Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67
68 #include "kmap_skb.h"
69
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 struct pipe_buffer *buf)
75 {
76 put_page(buf->page);
77 }
78
79 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
80 struct pipe_buffer *buf)
81 {
82 get_page(buf->page);
83 }
84
85 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 return 1;
89 }
90
91
92 /* Pipe buffer operations for a socket. */
93 static struct pipe_buf_operations sock_pipe_buf_ops = {
94 .can_merge = 0,
95 .map = generic_pipe_buf_map,
96 .unmap = generic_pipe_buf_unmap,
97 .confirm = generic_pipe_buf_confirm,
98 .release = sock_pipe_buf_release,
99 .steal = sock_pipe_buf_steal,
100 .get = sock_pipe_buf_get,
101 };
102
103 /*
104 * Keep out-of-line to prevent kernel bloat.
105 * __builtin_return_address is not used because it is not always
106 * reliable.
107 */
108
109 /**
110 * skb_over_panic - private function
111 * @skb: buffer
112 * @sz: size
113 * @here: address
114 *
115 * Out of line support code for skb_put(). Not user callable.
116 */
117 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
118 {
119 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
120 "data:%p tail:%#lx end:%#lx dev:%s\n",
121 here, skb->len, sz, skb->head, skb->data,
122 (unsigned long)skb->tail, (unsigned long)skb->end,
123 skb->dev ? skb->dev->name : "<NULL>");
124 BUG();
125 }
126
127 /**
128 * skb_under_panic - private function
129 * @skb: buffer
130 * @sz: size
131 * @here: address
132 *
133 * Out of line support code for skb_push(). Not user callable.
134 */
135
136 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
137 {
138 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
139 "data:%p tail:%#lx end:%#lx dev:%s\n",
140 here, skb->len, sz, skb->head, skb->data,
141 (unsigned long)skb->tail, (unsigned long)skb->end,
142 skb->dev ? skb->dev->name : "<NULL>");
143 BUG();
144 }
145
146 void skb_truesize_bug(struct sk_buff *skb)
147 {
148 WARN(net_ratelimit(), KERN_ERR "SKB BUG: Invalid truesize (%u) "
149 "len=%u, sizeof(sk_buff)=%Zd\n",
150 skb->truesize, skb->len, sizeof(struct sk_buff));
151 }
152 EXPORT_SYMBOL(skb_truesize_bug);
153
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160 /**
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @fclone: allocate from fclone cache instead of head cache
165 * and allocate a cloned (child) skb
166 * @node: numa node to allocate memory on
167 *
168 * Allocate a new &sk_buff. The returned buffer has no headroom and a
169 * tail room of size bytes. The object has a reference count of one.
170 * The return is the buffer. On a failure the return is %NULL.
171 *
172 * Buffers may only be allocated from interrupts using a @gfp_mask of
173 * %GFP_ATOMIC.
174 */
175 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
176 int fclone, int node)
177 {
178 struct kmem_cache *cache;
179 struct skb_shared_info *shinfo;
180 struct sk_buff *skb;
181 u8 *data;
182
183 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
184
185 /* Get the HEAD */
186 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
187 if (!skb)
188 goto out;
189
190 size = SKB_DATA_ALIGN(size);
191 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
192 gfp_mask, node);
193 if (!data)
194 goto nodata;
195
196 /*
197 * Only clear those fields we need to clear, not those that we will
198 * actually initialise below. Hence, don't put any more fields after
199 * the tail pointer in struct sk_buff!
200 */
201 memset(skb, 0, offsetof(struct sk_buff, tail));
202 skb->truesize = size + sizeof(struct sk_buff);
203 atomic_set(&skb->users, 1);
204 skb->head = data;
205 skb->data = data;
206 skb_reset_tail_pointer(skb);
207 skb->end = skb->tail + size;
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 atomic_set(&shinfo->dataref, 1);
211 shinfo->nr_frags = 0;
212 shinfo->gso_size = 0;
213 shinfo->gso_segs = 0;
214 shinfo->gso_type = 0;
215 shinfo->ip6_frag_id = 0;
216 shinfo->frag_list = NULL;
217
218 if (fclone) {
219 struct sk_buff *child = skb + 1;
220 atomic_t *fclone_ref = (atomic_t *) (child + 1);
221
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
224
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
226 }
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
233 }
234
235 /**
236 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
237 * @dev: network device to receive on
238 * @length: length to allocate
239 * @gfp_mask: get_free_pages mask, passed to alloc_skb
240 *
241 * Allocate a new &sk_buff and assign it a usage count of one. The
242 * buffer has unspecified headroom built in. Users should allocate
243 * the headroom they think they need without accounting for the
244 * built in space. The built in space is used for optimisations.
245 *
246 * %NULL is returned if there is no free memory.
247 */
248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
249 unsigned int length, gfp_t gfp_mask)
250 {
251 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
252 struct sk_buff *skb;
253
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
258 }
259 return skb;
260 }
261
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 struct page *page;
266
267 page = alloc_pages_node(node, gfp_mask, 0);
268 return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 int size)
274 {
275 skb_fill_page_desc(skb, i, page, off, size);
276 skb->len += size;
277 skb->data_len += size;
278 skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281
282 /**
283 * dev_alloc_skb - allocate an skbuff for receiving
284 * @length: length to allocate
285 *
286 * Allocate a new &sk_buff and assign it a usage count of one. The
287 * buffer has unspecified headroom built in. Users should allocate
288 * the headroom they think they need without accounting for the
289 * built in space. The built in space is used for optimisations.
290 *
291 * %NULL is returned if there is no free memory. Although this function
292 * allocates memory it can be called from an interrupt.
293 */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 /*
297 * There is more code here than it seems:
298 * __dev_alloc_skb is an inline
299 */
300 return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 struct sk_buff *list = *listp;
307
308 *listp = NULL;
309
310 do {
311 struct sk_buff *this = list;
312 list = list->next;
313 kfree_skb(this);
314 } while (list);
315 }
316
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 struct sk_buff *list;
325
326 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
327 skb_get(list);
328 }
329
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 if (!skb->cloned ||
333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 &skb_shinfo(skb)->dataref)) {
335 if (skb_shinfo(skb)->nr_frags) {
336 int i;
337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 put_page(skb_shinfo(skb)->frags[i].page);
339 }
340
341 if (skb_shinfo(skb)->frag_list)
342 skb_drop_fraglist(skb);
343
344 kfree(skb->head);
345 }
346 }
347
348 /*
349 * Free an skbuff by memory without cleaning the state.
350 */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 struct sk_buff *other;
354 atomic_t *fclone_ref;
355
356 switch (skb->fclone) {
357 case SKB_FCLONE_UNAVAILABLE:
358 kmem_cache_free(skbuff_head_cache, skb);
359 break;
360
361 case SKB_FCLONE_ORIG:
362 fclone_ref = (atomic_t *) (skb + 2);
363 if (atomic_dec_and_test(fclone_ref))
364 kmem_cache_free(skbuff_fclone_cache, skb);
365 break;
366
367 case SKB_FCLONE_CLONE:
368 fclone_ref = (atomic_t *) (skb + 1);
369 other = skb - 1;
370
371 /* The clone portion is available for
372 * fast-cloning again.
373 */
374 skb->fclone = SKB_FCLONE_UNAVAILABLE;
375
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, other);
378 break;
379 }
380 }
381
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 dst_release(skb->dst);
385 #ifdef CONFIG_XFRM
386 secpath_put(skb->sp);
387 #endif
388 if (skb->destructor) {
389 WARN_ON(in_irq());
390 skb->destructor(skb);
391 }
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 nf_conntrack_put(skb->nfct);
394 nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 skb_release_head_state(skb);
412 skb_release_data(skb);
413 }
414
415 /**
416 * __kfree_skb - private function
417 * @skb: buffer
418 *
419 * Free an sk_buff. Release anything attached to the buffer.
420 * Clean the state. This is an internal helper function. Users should
421 * always call kfree_skb
422 */
423
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 skb_release_all(skb);
427 kfree_skbmem(skb);
428 }
429
430 /**
431 * kfree_skb - free an sk_buff
432 * @skb: buffer to free
433 *
434 * Drop a reference to the buffer and free it if the usage count has
435 * hit zero.
436 */
437 void kfree_skb(struct sk_buff *skb)
438 {
439 if (unlikely(!skb))
440 return;
441 if (likely(atomic_read(&skb->users) == 1))
442 smp_rmb();
443 else if (likely(!atomic_dec_and_test(&skb->users)))
444 return;
445 __kfree_skb(skb);
446 }
447
448 /**
449 * skb_recycle_check - check if skb can be reused for receive
450 * @skb: buffer
451 * @skb_size: minimum receive buffer size
452 *
453 * Checks that the skb passed in is not shared or cloned, and
454 * that it is linear and its head portion at least as large as
455 * skb_size so that it can be recycled as a receive buffer.
456 * If these conditions are met, this function does any necessary
457 * reference count dropping and cleans up the skbuff as if it
458 * just came from __alloc_skb().
459 */
460 int skb_recycle_check(struct sk_buff *skb, int skb_size)
461 {
462 struct skb_shared_info *shinfo;
463
464 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
465 return 0;
466
467 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
468 if (skb_end_pointer(skb) - skb->head < skb_size)
469 return 0;
470
471 if (skb_shared(skb) || skb_cloned(skb))
472 return 0;
473
474 skb_release_head_state(skb);
475 shinfo = skb_shinfo(skb);
476 atomic_set(&shinfo->dataref, 1);
477 shinfo->nr_frags = 0;
478 shinfo->gso_size = 0;
479 shinfo->gso_segs = 0;
480 shinfo->gso_type = 0;
481 shinfo->ip6_frag_id = 0;
482 shinfo->frag_list = NULL;
483
484 memset(skb, 0, offsetof(struct sk_buff, tail));
485 skb->data = skb->head + NET_SKB_PAD;
486 skb_reset_tail_pointer(skb);
487
488 return 1;
489 }
490 EXPORT_SYMBOL(skb_recycle_check);
491
492 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
493 {
494 new->tstamp = old->tstamp;
495 new->dev = old->dev;
496 new->transport_header = old->transport_header;
497 new->network_header = old->network_header;
498 new->mac_header = old->mac_header;
499 new->dst = dst_clone(old->dst);
500 #ifdef CONFIG_XFRM
501 new->sp = secpath_get(old->sp);
502 #endif
503 memcpy(new->cb, old->cb, sizeof(old->cb));
504 new->csum_start = old->csum_start;
505 new->csum_offset = old->csum_offset;
506 new->local_df = old->local_df;
507 new->pkt_type = old->pkt_type;
508 new->ip_summed = old->ip_summed;
509 skb_copy_queue_mapping(new, old);
510 new->priority = old->priority;
511 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
512 new->ipvs_property = old->ipvs_property;
513 #endif
514 new->protocol = old->protocol;
515 new->mark = old->mark;
516 __nf_copy(new, old);
517 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
518 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
519 new->nf_trace = old->nf_trace;
520 #endif
521 #ifdef CONFIG_NET_SCHED
522 new->tc_index = old->tc_index;
523 #ifdef CONFIG_NET_CLS_ACT
524 new->tc_verd = old->tc_verd;
525 #endif
526 #endif
527 new->vlan_tci = old->vlan_tci;
528
529 skb_copy_secmark(new, old);
530 }
531
532 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
533 {
534 #define C(x) n->x = skb->x
535
536 n->next = n->prev = NULL;
537 n->sk = NULL;
538 __copy_skb_header(n, skb);
539
540 C(len);
541 C(data_len);
542 C(mac_len);
543 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
544 n->cloned = 1;
545 n->nohdr = 0;
546 n->destructor = NULL;
547 C(iif);
548 C(tail);
549 C(end);
550 C(head);
551 C(data);
552 C(truesize);
553 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
554 C(do_not_encrypt);
555 C(requeue);
556 #endif
557 atomic_set(&n->users, 1);
558
559 atomic_inc(&(skb_shinfo(skb)->dataref));
560 skb->cloned = 1;
561
562 return n;
563 #undef C
564 }
565
566 /**
567 * skb_morph - morph one skb into another
568 * @dst: the skb to receive the contents
569 * @src: the skb to supply the contents
570 *
571 * This is identical to skb_clone except that the target skb is
572 * supplied by the user.
573 *
574 * The target skb is returned upon exit.
575 */
576 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
577 {
578 skb_release_all(dst);
579 return __skb_clone(dst, src);
580 }
581 EXPORT_SYMBOL_GPL(skb_morph);
582
583 /**
584 * skb_clone - duplicate an sk_buff
585 * @skb: buffer to clone
586 * @gfp_mask: allocation priority
587 *
588 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
589 * copies share the same packet data but not structure. The new
590 * buffer has a reference count of 1. If the allocation fails the
591 * function returns %NULL otherwise the new buffer is returned.
592 *
593 * If this function is called from an interrupt gfp_mask() must be
594 * %GFP_ATOMIC.
595 */
596
597 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
598 {
599 struct sk_buff *n;
600
601 n = skb + 1;
602 if (skb->fclone == SKB_FCLONE_ORIG &&
603 n->fclone == SKB_FCLONE_UNAVAILABLE) {
604 atomic_t *fclone_ref = (atomic_t *) (n + 1);
605 n->fclone = SKB_FCLONE_CLONE;
606 atomic_inc(fclone_ref);
607 } else {
608 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
609 if (!n)
610 return NULL;
611 n->fclone = SKB_FCLONE_UNAVAILABLE;
612 }
613
614 return __skb_clone(n, skb);
615 }
616
617 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
618 {
619 #ifndef NET_SKBUFF_DATA_USES_OFFSET
620 /*
621 * Shift between the two data areas in bytes
622 */
623 unsigned long offset = new->data - old->data;
624 #endif
625
626 __copy_skb_header(new, old);
627
628 #ifndef NET_SKBUFF_DATA_USES_OFFSET
629 /* {transport,network,mac}_header are relative to skb->head */
630 new->transport_header += offset;
631 new->network_header += offset;
632 new->mac_header += offset;
633 #endif
634 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
635 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
636 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
637 }
638
639 /**
640 * skb_copy - create private copy of an sk_buff
641 * @skb: buffer to copy
642 * @gfp_mask: allocation priority
643 *
644 * Make a copy of both an &sk_buff and its data. This is used when the
645 * caller wishes to modify the data and needs a private copy of the
646 * data to alter. Returns %NULL on failure or the pointer to the buffer
647 * on success. The returned buffer has a reference count of 1.
648 *
649 * As by-product this function converts non-linear &sk_buff to linear
650 * one, so that &sk_buff becomes completely private and caller is allowed
651 * to modify all the data of returned buffer. This means that this
652 * function is not recommended for use in circumstances when only
653 * header is going to be modified. Use pskb_copy() instead.
654 */
655
656 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
657 {
658 int headerlen = skb->data - skb->head;
659 /*
660 * Allocate the copy buffer
661 */
662 struct sk_buff *n;
663 #ifdef NET_SKBUFF_DATA_USES_OFFSET
664 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
665 #else
666 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
667 #endif
668 if (!n)
669 return NULL;
670
671 /* Set the data pointer */
672 skb_reserve(n, headerlen);
673 /* Set the tail pointer and length */
674 skb_put(n, skb->len);
675
676 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
677 BUG();
678
679 copy_skb_header(n, skb);
680 return n;
681 }
682
683
684 /**
685 * pskb_copy - create copy of an sk_buff with private head.
686 * @skb: buffer to copy
687 * @gfp_mask: allocation priority
688 *
689 * Make a copy of both an &sk_buff and part of its data, located
690 * in header. Fragmented data remain shared. This is used when
691 * the caller wishes to modify only header of &sk_buff and needs
692 * private copy of the header to alter. Returns %NULL on failure
693 * or the pointer to the buffer on success.
694 * The returned buffer has a reference count of 1.
695 */
696
697 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
698 {
699 /*
700 * Allocate the copy buffer
701 */
702 struct sk_buff *n;
703 #ifdef NET_SKBUFF_DATA_USES_OFFSET
704 n = alloc_skb(skb->end, gfp_mask);
705 #else
706 n = alloc_skb(skb->end - skb->head, gfp_mask);
707 #endif
708 if (!n)
709 goto out;
710
711 /* Set the data pointer */
712 skb_reserve(n, skb->data - skb->head);
713 /* Set the tail pointer and length */
714 skb_put(n, skb_headlen(skb));
715 /* Copy the bytes */
716 skb_copy_from_linear_data(skb, n->data, n->len);
717
718 n->truesize += skb->data_len;
719 n->data_len = skb->data_len;
720 n->len = skb->len;
721
722 if (skb_shinfo(skb)->nr_frags) {
723 int i;
724
725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
726 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
727 get_page(skb_shinfo(n)->frags[i].page);
728 }
729 skb_shinfo(n)->nr_frags = i;
730 }
731
732 if (skb_shinfo(skb)->frag_list) {
733 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
734 skb_clone_fraglist(n);
735 }
736
737 copy_skb_header(n, skb);
738 out:
739 return n;
740 }
741
742 /**
743 * pskb_expand_head - reallocate header of &sk_buff
744 * @skb: buffer to reallocate
745 * @nhead: room to add at head
746 * @ntail: room to add at tail
747 * @gfp_mask: allocation priority
748 *
749 * Expands (or creates identical copy, if &nhead and &ntail are zero)
750 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
751 * reference count of 1. Returns zero in the case of success or error,
752 * if expansion failed. In the last case, &sk_buff is not changed.
753 *
754 * All the pointers pointing into skb header may change and must be
755 * reloaded after call to this function.
756 */
757
758 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
759 gfp_t gfp_mask)
760 {
761 int i;
762 u8 *data;
763 #ifdef NET_SKBUFF_DATA_USES_OFFSET
764 int size = nhead + skb->end + ntail;
765 #else
766 int size = nhead + (skb->end - skb->head) + ntail;
767 #endif
768 long off;
769
770 BUG_ON(nhead < 0);
771
772 if (skb_shared(skb))
773 BUG();
774
775 size = SKB_DATA_ALIGN(size);
776
777 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
778 if (!data)
779 goto nodata;
780
781 /* Copy only real data... and, alas, header. This should be
782 * optimized for the cases when header is void. */
783 #ifdef NET_SKBUFF_DATA_USES_OFFSET
784 memcpy(data + nhead, skb->head, skb->tail);
785 #else
786 memcpy(data + nhead, skb->head, skb->tail - skb->head);
787 #endif
788 memcpy(data + size, skb_end_pointer(skb),
789 sizeof(struct skb_shared_info));
790
791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
792 get_page(skb_shinfo(skb)->frags[i].page);
793
794 if (skb_shinfo(skb)->frag_list)
795 skb_clone_fraglist(skb);
796
797 skb_release_data(skb);
798
799 off = (data + nhead) - skb->head;
800
801 skb->head = data;
802 skb->data += off;
803 #ifdef NET_SKBUFF_DATA_USES_OFFSET
804 skb->end = size;
805 off = nhead;
806 #else
807 skb->end = skb->head + size;
808 #endif
809 /* {transport,network,mac}_header and tail are relative to skb->head */
810 skb->tail += off;
811 skb->transport_header += off;
812 skb->network_header += off;
813 skb->mac_header += off;
814 skb->csum_start += nhead;
815 skb->cloned = 0;
816 skb->hdr_len = 0;
817 skb->nohdr = 0;
818 atomic_set(&skb_shinfo(skb)->dataref, 1);
819 return 0;
820
821 nodata:
822 return -ENOMEM;
823 }
824
825 /* Make private copy of skb with writable head and some headroom */
826
827 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
828 {
829 struct sk_buff *skb2;
830 int delta = headroom - skb_headroom(skb);
831
832 if (delta <= 0)
833 skb2 = pskb_copy(skb, GFP_ATOMIC);
834 else {
835 skb2 = skb_clone(skb, GFP_ATOMIC);
836 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
837 GFP_ATOMIC)) {
838 kfree_skb(skb2);
839 skb2 = NULL;
840 }
841 }
842 return skb2;
843 }
844
845
846 /**
847 * skb_copy_expand - copy and expand sk_buff
848 * @skb: buffer to copy
849 * @newheadroom: new free bytes at head
850 * @newtailroom: new free bytes at tail
851 * @gfp_mask: allocation priority
852 *
853 * Make a copy of both an &sk_buff and its data and while doing so
854 * allocate additional space.
855 *
856 * This is used when the caller wishes to modify the data and needs a
857 * private copy of the data to alter as well as more space for new fields.
858 * Returns %NULL on failure or the pointer to the buffer
859 * on success. The returned buffer has a reference count of 1.
860 *
861 * You must pass %GFP_ATOMIC as the allocation priority if this function
862 * is called from an interrupt.
863 */
864 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
865 int newheadroom, int newtailroom,
866 gfp_t gfp_mask)
867 {
868 /*
869 * Allocate the copy buffer
870 */
871 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
872 gfp_mask);
873 int oldheadroom = skb_headroom(skb);
874 int head_copy_len, head_copy_off;
875 int off;
876
877 if (!n)
878 return NULL;
879
880 skb_reserve(n, newheadroom);
881
882 /* Set the tail pointer and length */
883 skb_put(n, skb->len);
884
885 head_copy_len = oldheadroom;
886 head_copy_off = 0;
887 if (newheadroom <= head_copy_len)
888 head_copy_len = newheadroom;
889 else
890 head_copy_off = newheadroom - head_copy_len;
891
892 /* Copy the linear header and data. */
893 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
894 skb->len + head_copy_len))
895 BUG();
896
897 copy_skb_header(n, skb);
898
899 off = newheadroom - oldheadroom;
900 n->csum_start += off;
901 #ifdef NET_SKBUFF_DATA_USES_OFFSET
902 n->transport_header += off;
903 n->network_header += off;
904 n->mac_header += off;
905 #endif
906
907 return n;
908 }
909
910 /**
911 * skb_pad - zero pad the tail of an skb
912 * @skb: buffer to pad
913 * @pad: space to pad
914 *
915 * Ensure that a buffer is followed by a padding area that is zero
916 * filled. Used by network drivers which may DMA or transfer data
917 * beyond the buffer end onto the wire.
918 *
919 * May return error in out of memory cases. The skb is freed on error.
920 */
921
922 int skb_pad(struct sk_buff *skb, int pad)
923 {
924 int err;
925 int ntail;
926
927 /* If the skbuff is non linear tailroom is always zero.. */
928 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
929 memset(skb->data+skb->len, 0, pad);
930 return 0;
931 }
932
933 ntail = skb->data_len + pad - (skb->end - skb->tail);
934 if (likely(skb_cloned(skb) || ntail > 0)) {
935 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
936 if (unlikely(err))
937 goto free_skb;
938 }
939
940 /* FIXME: The use of this function with non-linear skb's really needs
941 * to be audited.
942 */
943 err = skb_linearize(skb);
944 if (unlikely(err))
945 goto free_skb;
946
947 memset(skb->data + skb->len, 0, pad);
948 return 0;
949
950 free_skb:
951 kfree_skb(skb);
952 return err;
953 }
954
955 /**
956 * skb_put - add data to a buffer
957 * @skb: buffer to use
958 * @len: amount of data to add
959 *
960 * This function extends the used data area of the buffer. If this would
961 * exceed the total buffer size the kernel will panic. A pointer to the
962 * first byte of the extra data is returned.
963 */
964 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
965 {
966 unsigned char *tmp = skb_tail_pointer(skb);
967 SKB_LINEAR_ASSERT(skb);
968 skb->tail += len;
969 skb->len += len;
970 if (unlikely(skb->tail > skb->end))
971 skb_over_panic(skb, len, __builtin_return_address(0));
972 return tmp;
973 }
974 EXPORT_SYMBOL(skb_put);
975
976 /**
977 * skb_push - add data to the start of a buffer
978 * @skb: buffer to use
979 * @len: amount of data to add
980 *
981 * This function extends the used data area of the buffer at the buffer
982 * start. If this would exceed the total buffer headroom the kernel will
983 * panic. A pointer to the first byte of the extra data is returned.
984 */
985 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
986 {
987 skb->data -= len;
988 skb->len += len;
989 if (unlikely(skb->data<skb->head))
990 skb_under_panic(skb, len, __builtin_return_address(0));
991 return skb->data;
992 }
993 EXPORT_SYMBOL(skb_push);
994
995 /**
996 * skb_pull - remove data from the start of a buffer
997 * @skb: buffer to use
998 * @len: amount of data to remove
999 *
1000 * This function removes data from the start of a buffer, returning
1001 * the memory to the headroom. A pointer to the next data in the buffer
1002 * is returned. Once the data has been pulled future pushes will overwrite
1003 * the old data.
1004 */
1005 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1006 {
1007 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1008 }
1009 EXPORT_SYMBOL(skb_pull);
1010
1011 /**
1012 * skb_trim - remove end from a buffer
1013 * @skb: buffer to alter
1014 * @len: new length
1015 *
1016 * Cut the length of a buffer down by removing data from the tail. If
1017 * the buffer is already under the length specified it is not modified.
1018 * The skb must be linear.
1019 */
1020 void skb_trim(struct sk_buff *skb, unsigned int len)
1021 {
1022 if (skb->len > len)
1023 __skb_trim(skb, len);
1024 }
1025 EXPORT_SYMBOL(skb_trim);
1026
1027 /* Trims skb to length len. It can change skb pointers.
1028 */
1029
1030 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1031 {
1032 struct sk_buff **fragp;
1033 struct sk_buff *frag;
1034 int offset = skb_headlen(skb);
1035 int nfrags = skb_shinfo(skb)->nr_frags;
1036 int i;
1037 int err;
1038
1039 if (skb_cloned(skb) &&
1040 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1041 return err;
1042
1043 i = 0;
1044 if (offset >= len)
1045 goto drop_pages;
1046
1047 for (; i < nfrags; i++) {
1048 int end = offset + skb_shinfo(skb)->frags[i].size;
1049
1050 if (end < len) {
1051 offset = end;
1052 continue;
1053 }
1054
1055 skb_shinfo(skb)->frags[i++].size = len - offset;
1056
1057 drop_pages:
1058 skb_shinfo(skb)->nr_frags = i;
1059
1060 for (; i < nfrags; i++)
1061 put_page(skb_shinfo(skb)->frags[i].page);
1062
1063 if (skb_shinfo(skb)->frag_list)
1064 skb_drop_fraglist(skb);
1065 goto done;
1066 }
1067
1068 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1069 fragp = &frag->next) {
1070 int end = offset + frag->len;
1071
1072 if (skb_shared(frag)) {
1073 struct sk_buff *nfrag;
1074
1075 nfrag = skb_clone(frag, GFP_ATOMIC);
1076 if (unlikely(!nfrag))
1077 return -ENOMEM;
1078
1079 nfrag->next = frag->next;
1080 kfree_skb(frag);
1081 frag = nfrag;
1082 *fragp = frag;
1083 }
1084
1085 if (end < len) {
1086 offset = end;
1087 continue;
1088 }
1089
1090 if (end > len &&
1091 unlikely((err = pskb_trim(frag, len - offset))))
1092 return err;
1093
1094 if (frag->next)
1095 skb_drop_list(&frag->next);
1096 break;
1097 }
1098
1099 done:
1100 if (len > skb_headlen(skb)) {
1101 skb->data_len -= skb->len - len;
1102 skb->len = len;
1103 } else {
1104 skb->len = len;
1105 skb->data_len = 0;
1106 skb_set_tail_pointer(skb, len);
1107 }
1108
1109 return 0;
1110 }
1111
1112 /**
1113 * __pskb_pull_tail - advance tail of skb header
1114 * @skb: buffer to reallocate
1115 * @delta: number of bytes to advance tail
1116 *
1117 * The function makes a sense only on a fragmented &sk_buff,
1118 * it expands header moving its tail forward and copying necessary
1119 * data from fragmented part.
1120 *
1121 * &sk_buff MUST have reference count of 1.
1122 *
1123 * Returns %NULL (and &sk_buff does not change) if pull failed
1124 * or value of new tail of skb in the case of success.
1125 *
1126 * All the pointers pointing into skb header may change and must be
1127 * reloaded after call to this function.
1128 */
1129
1130 /* Moves tail of skb head forward, copying data from fragmented part,
1131 * when it is necessary.
1132 * 1. It may fail due to malloc failure.
1133 * 2. It may change skb pointers.
1134 *
1135 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1136 */
1137 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1138 {
1139 /* If skb has not enough free space at tail, get new one
1140 * plus 128 bytes for future expansions. If we have enough
1141 * room at tail, reallocate without expansion only if skb is cloned.
1142 */
1143 int i, k, eat = (skb->tail + delta) - skb->end;
1144
1145 if (eat > 0 || skb_cloned(skb)) {
1146 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1147 GFP_ATOMIC))
1148 return NULL;
1149 }
1150
1151 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1152 BUG();
1153
1154 /* Optimization: no fragments, no reasons to preestimate
1155 * size of pulled pages. Superb.
1156 */
1157 if (!skb_shinfo(skb)->frag_list)
1158 goto pull_pages;
1159
1160 /* Estimate size of pulled pages. */
1161 eat = delta;
1162 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1163 if (skb_shinfo(skb)->frags[i].size >= eat)
1164 goto pull_pages;
1165 eat -= skb_shinfo(skb)->frags[i].size;
1166 }
1167
1168 /* If we need update frag list, we are in troubles.
1169 * Certainly, it possible to add an offset to skb data,
1170 * but taking into account that pulling is expected to
1171 * be very rare operation, it is worth to fight against
1172 * further bloating skb head and crucify ourselves here instead.
1173 * Pure masohism, indeed. 8)8)
1174 */
1175 if (eat) {
1176 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1177 struct sk_buff *clone = NULL;
1178 struct sk_buff *insp = NULL;
1179
1180 do {
1181 BUG_ON(!list);
1182
1183 if (list->len <= eat) {
1184 /* Eaten as whole. */
1185 eat -= list->len;
1186 list = list->next;
1187 insp = list;
1188 } else {
1189 /* Eaten partially. */
1190
1191 if (skb_shared(list)) {
1192 /* Sucks! We need to fork list. :-( */
1193 clone = skb_clone(list, GFP_ATOMIC);
1194 if (!clone)
1195 return NULL;
1196 insp = list->next;
1197 list = clone;
1198 } else {
1199 /* This may be pulled without
1200 * problems. */
1201 insp = list;
1202 }
1203 if (!pskb_pull(list, eat)) {
1204 if (clone)
1205 kfree_skb(clone);
1206 return NULL;
1207 }
1208 break;
1209 }
1210 } while (eat);
1211
1212 /* Free pulled out fragments. */
1213 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1214 skb_shinfo(skb)->frag_list = list->next;
1215 kfree_skb(list);
1216 }
1217 /* And insert new clone at head. */
1218 if (clone) {
1219 clone->next = list;
1220 skb_shinfo(skb)->frag_list = clone;
1221 }
1222 }
1223 /* Success! Now we may commit changes to skb data. */
1224
1225 pull_pages:
1226 eat = delta;
1227 k = 0;
1228 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1229 if (skb_shinfo(skb)->frags[i].size <= eat) {
1230 put_page(skb_shinfo(skb)->frags[i].page);
1231 eat -= skb_shinfo(skb)->frags[i].size;
1232 } else {
1233 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1234 if (eat) {
1235 skb_shinfo(skb)->frags[k].page_offset += eat;
1236 skb_shinfo(skb)->frags[k].size -= eat;
1237 eat = 0;
1238 }
1239 k++;
1240 }
1241 }
1242 skb_shinfo(skb)->nr_frags = k;
1243
1244 skb->tail += delta;
1245 skb->data_len -= delta;
1246
1247 return skb_tail_pointer(skb);
1248 }
1249
1250 /* Copy some data bits from skb to kernel buffer. */
1251
1252 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1253 {
1254 int i, copy;
1255 int start = skb_headlen(skb);
1256
1257 if (offset > (int)skb->len - len)
1258 goto fault;
1259
1260 /* Copy header. */
1261 if ((copy = start - offset) > 0) {
1262 if (copy > len)
1263 copy = len;
1264 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1265 if ((len -= copy) == 0)
1266 return 0;
1267 offset += copy;
1268 to += copy;
1269 }
1270
1271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1272 int end;
1273
1274 WARN_ON(start > offset + len);
1275
1276 end = start + skb_shinfo(skb)->frags[i].size;
1277 if ((copy = end - offset) > 0) {
1278 u8 *vaddr;
1279
1280 if (copy > len)
1281 copy = len;
1282
1283 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1284 memcpy(to,
1285 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1286 offset - start, copy);
1287 kunmap_skb_frag(vaddr);
1288
1289 if ((len -= copy) == 0)
1290 return 0;
1291 offset += copy;
1292 to += copy;
1293 }
1294 start = end;
1295 }
1296
1297 if (skb_shinfo(skb)->frag_list) {
1298 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1299
1300 for (; list; list = list->next) {
1301 int end;
1302
1303 WARN_ON(start > offset + len);
1304
1305 end = start + list->len;
1306 if ((copy = end - offset) > 0) {
1307 if (copy > len)
1308 copy = len;
1309 if (skb_copy_bits(list, offset - start,
1310 to, copy))
1311 goto fault;
1312 if ((len -= copy) == 0)
1313 return 0;
1314 offset += copy;
1315 to += copy;
1316 }
1317 start = end;
1318 }
1319 }
1320 if (!len)
1321 return 0;
1322
1323 fault:
1324 return -EFAULT;
1325 }
1326
1327 /*
1328 * Callback from splice_to_pipe(), if we need to release some pages
1329 * at the end of the spd in case we error'ed out in filling the pipe.
1330 */
1331 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1332 {
1333 put_page(spd->pages[i]);
1334 }
1335
1336 static inline struct page *linear_to_page(struct page *page, unsigned int len,
1337 unsigned int offset)
1338 {
1339 struct page *p = alloc_pages(GFP_KERNEL, 0);
1340
1341 if (!p)
1342 return NULL;
1343 memcpy(page_address(p) + offset, page_address(page) + offset, len);
1344
1345 return p;
1346 }
1347
1348 /*
1349 * Fill page/offset/length into spd, if it can hold more pages.
1350 */
1351 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1352 unsigned int len, unsigned int offset,
1353 struct sk_buff *skb, int linear)
1354 {
1355 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1356 return 1;
1357
1358 if (linear) {
1359 page = linear_to_page(page, len, offset);
1360 if (!page)
1361 return 1;
1362 } else
1363 get_page(page);
1364
1365 spd->pages[spd->nr_pages] = page;
1366 spd->partial[spd->nr_pages].len = len;
1367 spd->partial[spd->nr_pages].offset = offset;
1368 spd->nr_pages++;
1369
1370 return 0;
1371 }
1372
1373 static inline void __segment_seek(struct page **page, unsigned int *poff,
1374 unsigned int *plen, unsigned int off)
1375 {
1376 *poff += off;
1377 *page += *poff / PAGE_SIZE;
1378 *poff = *poff % PAGE_SIZE;
1379 *plen -= off;
1380 }
1381
1382 static inline int __splice_segment(struct page *page, unsigned int poff,
1383 unsigned int plen, unsigned int *off,
1384 unsigned int *len, struct sk_buff *skb,
1385 struct splice_pipe_desc *spd, int linear)
1386 {
1387 if (!*len)
1388 return 1;
1389
1390 /* skip this segment if already processed */
1391 if (*off >= plen) {
1392 *off -= plen;
1393 return 0;
1394 }
1395
1396 /* ignore any bits we already processed */
1397 if (*off) {
1398 __segment_seek(&page, &poff, &plen, *off);
1399 *off = 0;
1400 }
1401
1402 do {
1403 unsigned int flen = min(*len, plen);
1404
1405 /* the linear region may spread across several pages */
1406 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1407
1408 if (spd_fill_page(spd, page, flen, poff, skb, linear))
1409 return 1;
1410
1411 __segment_seek(&page, &poff, &plen, flen);
1412 *len -= flen;
1413
1414 } while (*len && plen);
1415
1416 return 0;
1417 }
1418
1419 /*
1420 * Map linear and fragment data from the skb to spd. It reports failure if the
1421 * pipe is full or if we already spliced the requested length.
1422 */
1423 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1424 unsigned int *len,
1425 struct splice_pipe_desc *spd)
1426 {
1427 int seg;
1428
1429 /*
1430 * map the linear part
1431 */
1432 if (__splice_segment(virt_to_page(skb->data),
1433 (unsigned long) skb->data & (PAGE_SIZE - 1),
1434 skb_headlen(skb),
1435 offset, len, skb, spd, 1))
1436 return 1;
1437
1438 /*
1439 * then map the fragments
1440 */
1441 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1442 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1443
1444 if (__splice_segment(f->page, f->page_offset, f->size,
1445 offset, len, skb, spd, 0))
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 /*
1453 * Map data from the skb to a pipe. Should handle both the linear part,
1454 * the fragments, and the frag list. It does NOT handle frag lists within
1455 * the frag list, if such a thing exists. We'd probably need to recurse to
1456 * handle that cleanly.
1457 */
1458 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1459 struct pipe_inode_info *pipe, unsigned int tlen,
1460 unsigned int flags)
1461 {
1462 struct partial_page partial[PIPE_BUFFERS];
1463 struct page *pages[PIPE_BUFFERS];
1464 struct splice_pipe_desc spd = {
1465 .pages = pages,
1466 .partial = partial,
1467 .flags = flags,
1468 .ops = &sock_pipe_buf_ops,
1469 .spd_release = sock_spd_release,
1470 };
1471
1472 /*
1473 * __skb_splice_bits() only fails if the output has no room left,
1474 * so no point in going over the frag_list for the error case.
1475 */
1476 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1477 goto done;
1478 else if (!tlen)
1479 goto done;
1480
1481 /*
1482 * now see if we have a frag_list to map
1483 */
1484 if (skb_shinfo(skb)->frag_list) {
1485 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1486
1487 for (; list && tlen; list = list->next) {
1488 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1489 break;
1490 }
1491 }
1492
1493 done:
1494 if (spd.nr_pages) {
1495 struct sock *sk = skb->sk;
1496 int ret;
1497
1498 /*
1499 * Drop the socket lock, otherwise we have reverse
1500 * locking dependencies between sk_lock and i_mutex
1501 * here as compared to sendfile(). We enter here
1502 * with the socket lock held, and splice_to_pipe() will
1503 * grab the pipe inode lock. For sendfile() emulation,
1504 * we call into ->sendpage() with the i_mutex lock held
1505 * and networking will grab the socket lock.
1506 */
1507 release_sock(sk);
1508 ret = splice_to_pipe(pipe, &spd);
1509 lock_sock(sk);
1510 return ret;
1511 }
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * skb_store_bits - store bits from kernel buffer to skb
1518 * @skb: destination buffer
1519 * @offset: offset in destination
1520 * @from: source buffer
1521 * @len: number of bytes to copy
1522 *
1523 * Copy the specified number of bytes from the source buffer to the
1524 * destination skb. This function handles all the messy bits of
1525 * traversing fragment lists and such.
1526 */
1527
1528 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1529 {
1530 int i, copy;
1531 int start = skb_headlen(skb);
1532
1533 if (offset > (int)skb->len - len)
1534 goto fault;
1535
1536 if ((copy = start - offset) > 0) {
1537 if (copy > len)
1538 copy = len;
1539 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1540 if ((len -= copy) == 0)
1541 return 0;
1542 offset += copy;
1543 from += copy;
1544 }
1545
1546 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1547 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1548 int end;
1549
1550 WARN_ON(start > offset + len);
1551
1552 end = start + frag->size;
1553 if ((copy = end - offset) > 0) {
1554 u8 *vaddr;
1555
1556 if (copy > len)
1557 copy = len;
1558
1559 vaddr = kmap_skb_frag(frag);
1560 memcpy(vaddr + frag->page_offset + offset - start,
1561 from, copy);
1562 kunmap_skb_frag(vaddr);
1563
1564 if ((len -= copy) == 0)
1565 return 0;
1566 offset += copy;
1567 from += copy;
1568 }
1569 start = end;
1570 }
1571
1572 if (skb_shinfo(skb)->frag_list) {
1573 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1574
1575 for (; list; list = list->next) {
1576 int end;
1577
1578 WARN_ON(start > offset + len);
1579
1580 end = start + list->len;
1581 if ((copy = end - offset) > 0) {
1582 if (copy > len)
1583 copy = len;
1584 if (skb_store_bits(list, offset - start,
1585 from, copy))
1586 goto fault;
1587 if ((len -= copy) == 0)
1588 return 0;
1589 offset += copy;
1590 from += copy;
1591 }
1592 start = end;
1593 }
1594 }
1595 if (!len)
1596 return 0;
1597
1598 fault:
1599 return -EFAULT;
1600 }
1601
1602 EXPORT_SYMBOL(skb_store_bits);
1603
1604 /* Checksum skb data. */
1605
1606 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1607 int len, __wsum csum)
1608 {
1609 int start = skb_headlen(skb);
1610 int i, copy = start - offset;
1611 int pos = 0;
1612
1613 /* Checksum header. */
1614 if (copy > 0) {
1615 if (copy > len)
1616 copy = len;
1617 csum = csum_partial(skb->data + offset, copy, csum);
1618 if ((len -= copy) == 0)
1619 return csum;
1620 offset += copy;
1621 pos = copy;
1622 }
1623
1624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1625 int end;
1626
1627 WARN_ON(start > offset + len);
1628
1629 end = start + skb_shinfo(skb)->frags[i].size;
1630 if ((copy = end - offset) > 0) {
1631 __wsum csum2;
1632 u8 *vaddr;
1633 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1634
1635 if (copy > len)
1636 copy = len;
1637 vaddr = kmap_skb_frag(frag);
1638 csum2 = csum_partial(vaddr + frag->page_offset +
1639 offset - start, copy, 0);
1640 kunmap_skb_frag(vaddr);
1641 csum = csum_block_add(csum, csum2, pos);
1642 if (!(len -= copy))
1643 return csum;
1644 offset += copy;
1645 pos += copy;
1646 }
1647 start = end;
1648 }
1649
1650 if (skb_shinfo(skb)->frag_list) {
1651 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1652
1653 for (; list; list = list->next) {
1654 int end;
1655
1656 WARN_ON(start > offset + len);
1657
1658 end = start + list->len;
1659 if ((copy = end - offset) > 0) {
1660 __wsum csum2;
1661 if (copy > len)
1662 copy = len;
1663 csum2 = skb_checksum(list, offset - start,
1664 copy, 0);
1665 csum = csum_block_add(csum, csum2, pos);
1666 if ((len -= copy) == 0)
1667 return csum;
1668 offset += copy;
1669 pos += copy;
1670 }
1671 start = end;
1672 }
1673 }
1674 BUG_ON(len);
1675
1676 return csum;
1677 }
1678
1679 /* Both of above in one bottle. */
1680
1681 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1682 u8 *to, int len, __wsum csum)
1683 {
1684 int start = skb_headlen(skb);
1685 int i, copy = start - offset;
1686 int pos = 0;
1687
1688 /* Copy header. */
1689 if (copy > 0) {
1690 if (copy > len)
1691 copy = len;
1692 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1693 copy, csum);
1694 if ((len -= copy) == 0)
1695 return csum;
1696 offset += copy;
1697 to += copy;
1698 pos = copy;
1699 }
1700
1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1702 int end;
1703
1704 WARN_ON(start > offset + len);
1705
1706 end = start + skb_shinfo(skb)->frags[i].size;
1707 if ((copy = end - offset) > 0) {
1708 __wsum csum2;
1709 u8 *vaddr;
1710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1711
1712 if (copy > len)
1713 copy = len;
1714 vaddr = kmap_skb_frag(frag);
1715 csum2 = csum_partial_copy_nocheck(vaddr +
1716 frag->page_offset +
1717 offset - start, to,
1718 copy, 0);
1719 kunmap_skb_frag(vaddr);
1720 csum = csum_block_add(csum, csum2, pos);
1721 if (!(len -= copy))
1722 return csum;
1723 offset += copy;
1724 to += copy;
1725 pos += copy;
1726 }
1727 start = end;
1728 }
1729
1730 if (skb_shinfo(skb)->frag_list) {
1731 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1732
1733 for (; list; list = list->next) {
1734 __wsum csum2;
1735 int end;
1736
1737 WARN_ON(start > offset + len);
1738
1739 end = start + list->len;
1740 if ((copy = end - offset) > 0) {
1741 if (copy > len)
1742 copy = len;
1743 csum2 = skb_copy_and_csum_bits(list,
1744 offset - start,
1745 to, copy, 0);
1746 csum = csum_block_add(csum, csum2, pos);
1747 if ((len -= copy) == 0)
1748 return csum;
1749 offset += copy;
1750 to += copy;
1751 pos += copy;
1752 }
1753 start = end;
1754 }
1755 }
1756 BUG_ON(len);
1757 return csum;
1758 }
1759
1760 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1761 {
1762 __wsum csum;
1763 long csstart;
1764
1765 if (skb->ip_summed == CHECKSUM_PARTIAL)
1766 csstart = skb->csum_start - skb_headroom(skb);
1767 else
1768 csstart = skb_headlen(skb);
1769
1770 BUG_ON(csstart > skb_headlen(skb));
1771
1772 skb_copy_from_linear_data(skb, to, csstart);
1773
1774 csum = 0;
1775 if (csstart != skb->len)
1776 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1777 skb->len - csstart, 0);
1778
1779 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1780 long csstuff = csstart + skb->csum_offset;
1781
1782 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1783 }
1784 }
1785
1786 /**
1787 * skb_dequeue - remove from the head of the queue
1788 * @list: list to dequeue from
1789 *
1790 * Remove the head of the list. The list lock is taken so the function
1791 * may be used safely with other locking list functions. The head item is
1792 * returned or %NULL if the list is empty.
1793 */
1794
1795 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1796 {
1797 unsigned long flags;
1798 struct sk_buff *result;
1799
1800 spin_lock_irqsave(&list->lock, flags);
1801 result = __skb_dequeue(list);
1802 spin_unlock_irqrestore(&list->lock, flags);
1803 return result;
1804 }
1805
1806 /**
1807 * skb_dequeue_tail - remove from the tail of the queue
1808 * @list: list to dequeue from
1809 *
1810 * Remove the tail of the list. The list lock is taken so the function
1811 * may be used safely with other locking list functions. The tail item is
1812 * returned or %NULL if the list is empty.
1813 */
1814 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1815 {
1816 unsigned long flags;
1817 struct sk_buff *result;
1818
1819 spin_lock_irqsave(&list->lock, flags);
1820 result = __skb_dequeue_tail(list);
1821 spin_unlock_irqrestore(&list->lock, flags);
1822 return result;
1823 }
1824
1825 /**
1826 * skb_queue_purge - empty a list
1827 * @list: list to empty
1828 *
1829 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1830 * the list and one reference dropped. This function takes the list
1831 * lock and is atomic with respect to other list locking functions.
1832 */
1833 void skb_queue_purge(struct sk_buff_head *list)
1834 {
1835 struct sk_buff *skb;
1836 while ((skb = skb_dequeue(list)) != NULL)
1837 kfree_skb(skb);
1838 }
1839
1840 /**
1841 * skb_queue_head - queue a buffer at the list head
1842 * @list: list to use
1843 * @newsk: buffer to queue
1844 *
1845 * Queue a buffer at the start of the list. This function takes the
1846 * list lock and can be used safely with other locking &sk_buff functions
1847 * safely.
1848 *
1849 * A buffer cannot be placed on two lists at the same time.
1850 */
1851 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1852 {
1853 unsigned long flags;
1854
1855 spin_lock_irqsave(&list->lock, flags);
1856 __skb_queue_head(list, newsk);
1857 spin_unlock_irqrestore(&list->lock, flags);
1858 }
1859
1860 /**
1861 * skb_queue_tail - queue a buffer at the list tail
1862 * @list: list to use
1863 * @newsk: buffer to queue
1864 *
1865 * Queue a buffer at the tail of the list. This function takes the
1866 * list lock and can be used safely with other locking &sk_buff functions
1867 * safely.
1868 *
1869 * A buffer cannot be placed on two lists at the same time.
1870 */
1871 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1872 {
1873 unsigned long flags;
1874
1875 spin_lock_irqsave(&list->lock, flags);
1876 __skb_queue_tail(list, newsk);
1877 spin_unlock_irqrestore(&list->lock, flags);
1878 }
1879
1880 /**
1881 * skb_unlink - remove a buffer from a list
1882 * @skb: buffer to remove
1883 * @list: list to use
1884 *
1885 * Remove a packet from a list. The list locks are taken and this
1886 * function is atomic with respect to other list locked calls
1887 *
1888 * You must know what list the SKB is on.
1889 */
1890 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1891 {
1892 unsigned long flags;
1893
1894 spin_lock_irqsave(&list->lock, flags);
1895 __skb_unlink(skb, list);
1896 spin_unlock_irqrestore(&list->lock, flags);
1897 }
1898
1899 /**
1900 * skb_append - append a buffer
1901 * @old: buffer to insert after
1902 * @newsk: buffer to insert
1903 * @list: list to use
1904 *
1905 * Place a packet after a given packet in a list. The list locks are taken
1906 * and this function is atomic with respect to other list locked calls.
1907 * A buffer cannot be placed on two lists at the same time.
1908 */
1909 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1910 {
1911 unsigned long flags;
1912
1913 spin_lock_irqsave(&list->lock, flags);
1914 __skb_queue_after(list, old, newsk);
1915 spin_unlock_irqrestore(&list->lock, flags);
1916 }
1917
1918
1919 /**
1920 * skb_insert - insert a buffer
1921 * @old: buffer to insert before
1922 * @newsk: buffer to insert
1923 * @list: list to use
1924 *
1925 * Place a packet before a given packet in a list. The list locks are
1926 * taken and this function is atomic with respect to other list locked
1927 * calls.
1928 *
1929 * A buffer cannot be placed on two lists at the same time.
1930 */
1931 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1932 {
1933 unsigned long flags;
1934
1935 spin_lock_irqsave(&list->lock, flags);
1936 __skb_insert(newsk, old->prev, old, list);
1937 spin_unlock_irqrestore(&list->lock, flags);
1938 }
1939
1940 static inline void skb_split_inside_header(struct sk_buff *skb,
1941 struct sk_buff* skb1,
1942 const u32 len, const int pos)
1943 {
1944 int i;
1945
1946 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1947 pos - len);
1948 /* And move data appendix as is. */
1949 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1950 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1951
1952 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1953 skb_shinfo(skb)->nr_frags = 0;
1954 skb1->data_len = skb->data_len;
1955 skb1->len += skb1->data_len;
1956 skb->data_len = 0;
1957 skb->len = len;
1958 skb_set_tail_pointer(skb, len);
1959 }
1960
1961 static inline void skb_split_no_header(struct sk_buff *skb,
1962 struct sk_buff* skb1,
1963 const u32 len, int pos)
1964 {
1965 int i, k = 0;
1966 const int nfrags = skb_shinfo(skb)->nr_frags;
1967
1968 skb_shinfo(skb)->nr_frags = 0;
1969 skb1->len = skb1->data_len = skb->len - len;
1970 skb->len = len;
1971 skb->data_len = len - pos;
1972
1973 for (i = 0; i < nfrags; i++) {
1974 int size = skb_shinfo(skb)->frags[i].size;
1975
1976 if (pos + size > len) {
1977 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1978
1979 if (pos < len) {
1980 /* Split frag.
1981 * We have two variants in this case:
1982 * 1. Move all the frag to the second
1983 * part, if it is possible. F.e.
1984 * this approach is mandatory for TUX,
1985 * where splitting is expensive.
1986 * 2. Split is accurately. We make this.
1987 */
1988 get_page(skb_shinfo(skb)->frags[i].page);
1989 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1990 skb_shinfo(skb1)->frags[0].size -= len - pos;
1991 skb_shinfo(skb)->frags[i].size = len - pos;
1992 skb_shinfo(skb)->nr_frags++;
1993 }
1994 k++;
1995 } else
1996 skb_shinfo(skb)->nr_frags++;
1997 pos += size;
1998 }
1999 skb_shinfo(skb1)->nr_frags = k;
2000 }
2001
2002 /**
2003 * skb_split - Split fragmented skb to two parts at length len.
2004 * @skb: the buffer to split
2005 * @skb1: the buffer to receive the second part
2006 * @len: new length for skb
2007 */
2008 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2009 {
2010 int pos = skb_headlen(skb);
2011
2012 if (len < pos) /* Split line is inside header. */
2013 skb_split_inside_header(skb, skb1, len, pos);
2014 else /* Second chunk has no header, nothing to copy. */
2015 skb_split_no_header(skb, skb1, len, pos);
2016 }
2017
2018 /* Shifting from/to a cloned skb is a no-go.
2019 *
2020 * Caller cannot keep skb_shinfo related pointers past calling here!
2021 */
2022 static int skb_prepare_for_shift(struct sk_buff *skb)
2023 {
2024 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2025 }
2026
2027 /**
2028 * skb_shift - Shifts paged data partially from skb to another
2029 * @tgt: buffer into which tail data gets added
2030 * @skb: buffer from which the paged data comes from
2031 * @shiftlen: shift up to this many bytes
2032 *
2033 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2034 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2035 * It's up to caller to free skb if everything was shifted.
2036 *
2037 * If @tgt runs out of frags, the whole operation is aborted.
2038 *
2039 * Skb cannot include anything else but paged data while tgt is allowed
2040 * to have non-paged data as well.
2041 *
2042 * TODO: full sized shift could be optimized but that would need
2043 * specialized skb free'er to handle frags without up-to-date nr_frags.
2044 */
2045 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2046 {
2047 int from, to, merge, todo;
2048 struct skb_frag_struct *fragfrom, *fragto;
2049
2050 BUG_ON(shiftlen > skb->len);
2051 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2052
2053 todo = shiftlen;
2054 from = 0;
2055 to = skb_shinfo(tgt)->nr_frags;
2056 fragfrom = &skb_shinfo(skb)->frags[from];
2057
2058 /* Actual merge is delayed until the point when we know we can
2059 * commit all, so that we don't have to undo partial changes
2060 */
2061 if (!to ||
2062 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2063 merge = -1;
2064 } else {
2065 merge = to - 1;
2066
2067 todo -= fragfrom->size;
2068 if (todo < 0) {
2069 if (skb_prepare_for_shift(skb) ||
2070 skb_prepare_for_shift(tgt))
2071 return 0;
2072
2073 /* All previous frag pointers might be stale! */
2074 fragfrom = &skb_shinfo(skb)->frags[from];
2075 fragto = &skb_shinfo(tgt)->frags[merge];
2076
2077 fragto->size += shiftlen;
2078 fragfrom->size -= shiftlen;
2079 fragfrom->page_offset += shiftlen;
2080
2081 goto onlymerged;
2082 }
2083
2084 from++;
2085 }
2086
2087 /* Skip full, not-fitting skb to avoid expensive operations */
2088 if ((shiftlen == skb->len) &&
2089 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2090 return 0;
2091
2092 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2093 return 0;
2094
2095 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2096 if (to == MAX_SKB_FRAGS)
2097 return 0;
2098
2099 fragfrom = &skb_shinfo(skb)->frags[from];
2100 fragto = &skb_shinfo(tgt)->frags[to];
2101
2102 if (todo >= fragfrom->size) {
2103 *fragto = *fragfrom;
2104 todo -= fragfrom->size;
2105 from++;
2106 to++;
2107
2108 } else {
2109 get_page(fragfrom->page);
2110 fragto->page = fragfrom->page;
2111 fragto->page_offset = fragfrom->page_offset;
2112 fragto->size = todo;
2113
2114 fragfrom->page_offset += todo;
2115 fragfrom->size -= todo;
2116 todo = 0;
2117
2118 to++;
2119 break;
2120 }
2121 }
2122
2123 /* Ready to "commit" this state change to tgt */
2124 skb_shinfo(tgt)->nr_frags = to;
2125
2126 if (merge >= 0) {
2127 fragfrom = &skb_shinfo(skb)->frags[0];
2128 fragto = &skb_shinfo(tgt)->frags[merge];
2129
2130 fragto->size += fragfrom->size;
2131 put_page(fragfrom->page);
2132 }
2133
2134 /* Reposition in the original skb */
2135 to = 0;
2136 while (from < skb_shinfo(skb)->nr_frags)
2137 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2138 skb_shinfo(skb)->nr_frags = to;
2139
2140 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2141
2142 onlymerged:
2143 /* Most likely the tgt won't ever need its checksum anymore, skb on
2144 * the other hand might need it if it needs to be resent
2145 */
2146 tgt->ip_summed = CHECKSUM_PARTIAL;
2147 skb->ip_summed = CHECKSUM_PARTIAL;
2148
2149 /* Yak, is it really working this way? Some helper please? */
2150 skb->len -= shiftlen;
2151 skb->data_len -= shiftlen;
2152 skb->truesize -= shiftlen;
2153 tgt->len += shiftlen;
2154 tgt->data_len += shiftlen;
2155 tgt->truesize += shiftlen;
2156
2157 return shiftlen;
2158 }
2159
2160 /**
2161 * skb_prepare_seq_read - Prepare a sequential read of skb data
2162 * @skb: the buffer to read
2163 * @from: lower offset of data to be read
2164 * @to: upper offset of data to be read
2165 * @st: state variable
2166 *
2167 * Initializes the specified state variable. Must be called before
2168 * invoking skb_seq_read() for the first time.
2169 */
2170 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2171 unsigned int to, struct skb_seq_state *st)
2172 {
2173 st->lower_offset = from;
2174 st->upper_offset = to;
2175 st->root_skb = st->cur_skb = skb;
2176 st->frag_idx = st->stepped_offset = 0;
2177 st->frag_data = NULL;
2178 }
2179
2180 /**
2181 * skb_seq_read - Sequentially read skb data
2182 * @consumed: number of bytes consumed by the caller so far
2183 * @data: destination pointer for data to be returned
2184 * @st: state variable
2185 *
2186 * Reads a block of skb data at &consumed relative to the
2187 * lower offset specified to skb_prepare_seq_read(). Assigns
2188 * the head of the data block to &data and returns the length
2189 * of the block or 0 if the end of the skb data or the upper
2190 * offset has been reached.
2191 *
2192 * The caller is not required to consume all of the data
2193 * returned, i.e. &consumed is typically set to the number
2194 * of bytes already consumed and the next call to
2195 * skb_seq_read() will return the remaining part of the block.
2196 *
2197 * Note 1: The size of each block of data returned can be arbitary,
2198 * this limitation is the cost for zerocopy seqeuental
2199 * reads of potentially non linear data.
2200 *
2201 * Note 2: Fragment lists within fragments are not implemented
2202 * at the moment, state->root_skb could be replaced with
2203 * a stack for this purpose.
2204 */
2205 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2206 struct skb_seq_state *st)
2207 {
2208 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2209 skb_frag_t *frag;
2210
2211 if (unlikely(abs_offset >= st->upper_offset))
2212 return 0;
2213
2214 next_skb:
2215 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2216
2217 if (abs_offset < block_limit) {
2218 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2219 return block_limit - abs_offset;
2220 }
2221
2222 if (st->frag_idx == 0 && !st->frag_data)
2223 st->stepped_offset += skb_headlen(st->cur_skb);
2224
2225 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2226 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2227 block_limit = frag->size + st->stepped_offset;
2228
2229 if (abs_offset < block_limit) {
2230 if (!st->frag_data)
2231 st->frag_data = kmap_skb_frag(frag);
2232
2233 *data = (u8 *) st->frag_data + frag->page_offset +
2234 (abs_offset - st->stepped_offset);
2235
2236 return block_limit - abs_offset;
2237 }
2238
2239 if (st->frag_data) {
2240 kunmap_skb_frag(st->frag_data);
2241 st->frag_data = NULL;
2242 }
2243
2244 st->frag_idx++;
2245 st->stepped_offset += frag->size;
2246 }
2247
2248 if (st->frag_data) {
2249 kunmap_skb_frag(st->frag_data);
2250 st->frag_data = NULL;
2251 }
2252
2253 if (st->root_skb == st->cur_skb &&
2254 skb_shinfo(st->root_skb)->frag_list) {
2255 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2256 st->frag_idx = 0;
2257 goto next_skb;
2258 } else if (st->cur_skb->next) {
2259 st->cur_skb = st->cur_skb->next;
2260 st->frag_idx = 0;
2261 goto next_skb;
2262 }
2263
2264 return 0;
2265 }
2266
2267 /**
2268 * skb_abort_seq_read - Abort a sequential read of skb data
2269 * @st: state variable
2270 *
2271 * Must be called if skb_seq_read() was not called until it
2272 * returned 0.
2273 */
2274 void skb_abort_seq_read(struct skb_seq_state *st)
2275 {
2276 if (st->frag_data)
2277 kunmap_skb_frag(st->frag_data);
2278 }
2279
2280 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2281
2282 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2283 struct ts_config *conf,
2284 struct ts_state *state)
2285 {
2286 return skb_seq_read(offset, text, TS_SKB_CB(state));
2287 }
2288
2289 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2290 {
2291 skb_abort_seq_read(TS_SKB_CB(state));
2292 }
2293
2294 /**
2295 * skb_find_text - Find a text pattern in skb data
2296 * @skb: the buffer to look in
2297 * @from: search offset
2298 * @to: search limit
2299 * @config: textsearch configuration
2300 * @state: uninitialized textsearch state variable
2301 *
2302 * Finds a pattern in the skb data according to the specified
2303 * textsearch configuration. Use textsearch_next() to retrieve
2304 * subsequent occurrences of the pattern. Returns the offset
2305 * to the first occurrence or UINT_MAX if no match was found.
2306 */
2307 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2308 unsigned int to, struct ts_config *config,
2309 struct ts_state *state)
2310 {
2311 unsigned int ret;
2312
2313 config->get_next_block = skb_ts_get_next_block;
2314 config->finish = skb_ts_finish;
2315
2316 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2317
2318 ret = textsearch_find(config, state);
2319 return (ret <= to - from ? ret : UINT_MAX);
2320 }
2321
2322 /**
2323 * skb_append_datato_frags: - append the user data to a skb
2324 * @sk: sock structure
2325 * @skb: skb structure to be appened with user data.
2326 * @getfrag: call back function to be used for getting the user data
2327 * @from: pointer to user message iov
2328 * @length: length of the iov message
2329 *
2330 * Description: This procedure append the user data in the fragment part
2331 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2332 */
2333 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2334 int (*getfrag)(void *from, char *to, int offset,
2335 int len, int odd, struct sk_buff *skb),
2336 void *from, int length)
2337 {
2338 int frg_cnt = 0;
2339 skb_frag_t *frag = NULL;
2340 struct page *page = NULL;
2341 int copy, left;
2342 int offset = 0;
2343 int ret;
2344
2345 do {
2346 /* Return error if we don't have space for new frag */
2347 frg_cnt = skb_shinfo(skb)->nr_frags;
2348 if (frg_cnt >= MAX_SKB_FRAGS)
2349 return -EFAULT;
2350
2351 /* allocate a new page for next frag */
2352 page = alloc_pages(sk->sk_allocation, 0);
2353
2354 /* If alloc_page fails just return failure and caller will
2355 * free previous allocated pages by doing kfree_skb()
2356 */
2357 if (page == NULL)
2358 return -ENOMEM;
2359
2360 /* initialize the next frag */
2361 sk->sk_sndmsg_page = page;
2362 sk->sk_sndmsg_off = 0;
2363 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2364 skb->truesize += PAGE_SIZE;
2365 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2366
2367 /* get the new initialized frag */
2368 frg_cnt = skb_shinfo(skb)->nr_frags;
2369 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2370
2371 /* copy the user data to page */
2372 left = PAGE_SIZE - frag->page_offset;
2373 copy = (length > left)? left : length;
2374
2375 ret = getfrag(from, (page_address(frag->page) +
2376 frag->page_offset + frag->size),
2377 offset, copy, 0, skb);
2378 if (ret < 0)
2379 return -EFAULT;
2380
2381 /* copy was successful so update the size parameters */
2382 sk->sk_sndmsg_off += copy;
2383 frag->size += copy;
2384 skb->len += copy;
2385 skb->data_len += copy;
2386 offset += copy;
2387 length -= copy;
2388
2389 } while (length > 0);
2390
2391 return 0;
2392 }
2393
2394 /**
2395 * skb_pull_rcsum - pull skb and update receive checksum
2396 * @skb: buffer to update
2397 * @len: length of data pulled
2398 *
2399 * This function performs an skb_pull on the packet and updates
2400 * the CHECKSUM_COMPLETE checksum. It should be used on
2401 * receive path processing instead of skb_pull unless you know
2402 * that the checksum difference is zero (e.g., a valid IP header)
2403 * or you are setting ip_summed to CHECKSUM_NONE.
2404 */
2405 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2406 {
2407 BUG_ON(len > skb->len);
2408 skb->len -= len;
2409 BUG_ON(skb->len < skb->data_len);
2410 skb_postpull_rcsum(skb, skb->data, len);
2411 return skb->data += len;
2412 }
2413
2414 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2415
2416 /**
2417 * skb_segment - Perform protocol segmentation on skb.
2418 * @skb: buffer to segment
2419 * @features: features for the output path (see dev->features)
2420 *
2421 * This function performs segmentation on the given skb. It returns
2422 * a pointer to the first in a list of new skbs for the segments.
2423 * In case of error it returns ERR_PTR(err).
2424 */
2425 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2426 {
2427 struct sk_buff *segs = NULL;
2428 struct sk_buff *tail = NULL;
2429 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2430 unsigned int mss = skb_shinfo(skb)->gso_size;
2431 unsigned int doffset = skb->data - skb_mac_header(skb);
2432 unsigned int offset = doffset;
2433 unsigned int headroom;
2434 unsigned int len;
2435 int sg = features & NETIF_F_SG;
2436 int nfrags = skb_shinfo(skb)->nr_frags;
2437 int err = -ENOMEM;
2438 int i = 0;
2439 int pos;
2440
2441 __skb_push(skb, doffset);
2442 headroom = skb_headroom(skb);
2443 pos = skb_headlen(skb);
2444
2445 do {
2446 struct sk_buff *nskb;
2447 skb_frag_t *frag;
2448 int hsize;
2449 int size;
2450
2451 len = skb->len - offset;
2452 if (len > mss)
2453 len = mss;
2454
2455 hsize = skb_headlen(skb) - offset;
2456 if (hsize < 0)
2457 hsize = 0;
2458 if (hsize > len || !sg)
2459 hsize = len;
2460
2461 if (!hsize && i >= nfrags) {
2462 BUG_ON(fskb->len != len);
2463
2464 pos += len;
2465 nskb = skb_clone(fskb, GFP_ATOMIC);
2466 fskb = fskb->next;
2467
2468 if (unlikely(!nskb))
2469 goto err;
2470
2471 hsize = skb_end_pointer(nskb) - nskb->head;
2472 if (skb_cow_head(nskb, doffset + headroom)) {
2473 kfree_skb(nskb);
2474 goto err;
2475 }
2476
2477 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2478 hsize;
2479 skb_release_head_state(nskb);
2480 __skb_push(nskb, doffset);
2481 } else {
2482 nskb = alloc_skb(hsize + doffset + headroom,
2483 GFP_ATOMIC);
2484
2485 if (unlikely(!nskb))
2486 goto err;
2487
2488 skb_reserve(nskb, headroom);
2489 __skb_put(nskb, doffset);
2490 }
2491
2492 if (segs)
2493 tail->next = nskb;
2494 else
2495 segs = nskb;
2496 tail = nskb;
2497
2498 __copy_skb_header(nskb, skb);
2499 nskb->mac_len = skb->mac_len;
2500
2501 skb_reset_mac_header(nskb);
2502 skb_set_network_header(nskb, skb->mac_len);
2503 nskb->transport_header = (nskb->network_header +
2504 skb_network_header_len(skb));
2505 skb_copy_from_linear_data(skb, nskb->data, doffset);
2506
2507 if (pos >= offset + len)
2508 continue;
2509
2510 if (!sg) {
2511 nskb->ip_summed = CHECKSUM_NONE;
2512 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2513 skb_put(nskb, len),
2514 len, 0);
2515 continue;
2516 }
2517
2518 frag = skb_shinfo(nskb)->frags;
2519
2520 skb_copy_from_linear_data_offset(skb, offset,
2521 skb_put(nskb, hsize), hsize);
2522
2523 while (pos < offset + len && i < nfrags) {
2524 *frag = skb_shinfo(skb)->frags[i];
2525 get_page(frag->page);
2526 size = frag->size;
2527
2528 if (pos < offset) {
2529 frag->page_offset += offset - pos;
2530 frag->size -= offset - pos;
2531 }
2532
2533 skb_shinfo(nskb)->nr_frags++;
2534
2535 if (pos + size <= offset + len) {
2536 i++;
2537 pos += size;
2538 } else {
2539 frag->size -= pos + size - (offset + len);
2540 goto skip_fraglist;
2541 }
2542
2543 frag++;
2544 }
2545
2546 if (pos < offset + len) {
2547 struct sk_buff *fskb2 = fskb;
2548
2549 BUG_ON(pos + fskb->len != offset + len);
2550
2551 pos += fskb->len;
2552 fskb = fskb->next;
2553
2554 if (fskb2->next) {
2555 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2556 if (!fskb2)
2557 goto err;
2558 } else
2559 skb_get(fskb2);
2560
2561 BUG_ON(skb_shinfo(nskb)->frag_list);
2562 skb_shinfo(nskb)->frag_list = fskb2;
2563 }
2564
2565 skip_fraglist:
2566 nskb->data_len = len - hsize;
2567 nskb->len += nskb->data_len;
2568 nskb->truesize += nskb->data_len;
2569 } while ((offset += len) < skb->len);
2570
2571 return segs;
2572
2573 err:
2574 while ((skb = segs)) {
2575 segs = skb->next;
2576 kfree_skb(skb);
2577 }
2578 return ERR_PTR(err);
2579 }
2580
2581 EXPORT_SYMBOL_GPL(skb_segment);
2582
2583 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2584 {
2585 struct sk_buff *p = *head;
2586 struct sk_buff *nskb;
2587 unsigned int headroom;
2588 unsigned int hlen = p->data - skb_mac_header(p);
2589 unsigned int len = skb->len;
2590
2591 if (hlen + p->len + len >= 65536)
2592 return -E2BIG;
2593
2594 if (skb_shinfo(p)->frag_list)
2595 goto merge;
2596 else if (!skb_headlen(p) && !skb_headlen(skb) &&
2597 skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags <
2598 MAX_SKB_FRAGS) {
2599 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2600 skb_shinfo(skb)->frags,
2601 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2602
2603 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2604 skb_shinfo(skb)->nr_frags = 0;
2605
2606 skb->truesize -= skb->data_len;
2607 skb->len -= skb->data_len;
2608 skb->data_len = 0;
2609
2610 NAPI_GRO_CB(skb)->free = 1;
2611 goto done;
2612 }
2613
2614 headroom = skb_headroom(p);
2615 nskb = netdev_alloc_skb(p->dev, headroom);
2616 if (unlikely(!nskb))
2617 return -ENOMEM;
2618
2619 __copy_skb_header(nskb, p);
2620 nskb->mac_len = p->mac_len;
2621
2622 skb_reserve(nskb, headroom);
2623
2624 skb_set_mac_header(nskb, -hlen);
2625 skb_set_network_header(nskb, skb_network_offset(p));
2626 skb_set_transport_header(nskb, skb_transport_offset(p));
2627
2628 memcpy(skb_mac_header(nskb), skb_mac_header(p), hlen);
2629
2630 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2631 skb_shinfo(nskb)->frag_list = p;
2632 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2633 skb_header_release(p);
2634 nskb->prev = p;
2635
2636 nskb->data_len += p->len;
2637 nskb->truesize += p->len;
2638 nskb->len += p->len;
2639
2640 *head = nskb;
2641 nskb->next = p->next;
2642 p->next = NULL;
2643
2644 p = nskb;
2645
2646 merge:
2647 p->prev->next = skb;
2648 p->prev = skb;
2649 skb_header_release(skb);
2650
2651 done:
2652 NAPI_GRO_CB(p)->count++;
2653 p->data_len += len;
2654 p->truesize += len;
2655 p->len += len;
2656
2657 NAPI_GRO_CB(skb)->same_flow = 1;
2658 return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(skb_gro_receive);
2661
2662 void __init skb_init(void)
2663 {
2664 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2665 sizeof(struct sk_buff),
2666 0,
2667 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2668 NULL);
2669 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2670 (2*sizeof(struct sk_buff)) +
2671 sizeof(atomic_t),
2672 0,
2673 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2674 NULL);
2675 }
2676
2677 /**
2678 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2679 * @skb: Socket buffer containing the buffers to be mapped
2680 * @sg: The scatter-gather list to map into
2681 * @offset: The offset into the buffer's contents to start mapping
2682 * @len: Length of buffer space to be mapped
2683 *
2684 * Fill the specified scatter-gather list with mappings/pointers into a
2685 * region of the buffer space attached to a socket buffer.
2686 */
2687 static int
2688 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2689 {
2690 int start = skb_headlen(skb);
2691 int i, copy = start - offset;
2692 int elt = 0;
2693
2694 if (copy > 0) {
2695 if (copy > len)
2696 copy = len;
2697 sg_set_buf(sg, skb->data + offset, copy);
2698 elt++;
2699 if ((len -= copy) == 0)
2700 return elt;
2701 offset += copy;
2702 }
2703
2704 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2705 int end;
2706
2707 WARN_ON(start > offset + len);
2708
2709 end = start + skb_shinfo(skb)->frags[i].size;
2710 if ((copy = end - offset) > 0) {
2711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2712
2713 if (copy > len)
2714 copy = len;
2715 sg_set_page(&sg[elt], frag->page, copy,
2716 frag->page_offset+offset-start);
2717 elt++;
2718 if (!(len -= copy))
2719 return elt;
2720 offset += copy;
2721 }
2722 start = end;
2723 }
2724
2725 if (skb_shinfo(skb)->frag_list) {
2726 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2727
2728 for (; list; list = list->next) {
2729 int end;
2730
2731 WARN_ON(start > offset + len);
2732
2733 end = start + list->len;
2734 if ((copy = end - offset) > 0) {
2735 if (copy > len)
2736 copy = len;
2737 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2738 copy);
2739 if ((len -= copy) == 0)
2740 return elt;
2741 offset += copy;
2742 }
2743 start = end;
2744 }
2745 }
2746 BUG_ON(len);
2747 return elt;
2748 }
2749
2750 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2751 {
2752 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2753
2754 sg_mark_end(&sg[nsg - 1]);
2755
2756 return nsg;
2757 }
2758
2759 /**
2760 * skb_cow_data - Check that a socket buffer's data buffers are writable
2761 * @skb: The socket buffer to check.
2762 * @tailbits: Amount of trailing space to be added
2763 * @trailer: Returned pointer to the skb where the @tailbits space begins
2764 *
2765 * Make sure that the data buffers attached to a socket buffer are
2766 * writable. If they are not, private copies are made of the data buffers
2767 * and the socket buffer is set to use these instead.
2768 *
2769 * If @tailbits is given, make sure that there is space to write @tailbits
2770 * bytes of data beyond current end of socket buffer. @trailer will be
2771 * set to point to the skb in which this space begins.
2772 *
2773 * The number of scatterlist elements required to completely map the
2774 * COW'd and extended socket buffer will be returned.
2775 */
2776 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2777 {
2778 int copyflag;
2779 int elt;
2780 struct sk_buff *skb1, **skb_p;
2781
2782 /* If skb is cloned or its head is paged, reallocate
2783 * head pulling out all the pages (pages are considered not writable
2784 * at the moment even if they are anonymous).
2785 */
2786 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2787 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2788 return -ENOMEM;
2789
2790 /* Easy case. Most of packets will go this way. */
2791 if (!skb_shinfo(skb)->frag_list) {
2792 /* A little of trouble, not enough of space for trailer.
2793 * This should not happen, when stack is tuned to generate
2794 * good frames. OK, on miss we reallocate and reserve even more
2795 * space, 128 bytes is fair. */
2796
2797 if (skb_tailroom(skb) < tailbits &&
2798 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2799 return -ENOMEM;
2800
2801 /* Voila! */
2802 *trailer = skb;
2803 return 1;
2804 }
2805
2806 /* Misery. We are in troubles, going to mincer fragments... */
2807
2808 elt = 1;
2809 skb_p = &skb_shinfo(skb)->frag_list;
2810 copyflag = 0;
2811
2812 while ((skb1 = *skb_p) != NULL) {
2813 int ntail = 0;
2814
2815 /* The fragment is partially pulled by someone,
2816 * this can happen on input. Copy it and everything
2817 * after it. */
2818
2819 if (skb_shared(skb1))
2820 copyflag = 1;
2821
2822 /* If the skb is the last, worry about trailer. */
2823
2824 if (skb1->next == NULL && tailbits) {
2825 if (skb_shinfo(skb1)->nr_frags ||
2826 skb_shinfo(skb1)->frag_list ||
2827 skb_tailroom(skb1) < tailbits)
2828 ntail = tailbits + 128;
2829 }
2830
2831 if (copyflag ||
2832 skb_cloned(skb1) ||
2833 ntail ||
2834 skb_shinfo(skb1)->nr_frags ||
2835 skb_shinfo(skb1)->frag_list) {
2836 struct sk_buff *skb2;
2837
2838 /* Fuck, we are miserable poor guys... */
2839 if (ntail == 0)
2840 skb2 = skb_copy(skb1, GFP_ATOMIC);
2841 else
2842 skb2 = skb_copy_expand(skb1,
2843 skb_headroom(skb1),
2844 ntail,
2845 GFP_ATOMIC);
2846 if (unlikely(skb2 == NULL))
2847 return -ENOMEM;
2848
2849 if (skb1->sk)
2850 skb_set_owner_w(skb2, skb1->sk);
2851
2852 /* Looking around. Are we still alive?
2853 * OK, link new skb, drop old one */
2854
2855 skb2->next = skb1->next;
2856 *skb_p = skb2;
2857 kfree_skb(skb1);
2858 skb1 = skb2;
2859 }
2860 elt++;
2861 *trailer = skb1;
2862 skb_p = &skb1->next;
2863 }
2864
2865 return elt;
2866 }
2867
2868 /**
2869 * skb_partial_csum_set - set up and verify partial csum values for packet
2870 * @skb: the skb to set
2871 * @start: the number of bytes after skb->data to start checksumming.
2872 * @off: the offset from start to place the checksum.
2873 *
2874 * For untrusted partially-checksummed packets, we need to make sure the values
2875 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2876 *
2877 * This function checks and sets those values and skb->ip_summed: if this
2878 * returns false you should drop the packet.
2879 */
2880 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2881 {
2882 if (unlikely(start > skb->len - 2) ||
2883 unlikely((int)start + off > skb->len - 2)) {
2884 if (net_ratelimit())
2885 printk(KERN_WARNING
2886 "bad partial csum: csum=%u/%u len=%u\n",
2887 start, off, skb->len);
2888 return false;
2889 }
2890 skb->ip_summed = CHECKSUM_PARTIAL;
2891 skb->csum_start = skb_headroom(skb) + start;
2892 skb->csum_offset = off;
2893 return true;
2894 }
2895
2896 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2897 {
2898 if (net_ratelimit())
2899 pr_warning("%s: received packets cannot be forwarded"
2900 " while LRO is enabled\n", skb->dev->name);
2901 }
2902
2903 EXPORT_SYMBOL(___pskb_trim);
2904 EXPORT_SYMBOL(__kfree_skb);
2905 EXPORT_SYMBOL(kfree_skb);
2906 EXPORT_SYMBOL(__pskb_pull_tail);
2907 EXPORT_SYMBOL(__alloc_skb);
2908 EXPORT_SYMBOL(__netdev_alloc_skb);
2909 EXPORT_SYMBOL(pskb_copy);
2910 EXPORT_SYMBOL(pskb_expand_head);
2911 EXPORT_SYMBOL(skb_checksum);
2912 EXPORT_SYMBOL(skb_clone);
2913 EXPORT_SYMBOL(skb_copy);
2914 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2915 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2916 EXPORT_SYMBOL(skb_copy_bits);
2917 EXPORT_SYMBOL(skb_copy_expand);
2918 EXPORT_SYMBOL(skb_over_panic);
2919 EXPORT_SYMBOL(skb_pad);
2920 EXPORT_SYMBOL(skb_realloc_headroom);
2921 EXPORT_SYMBOL(skb_under_panic);
2922 EXPORT_SYMBOL(skb_dequeue);
2923 EXPORT_SYMBOL(skb_dequeue_tail);
2924 EXPORT_SYMBOL(skb_insert);
2925 EXPORT_SYMBOL(skb_queue_purge);
2926 EXPORT_SYMBOL(skb_queue_head);
2927 EXPORT_SYMBOL(skb_queue_tail);
2928 EXPORT_SYMBOL(skb_unlink);
2929 EXPORT_SYMBOL(skb_append);
2930 EXPORT_SYMBOL(skb_split);
2931 EXPORT_SYMBOL(skb_prepare_seq_read);
2932 EXPORT_SYMBOL(skb_seq_read);
2933 EXPORT_SYMBOL(skb_abort_seq_read);
2934 EXPORT_SYMBOL(skb_find_text);
2935 EXPORT_SYMBOL(skb_append_datato_frags);
2936 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2937
2938 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2939 EXPORT_SYMBOL_GPL(skb_cow_data);
2940 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
This page took 0.176084 seconds and 6 git commands to generate.