spi: meson: Constify struct regmap_config
[deliverable/linux.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 #include <linux/inetdevice.h>
42 #include <net/addrconf.h>
43
44 #define DEBUG
45 #define NEIGH_DEBUG 1
46 #define neigh_dbg(level, fmt, ...) \
47 do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50 } while (0)
51
52 #define PNEIGH_HASHMASK 0xF
53
54 static void neigh_timer_handler(unsigned long arg);
55 static void __neigh_notify(struct neighbour *n, int type, int flags);
56 static void neigh_update_notify(struct neighbour *neigh);
57 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
58
59 #ifdef CONFIG_PROC_FS
60 static const struct file_operations neigh_stat_seq_fops;
61 #endif
62
63 /*
64 Neighbour hash table buckets are protected with rwlock tbl->lock.
65
66 - All the scans/updates to hash buckets MUST be made under this lock.
67 - NOTHING clever should be made under this lock: no callbacks
68 to protocol backends, no attempts to send something to network.
69 It will result in deadlocks, if backend/driver wants to use neighbour
70 cache.
71 - If the entry requires some non-trivial actions, increase
72 its reference count and release table lock.
73
74 Neighbour entries are protected:
75 - with reference count.
76 - with rwlock neigh->lock
77
78 Reference count prevents destruction.
79
80 neigh->lock mainly serializes ll address data and its validity state.
81 However, the same lock is used to protect another entry fields:
82 - timer
83 - resolution queue
84
85 Again, nothing clever shall be made under neigh->lock,
86 the most complicated procedure, which we allow is dev->hard_header.
87 It is supposed, that dev->hard_header is simplistic and does
88 not make callbacks to neighbour tables.
89 */
90
91 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
92 {
93 kfree_skb(skb);
94 return -ENETDOWN;
95 }
96
97 static void neigh_cleanup_and_release(struct neighbour *neigh)
98 {
99 if (neigh->parms->neigh_cleanup)
100 neigh->parms->neigh_cleanup(neigh);
101
102 __neigh_notify(neigh, RTM_DELNEIGH, 0);
103 neigh_release(neigh);
104 }
105
106 /*
107 * It is random distribution in the interval (1/2)*base...(3/2)*base.
108 * It corresponds to default IPv6 settings and is not overridable,
109 * because it is really reasonable choice.
110 */
111
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 return base ? (prandom_u32() % base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117
118
119 static int neigh_forced_gc(struct neigh_table *tbl)
120 {
121 int shrunk = 0;
122 int i;
123 struct neigh_hash_table *nht;
124
125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
126
127 write_lock_bh(&tbl->lock);
128 nht = rcu_dereference_protected(tbl->nht,
129 lockdep_is_held(&tbl->lock));
130 for (i = 0; i < (1 << nht->hash_shift); i++) {
131 struct neighbour *n;
132 struct neighbour __rcu **np;
133
134 np = &nht->hash_buckets[i];
135 while ((n = rcu_dereference_protected(*np,
136 lockdep_is_held(&tbl->lock))) != NULL) {
137 /* Neighbour record may be discarded if:
138 * - nobody refers to it.
139 * - it is not permanent
140 */
141 write_lock(&n->lock);
142 if (atomic_read(&n->refcnt) == 1 &&
143 !(n->nud_state & NUD_PERMANENT)) {
144 rcu_assign_pointer(*np,
145 rcu_dereference_protected(n->next,
146 lockdep_is_held(&tbl->lock)));
147 n->dead = 1;
148 shrunk = 1;
149 write_unlock(&n->lock);
150 neigh_cleanup_and_release(n);
151 continue;
152 }
153 write_unlock(&n->lock);
154 np = &n->next;
155 }
156 }
157
158 tbl->last_flush = jiffies;
159
160 write_unlock_bh(&tbl->lock);
161
162 return shrunk;
163 }
164
165 static void neigh_add_timer(struct neighbour *n, unsigned long when)
166 {
167 neigh_hold(n);
168 if (unlikely(mod_timer(&n->timer, when))) {
169 printk("NEIGH: BUG, double timer add, state is %x\n",
170 n->nud_state);
171 dump_stack();
172 }
173 }
174
175 static int neigh_del_timer(struct neighbour *n)
176 {
177 if ((n->nud_state & NUD_IN_TIMER) &&
178 del_timer(&n->timer)) {
179 neigh_release(n);
180 return 1;
181 }
182 return 0;
183 }
184
185 static void pneigh_queue_purge(struct sk_buff_head *list)
186 {
187 struct sk_buff *skb;
188
189 while ((skb = skb_dequeue(list)) != NULL) {
190 dev_put(skb->dev);
191 kfree_skb(skb);
192 }
193 }
194
195 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
196 {
197 int i;
198 struct neigh_hash_table *nht;
199
200 nht = rcu_dereference_protected(tbl->nht,
201 lockdep_is_held(&tbl->lock));
202
203 for (i = 0; i < (1 << nht->hash_shift); i++) {
204 struct neighbour *n;
205 struct neighbour __rcu **np = &nht->hash_buckets[i];
206
207 while ((n = rcu_dereference_protected(*np,
208 lockdep_is_held(&tbl->lock))) != NULL) {
209 if (dev && n->dev != dev) {
210 np = &n->next;
211 continue;
212 }
213 rcu_assign_pointer(*np,
214 rcu_dereference_protected(n->next,
215 lockdep_is_held(&tbl->lock)));
216 write_lock(&n->lock);
217 neigh_del_timer(n);
218 n->dead = 1;
219
220 if (atomic_read(&n->refcnt) != 1) {
221 /* The most unpleasant situation.
222 We must destroy neighbour entry,
223 but someone still uses it.
224
225 The destroy will be delayed until
226 the last user releases us, but
227 we must kill timers etc. and move
228 it to safe state.
229 */
230 __skb_queue_purge(&n->arp_queue);
231 n->arp_queue_len_bytes = 0;
232 n->output = neigh_blackhole;
233 if (n->nud_state & NUD_VALID)
234 n->nud_state = NUD_NOARP;
235 else
236 n->nud_state = NUD_NONE;
237 neigh_dbg(2, "neigh %p is stray\n", n);
238 }
239 write_unlock(&n->lock);
240 neigh_cleanup_and_release(n);
241 }
242 }
243 }
244
245 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 write_unlock_bh(&tbl->lock);
250 }
251 EXPORT_SYMBOL(neigh_changeaddr);
252
253 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
254 {
255 write_lock_bh(&tbl->lock);
256 neigh_flush_dev(tbl, dev);
257 pneigh_ifdown(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259
260 del_timer_sync(&tbl->proxy_timer);
261 pneigh_queue_purge(&tbl->proxy_queue);
262 return 0;
263 }
264 EXPORT_SYMBOL(neigh_ifdown);
265
266 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
267 {
268 struct neighbour *n = NULL;
269 unsigned long now = jiffies;
270 int entries;
271
272 entries = atomic_inc_return(&tbl->entries) - 1;
273 if (entries >= tbl->gc_thresh3 ||
274 (entries >= tbl->gc_thresh2 &&
275 time_after(now, tbl->last_flush + 5 * HZ))) {
276 if (!neigh_forced_gc(tbl) &&
277 entries >= tbl->gc_thresh3)
278 goto out_entries;
279 }
280
281 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
282 if (!n)
283 goto out_entries;
284
285 __skb_queue_head_init(&n->arp_queue);
286 rwlock_init(&n->lock);
287 seqlock_init(&n->ha_lock);
288 n->updated = n->used = now;
289 n->nud_state = NUD_NONE;
290 n->output = neigh_blackhole;
291 seqlock_init(&n->hh.hh_lock);
292 n->parms = neigh_parms_clone(&tbl->parms);
293 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
294
295 NEIGH_CACHE_STAT_INC(tbl, allocs);
296 n->tbl = tbl;
297 atomic_set(&n->refcnt, 1);
298 n->dead = 1;
299 out:
300 return n;
301
302 out_entries:
303 atomic_dec(&tbl->entries);
304 goto out;
305 }
306
307 static void neigh_get_hash_rnd(u32 *x)
308 {
309 get_random_bytes(x, sizeof(*x));
310 *x |= 1;
311 }
312
313 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
314 {
315 size_t size = (1 << shift) * sizeof(struct neighbour *);
316 struct neigh_hash_table *ret;
317 struct neighbour __rcu **buckets;
318 int i;
319
320 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
321 if (!ret)
322 return NULL;
323 if (size <= PAGE_SIZE)
324 buckets = kzalloc(size, GFP_ATOMIC);
325 else
326 buckets = (struct neighbour __rcu **)
327 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
328 get_order(size));
329 if (!buckets) {
330 kfree(ret);
331 return NULL;
332 }
333 ret->hash_buckets = buckets;
334 ret->hash_shift = shift;
335 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
336 neigh_get_hash_rnd(&ret->hash_rnd[i]);
337 return ret;
338 }
339
340 static void neigh_hash_free_rcu(struct rcu_head *head)
341 {
342 struct neigh_hash_table *nht = container_of(head,
343 struct neigh_hash_table,
344 rcu);
345 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
346 struct neighbour __rcu **buckets = nht->hash_buckets;
347
348 if (size <= PAGE_SIZE)
349 kfree(buckets);
350 else
351 free_pages((unsigned long)buckets, get_order(size));
352 kfree(nht);
353 }
354
355 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
356 unsigned long new_shift)
357 {
358 unsigned int i, hash;
359 struct neigh_hash_table *new_nht, *old_nht;
360
361 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
362
363 old_nht = rcu_dereference_protected(tbl->nht,
364 lockdep_is_held(&tbl->lock));
365 new_nht = neigh_hash_alloc(new_shift);
366 if (!new_nht)
367 return old_nht;
368
369 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
370 struct neighbour *n, *next;
371
372 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
373 lockdep_is_held(&tbl->lock));
374 n != NULL;
375 n = next) {
376 hash = tbl->hash(n->primary_key, n->dev,
377 new_nht->hash_rnd);
378
379 hash >>= (32 - new_nht->hash_shift);
380 next = rcu_dereference_protected(n->next,
381 lockdep_is_held(&tbl->lock));
382
383 rcu_assign_pointer(n->next,
384 rcu_dereference_protected(
385 new_nht->hash_buckets[hash],
386 lockdep_is_held(&tbl->lock)));
387 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
388 }
389 }
390
391 rcu_assign_pointer(tbl->nht, new_nht);
392 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
393 return new_nht;
394 }
395
396 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
397 struct net_device *dev)
398 {
399 struct neighbour *n;
400 int key_len = tbl->key_len;
401 u32 hash_val;
402 struct neigh_hash_table *nht;
403
404 NEIGH_CACHE_STAT_INC(tbl, lookups);
405
406 rcu_read_lock_bh();
407 nht = rcu_dereference_bh(tbl->nht);
408 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
409
410 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
411 n != NULL;
412 n = rcu_dereference_bh(n->next)) {
413 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
414 if (!atomic_inc_not_zero(&n->refcnt))
415 n = NULL;
416 NEIGH_CACHE_STAT_INC(tbl, hits);
417 break;
418 }
419 }
420
421 rcu_read_unlock_bh();
422 return n;
423 }
424 EXPORT_SYMBOL(neigh_lookup);
425
426 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
427 const void *pkey)
428 {
429 struct neighbour *n;
430 int key_len = tbl->key_len;
431 u32 hash_val;
432 struct neigh_hash_table *nht;
433
434 NEIGH_CACHE_STAT_INC(tbl, lookups);
435
436 rcu_read_lock_bh();
437 nht = rcu_dereference_bh(tbl->nht);
438 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
439
440 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
441 n != NULL;
442 n = rcu_dereference_bh(n->next)) {
443 if (!memcmp(n->primary_key, pkey, key_len) &&
444 net_eq(dev_net(n->dev), net)) {
445 if (!atomic_inc_not_zero(&n->refcnt))
446 n = NULL;
447 NEIGH_CACHE_STAT_INC(tbl, hits);
448 break;
449 }
450 }
451
452 rcu_read_unlock_bh();
453 return n;
454 }
455 EXPORT_SYMBOL(neigh_lookup_nodev);
456
457 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
458 struct net_device *dev, bool want_ref)
459 {
460 u32 hash_val;
461 int key_len = tbl->key_len;
462 int error;
463 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
464 struct neigh_hash_table *nht;
465
466 if (!n) {
467 rc = ERR_PTR(-ENOBUFS);
468 goto out;
469 }
470
471 memcpy(n->primary_key, pkey, key_len);
472 n->dev = dev;
473 dev_hold(dev);
474
475 /* Protocol specific setup. */
476 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
477 rc = ERR_PTR(error);
478 goto out_neigh_release;
479 }
480
481 if (dev->netdev_ops->ndo_neigh_construct) {
482 error = dev->netdev_ops->ndo_neigh_construct(n);
483 if (error < 0) {
484 rc = ERR_PTR(error);
485 goto out_neigh_release;
486 }
487 }
488
489 /* Device specific setup. */
490 if (n->parms->neigh_setup &&
491 (error = n->parms->neigh_setup(n)) < 0) {
492 rc = ERR_PTR(error);
493 goto out_neigh_release;
494 }
495
496 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
497
498 write_lock_bh(&tbl->lock);
499 nht = rcu_dereference_protected(tbl->nht,
500 lockdep_is_held(&tbl->lock));
501
502 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
503 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
504
505 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
506
507 if (n->parms->dead) {
508 rc = ERR_PTR(-EINVAL);
509 goto out_tbl_unlock;
510 }
511
512 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
513 lockdep_is_held(&tbl->lock));
514 n1 != NULL;
515 n1 = rcu_dereference_protected(n1->next,
516 lockdep_is_held(&tbl->lock))) {
517 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
518 if (want_ref)
519 neigh_hold(n1);
520 rc = n1;
521 goto out_tbl_unlock;
522 }
523 }
524
525 n->dead = 0;
526 if (want_ref)
527 neigh_hold(n);
528 rcu_assign_pointer(n->next,
529 rcu_dereference_protected(nht->hash_buckets[hash_val],
530 lockdep_is_held(&tbl->lock)));
531 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
532 write_unlock_bh(&tbl->lock);
533 neigh_dbg(2, "neigh %p is created\n", n);
534 rc = n;
535 out:
536 return rc;
537 out_tbl_unlock:
538 write_unlock_bh(&tbl->lock);
539 out_neigh_release:
540 neigh_release(n);
541 goto out;
542 }
543 EXPORT_SYMBOL(__neigh_create);
544
545 static u32 pneigh_hash(const void *pkey, int key_len)
546 {
547 u32 hash_val = *(u32 *)(pkey + key_len - 4);
548 hash_val ^= (hash_val >> 16);
549 hash_val ^= hash_val >> 8;
550 hash_val ^= hash_val >> 4;
551 hash_val &= PNEIGH_HASHMASK;
552 return hash_val;
553 }
554
555 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
556 struct net *net,
557 const void *pkey,
558 int key_len,
559 struct net_device *dev)
560 {
561 while (n) {
562 if (!memcmp(n->key, pkey, key_len) &&
563 net_eq(pneigh_net(n), net) &&
564 (n->dev == dev || !n->dev))
565 return n;
566 n = n->next;
567 }
568 return NULL;
569 }
570
571 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
572 struct net *net, const void *pkey, struct net_device *dev)
573 {
574 int key_len = tbl->key_len;
575 u32 hash_val = pneigh_hash(pkey, key_len);
576
577 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
578 net, pkey, key_len, dev);
579 }
580 EXPORT_SYMBOL_GPL(__pneigh_lookup);
581
582 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
583 struct net *net, const void *pkey,
584 struct net_device *dev, int creat)
585 {
586 struct pneigh_entry *n;
587 int key_len = tbl->key_len;
588 u32 hash_val = pneigh_hash(pkey, key_len);
589
590 read_lock_bh(&tbl->lock);
591 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
592 net, pkey, key_len, dev);
593 read_unlock_bh(&tbl->lock);
594
595 if (n || !creat)
596 goto out;
597
598 ASSERT_RTNL();
599
600 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
601 if (!n)
602 goto out;
603
604 write_pnet(&n->net, hold_net(net));
605 memcpy(n->key, pkey, key_len);
606 n->dev = dev;
607 if (dev)
608 dev_hold(dev);
609
610 if (tbl->pconstructor && tbl->pconstructor(n)) {
611 if (dev)
612 dev_put(dev);
613 release_net(net);
614 kfree(n);
615 n = NULL;
616 goto out;
617 }
618
619 write_lock_bh(&tbl->lock);
620 n->next = tbl->phash_buckets[hash_val];
621 tbl->phash_buckets[hash_val] = n;
622 write_unlock_bh(&tbl->lock);
623 out:
624 return n;
625 }
626 EXPORT_SYMBOL(pneigh_lookup);
627
628
629 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
630 struct net_device *dev)
631 {
632 struct pneigh_entry *n, **np;
633 int key_len = tbl->key_len;
634 u32 hash_val = pneigh_hash(pkey, key_len);
635
636 write_lock_bh(&tbl->lock);
637 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
638 np = &n->next) {
639 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
640 net_eq(pneigh_net(n), net)) {
641 *np = n->next;
642 write_unlock_bh(&tbl->lock);
643 if (tbl->pdestructor)
644 tbl->pdestructor(n);
645 if (n->dev)
646 dev_put(n->dev);
647 release_net(pneigh_net(n));
648 kfree(n);
649 return 0;
650 }
651 }
652 write_unlock_bh(&tbl->lock);
653 return -ENOENT;
654 }
655
656 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
657 {
658 struct pneigh_entry *n, **np;
659 u32 h;
660
661 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
662 np = &tbl->phash_buckets[h];
663 while ((n = *np) != NULL) {
664 if (!dev || n->dev == dev) {
665 *np = n->next;
666 if (tbl->pdestructor)
667 tbl->pdestructor(n);
668 if (n->dev)
669 dev_put(n->dev);
670 release_net(pneigh_net(n));
671 kfree(n);
672 continue;
673 }
674 np = &n->next;
675 }
676 }
677 return -ENOENT;
678 }
679
680 static void neigh_parms_destroy(struct neigh_parms *parms);
681
682 static inline void neigh_parms_put(struct neigh_parms *parms)
683 {
684 if (atomic_dec_and_test(&parms->refcnt))
685 neigh_parms_destroy(parms);
686 }
687
688 /*
689 * neighbour must already be out of the table;
690 *
691 */
692 void neigh_destroy(struct neighbour *neigh)
693 {
694 struct net_device *dev = neigh->dev;
695
696 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
697
698 if (!neigh->dead) {
699 pr_warn("Destroying alive neighbour %p\n", neigh);
700 dump_stack();
701 return;
702 }
703
704 if (neigh_del_timer(neigh))
705 pr_warn("Impossible event\n");
706
707 write_lock_bh(&neigh->lock);
708 __skb_queue_purge(&neigh->arp_queue);
709 write_unlock_bh(&neigh->lock);
710 neigh->arp_queue_len_bytes = 0;
711
712 if (dev->netdev_ops->ndo_neigh_destroy)
713 dev->netdev_ops->ndo_neigh_destroy(neigh);
714
715 dev_put(dev);
716 neigh_parms_put(neigh->parms);
717
718 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
719
720 atomic_dec(&neigh->tbl->entries);
721 kfree_rcu(neigh, rcu);
722 }
723 EXPORT_SYMBOL(neigh_destroy);
724
725 /* Neighbour state is suspicious;
726 disable fast path.
727
728 Called with write_locked neigh.
729 */
730 static void neigh_suspect(struct neighbour *neigh)
731 {
732 neigh_dbg(2, "neigh %p is suspected\n", neigh);
733
734 neigh->output = neigh->ops->output;
735 }
736
737 /* Neighbour state is OK;
738 enable fast path.
739
740 Called with write_locked neigh.
741 */
742 static void neigh_connect(struct neighbour *neigh)
743 {
744 neigh_dbg(2, "neigh %p is connected\n", neigh);
745
746 neigh->output = neigh->ops->connected_output;
747 }
748
749 static void neigh_periodic_work(struct work_struct *work)
750 {
751 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
752 struct neighbour *n;
753 struct neighbour __rcu **np;
754 unsigned int i;
755 struct neigh_hash_table *nht;
756
757 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
758
759 write_lock_bh(&tbl->lock);
760 nht = rcu_dereference_protected(tbl->nht,
761 lockdep_is_held(&tbl->lock));
762
763 /*
764 * periodically recompute ReachableTime from random function
765 */
766
767 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
768 struct neigh_parms *p;
769 tbl->last_rand = jiffies;
770 list_for_each_entry(p, &tbl->parms_list, list)
771 p->reachable_time =
772 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
773 }
774
775 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
776 goto out;
777
778 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
779 np = &nht->hash_buckets[i];
780
781 while ((n = rcu_dereference_protected(*np,
782 lockdep_is_held(&tbl->lock))) != NULL) {
783 unsigned int state;
784
785 write_lock(&n->lock);
786
787 state = n->nud_state;
788 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
789 write_unlock(&n->lock);
790 goto next_elt;
791 }
792
793 if (time_before(n->used, n->confirmed))
794 n->used = n->confirmed;
795
796 if (atomic_read(&n->refcnt) == 1 &&
797 (state == NUD_FAILED ||
798 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
799 *np = n->next;
800 n->dead = 1;
801 write_unlock(&n->lock);
802 neigh_cleanup_and_release(n);
803 continue;
804 }
805 write_unlock(&n->lock);
806
807 next_elt:
808 np = &n->next;
809 }
810 /*
811 * It's fine to release lock here, even if hash table
812 * grows while we are preempted.
813 */
814 write_unlock_bh(&tbl->lock);
815 cond_resched();
816 write_lock_bh(&tbl->lock);
817 nht = rcu_dereference_protected(tbl->nht,
818 lockdep_is_held(&tbl->lock));
819 }
820 out:
821 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
822 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
823 * BASE_REACHABLE_TIME.
824 */
825 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
826 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
827 write_unlock_bh(&tbl->lock);
828 }
829
830 static __inline__ int neigh_max_probes(struct neighbour *n)
831 {
832 struct neigh_parms *p = n->parms;
833 int max_probes = NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES);
834 if (!(n->nud_state & NUD_PROBE))
835 max_probes += NEIGH_VAR(p, MCAST_PROBES);
836 return max_probes;
837 }
838
839 static void neigh_invalidate(struct neighbour *neigh)
840 __releases(neigh->lock)
841 __acquires(neigh->lock)
842 {
843 struct sk_buff *skb;
844
845 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
846 neigh_dbg(2, "neigh %p is failed\n", neigh);
847 neigh->updated = jiffies;
848
849 /* It is very thin place. report_unreachable is very complicated
850 routine. Particularly, it can hit the same neighbour entry!
851
852 So that, we try to be accurate and avoid dead loop. --ANK
853 */
854 while (neigh->nud_state == NUD_FAILED &&
855 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
856 write_unlock(&neigh->lock);
857 neigh->ops->error_report(neigh, skb);
858 write_lock(&neigh->lock);
859 }
860 __skb_queue_purge(&neigh->arp_queue);
861 neigh->arp_queue_len_bytes = 0;
862 }
863
864 static void neigh_probe(struct neighbour *neigh)
865 __releases(neigh->lock)
866 {
867 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
868 /* keep skb alive even if arp_queue overflows */
869 if (skb)
870 skb = skb_copy(skb, GFP_ATOMIC);
871 write_unlock(&neigh->lock);
872 neigh->ops->solicit(neigh, skb);
873 atomic_inc(&neigh->probes);
874 kfree_skb(skb);
875 }
876
877 /* Called when a timer expires for a neighbour entry. */
878
879 static void neigh_timer_handler(unsigned long arg)
880 {
881 unsigned long now, next;
882 struct neighbour *neigh = (struct neighbour *)arg;
883 unsigned int state;
884 int notify = 0;
885
886 write_lock(&neigh->lock);
887
888 state = neigh->nud_state;
889 now = jiffies;
890 next = now + HZ;
891
892 if (!(state & NUD_IN_TIMER))
893 goto out;
894
895 if (state & NUD_REACHABLE) {
896 if (time_before_eq(now,
897 neigh->confirmed + neigh->parms->reachable_time)) {
898 neigh_dbg(2, "neigh %p is still alive\n", neigh);
899 next = neigh->confirmed + neigh->parms->reachable_time;
900 } else if (time_before_eq(now,
901 neigh->used +
902 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
903 neigh_dbg(2, "neigh %p is delayed\n", neigh);
904 neigh->nud_state = NUD_DELAY;
905 neigh->updated = jiffies;
906 neigh_suspect(neigh);
907 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
908 } else {
909 neigh_dbg(2, "neigh %p is suspected\n", neigh);
910 neigh->nud_state = NUD_STALE;
911 neigh->updated = jiffies;
912 neigh_suspect(neigh);
913 notify = 1;
914 }
915 } else if (state & NUD_DELAY) {
916 if (time_before_eq(now,
917 neigh->confirmed +
918 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
919 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
920 neigh->nud_state = NUD_REACHABLE;
921 neigh->updated = jiffies;
922 neigh_connect(neigh);
923 notify = 1;
924 next = neigh->confirmed + neigh->parms->reachable_time;
925 } else {
926 neigh_dbg(2, "neigh %p is probed\n", neigh);
927 neigh->nud_state = NUD_PROBE;
928 neigh->updated = jiffies;
929 atomic_set(&neigh->probes, 0);
930 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
931 }
932 } else {
933 /* NUD_PROBE|NUD_INCOMPLETE */
934 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
935 }
936
937 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
938 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
939 neigh->nud_state = NUD_FAILED;
940 notify = 1;
941 neigh_invalidate(neigh);
942 goto out;
943 }
944
945 if (neigh->nud_state & NUD_IN_TIMER) {
946 if (time_before(next, jiffies + HZ/2))
947 next = jiffies + HZ/2;
948 if (!mod_timer(&neigh->timer, next))
949 neigh_hold(neigh);
950 }
951 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
952 neigh_probe(neigh);
953 } else {
954 out:
955 write_unlock(&neigh->lock);
956 }
957
958 if (notify)
959 neigh_update_notify(neigh);
960
961 neigh_release(neigh);
962 }
963
964 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
965 {
966 int rc;
967 bool immediate_probe = false;
968
969 write_lock_bh(&neigh->lock);
970
971 rc = 0;
972 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
973 goto out_unlock_bh;
974
975 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
976 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
977 NEIGH_VAR(neigh->parms, APP_PROBES)) {
978 unsigned long next, now = jiffies;
979
980 atomic_set(&neigh->probes,
981 NEIGH_VAR(neigh->parms, UCAST_PROBES));
982 neigh->nud_state = NUD_INCOMPLETE;
983 neigh->updated = now;
984 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
985 HZ/2);
986 neigh_add_timer(neigh, next);
987 immediate_probe = true;
988 } else {
989 neigh->nud_state = NUD_FAILED;
990 neigh->updated = jiffies;
991 write_unlock_bh(&neigh->lock);
992
993 kfree_skb(skb);
994 return 1;
995 }
996 } else if (neigh->nud_state & NUD_STALE) {
997 neigh_dbg(2, "neigh %p is delayed\n", neigh);
998 neigh->nud_state = NUD_DELAY;
999 neigh->updated = jiffies;
1000 neigh_add_timer(neigh, jiffies +
1001 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1002 }
1003
1004 if (neigh->nud_state == NUD_INCOMPLETE) {
1005 if (skb) {
1006 while (neigh->arp_queue_len_bytes + skb->truesize >
1007 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1008 struct sk_buff *buff;
1009
1010 buff = __skb_dequeue(&neigh->arp_queue);
1011 if (!buff)
1012 break;
1013 neigh->arp_queue_len_bytes -= buff->truesize;
1014 kfree_skb(buff);
1015 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1016 }
1017 skb_dst_force(skb);
1018 __skb_queue_tail(&neigh->arp_queue, skb);
1019 neigh->arp_queue_len_bytes += skb->truesize;
1020 }
1021 rc = 1;
1022 }
1023 out_unlock_bh:
1024 if (immediate_probe)
1025 neigh_probe(neigh);
1026 else
1027 write_unlock(&neigh->lock);
1028 local_bh_enable();
1029 return rc;
1030 }
1031 EXPORT_SYMBOL(__neigh_event_send);
1032
1033 static void neigh_update_hhs(struct neighbour *neigh)
1034 {
1035 struct hh_cache *hh;
1036 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1037 = NULL;
1038
1039 if (neigh->dev->header_ops)
1040 update = neigh->dev->header_ops->cache_update;
1041
1042 if (update) {
1043 hh = &neigh->hh;
1044 if (hh->hh_len) {
1045 write_seqlock_bh(&hh->hh_lock);
1046 update(hh, neigh->dev, neigh->ha);
1047 write_sequnlock_bh(&hh->hh_lock);
1048 }
1049 }
1050 }
1051
1052
1053
1054 /* Generic update routine.
1055 -- lladdr is new lladdr or NULL, if it is not supplied.
1056 -- new is new state.
1057 -- flags
1058 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1059 if it is different.
1060 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1061 lladdr instead of overriding it
1062 if it is different.
1063 It also allows to retain current state
1064 if lladdr is unchanged.
1065 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1066
1067 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1068 NTF_ROUTER flag.
1069 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1070 a router.
1071
1072 Caller MUST hold reference count on the entry.
1073 */
1074
1075 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1076 u32 flags)
1077 {
1078 u8 old;
1079 int err;
1080 int notify = 0;
1081 struct net_device *dev;
1082 int update_isrouter = 0;
1083
1084 write_lock_bh(&neigh->lock);
1085
1086 dev = neigh->dev;
1087 old = neigh->nud_state;
1088 err = -EPERM;
1089
1090 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1091 (old & (NUD_NOARP | NUD_PERMANENT)))
1092 goto out;
1093
1094 if (!(new & NUD_VALID)) {
1095 neigh_del_timer(neigh);
1096 if (old & NUD_CONNECTED)
1097 neigh_suspect(neigh);
1098 neigh->nud_state = new;
1099 err = 0;
1100 notify = old & NUD_VALID;
1101 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1102 (new & NUD_FAILED)) {
1103 neigh_invalidate(neigh);
1104 notify = 1;
1105 }
1106 goto out;
1107 }
1108
1109 /* Compare new lladdr with cached one */
1110 if (!dev->addr_len) {
1111 /* First case: device needs no address. */
1112 lladdr = neigh->ha;
1113 } else if (lladdr) {
1114 /* The second case: if something is already cached
1115 and a new address is proposed:
1116 - compare new & old
1117 - if they are different, check override flag
1118 */
1119 if ((old & NUD_VALID) &&
1120 !memcmp(lladdr, neigh->ha, dev->addr_len))
1121 lladdr = neigh->ha;
1122 } else {
1123 /* No address is supplied; if we know something,
1124 use it, otherwise discard the request.
1125 */
1126 err = -EINVAL;
1127 if (!(old & NUD_VALID))
1128 goto out;
1129 lladdr = neigh->ha;
1130 }
1131
1132 if (new & NUD_CONNECTED)
1133 neigh->confirmed = jiffies;
1134 neigh->updated = jiffies;
1135
1136 /* If entry was valid and address is not changed,
1137 do not change entry state, if new one is STALE.
1138 */
1139 err = 0;
1140 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1141 if (old & NUD_VALID) {
1142 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1143 update_isrouter = 0;
1144 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1145 (old & NUD_CONNECTED)) {
1146 lladdr = neigh->ha;
1147 new = NUD_STALE;
1148 } else
1149 goto out;
1150 } else {
1151 if (lladdr == neigh->ha && new == NUD_STALE &&
1152 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1153 (old & NUD_CONNECTED))
1154 )
1155 new = old;
1156 }
1157 }
1158
1159 if (new != old) {
1160 neigh_del_timer(neigh);
1161 if (new & NUD_IN_TIMER)
1162 neigh_add_timer(neigh, (jiffies +
1163 ((new & NUD_REACHABLE) ?
1164 neigh->parms->reachable_time :
1165 0)));
1166 neigh->nud_state = new;
1167 notify = 1;
1168 }
1169
1170 if (lladdr != neigh->ha) {
1171 write_seqlock(&neigh->ha_lock);
1172 memcpy(&neigh->ha, lladdr, dev->addr_len);
1173 write_sequnlock(&neigh->ha_lock);
1174 neigh_update_hhs(neigh);
1175 if (!(new & NUD_CONNECTED))
1176 neigh->confirmed = jiffies -
1177 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1178 notify = 1;
1179 }
1180 if (new == old)
1181 goto out;
1182 if (new & NUD_CONNECTED)
1183 neigh_connect(neigh);
1184 else
1185 neigh_suspect(neigh);
1186 if (!(old & NUD_VALID)) {
1187 struct sk_buff *skb;
1188
1189 /* Again: avoid dead loop if something went wrong */
1190
1191 while (neigh->nud_state & NUD_VALID &&
1192 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1193 struct dst_entry *dst = skb_dst(skb);
1194 struct neighbour *n2, *n1 = neigh;
1195 write_unlock_bh(&neigh->lock);
1196
1197 rcu_read_lock();
1198
1199 /* Why not just use 'neigh' as-is? The problem is that
1200 * things such as shaper, eql, and sch_teql can end up
1201 * using alternative, different, neigh objects to output
1202 * the packet in the output path. So what we need to do
1203 * here is re-lookup the top-level neigh in the path so
1204 * we can reinject the packet there.
1205 */
1206 n2 = NULL;
1207 if (dst) {
1208 n2 = dst_neigh_lookup_skb(dst, skb);
1209 if (n2)
1210 n1 = n2;
1211 }
1212 n1->output(n1, skb);
1213 if (n2)
1214 neigh_release(n2);
1215 rcu_read_unlock();
1216
1217 write_lock_bh(&neigh->lock);
1218 }
1219 __skb_queue_purge(&neigh->arp_queue);
1220 neigh->arp_queue_len_bytes = 0;
1221 }
1222 out:
1223 if (update_isrouter) {
1224 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1225 (neigh->flags | NTF_ROUTER) :
1226 (neigh->flags & ~NTF_ROUTER);
1227 }
1228 write_unlock_bh(&neigh->lock);
1229
1230 if (notify)
1231 neigh_update_notify(neigh);
1232
1233 return err;
1234 }
1235 EXPORT_SYMBOL(neigh_update);
1236
1237 /* Update the neigh to listen temporarily for probe responses, even if it is
1238 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1239 */
1240 void __neigh_set_probe_once(struct neighbour *neigh)
1241 {
1242 neigh->updated = jiffies;
1243 if (!(neigh->nud_state & NUD_FAILED))
1244 return;
1245 neigh->nud_state = NUD_INCOMPLETE;
1246 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1247 neigh_add_timer(neigh,
1248 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1249 }
1250 EXPORT_SYMBOL(__neigh_set_probe_once);
1251
1252 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1253 u8 *lladdr, void *saddr,
1254 struct net_device *dev)
1255 {
1256 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1257 lladdr || !dev->addr_len);
1258 if (neigh)
1259 neigh_update(neigh, lladdr, NUD_STALE,
1260 NEIGH_UPDATE_F_OVERRIDE);
1261 return neigh;
1262 }
1263 EXPORT_SYMBOL(neigh_event_ns);
1264
1265 /* called with read_lock_bh(&n->lock); */
1266 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1267 {
1268 struct net_device *dev = dst->dev;
1269 __be16 prot = dst->ops->protocol;
1270 struct hh_cache *hh = &n->hh;
1271
1272 write_lock_bh(&n->lock);
1273
1274 /* Only one thread can come in here and initialize the
1275 * hh_cache entry.
1276 */
1277 if (!hh->hh_len)
1278 dev->header_ops->cache(n, hh, prot);
1279
1280 write_unlock_bh(&n->lock);
1281 }
1282
1283 /* This function can be used in contexts, where only old dev_queue_xmit
1284 * worked, f.e. if you want to override normal output path (eql, shaper),
1285 * but resolution is not made yet.
1286 */
1287
1288 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1289 {
1290 struct net_device *dev = skb->dev;
1291
1292 __skb_pull(skb, skb_network_offset(skb));
1293
1294 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1295 skb->len) < 0 &&
1296 dev_rebuild_header(skb))
1297 return 0;
1298
1299 return dev_queue_xmit(skb);
1300 }
1301 EXPORT_SYMBOL(neigh_compat_output);
1302
1303 /* Slow and careful. */
1304
1305 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1306 {
1307 struct dst_entry *dst = skb_dst(skb);
1308 int rc = 0;
1309
1310 if (!dst)
1311 goto discard;
1312
1313 if (!neigh_event_send(neigh, skb)) {
1314 int err;
1315 struct net_device *dev = neigh->dev;
1316 unsigned int seq;
1317
1318 if (dev->header_ops->cache && !neigh->hh.hh_len)
1319 neigh_hh_init(neigh, dst);
1320
1321 do {
1322 __skb_pull(skb, skb_network_offset(skb));
1323 seq = read_seqbegin(&neigh->ha_lock);
1324 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1325 neigh->ha, NULL, skb->len);
1326 } while (read_seqretry(&neigh->ha_lock, seq));
1327
1328 if (err >= 0)
1329 rc = dev_queue_xmit(skb);
1330 else
1331 goto out_kfree_skb;
1332 }
1333 out:
1334 return rc;
1335 discard:
1336 neigh_dbg(1, "%s: dst=%p neigh=%p\n", __func__, dst, neigh);
1337 out_kfree_skb:
1338 rc = -EINVAL;
1339 kfree_skb(skb);
1340 goto out;
1341 }
1342 EXPORT_SYMBOL(neigh_resolve_output);
1343
1344 /* As fast as possible without hh cache */
1345
1346 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1347 {
1348 struct net_device *dev = neigh->dev;
1349 unsigned int seq;
1350 int err;
1351
1352 do {
1353 __skb_pull(skb, skb_network_offset(skb));
1354 seq = read_seqbegin(&neigh->ha_lock);
1355 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1356 neigh->ha, NULL, skb->len);
1357 } while (read_seqretry(&neigh->ha_lock, seq));
1358
1359 if (err >= 0)
1360 err = dev_queue_xmit(skb);
1361 else {
1362 err = -EINVAL;
1363 kfree_skb(skb);
1364 }
1365 return err;
1366 }
1367 EXPORT_SYMBOL(neigh_connected_output);
1368
1369 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1370 {
1371 return dev_queue_xmit(skb);
1372 }
1373 EXPORT_SYMBOL(neigh_direct_output);
1374
1375 static void neigh_proxy_process(unsigned long arg)
1376 {
1377 struct neigh_table *tbl = (struct neigh_table *)arg;
1378 long sched_next = 0;
1379 unsigned long now = jiffies;
1380 struct sk_buff *skb, *n;
1381
1382 spin_lock(&tbl->proxy_queue.lock);
1383
1384 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1385 long tdif = NEIGH_CB(skb)->sched_next - now;
1386
1387 if (tdif <= 0) {
1388 struct net_device *dev = skb->dev;
1389
1390 __skb_unlink(skb, &tbl->proxy_queue);
1391 if (tbl->proxy_redo && netif_running(dev)) {
1392 rcu_read_lock();
1393 tbl->proxy_redo(skb);
1394 rcu_read_unlock();
1395 } else {
1396 kfree_skb(skb);
1397 }
1398
1399 dev_put(dev);
1400 } else if (!sched_next || tdif < sched_next)
1401 sched_next = tdif;
1402 }
1403 del_timer(&tbl->proxy_timer);
1404 if (sched_next)
1405 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1406 spin_unlock(&tbl->proxy_queue.lock);
1407 }
1408
1409 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1410 struct sk_buff *skb)
1411 {
1412 unsigned long now = jiffies;
1413
1414 unsigned long sched_next = now + (prandom_u32() %
1415 NEIGH_VAR(p, PROXY_DELAY));
1416
1417 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1418 kfree_skb(skb);
1419 return;
1420 }
1421
1422 NEIGH_CB(skb)->sched_next = sched_next;
1423 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1424
1425 spin_lock(&tbl->proxy_queue.lock);
1426 if (del_timer(&tbl->proxy_timer)) {
1427 if (time_before(tbl->proxy_timer.expires, sched_next))
1428 sched_next = tbl->proxy_timer.expires;
1429 }
1430 skb_dst_drop(skb);
1431 dev_hold(skb->dev);
1432 __skb_queue_tail(&tbl->proxy_queue, skb);
1433 mod_timer(&tbl->proxy_timer, sched_next);
1434 spin_unlock(&tbl->proxy_queue.lock);
1435 }
1436 EXPORT_SYMBOL(pneigh_enqueue);
1437
1438 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1439 struct net *net, int ifindex)
1440 {
1441 struct neigh_parms *p;
1442
1443 list_for_each_entry(p, &tbl->parms_list, list) {
1444 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1445 (!p->dev && !ifindex && net_eq(net, &init_net)))
1446 return p;
1447 }
1448
1449 return NULL;
1450 }
1451
1452 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1453 struct neigh_table *tbl)
1454 {
1455 struct neigh_parms *p;
1456 struct net *net = dev_net(dev);
1457 const struct net_device_ops *ops = dev->netdev_ops;
1458
1459 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1460 if (p) {
1461 p->tbl = tbl;
1462 atomic_set(&p->refcnt, 1);
1463 p->reachable_time =
1464 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1465 dev_hold(dev);
1466 p->dev = dev;
1467 write_pnet(&p->net, hold_net(net));
1468 p->sysctl_table = NULL;
1469
1470 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1471 release_net(net);
1472 dev_put(dev);
1473 kfree(p);
1474 return NULL;
1475 }
1476
1477 write_lock_bh(&tbl->lock);
1478 list_add(&p->list, &tbl->parms.list);
1479 write_unlock_bh(&tbl->lock);
1480
1481 neigh_parms_data_state_cleanall(p);
1482 }
1483 return p;
1484 }
1485 EXPORT_SYMBOL(neigh_parms_alloc);
1486
1487 static void neigh_rcu_free_parms(struct rcu_head *head)
1488 {
1489 struct neigh_parms *parms =
1490 container_of(head, struct neigh_parms, rcu_head);
1491
1492 neigh_parms_put(parms);
1493 }
1494
1495 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1496 {
1497 if (!parms || parms == &tbl->parms)
1498 return;
1499 write_lock_bh(&tbl->lock);
1500 list_del(&parms->list);
1501 parms->dead = 1;
1502 write_unlock_bh(&tbl->lock);
1503 if (parms->dev)
1504 dev_put(parms->dev);
1505 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1506 }
1507 EXPORT_SYMBOL(neigh_parms_release);
1508
1509 static void neigh_parms_destroy(struct neigh_parms *parms)
1510 {
1511 release_net(neigh_parms_net(parms));
1512 kfree(parms);
1513 }
1514
1515 static struct lock_class_key neigh_table_proxy_queue_class;
1516
1517 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1518
1519 void neigh_table_init(int index, struct neigh_table *tbl)
1520 {
1521 unsigned long now = jiffies;
1522 unsigned long phsize;
1523
1524 INIT_LIST_HEAD(&tbl->parms_list);
1525 list_add(&tbl->parms.list, &tbl->parms_list);
1526 write_pnet(&tbl->parms.net, &init_net);
1527 atomic_set(&tbl->parms.refcnt, 1);
1528 tbl->parms.reachable_time =
1529 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1530
1531 tbl->stats = alloc_percpu(struct neigh_statistics);
1532 if (!tbl->stats)
1533 panic("cannot create neighbour cache statistics");
1534
1535 #ifdef CONFIG_PROC_FS
1536 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1537 &neigh_stat_seq_fops, tbl))
1538 panic("cannot create neighbour proc dir entry");
1539 #endif
1540
1541 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1542
1543 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1544 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1545
1546 if (!tbl->nht || !tbl->phash_buckets)
1547 panic("cannot allocate neighbour cache hashes");
1548
1549 if (!tbl->entry_size)
1550 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1551 tbl->key_len, NEIGH_PRIV_ALIGN);
1552 else
1553 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1554
1555 rwlock_init(&tbl->lock);
1556 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1557 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1558 tbl->parms.reachable_time);
1559 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1560 skb_queue_head_init_class(&tbl->proxy_queue,
1561 &neigh_table_proxy_queue_class);
1562
1563 tbl->last_flush = now;
1564 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1565
1566 neigh_tables[index] = tbl;
1567 }
1568 EXPORT_SYMBOL(neigh_table_init);
1569
1570 int neigh_table_clear(int index, struct neigh_table *tbl)
1571 {
1572 neigh_tables[index] = NULL;
1573 /* It is not clean... Fix it to unload IPv6 module safely */
1574 cancel_delayed_work_sync(&tbl->gc_work);
1575 del_timer_sync(&tbl->proxy_timer);
1576 pneigh_queue_purge(&tbl->proxy_queue);
1577 neigh_ifdown(tbl, NULL);
1578 if (atomic_read(&tbl->entries))
1579 pr_crit("neighbour leakage\n");
1580
1581 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1582 neigh_hash_free_rcu);
1583 tbl->nht = NULL;
1584
1585 kfree(tbl->phash_buckets);
1586 tbl->phash_buckets = NULL;
1587
1588 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1589
1590 free_percpu(tbl->stats);
1591 tbl->stats = NULL;
1592
1593 return 0;
1594 }
1595 EXPORT_SYMBOL(neigh_table_clear);
1596
1597 static struct neigh_table *neigh_find_table(int family)
1598 {
1599 struct neigh_table *tbl = NULL;
1600
1601 switch (family) {
1602 case AF_INET:
1603 tbl = neigh_tables[NEIGH_ARP_TABLE];
1604 break;
1605 case AF_INET6:
1606 tbl = neigh_tables[NEIGH_ND_TABLE];
1607 break;
1608 case AF_DECnet:
1609 tbl = neigh_tables[NEIGH_DN_TABLE];
1610 break;
1611 }
1612
1613 return tbl;
1614 }
1615
1616 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh)
1617 {
1618 struct net *net = sock_net(skb->sk);
1619 struct ndmsg *ndm;
1620 struct nlattr *dst_attr;
1621 struct neigh_table *tbl;
1622 struct neighbour *neigh;
1623 struct net_device *dev = NULL;
1624 int err = -EINVAL;
1625
1626 ASSERT_RTNL();
1627 if (nlmsg_len(nlh) < sizeof(*ndm))
1628 goto out;
1629
1630 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1631 if (dst_attr == NULL)
1632 goto out;
1633
1634 ndm = nlmsg_data(nlh);
1635 if (ndm->ndm_ifindex) {
1636 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1637 if (dev == NULL) {
1638 err = -ENODEV;
1639 goto out;
1640 }
1641 }
1642
1643 tbl = neigh_find_table(ndm->ndm_family);
1644 if (tbl == NULL)
1645 return -EAFNOSUPPORT;
1646
1647 if (nla_len(dst_attr) < tbl->key_len)
1648 goto out;
1649
1650 if (ndm->ndm_flags & NTF_PROXY) {
1651 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1652 goto out;
1653 }
1654
1655 if (dev == NULL)
1656 goto out;
1657
1658 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1659 if (neigh == NULL) {
1660 err = -ENOENT;
1661 goto out;
1662 }
1663
1664 err = neigh_update(neigh, NULL, NUD_FAILED,
1665 NEIGH_UPDATE_F_OVERRIDE |
1666 NEIGH_UPDATE_F_ADMIN);
1667 neigh_release(neigh);
1668
1669 out:
1670 return err;
1671 }
1672
1673 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh)
1674 {
1675 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1676 struct net *net = sock_net(skb->sk);
1677 struct ndmsg *ndm;
1678 struct nlattr *tb[NDA_MAX+1];
1679 struct neigh_table *tbl;
1680 struct net_device *dev = NULL;
1681 struct neighbour *neigh;
1682 void *dst, *lladdr;
1683 int err;
1684
1685 ASSERT_RTNL();
1686 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1687 if (err < 0)
1688 goto out;
1689
1690 err = -EINVAL;
1691 if (tb[NDA_DST] == NULL)
1692 goto out;
1693
1694 ndm = nlmsg_data(nlh);
1695 if (ndm->ndm_ifindex) {
1696 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1697 if (dev == NULL) {
1698 err = -ENODEV;
1699 goto out;
1700 }
1701
1702 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1703 goto out;
1704 }
1705
1706 tbl = neigh_find_table(ndm->ndm_family);
1707 if (tbl == NULL)
1708 return -EAFNOSUPPORT;
1709
1710 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1711 goto out;
1712 dst = nla_data(tb[NDA_DST]);
1713 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1714
1715 if (ndm->ndm_flags & NTF_PROXY) {
1716 struct pneigh_entry *pn;
1717
1718 err = -ENOBUFS;
1719 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1720 if (pn) {
1721 pn->flags = ndm->ndm_flags;
1722 err = 0;
1723 }
1724 goto out;
1725 }
1726
1727 if (dev == NULL)
1728 goto out;
1729
1730 neigh = neigh_lookup(tbl, dst, dev);
1731 if (neigh == NULL) {
1732 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1733 err = -ENOENT;
1734 goto out;
1735 }
1736
1737 neigh = __neigh_lookup_errno(tbl, dst, dev);
1738 if (IS_ERR(neigh)) {
1739 err = PTR_ERR(neigh);
1740 goto out;
1741 }
1742 } else {
1743 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1744 err = -EEXIST;
1745 neigh_release(neigh);
1746 goto out;
1747 }
1748
1749 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1750 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1751 }
1752
1753 if (ndm->ndm_flags & NTF_USE) {
1754 neigh_event_send(neigh, NULL);
1755 err = 0;
1756 } else
1757 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1758 neigh_release(neigh);
1759
1760 out:
1761 return err;
1762 }
1763
1764 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1765 {
1766 struct nlattr *nest;
1767
1768 nest = nla_nest_start(skb, NDTA_PARMS);
1769 if (nest == NULL)
1770 return -ENOBUFS;
1771
1772 if ((parms->dev &&
1773 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1774 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1775 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1776 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1777 /* approximative value for deprecated QUEUE_LEN (in packets) */
1778 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1779 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1780 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1781 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1782 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1783 NEIGH_VAR(parms, UCAST_PROBES)) ||
1784 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1785 NEIGH_VAR(parms, MCAST_PROBES)) ||
1786 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1787 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1788 NEIGH_VAR(parms, BASE_REACHABLE_TIME)) ||
1789 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1790 NEIGH_VAR(parms, GC_STALETIME)) ||
1791 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1792 NEIGH_VAR(parms, DELAY_PROBE_TIME)) ||
1793 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1794 NEIGH_VAR(parms, RETRANS_TIME)) ||
1795 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1796 NEIGH_VAR(parms, ANYCAST_DELAY)) ||
1797 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1798 NEIGH_VAR(parms, PROXY_DELAY)) ||
1799 nla_put_msecs(skb, NDTPA_LOCKTIME,
1800 NEIGH_VAR(parms, LOCKTIME)))
1801 goto nla_put_failure;
1802 return nla_nest_end(skb, nest);
1803
1804 nla_put_failure:
1805 nla_nest_cancel(skb, nest);
1806 return -EMSGSIZE;
1807 }
1808
1809 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1810 u32 pid, u32 seq, int type, int flags)
1811 {
1812 struct nlmsghdr *nlh;
1813 struct ndtmsg *ndtmsg;
1814
1815 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1816 if (nlh == NULL)
1817 return -EMSGSIZE;
1818
1819 ndtmsg = nlmsg_data(nlh);
1820
1821 read_lock_bh(&tbl->lock);
1822 ndtmsg->ndtm_family = tbl->family;
1823 ndtmsg->ndtm_pad1 = 0;
1824 ndtmsg->ndtm_pad2 = 0;
1825
1826 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1827 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1828 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1829 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1830 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1831 goto nla_put_failure;
1832 {
1833 unsigned long now = jiffies;
1834 unsigned int flush_delta = now - tbl->last_flush;
1835 unsigned int rand_delta = now - tbl->last_rand;
1836 struct neigh_hash_table *nht;
1837 struct ndt_config ndc = {
1838 .ndtc_key_len = tbl->key_len,
1839 .ndtc_entry_size = tbl->entry_size,
1840 .ndtc_entries = atomic_read(&tbl->entries),
1841 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1842 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1843 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1844 };
1845
1846 rcu_read_lock_bh();
1847 nht = rcu_dereference_bh(tbl->nht);
1848 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1849 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1850 rcu_read_unlock_bh();
1851
1852 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1853 goto nla_put_failure;
1854 }
1855
1856 {
1857 int cpu;
1858 struct ndt_stats ndst;
1859
1860 memset(&ndst, 0, sizeof(ndst));
1861
1862 for_each_possible_cpu(cpu) {
1863 struct neigh_statistics *st;
1864
1865 st = per_cpu_ptr(tbl->stats, cpu);
1866 ndst.ndts_allocs += st->allocs;
1867 ndst.ndts_destroys += st->destroys;
1868 ndst.ndts_hash_grows += st->hash_grows;
1869 ndst.ndts_res_failed += st->res_failed;
1870 ndst.ndts_lookups += st->lookups;
1871 ndst.ndts_hits += st->hits;
1872 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1873 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1874 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1875 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1876 }
1877
1878 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1879 goto nla_put_failure;
1880 }
1881
1882 BUG_ON(tbl->parms.dev);
1883 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1884 goto nla_put_failure;
1885
1886 read_unlock_bh(&tbl->lock);
1887 return nlmsg_end(skb, nlh);
1888
1889 nla_put_failure:
1890 read_unlock_bh(&tbl->lock);
1891 nlmsg_cancel(skb, nlh);
1892 return -EMSGSIZE;
1893 }
1894
1895 static int neightbl_fill_param_info(struct sk_buff *skb,
1896 struct neigh_table *tbl,
1897 struct neigh_parms *parms,
1898 u32 pid, u32 seq, int type,
1899 unsigned int flags)
1900 {
1901 struct ndtmsg *ndtmsg;
1902 struct nlmsghdr *nlh;
1903
1904 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1905 if (nlh == NULL)
1906 return -EMSGSIZE;
1907
1908 ndtmsg = nlmsg_data(nlh);
1909
1910 read_lock_bh(&tbl->lock);
1911 ndtmsg->ndtm_family = tbl->family;
1912 ndtmsg->ndtm_pad1 = 0;
1913 ndtmsg->ndtm_pad2 = 0;
1914
1915 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1916 neightbl_fill_parms(skb, parms) < 0)
1917 goto errout;
1918
1919 read_unlock_bh(&tbl->lock);
1920 return nlmsg_end(skb, nlh);
1921 errout:
1922 read_unlock_bh(&tbl->lock);
1923 nlmsg_cancel(skb, nlh);
1924 return -EMSGSIZE;
1925 }
1926
1927 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1928 [NDTA_NAME] = { .type = NLA_STRING },
1929 [NDTA_THRESH1] = { .type = NLA_U32 },
1930 [NDTA_THRESH2] = { .type = NLA_U32 },
1931 [NDTA_THRESH3] = { .type = NLA_U32 },
1932 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1933 [NDTA_PARMS] = { .type = NLA_NESTED },
1934 };
1935
1936 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1937 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1938 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1939 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1940 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1941 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1942 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1943 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1944 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1945 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1946 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1947 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1948 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1949 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1950 };
1951
1952 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh)
1953 {
1954 struct net *net = sock_net(skb->sk);
1955 struct neigh_table *tbl;
1956 struct ndtmsg *ndtmsg;
1957 struct nlattr *tb[NDTA_MAX+1];
1958 bool found = false;
1959 int err, tidx;
1960
1961 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1962 nl_neightbl_policy);
1963 if (err < 0)
1964 goto errout;
1965
1966 if (tb[NDTA_NAME] == NULL) {
1967 err = -EINVAL;
1968 goto errout;
1969 }
1970
1971 ndtmsg = nlmsg_data(nlh);
1972
1973 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
1974 tbl = neigh_tables[tidx];
1975 if (!tbl)
1976 continue;
1977 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1978 continue;
1979 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
1980 found = true;
1981 break;
1982 }
1983 }
1984
1985 if (!found)
1986 return -ENOENT;
1987
1988 /*
1989 * We acquire tbl->lock to be nice to the periodic timers and
1990 * make sure they always see a consistent set of values.
1991 */
1992 write_lock_bh(&tbl->lock);
1993
1994 if (tb[NDTA_PARMS]) {
1995 struct nlattr *tbp[NDTPA_MAX+1];
1996 struct neigh_parms *p;
1997 int i, ifindex = 0;
1998
1999 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2000 nl_ntbl_parm_policy);
2001 if (err < 0)
2002 goto errout_tbl_lock;
2003
2004 if (tbp[NDTPA_IFINDEX])
2005 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2006
2007 p = lookup_neigh_parms(tbl, net, ifindex);
2008 if (p == NULL) {
2009 err = -ENOENT;
2010 goto errout_tbl_lock;
2011 }
2012
2013 for (i = 1; i <= NDTPA_MAX; i++) {
2014 if (tbp[i] == NULL)
2015 continue;
2016
2017 switch (i) {
2018 case NDTPA_QUEUE_LEN:
2019 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2020 nla_get_u32(tbp[i]) *
2021 SKB_TRUESIZE(ETH_FRAME_LEN));
2022 break;
2023 case NDTPA_QUEUE_LENBYTES:
2024 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2025 nla_get_u32(tbp[i]));
2026 break;
2027 case NDTPA_PROXY_QLEN:
2028 NEIGH_VAR_SET(p, PROXY_QLEN,
2029 nla_get_u32(tbp[i]));
2030 break;
2031 case NDTPA_APP_PROBES:
2032 NEIGH_VAR_SET(p, APP_PROBES,
2033 nla_get_u32(tbp[i]));
2034 break;
2035 case NDTPA_UCAST_PROBES:
2036 NEIGH_VAR_SET(p, UCAST_PROBES,
2037 nla_get_u32(tbp[i]));
2038 break;
2039 case NDTPA_MCAST_PROBES:
2040 NEIGH_VAR_SET(p, MCAST_PROBES,
2041 nla_get_u32(tbp[i]));
2042 break;
2043 case NDTPA_BASE_REACHABLE_TIME:
2044 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2045 nla_get_msecs(tbp[i]));
2046 break;
2047 case NDTPA_GC_STALETIME:
2048 NEIGH_VAR_SET(p, GC_STALETIME,
2049 nla_get_msecs(tbp[i]));
2050 break;
2051 case NDTPA_DELAY_PROBE_TIME:
2052 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2053 nla_get_msecs(tbp[i]));
2054 break;
2055 case NDTPA_RETRANS_TIME:
2056 NEIGH_VAR_SET(p, RETRANS_TIME,
2057 nla_get_msecs(tbp[i]));
2058 break;
2059 case NDTPA_ANYCAST_DELAY:
2060 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2061 nla_get_msecs(tbp[i]));
2062 break;
2063 case NDTPA_PROXY_DELAY:
2064 NEIGH_VAR_SET(p, PROXY_DELAY,
2065 nla_get_msecs(tbp[i]));
2066 break;
2067 case NDTPA_LOCKTIME:
2068 NEIGH_VAR_SET(p, LOCKTIME,
2069 nla_get_msecs(tbp[i]));
2070 break;
2071 }
2072 }
2073 }
2074
2075 err = -ENOENT;
2076 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2077 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2078 !net_eq(net, &init_net))
2079 goto errout_tbl_lock;
2080
2081 if (tb[NDTA_THRESH1])
2082 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2083
2084 if (tb[NDTA_THRESH2])
2085 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2086
2087 if (tb[NDTA_THRESH3])
2088 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2089
2090 if (tb[NDTA_GC_INTERVAL])
2091 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2092
2093 err = 0;
2094
2095 errout_tbl_lock:
2096 write_unlock_bh(&tbl->lock);
2097 errout:
2098 return err;
2099 }
2100
2101 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2102 {
2103 struct net *net = sock_net(skb->sk);
2104 int family, tidx, nidx = 0;
2105 int tbl_skip = cb->args[0];
2106 int neigh_skip = cb->args[1];
2107 struct neigh_table *tbl;
2108
2109 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2110
2111 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2112 struct neigh_parms *p;
2113
2114 tbl = neigh_tables[tidx];
2115 if (!tbl)
2116 continue;
2117
2118 if (tidx < tbl_skip || (family && tbl->family != family))
2119 continue;
2120
2121 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2122 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2123 NLM_F_MULTI) <= 0)
2124 break;
2125
2126 nidx = 0;
2127 p = list_next_entry(&tbl->parms, list);
2128 list_for_each_entry_from(p, &tbl->parms_list, list) {
2129 if (!net_eq(neigh_parms_net(p), net))
2130 continue;
2131
2132 if (nidx < neigh_skip)
2133 goto next;
2134
2135 if (neightbl_fill_param_info(skb, tbl, p,
2136 NETLINK_CB(cb->skb).portid,
2137 cb->nlh->nlmsg_seq,
2138 RTM_NEWNEIGHTBL,
2139 NLM_F_MULTI) <= 0)
2140 goto out;
2141 next:
2142 nidx++;
2143 }
2144
2145 neigh_skip = 0;
2146 }
2147 out:
2148 cb->args[0] = tidx;
2149 cb->args[1] = nidx;
2150
2151 return skb->len;
2152 }
2153
2154 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2155 u32 pid, u32 seq, int type, unsigned int flags)
2156 {
2157 unsigned long now = jiffies;
2158 struct nda_cacheinfo ci;
2159 struct nlmsghdr *nlh;
2160 struct ndmsg *ndm;
2161
2162 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2163 if (nlh == NULL)
2164 return -EMSGSIZE;
2165
2166 ndm = nlmsg_data(nlh);
2167 ndm->ndm_family = neigh->ops->family;
2168 ndm->ndm_pad1 = 0;
2169 ndm->ndm_pad2 = 0;
2170 ndm->ndm_flags = neigh->flags;
2171 ndm->ndm_type = neigh->type;
2172 ndm->ndm_ifindex = neigh->dev->ifindex;
2173
2174 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2175 goto nla_put_failure;
2176
2177 read_lock_bh(&neigh->lock);
2178 ndm->ndm_state = neigh->nud_state;
2179 if (neigh->nud_state & NUD_VALID) {
2180 char haddr[MAX_ADDR_LEN];
2181
2182 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2183 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2184 read_unlock_bh(&neigh->lock);
2185 goto nla_put_failure;
2186 }
2187 }
2188
2189 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2190 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2191 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2192 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2193 read_unlock_bh(&neigh->lock);
2194
2195 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2196 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2197 goto nla_put_failure;
2198
2199 return nlmsg_end(skb, nlh);
2200
2201 nla_put_failure:
2202 nlmsg_cancel(skb, nlh);
2203 return -EMSGSIZE;
2204 }
2205
2206 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2207 u32 pid, u32 seq, int type, unsigned int flags,
2208 struct neigh_table *tbl)
2209 {
2210 struct nlmsghdr *nlh;
2211 struct ndmsg *ndm;
2212
2213 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2214 if (nlh == NULL)
2215 return -EMSGSIZE;
2216
2217 ndm = nlmsg_data(nlh);
2218 ndm->ndm_family = tbl->family;
2219 ndm->ndm_pad1 = 0;
2220 ndm->ndm_pad2 = 0;
2221 ndm->ndm_flags = pn->flags | NTF_PROXY;
2222 ndm->ndm_type = RTN_UNICAST;
2223 ndm->ndm_ifindex = pn->dev->ifindex;
2224 ndm->ndm_state = NUD_NONE;
2225
2226 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2227 goto nla_put_failure;
2228
2229 return nlmsg_end(skb, nlh);
2230
2231 nla_put_failure:
2232 nlmsg_cancel(skb, nlh);
2233 return -EMSGSIZE;
2234 }
2235
2236 static void neigh_update_notify(struct neighbour *neigh)
2237 {
2238 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2239 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2240 }
2241
2242 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2243 struct netlink_callback *cb)
2244 {
2245 struct net *net = sock_net(skb->sk);
2246 struct neighbour *n;
2247 int rc, h, s_h = cb->args[1];
2248 int idx, s_idx = idx = cb->args[2];
2249 struct neigh_hash_table *nht;
2250
2251 rcu_read_lock_bh();
2252 nht = rcu_dereference_bh(tbl->nht);
2253
2254 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2255 if (h > s_h)
2256 s_idx = 0;
2257 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2258 n != NULL;
2259 n = rcu_dereference_bh(n->next)) {
2260 if (!net_eq(dev_net(n->dev), net))
2261 continue;
2262 if (idx < s_idx)
2263 goto next;
2264 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2265 cb->nlh->nlmsg_seq,
2266 RTM_NEWNEIGH,
2267 NLM_F_MULTI) <= 0) {
2268 rc = -1;
2269 goto out;
2270 }
2271 next:
2272 idx++;
2273 }
2274 }
2275 rc = skb->len;
2276 out:
2277 rcu_read_unlock_bh();
2278 cb->args[1] = h;
2279 cb->args[2] = idx;
2280 return rc;
2281 }
2282
2283 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2284 struct netlink_callback *cb)
2285 {
2286 struct pneigh_entry *n;
2287 struct net *net = sock_net(skb->sk);
2288 int rc, h, s_h = cb->args[3];
2289 int idx, s_idx = idx = cb->args[4];
2290
2291 read_lock_bh(&tbl->lock);
2292
2293 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2294 if (h > s_h)
2295 s_idx = 0;
2296 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2297 if (dev_net(n->dev) != net)
2298 continue;
2299 if (idx < s_idx)
2300 goto next;
2301 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2302 cb->nlh->nlmsg_seq,
2303 RTM_NEWNEIGH,
2304 NLM_F_MULTI, tbl) <= 0) {
2305 read_unlock_bh(&tbl->lock);
2306 rc = -1;
2307 goto out;
2308 }
2309 next:
2310 idx++;
2311 }
2312 }
2313
2314 read_unlock_bh(&tbl->lock);
2315 rc = skb->len;
2316 out:
2317 cb->args[3] = h;
2318 cb->args[4] = idx;
2319 return rc;
2320
2321 }
2322
2323 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2324 {
2325 struct neigh_table *tbl;
2326 int t, family, s_t;
2327 int proxy = 0;
2328 int err;
2329
2330 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2331
2332 /* check for full ndmsg structure presence, family member is
2333 * the same for both structures
2334 */
2335 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2336 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2337 proxy = 1;
2338
2339 s_t = cb->args[0];
2340
2341 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2342 tbl = neigh_tables[t];
2343
2344 if (!tbl)
2345 continue;
2346 if (t < s_t || (family && tbl->family != family))
2347 continue;
2348 if (t > s_t)
2349 memset(&cb->args[1], 0, sizeof(cb->args) -
2350 sizeof(cb->args[0]));
2351 if (proxy)
2352 err = pneigh_dump_table(tbl, skb, cb);
2353 else
2354 err = neigh_dump_table(tbl, skb, cb);
2355 if (err < 0)
2356 break;
2357 }
2358
2359 cb->args[0] = t;
2360 return skb->len;
2361 }
2362
2363 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2364 {
2365 int chain;
2366 struct neigh_hash_table *nht;
2367
2368 rcu_read_lock_bh();
2369 nht = rcu_dereference_bh(tbl->nht);
2370
2371 read_lock(&tbl->lock); /* avoid resizes */
2372 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2373 struct neighbour *n;
2374
2375 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2376 n != NULL;
2377 n = rcu_dereference_bh(n->next))
2378 cb(n, cookie);
2379 }
2380 read_unlock(&tbl->lock);
2381 rcu_read_unlock_bh();
2382 }
2383 EXPORT_SYMBOL(neigh_for_each);
2384
2385 /* The tbl->lock must be held as a writer and BH disabled. */
2386 void __neigh_for_each_release(struct neigh_table *tbl,
2387 int (*cb)(struct neighbour *))
2388 {
2389 int chain;
2390 struct neigh_hash_table *nht;
2391
2392 nht = rcu_dereference_protected(tbl->nht,
2393 lockdep_is_held(&tbl->lock));
2394 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2395 struct neighbour *n;
2396 struct neighbour __rcu **np;
2397
2398 np = &nht->hash_buckets[chain];
2399 while ((n = rcu_dereference_protected(*np,
2400 lockdep_is_held(&tbl->lock))) != NULL) {
2401 int release;
2402
2403 write_lock(&n->lock);
2404 release = cb(n);
2405 if (release) {
2406 rcu_assign_pointer(*np,
2407 rcu_dereference_protected(n->next,
2408 lockdep_is_held(&tbl->lock)));
2409 n->dead = 1;
2410 } else
2411 np = &n->next;
2412 write_unlock(&n->lock);
2413 if (release)
2414 neigh_cleanup_and_release(n);
2415 }
2416 }
2417 }
2418 EXPORT_SYMBOL(__neigh_for_each_release);
2419
2420 #ifdef CONFIG_PROC_FS
2421
2422 static struct neighbour *neigh_get_first(struct seq_file *seq)
2423 {
2424 struct neigh_seq_state *state = seq->private;
2425 struct net *net = seq_file_net(seq);
2426 struct neigh_hash_table *nht = state->nht;
2427 struct neighbour *n = NULL;
2428 int bucket = state->bucket;
2429
2430 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2431 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2432 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2433
2434 while (n) {
2435 if (!net_eq(dev_net(n->dev), net))
2436 goto next;
2437 if (state->neigh_sub_iter) {
2438 loff_t fakep = 0;
2439 void *v;
2440
2441 v = state->neigh_sub_iter(state, n, &fakep);
2442 if (!v)
2443 goto next;
2444 }
2445 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2446 break;
2447 if (n->nud_state & ~NUD_NOARP)
2448 break;
2449 next:
2450 n = rcu_dereference_bh(n->next);
2451 }
2452
2453 if (n)
2454 break;
2455 }
2456 state->bucket = bucket;
2457
2458 return n;
2459 }
2460
2461 static struct neighbour *neigh_get_next(struct seq_file *seq,
2462 struct neighbour *n,
2463 loff_t *pos)
2464 {
2465 struct neigh_seq_state *state = seq->private;
2466 struct net *net = seq_file_net(seq);
2467 struct neigh_hash_table *nht = state->nht;
2468
2469 if (state->neigh_sub_iter) {
2470 void *v = state->neigh_sub_iter(state, n, pos);
2471 if (v)
2472 return n;
2473 }
2474 n = rcu_dereference_bh(n->next);
2475
2476 while (1) {
2477 while (n) {
2478 if (!net_eq(dev_net(n->dev), net))
2479 goto next;
2480 if (state->neigh_sub_iter) {
2481 void *v = state->neigh_sub_iter(state, n, pos);
2482 if (v)
2483 return n;
2484 goto next;
2485 }
2486 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2487 break;
2488
2489 if (n->nud_state & ~NUD_NOARP)
2490 break;
2491 next:
2492 n = rcu_dereference_bh(n->next);
2493 }
2494
2495 if (n)
2496 break;
2497
2498 if (++state->bucket >= (1 << nht->hash_shift))
2499 break;
2500
2501 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2502 }
2503
2504 if (n && pos)
2505 --(*pos);
2506 return n;
2507 }
2508
2509 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2510 {
2511 struct neighbour *n = neigh_get_first(seq);
2512
2513 if (n) {
2514 --(*pos);
2515 while (*pos) {
2516 n = neigh_get_next(seq, n, pos);
2517 if (!n)
2518 break;
2519 }
2520 }
2521 return *pos ? NULL : n;
2522 }
2523
2524 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2525 {
2526 struct neigh_seq_state *state = seq->private;
2527 struct net *net = seq_file_net(seq);
2528 struct neigh_table *tbl = state->tbl;
2529 struct pneigh_entry *pn = NULL;
2530 int bucket = state->bucket;
2531
2532 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2533 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2534 pn = tbl->phash_buckets[bucket];
2535 while (pn && !net_eq(pneigh_net(pn), net))
2536 pn = pn->next;
2537 if (pn)
2538 break;
2539 }
2540 state->bucket = bucket;
2541
2542 return pn;
2543 }
2544
2545 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2546 struct pneigh_entry *pn,
2547 loff_t *pos)
2548 {
2549 struct neigh_seq_state *state = seq->private;
2550 struct net *net = seq_file_net(seq);
2551 struct neigh_table *tbl = state->tbl;
2552
2553 do {
2554 pn = pn->next;
2555 } while (pn && !net_eq(pneigh_net(pn), net));
2556
2557 while (!pn) {
2558 if (++state->bucket > PNEIGH_HASHMASK)
2559 break;
2560 pn = tbl->phash_buckets[state->bucket];
2561 while (pn && !net_eq(pneigh_net(pn), net))
2562 pn = pn->next;
2563 if (pn)
2564 break;
2565 }
2566
2567 if (pn && pos)
2568 --(*pos);
2569
2570 return pn;
2571 }
2572
2573 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2574 {
2575 struct pneigh_entry *pn = pneigh_get_first(seq);
2576
2577 if (pn) {
2578 --(*pos);
2579 while (*pos) {
2580 pn = pneigh_get_next(seq, pn, pos);
2581 if (!pn)
2582 break;
2583 }
2584 }
2585 return *pos ? NULL : pn;
2586 }
2587
2588 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2589 {
2590 struct neigh_seq_state *state = seq->private;
2591 void *rc;
2592 loff_t idxpos = *pos;
2593
2594 rc = neigh_get_idx(seq, &idxpos);
2595 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2596 rc = pneigh_get_idx(seq, &idxpos);
2597
2598 return rc;
2599 }
2600
2601 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2602 __acquires(rcu_bh)
2603 {
2604 struct neigh_seq_state *state = seq->private;
2605
2606 state->tbl = tbl;
2607 state->bucket = 0;
2608 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2609
2610 rcu_read_lock_bh();
2611 state->nht = rcu_dereference_bh(tbl->nht);
2612
2613 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2614 }
2615 EXPORT_SYMBOL(neigh_seq_start);
2616
2617 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2618 {
2619 struct neigh_seq_state *state;
2620 void *rc;
2621
2622 if (v == SEQ_START_TOKEN) {
2623 rc = neigh_get_first(seq);
2624 goto out;
2625 }
2626
2627 state = seq->private;
2628 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2629 rc = neigh_get_next(seq, v, NULL);
2630 if (rc)
2631 goto out;
2632 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2633 rc = pneigh_get_first(seq);
2634 } else {
2635 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2636 rc = pneigh_get_next(seq, v, NULL);
2637 }
2638 out:
2639 ++(*pos);
2640 return rc;
2641 }
2642 EXPORT_SYMBOL(neigh_seq_next);
2643
2644 void neigh_seq_stop(struct seq_file *seq, void *v)
2645 __releases(rcu_bh)
2646 {
2647 rcu_read_unlock_bh();
2648 }
2649 EXPORT_SYMBOL(neigh_seq_stop);
2650
2651 /* statistics via seq_file */
2652
2653 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2654 {
2655 struct neigh_table *tbl = seq->private;
2656 int cpu;
2657
2658 if (*pos == 0)
2659 return SEQ_START_TOKEN;
2660
2661 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2662 if (!cpu_possible(cpu))
2663 continue;
2664 *pos = cpu+1;
2665 return per_cpu_ptr(tbl->stats, cpu);
2666 }
2667 return NULL;
2668 }
2669
2670 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2671 {
2672 struct neigh_table *tbl = seq->private;
2673 int cpu;
2674
2675 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2676 if (!cpu_possible(cpu))
2677 continue;
2678 *pos = cpu+1;
2679 return per_cpu_ptr(tbl->stats, cpu);
2680 }
2681 return NULL;
2682 }
2683
2684 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2685 {
2686
2687 }
2688
2689 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2690 {
2691 struct neigh_table *tbl = seq->private;
2692 struct neigh_statistics *st = v;
2693
2694 if (v == SEQ_START_TOKEN) {
2695 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2696 return 0;
2697 }
2698
2699 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2700 "%08lx %08lx %08lx %08lx %08lx\n",
2701 atomic_read(&tbl->entries),
2702
2703 st->allocs,
2704 st->destroys,
2705 st->hash_grows,
2706
2707 st->lookups,
2708 st->hits,
2709
2710 st->res_failed,
2711
2712 st->rcv_probes_mcast,
2713 st->rcv_probes_ucast,
2714
2715 st->periodic_gc_runs,
2716 st->forced_gc_runs,
2717 st->unres_discards
2718 );
2719
2720 return 0;
2721 }
2722
2723 static const struct seq_operations neigh_stat_seq_ops = {
2724 .start = neigh_stat_seq_start,
2725 .next = neigh_stat_seq_next,
2726 .stop = neigh_stat_seq_stop,
2727 .show = neigh_stat_seq_show,
2728 };
2729
2730 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2731 {
2732 int ret = seq_open(file, &neigh_stat_seq_ops);
2733
2734 if (!ret) {
2735 struct seq_file *sf = file->private_data;
2736 sf->private = PDE_DATA(inode);
2737 }
2738 return ret;
2739 };
2740
2741 static const struct file_operations neigh_stat_seq_fops = {
2742 .owner = THIS_MODULE,
2743 .open = neigh_stat_seq_open,
2744 .read = seq_read,
2745 .llseek = seq_lseek,
2746 .release = seq_release,
2747 };
2748
2749 #endif /* CONFIG_PROC_FS */
2750
2751 static inline size_t neigh_nlmsg_size(void)
2752 {
2753 return NLMSG_ALIGN(sizeof(struct ndmsg))
2754 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2755 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2756 + nla_total_size(sizeof(struct nda_cacheinfo))
2757 + nla_total_size(4); /* NDA_PROBES */
2758 }
2759
2760 static void __neigh_notify(struct neighbour *n, int type, int flags)
2761 {
2762 struct net *net = dev_net(n->dev);
2763 struct sk_buff *skb;
2764 int err = -ENOBUFS;
2765
2766 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2767 if (skb == NULL)
2768 goto errout;
2769
2770 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2771 if (err < 0) {
2772 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2773 WARN_ON(err == -EMSGSIZE);
2774 kfree_skb(skb);
2775 goto errout;
2776 }
2777 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2778 return;
2779 errout:
2780 if (err < 0)
2781 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2782 }
2783
2784 void neigh_app_ns(struct neighbour *n)
2785 {
2786 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2787 }
2788 EXPORT_SYMBOL(neigh_app_ns);
2789
2790 #ifdef CONFIG_SYSCTL
2791 static int zero;
2792 static int int_max = INT_MAX;
2793 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2794
2795 static int proc_unres_qlen(struct ctl_table *ctl, int write,
2796 void __user *buffer, size_t *lenp, loff_t *ppos)
2797 {
2798 int size, ret;
2799 struct ctl_table tmp = *ctl;
2800
2801 tmp.extra1 = &zero;
2802 tmp.extra2 = &unres_qlen_max;
2803 tmp.data = &size;
2804
2805 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2806 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2807
2808 if (write && !ret)
2809 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2810 return ret;
2811 }
2812
2813 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2814 int family)
2815 {
2816 switch (family) {
2817 case AF_INET:
2818 return __in_dev_arp_parms_get_rcu(dev);
2819 case AF_INET6:
2820 return __in6_dev_nd_parms_get_rcu(dev);
2821 }
2822 return NULL;
2823 }
2824
2825 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2826 int index)
2827 {
2828 struct net_device *dev;
2829 int family = neigh_parms_family(p);
2830
2831 rcu_read_lock();
2832 for_each_netdev_rcu(net, dev) {
2833 struct neigh_parms *dst_p =
2834 neigh_get_dev_parms_rcu(dev, family);
2835
2836 if (dst_p && !test_bit(index, dst_p->data_state))
2837 dst_p->data[index] = p->data[index];
2838 }
2839 rcu_read_unlock();
2840 }
2841
2842 static void neigh_proc_update(struct ctl_table *ctl, int write)
2843 {
2844 struct net_device *dev = ctl->extra1;
2845 struct neigh_parms *p = ctl->extra2;
2846 struct net *net = neigh_parms_net(p);
2847 int index = (int *) ctl->data - p->data;
2848
2849 if (!write)
2850 return;
2851
2852 set_bit(index, p->data_state);
2853 if (!dev) /* NULL dev means this is default value */
2854 neigh_copy_dflt_parms(net, p, index);
2855 }
2856
2857 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2858 void __user *buffer,
2859 size_t *lenp, loff_t *ppos)
2860 {
2861 struct ctl_table tmp = *ctl;
2862 int ret;
2863
2864 tmp.extra1 = &zero;
2865 tmp.extra2 = &int_max;
2866
2867 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2868 neigh_proc_update(ctl, write);
2869 return ret;
2870 }
2871
2872 int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2873 void __user *buffer, size_t *lenp, loff_t *ppos)
2874 {
2875 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
2876
2877 neigh_proc_update(ctl, write);
2878 return ret;
2879 }
2880 EXPORT_SYMBOL(neigh_proc_dointvec);
2881
2882 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
2883 void __user *buffer,
2884 size_t *lenp, loff_t *ppos)
2885 {
2886 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
2887
2888 neigh_proc_update(ctl, write);
2889 return ret;
2890 }
2891 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
2892
2893 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
2894 void __user *buffer,
2895 size_t *lenp, loff_t *ppos)
2896 {
2897 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
2898
2899 neigh_proc_update(ctl, write);
2900 return ret;
2901 }
2902
2903 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
2904 void __user *buffer,
2905 size_t *lenp, loff_t *ppos)
2906 {
2907 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
2908
2909 neigh_proc_update(ctl, write);
2910 return ret;
2911 }
2912 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
2913
2914 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
2915 void __user *buffer,
2916 size_t *lenp, loff_t *ppos)
2917 {
2918 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
2919
2920 neigh_proc_update(ctl, write);
2921 return ret;
2922 }
2923
2924 #define NEIGH_PARMS_DATA_OFFSET(index) \
2925 (&((struct neigh_parms *) 0)->data[index])
2926
2927 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
2928 [NEIGH_VAR_ ## attr] = { \
2929 .procname = name, \
2930 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
2931 .maxlen = sizeof(int), \
2932 .mode = mval, \
2933 .proc_handler = proc, \
2934 }
2935
2936 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
2937 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
2938
2939 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
2940 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
2941
2942 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
2943 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
2944
2945 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
2946 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2947
2948 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
2949 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
2950
2951 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
2952 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
2953
2954 static struct neigh_sysctl_table {
2955 struct ctl_table_header *sysctl_header;
2956 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2957 } neigh_sysctl_template __read_mostly = {
2958 .neigh_vars = {
2959 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
2960 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
2961 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
2962 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
2963 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
2964 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
2965 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
2966 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
2967 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
2968 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
2969 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
2970 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
2971 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
2972 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
2973 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
2974 [NEIGH_VAR_GC_INTERVAL] = {
2975 .procname = "gc_interval",
2976 .maxlen = sizeof(int),
2977 .mode = 0644,
2978 .proc_handler = proc_dointvec_jiffies,
2979 },
2980 [NEIGH_VAR_GC_THRESH1] = {
2981 .procname = "gc_thresh1",
2982 .maxlen = sizeof(int),
2983 .mode = 0644,
2984 .extra1 = &zero,
2985 .extra2 = &int_max,
2986 .proc_handler = proc_dointvec_minmax,
2987 },
2988 [NEIGH_VAR_GC_THRESH2] = {
2989 .procname = "gc_thresh2",
2990 .maxlen = sizeof(int),
2991 .mode = 0644,
2992 .extra1 = &zero,
2993 .extra2 = &int_max,
2994 .proc_handler = proc_dointvec_minmax,
2995 },
2996 [NEIGH_VAR_GC_THRESH3] = {
2997 .procname = "gc_thresh3",
2998 .maxlen = sizeof(int),
2999 .mode = 0644,
3000 .extra1 = &zero,
3001 .extra2 = &int_max,
3002 .proc_handler = proc_dointvec_minmax,
3003 },
3004 {},
3005 },
3006 };
3007
3008 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3009 proc_handler *handler)
3010 {
3011 int i;
3012 struct neigh_sysctl_table *t;
3013 const char *dev_name_source;
3014 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3015 char *p_name;
3016
3017 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3018 if (!t)
3019 goto err;
3020
3021 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3022 t->neigh_vars[i].data += (long) p;
3023 t->neigh_vars[i].extra1 = dev;
3024 t->neigh_vars[i].extra2 = p;
3025 }
3026
3027 if (dev) {
3028 dev_name_source = dev->name;
3029 /* Terminate the table early */
3030 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3031 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3032 } else {
3033 struct neigh_table *tbl = p->tbl;
3034 dev_name_source = "default";
3035 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3036 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3037 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3038 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3039 }
3040
3041 if (handler) {
3042 /* RetransTime */
3043 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3044 /* ReachableTime */
3045 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3046 /* RetransTime (in milliseconds)*/
3047 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3048 /* ReachableTime (in milliseconds) */
3049 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3050 }
3051
3052 /* Don't export sysctls to unprivileged users */
3053 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3054 t->neigh_vars[0].procname = NULL;
3055
3056 switch (neigh_parms_family(p)) {
3057 case AF_INET:
3058 p_name = "ipv4";
3059 break;
3060 case AF_INET6:
3061 p_name = "ipv6";
3062 break;
3063 default:
3064 BUG();
3065 }
3066
3067 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3068 p_name, dev_name_source);
3069 t->sysctl_header =
3070 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3071 if (!t->sysctl_header)
3072 goto free;
3073
3074 p->sysctl_table = t;
3075 return 0;
3076
3077 free:
3078 kfree(t);
3079 err:
3080 return -ENOBUFS;
3081 }
3082 EXPORT_SYMBOL(neigh_sysctl_register);
3083
3084 void neigh_sysctl_unregister(struct neigh_parms *p)
3085 {
3086 if (p->sysctl_table) {
3087 struct neigh_sysctl_table *t = p->sysctl_table;
3088 p->sysctl_table = NULL;
3089 unregister_net_sysctl_table(t->sysctl_header);
3090 kfree(t);
3091 }
3092 }
3093 EXPORT_SYMBOL(neigh_sysctl_unregister);
3094
3095 #endif /* CONFIG_SYSCTL */
3096
3097 static int __init neigh_init(void)
3098 {
3099 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3100 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3101 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3102
3103 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3104 NULL);
3105 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3106
3107 return 0;
3108 }
3109
3110 subsys_initcall(neigh_init);
3111
This page took 0.129859 seconds and 5 git commands to generate.