {
1690 struct net *net = sock_net(skb->sk);
1691 struct ndmsg *ndm;
1692 struct nlattr *tb[NDA_MAX+1];
1693 struct neigh_table *tbl;
1694 struct net_device *dev = NULL;
1695 int err;
1696
1697 ASSERT_RTNL();
1698 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1699 if (err < 0)
1700 goto out;
1701
1702 err = -EINVAL;
1703 if (tb[NDA_DST] == NULL)
1704 goto out;
1705
1706 ndm = nlmsg_data(nlh);
1707 if (ndm->ndm_ifindex) {
1708 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1709 if (dev == NULL) {
1710 err = -ENODEV;
1711 goto out;
1712 }
1713
1714 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1715 goto out;
1716 }
1717
1718 read_lock(&neigh_tbl_lock);
1719 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1720 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1721 struct neighbour *neigh;
1722 void *dst, *lladdr;
1723
1724 if (tbl->family != ndm->ndm_family)
1725 continue;
1726 read_unlock(&neigh_tbl_lock);
1727
1728 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1729 goto out;
1730 dst = nla_data(tb[NDA_DST]);
1731 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1732
1733 if (ndm->ndm_flags & NTF_PROXY) {
1734 struct pneigh_entry *pn;
1735
1736 err = -ENOBUFS;
1737 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1738 if (pn) {
1739 pn->flags = ndm->ndm_flags;
1740 err = 0;
1741 }
1742 goto out;
1743 }
1744
1745 if (dev == NULL)
1746 goto out;
1747
1748 neigh = neigh_lookup(tbl, dst, dev);
1749 if (neigh == NULL) {
1750 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1751 err = -ENOENT;
1752 goto out;
1753 }
1754
1755 neigh = __neigh_lookup_errno(tbl, dst, dev);
1756 if (IS_ERR(neigh)) {
1757 err = PTR_ERR(neigh);
1758 goto out;
1759 }
1760 } else {
1761 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1762 err = -EEXIST;
1763 neigh_release(neigh);
1764 goto out;
1765 }
1766
1767 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1768 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1769 }
1770
1771 if (ndm->ndm_flags & NTF_USE) {
1772 neigh_event_send(neigh, NULL);
1773 err = 0;
1774 } else
1775 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1776 neigh_release(neigh);
1777 goto out;
1778 }
1779
1780 read_unlock(&neigh_tbl_lock);
1781 err = -EAFNOSUPPORT;
1782 out:
1783 return err;
1784 }
1785
1786 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1787 {
1788 struct nlattr *nest;
1789
1790 nest = nla_nest_start(skb, NDTA_PARMS);
1791 if (nest == NULL)
1792 return -ENOBUFS;
1793
1794 if (parms->dev)
1795 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1796
1797 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1798 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1799 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1800 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1801 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1802 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1803 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1804 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1805 parms->base_reachable_time);
1806 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1807 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1808 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1809 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1810 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1811 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1812
1813 return nla_nest_end(skb, nest);
1814
1815 nla_put_failure:
1816 nla_nest_cancel(skb, nest);
1817 return -EMSGSIZE;
1818 }
1819
1820 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1821 u32 pid, u32 seq, int type, int flags)
1822 {
1823 struct nlmsghdr *nlh;
1824 struct ndtmsg *ndtmsg;
1825
1826 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1827 if (nlh == NULL)
1828 return -EMSGSIZE;
1829
1830 ndtmsg = nlmsg_data(nlh);
1831
1832 read_lock_bh(&tbl->lock);
1833 ndtmsg->ndtm_family = tbl->family;
1834 ndtmsg->ndtm_pad1 = 0;
1835 ndtmsg->ndtm_pad2 = 0;
1836
1837 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1838 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1839 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1840 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1841 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1842
1843 {
1844 unsigned long now = jiffies;
1845 unsigned int flush_delta = now - tbl->last_flush;
1846 unsigned int rand_delta = now - tbl->last_rand;
1847 struct neigh_hash_table *nht;
1848 struct ndt_config ndc = {
1849 .ndtc_key_len = tbl->key_len,
1850 .ndtc_entry_size = tbl->entry_size,
1851 .ndtc_entries = atomic_read(&tbl->entries),
1852 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1853 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1854 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1855 };
1856
1857 rcu_read_lock_bh();
1858 nht = rcu_dereference_bh(tbl->nht);
1859 ndc.ndtc_hash_rnd = nht->hash_rnd;
1860 ndc.ndtc_hash_mask = nht->hash_mask;
1861 rcu_read_unlock_bh();
1862
1863 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1864 }
1865
1866 {
1867 int cpu;
1868 struct ndt_stats ndst;
1869
1870 memset(&ndst, 0, sizeof(ndst));
1871
1872 for_each_possible_cpu(cpu) {
1873 struct neigh_statistics *st;
1874
1875 st = per_cpu_ptr(tbl->stats, cpu);
1876 ndst.ndts_allocs += st->allocs;
1877 ndst.ndts_destroys += st->destroys;
1878 ndst.ndts_hash_grows += st->hash_grows;
1879 ndst.ndts_res_failed += st->res_failed;
1880 ndst.ndts_lookups += st->lookups;
1881 ndst.ndts_hits += st->hits;
1882 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1883 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1884 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1885 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1886 }
1887
1888 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1889 }
1890
1891 BUG_ON(tbl->parms.dev);
1892 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1893 goto nla_put_failure;
1894
1895 read_unlock_bh(&tbl->lock);
1896 return nlmsg_end(skb, nlh);
1897
1898 nla_put_failure:
1899 read_unlock_bh(&tbl->lock);
1900 nlmsg_cancel(skb, nlh);
1901 return -EMSGSIZE;
1902 }
1903
1904 static int neightbl_fill_param_info(struct sk_buff *skb,
1905 struct neigh_table *tbl,
1906 struct neigh_parms *parms,
1907 u32 pid, u32 seq, int type,
1908 unsigned int flags)
1909 {
1910 struct ndtmsg *ndtmsg;
1911 struct nlmsghdr *nlh;
1912
1913 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1914 if (nlh == NULL)
1915 return -EMSGSIZE;
1916
1917 ndtmsg = nlmsg_data(nlh);
1918
1919 read_lock_bh(&tbl->lock);
1920 ndtmsg->ndtm_family = tbl->family;
1921 ndtmsg->ndtm_pad1 = 0;
1922 ndtmsg->ndtm_pad2 = 0;
1923
1924 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1925 neightbl_fill_parms(skb, parms) < 0)
1926 goto errout;
1927
1928 read_unlock_bh(&tbl->lock);
1929 return nlmsg_end(skb, nlh);
1930 errout:
1931 read_unlock_bh(&tbl->lock);
1932 nlmsg_cancel(skb, nlh);
1933 return -EMSGSIZE;
1934 }
1935
1936 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1937 [NDTA_NAME] = { .type = NLA_STRING },
1938 [NDTA_THRESH1] = { .type = NLA_U32 },
1939 [NDTA_THRESH2] = { .type = NLA_U32 },
1940 [NDTA_THRESH3] = { .type = NLA_U32 },
1941 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1942 [NDTA_PARMS] = { .type = NLA_NESTED },
1943 };
1944
1945 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1946 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1947 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1948 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1949 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1950 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1951 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1952 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1953 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1954 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1955 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1956 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1957 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1958 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1959 };
1960
1961 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1962 {
1963 struct net *net = sock_net(skb->sk);
1964 struct neigh_table *tbl;
1965 struct ndtmsg *ndtmsg;
1966 struct nlattr *tb[NDTA_MAX+1];
1967 int err;
1968
1969 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1970 nl_neightbl_policy);
1971 if (err < 0)
1972 goto errout;
1973
1974 if (tb[NDTA_NAME] == NULL) {
1975 err = -EINVAL;
1976 goto errout;
1977 }
1978
1979 ndtmsg = nlmsg_data(nlh);
1980 read_lock(&neigh_tbl_lock);
1981 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1982 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1983 continue;
1984
1985 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1986 break;
1987 }
1988
1989 if (tbl == NULL) {
1990 err = -ENOENT;
1991 goto errout_locked;
1992 }
1993
1994 /*
1995 * We acquire tbl->lock to be nice to the periodic timers and
1996 * make sure they always see a consistent set of values.
1997 */
1998 write_lock_bh(&tbl->lock);
1999
2000 if (tb[NDTA_PARMS]) {
2001 struct nlattr *tbp[NDTPA_MAX+1];
2002 struct neigh_parms *p;
2003 int i, ifindex = 0;
2004
2005 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2006 nl_ntbl_parm_policy);
2007 if (err < 0)
2008 goto errout_tbl_lock;
2009
2010 if (tbp[NDTPA_IFINDEX])
2011 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2012
2013 p = lookup_neigh_parms(tbl, net, ifindex);
2014 if (p == NULL) {
2015 err = -ENOENT;
2016 goto errout_tbl_lock;
2017 }
2018
2019 for (i = 1; i <= NDTPA_MAX; i++) {
2020 if (tbp[i] == NULL)
2021 continue;
2022
2023 switch (i) {
2024 case NDTPA_QUEUE_LEN:
2025 p->queue_len = nla_get_u32(tbp[i]);
2026 break;
2027 case NDTPA_PROXY_QLEN:
2028 p->proxy_qlen = nla_get_u32(tbp[i]);
2029 break;
2030 case NDTPA_APP_PROBES:
2031 p->app_probes = nla_get_u32(tbp[i]);
2032 break;
2033 case NDTPA_UCAST_PROBES:
2034 p->ucast_probes = nla_get_u32(tbp[i]);
2035 break;
2036 case NDTPA_MCAST_PROBES:
2037 p->mcast_probes = nla_get_u32(tbp[i]);
2038 break;
2039 case NDTPA_BASE_REACHABLE_TIME:
2040 p->base_reachable_time = nla_get_msecs(tbp[i]);
2041 break;
2042 case NDTPA_GC_STALETIME:
2043 p->gc_staletime = nla_get_msecs(tbp[i]);
2044 break;
2045 case NDTPA_DELAY_PROBE_TIME:
2046 p->delay_probe_time = nla_get_msecs(tbp[i]);
2047 break;
2048 case NDTPA_RETRANS_TIME:
2049 p->retrans_time = nla_get_msecs(tbp[i]);
2050 break;
2051 case NDTPA_ANYCAST_DELAY:
2052 p->anycast_delay = nla_get_msecs(tbp[i]);
2053 break;
2054 case NDTPA_PROXY_DELAY:
2055 p->proxy_delay = nla_get_msecs(tbp[i]);
2056 break;
2057 case NDTPA_LOCKTIME:
2058 p->locktime = nla_get_msecs(tbp[i]);
2059 break;
2060 }
2061 }
2062 }
2063
2064 if (tb[NDTA_THRESH1])
2065 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2066
2067 if (tb[NDTA_THRESH2])
2068 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2069
2070 if (tb[NDTA_THRESH3])
2071 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2072
2073 if (tb[NDTA_GC_INTERVAL])
2074 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2075
2076 err = 0;
2077
2078 errout_tbl_lock:
2079 write_unlock_bh(&tbl->lock);
2080 errout_locked:
2081 read_unlock(&neigh_tbl_lock);
2082 errout:
2083 return err;
2084 }
2085
2086 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2087 {
2088 struct net *net = sock_net(skb->sk);
2089 int family, tidx, nidx = 0;
2090 int tbl_skip = cb->args[0];
2091 int neigh_skip = cb->args[1];
2092 struct neigh_table *tbl;
2093
2094 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2095
2096 read_lock(&neigh_tbl_lock);
2097 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2098 struct neigh_parms *p;
2099
2100 if (tidx < tbl_skip || (family && tbl->family != family))
2101 continue;
2102
2103 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2104 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2105 NLM_F_MULTI) <= 0)
2106 break;
2107
2108 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2109 if (!net_eq(neigh_parms_net(p), net))
2110 continue;
2111
2112 if (nidx < neigh_skip)
2113 goto next;
2114
2115 if (neightbl_fill_param_info(skb, tbl, p,
2116 NETLINK_CB(cb->skb).pid,
2117 cb->nlh->nlmsg_seq,
2118 RTM_NEWNEIGHTBL,
2119 NLM_F_MULTI) <= 0)
2120 goto out;
2121 next:
2122 nidx++;
2123 }
2124
2125 neigh_skip = 0;
2126 }
2127 out:
2128 read_unlock(&neigh_tbl_lock);
2129 cb->args[0] = tidx;
2130 cb->args[1] = nidx;
2131
2132 return skb->len;
2133 }
2134
2135 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2136 u32 pid, u32 seq, int type, unsigned int flags)
2137 {
2138 unsigned long now = jiffies;
2139 struct nda_cacheinfo ci;
2140 struct nlmsghdr *nlh;
2141 struct ndmsg *ndm;
2142
2143 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2144 if (nlh == NULL)
2145 return -EMSGSIZE;
2146
2147 ndm = nlmsg_data(nlh);
2148 ndm->ndm_family = neigh->ops->family;
2149 ndm->ndm_pad1 = 0;
2150 ndm->ndm_pad2 = 0;
2151 ndm->ndm_flags = neigh->flags;
2152 ndm->ndm_type = neigh->type;
2153 ndm->ndm_ifindex = neigh->dev->ifindex;
2154
2155 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2156
2157 read_lock_bh(&neigh->lock);
2158 ndm->ndm_state = neigh->nud_state;
2159 if (neigh->nud_state & NUD_VALID) {
2160 char haddr[MAX_ADDR_LEN];
2161
2162 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2163 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2164 read_unlock_bh(&neigh->lock);
2165 goto nla_put_failure;
2166 }
2167 }
2168
2169 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2170 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2171 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2172 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2173 read_unlock_bh(&neigh->lock);
2174
2175 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2176 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2177
2178 return nlmsg_end(skb, nlh);
2179
2180 nla_put_failure:
2181 nlmsg_cancel(skb, nlh);
2182 return -EMSGSIZE;
2183 }
2184
2185 static void neigh_update_notify(struct neighbour *neigh)
2186 {
2187 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2188 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2189 }
2190
2191 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2192 struct netlink_callback *cb)
2193 {
2194 struct net *net = sock_net(skb->sk);
2195 struct neighbour *n;
2196 int rc, h, s_h = cb->args[1];
2197 int idx, s_idx = idx = cb->args[2];
2198 struct neigh_hash_table *nht;
2199
2200 rcu_read_lock_bh();
2201 nht = rcu_dereference_bh(tbl->nht);
2202
2203 for (h = 0; h <= nht->hash_mask; h++) {
2204 if (h < s_h)
2205 continue;
2206 if (h > s_h)
2207 s_idx = 0;
2208 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2209 n != NULL;
2210 n = rcu_dereference_bh(n->next)) {
2211 if (!net_eq(dev_net(n->dev), net))
2212 continue;
2213 if (idx < s_idx)
2214 goto next;
2215 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2216 cb->nlh->nlmsg_seq,
2217 RTM_NEWNEIGH,
2218 NLM_F_MULTI) <= 0) {
2219 rc = -1;
2220 goto out;
2221 }
2222 next:
2223 idx++;
2224 }
2225 }
2226 rc = skb->len;
2227 out:
2228 rcu_read_unlock_bh();
2229 cb->args[1] = h;
2230 cb->args[2] = idx;
2231 return rc;
2232 }
2233
2234 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2235 {
2236 struct neigh_table *tbl;
2237 int t, family, s_t;
2238
2239 read_lock(&neigh_tbl_lock);
2240 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2241 s_t = cb->args[0];
2242
2243 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2244 if (t < s_t || (family && tbl->family != family))
2245 continue;
2246 if (t > s_t)
2247 memset(&cb->args[1], 0, sizeof(cb->args) -
2248 sizeof(cb->args[0]));
2249 if (neigh_dump_table(tbl, skb, cb) < 0)
2250 break;
2251 }
2252 read_unlock(&neigh_tbl_lock);
2253
2254 cb->args[0] = t;
2255 return skb->len;
2256 }
2257
2258 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2259 {
2260 int chain;
2261 struct neigh_hash_table *nht;
2262
2263 rcu_read_lock_bh();
2264 nht = rcu_dereference_bh(tbl->nht);
2265
2266 read_lock(&tbl->lock); /* avoid resizes */
2267 for (chain = 0; chain <= nht->hash_mask; chain++) {
2268 struct neighbour *n;
2269
2270 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2271 n != NULL;
2272 n = rcu_dereference_bh(n->next))
2273 cb(n, cookie);
2274 }
2275 read_unlock(&tbl->lock);
2276 rcu_read_unlock_bh();
2277 }
2278 EXPORT_SYMBOL(neigh_for_each);
2279
2280 /* The tbl->lock must be held as a writer and BH disabled. */
2281 void __neigh_for_each_release(struct neigh_table *tbl,
2282 int (*cb)(struct neighbour *))
2283 {
2284 int chain;
2285 struct neigh_hash_table *nht;
2286
2287 nht = rcu_dereference_protected(tbl->nht,
2288 lockdep_is_held(&tbl->lock));
2289 for (chain = 0; chain <= nht->hash_mask; chain++) {
2290 struct neighbour *n;
2291 struct neighbour __rcu **np;
2292
2293 np = &nht->hash_buckets[chain];
2294 while ((n = rcu_dereference_protected(*np,
2295 lockdep_is_held(&tbl->lock))) != NULL) {
2296 int release;
2297
2298 write_lock(&n->lock);
2299 release = cb(n);
2300 if (release) {
2301 rcu_assign_pointer(*np,
2302 rcu_dereference_protected(n->next,
2303 lockdep_is_held(&tbl->lock)));
2304 n->dead = 1;
2305 } else
2306 np = &n->next;
2307 write_unlock(&n->lock);
2308 if (release)
2309 neigh_cleanup_and_release(n);
2310 }
2311 }
2312 }
2313 EXPORT_SYMBOL(__neigh_for_each_release);
2314
2315 #ifdef CONFIG_PROC_FS
2316
2317 static struct neighbour *neigh_get_first(struct seq_file *seq)
2318 {
2319 struct neigh_seq_state *state = seq->private;
2320 struct net *net = seq_file_net(seq);
2321 struct neigh_hash_table *nht = state->nht;
2322 struct neighbour *n = NULL;
2323 int bucket = state->bucket;
2324
2325 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2326 for (bucket = 0; bucket <= nht->hash_mask; bucket++) {
2327 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2328
2329 while (n) {
2330 if (!net_eq(dev_net(n->dev), net))
2331 goto next;
2332 if (state->neigh_sub_iter) {
2333 loff_t fakep = 0;
2334 void *v;
2335
2336 v = state->neigh_sub_iter(state, n, &fakep);
2337 if (!v)
2338 goto next;
2339 }
2340 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2341 break;
2342 if (n->nud_state & ~NUD_NOARP)
2343 break;
2344 next:
2345 n = rcu_dereference_bh(n->next);
2346 }
2347
2348 if (n)
2349 break;
2350 }
2351 state->bucket = bucket;
2352
2353 return n;
2354 }
2355
2356 static struct neighbour *neigh_get_next(struct seq_file *seq,
2357 struct neighbour *n,
2358 loff_t *pos)
2359 {
2360 struct neigh_seq_state *state = seq->private;
2361 struct net *net = seq_file_net(seq);
2362 struct neigh_hash_table *nht = state->nht;
2363
2364 if (state->neigh_sub_iter) {
2365 void *v = state->neigh_sub_iter(state, n, pos);
2366 if (v)
2367 return n;
2368 }
2369 n = rcu_dereference_bh(n->next);
2370
2371 while (1) {
2372 while (n) {
2373 if (!net_eq(dev_net(n->dev), net))
2374 goto next;
2375 if (state->neigh_sub_iter) {
2376 void *v = state->neigh_sub_iter(state, n, pos);
2377 if (v)
2378 return n;
2379 goto next;
2380 }
2381 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2382 break;
2383
2384 if (n->nud_state & ~NUD_NOARP)
2385 break;
2386 next:
2387 n = rcu_dereference_bh(n->next);
2388 }
2389
2390 if (n)
2391 break;
2392
2393 if (++state->bucket > nht->hash_mask)
2394 break;
2395
2396 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2397 }
2398
2399 if (n && pos)
2400 --(*pos);
2401 return n;
2402 }
2403
2404 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2405 {
2406 struct neighbour *n = neigh_get_first(seq);
2407
2408 if (n) {
2409 --(*pos);
2410 while (*pos) {
2411 n = neigh_get_next(seq, n, pos);
2412 if (!n)
2413 break;
2414 }
2415 }
2416 return *pos ? NULL : n;
2417 }
2418
2419 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2420 {
2421 struct neigh_seq_state *state = seq->private;
2422 struct net *net = seq_file_net(seq);
2423 struct neigh_table *tbl = state->tbl;
2424 struct pneigh_entry *pn = NULL;
2425 int bucket = state->bucket;
2426
2427 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2428 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2429 pn = tbl->phash_buckets[bucket];
2430 while (pn && !net_eq(pneigh_net(pn), net))
2431 pn = pn->next;
2432 if (pn)
2433 break;
2434 }
2435 state->bucket = bucket;
2436
2437 return pn;
2438 }
2439
2440 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2441 struct pneigh_entry *pn,
2442 loff_t *pos)
2443 {
2444 struct neigh_seq_state *state = seq->private;
2445 struct net *net = seq_file_net(seq);
2446 struct neigh_table *tbl = state->tbl;
2447
2448 pn = pn->next;
2449 while (!pn) {
2450 if (++state->bucket > PNEIGH_HASHMASK)
2451 break;
2452 pn = tbl->phash_buckets[state->bucket];
2453 while (pn && !net_eq(pneigh_net(pn), net))
2454 pn = pn->next;
2455 if (pn)
2456 break;
2457 }
2458
2459 if (pn && pos)
2460 --(*pos);
2461
2462 return pn;
2463 }
2464
2465 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2466 {
2467 struct pneigh_entry *pn = pneigh_get_first(seq);
2468
2469 if (pn) {
2470 --(*pos);
2471 while (*pos) {
2472 pn = pneigh_get_next(seq, pn, pos);
2473 if (!pn)
2474 break;
2475 }
2476 }
2477 return *pos ? NULL : pn;
2478 }
2479
2480 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2481 {
2482 struct neigh_seq_state *state = seq->private;
2483 void *rc;
2484 loff_t idxpos = *pos;
2485
2486 rc = neigh_get_idx(seq, &idxpos);
2487 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2488 rc = pneigh_get_idx(seq, &idxpos);
2489
2490 return rc;
2491 }
2492
2493 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2494 __acquires(rcu_bh)
2495 {
2496 struct neigh_seq_state *state = seq->private;
2497
2498 state->tbl = tbl;
2499 state->bucket = 0;
2500 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2501
2502 rcu_read_lock_bh();
2503 state->nht = rcu_dereference_bh(tbl->nht);
2504
2505 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2506 }
2507 EXPORT_SYMBOL(neigh_seq_start);
2508
2509 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2510 {
2511 struct neigh_seq_state *state;
2512 void *rc;
2513
2514 if (v == SEQ_START_TOKEN) {
2515 rc = neigh_get_first(seq);
2516 goto out;
2517 }
2518
2519 state = seq->private;
2520 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2521 rc = neigh_get_next(seq, v, NULL);
2522 if (rc)
2523 goto out;
2524 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2525 rc = pneigh_get_first(seq);
2526 } else {
2527 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2528 rc = pneigh_get_next(seq, v, NULL);
2529 }
2530 out:
2531 ++(*pos);
2532 return rc;
2533 }
2534 EXPORT_SYMBOL(neigh_seq_next);
2535
2536 void neigh_seq_stop(struct seq_file *seq, void *v)
2537 __releases(rcu_bh)
2538 {
2539 rcu_read_unlock_bh();
2540 }
2541 EXPORT_SYMBOL(neigh_seq_stop);
2542
2543 /* statistics via seq_file */
2544
2545 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2546 {
2547 struct neigh_table *tbl = seq->private;
2548 int cpu;
2549
2550 if (*pos == 0)
2551 return SEQ_START_TOKEN;
2552
2553 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2554 if (!cpu_possible(cpu))
2555 continue;
2556 *pos = cpu+1;
2557 return per_cpu_ptr(tbl->stats, cpu);
2558 }
2559 return NULL;
2560 }
2561
2562 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563 {
2564 struct neigh_table *tbl = seq->private;
2565 int cpu;
2566
2567 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2568 if (!cpu_possible(cpu))
2569 continue;
2570 *pos = cpu+1;
2571 return per_cpu_ptr(tbl->stats, cpu);
2572 }
2573 return NULL;
2574 }
2575
2576 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2577 {
2578
2579 }
2580
2581 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2582 {
2583 struct neigh_table *tbl = seq->private;
2584 struct neigh_statistics *st = v;
2585
2586 if (v == SEQ_START_TOKEN) {
2587 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2588 return 0;
2589 }
2590
2591 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2592 "%08lx %08lx %08lx %08lx %08lx\n",
2593 atomic_read(&tbl->entries),
2594
2595 st->allocs,
2596 st->destroys,
2597 st->hash_grows,
2598
2599 st->lookups,
2600 st->hits,
2601
2602 st->res_failed,
2603
2604 st->rcv_probes_mcast,
2605 st->rcv_probes_ucast,
2606
2607 st->periodic_gc_runs,
2608 st->forced_gc_runs,
2609 st->unres_discards
2610 );
2611
2612 return 0;
2613 }
2614
2615 static const struct seq_operations neigh_stat_seq_ops = {
2616 .start = neigh_stat_seq_start,
2617 .next = neigh_stat_seq_next,
2618 .stop = neigh_stat_seq_stop,
2619 .show = neigh_stat_seq_show,
2620 };
2621
2622 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2623 {
2624 int ret = seq_open(file, &neigh_stat_seq_ops);
2625
2626 if (!ret) {
2627 struct seq_file *sf = file->private_data;
2628 sf->private = PDE(inode)->data;
2629 }
2630 return ret;
2631 };
2632
2633 static const struct file_operations neigh_stat_seq_fops = {
2634 .owner = THIS_MODULE,
2635 .open = neigh_stat_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
2638 .release = seq_release,
2639 };
2640
2641 #endif /* CONFIG_PROC_FS */
2642
2643 static inline size_t neigh_nlmsg_size(void)
2644 {
2645 return NLMSG_ALIGN(sizeof(struct ndmsg))
2646 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2647 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2648 + nla_total_size(sizeof(struct nda_cacheinfo))
2649 + nla_total_size(4); /* NDA_PROBES */
2650 }
2651
2652 static void __neigh_notify(struct neighbour *n, int type, int flags)
2653 {
2654 struct net *net = dev_net(n->dev);
2655 struct sk_buff *skb;
2656 int err = -ENOBUFS;
2657
2658 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2659 if (skb == NULL)
2660 goto errout;
2661
2662 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2663 if (err < 0) {
2664 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2665 WARN_ON(err == -EMSGSIZE);
2666 kfree_skb(skb);
2667 goto errout;
2668 }
2669 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2670 return;
2671 errout:
2672 if (err < 0)
2673 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2674 }
2675
2676 #ifdef CONFIG_ARPD
2677 void neigh_app_ns(struct neighbour *n)
2678 {
2679 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2680 }
2681 EXPORT_SYMBOL(neigh_app_ns);
2682 #endif /* CONFIG_ARPD */
2683
2684 #ifdef CONFIG_SYSCTL
2685
2686 #define NEIGH_VARS_MAX 19
2687
2688 static struct neigh_sysctl_table {
2689 struct ctl_table_header *sysctl_header;
2690 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2691 char *dev_name;
2692 } neigh_sysctl_template __read_mostly = {
2693 .neigh_vars = {
2694 {
2695 .procname = "mcast_solicit",
2696 .maxlen = sizeof(int),
2697 .mode = 0644,
2698 .proc_handler = proc_dointvec,
2699 },
2700 {
2701 .procname = "ucast_solicit",
2702 .maxlen = sizeof(int),
2703 .mode = 0644,
2704 .proc_handler = proc_dointvec,
2705 },
2706 {
2707 .procname = "app_solicit",
2708 .maxlen = sizeof(int),
2709 .mode = 0644,
2710 .proc_handler = proc_dointvec,
2711 },
2712 {
2713 .procname = "retrans_time",
2714 .maxlen = sizeof(int),
2715 .mode = 0644,
2716 .proc_handler = proc_dointvec_userhz_jiffies,
2717 },
2718 {
2719 .procname = "base_reachable_time",
2720 .maxlen = sizeof(int),
2721 .mode = 0644,
2722 .proc_handler = proc_dointvec_jiffies,
2723 },
2724 {
2725 .procname = "delay_first_probe_time",
2726 .maxlen = sizeof(int),
2727 .mode = 0644,
2728 .proc_handler = proc_dointvec_jiffies,
2729 },
2730 {
2731 .procname = "gc_stale_time",
2732 .maxlen = sizeof(int),
2733 .mode = 0644,
2734 .proc_handler = proc_dointvec_jiffies,
2735 },
2736 {
2737 .procname = "unres_qlen",
2738 .maxlen = sizeof(int),
2739 .mode = 0644,
2740 .proc_handler = proc_dointvec,
2741 },
2742 {
2743 .procname = "proxy_qlen",
2744 .maxlen = sizeof(int),
2745 .mode = 0644,
2746 .proc_handler = proc_dointvec,
2747 },
2748 {
2749 .procname = "anycast_delay",
2750 .maxlen = sizeof(int),
2751 .mode = 0644,
2752 .proc_handler = proc_dointvec_userhz_jiffies,
2753 },
2754 {
2755 .procname = "proxy_delay",
2756 .maxlen = sizeof(int),
2757 .mode = 0644,
2758 .proc_handler = proc_dointvec_userhz_jiffies,
2759 },
2760 {
2761 .procname = "locktime",
2762 .maxlen = sizeof(int),
2763 .mode = 0644,
2764 .proc_handler = proc_dointvec_userhz_jiffies,
2765 },
2766 {
2767 .procname = "retrans_time_ms",
2768 .maxlen = sizeof(int),
2769 .mode = 0644,
2770 .proc_handler = proc_dointvec_ms_jiffies,
2771 },
2772 {
2773 .procname = "base_reachable_time_ms",
2774 .maxlen = sizeof(int),
2775 .mode = 0644,
2776 .proc_handler = proc_dointvec_ms_jiffies,
2777 },
2778 {
2779 .procname = "gc_interval",
2780 .maxlen = sizeof(int),
2781 .mode = 0644,
2782 .proc_handler = proc_dointvec_jiffies,
2783 },
2784 {
2785 .procname = "gc_thresh1",
2786 .maxlen = sizeof(int),
2787 .mode = 0644,
2788 .proc_handler = proc_dointvec,
2789 },
2790 {
2791 .procname = "gc_thresh2",
2792 .maxlen = sizeof(int),
2793 .mode = 0644,
2794 .proc_handler = proc_dointvec,
2795 },
2796 {
2797 .procname = "gc_thresh3",
2798 .maxlen = sizeof(int),
2799 .mode = 0644,
2800 .proc_handler = proc_dointvec,
2801 },
2802 {},
2803 },
2804 };
2805
2806 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2807 char *p_name, proc_handler *handler)
2808 {
2809 struct neigh_sysctl_table *t;
2810 const char *dev_name_source = NULL;
2811
2812 #define NEIGH_CTL_PATH_ROOT 0
2813 #define NEIGH_CTL_PATH_PROTO 1
2814 #define NEIGH_CTL_PATH_NEIGH 2
2815 #define NEIGH_CTL_PATH_DEV 3
2816
2817 struct ctl_path neigh_path[] = {
2818 { .procname = "net", },
2819 { .procname = "proto", },
2820 { .procname = "neigh", },
2821 { .procname = "default", },
2822 { },
2823 };
2824
2825 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2826 if (!t)
2827 goto err;
2828
2829 t->neigh_vars[0].data = &p->mcast_probes;
2830 t->neigh_vars[1].data = &p->ucast_probes;
2831 t->neigh_vars[2].data = &p->app_probes;
2832 t->neigh_vars[3].data = &p->retrans_time;
2833 t->neigh_vars[4].data = &p->base_reachable_time;
2834 t->neigh_vars[5].data = &p->delay_probe_time;
2835 t->neigh_vars[6].data = &p->gc_staletime;
2836 t->neigh_vars[7].data = &p->queue_len;
2837 t->neigh_vars[8].data = &p->proxy_qlen;
2838 t->neigh_vars[9].data = &p->anycast_delay;
2839 t->neigh_vars[10].data = &p->proxy_delay;
2840 t->neigh_vars[11].data = &p->locktime;
2841 t->neigh_vars[12].data = &p->retrans_time;
2842 t->neigh_vars[13].data = &p->base_reachable_time;
2843
2844 if (dev) {
2845 dev_name_source = dev->name;
2846 /* Terminate the table early */
2847 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2848 } else {
2849 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2850 t->neigh_vars[14].data = (int *)(p + 1);
2851 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2852 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2853 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2854 }
2855
2856
2857 if (handler) {
2858 /* RetransTime */
2859 t->neigh_vars[3].proc_handler = handler;
2860 t->neigh_vars[3].extra1 = dev;
2861 /* ReachableTime */
2862 t->neigh_vars[4].proc_handler = handler;
2863 t->neigh_vars[4].extra1 = dev;
2864 /* RetransTime (in milliseconds)*/
2865 t->neigh_vars[12].proc_handler = handler;
2866 t->neigh_vars[12].extra1 = dev;
2867 /* ReachableTime (in milliseconds) */
2868 t->neigh_vars[13].proc_handler = handler;
2869 t->neigh_vars[13].extra1 = dev;
2870 }
2871
2872 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2873 if (!t->dev_name)
2874 goto free;
2875
2876 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2877 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2878
2879 t->sysctl_header =
2880 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2881 if (!t->sysctl_header)
2882 goto free_procname;
2883
2884 p->sysctl_table = t;
2885 return 0;
2886
2887 free_procname:
2888 kfree(t->dev_name);
2889 free:
2890 kfree(t);
2891 err:
2892 return -ENOBUFS;
2893 }
2894 EXPORT_SYMBOL(neigh_sysctl_register);
2895
2896 void neigh_sysctl_unregister(struct neigh_parms *p)
2897 {
2898 if (p->sysctl_table) {
2899 struct neigh_sysctl_table *t = p->sysctl_table;
2900 p->sysctl_table = NULL;
2901 unregister_sysctl_table(t->sysctl_header);
2902 kfree(t->dev_name);
2903 kfree(t);
2904 }
2905 }
2906 EXPORT_SYMBOL(neigh_sysctl_unregister);
2907
2908 #endif /* CONFIG_SYSCTL */
2909
2910 static int __init neigh_init(void)
2911 {
2912 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2913 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2914 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2915
2916 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2917 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2918
2919 return 0;
2920 }
2921
2922 subsys_initcall(neigh_init);
2923
This page took 0.122505 seconds and 5 git commands to generate.