spi: meson: Constify struct regmap_config
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77
78 struct kmem_cache *skbuff_head_cache __read_mostly;
79 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
80
81 /**
82 * skb_panic - private function for out-of-line support
83 * @skb: buffer
84 * @sz: size
85 * @addr: address
86 * @msg: skb_over_panic or skb_under_panic
87 *
88 * Out-of-line support for skb_put() and skb_push().
89 * Called via the wrapper skb_over_panic() or skb_under_panic().
90 * Keep out of line to prevent kernel bloat.
91 * __builtin_return_address is not used because it is not always reliable.
92 */
93 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
94 const char msg[])
95 {
96 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
97 msg, addr, skb->len, sz, skb->head, skb->data,
98 (unsigned long)skb->tail, (unsigned long)skb->end,
99 skb->dev ? skb->dev->name : "<NULL>");
100 BUG();
101 }
102
103 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
104 {
105 skb_panic(skb, sz, addr, __func__);
106 }
107
108 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 /*
114 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
115 * the caller if emergency pfmemalloc reserves are being used. If it is and
116 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
117 * may be used. Otherwise, the packet data may be discarded until enough
118 * memory is free
119 */
120 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
121 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
122
123 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
124 unsigned long ip, bool *pfmemalloc)
125 {
126 void *obj;
127 bool ret_pfmemalloc = false;
128
129 /*
130 * Try a regular allocation, when that fails and we're not entitled
131 * to the reserves, fail.
132 */
133 obj = kmalloc_node_track_caller(size,
134 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
135 node);
136 if (obj || !(gfp_pfmemalloc_allowed(flags)))
137 goto out;
138
139 /* Try again but now we are using pfmemalloc reserves */
140 ret_pfmemalloc = true;
141 obj = kmalloc_node_track_caller(size, flags, node);
142
143 out:
144 if (pfmemalloc)
145 *pfmemalloc = ret_pfmemalloc;
146
147 return obj;
148 }
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
157 {
158 struct sk_buff *skb;
159
160 /* Get the HEAD */
161 skb = kmem_cache_alloc_node(skbuff_head_cache,
162 gfp_mask & ~__GFP_DMA, node);
163 if (!skb)
164 goto out;
165
166 /*
167 * Only clear those fields we need to clear, not those that we will
168 * actually initialise below. Hence, don't put any more fields after
169 * the tail pointer in struct sk_buff!
170 */
171 memset(skb, 0, offsetof(struct sk_buff, tail));
172 skb->head = NULL;
173 skb->truesize = sizeof(struct sk_buff);
174 atomic_set(&skb->users, 1);
175
176 skb->mac_header = (typeof(skb->mac_header))~0U;
177 out:
178 return skb;
179 }
180
181 /**
182 * __alloc_skb - allocate a network buffer
183 * @size: size to allocate
184 * @gfp_mask: allocation mask
185 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186 * instead of head cache and allocate a cloned (child) skb.
187 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188 * allocations in case the data is required for writeback
189 * @node: numa node to allocate memory on
190 *
191 * Allocate a new &sk_buff. The returned buffer has no headroom and a
192 * tail room of at least size bytes. The object has a reference count
193 * of one. The return is the buffer. On a failure the return is %NULL.
194 *
195 * Buffers may only be allocated from interrupts using a @gfp_mask of
196 * %GFP_ATOMIC.
197 */
198 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
199 int flags, int node)
200 {
201 struct kmem_cache *cache;
202 struct skb_shared_info *shinfo;
203 struct sk_buff *skb;
204 u8 *data;
205 bool pfmemalloc;
206
207 cache = (flags & SKB_ALLOC_FCLONE)
208 ? skbuff_fclone_cache : skbuff_head_cache;
209
210 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
211 gfp_mask |= __GFP_MEMALLOC;
212
213 /* Get the HEAD */
214 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
215 if (!skb)
216 goto out;
217 prefetchw(skb);
218
219 /* We do our best to align skb_shared_info on a separate cache
220 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 * Both skb->head and skb_shared_info are cache line aligned.
223 */
224 size = SKB_DATA_ALIGN(size);
225 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
226 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
227 if (!data)
228 goto nodata;
229 /* kmalloc(size) might give us more room than requested.
230 * Put skb_shared_info exactly at the end of allocated zone,
231 * to allow max possible filling before reallocation.
232 */
233 size = SKB_WITH_OVERHEAD(ksize(data));
234 prefetchw(data + size);
235
236 /*
237 * Only clear those fields we need to clear, not those that we will
238 * actually initialise below. Hence, don't put any more fields after
239 * the tail pointer in struct sk_buff!
240 */
241 memset(skb, 0, offsetof(struct sk_buff, tail));
242 /* Account for allocated memory : skb + skb->head */
243 skb->truesize = SKB_TRUESIZE(size);
244 skb->pfmemalloc = pfmemalloc;
245 atomic_set(&skb->users, 1);
246 skb->head = data;
247 skb->data = data;
248 skb_reset_tail_pointer(skb);
249 skb->end = skb->tail + size;
250 skb->mac_header = (typeof(skb->mac_header))~0U;
251 skb->transport_header = (typeof(skb->transport_header))~0U;
252
253 /* make sure we initialize shinfo sequentially */
254 shinfo = skb_shinfo(skb);
255 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
256 atomic_set(&shinfo->dataref, 1);
257 kmemcheck_annotate_variable(shinfo->destructor_arg);
258
259 if (flags & SKB_ALLOC_FCLONE) {
260 struct sk_buff_fclones *fclones;
261
262 fclones = container_of(skb, struct sk_buff_fclones, skb1);
263
264 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
265 skb->fclone = SKB_FCLONE_ORIG;
266 atomic_set(&fclones->fclone_ref, 1);
267
268 fclones->skb2.fclone = SKB_FCLONE_CLONE;
269 fclones->skb2.pfmemalloc = pfmemalloc;
270 }
271 out:
272 return skb;
273 nodata:
274 kmem_cache_free(cache, skb);
275 skb = NULL;
276 goto out;
277 }
278 EXPORT_SYMBOL(__alloc_skb);
279
280 /**
281 * build_skb - build a network buffer
282 * @data: data buffer provided by caller
283 * @frag_size: size of fragment, or 0 if head was kmalloced
284 *
285 * Allocate a new &sk_buff. Caller provides space holding head and
286 * skb_shared_info. @data must have been allocated by kmalloc() only if
287 * @frag_size is 0, otherwise data should come from the page allocator.
288 * The return is the new skb buffer.
289 * On a failure the return is %NULL, and @data is not freed.
290 * Notes :
291 * Before IO, driver allocates only data buffer where NIC put incoming frame
292 * Driver should add room at head (NET_SKB_PAD) and
293 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
294 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
295 * before giving packet to stack.
296 * RX rings only contains data buffers, not full skbs.
297 */
298 struct sk_buff *build_skb(void *data, unsigned int frag_size)
299 {
300 struct skb_shared_info *shinfo;
301 struct sk_buff *skb;
302 unsigned int size = frag_size ? : ksize(data);
303
304 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
305 if (!skb)
306 return NULL;
307
308 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309
310 memset(skb, 0, offsetof(struct sk_buff, tail));
311 skb->truesize = SKB_TRUESIZE(size);
312 skb->head_frag = frag_size != 0;
313 atomic_set(&skb->users, 1);
314 skb->head = data;
315 skb->data = data;
316 skb_reset_tail_pointer(skb);
317 skb->end = skb->tail + size;
318 skb->mac_header = (typeof(skb->mac_header))~0U;
319 skb->transport_header = (typeof(skb->transport_header))~0U;
320
321 /* make sure we initialize shinfo sequentially */
322 shinfo = skb_shinfo(skb);
323 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
324 atomic_set(&shinfo->dataref, 1);
325 kmemcheck_annotate_variable(shinfo->destructor_arg);
326
327 return skb;
328 }
329 EXPORT_SYMBOL(build_skb);
330
331 struct netdev_alloc_cache {
332 struct page_frag frag;
333 /* we maintain a pagecount bias, so that we dont dirty cache line
334 * containing page->_count every time we allocate a fragment.
335 */
336 unsigned int pagecnt_bias;
337 };
338 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
339 static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
340
341 static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
342 gfp_t gfp_mask)
343 {
344 const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
345 struct page *page = NULL;
346 gfp_t gfp = gfp_mask;
347
348 if (order) {
349 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
350 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
351 nc->frag.size = PAGE_SIZE << (page ? order : 0);
352 }
353
354 if (unlikely(!page))
355 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
356
357 nc->frag.page = page;
358
359 return page;
360 }
361
362 static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
363 unsigned int fragsz, gfp_t gfp_mask)
364 {
365 struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
366 struct page *page = nc->frag.page;
367 unsigned int size;
368 int offset;
369
370 if (unlikely(!page)) {
371 refill:
372 page = __page_frag_refill(nc, gfp_mask);
373 if (!page)
374 return NULL;
375
376 /* if size can vary use frag.size else just use PAGE_SIZE */
377 size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
378
379 /* Even if we own the page, we do not use atomic_set().
380 * This would break get_page_unless_zero() users.
381 */
382 atomic_add(size - 1, &page->_count);
383
384 /* reset page count bias and offset to start of new frag */
385 nc->pagecnt_bias = size;
386 nc->frag.offset = size;
387 }
388
389 offset = nc->frag.offset - fragsz;
390 if (unlikely(offset < 0)) {
391 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
392 goto refill;
393
394 /* if size can vary use frag.size else just use PAGE_SIZE */
395 size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
396
397 /* OK, page count is 0, we can safely set it */
398 atomic_set(&page->_count, size);
399
400 /* reset page count bias and offset to start of new frag */
401 nc->pagecnt_bias = size;
402 offset = size - fragsz;
403 }
404
405 nc->pagecnt_bias--;
406 nc->frag.offset = offset;
407
408 return page_address(page) + offset;
409 }
410
411 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
412 {
413 unsigned long flags;
414 void *data;
415
416 local_irq_save(flags);
417 data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
418 local_irq_restore(flags);
419 return data;
420 }
421
422 /**
423 * netdev_alloc_frag - allocate a page fragment
424 * @fragsz: fragment size
425 *
426 * Allocates a frag from a page for receive buffer.
427 * Uses GFP_ATOMIC allocations.
428 */
429 void *netdev_alloc_frag(unsigned int fragsz)
430 {
431 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
432 }
433 EXPORT_SYMBOL(netdev_alloc_frag);
434
435 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
436 {
437 return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
438 }
439
440 void *napi_alloc_frag(unsigned int fragsz)
441 {
442 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
443 }
444 EXPORT_SYMBOL(napi_alloc_frag);
445
446 /**
447 * __alloc_rx_skb - allocate an skbuff for rx
448 * @length: length to allocate
449 * @gfp_mask: get_free_pages mask, passed to alloc_skb
450 * @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
451 * allocations in case we have to fallback to __alloc_skb()
452 * If SKB_ALLOC_NAPI is set, page fragment will be allocated
453 * from napi_cache instead of netdev_cache.
454 *
455 * Allocate a new &sk_buff and assign it a usage count of one. The
456 * buffer has unspecified headroom built in. Users should allocate
457 * the headroom they think they need without accounting for the
458 * built in space. The built in space is used for optimisations.
459 *
460 * %NULL is returned if there is no free memory.
461 */
462 static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
463 int flags)
464 {
465 struct sk_buff *skb = NULL;
466 unsigned int fragsz = SKB_DATA_ALIGN(length) +
467 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
468
469 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
470 void *data;
471
472 if (sk_memalloc_socks())
473 gfp_mask |= __GFP_MEMALLOC;
474
475 data = (flags & SKB_ALLOC_NAPI) ?
476 __napi_alloc_frag(fragsz, gfp_mask) :
477 __netdev_alloc_frag(fragsz, gfp_mask);
478
479 if (likely(data)) {
480 skb = build_skb(data, fragsz);
481 if (unlikely(!skb))
482 put_page(virt_to_head_page(data));
483 }
484 } else {
485 skb = __alloc_skb(length, gfp_mask,
486 SKB_ALLOC_RX, NUMA_NO_NODE);
487 }
488 return skb;
489 }
490
491 /**
492 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
493 * @dev: network device to receive on
494 * @length: length to allocate
495 * @gfp_mask: get_free_pages mask, passed to alloc_skb
496 *
497 * Allocate a new &sk_buff and assign it a usage count of one. The
498 * buffer has NET_SKB_PAD headroom built in. Users should allocate
499 * the headroom they think they need without accounting for the
500 * built in space. The built in space is used for optimisations.
501 *
502 * %NULL is returned if there is no free memory.
503 */
504 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
505 unsigned int length, gfp_t gfp_mask)
506 {
507 struct sk_buff *skb;
508
509 length += NET_SKB_PAD;
510 skb = __alloc_rx_skb(length, gfp_mask, 0);
511
512 if (likely(skb)) {
513 skb_reserve(skb, NET_SKB_PAD);
514 skb->dev = dev;
515 }
516
517 return skb;
518 }
519 EXPORT_SYMBOL(__netdev_alloc_skb);
520
521 /**
522 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
523 * @napi: napi instance this buffer was allocated for
524 * @length: length to allocate
525 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
526 *
527 * Allocate a new sk_buff for use in NAPI receive. This buffer will
528 * attempt to allocate the head from a special reserved region used
529 * only for NAPI Rx allocation. By doing this we can save several
530 * CPU cycles by avoiding having to disable and re-enable IRQs.
531 *
532 * %NULL is returned if there is no free memory.
533 */
534 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
535 unsigned int length, gfp_t gfp_mask)
536 {
537 struct sk_buff *skb;
538
539 length += NET_SKB_PAD + NET_IP_ALIGN;
540 skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
541
542 if (likely(skb)) {
543 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
544 skb->dev = napi->dev;
545 }
546
547 return skb;
548 }
549 EXPORT_SYMBOL(__napi_alloc_skb);
550
551 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
552 int size, unsigned int truesize)
553 {
554 skb_fill_page_desc(skb, i, page, off, size);
555 skb->len += size;
556 skb->data_len += size;
557 skb->truesize += truesize;
558 }
559 EXPORT_SYMBOL(skb_add_rx_frag);
560
561 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
562 unsigned int truesize)
563 {
564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
565
566 skb_frag_size_add(frag, size);
567 skb->len += size;
568 skb->data_len += size;
569 skb->truesize += truesize;
570 }
571 EXPORT_SYMBOL(skb_coalesce_rx_frag);
572
573 static void skb_drop_list(struct sk_buff **listp)
574 {
575 kfree_skb_list(*listp);
576 *listp = NULL;
577 }
578
579 static inline void skb_drop_fraglist(struct sk_buff *skb)
580 {
581 skb_drop_list(&skb_shinfo(skb)->frag_list);
582 }
583
584 static void skb_clone_fraglist(struct sk_buff *skb)
585 {
586 struct sk_buff *list;
587
588 skb_walk_frags(skb, list)
589 skb_get(list);
590 }
591
592 static void skb_free_head(struct sk_buff *skb)
593 {
594 if (skb->head_frag)
595 put_page(virt_to_head_page(skb->head));
596 else
597 kfree(skb->head);
598 }
599
600 static void skb_release_data(struct sk_buff *skb)
601 {
602 struct skb_shared_info *shinfo = skb_shinfo(skb);
603 int i;
604
605 if (skb->cloned &&
606 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
607 &shinfo->dataref))
608 return;
609
610 for (i = 0; i < shinfo->nr_frags; i++)
611 __skb_frag_unref(&shinfo->frags[i]);
612
613 /*
614 * If skb buf is from userspace, we need to notify the caller
615 * the lower device DMA has done;
616 */
617 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
618 struct ubuf_info *uarg;
619
620 uarg = shinfo->destructor_arg;
621 if (uarg->callback)
622 uarg->callback(uarg, true);
623 }
624
625 if (shinfo->frag_list)
626 kfree_skb_list(shinfo->frag_list);
627
628 skb_free_head(skb);
629 }
630
631 /*
632 * Free an skbuff by memory without cleaning the state.
633 */
634 static void kfree_skbmem(struct sk_buff *skb)
635 {
636 struct sk_buff_fclones *fclones;
637
638 switch (skb->fclone) {
639 case SKB_FCLONE_UNAVAILABLE:
640 kmem_cache_free(skbuff_head_cache, skb);
641 return;
642
643 case SKB_FCLONE_ORIG:
644 fclones = container_of(skb, struct sk_buff_fclones, skb1);
645
646 /* We usually free the clone (TX completion) before original skb
647 * This test would have no chance to be true for the clone,
648 * while here, branch prediction will be good.
649 */
650 if (atomic_read(&fclones->fclone_ref) == 1)
651 goto fastpath;
652 break;
653
654 default: /* SKB_FCLONE_CLONE */
655 fclones = container_of(skb, struct sk_buff_fclones, skb2);
656 break;
657 }
658 if (!atomic_dec_and_test(&fclones->fclone_ref))
659 return;
660 fastpath:
661 kmem_cache_free(skbuff_fclone_cache, fclones);
662 }
663
664 static void skb_release_head_state(struct sk_buff *skb)
665 {
666 skb_dst_drop(skb);
667 #ifdef CONFIG_XFRM
668 secpath_put(skb->sp);
669 #endif
670 if (skb->destructor) {
671 WARN_ON(in_irq());
672 skb->destructor(skb);
673 }
674 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
675 nf_conntrack_put(skb->nfct);
676 #endif
677 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
678 nf_bridge_put(skb->nf_bridge);
679 #endif
680 /* XXX: IS this still necessary? - JHS */
681 #ifdef CONFIG_NET_SCHED
682 skb->tc_index = 0;
683 #ifdef CONFIG_NET_CLS_ACT
684 skb->tc_verd = 0;
685 #endif
686 #endif
687 }
688
689 /* Free everything but the sk_buff shell. */
690 static void skb_release_all(struct sk_buff *skb)
691 {
692 skb_release_head_state(skb);
693 if (likely(skb->head))
694 skb_release_data(skb);
695 }
696
697 /**
698 * __kfree_skb - private function
699 * @skb: buffer
700 *
701 * Free an sk_buff. Release anything attached to the buffer.
702 * Clean the state. This is an internal helper function. Users should
703 * always call kfree_skb
704 */
705
706 void __kfree_skb(struct sk_buff *skb)
707 {
708 skb_release_all(skb);
709 kfree_skbmem(skb);
710 }
711 EXPORT_SYMBOL(__kfree_skb);
712
713 /**
714 * kfree_skb - free an sk_buff
715 * @skb: buffer to free
716 *
717 * Drop a reference to the buffer and free it if the usage count has
718 * hit zero.
719 */
720 void kfree_skb(struct sk_buff *skb)
721 {
722 if (unlikely(!skb))
723 return;
724 if (likely(atomic_read(&skb->users) == 1))
725 smp_rmb();
726 else if (likely(!atomic_dec_and_test(&skb->users)))
727 return;
728 trace_kfree_skb(skb, __builtin_return_address(0));
729 __kfree_skb(skb);
730 }
731 EXPORT_SYMBOL(kfree_skb);
732
733 void kfree_skb_list(struct sk_buff *segs)
734 {
735 while (segs) {
736 struct sk_buff *next = segs->next;
737
738 kfree_skb(segs);
739 segs = next;
740 }
741 }
742 EXPORT_SYMBOL(kfree_skb_list);
743
744 /**
745 * skb_tx_error - report an sk_buff xmit error
746 * @skb: buffer that triggered an error
747 *
748 * Report xmit error if a device callback is tracking this skb.
749 * skb must be freed afterwards.
750 */
751 void skb_tx_error(struct sk_buff *skb)
752 {
753 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
754 struct ubuf_info *uarg;
755
756 uarg = skb_shinfo(skb)->destructor_arg;
757 if (uarg->callback)
758 uarg->callback(uarg, false);
759 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
760 }
761 }
762 EXPORT_SYMBOL(skb_tx_error);
763
764 /**
765 * consume_skb - free an skbuff
766 * @skb: buffer to free
767 *
768 * Drop a ref to the buffer and free it if the usage count has hit zero
769 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
770 * is being dropped after a failure and notes that
771 */
772 void consume_skb(struct sk_buff *skb)
773 {
774 if (unlikely(!skb))
775 return;
776 if (likely(atomic_read(&skb->users) == 1))
777 smp_rmb();
778 else if (likely(!atomic_dec_and_test(&skb->users)))
779 return;
780 trace_consume_skb(skb);
781 __kfree_skb(skb);
782 }
783 EXPORT_SYMBOL(consume_skb);
784
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
791
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801 #endif
802 __nf_copy(new, old, false);
803
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
806 */
807 new->queue_mapping = old->queue_mapping;
808
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_NET_SCHED
834 CHECK_SKB_FIELD(tc_index);
835 #ifdef CONFIG_NET_CLS_ACT
836 CHECK_SKB_FIELD(tc_verd);
837 #endif
838 #endif
839
840 }
841
842 /*
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
845 */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
853
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->destructor = NULL;
861 C(tail);
862 C(end);
863 C(head);
864 C(head_frag);
865 C(data);
866 C(truesize);
867 atomic_set(&n->users, 1);
868
869 atomic_inc(&(skb_shinfo(skb)->dataref));
870 skb->cloned = 1;
871
872 return n;
873 #undef C
874 }
875
876 /**
877 * skb_morph - morph one skb into another
878 * @dst: the skb to receive the contents
879 * @src: the skb to supply the contents
880 *
881 * This is identical to skb_clone except that the target skb is
882 * supplied by the user.
883 *
884 * The target skb is returned upon exit.
885 */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 skb_release_all(dst);
889 return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892
893 /**
894 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
895 * @skb: the skb to modify
896 * @gfp_mask: allocation priority
897 *
898 * This must be called on SKBTX_DEV_ZEROCOPY skb.
899 * It will copy all frags into kernel and drop the reference
900 * to userspace pages.
901 *
902 * If this function is called from an interrupt gfp_mask() must be
903 * %GFP_ATOMIC.
904 *
905 * Returns 0 on success or a negative error code on failure
906 * to allocate kernel memory to copy to.
907 */
908 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
909 {
910 int i;
911 int num_frags = skb_shinfo(skb)->nr_frags;
912 struct page *page, *head = NULL;
913 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
914
915 for (i = 0; i < num_frags; i++) {
916 u8 *vaddr;
917 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
918
919 page = alloc_page(gfp_mask);
920 if (!page) {
921 while (head) {
922 struct page *next = (struct page *)page_private(head);
923 put_page(head);
924 head = next;
925 }
926 return -ENOMEM;
927 }
928 vaddr = kmap_atomic(skb_frag_page(f));
929 memcpy(page_address(page),
930 vaddr + f->page_offset, skb_frag_size(f));
931 kunmap_atomic(vaddr);
932 set_page_private(page, (unsigned long)head);
933 head = page;
934 }
935
936 /* skb frags release userspace buffers */
937 for (i = 0; i < num_frags; i++)
938 skb_frag_unref(skb, i);
939
940 uarg->callback(uarg, false);
941
942 /* skb frags point to kernel buffers */
943 for (i = num_frags - 1; i >= 0; i--) {
944 __skb_fill_page_desc(skb, i, head, 0,
945 skb_shinfo(skb)->frags[i].size);
946 head = (struct page *)page_private(head);
947 }
948
949 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
950 return 0;
951 }
952 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
953
954 /**
955 * skb_clone - duplicate an sk_buff
956 * @skb: buffer to clone
957 * @gfp_mask: allocation priority
958 *
959 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
960 * copies share the same packet data but not structure. The new
961 * buffer has a reference count of 1. If the allocation fails the
962 * function returns %NULL otherwise the new buffer is returned.
963 *
964 * If this function is called from an interrupt gfp_mask() must be
965 * %GFP_ATOMIC.
966 */
967
968 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
969 {
970 struct sk_buff_fclones *fclones = container_of(skb,
971 struct sk_buff_fclones,
972 skb1);
973 struct sk_buff *n;
974
975 if (skb_orphan_frags(skb, gfp_mask))
976 return NULL;
977
978 if (skb->fclone == SKB_FCLONE_ORIG &&
979 atomic_read(&fclones->fclone_ref) == 1) {
980 n = &fclones->skb2;
981 atomic_set(&fclones->fclone_ref, 2);
982 } else {
983 if (skb_pfmemalloc(skb))
984 gfp_mask |= __GFP_MEMALLOC;
985
986 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
987 if (!n)
988 return NULL;
989
990 kmemcheck_annotate_bitfield(n, flags1);
991 n->fclone = SKB_FCLONE_UNAVAILABLE;
992 }
993
994 return __skb_clone(n, skb);
995 }
996 EXPORT_SYMBOL(skb_clone);
997
998 static void skb_headers_offset_update(struct sk_buff *skb, int off)
999 {
1000 /* Only adjust this if it actually is csum_start rather than csum */
1001 if (skb->ip_summed == CHECKSUM_PARTIAL)
1002 skb->csum_start += off;
1003 /* {transport,network,mac}_header and tail are relative to skb->head */
1004 skb->transport_header += off;
1005 skb->network_header += off;
1006 if (skb_mac_header_was_set(skb))
1007 skb->mac_header += off;
1008 skb->inner_transport_header += off;
1009 skb->inner_network_header += off;
1010 skb->inner_mac_header += off;
1011 }
1012
1013 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1014 {
1015 __copy_skb_header(new, old);
1016
1017 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1018 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1019 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1020 }
1021
1022 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1023 {
1024 if (skb_pfmemalloc(skb))
1025 return SKB_ALLOC_RX;
1026 return 0;
1027 }
1028
1029 /**
1030 * skb_copy - create private copy of an sk_buff
1031 * @skb: buffer to copy
1032 * @gfp_mask: allocation priority
1033 *
1034 * Make a copy of both an &sk_buff and its data. This is used when the
1035 * caller wishes to modify the data and needs a private copy of the
1036 * data to alter. Returns %NULL on failure or the pointer to the buffer
1037 * on success. The returned buffer has a reference count of 1.
1038 *
1039 * As by-product this function converts non-linear &sk_buff to linear
1040 * one, so that &sk_buff becomes completely private and caller is allowed
1041 * to modify all the data of returned buffer. This means that this
1042 * function is not recommended for use in circumstances when only
1043 * header is going to be modified. Use pskb_copy() instead.
1044 */
1045
1046 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1047 {
1048 int headerlen = skb_headroom(skb);
1049 unsigned int size = skb_end_offset(skb) + skb->data_len;
1050 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1051 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1052
1053 if (!n)
1054 return NULL;
1055
1056 /* Set the data pointer */
1057 skb_reserve(n, headerlen);
1058 /* Set the tail pointer and length */
1059 skb_put(n, skb->len);
1060
1061 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1062 BUG();
1063
1064 copy_skb_header(n, skb);
1065 return n;
1066 }
1067 EXPORT_SYMBOL(skb_copy);
1068
1069 /**
1070 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1071 * @skb: buffer to copy
1072 * @headroom: headroom of new skb
1073 * @gfp_mask: allocation priority
1074 * @fclone: if true allocate the copy of the skb from the fclone
1075 * cache instead of the head cache; it is recommended to set this
1076 * to true for the cases where the copy will likely be cloned
1077 *
1078 * Make a copy of both an &sk_buff and part of its data, located
1079 * in header. Fragmented data remain shared. This is used when
1080 * the caller wishes to modify only header of &sk_buff and needs
1081 * private copy of the header to alter. Returns %NULL on failure
1082 * or the pointer to the buffer on success.
1083 * The returned buffer has a reference count of 1.
1084 */
1085
1086 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1087 gfp_t gfp_mask, bool fclone)
1088 {
1089 unsigned int size = skb_headlen(skb) + headroom;
1090 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1091 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1092
1093 if (!n)
1094 goto out;
1095
1096 /* Set the data pointer */
1097 skb_reserve(n, headroom);
1098 /* Set the tail pointer and length */
1099 skb_put(n, skb_headlen(skb));
1100 /* Copy the bytes */
1101 skb_copy_from_linear_data(skb, n->data, n->len);
1102
1103 n->truesize += skb->data_len;
1104 n->data_len = skb->data_len;
1105 n->len = skb->len;
1106
1107 if (skb_shinfo(skb)->nr_frags) {
1108 int i;
1109
1110 if (skb_orphan_frags(skb, gfp_mask)) {
1111 kfree_skb(n);
1112 n = NULL;
1113 goto out;
1114 }
1115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1117 skb_frag_ref(skb, i);
1118 }
1119 skb_shinfo(n)->nr_frags = i;
1120 }
1121
1122 if (skb_has_frag_list(skb)) {
1123 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1124 skb_clone_fraglist(n);
1125 }
1126
1127 copy_skb_header(n, skb);
1128 out:
1129 return n;
1130 }
1131 EXPORT_SYMBOL(__pskb_copy_fclone);
1132
1133 /**
1134 * pskb_expand_head - reallocate header of &sk_buff
1135 * @skb: buffer to reallocate
1136 * @nhead: room to add at head
1137 * @ntail: room to add at tail
1138 * @gfp_mask: allocation priority
1139 *
1140 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1141 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1142 * reference count of 1. Returns zero in the case of success or error,
1143 * if expansion failed. In the last case, &sk_buff is not changed.
1144 *
1145 * All the pointers pointing into skb header may change and must be
1146 * reloaded after call to this function.
1147 */
1148
1149 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1150 gfp_t gfp_mask)
1151 {
1152 int i;
1153 u8 *data;
1154 int size = nhead + skb_end_offset(skb) + ntail;
1155 long off;
1156
1157 BUG_ON(nhead < 0);
1158
1159 if (skb_shared(skb))
1160 BUG();
1161
1162 size = SKB_DATA_ALIGN(size);
1163
1164 if (skb_pfmemalloc(skb))
1165 gfp_mask |= __GFP_MEMALLOC;
1166 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1167 gfp_mask, NUMA_NO_NODE, NULL);
1168 if (!data)
1169 goto nodata;
1170 size = SKB_WITH_OVERHEAD(ksize(data));
1171
1172 /* Copy only real data... and, alas, header. This should be
1173 * optimized for the cases when header is void.
1174 */
1175 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1176
1177 memcpy((struct skb_shared_info *)(data + size),
1178 skb_shinfo(skb),
1179 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1180
1181 /*
1182 * if shinfo is shared we must drop the old head gracefully, but if it
1183 * is not we can just drop the old head and let the existing refcount
1184 * be since all we did is relocate the values
1185 */
1186 if (skb_cloned(skb)) {
1187 /* copy this zero copy skb frags */
1188 if (skb_orphan_frags(skb, gfp_mask))
1189 goto nofrags;
1190 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1191 skb_frag_ref(skb, i);
1192
1193 if (skb_has_frag_list(skb))
1194 skb_clone_fraglist(skb);
1195
1196 skb_release_data(skb);
1197 } else {
1198 skb_free_head(skb);
1199 }
1200 off = (data + nhead) - skb->head;
1201
1202 skb->head = data;
1203 skb->head_frag = 0;
1204 skb->data += off;
1205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1206 skb->end = size;
1207 off = nhead;
1208 #else
1209 skb->end = skb->head + size;
1210 #endif
1211 skb->tail += off;
1212 skb_headers_offset_update(skb, nhead);
1213 skb->cloned = 0;
1214 skb->hdr_len = 0;
1215 skb->nohdr = 0;
1216 atomic_set(&skb_shinfo(skb)->dataref, 1);
1217 return 0;
1218
1219 nofrags:
1220 kfree(data);
1221 nodata:
1222 return -ENOMEM;
1223 }
1224 EXPORT_SYMBOL(pskb_expand_head);
1225
1226 /* Make private copy of skb with writable head and some headroom */
1227
1228 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1229 {
1230 struct sk_buff *skb2;
1231 int delta = headroom - skb_headroom(skb);
1232
1233 if (delta <= 0)
1234 skb2 = pskb_copy(skb, GFP_ATOMIC);
1235 else {
1236 skb2 = skb_clone(skb, GFP_ATOMIC);
1237 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1238 GFP_ATOMIC)) {
1239 kfree_skb(skb2);
1240 skb2 = NULL;
1241 }
1242 }
1243 return skb2;
1244 }
1245 EXPORT_SYMBOL(skb_realloc_headroom);
1246
1247 /**
1248 * skb_copy_expand - copy and expand sk_buff
1249 * @skb: buffer to copy
1250 * @newheadroom: new free bytes at head
1251 * @newtailroom: new free bytes at tail
1252 * @gfp_mask: allocation priority
1253 *
1254 * Make a copy of both an &sk_buff and its data and while doing so
1255 * allocate additional space.
1256 *
1257 * This is used when the caller wishes to modify the data and needs a
1258 * private copy of the data to alter as well as more space for new fields.
1259 * Returns %NULL on failure or the pointer to the buffer
1260 * on success. The returned buffer has a reference count of 1.
1261 *
1262 * You must pass %GFP_ATOMIC as the allocation priority if this function
1263 * is called from an interrupt.
1264 */
1265 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1266 int newheadroom, int newtailroom,
1267 gfp_t gfp_mask)
1268 {
1269 /*
1270 * Allocate the copy buffer
1271 */
1272 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1273 gfp_mask, skb_alloc_rx_flag(skb),
1274 NUMA_NO_NODE);
1275 int oldheadroom = skb_headroom(skb);
1276 int head_copy_len, head_copy_off;
1277
1278 if (!n)
1279 return NULL;
1280
1281 skb_reserve(n, newheadroom);
1282
1283 /* Set the tail pointer and length */
1284 skb_put(n, skb->len);
1285
1286 head_copy_len = oldheadroom;
1287 head_copy_off = 0;
1288 if (newheadroom <= head_copy_len)
1289 head_copy_len = newheadroom;
1290 else
1291 head_copy_off = newheadroom - head_copy_len;
1292
1293 /* Copy the linear header and data. */
1294 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1295 skb->len + head_copy_len))
1296 BUG();
1297
1298 copy_skb_header(n, skb);
1299
1300 skb_headers_offset_update(n, newheadroom - oldheadroom);
1301
1302 return n;
1303 }
1304 EXPORT_SYMBOL(skb_copy_expand);
1305
1306 /**
1307 * skb_pad - zero pad the tail of an skb
1308 * @skb: buffer to pad
1309 * @pad: space to pad
1310 *
1311 * Ensure that a buffer is followed by a padding area that is zero
1312 * filled. Used by network drivers which may DMA or transfer data
1313 * beyond the buffer end onto the wire.
1314 *
1315 * May return error in out of memory cases. The skb is freed on error.
1316 */
1317
1318 int skb_pad(struct sk_buff *skb, int pad)
1319 {
1320 int err;
1321 int ntail;
1322
1323 /* If the skbuff is non linear tailroom is always zero.. */
1324 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1325 memset(skb->data+skb->len, 0, pad);
1326 return 0;
1327 }
1328
1329 ntail = skb->data_len + pad - (skb->end - skb->tail);
1330 if (likely(skb_cloned(skb) || ntail > 0)) {
1331 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1332 if (unlikely(err))
1333 goto free_skb;
1334 }
1335
1336 /* FIXME: The use of this function with non-linear skb's really needs
1337 * to be audited.
1338 */
1339 err = skb_linearize(skb);
1340 if (unlikely(err))
1341 goto free_skb;
1342
1343 memset(skb->data + skb->len, 0, pad);
1344 return 0;
1345
1346 free_skb:
1347 kfree_skb(skb);
1348 return err;
1349 }
1350 EXPORT_SYMBOL(skb_pad);
1351
1352 /**
1353 * pskb_put - add data to the tail of a potentially fragmented buffer
1354 * @skb: start of the buffer to use
1355 * @tail: tail fragment of the buffer to use
1356 * @len: amount of data to add
1357 *
1358 * This function extends the used data area of the potentially
1359 * fragmented buffer. @tail must be the last fragment of @skb -- or
1360 * @skb itself. If this would exceed the total buffer size the kernel
1361 * will panic. A pointer to the first byte of the extra data is
1362 * returned.
1363 */
1364
1365 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1366 {
1367 if (tail != skb) {
1368 skb->data_len += len;
1369 skb->len += len;
1370 }
1371 return skb_put(tail, len);
1372 }
1373 EXPORT_SYMBOL_GPL(pskb_put);
1374
1375 /**
1376 * skb_put - add data to a buffer
1377 * @skb: buffer to use
1378 * @len: amount of data to add
1379 *
1380 * This function extends the used data area of the buffer. If this would
1381 * exceed the total buffer size the kernel will panic. A pointer to the
1382 * first byte of the extra data is returned.
1383 */
1384 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1385 {
1386 unsigned char *tmp = skb_tail_pointer(skb);
1387 SKB_LINEAR_ASSERT(skb);
1388 skb->tail += len;
1389 skb->len += len;
1390 if (unlikely(skb->tail > skb->end))
1391 skb_over_panic(skb, len, __builtin_return_address(0));
1392 return tmp;
1393 }
1394 EXPORT_SYMBOL(skb_put);
1395
1396 /**
1397 * skb_push - add data to the start of a buffer
1398 * @skb: buffer to use
1399 * @len: amount of data to add
1400 *
1401 * This function extends the used data area of the buffer at the buffer
1402 * start. If this would exceed the total buffer headroom the kernel will
1403 * panic. A pointer to the first byte of the extra data is returned.
1404 */
1405 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1406 {
1407 skb->data -= len;
1408 skb->len += len;
1409 if (unlikely(skb->data<skb->head))
1410 skb_under_panic(skb, len, __builtin_return_address(0));
1411 return skb->data;
1412 }
1413 EXPORT_SYMBOL(skb_push);
1414
1415 /**
1416 * skb_pull - remove data from the start of a buffer
1417 * @skb: buffer to use
1418 * @len: amount of data to remove
1419 *
1420 * This function removes data from the start of a buffer, returning
1421 * the memory to the headroom. A pointer to the next data in the buffer
1422 * is returned. Once the data has been pulled future pushes will overwrite
1423 * the old data.
1424 */
1425 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1426 {
1427 return skb_pull_inline(skb, len);
1428 }
1429 EXPORT_SYMBOL(skb_pull);
1430
1431 /**
1432 * skb_trim - remove end from a buffer
1433 * @skb: buffer to alter
1434 * @len: new length
1435 *
1436 * Cut the length of a buffer down by removing data from the tail. If
1437 * the buffer is already under the length specified it is not modified.
1438 * The skb must be linear.
1439 */
1440 void skb_trim(struct sk_buff *skb, unsigned int len)
1441 {
1442 if (skb->len > len)
1443 __skb_trim(skb, len);
1444 }
1445 EXPORT_SYMBOL(skb_trim);
1446
1447 /* Trims skb to length len. It can change skb pointers.
1448 */
1449
1450 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1451 {
1452 struct sk_buff **fragp;
1453 struct sk_buff *frag;
1454 int offset = skb_headlen(skb);
1455 int nfrags = skb_shinfo(skb)->nr_frags;
1456 int i;
1457 int err;
1458
1459 if (skb_cloned(skb) &&
1460 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1461 return err;
1462
1463 i = 0;
1464 if (offset >= len)
1465 goto drop_pages;
1466
1467 for (; i < nfrags; i++) {
1468 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1469
1470 if (end < len) {
1471 offset = end;
1472 continue;
1473 }
1474
1475 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1476
1477 drop_pages:
1478 skb_shinfo(skb)->nr_frags = i;
1479
1480 for (; i < nfrags; i++)
1481 skb_frag_unref(skb, i);
1482
1483 if (skb_has_frag_list(skb))
1484 skb_drop_fraglist(skb);
1485 goto done;
1486 }
1487
1488 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1489 fragp = &frag->next) {
1490 int end = offset + frag->len;
1491
1492 if (skb_shared(frag)) {
1493 struct sk_buff *nfrag;
1494
1495 nfrag = skb_clone(frag, GFP_ATOMIC);
1496 if (unlikely(!nfrag))
1497 return -ENOMEM;
1498
1499 nfrag->next = frag->next;
1500 consume_skb(frag);
1501 frag = nfrag;
1502 *fragp = frag;
1503 }
1504
1505 if (end < len) {
1506 offset = end;
1507 continue;
1508 }
1509
1510 if (end > len &&
1511 unlikely((err = pskb_trim(frag, len - offset))))
1512 return err;
1513
1514 if (frag->next)
1515 skb_drop_list(&frag->next);
1516 break;
1517 }
1518
1519 done:
1520 if (len > skb_headlen(skb)) {
1521 skb->data_len -= skb->len - len;
1522 skb->len = len;
1523 } else {
1524 skb->len = len;
1525 skb->data_len = 0;
1526 skb_set_tail_pointer(skb, len);
1527 }
1528
1529 return 0;
1530 }
1531 EXPORT_SYMBOL(___pskb_trim);
1532
1533 /**
1534 * __pskb_pull_tail - advance tail of skb header
1535 * @skb: buffer to reallocate
1536 * @delta: number of bytes to advance tail
1537 *
1538 * The function makes a sense only on a fragmented &sk_buff,
1539 * it expands header moving its tail forward and copying necessary
1540 * data from fragmented part.
1541 *
1542 * &sk_buff MUST have reference count of 1.
1543 *
1544 * Returns %NULL (and &sk_buff does not change) if pull failed
1545 * or value of new tail of skb in the case of success.
1546 *
1547 * All the pointers pointing into skb header may change and must be
1548 * reloaded after call to this function.
1549 */
1550
1551 /* Moves tail of skb head forward, copying data from fragmented part,
1552 * when it is necessary.
1553 * 1. It may fail due to malloc failure.
1554 * 2. It may change skb pointers.
1555 *
1556 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1557 */
1558 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1559 {
1560 /* If skb has not enough free space at tail, get new one
1561 * plus 128 bytes for future expansions. If we have enough
1562 * room at tail, reallocate without expansion only if skb is cloned.
1563 */
1564 int i, k, eat = (skb->tail + delta) - skb->end;
1565
1566 if (eat > 0 || skb_cloned(skb)) {
1567 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1568 GFP_ATOMIC))
1569 return NULL;
1570 }
1571
1572 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1573 BUG();
1574
1575 /* Optimization: no fragments, no reasons to preestimate
1576 * size of pulled pages. Superb.
1577 */
1578 if (!skb_has_frag_list(skb))
1579 goto pull_pages;
1580
1581 /* Estimate size of pulled pages. */
1582 eat = delta;
1583 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1584 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1585
1586 if (size >= eat)
1587 goto pull_pages;
1588 eat -= size;
1589 }
1590
1591 /* If we need update frag list, we are in troubles.
1592 * Certainly, it possible to add an offset to skb data,
1593 * but taking into account that pulling is expected to
1594 * be very rare operation, it is worth to fight against
1595 * further bloating skb head and crucify ourselves here instead.
1596 * Pure masohism, indeed. 8)8)
1597 */
1598 if (eat) {
1599 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1600 struct sk_buff *clone = NULL;
1601 struct sk_buff *insp = NULL;
1602
1603 do {
1604 BUG_ON(!list);
1605
1606 if (list->len <= eat) {
1607 /* Eaten as whole. */
1608 eat -= list->len;
1609 list = list->next;
1610 insp = list;
1611 } else {
1612 /* Eaten partially. */
1613
1614 if (skb_shared(list)) {
1615 /* Sucks! We need to fork list. :-( */
1616 clone = skb_clone(list, GFP_ATOMIC);
1617 if (!clone)
1618 return NULL;
1619 insp = list->next;
1620 list = clone;
1621 } else {
1622 /* This may be pulled without
1623 * problems. */
1624 insp = list;
1625 }
1626 if (!pskb_pull(list, eat)) {
1627 kfree_skb(clone);
1628 return NULL;
1629 }
1630 break;
1631 }
1632 } while (eat);
1633
1634 /* Free pulled out fragments. */
1635 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1636 skb_shinfo(skb)->frag_list = list->next;
1637 kfree_skb(list);
1638 }
1639 /* And insert new clone at head. */
1640 if (clone) {
1641 clone->next = list;
1642 skb_shinfo(skb)->frag_list = clone;
1643 }
1644 }
1645 /* Success! Now we may commit changes to skb data. */
1646
1647 pull_pages:
1648 eat = delta;
1649 k = 0;
1650 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1651 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1652
1653 if (size <= eat) {
1654 skb_frag_unref(skb, i);
1655 eat -= size;
1656 } else {
1657 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1658 if (eat) {
1659 skb_shinfo(skb)->frags[k].page_offset += eat;
1660 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1661 eat = 0;
1662 }
1663 k++;
1664 }
1665 }
1666 skb_shinfo(skb)->nr_frags = k;
1667
1668 skb->tail += delta;
1669 skb->data_len -= delta;
1670
1671 return skb_tail_pointer(skb);
1672 }
1673 EXPORT_SYMBOL(__pskb_pull_tail);
1674
1675 /**
1676 * skb_copy_bits - copy bits from skb to kernel buffer
1677 * @skb: source skb
1678 * @offset: offset in source
1679 * @to: destination buffer
1680 * @len: number of bytes to copy
1681 *
1682 * Copy the specified number of bytes from the source skb to the
1683 * destination buffer.
1684 *
1685 * CAUTION ! :
1686 * If its prototype is ever changed,
1687 * check arch/{*}/net/{*}.S files,
1688 * since it is called from BPF assembly code.
1689 */
1690 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1691 {
1692 int start = skb_headlen(skb);
1693 struct sk_buff *frag_iter;
1694 int i, copy;
1695
1696 if (offset > (int)skb->len - len)
1697 goto fault;
1698
1699 /* Copy header. */
1700 if ((copy = start - offset) > 0) {
1701 if (copy > len)
1702 copy = len;
1703 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1704 if ((len -= copy) == 0)
1705 return 0;
1706 offset += copy;
1707 to += copy;
1708 }
1709
1710 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1711 int end;
1712 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1713
1714 WARN_ON(start > offset + len);
1715
1716 end = start + skb_frag_size(f);
1717 if ((copy = end - offset) > 0) {
1718 u8 *vaddr;
1719
1720 if (copy > len)
1721 copy = len;
1722
1723 vaddr = kmap_atomic(skb_frag_page(f));
1724 memcpy(to,
1725 vaddr + f->page_offset + offset - start,
1726 copy);
1727 kunmap_atomic(vaddr);
1728
1729 if ((len -= copy) == 0)
1730 return 0;
1731 offset += copy;
1732 to += copy;
1733 }
1734 start = end;
1735 }
1736
1737 skb_walk_frags(skb, frag_iter) {
1738 int end;
1739
1740 WARN_ON(start > offset + len);
1741
1742 end = start + frag_iter->len;
1743 if ((copy = end - offset) > 0) {
1744 if (copy > len)
1745 copy = len;
1746 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1747 goto fault;
1748 if ((len -= copy) == 0)
1749 return 0;
1750 offset += copy;
1751 to += copy;
1752 }
1753 start = end;
1754 }
1755
1756 if (!len)
1757 return 0;
1758
1759 fault:
1760 return -EFAULT;
1761 }
1762 EXPORT_SYMBOL(skb_copy_bits);
1763
1764 /*
1765 * Callback from splice_to_pipe(), if we need to release some pages
1766 * at the end of the spd in case we error'ed out in filling the pipe.
1767 */
1768 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1769 {
1770 put_page(spd->pages[i]);
1771 }
1772
1773 static struct page *linear_to_page(struct page *page, unsigned int *len,
1774 unsigned int *offset,
1775 struct sock *sk)
1776 {
1777 struct page_frag *pfrag = sk_page_frag(sk);
1778
1779 if (!sk_page_frag_refill(sk, pfrag))
1780 return NULL;
1781
1782 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1783
1784 memcpy(page_address(pfrag->page) + pfrag->offset,
1785 page_address(page) + *offset, *len);
1786 *offset = pfrag->offset;
1787 pfrag->offset += *len;
1788
1789 return pfrag->page;
1790 }
1791
1792 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1793 struct page *page,
1794 unsigned int offset)
1795 {
1796 return spd->nr_pages &&
1797 spd->pages[spd->nr_pages - 1] == page &&
1798 (spd->partial[spd->nr_pages - 1].offset +
1799 spd->partial[spd->nr_pages - 1].len == offset);
1800 }
1801
1802 /*
1803 * Fill page/offset/length into spd, if it can hold more pages.
1804 */
1805 static bool spd_fill_page(struct splice_pipe_desc *spd,
1806 struct pipe_inode_info *pipe, struct page *page,
1807 unsigned int *len, unsigned int offset,
1808 bool linear,
1809 struct sock *sk)
1810 {
1811 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1812 return true;
1813
1814 if (linear) {
1815 page = linear_to_page(page, len, &offset, sk);
1816 if (!page)
1817 return true;
1818 }
1819 if (spd_can_coalesce(spd, page, offset)) {
1820 spd->partial[spd->nr_pages - 1].len += *len;
1821 return false;
1822 }
1823 get_page(page);
1824 spd->pages[spd->nr_pages] = page;
1825 spd->partial[spd->nr_pages].len = *len;
1826 spd->partial[spd->nr_pages].offset = offset;
1827 spd->nr_pages++;
1828
1829 return false;
1830 }
1831
1832 static bool __splice_segment(struct page *page, unsigned int poff,
1833 unsigned int plen, unsigned int *off,
1834 unsigned int *len,
1835 struct splice_pipe_desc *spd, bool linear,
1836 struct sock *sk,
1837 struct pipe_inode_info *pipe)
1838 {
1839 if (!*len)
1840 return true;
1841
1842 /* skip this segment if already processed */
1843 if (*off >= plen) {
1844 *off -= plen;
1845 return false;
1846 }
1847
1848 /* ignore any bits we already processed */
1849 poff += *off;
1850 plen -= *off;
1851 *off = 0;
1852
1853 do {
1854 unsigned int flen = min(*len, plen);
1855
1856 if (spd_fill_page(spd, pipe, page, &flen, poff,
1857 linear, sk))
1858 return true;
1859 poff += flen;
1860 plen -= flen;
1861 *len -= flen;
1862 } while (*len && plen);
1863
1864 return false;
1865 }
1866
1867 /*
1868 * Map linear and fragment data from the skb to spd. It reports true if the
1869 * pipe is full or if we already spliced the requested length.
1870 */
1871 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1872 unsigned int *offset, unsigned int *len,
1873 struct splice_pipe_desc *spd, struct sock *sk)
1874 {
1875 int seg;
1876
1877 /* map the linear part :
1878 * If skb->head_frag is set, this 'linear' part is backed by a
1879 * fragment, and if the head is not shared with any clones then
1880 * we can avoid a copy since we own the head portion of this page.
1881 */
1882 if (__splice_segment(virt_to_page(skb->data),
1883 (unsigned long) skb->data & (PAGE_SIZE - 1),
1884 skb_headlen(skb),
1885 offset, len, spd,
1886 skb_head_is_locked(skb),
1887 sk, pipe))
1888 return true;
1889
1890 /*
1891 * then map the fragments
1892 */
1893 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1894 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1895
1896 if (__splice_segment(skb_frag_page(f),
1897 f->page_offset, skb_frag_size(f),
1898 offset, len, spd, false, sk, pipe))
1899 return true;
1900 }
1901
1902 return false;
1903 }
1904
1905 /*
1906 * Map data from the skb to a pipe. Should handle both the linear part,
1907 * the fragments, and the frag list. It does NOT handle frag lists within
1908 * the frag list, if such a thing exists. We'd probably need to recurse to
1909 * handle that cleanly.
1910 */
1911 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1912 struct pipe_inode_info *pipe, unsigned int tlen,
1913 unsigned int flags)
1914 {
1915 struct partial_page partial[MAX_SKB_FRAGS];
1916 struct page *pages[MAX_SKB_FRAGS];
1917 struct splice_pipe_desc spd = {
1918 .pages = pages,
1919 .partial = partial,
1920 .nr_pages_max = MAX_SKB_FRAGS,
1921 .flags = flags,
1922 .ops = &nosteal_pipe_buf_ops,
1923 .spd_release = sock_spd_release,
1924 };
1925 struct sk_buff *frag_iter;
1926 struct sock *sk = skb->sk;
1927 int ret = 0;
1928
1929 /*
1930 * __skb_splice_bits() only fails if the output has no room left,
1931 * so no point in going over the frag_list for the error case.
1932 */
1933 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1934 goto done;
1935 else if (!tlen)
1936 goto done;
1937
1938 /*
1939 * now see if we have a frag_list to map
1940 */
1941 skb_walk_frags(skb, frag_iter) {
1942 if (!tlen)
1943 break;
1944 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1945 break;
1946 }
1947
1948 done:
1949 if (spd.nr_pages) {
1950 /*
1951 * Drop the socket lock, otherwise we have reverse
1952 * locking dependencies between sk_lock and i_mutex
1953 * here as compared to sendfile(). We enter here
1954 * with the socket lock held, and splice_to_pipe() will
1955 * grab the pipe inode lock. For sendfile() emulation,
1956 * we call into ->sendpage() with the i_mutex lock held
1957 * and networking will grab the socket lock.
1958 */
1959 release_sock(sk);
1960 ret = splice_to_pipe(pipe, &spd);
1961 lock_sock(sk);
1962 }
1963
1964 return ret;
1965 }
1966
1967 /**
1968 * skb_store_bits - store bits from kernel buffer to skb
1969 * @skb: destination buffer
1970 * @offset: offset in destination
1971 * @from: source buffer
1972 * @len: number of bytes to copy
1973 *
1974 * Copy the specified number of bytes from the source buffer to the
1975 * destination skb. This function handles all the messy bits of
1976 * traversing fragment lists and such.
1977 */
1978
1979 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1980 {
1981 int start = skb_headlen(skb);
1982 struct sk_buff *frag_iter;
1983 int i, copy;
1984
1985 if (offset > (int)skb->len - len)
1986 goto fault;
1987
1988 if ((copy = start - offset) > 0) {
1989 if (copy > len)
1990 copy = len;
1991 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1992 if ((len -= copy) == 0)
1993 return 0;
1994 offset += copy;
1995 from += copy;
1996 }
1997
1998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1999 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2000 int end;
2001
2002 WARN_ON(start > offset + len);
2003
2004 end = start + skb_frag_size(frag);
2005 if ((copy = end - offset) > 0) {
2006 u8 *vaddr;
2007
2008 if (copy > len)
2009 copy = len;
2010
2011 vaddr = kmap_atomic(skb_frag_page(frag));
2012 memcpy(vaddr + frag->page_offset + offset - start,
2013 from, copy);
2014 kunmap_atomic(vaddr);
2015
2016 if ((len -= copy) == 0)
2017 return 0;
2018 offset += copy;
2019 from += copy;
2020 }
2021 start = end;
2022 }
2023
2024 skb_walk_frags(skb, frag_iter) {
2025 int end;
2026
2027 WARN_ON(start > offset + len);
2028
2029 end = start + frag_iter->len;
2030 if ((copy = end - offset) > 0) {
2031 if (copy > len)
2032 copy = len;
2033 if (skb_store_bits(frag_iter, offset - start,
2034 from, copy))
2035 goto fault;
2036 if ((len -= copy) == 0)
2037 return 0;
2038 offset += copy;
2039 from += copy;
2040 }
2041 start = end;
2042 }
2043 if (!len)
2044 return 0;
2045
2046 fault:
2047 return -EFAULT;
2048 }
2049 EXPORT_SYMBOL(skb_store_bits);
2050
2051 /* Checksum skb data. */
2052 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2053 __wsum csum, const struct skb_checksum_ops *ops)
2054 {
2055 int start = skb_headlen(skb);
2056 int i, copy = start - offset;
2057 struct sk_buff *frag_iter;
2058 int pos = 0;
2059
2060 /* Checksum header. */
2061 if (copy > 0) {
2062 if (copy > len)
2063 copy = len;
2064 csum = ops->update(skb->data + offset, copy, csum);
2065 if ((len -= copy) == 0)
2066 return csum;
2067 offset += copy;
2068 pos = copy;
2069 }
2070
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 int end;
2073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2074
2075 WARN_ON(start > offset + len);
2076
2077 end = start + skb_frag_size(frag);
2078 if ((copy = end - offset) > 0) {
2079 __wsum csum2;
2080 u8 *vaddr;
2081
2082 if (copy > len)
2083 copy = len;
2084 vaddr = kmap_atomic(skb_frag_page(frag));
2085 csum2 = ops->update(vaddr + frag->page_offset +
2086 offset - start, copy, 0);
2087 kunmap_atomic(vaddr);
2088 csum = ops->combine(csum, csum2, pos, copy);
2089 if (!(len -= copy))
2090 return csum;
2091 offset += copy;
2092 pos += copy;
2093 }
2094 start = end;
2095 }
2096
2097 skb_walk_frags(skb, frag_iter) {
2098 int end;
2099
2100 WARN_ON(start > offset + len);
2101
2102 end = start + frag_iter->len;
2103 if ((copy = end - offset) > 0) {
2104 __wsum csum2;
2105 if (copy > len)
2106 copy = len;
2107 csum2 = __skb_checksum(frag_iter, offset - start,
2108 copy, 0, ops);
2109 csum = ops->combine(csum, csum2, pos, copy);
2110 if ((len -= copy) == 0)
2111 return csum;
2112 offset += copy;
2113 pos += copy;
2114 }
2115 start = end;
2116 }
2117 BUG_ON(len);
2118
2119 return csum;
2120 }
2121 EXPORT_SYMBOL(__skb_checksum);
2122
2123 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2124 int len, __wsum csum)
2125 {
2126 const struct skb_checksum_ops ops = {
2127 .update = csum_partial_ext,
2128 .combine = csum_block_add_ext,
2129 };
2130
2131 return __skb_checksum(skb, offset, len, csum, &ops);
2132 }
2133 EXPORT_SYMBOL(skb_checksum);
2134
2135 /* Both of above in one bottle. */
2136
2137 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2138 u8 *to, int len, __wsum csum)
2139 {
2140 int start = skb_headlen(skb);
2141 int i, copy = start - offset;
2142 struct sk_buff *frag_iter;
2143 int pos = 0;
2144
2145 /* Copy header. */
2146 if (copy > 0) {
2147 if (copy > len)
2148 copy = len;
2149 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2150 copy, csum);
2151 if ((len -= copy) == 0)
2152 return csum;
2153 offset += copy;
2154 to += copy;
2155 pos = copy;
2156 }
2157
2158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2159 int end;
2160
2161 WARN_ON(start > offset + len);
2162
2163 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2164 if ((copy = end - offset) > 0) {
2165 __wsum csum2;
2166 u8 *vaddr;
2167 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2168
2169 if (copy > len)
2170 copy = len;
2171 vaddr = kmap_atomic(skb_frag_page(frag));
2172 csum2 = csum_partial_copy_nocheck(vaddr +
2173 frag->page_offset +
2174 offset - start, to,
2175 copy, 0);
2176 kunmap_atomic(vaddr);
2177 csum = csum_block_add(csum, csum2, pos);
2178 if (!(len -= copy))
2179 return csum;
2180 offset += copy;
2181 to += copy;
2182 pos += copy;
2183 }
2184 start = end;
2185 }
2186
2187 skb_walk_frags(skb, frag_iter) {
2188 __wsum csum2;
2189 int end;
2190
2191 WARN_ON(start > offset + len);
2192
2193 end = start + frag_iter->len;
2194 if ((copy = end - offset) > 0) {
2195 if (copy > len)
2196 copy = len;
2197 csum2 = skb_copy_and_csum_bits(frag_iter,
2198 offset - start,
2199 to, copy, 0);
2200 csum = csum_block_add(csum, csum2, pos);
2201 if ((len -= copy) == 0)
2202 return csum;
2203 offset += copy;
2204 to += copy;
2205 pos += copy;
2206 }
2207 start = end;
2208 }
2209 BUG_ON(len);
2210 return csum;
2211 }
2212 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2213
2214 /**
2215 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2216 * @from: source buffer
2217 *
2218 * Calculates the amount of linear headroom needed in the 'to' skb passed
2219 * into skb_zerocopy().
2220 */
2221 unsigned int
2222 skb_zerocopy_headlen(const struct sk_buff *from)
2223 {
2224 unsigned int hlen = 0;
2225
2226 if (!from->head_frag ||
2227 skb_headlen(from) < L1_CACHE_BYTES ||
2228 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2229 hlen = skb_headlen(from);
2230
2231 if (skb_has_frag_list(from))
2232 hlen = from->len;
2233
2234 return hlen;
2235 }
2236 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2237
2238 /**
2239 * skb_zerocopy - Zero copy skb to skb
2240 * @to: destination buffer
2241 * @from: source buffer
2242 * @len: number of bytes to copy from source buffer
2243 * @hlen: size of linear headroom in destination buffer
2244 *
2245 * Copies up to `len` bytes from `from` to `to` by creating references
2246 * to the frags in the source buffer.
2247 *
2248 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2249 * headroom in the `to` buffer.
2250 *
2251 * Return value:
2252 * 0: everything is OK
2253 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2254 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2255 */
2256 int
2257 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2258 {
2259 int i, j = 0;
2260 int plen = 0; /* length of skb->head fragment */
2261 int ret;
2262 struct page *page;
2263 unsigned int offset;
2264
2265 BUG_ON(!from->head_frag && !hlen);
2266
2267 /* dont bother with small payloads */
2268 if (len <= skb_tailroom(to))
2269 return skb_copy_bits(from, 0, skb_put(to, len), len);
2270
2271 if (hlen) {
2272 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2273 if (unlikely(ret))
2274 return ret;
2275 len -= hlen;
2276 } else {
2277 plen = min_t(int, skb_headlen(from), len);
2278 if (plen) {
2279 page = virt_to_head_page(from->head);
2280 offset = from->data - (unsigned char *)page_address(page);
2281 __skb_fill_page_desc(to, 0, page, offset, plen);
2282 get_page(page);
2283 j = 1;
2284 len -= plen;
2285 }
2286 }
2287
2288 to->truesize += len + plen;
2289 to->len += len + plen;
2290 to->data_len += len + plen;
2291
2292 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2293 skb_tx_error(from);
2294 return -ENOMEM;
2295 }
2296
2297 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2298 if (!len)
2299 break;
2300 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2301 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2302 len -= skb_shinfo(to)->frags[j].size;
2303 skb_frag_ref(to, j);
2304 j++;
2305 }
2306 skb_shinfo(to)->nr_frags = j;
2307
2308 return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(skb_zerocopy);
2311
2312 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2313 {
2314 __wsum csum;
2315 long csstart;
2316
2317 if (skb->ip_summed == CHECKSUM_PARTIAL)
2318 csstart = skb_checksum_start_offset(skb);
2319 else
2320 csstart = skb_headlen(skb);
2321
2322 BUG_ON(csstart > skb_headlen(skb));
2323
2324 skb_copy_from_linear_data(skb, to, csstart);
2325
2326 csum = 0;
2327 if (csstart != skb->len)
2328 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2329 skb->len - csstart, 0);
2330
2331 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2332 long csstuff = csstart + skb->csum_offset;
2333
2334 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2335 }
2336 }
2337 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2338
2339 /**
2340 * skb_dequeue - remove from the head of the queue
2341 * @list: list to dequeue from
2342 *
2343 * Remove the head of the list. The list lock is taken so the function
2344 * may be used safely with other locking list functions. The head item is
2345 * returned or %NULL if the list is empty.
2346 */
2347
2348 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2349 {
2350 unsigned long flags;
2351 struct sk_buff *result;
2352
2353 spin_lock_irqsave(&list->lock, flags);
2354 result = __skb_dequeue(list);
2355 spin_unlock_irqrestore(&list->lock, flags);
2356 return result;
2357 }
2358 EXPORT_SYMBOL(skb_dequeue);
2359
2360 /**
2361 * skb_dequeue_tail - remove from the tail of the queue
2362 * @list: list to dequeue from
2363 *
2364 * Remove the tail of the list. The list lock is taken so the function
2365 * may be used safely with other locking list functions. The tail item is
2366 * returned or %NULL if the list is empty.
2367 */
2368 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2369 {
2370 unsigned long flags;
2371 struct sk_buff *result;
2372
2373 spin_lock_irqsave(&list->lock, flags);
2374 result = __skb_dequeue_tail(list);
2375 spin_unlock_irqrestore(&list->lock, flags);
2376 return result;
2377 }
2378 EXPORT_SYMBOL(skb_dequeue_tail);
2379
2380 /**
2381 * skb_queue_purge - empty a list
2382 * @list: list to empty
2383 *
2384 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2385 * the list and one reference dropped. This function takes the list
2386 * lock and is atomic with respect to other list locking functions.
2387 */
2388 void skb_queue_purge(struct sk_buff_head *list)
2389 {
2390 struct sk_buff *skb;
2391 while ((skb = skb_dequeue(list)) != NULL)
2392 kfree_skb(skb);
2393 }
2394 EXPORT_SYMBOL(skb_queue_purge);
2395
2396 /**
2397 * skb_queue_head - queue a buffer at the list head
2398 * @list: list to use
2399 * @newsk: buffer to queue
2400 *
2401 * Queue a buffer at the start of the list. This function takes the
2402 * list lock and can be used safely with other locking &sk_buff functions
2403 * safely.
2404 *
2405 * A buffer cannot be placed on two lists at the same time.
2406 */
2407 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2408 {
2409 unsigned long flags;
2410
2411 spin_lock_irqsave(&list->lock, flags);
2412 __skb_queue_head(list, newsk);
2413 spin_unlock_irqrestore(&list->lock, flags);
2414 }
2415 EXPORT_SYMBOL(skb_queue_head);
2416
2417 /**
2418 * skb_queue_tail - queue a buffer at the list tail
2419 * @list: list to use
2420 * @newsk: buffer to queue
2421 *
2422 * Queue a buffer at the tail of the list. This function takes the
2423 * list lock and can be used safely with other locking &sk_buff functions
2424 * safely.
2425 *
2426 * A buffer cannot be placed on two lists at the same time.
2427 */
2428 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2429 {
2430 unsigned long flags;
2431
2432 spin_lock_irqsave(&list->lock, flags);
2433 __skb_queue_tail(list, newsk);
2434 spin_unlock_irqrestore(&list->lock, flags);
2435 }
2436 EXPORT_SYMBOL(skb_queue_tail);
2437
2438 /**
2439 * skb_unlink - remove a buffer from a list
2440 * @skb: buffer to remove
2441 * @list: list to use
2442 *
2443 * Remove a packet from a list. The list locks are taken and this
2444 * function is atomic with respect to other list locked calls
2445 *
2446 * You must know what list the SKB is on.
2447 */
2448 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2449 {
2450 unsigned long flags;
2451
2452 spin_lock_irqsave(&list->lock, flags);
2453 __skb_unlink(skb, list);
2454 spin_unlock_irqrestore(&list->lock, flags);
2455 }
2456 EXPORT_SYMBOL(skb_unlink);
2457
2458 /**
2459 * skb_append - append a buffer
2460 * @old: buffer to insert after
2461 * @newsk: buffer to insert
2462 * @list: list to use
2463 *
2464 * Place a packet after a given packet in a list. The list locks are taken
2465 * and this function is atomic with respect to other list locked calls.
2466 * A buffer cannot be placed on two lists at the same time.
2467 */
2468 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2469 {
2470 unsigned long flags;
2471
2472 spin_lock_irqsave(&list->lock, flags);
2473 __skb_queue_after(list, old, newsk);
2474 spin_unlock_irqrestore(&list->lock, flags);
2475 }
2476 EXPORT_SYMBOL(skb_append);
2477
2478 /**
2479 * skb_insert - insert a buffer
2480 * @old: buffer to insert before
2481 * @newsk: buffer to insert
2482 * @list: list to use
2483 *
2484 * Place a packet before a given packet in a list. The list locks are
2485 * taken and this function is atomic with respect to other list locked
2486 * calls.
2487 *
2488 * A buffer cannot be placed on two lists at the same time.
2489 */
2490 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2491 {
2492 unsigned long flags;
2493
2494 spin_lock_irqsave(&list->lock, flags);
2495 __skb_insert(newsk, old->prev, old, list);
2496 spin_unlock_irqrestore(&list->lock, flags);
2497 }
2498 EXPORT_SYMBOL(skb_insert);
2499
2500 static inline void skb_split_inside_header(struct sk_buff *skb,
2501 struct sk_buff* skb1,
2502 const u32 len, const int pos)
2503 {
2504 int i;
2505
2506 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2507 pos - len);
2508 /* And move data appendix as is. */
2509 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2510 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2511
2512 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2513 skb_shinfo(skb)->nr_frags = 0;
2514 skb1->data_len = skb->data_len;
2515 skb1->len += skb1->data_len;
2516 skb->data_len = 0;
2517 skb->len = len;
2518 skb_set_tail_pointer(skb, len);
2519 }
2520
2521 static inline void skb_split_no_header(struct sk_buff *skb,
2522 struct sk_buff* skb1,
2523 const u32 len, int pos)
2524 {
2525 int i, k = 0;
2526 const int nfrags = skb_shinfo(skb)->nr_frags;
2527
2528 skb_shinfo(skb)->nr_frags = 0;
2529 skb1->len = skb1->data_len = skb->len - len;
2530 skb->len = len;
2531 skb->data_len = len - pos;
2532
2533 for (i = 0; i < nfrags; i++) {
2534 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2535
2536 if (pos + size > len) {
2537 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2538
2539 if (pos < len) {
2540 /* Split frag.
2541 * We have two variants in this case:
2542 * 1. Move all the frag to the second
2543 * part, if it is possible. F.e.
2544 * this approach is mandatory for TUX,
2545 * where splitting is expensive.
2546 * 2. Split is accurately. We make this.
2547 */
2548 skb_frag_ref(skb, i);
2549 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2550 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2551 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2552 skb_shinfo(skb)->nr_frags++;
2553 }
2554 k++;
2555 } else
2556 skb_shinfo(skb)->nr_frags++;
2557 pos += size;
2558 }
2559 skb_shinfo(skb1)->nr_frags = k;
2560 }
2561
2562 /**
2563 * skb_split - Split fragmented skb to two parts at length len.
2564 * @skb: the buffer to split
2565 * @skb1: the buffer to receive the second part
2566 * @len: new length for skb
2567 */
2568 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2569 {
2570 int pos = skb_headlen(skb);
2571
2572 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2573 if (len < pos) /* Split line is inside header. */
2574 skb_split_inside_header(skb, skb1, len, pos);
2575 else /* Second chunk has no header, nothing to copy. */
2576 skb_split_no_header(skb, skb1, len, pos);
2577 }
2578 EXPORT_SYMBOL(skb_split);
2579
2580 /* Shifting from/to a cloned skb is a no-go.
2581 *
2582 * Caller cannot keep skb_shinfo related pointers past calling here!
2583 */
2584 static int skb_prepare_for_shift(struct sk_buff *skb)
2585 {
2586 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2587 }
2588
2589 /**
2590 * skb_shift - Shifts paged data partially from skb to another
2591 * @tgt: buffer into which tail data gets added
2592 * @skb: buffer from which the paged data comes from
2593 * @shiftlen: shift up to this many bytes
2594 *
2595 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2596 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2597 * It's up to caller to free skb if everything was shifted.
2598 *
2599 * If @tgt runs out of frags, the whole operation is aborted.
2600 *
2601 * Skb cannot include anything else but paged data while tgt is allowed
2602 * to have non-paged data as well.
2603 *
2604 * TODO: full sized shift could be optimized but that would need
2605 * specialized skb free'er to handle frags without up-to-date nr_frags.
2606 */
2607 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2608 {
2609 int from, to, merge, todo;
2610 struct skb_frag_struct *fragfrom, *fragto;
2611
2612 BUG_ON(shiftlen > skb->len);
2613 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2614
2615 todo = shiftlen;
2616 from = 0;
2617 to = skb_shinfo(tgt)->nr_frags;
2618 fragfrom = &skb_shinfo(skb)->frags[from];
2619
2620 /* Actual merge is delayed until the point when we know we can
2621 * commit all, so that we don't have to undo partial changes
2622 */
2623 if (!to ||
2624 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2625 fragfrom->page_offset)) {
2626 merge = -1;
2627 } else {
2628 merge = to - 1;
2629
2630 todo -= skb_frag_size(fragfrom);
2631 if (todo < 0) {
2632 if (skb_prepare_for_shift(skb) ||
2633 skb_prepare_for_shift(tgt))
2634 return 0;
2635
2636 /* All previous frag pointers might be stale! */
2637 fragfrom = &skb_shinfo(skb)->frags[from];
2638 fragto = &skb_shinfo(tgt)->frags[merge];
2639
2640 skb_frag_size_add(fragto, shiftlen);
2641 skb_frag_size_sub(fragfrom, shiftlen);
2642 fragfrom->page_offset += shiftlen;
2643
2644 goto onlymerged;
2645 }
2646
2647 from++;
2648 }
2649
2650 /* Skip full, not-fitting skb to avoid expensive operations */
2651 if ((shiftlen == skb->len) &&
2652 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2653 return 0;
2654
2655 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2656 return 0;
2657
2658 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2659 if (to == MAX_SKB_FRAGS)
2660 return 0;
2661
2662 fragfrom = &skb_shinfo(skb)->frags[from];
2663 fragto = &skb_shinfo(tgt)->frags[to];
2664
2665 if (todo >= skb_frag_size(fragfrom)) {
2666 *fragto = *fragfrom;
2667 todo -= skb_frag_size(fragfrom);
2668 from++;
2669 to++;
2670
2671 } else {
2672 __skb_frag_ref(fragfrom);
2673 fragto->page = fragfrom->page;
2674 fragto->page_offset = fragfrom->page_offset;
2675 skb_frag_size_set(fragto, todo);
2676
2677 fragfrom->page_offset += todo;
2678 skb_frag_size_sub(fragfrom, todo);
2679 todo = 0;
2680
2681 to++;
2682 break;
2683 }
2684 }
2685
2686 /* Ready to "commit" this state change to tgt */
2687 skb_shinfo(tgt)->nr_frags = to;
2688
2689 if (merge >= 0) {
2690 fragfrom = &skb_shinfo(skb)->frags[0];
2691 fragto = &skb_shinfo(tgt)->frags[merge];
2692
2693 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2694 __skb_frag_unref(fragfrom);
2695 }
2696
2697 /* Reposition in the original skb */
2698 to = 0;
2699 while (from < skb_shinfo(skb)->nr_frags)
2700 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2701 skb_shinfo(skb)->nr_frags = to;
2702
2703 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2704
2705 onlymerged:
2706 /* Most likely the tgt won't ever need its checksum anymore, skb on
2707 * the other hand might need it if it needs to be resent
2708 */
2709 tgt->ip_summed = CHECKSUM_PARTIAL;
2710 skb->ip_summed = CHECKSUM_PARTIAL;
2711
2712 /* Yak, is it really working this way? Some helper please? */
2713 skb->len -= shiftlen;
2714 skb->data_len -= shiftlen;
2715 skb->truesize -= shiftlen;
2716 tgt->len += shiftlen;
2717 tgt->data_len += shiftlen;
2718 tgt->truesize += shiftlen;
2719
2720 return shiftlen;
2721 }
2722
2723 /**
2724 * skb_prepare_seq_read - Prepare a sequential read of skb data
2725 * @skb: the buffer to read
2726 * @from: lower offset of data to be read
2727 * @to: upper offset of data to be read
2728 * @st: state variable
2729 *
2730 * Initializes the specified state variable. Must be called before
2731 * invoking skb_seq_read() for the first time.
2732 */
2733 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2734 unsigned int to, struct skb_seq_state *st)
2735 {
2736 st->lower_offset = from;
2737 st->upper_offset = to;
2738 st->root_skb = st->cur_skb = skb;
2739 st->frag_idx = st->stepped_offset = 0;
2740 st->frag_data = NULL;
2741 }
2742 EXPORT_SYMBOL(skb_prepare_seq_read);
2743
2744 /**
2745 * skb_seq_read - Sequentially read skb data
2746 * @consumed: number of bytes consumed by the caller so far
2747 * @data: destination pointer for data to be returned
2748 * @st: state variable
2749 *
2750 * Reads a block of skb data at @consumed relative to the
2751 * lower offset specified to skb_prepare_seq_read(). Assigns
2752 * the head of the data block to @data and returns the length
2753 * of the block or 0 if the end of the skb data or the upper
2754 * offset has been reached.
2755 *
2756 * The caller is not required to consume all of the data
2757 * returned, i.e. @consumed is typically set to the number
2758 * of bytes already consumed and the next call to
2759 * skb_seq_read() will return the remaining part of the block.
2760 *
2761 * Note 1: The size of each block of data returned can be arbitrary,
2762 * this limitation is the cost for zerocopy sequential
2763 * reads of potentially non linear data.
2764 *
2765 * Note 2: Fragment lists within fragments are not implemented
2766 * at the moment, state->root_skb could be replaced with
2767 * a stack for this purpose.
2768 */
2769 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2770 struct skb_seq_state *st)
2771 {
2772 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2773 skb_frag_t *frag;
2774
2775 if (unlikely(abs_offset >= st->upper_offset)) {
2776 if (st->frag_data) {
2777 kunmap_atomic(st->frag_data);
2778 st->frag_data = NULL;
2779 }
2780 return 0;
2781 }
2782
2783 next_skb:
2784 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2785
2786 if (abs_offset < block_limit && !st->frag_data) {
2787 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2788 return block_limit - abs_offset;
2789 }
2790
2791 if (st->frag_idx == 0 && !st->frag_data)
2792 st->stepped_offset += skb_headlen(st->cur_skb);
2793
2794 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2795 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2796 block_limit = skb_frag_size(frag) + st->stepped_offset;
2797
2798 if (abs_offset < block_limit) {
2799 if (!st->frag_data)
2800 st->frag_data = kmap_atomic(skb_frag_page(frag));
2801
2802 *data = (u8 *) st->frag_data + frag->page_offset +
2803 (abs_offset - st->stepped_offset);
2804
2805 return block_limit - abs_offset;
2806 }
2807
2808 if (st->frag_data) {
2809 kunmap_atomic(st->frag_data);
2810 st->frag_data = NULL;
2811 }
2812
2813 st->frag_idx++;
2814 st->stepped_offset += skb_frag_size(frag);
2815 }
2816
2817 if (st->frag_data) {
2818 kunmap_atomic(st->frag_data);
2819 st->frag_data = NULL;
2820 }
2821
2822 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2823 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2824 st->frag_idx = 0;
2825 goto next_skb;
2826 } else if (st->cur_skb->next) {
2827 st->cur_skb = st->cur_skb->next;
2828 st->frag_idx = 0;
2829 goto next_skb;
2830 }
2831
2832 return 0;
2833 }
2834 EXPORT_SYMBOL(skb_seq_read);
2835
2836 /**
2837 * skb_abort_seq_read - Abort a sequential read of skb data
2838 * @st: state variable
2839 *
2840 * Must be called if skb_seq_read() was not called until it
2841 * returned 0.
2842 */
2843 void skb_abort_seq_read(struct skb_seq_state *st)
2844 {
2845 if (st->frag_data)
2846 kunmap_atomic(st->frag_data);
2847 }
2848 EXPORT_SYMBOL(skb_abort_seq_read);
2849
2850 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2851
2852 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2853 struct ts_config *conf,
2854 struct ts_state *state)
2855 {
2856 return skb_seq_read(offset, text, TS_SKB_CB(state));
2857 }
2858
2859 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2860 {
2861 skb_abort_seq_read(TS_SKB_CB(state));
2862 }
2863
2864 /**
2865 * skb_find_text - Find a text pattern in skb data
2866 * @skb: the buffer to look in
2867 * @from: search offset
2868 * @to: search limit
2869 * @config: textsearch configuration
2870 * @state: uninitialized textsearch state variable
2871 *
2872 * Finds a pattern in the skb data according to the specified
2873 * textsearch configuration. Use textsearch_next() to retrieve
2874 * subsequent occurrences of the pattern. Returns the offset
2875 * to the first occurrence or UINT_MAX if no match was found.
2876 */
2877 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2878 unsigned int to, struct ts_config *config,
2879 struct ts_state *state)
2880 {
2881 unsigned int ret;
2882
2883 config->get_next_block = skb_ts_get_next_block;
2884 config->finish = skb_ts_finish;
2885
2886 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2887
2888 ret = textsearch_find(config, state);
2889 return (ret <= to - from ? ret : UINT_MAX);
2890 }
2891 EXPORT_SYMBOL(skb_find_text);
2892
2893 /**
2894 * skb_append_datato_frags - append the user data to a skb
2895 * @sk: sock structure
2896 * @skb: skb structure to be appended with user data.
2897 * @getfrag: call back function to be used for getting the user data
2898 * @from: pointer to user message iov
2899 * @length: length of the iov message
2900 *
2901 * Description: This procedure append the user data in the fragment part
2902 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2903 */
2904 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2905 int (*getfrag)(void *from, char *to, int offset,
2906 int len, int odd, struct sk_buff *skb),
2907 void *from, int length)
2908 {
2909 int frg_cnt = skb_shinfo(skb)->nr_frags;
2910 int copy;
2911 int offset = 0;
2912 int ret;
2913 struct page_frag *pfrag = &current->task_frag;
2914
2915 do {
2916 /* Return error if we don't have space for new frag */
2917 if (frg_cnt >= MAX_SKB_FRAGS)
2918 return -EMSGSIZE;
2919
2920 if (!sk_page_frag_refill(sk, pfrag))
2921 return -ENOMEM;
2922
2923 /* copy the user data to page */
2924 copy = min_t(int, length, pfrag->size - pfrag->offset);
2925
2926 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2927 offset, copy, 0, skb);
2928 if (ret < 0)
2929 return -EFAULT;
2930
2931 /* copy was successful so update the size parameters */
2932 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2933 copy);
2934 frg_cnt++;
2935 pfrag->offset += copy;
2936 get_page(pfrag->page);
2937
2938 skb->truesize += copy;
2939 atomic_add(copy, &sk->sk_wmem_alloc);
2940 skb->len += copy;
2941 skb->data_len += copy;
2942 offset += copy;
2943 length -= copy;
2944
2945 } while (length > 0);
2946
2947 return 0;
2948 }
2949 EXPORT_SYMBOL(skb_append_datato_frags);
2950
2951 /**
2952 * skb_pull_rcsum - pull skb and update receive checksum
2953 * @skb: buffer to update
2954 * @len: length of data pulled
2955 *
2956 * This function performs an skb_pull on the packet and updates
2957 * the CHECKSUM_COMPLETE checksum. It should be used on
2958 * receive path processing instead of skb_pull unless you know
2959 * that the checksum difference is zero (e.g., a valid IP header)
2960 * or you are setting ip_summed to CHECKSUM_NONE.
2961 */
2962 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2963 {
2964 BUG_ON(len > skb->len);
2965 skb->len -= len;
2966 BUG_ON(skb->len < skb->data_len);
2967 skb_postpull_rcsum(skb, skb->data, len);
2968 return skb->data += len;
2969 }
2970 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2971
2972 /**
2973 * skb_segment - Perform protocol segmentation on skb.
2974 * @head_skb: buffer to segment
2975 * @features: features for the output path (see dev->features)
2976 *
2977 * This function performs segmentation on the given skb. It returns
2978 * a pointer to the first in a list of new skbs for the segments.
2979 * In case of error it returns ERR_PTR(err).
2980 */
2981 struct sk_buff *skb_segment(struct sk_buff *head_skb,
2982 netdev_features_t features)
2983 {
2984 struct sk_buff *segs = NULL;
2985 struct sk_buff *tail = NULL;
2986 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
2987 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
2988 unsigned int mss = skb_shinfo(head_skb)->gso_size;
2989 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
2990 struct sk_buff *frag_skb = head_skb;
2991 unsigned int offset = doffset;
2992 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
2993 unsigned int headroom;
2994 unsigned int len;
2995 __be16 proto;
2996 bool csum;
2997 int sg = !!(features & NETIF_F_SG);
2998 int nfrags = skb_shinfo(head_skb)->nr_frags;
2999 int err = -ENOMEM;
3000 int i = 0;
3001 int pos;
3002 int dummy;
3003
3004 __skb_push(head_skb, doffset);
3005 proto = skb_network_protocol(head_skb, &dummy);
3006 if (unlikely(!proto))
3007 return ERR_PTR(-EINVAL);
3008
3009 csum = !head_skb->encap_hdr_csum &&
3010 !!can_checksum_protocol(features, proto);
3011
3012 headroom = skb_headroom(head_skb);
3013 pos = skb_headlen(head_skb);
3014
3015 do {
3016 struct sk_buff *nskb;
3017 skb_frag_t *nskb_frag;
3018 int hsize;
3019 int size;
3020
3021 len = head_skb->len - offset;
3022 if (len > mss)
3023 len = mss;
3024
3025 hsize = skb_headlen(head_skb) - offset;
3026 if (hsize < 0)
3027 hsize = 0;
3028 if (hsize > len || !sg)
3029 hsize = len;
3030
3031 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3032 (skb_headlen(list_skb) == len || sg)) {
3033 BUG_ON(skb_headlen(list_skb) > len);
3034
3035 i = 0;
3036 nfrags = skb_shinfo(list_skb)->nr_frags;
3037 frag = skb_shinfo(list_skb)->frags;
3038 frag_skb = list_skb;
3039 pos += skb_headlen(list_skb);
3040
3041 while (pos < offset + len) {
3042 BUG_ON(i >= nfrags);
3043
3044 size = skb_frag_size(frag);
3045 if (pos + size > offset + len)
3046 break;
3047
3048 i++;
3049 pos += size;
3050 frag++;
3051 }
3052
3053 nskb = skb_clone(list_skb, GFP_ATOMIC);
3054 list_skb = list_skb->next;
3055
3056 if (unlikely(!nskb))
3057 goto err;
3058
3059 if (unlikely(pskb_trim(nskb, len))) {
3060 kfree_skb(nskb);
3061 goto err;
3062 }
3063
3064 hsize = skb_end_offset(nskb);
3065 if (skb_cow_head(nskb, doffset + headroom)) {
3066 kfree_skb(nskb);
3067 goto err;
3068 }
3069
3070 nskb->truesize += skb_end_offset(nskb) - hsize;
3071 skb_release_head_state(nskb);
3072 __skb_push(nskb, doffset);
3073 } else {
3074 nskb = __alloc_skb(hsize + doffset + headroom,
3075 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3076 NUMA_NO_NODE);
3077
3078 if (unlikely(!nskb))
3079 goto err;
3080
3081 skb_reserve(nskb, headroom);
3082 __skb_put(nskb, doffset);
3083 }
3084
3085 if (segs)
3086 tail->next = nskb;
3087 else
3088 segs = nskb;
3089 tail = nskb;
3090
3091 __copy_skb_header(nskb, head_skb);
3092
3093 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3094 skb_reset_mac_len(nskb);
3095
3096 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3097 nskb->data - tnl_hlen,
3098 doffset + tnl_hlen);
3099
3100 if (nskb->len == len + doffset)
3101 goto perform_csum_check;
3102
3103 if (!sg && !nskb->remcsum_offload) {
3104 nskb->ip_summed = CHECKSUM_NONE;
3105 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3106 skb_put(nskb, len),
3107 len, 0);
3108 SKB_GSO_CB(nskb)->csum_start =
3109 skb_headroom(nskb) + doffset;
3110 continue;
3111 }
3112
3113 nskb_frag = skb_shinfo(nskb)->frags;
3114
3115 skb_copy_from_linear_data_offset(head_skb, offset,
3116 skb_put(nskb, hsize), hsize);
3117
3118 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3119 SKBTX_SHARED_FRAG;
3120
3121 while (pos < offset + len) {
3122 if (i >= nfrags) {
3123 BUG_ON(skb_headlen(list_skb));
3124
3125 i = 0;
3126 nfrags = skb_shinfo(list_skb)->nr_frags;
3127 frag = skb_shinfo(list_skb)->frags;
3128 frag_skb = list_skb;
3129
3130 BUG_ON(!nfrags);
3131
3132 list_skb = list_skb->next;
3133 }
3134
3135 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3136 MAX_SKB_FRAGS)) {
3137 net_warn_ratelimited(
3138 "skb_segment: too many frags: %u %u\n",
3139 pos, mss);
3140 goto err;
3141 }
3142
3143 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3144 goto err;
3145
3146 *nskb_frag = *frag;
3147 __skb_frag_ref(nskb_frag);
3148 size = skb_frag_size(nskb_frag);
3149
3150 if (pos < offset) {
3151 nskb_frag->page_offset += offset - pos;
3152 skb_frag_size_sub(nskb_frag, offset - pos);
3153 }
3154
3155 skb_shinfo(nskb)->nr_frags++;
3156
3157 if (pos + size <= offset + len) {
3158 i++;
3159 frag++;
3160 pos += size;
3161 } else {
3162 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3163 goto skip_fraglist;
3164 }
3165
3166 nskb_frag++;
3167 }
3168
3169 skip_fraglist:
3170 nskb->data_len = len - hsize;
3171 nskb->len += nskb->data_len;
3172 nskb->truesize += nskb->data_len;
3173
3174 perform_csum_check:
3175 if (!csum && !nskb->remcsum_offload) {
3176 nskb->csum = skb_checksum(nskb, doffset,
3177 nskb->len - doffset, 0);
3178 nskb->ip_summed = CHECKSUM_NONE;
3179 SKB_GSO_CB(nskb)->csum_start =
3180 skb_headroom(nskb) + doffset;
3181 }
3182 } while ((offset += len) < head_skb->len);
3183
3184 /* Some callers want to get the end of the list.
3185 * Put it in segs->prev to avoid walking the list.
3186 * (see validate_xmit_skb_list() for example)
3187 */
3188 segs->prev = tail;
3189
3190 /* Following permits correct backpressure, for protocols
3191 * using skb_set_owner_w().
3192 * Idea is to tranfert ownership from head_skb to last segment.
3193 */
3194 if (head_skb->destructor == sock_wfree) {
3195 swap(tail->truesize, head_skb->truesize);
3196 swap(tail->destructor, head_skb->destructor);
3197 swap(tail->sk, head_skb->sk);
3198 }
3199 return segs;
3200
3201 err:
3202 kfree_skb_list(segs);
3203 return ERR_PTR(err);
3204 }
3205 EXPORT_SYMBOL_GPL(skb_segment);
3206
3207 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3208 {
3209 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3210 unsigned int offset = skb_gro_offset(skb);
3211 unsigned int headlen = skb_headlen(skb);
3212 struct sk_buff *nskb, *lp, *p = *head;
3213 unsigned int len = skb_gro_len(skb);
3214 unsigned int delta_truesize;
3215 unsigned int headroom;
3216
3217 if (unlikely(p->len + len >= 65536))
3218 return -E2BIG;
3219
3220 lp = NAPI_GRO_CB(p)->last;
3221 pinfo = skb_shinfo(lp);
3222
3223 if (headlen <= offset) {
3224 skb_frag_t *frag;
3225 skb_frag_t *frag2;
3226 int i = skbinfo->nr_frags;
3227 int nr_frags = pinfo->nr_frags + i;
3228
3229 if (nr_frags > MAX_SKB_FRAGS)
3230 goto merge;
3231
3232 offset -= headlen;
3233 pinfo->nr_frags = nr_frags;
3234 skbinfo->nr_frags = 0;
3235
3236 frag = pinfo->frags + nr_frags;
3237 frag2 = skbinfo->frags + i;
3238 do {
3239 *--frag = *--frag2;
3240 } while (--i);
3241
3242 frag->page_offset += offset;
3243 skb_frag_size_sub(frag, offset);
3244
3245 /* all fragments truesize : remove (head size + sk_buff) */
3246 delta_truesize = skb->truesize -
3247 SKB_TRUESIZE(skb_end_offset(skb));
3248
3249 skb->truesize -= skb->data_len;
3250 skb->len -= skb->data_len;
3251 skb->data_len = 0;
3252
3253 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3254 goto done;
3255 } else if (skb->head_frag) {
3256 int nr_frags = pinfo->nr_frags;
3257 skb_frag_t *frag = pinfo->frags + nr_frags;
3258 struct page *page = virt_to_head_page(skb->head);
3259 unsigned int first_size = headlen - offset;
3260 unsigned int first_offset;
3261
3262 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3263 goto merge;
3264
3265 first_offset = skb->data -
3266 (unsigned char *)page_address(page) +
3267 offset;
3268
3269 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3270
3271 frag->page.p = page;
3272 frag->page_offset = first_offset;
3273 skb_frag_size_set(frag, first_size);
3274
3275 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3276 /* We dont need to clear skbinfo->nr_frags here */
3277
3278 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3279 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3280 goto done;
3281 }
3282 /* switch back to head shinfo */
3283 pinfo = skb_shinfo(p);
3284
3285 if (pinfo->frag_list)
3286 goto merge;
3287 if (skb_gro_len(p) != pinfo->gso_size)
3288 return -E2BIG;
3289
3290 headroom = skb_headroom(p);
3291 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3292 if (unlikely(!nskb))
3293 return -ENOMEM;
3294
3295 __copy_skb_header(nskb, p);
3296 nskb->mac_len = p->mac_len;
3297
3298 skb_reserve(nskb, headroom);
3299 __skb_put(nskb, skb_gro_offset(p));
3300
3301 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3302 skb_set_network_header(nskb, skb_network_offset(p));
3303 skb_set_transport_header(nskb, skb_transport_offset(p));
3304
3305 __skb_pull(p, skb_gro_offset(p));
3306 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3307 p->data - skb_mac_header(p));
3308
3309 skb_shinfo(nskb)->frag_list = p;
3310 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3311 pinfo->gso_size = 0;
3312 __skb_header_release(p);
3313 NAPI_GRO_CB(nskb)->last = p;
3314
3315 nskb->data_len += p->len;
3316 nskb->truesize += p->truesize;
3317 nskb->len += p->len;
3318
3319 *head = nskb;
3320 nskb->next = p->next;
3321 p->next = NULL;
3322
3323 p = nskb;
3324
3325 merge:
3326 delta_truesize = skb->truesize;
3327 if (offset > headlen) {
3328 unsigned int eat = offset - headlen;
3329
3330 skbinfo->frags[0].page_offset += eat;
3331 skb_frag_size_sub(&skbinfo->frags[0], eat);
3332 skb->data_len -= eat;
3333 skb->len -= eat;
3334 offset = headlen;
3335 }
3336
3337 __skb_pull(skb, offset);
3338
3339 if (NAPI_GRO_CB(p)->last == p)
3340 skb_shinfo(p)->frag_list = skb;
3341 else
3342 NAPI_GRO_CB(p)->last->next = skb;
3343 NAPI_GRO_CB(p)->last = skb;
3344 __skb_header_release(skb);
3345 lp = p;
3346
3347 done:
3348 NAPI_GRO_CB(p)->count++;
3349 p->data_len += len;
3350 p->truesize += delta_truesize;
3351 p->len += len;
3352 if (lp != p) {
3353 lp->data_len += len;
3354 lp->truesize += delta_truesize;
3355 lp->len += len;
3356 }
3357 NAPI_GRO_CB(skb)->same_flow = 1;
3358 return 0;
3359 }
3360
3361 void __init skb_init(void)
3362 {
3363 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3364 sizeof(struct sk_buff),
3365 0,
3366 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3367 NULL);
3368 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3369 sizeof(struct sk_buff_fclones),
3370 0,
3371 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3372 NULL);
3373 }
3374
3375 /**
3376 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3377 * @skb: Socket buffer containing the buffers to be mapped
3378 * @sg: The scatter-gather list to map into
3379 * @offset: The offset into the buffer's contents to start mapping
3380 * @len: Length of buffer space to be mapped
3381 *
3382 * Fill the specified scatter-gather list with mappings/pointers into a
3383 * region of the buffer space attached to a socket buffer.
3384 */
3385 static int
3386 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3387 {
3388 int start = skb_headlen(skb);
3389 int i, copy = start - offset;
3390 struct sk_buff *frag_iter;
3391 int elt = 0;
3392
3393 if (copy > 0) {
3394 if (copy > len)
3395 copy = len;
3396 sg_set_buf(sg, skb->data + offset, copy);
3397 elt++;
3398 if ((len -= copy) == 0)
3399 return elt;
3400 offset += copy;
3401 }
3402
3403 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404 int end;
3405
3406 WARN_ON(start > offset + len);
3407
3408 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3409 if ((copy = end - offset) > 0) {
3410 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3411
3412 if (copy > len)
3413 copy = len;
3414 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3415 frag->page_offset+offset-start);
3416 elt++;
3417 if (!(len -= copy))
3418 return elt;
3419 offset += copy;
3420 }
3421 start = end;
3422 }
3423
3424 skb_walk_frags(skb, frag_iter) {
3425 int end;
3426
3427 WARN_ON(start > offset + len);
3428
3429 end = start + frag_iter->len;
3430 if ((copy = end - offset) > 0) {
3431 if (copy > len)
3432 copy = len;
3433 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3434 copy);
3435 if ((len -= copy) == 0)
3436 return elt;
3437 offset += copy;
3438 }
3439 start = end;
3440 }
3441 BUG_ON(len);
3442 return elt;
3443 }
3444
3445 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3446 * sglist without mark the sg which contain last skb data as the end.
3447 * So the caller can mannipulate sg list as will when padding new data after
3448 * the first call without calling sg_unmark_end to expend sg list.
3449 *
3450 * Scenario to use skb_to_sgvec_nomark:
3451 * 1. sg_init_table
3452 * 2. skb_to_sgvec_nomark(payload1)
3453 * 3. skb_to_sgvec_nomark(payload2)
3454 *
3455 * This is equivalent to:
3456 * 1. sg_init_table
3457 * 2. skb_to_sgvec(payload1)
3458 * 3. sg_unmark_end
3459 * 4. skb_to_sgvec(payload2)
3460 *
3461 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3462 * is more preferable.
3463 */
3464 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3465 int offset, int len)
3466 {
3467 return __skb_to_sgvec(skb, sg, offset, len);
3468 }
3469 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3470
3471 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3472 {
3473 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3474
3475 sg_mark_end(&sg[nsg - 1]);
3476
3477 return nsg;
3478 }
3479 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3480
3481 /**
3482 * skb_cow_data - Check that a socket buffer's data buffers are writable
3483 * @skb: The socket buffer to check.
3484 * @tailbits: Amount of trailing space to be added
3485 * @trailer: Returned pointer to the skb where the @tailbits space begins
3486 *
3487 * Make sure that the data buffers attached to a socket buffer are
3488 * writable. If they are not, private copies are made of the data buffers
3489 * and the socket buffer is set to use these instead.
3490 *
3491 * If @tailbits is given, make sure that there is space to write @tailbits
3492 * bytes of data beyond current end of socket buffer. @trailer will be
3493 * set to point to the skb in which this space begins.
3494 *
3495 * The number of scatterlist elements required to completely map the
3496 * COW'd and extended socket buffer will be returned.
3497 */
3498 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3499 {
3500 int copyflag;
3501 int elt;
3502 struct sk_buff *skb1, **skb_p;
3503
3504 /* If skb is cloned or its head is paged, reallocate
3505 * head pulling out all the pages (pages are considered not writable
3506 * at the moment even if they are anonymous).
3507 */
3508 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3509 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3510 return -ENOMEM;
3511
3512 /* Easy case. Most of packets will go this way. */
3513 if (!skb_has_frag_list(skb)) {
3514 /* A little of trouble, not enough of space for trailer.
3515 * This should not happen, when stack is tuned to generate
3516 * good frames. OK, on miss we reallocate and reserve even more
3517 * space, 128 bytes is fair. */
3518
3519 if (skb_tailroom(skb) < tailbits &&
3520 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3521 return -ENOMEM;
3522
3523 /* Voila! */
3524 *trailer = skb;
3525 return 1;
3526 }
3527
3528 /* Misery. We are in troubles, going to mincer fragments... */
3529
3530 elt = 1;
3531 skb_p = &skb_shinfo(skb)->frag_list;
3532 copyflag = 0;
3533
3534 while ((skb1 = *skb_p) != NULL) {
3535 int ntail = 0;
3536
3537 /* The fragment is partially pulled by someone,
3538 * this can happen on input. Copy it and everything
3539 * after it. */
3540
3541 if (skb_shared(skb1))
3542 copyflag = 1;
3543
3544 /* If the skb is the last, worry about trailer. */
3545
3546 if (skb1->next == NULL && tailbits) {
3547 if (skb_shinfo(skb1)->nr_frags ||
3548 skb_has_frag_list(skb1) ||
3549 skb_tailroom(skb1) < tailbits)
3550 ntail = tailbits + 128;
3551 }
3552
3553 if (copyflag ||
3554 skb_cloned(skb1) ||
3555 ntail ||
3556 skb_shinfo(skb1)->nr_frags ||
3557 skb_has_frag_list(skb1)) {
3558 struct sk_buff *skb2;
3559
3560 /* Fuck, we are miserable poor guys... */
3561 if (ntail == 0)
3562 skb2 = skb_copy(skb1, GFP_ATOMIC);
3563 else
3564 skb2 = skb_copy_expand(skb1,
3565 skb_headroom(skb1),
3566 ntail,
3567 GFP_ATOMIC);
3568 if (unlikely(skb2 == NULL))
3569 return -ENOMEM;
3570
3571 if (skb1->sk)
3572 skb_set_owner_w(skb2, skb1->sk);
3573
3574 /* Looking around. Are we still alive?
3575 * OK, link new skb, drop old one */
3576
3577 skb2->next = skb1->next;
3578 *skb_p = skb2;
3579 kfree_skb(skb1);
3580 skb1 = skb2;
3581 }
3582 elt++;
3583 *trailer = skb1;
3584 skb_p = &skb1->next;
3585 }
3586
3587 return elt;
3588 }
3589 EXPORT_SYMBOL_GPL(skb_cow_data);
3590
3591 static void sock_rmem_free(struct sk_buff *skb)
3592 {
3593 struct sock *sk = skb->sk;
3594
3595 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3596 }
3597
3598 /*
3599 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3600 */
3601 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3602 {
3603 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3604 (unsigned int)sk->sk_rcvbuf)
3605 return -ENOMEM;
3606
3607 skb_orphan(skb);
3608 skb->sk = sk;
3609 skb->destructor = sock_rmem_free;
3610 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3611
3612 /* before exiting rcu section, make sure dst is refcounted */
3613 skb_dst_force(skb);
3614
3615 skb_queue_tail(&sk->sk_error_queue, skb);
3616 if (!sock_flag(sk, SOCK_DEAD))
3617 sk->sk_data_ready(sk);
3618 return 0;
3619 }
3620 EXPORT_SYMBOL(sock_queue_err_skb);
3621
3622 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3623 {
3624 struct sk_buff_head *q = &sk->sk_error_queue;
3625 struct sk_buff *skb, *skb_next;
3626 int err = 0;
3627
3628 spin_lock_bh(&q->lock);
3629 skb = __skb_dequeue(q);
3630 if (skb && (skb_next = skb_peek(q)))
3631 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3632 spin_unlock_bh(&q->lock);
3633
3634 sk->sk_err = err;
3635 if (err)
3636 sk->sk_error_report(sk);
3637
3638 return skb;
3639 }
3640 EXPORT_SYMBOL(sock_dequeue_err_skb);
3641
3642 /**
3643 * skb_clone_sk - create clone of skb, and take reference to socket
3644 * @skb: the skb to clone
3645 *
3646 * This function creates a clone of a buffer that holds a reference on
3647 * sk_refcnt. Buffers created via this function are meant to be
3648 * returned using sock_queue_err_skb, or free via kfree_skb.
3649 *
3650 * When passing buffers allocated with this function to sock_queue_err_skb
3651 * it is necessary to wrap the call with sock_hold/sock_put in order to
3652 * prevent the socket from being released prior to being enqueued on
3653 * the sk_error_queue.
3654 */
3655 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3656 {
3657 struct sock *sk = skb->sk;
3658 struct sk_buff *clone;
3659
3660 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3661 return NULL;
3662
3663 clone = skb_clone(skb, GFP_ATOMIC);
3664 if (!clone) {
3665 sock_put(sk);
3666 return NULL;
3667 }
3668
3669 clone->sk = sk;
3670 clone->destructor = sock_efree;
3671
3672 return clone;
3673 }
3674 EXPORT_SYMBOL(skb_clone_sk);
3675
3676 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3677 struct sock *sk,
3678 int tstype)
3679 {
3680 struct sock_exterr_skb *serr;
3681 int err;
3682
3683 serr = SKB_EXT_ERR(skb);
3684 memset(serr, 0, sizeof(*serr));
3685 serr->ee.ee_errno = ENOMSG;
3686 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3687 serr->ee.ee_info = tstype;
3688 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3689 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3690 if (sk->sk_protocol == IPPROTO_TCP)
3691 serr->ee.ee_data -= sk->sk_tskey;
3692 }
3693
3694 err = sock_queue_err_skb(sk, skb);
3695
3696 if (err)
3697 kfree_skb(skb);
3698 }
3699
3700 void skb_complete_tx_timestamp(struct sk_buff *skb,
3701 struct skb_shared_hwtstamps *hwtstamps)
3702 {
3703 struct sock *sk = skb->sk;
3704
3705 /* take a reference to prevent skb_orphan() from freeing the socket */
3706 sock_hold(sk);
3707
3708 *skb_hwtstamps(skb) = *hwtstamps;
3709 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3710
3711 sock_put(sk);
3712 }
3713 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3714
3715 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3716 struct skb_shared_hwtstamps *hwtstamps,
3717 struct sock *sk, int tstype)
3718 {
3719 struct sk_buff *skb;
3720
3721 if (!sk)
3722 return;
3723
3724 if (hwtstamps)
3725 *skb_hwtstamps(orig_skb) = *hwtstamps;
3726 else
3727 orig_skb->tstamp = ktime_get_real();
3728
3729 skb = skb_clone(orig_skb, GFP_ATOMIC);
3730 if (!skb)
3731 return;
3732
3733 __skb_complete_tx_timestamp(skb, sk, tstype);
3734 }
3735 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3736
3737 void skb_tstamp_tx(struct sk_buff *orig_skb,
3738 struct skb_shared_hwtstamps *hwtstamps)
3739 {
3740 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3741 SCM_TSTAMP_SND);
3742 }
3743 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3744
3745 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3746 {
3747 struct sock *sk = skb->sk;
3748 struct sock_exterr_skb *serr;
3749 int err;
3750
3751 skb->wifi_acked_valid = 1;
3752 skb->wifi_acked = acked;
3753
3754 serr = SKB_EXT_ERR(skb);
3755 memset(serr, 0, sizeof(*serr));
3756 serr->ee.ee_errno = ENOMSG;
3757 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3758
3759 /* take a reference to prevent skb_orphan() from freeing the socket */
3760 sock_hold(sk);
3761
3762 err = sock_queue_err_skb(sk, skb);
3763 if (err)
3764 kfree_skb(skb);
3765
3766 sock_put(sk);
3767 }
3768 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3769
3770
3771 /**
3772 * skb_partial_csum_set - set up and verify partial csum values for packet
3773 * @skb: the skb to set
3774 * @start: the number of bytes after skb->data to start checksumming.
3775 * @off: the offset from start to place the checksum.
3776 *
3777 * For untrusted partially-checksummed packets, we need to make sure the values
3778 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3779 *
3780 * This function checks and sets those values and skb->ip_summed: if this
3781 * returns false you should drop the packet.
3782 */
3783 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3784 {
3785 if (unlikely(start > skb_headlen(skb)) ||
3786 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3787 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3788 start, off, skb_headlen(skb));
3789 return false;
3790 }
3791 skb->ip_summed = CHECKSUM_PARTIAL;
3792 skb->csum_start = skb_headroom(skb) + start;
3793 skb->csum_offset = off;
3794 skb_set_transport_header(skb, start);
3795 return true;
3796 }
3797 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3798
3799 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3800 unsigned int max)
3801 {
3802 if (skb_headlen(skb) >= len)
3803 return 0;
3804
3805 /* If we need to pullup then pullup to the max, so we
3806 * won't need to do it again.
3807 */
3808 if (max > skb->len)
3809 max = skb->len;
3810
3811 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3812 return -ENOMEM;
3813
3814 if (skb_headlen(skb) < len)
3815 return -EPROTO;
3816
3817 return 0;
3818 }
3819
3820 #define MAX_TCP_HDR_LEN (15 * 4)
3821
3822 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3823 typeof(IPPROTO_IP) proto,
3824 unsigned int off)
3825 {
3826 switch (proto) {
3827 int err;
3828
3829 case IPPROTO_TCP:
3830 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3831 off + MAX_TCP_HDR_LEN);
3832 if (!err && !skb_partial_csum_set(skb, off,
3833 offsetof(struct tcphdr,
3834 check)))
3835 err = -EPROTO;
3836 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3837
3838 case IPPROTO_UDP:
3839 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3840 off + sizeof(struct udphdr));
3841 if (!err && !skb_partial_csum_set(skb, off,
3842 offsetof(struct udphdr,
3843 check)))
3844 err = -EPROTO;
3845 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3846 }
3847
3848 return ERR_PTR(-EPROTO);
3849 }
3850
3851 /* This value should be large enough to cover a tagged ethernet header plus
3852 * maximally sized IP and TCP or UDP headers.
3853 */
3854 #define MAX_IP_HDR_LEN 128
3855
3856 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3857 {
3858 unsigned int off;
3859 bool fragment;
3860 __sum16 *csum;
3861 int err;
3862
3863 fragment = false;
3864
3865 err = skb_maybe_pull_tail(skb,
3866 sizeof(struct iphdr),
3867 MAX_IP_HDR_LEN);
3868 if (err < 0)
3869 goto out;
3870
3871 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3872 fragment = true;
3873
3874 off = ip_hdrlen(skb);
3875
3876 err = -EPROTO;
3877
3878 if (fragment)
3879 goto out;
3880
3881 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3882 if (IS_ERR(csum))
3883 return PTR_ERR(csum);
3884
3885 if (recalculate)
3886 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3887 ip_hdr(skb)->daddr,
3888 skb->len - off,
3889 ip_hdr(skb)->protocol, 0);
3890 err = 0;
3891
3892 out:
3893 return err;
3894 }
3895
3896 /* This value should be large enough to cover a tagged ethernet header plus
3897 * an IPv6 header, all options, and a maximal TCP or UDP header.
3898 */
3899 #define MAX_IPV6_HDR_LEN 256
3900
3901 #define OPT_HDR(type, skb, off) \
3902 (type *)(skb_network_header(skb) + (off))
3903
3904 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3905 {
3906 int err;
3907 u8 nexthdr;
3908 unsigned int off;
3909 unsigned int len;
3910 bool fragment;
3911 bool done;
3912 __sum16 *csum;
3913
3914 fragment = false;
3915 done = false;
3916
3917 off = sizeof(struct ipv6hdr);
3918
3919 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3920 if (err < 0)
3921 goto out;
3922
3923 nexthdr = ipv6_hdr(skb)->nexthdr;
3924
3925 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3926 while (off <= len && !done) {
3927 switch (nexthdr) {
3928 case IPPROTO_DSTOPTS:
3929 case IPPROTO_HOPOPTS:
3930 case IPPROTO_ROUTING: {
3931 struct ipv6_opt_hdr *hp;
3932
3933 err = skb_maybe_pull_tail(skb,
3934 off +
3935 sizeof(struct ipv6_opt_hdr),
3936 MAX_IPV6_HDR_LEN);
3937 if (err < 0)
3938 goto out;
3939
3940 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3941 nexthdr = hp->nexthdr;
3942 off += ipv6_optlen(hp);
3943 break;
3944 }
3945 case IPPROTO_AH: {
3946 struct ip_auth_hdr *hp;
3947
3948 err = skb_maybe_pull_tail(skb,
3949 off +
3950 sizeof(struct ip_auth_hdr),
3951 MAX_IPV6_HDR_LEN);
3952 if (err < 0)
3953 goto out;
3954
3955 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3956 nexthdr = hp->nexthdr;
3957 off += ipv6_authlen(hp);
3958 break;
3959 }
3960 case IPPROTO_FRAGMENT: {
3961 struct frag_hdr *hp;
3962
3963 err = skb_maybe_pull_tail(skb,
3964 off +
3965 sizeof(struct frag_hdr),
3966 MAX_IPV6_HDR_LEN);
3967 if (err < 0)
3968 goto out;
3969
3970 hp = OPT_HDR(struct frag_hdr, skb, off);
3971
3972 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3973 fragment = true;
3974
3975 nexthdr = hp->nexthdr;
3976 off += sizeof(struct frag_hdr);
3977 break;
3978 }
3979 default:
3980 done = true;
3981 break;
3982 }
3983 }
3984
3985 err = -EPROTO;
3986
3987 if (!done || fragment)
3988 goto out;
3989
3990 csum = skb_checksum_setup_ip(skb, nexthdr, off);
3991 if (IS_ERR(csum))
3992 return PTR_ERR(csum);
3993
3994 if (recalculate)
3995 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3996 &ipv6_hdr(skb)->daddr,
3997 skb->len - off, nexthdr, 0);
3998 err = 0;
3999
4000 out:
4001 return err;
4002 }
4003
4004 /**
4005 * skb_checksum_setup - set up partial checksum offset
4006 * @skb: the skb to set up
4007 * @recalculate: if true the pseudo-header checksum will be recalculated
4008 */
4009 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4010 {
4011 int err;
4012
4013 switch (skb->protocol) {
4014 case htons(ETH_P_IP):
4015 err = skb_checksum_setup_ipv4(skb, recalculate);
4016 break;
4017
4018 case htons(ETH_P_IPV6):
4019 err = skb_checksum_setup_ipv6(skb, recalculate);
4020 break;
4021
4022 default:
4023 err = -EPROTO;
4024 break;
4025 }
4026
4027 return err;
4028 }
4029 EXPORT_SYMBOL(skb_checksum_setup);
4030
4031 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4032 {
4033 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4034 skb->dev->name);
4035 }
4036 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4037
4038 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4039 {
4040 if (head_stolen) {
4041 skb_release_head_state(skb);
4042 kmem_cache_free(skbuff_head_cache, skb);
4043 } else {
4044 __kfree_skb(skb);
4045 }
4046 }
4047 EXPORT_SYMBOL(kfree_skb_partial);
4048
4049 /**
4050 * skb_try_coalesce - try to merge skb to prior one
4051 * @to: prior buffer
4052 * @from: buffer to add
4053 * @fragstolen: pointer to boolean
4054 * @delta_truesize: how much more was allocated than was requested
4055 */
4056 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4057 bool *fragstolen, int *delta_truesize)
4058 {
4059 int i, delta, len = from->len;
4060
4061 *fragstolen = false;
4062
4063 if (skb_cloned(to))
4064 return false;
4065
4066 if (len <= skb_tailroom(to)) {
4067 if (len)
4068 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4069 *delta_truesize = 0;
4070 return true;
4071 }
4072
4073 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4074 return false;
4075
4076 if (skb_headlen(from) != 0) {
4077 struct page *page;
4078 unsigned int offset;
4079
4080 if (skb_shinfo(to)->nr_frags +
4081 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4082 return false;
4083
4084 if (skb_head_is_locked(from))
4085 return false;
4086
4087 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4088
4089 page = virt_to_head_page(from->head);
4090 offset = from->data - (unsigned char *)page_address(page);
4091
4092 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4093 page, offset, skb_headlen(from));
4094 *fragstolen = true;
4095 } else {
4096 if (skb_shinfo(to)->nr_frags +
4097 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4098 return false;
4099
4100 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4101 }
4102
4103 WARN_ON_ONCE(delta < len);
4104
4105 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4106 skb_shinfo(from)->frags,
4107 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4108 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4109
4110 if (!skb_cloned(from))
4111 skb_shinfo(from)->nr_frags = 0;
4112
4113 /* if the skb is not cloned this does nothing
4114 * since we set nr_frags to 0.
4115 */
4116 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4117 skb_frag_ref(from, i);
4118
4119 to->truesize += delta;
4120 to->len += len;
4121 to->data_len += len;
4122
4123 *delta_truesize = delta;
4124 return true;
4125 }
4126 EXPORT_SYMBOL(skb_try_coalesce);
4127
4128 /**
4129 * skb_scrub_packet - scrub an skb
4130 *
4131 * @skb: buffer to clean
4132 * @xnet: packet is crossing netns
4133 *
4134 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4135 * into/from a tunnel. Some information have to be cleared during these
4136 * operations.
4137 * skb_scrub_packet can also be used to clean a skb before injecting it in
4138 * another namespace (@xnet == true). We have to clear all information in the
4139 * skb that could impact namespace isolation.
4140 */
4141 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4142 {
4143 if (xnet)
4144 skb_orphan(skb);
4145 skb->tstamp.tv64 = 0;
4146 skb->pkt_type = PACKET_HOST;
4147 skb->skb_iif = 0;
4148 skb->ignore_df = 0;
4149 skb_dst_drop(skb);
4150 skb->mark = 0;
4151 secpath_reset(skb);
4152 nf_reset(skb);
4153 nf_reset_trace(skb);
4154 }
4155 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4156
4157 /**
4158 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4159 *
4160 * @skb: GSO skb
4161 *
4162 * skb_gso_transport_seglen is used to determine the real size of the
4163 * individual segments, including Layer4 headers (TCP/UDP).
4164 *
4165 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4166 */
4167 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4168 {
4169 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4170 unsigned int thlen = 0;
4171
4172 if (skb->encapsulation) {
4173 thlen = skb_inner_transport_header(skb) -
4174 skb_transport_header(skb);
4175
4176 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4177 thlen += inner_tcp_hdrlen(skb);
4178 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4179 thlen = tcp_hdrlen(skb);
4180 }
4181 /* UFO sets gso_size to the size of the fragmentation
4182 * payload, i.e. the size of the L4 (UDP) header is already
4183 * accounted for.
4184 */
4185 return thlen + shinfo->gso_size;
4186 }
4187 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4188
4189 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4190 {
4191 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4192 kfree_skb(skb);
4193 return NULL;
4194 }
4195
4196 memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4197 skb->mac_header += VLAN_HLEN;
4198 return skb;
4199 }
4200
4201 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4202 {
4203 struct vlan_hdr *vhdr;
4204 u16 vlan_tci;
4205
4206 if (unlikely(vlan_tx_tag_present(skb))) {
4207 /* vlan_tci is already set-up so leave this for another time */
4208 return skb;
4209 }
4210
4211 skb = skb_share_check(skb, GFP_ATOMIC);
4212 if (unlikely(!skb))
4213 goto err_free;
4214
4215 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4216 goto err_free;
4217
4218 vhdr = (struct vlan_hdr *)skb->data;
4219 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4220 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4221
4222 skb_pull_rcsum(skb, VLAN_HLEN);
4223 vlan_set_encap_proto(skb, vhdr);
4224
4225 skb = skb_reorder_vlan_header(skb);
4226 if (unlikely(!skb))
4227 goto err_free;
4228
4229 skb_reset_network_header(skb);
4230 skb_reset_transport_header(skb);
4231 skb_reset_mac_len(skb);
4232
4233 return skb;
4234
4235 err_free:
4236 kfree_skb(skb);
4237 return NULL;
4238 }
4239 EXPORT_SYMBOL(skb_vlan_untag);
4240
4241 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4242 {
4243 if (!pskb_may_pull(skb, write_len))
4244 return -ENOMEM;
4245
4246 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4247 return 0;
4248
4249 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4250 }
4251 EXPORT_SYMBOL(skb_ensure_writable);
4252
4253 /* remove VLAN header from packet and update csum accordingly. */
4254 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4255 {
4256 struct vlan_hdr *vhdr;
4257 unsigned int offset = skb->data - skb_mac_header(skb);
4258 int err;
4259
4260 __skb_push(skb, offset);
4261 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4262 if (unlikely(err))
4263 goto pull;
4264
4265 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4266
4267 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4268 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4269
4270 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4271 __skb_pull(skb, VLAN_HLEN);
4272
4273 vlan_set_encap_proto(skb, vhdr);
4274 skb->mac_header += VLAN_HLEN;
4275
4276 if (skb_network_offset(skb) < ETH_HLEN)
4277 skb_set_network_header(skb, ETH_HLEN);
4278
4279 skb_reset_mac_len(skb);
4280 pull:
4281 __skb_pull(skb, offset);
4282
4283 return err;
4284 }
4285
4286 int skb_vlan_pop(struct sk_buff *skb)
4287 {
4288 u16 vlan_tci;
4289 __be16 vlan_proto;
4290 int err;
4291
4292 if (likely(vlan_tx_tag_present(skb))) {
4293 skb->vlan_tci = 0;
4294 } else {
4295 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4296 skb->protocol != htons(ETH_P_8021AD)) ||
4297 skb->len < VLAN_ETH_HLEN))
4298 return 0;
4299
4300 err = __skb_vlan_pop(skb, &vlan_tci);
4301 if (err)
4302 return err;
4303 }
4304 /* move next vlan tag to hw accel tag */
4305 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4306 skb->protocol != htons(ETH_P_8021AD)) ||
4307 skb->len < VLAN_ETH_HLEN))
4308 return 0;
4309
4310 vlan_proto = skb->protocol;
4311 err = __skb_vlan_pop(skb, &vlan_tci);
4312 if (unlikely(err))
4313 return err;
4314
4315 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4316 return 0;
4317 }
4318 EXPORT_SYMBOL(skb_vlan_pop);
4319
4320 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4321 {
4322 if (vlan_tx_tag_present(skb)) {
4323 unsigned int offset = skb->data - skb_mac_header(skb);
4324 int err;
4325
4326 /* __vlan_insert_tag expect skb->data pointing to mac header.
4327 * So change skb->data before calling it and change back to
4328 * original position later
4329 */
4330 __skb_push(skb, offset);
4331 err = __vlan_insert_tag(skb, skb->vlan_proto,
4332 vlan_tx_tag_get(skb));
4333 if (err)
4334 return err;
4335 skb->protocol = skb->vlan_proto;
4336 skb->mac_len += VLAN_HLEN;
4337 __skb_pull(skb, offset);
4338
4339 if (skb->ip_summed == CHECKSUM_COMPLETE)
4340 skb->csum = csum_add(skb->csum, csum_partial(skb->data
4341 + (2 * ETH_ALEN), VLAN_HLEN, 0));
4342 }
4343 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4344 return 0;
4345 }
4346 EXPORT_SYMBOL(skb_vlan_push);
4347
4348 /**
4349 * alloc_skb_with_frags - allocate skb with page frags
4350 *
4351 * @header_len: size of linear part
4352 * @data_len: needed length in frags
4353 * @max_page_order: max page order desired.
4354 * @errcode: pointer to error code if any
4355 * @gfp_mask: allocation mask
4356 *
4357 * This can be used to allocate a paged skb, given a maximal order for frags.
4358 */
4359 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4360 unsigned long data_len,
4361 int max_page_order,
4362 int *errcode,
4363 gfp_t gfp_mask)
4364 {
4365 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4366 unsigned long chunk;
4367 struct sk_buff *skb;
4368 struct page *page;
4369 gfp_t gfp_head;
4370 int i;
4371
4372 *errcode = -EMSGSIZE;
4373 /* Note this test could be relaxed, if we succeed to allocate
4374 * high order pages...
4375 */
4376 if (npages > MAX_SKB_FRAGS)
4377 return NULL;
4378
4379 gfp_head = gfp_mask;
4380 if (gfp_head & __GFP_WAIT)
4381 gfp_head |= __GFP_REPEAT;
4382
4383 *errcode = -ENOBUFS;
4384 skb = alloc_skb(header_len, gfp_head);
4385 if (!skb)
4386 return NULL;
4387
4388 skb->truesize += npages << PAGE_SHIFT;
4389
4390 for (i = 0; npages > 0; i++) {
4391 int order = max_page_order;
4392
4393 while (order) {
4394 if (npages >= 1 << order) {
4395 page = alloc_pages(gfp_mask |
4396 __GFP_COMP |
4397 __GFP_NOWARN |
4398 __GFP_NORETRY,
4399 order);
4400 if (page)
4401 goto fill_page;
4402 /* Do not retry other high order allocations */
4403 order = 1;
4404 max_page_order = 0;
4405 }
4406 order--;
4407 }
4408 page = alloc_page(gfp_mask);
4409 if (!page)
4410 goto failure;
4411 fill_page:
4412 chunk = min_t(unsigned long, data_len,
4413 PAGE_SIZE << order);
4414 skb_fill_page_desc(skb, i, page, 0, chunk);
4415 data_len -= chunk;
4416 npages -= 1 << order;
4417 }
4418 return skb;
4419
4420 failure:
4421 kfree_skb(skb);
4422 return NULL;
4423 }
4424 EXPORT_SYMBOL(alloc_skb_with_frags);
This page took 0.122736 seconds and 5 git commands to generate.