Merge branches 'acpi-soc', 'acpi-misc', 'acpi-pci' and 'device-properties'
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99 {
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105 }
106
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
117 /*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129 {
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152 }
153
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161 {
162 struct sk_buff *skb;
163
164 /* Get the HEAD */
165 skb = kmem_cache_alloc_node(skbuff_head_cache,
166 gfp_mask & ~__GFP_DMA, node);
167 if (!skb)
168 goto out;
169
170 /*
171 * Only clear those fields we need to clear, not those that we will
172 * actually initialise below. Hence, don't put any more fields after
173 * the tail pointer in struct sk_buff!
174 */
175 memset(skb, 0, offsetof(struct sk_buff, tail));
176 skb->head = NULL;
177 skb->truesize = sizeof(struct sk_buff);
178 atomic_set(&skb->users, 1);
179
180 skb->mac_header = (typeof(skb->mac_header))~0U;
181 out:
182 return skb;
183 }
184
185 /**
186 * __alloc_skb - allocate a network buffer
187 * @size: size to allocate
188 * @gfp_mask: allocation mask
189 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 * instead of head cache and allocate a cloned (child) skb.
191 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 * allocations in case the data is required for writeback
193 * @node: numa node to allocate memory on
194 *
195 * Allocate a new &sk_buff. The returned buffer has no headroom and a
196 * tail room of at least size bytes. The object has a reference count
197 * of one. The return is the buffer. On a failure the return is %NULL.
198 *
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 * %GFP_ATOMIC.
201 */
202 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 int flags, int node)
204 {
205 struct kmem_cache *cache;
206 struct skb_shared_info *shinfo;
207 struct sk_buff *skb;
208 u8 *data;
209 bool pfmemalloc;
210
211 cache = (flags & SKB_ALLOC_FCLONE)
212 ? skbuff_fclone_cache : skbuff_head_cache;
213
214 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 gfp_mask |= __GFP_MEMALLOC;
216
217 /* Get the HEAD */
218 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 if (!skb)
220 goto out;
221 prefetchw(skb);
222
223 /* We do our best to align skb_shared_info on a separate cache
224 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 * Both skb->head and skb_shared_info are cache line aligned.
227 */
228 size = SKB_DATA_ALIGN(size);
229 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 if (!data)
232 goto nodata;
233 /* kmalloc(size) might give us more room than requested.
234 * Put skb_shared_info exactly at the end of allocated zone,
235 * to allow max possible filling before reallocation.
236 */
237 size = SKB_WITH_OVERHEAD(ksize(data));
238 prefetchw(data + size);
239
240 /*
241 * Only clear those fields we need to clear, not those that we will
242 * actually initialise below. Hence, don't put any more fields after
243 * the tail pointer in struct sk_buff!
244 */
245 memset(skb, 0, offsetof(struct sk_buff, tail));
246 /* Account for allocated memory : skb + skb->head */
247 skb->truesize = SKB_TRUESIZE(size);
248 skb->pfmemalloc = pfmemalloc;
249 atomic_set(&skb->users, 1);
250 skb->head = data;
251 skb->data = data;
252 skb_reset_tail_pointer(skb);
253 skb->end = skb->tail + size;
254 skb->mac_header = (typeof(skb->mac_header))~0U;
255 skb->transport_header = (typeof(skb->transport_header))~0U;
256
257 /* make sure we initialize shinfo sequentially */
258 shinfo = skb_shinfo(skb);
259 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 atomic_set(&shinfo->dataref, 1);
261 kmemcheck_annotate_variable(shinfo->destructor_arg);
262
263 if (flags & SKB_ALLOC_FCLONE) {
264 struct sk_buff_fclones *fclones;
265
266 fclones = container_of(skb, struct sk_buff_fclones, skb1);
267
268 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 skb->fclone = SKB_FCLONE_ORIG;
270 atomic_set(&fclones->fclone_ref, 1);
271
272 fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 fclones->skb2.pfmemalloc = pfmemalloc;
274 }
275 out:
276 return skb;
277 nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283
284 /**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
308
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
312
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 atomic_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332 }
333
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 struct sk_buff *skb = __build_skb(data, frag_size);
342
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
347 }
348 return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351
352 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
353 static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
354
355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356 {
357 struct page_frag_cache *nc;
358 unsigned long flags;
359 void *data;
360
361 local_irq_save(flags);
362 nc = this_cpu_ptr(&netdev_alloc_cache);
363 data = __alloc_page_frag(nc, fragsz, gfp_mask);
364 local_irq_restore(flags);
365 return data;
366 }
367
368 /**
369 * netdev_alloc_frag - allocate a page fragment
370 * @fragsz: fragment size
371 *
372 * Allocates a frag from a page for receive buffer.
373 * Uses GFP_ATOMIC allocations.
374 */
375 void *netdev_alloc_frag(unsigned int fragsz)
376 {
377 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
378 }
379 EXPORT_SYMBOL(netdev_alloc_frag);
380
381 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
382 {
383 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
384
385 return __alloc_page_frag(nc, fragsz, gfp_mask);
386 }
387
388 void *napi_alloc_frag(unsigned int fragsz)
389 {
390 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
391 }
392 EXPORT_SYMBOL(napi_alloc_frag);
393
394 /**
395 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
396 * @dev: network device to receive on
397 * @len: length to allocate
398 * @gfp_mask: get_free_pages mask, passed to alloc_skb
399 *
400 * Allocate a new &sk_buff and assign it a usage count of one. The
401 * buffer has NET_SKB_PAD headroom built in. Users should allocate
402 * the headroom they think they need without accounting for the
403 * built in space. The built in space is used for optimisations.
404 *
405 * %NULL is returned if there is no free memory.
406 */
407 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
408 gfp_t gfp_mask)
409 {
410 struct page_frag_cache *nc;
411 unsigned long flags;
412 struct sk_buff *skb;
413 bool pfmemalloc;
414 void *data;
415
416 len += NET_SKB_PAD;
417
418 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
419 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
420 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
421 if (!skb)
422 goto skb_fail;
423 goto skb_success;
424 }
425
426 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427 len = SKB_DATA_ALIGN(len);
428
429 if (sk_memalloc_socks())
430 gfp_mask |= __GFP_MEMALLOC;
431
432 local_irq_save(flags);
433
434 nc = this_cpu_ptr(&netdev_alloc_cache);
435 data = __alloc_page_frag(nc, len, gfp_mask);
436 pfmemalloc = nc->pfmemalloc;
437
438 local_irq_restore(flags);
439
440 if (unlikely(!data))
441 return NULL;
442
443 skb = __build_skb(data, len);
444 if (unlikely(!skb)) {
445 skb_free_frag(data);
446 return NULL;
447 }
448
449 /* use OR instead of assignment to avoid clearing of bits in mask */
450 if (pfmemalloc)
451 skb->pfmemalloc = 1;
452 skb->head_frag = 1;
453
454 skb_success:
455 skb_reserve(skb, NET_SKB_PAD);
456 skb->dev = dev;
457
458 skb_fail:
459 return skb;
460 }
461 EXPORT_SYMBOL(__netdev_alloc_skb);
462
463 /**
464 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
465 * @napi: napi instance this buffer was allocated for
466 * @len: length to allocate
467 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
468 *
469 * Allocate a new sk_buff for use in NAPI receive. This buffer will
470 * attempt to allocate the head from a special reserved region used
471 * only for NAPI Rx allocation. By doing this we can save several
472 * CPU cycles by avoiding having to disable and re-enable IRQs.
473 *
474 * %NULL is returned if there is no free memory.
475 */
476 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
477 gfp_t gfp_mask)
478 {
479 struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
480 struct sk_buff *skb;
481 void *data;
482
483 len += NET_SKB_PAD + NET_IP_ALIGN;
484
485 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
486 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
487 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
488 if (!skb)
489 goto skb_fail;
490 goto skb_success;
491 }
492
493 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
494 len = SKB_DATA_ALIGN(len);
495
496 if (sk_memalloc_socks())
497 gfp_mask |= __GFP_MEMALLOC;
498
499 data = __alloc_page_frag(nc, len, gfp_mask);
500 if (unlikely(!data))
501 return NULL;
502
503 skb = __build_skb(data, len);
504 if (unlikely(!skb)) {
505 skb_free_frag(data);
506 return NULL;
507 }
508
509 /* use OR instead of assignment to avoid clearing of bits in mask */
510 if (nc->pfmemalloc)
511 skb->pfmemalloc = 1;
512 skb->head_frag = 1;
513
514 skb_success:
515 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
516 skb->dev = napi->dev;
517
518 skb_fail:
519 return skb;
520 }
521 EXPORT_SYMBOL(__napi_alloc_skb);
522
523 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
524 int size, unsigned int truesize)
525 {
526 skb_fill_page_desc(skb, i, page, off, size);
527 skb->len += size;
528 skb->data_len += size;
529 skb->truesize += truesize;
530 }
531 EXPORT_SYMBOL(skb_add_rx_frag);
532
533 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
534 unsigned int truesize)
535 {
536 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
537
538 skb_frag_size_add(frag, size);
539 skb->len += size;
540 skb->data_len += size;
541 skb->truesize += truesize;
542 }
543 EXPORT_SYMBOL(skb_coalesce_rx_frag);
544
545 static void skb_drop_list(struct sk_buff **listp)
546 {
547 kfree_skb_list(*listp);
548 *listp = NULL;
549 }
550
551 static inline void skb_drop_fraglist(struct sk_buff *skb)
552 {
553 skb_drop_list(&skb_shinfo(skb)->frag_list);
554 }
555
556 static void skb_clone_fraglist(struct sk_buff *skb)
557 {
558 struct sk_buff *list;
559
560 skb_walk_frags(skb, list)
561 skb_get(list);
562 }
563
564 static void skb_free_head(struct sk_buff *skb)
565 {
566 unsigned char *head = skb->head;
567
568 if (skb->head_frag)
569 skb_free_frag(head);
570 else
571 kfree(head);
572 }
573
574 static void skb_release_data(struct sk_buff *skb)
575 {
576 struct skb_shared_info *shinfo = skb_shinfo(skb);
577 int i;
578
579 if (skb->cloned &&
580 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
581 &shinfo->dataref))
582 return;
583
584 for (i = 0; i < shinfo->nr_frags; i++)
585 __skb_frag_unref(&shinfo->frags[i]);
586
587 /*
588 * If skb buf is from userspace, we need to notify the caller
589 * the lower device DMA has done;
590 */
591 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
592 struct ubuf_info *uarg;
593
594 uarg = shinfo->destructor_arg;
595 if (uarg->callback)
596 uarg->callback(uarg, true);
597 }
598
599 if (shinfo->frag_list)
600 kfree_skb_list(shinfo->frag_list);
601
602 skb_free_head(skb);
603 }
604
605 /*
606 * Free an skbuff by memory without cleaning the state.
607 */
608 static void kfree_skbmem(struct sk_buff *skb)
609 {
610 struct sk_buff_fclones *fclones;
611
612 switch (skb->fclone) {
613 case SKB_FCLONE_UNAVAILABLE:
614 kmem_cache_free(skbuff_head_cache, skb);
615 return;
616
617 case SKB_FCLONE_ORIG:
618 fclones = container_of(skb, struct sk_buff_fclones, skb1);
619
620 /* We usually free the clone (TX completion) before original skb
621 * This test would have no chance to be true for the clone,
622 * while here, branch prediction will be good.
623 */
624 if (atomic_read(&fclones->fclone_ref) == 1)
625 goto fastpath;
626 break;
627
628 default: /* SKB_FCLONE_CLONE */
629 fclones = container_of(skb, struct sk_buff_fclones, skb2);
630 break;
631 }
632 if (!atomic_dec_and_test(&fclones->fclone_ref))
633 return;
634 fastpath:
635 kmem_cache_free(skbuff_fclone_cache, fclones);
636 }
637
638 static void skb_release_head_state(struct sk_buff *skb)
639 {
640 skb_dst_drop(skb);
641 #ifdef CONFIG_XFRM
642 secpath_put(skb->sp);
643 #endif
644 if (skb->destructor) {
645 WARN_ON(in_irq());
646 skb->destructor(skb);
647 }
648 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
649 nf_conntrack_put(skb->nfct);
650 #endif
651 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
652 nf_bridge_put(skb->nf_bridge);
653 #endif
654 }
655
656 /* Free everything but the sk_buff shell. */
657 static void skb_release_all(struct sk_buff *skb)
658 {
659 skb_release_head_state(skb);
660 if (likely(skb->head))
661 skb_release_data(skb);
662 }
663
664 /**
665 * __kfree_skb - private function
666 * @skb: buffer
667 *
668 * Free an sk_buff. Release anything attached to the buffer.
669 * Clean the state. This is an internal helper function. Users should
670 * always call kfree_skb
671 */
672
673 void __kfree_skb(struct sk_buff *skb)
674 {
675 skb_release_all(skb);
676 kfree_skbmem(skb);
677 }
678 EXPORT_SYMBOL(__kfree_skb);
679
680 /**
681 * kfree_skb - free an sk_buff
682 * @skb: buffer to free
683 *
684 * Drop a reference to the buffer and free it if the usage count has
685 * hit zero.
686 */
687 void kfree_skb(struct sk_buff *skb)
688 {
689 if (unlikely(!skb))
690 return;
691 if (likely(atomic_read(&skb->users) == 1))
692 smp_rmb();
693 else if (likely(!atomic_dec_and_test(&skb->users)))
694 return;
695 trace_kfree_skb(skb, __builtin_return_address(0));
696 __kfree_skb(skb);
697 }
698 EXPORT_SYMBOL(kfree_skb);
699
700 void kfree_skb_list(struct sk_buff *segs)
701 {
702 while (segs) {
703 struct sk_buff *next = segs->next;
704
705 kfree_skb(segs);
706 segs = next;
707 }
708 }
709 EXPORT_SYMBOL(kfree_skb_list);
710
711 /**
712 * skb_tx_error - report an sk_buff xmit error
713 * @skb: buffer that triggered an error
714 *
715 * Report xmit error if a device callback is tracking this skb.
716 * skb must be freed afterwards.
717 */
718 void skb_tx_error(struct sk_buff *skb)
719 {
720 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
721 struct ubuf_info *uarg;
722
723 uarg = skb_shinfo(skb)->destructor_arg;
724 if (uarg->callback)
725 uarg->callback(uarg, false);
726 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
727 }
728 }
729 EXPORT_SYMBOL(skb_tx_error);
730
731 /**
732 * consume_skb - free an skbuff
733 * @skb: buffer to free
734 *
735 * Drop a ref to the buffer and free it if the usage count has hit zero
736 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
737 * is being dropped after a failure and notes that
738 */
739 void consume_skb(struct sk_buff *skb)
740 {
741 if (unlikely(!skb))
742 return;
743 if (likely(atomic_read(&skb->users) == 1))
744 smp_rmb();
745 else if (likely(!atomic_dec_and_test(&skb->users)))
746 return;
747 trace_consume_skb(skb);
748 __kfree_skb(skb);
749 }
750 EXPORT_SYMBOL(consume_skb);
751
752 /* Make sure a field is enclosed inside headers_start/headers_end section */
753 #define CHECK_SKB_FIELD(field) \
754 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
755 offsetof(struct sk_buff, headers_start)); \
756 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
757 offsetof(struct sk_buff, headers_end)); \
758
759 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
760 {
761 new->tstamp = old->tstamp;
762 /* We do not copy old->sk */
763 new->dev = old->dev;
764 memcpy(new->cb, old->cb, sizeof(old->cb));
765 skb_dst_copy(new, old);
766 #ifdef CONFIG_XFRM
767 new->sp = secpath_get(old->sp);
768 #endif
769 __nf_copy(new, old, false);
770
771 /* Note : this field could be in headers_start/headers_end section
772 * It is not yet because we do not want to have a 16 bit hole
773 */
774 new->queue_mapping = old->queue_mapping;
775
776 memcpy(&new->headers_start, &old->headers_start,
777 offsetof(struct sk_buff, headers_end) -
778 offsetof(struct sk_buff, headers_start));
779 CHECK_SKB_FIELD(protocol);
780 CHECK_SKB_FIELD(csum);
781 CHECK_SKB_FIELD(hash);
782 CHECK_SKB_FIELD(priority);
783 CHECK_SKB_FIELD(skb_iif);
784 CHECK_SKB_FIELD(vlan_proto);
785 CHECK_SKB_FIELD(vlan_tci);
786 CHECK_SKB_FIELD(transport_header);
787 CHECK_SKB_FIELD(network_header);
788 CHECK_SKB_FIELD(mac_header);
789 CHECK_SKB_FIELD(inner_protocol);
790 CHECK_SKB_FIELD(inner_transport_header);
791 CHECK_SKB_FIELD(inner_network_header);
792 CHECK_SKB_FIELD(inner_mac_header);
793 CHECK_SKB_FIELD(mark);
794 #ifdef CONFIG_NETWORK_SECMARK
795 CHECK_SKB_FIELD(secmark);
796 #endif
797 #ifdef CONFIG_NET_RX_BUSY_POLL
798 CHECK_SKB_FIELD(napi_id);
799 #endif
800 #ifdef CONFIG_XPS
801 CHECK_SKB_FIELD(sender_cpu);
802 #endif
803 #ifdef CONFIG_NET_SCHED
804 CHECK_SKB_FIELD(tc_index);
805 #ifdef CONFIG_NET_CLS_ACT
806 CHECK_SKB_FIELD(tc_verd);
807 #endif
808 #endif
809
810 }
811
812 /*
813 * You should not add any new code to this function. Add it to
814 * __copy_skb_header above instead.
815 */
816 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
817 {
818 #define C(x) n->x = skb->x
819
820 n->next = n->prev = NULL;
821 n->sk = NULL;
822 __copy_skb_header(n, skb);
823
824 C(len);
825 C(data_len);
826 C(mac_len);
827 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
828 n->cloned = 1;
829 n->nohdr = 0;
830 n->destructor = NULL;
831 C(tail);
832 C(end);
833 C(head);
834 C(head_frag);
835 C(data);
836 C(truesize);
837 atomic_set(&n->users, 1);
838
839 atomic_inc(&(skb_shinfo(skb)->dataref));
840 skb->cloned = 1;
841
842 return n;
843 #undef C
844 }
845
846 /**
847 * skb_morph - morph one skb into another
848 * @dst: the skb to receive the contents
849 * @src: the skb to supply the contents
850 *
851 * This is identical to skb_clone except that the target skb is
852 * supplied by the user.
853 *
854 * The target skb is returned upon exit.
855 */
856 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
857 {
858 skb_release_all(dst);
859 return __skb_clone(dst, src);
860 }
861 EXPORT_SYMBOL_GPL(skb_morph);
862
863 /**
864 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
865 * @skb: the skb to modify
866 * @gfp_mask: allocation priority
867 *
868 * This must be called on SKBTX_DEV_ZEROCOPY skb.
869 * It will copy all frags into kernel and drop the reference
870 * to userspace pages.
871 *
872 * If this function is called from an interrupt gfp_mask() must be
873 * %GFP_ATOMIC.
874 *
875 * Returns 0 on success or a negative error code on failure
876 * to allocate kernel memory to copy to.
877 */
878 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
879 {
880 int i;
881 int num_frags = skb_shinfo(skb)->nr_frags;
882 struct page *page, *head = NULL;
883 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
884
885 for (i = 0; i < num_frags; i++) {
886 u8 *vaddr;
887 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
888
889 page = alloc_page(gfp_mask);
890 if (!page) {
891 while (head) {
892 struct page *next = (struct page *)page_private(head);
893 put_page(head);
894 head = next;
895 }
896 return -ENOMEM;
897 }
898 vaddr = kmap_atomic(skb_frag_page(f));
899 memcpy(page_address(page),
900 vaddr + f->page_offset, skb_frag_size(f));
901 kunmap_atomic(vaddr);
902 set_page_private(page, (unsigned long)head);
903 head = page;
904 }
905
906 /* skb frags release userspace buffers */
907 for (i = 0; i < num_frags; i++)
908 skb_frag_unref(skb, i);
909
910 uarg->callback(uarg, false);
911
912 /* skb frags point to kernel buffers */
913 for (i = num_frags - 1; i >= 0; i--) {
914 __skb_fill_page_desc(skb, i, head, 0,
915 skb_shinfo(skb)->frags[i].size);
916 head = (struct page *)page_private(head);
917 }
918
919 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
923
924 /**
925 * skb_clone - duplicate an sk_buff
926 * @skb: buffer to clone
927 * @gfp_mask: allocation priority
928 *
929 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
930 * copies share the same packet data but not structure. The new
931 * buffer has a reference count of 1. If the allocation fails the
932 * function returns %NULL otherwise the new buffer is returned.
933 *
934 * If this function is called from an interrupt gfp_mask() must be
935 * %GFP_ATOMIC.
936 */
937
938 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
939 {
940 struct sk_buff_fclones *fclones = container_of(skb,
941 struct sk_buff_fclones,
942 skb1);
943 struct sk_buff *n;
944
945 if (skb_orphan_frags(skb, gfp_mask))
946 return NULL;
947
948 if (skb->fclone == SKB_FCLONE_ORIG &&
949 atomic_read(&fclones->fclone_ref) == 1) {
950 n = &fclones->skb2;
951 atomic_set(&fclones->fclone_ref, 2);
952 } else {
953 if (skb_pfmemalloc(skb))
954 gfp_mask |= __GFP_MEMALLOC;
955
956 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
957 if (!n)
958 return NULL;
959
960 kmemcheck_annotate_bitfield(n, flags1);
961 n->fclone = SKB_FCLONE_UNAVAILABLE;
962 }
963
964 return __skb_clone(n, skb);
965 }
966 EXPORT_SYMBOL(skb_clone);
967
968 static void skb_headers_offset_update(struct sk_buff *skb, int off)
969 {
970 /* Only adjust this if it actually is csum_start rather than csum */
971 if (skb->ip_summed == CHECKSUM_PARTIAL)
972 skb->csum_start += off;
973 /* {transport,network,mac}_header and tail are relative to skb->head */
974 skb->transport_header += off;
975 skb->network_header += off;
976 if (skb_mac_header_was_set(skb))
977 skb->mac_header += off;
978 skb->inner_transport_header += off;
979 skb->inner_network_header += off;
980 skb->inner_mac_header += off;
981 }
982
983 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
984 {
985 __copy_skb_header(new, old);
986
987 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
988 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
989 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
990 }
991
992 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
993 {
994 if (skb_pfmemalloc(skb))
995 return SKB_ALLOC_RX;
996 return 0;
997 }
998
999 /**
1000 * skb_copy - create private copy of an sk_buff
1001 * @skb: buffer to copy
1002 * @gfp_mask: allocation priority
1003 *
1004 * Make a copy of both an &sk_buff and its data. This is used when the
1005 * caller wishes to modify the data and needs a private copy of the
1006 * data to alter. Returns %NULL on failure or the pointer to the buffer
1007 * on success. The returned buffer has a reference count of 1.
1008 *
1009 * As by-product this function converts non-linear &sk_buff to linear
1010 * one, so that &sk_buff becomes completely private and caller is allowed
1011 * to modify all the data of returned buffer. This means that this
1012 * function is not recommended for use in circumstances when only
1013 * header is going to be modified. Use pskb_copy() instead.
1014 */
1015
1016 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1017 {
1018 int headerlen = skb_headroom(skb);
1019 unsigned int size = skb_end_offset(skb) + skb->data_len;
1020 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1021 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1022
1023 if (!n)
1024 return NULL;
1025
1026 /* Set the data pointer */
1027 skb_reserve(n, headerlen);
1028 /* Set the tail pointer and length */
1029 skb_put(n, skb->len);
1030
1031 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1032 BUG();
1033
1034 copy_skb_header(n, skb);
1035 return n;
1036 }
1037 EXPORT_SYMBOL(skb_copy);
1038
1039 /**
1040 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1041 * @skb: buffer to copy
1042 * @headroom: headroom of new skb
1043 * @gfp_mask: allocation priority
1044 * @fclone: if true allocate the copy of the skb from the fclone
1045 * cache instead of the head cache; it is recommended to set this
1046 * to true for the cases where the copy will likely be cloned
1047 *
1048 * Make a copy of both an &sk_buff and part of its data, located
1049 * in header. Fragmented data remain shared. This is used when
1050 * the caller wishes to modify only header of &sk_buff and needs
1051 * private copy of the header to alter. Returns %NULL on failure
1052 * or the pointer to the buffer on success.
1053 * The returned buffer has a reference count of 1.
1054 */
1055
1056 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1057 gfp_t gfp_mask, bool fclone)
1058 {
1059 unsigned int size = skb_headlen(skb) + headroom;
1060 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1061 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1062
1063 if (!n)
1064 goto out;
1065
1066 /* Set the data pointer */
1067 skb_reserve(n, headroom);
1068 /* Set the tail pointer and length */
1069 skb_put(n, skb_headlen(skb));
1070 /* Copy the bytes */
1071 skb_copy_from_linear_data(skb, n->data, n->len);
1072
1073 n->truesize += skb->data_len;
1074 n->data_len = skb->data_len;
1075 n->len = skb->len;
1076
1077 if (skb_shinfo(skb)->nr_frags) {
1078 int i;
1079
1080 if (skb_orphan_frags(skb, gfp_mask)) {
1081 kfree_skb(n);
1082 n = NULL;
1083 goto out;
1084 }
1085 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1086 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1087 skb_frag_ref(skb, i);
1088 }
1089 skb_shinfo(n)->nr_frags = i;
1090 }
1091
1092 if (skb_has_frag_list(skb)) {
1093 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1094 skb_clone_fraglist(n);
1095 }
1096
1097 copy_skb_header(n, skb);
1098 out:
1099 return n;
1100 }
1101 EXPORT_SYMBOL(__pskb_copy_fclone);
1102
1103 /**
1104 * pskb_expand_head - reallocate header of &sk_buff
1105 * @skb: buffer to reallocate
1106 * @nhead: room to add at head
1107 * @ntail: room to add at tail
1108 * @gfp_mask: allocation priority
1109 *
1110 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1111 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1112 * reference count of 1. Returns zero in the case of success or error,
1113 * if expansion failed. In the last case, &sk_buff is not changed.
1114 *
1115 * All the pointers pointing into skb header may change and must be
1116 * reloaded after call to this function.
1117 */
1118
1119 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1120 gfp_t gfp_mask)
1121 {
1122 int i;
1123 u8 *data;
1124 int size = nhead + skb_end_offset(skb) + ntail;
1125 long off;
1126
1127 BUG_ON(nhead < 0);
1128
1129 if (skb_shared(skb))
1130 BUG();
1131
1132 size = SKB_DATA_ALIGN(size);
1133
1134 if (skb_pfmemalloc(skb))
1135 gfp_mask |= __GFP_MEMALLOC;
1136 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1137 gfp_mask, NUMA_NO_NODE, NULL);
1138 if (!data)
1139 goto nodata;
1140 size = SKB_WITH_OVERHEAD(ksize(data));
1141
1142 /* Copy only real data... and, alas, header. This should be
1143 * optimized for the cases when header is void.
1144 */
1145 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1146
1147 memcpy((struct skb_shared_info *)(data + size),
1148 skb_shinfo(skb),
1149 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1150
1151 /*
1152 * if shinfo is shared we must drop the old head gracefully, but if it
1153 * is not we can just drop the old head and let the existing refcount
1154 * be since all we did is relocate the values
1155 */
1156 if (skb_cloned(skb)) {
1157 /* copy this zero copy skb frags */
1158 if (skb_orphan_frags(skb, gfp_mask))
1159 goto nofrags;
1160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1161 skb_frag_ref(skb, i);
1162
1163 if (skb_has_frag_list(skb))
1164 skb_clone_fraglist(skb);
1165
1166 skb_release_data(skb);
1167 } else {
1168 skb_free_head(skb);
1169 }
1170 off = (data + nhead) - skb->head;
1171
1172 skb->head = data;
1173 skb->head_frag = 0;
1174 skb->data += off;
1175 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1176 skb->end = size;
1177 off = nhead;
1178 #else
1179 skb->end = skb->head + size;
1180 #endif
1181 skb->tail += off;
1182 skb_headers_offset_update(skb, nhead);
1183 skb->cloned = 0;
1184 skb->hdr_len = 0;
1185 skb->nohdr = 0;
1186 atomic_set(&skb_shinfo(skb)->dataref, 1);
1187 return 0;
1188
1189 nofrags:
1190 kfree(data);
1191 nodata:
1192 return -ENOMEM;
1193 }
1194 EXPORT_SYMBOL(pskb_expand_head);
1195
1196 /* Make private copy of skb with writable head and some headroom */
1197
1198 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1199 {
1200 struct sk_buff *skb2;
1201 int delta = headroom - skb_headroom(skb);
1202
1203 if (delta <= 0)
1204 skb2 = pskb_copy(skb, GFP_ATOMIC);
1205 else {
1206 skb2 = skb_clone(skb, GFP_ATOMIC);
1207 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1208 GFP_ATOMIC)) {
1209 kfree_skb(skb2);
1210 skb2 = NULL;
1211 }
1212 }
1213 return skb2;
1214 }
1215 EXPORT_SYMBOL(skb_realloc_headroom);
1216
1217 /**
1218 * skb_copy_expand - copy and expand sk_buff
1219 * @skb: buffer to copy
1220 * @newheadroom: new free bytes at head
1221 * @newtailroom: new free bytes at tail
1222 * @gfp_mask: allocation priority
1223 *
1224 * Make a copy of both an &sk_buff and its data and while doing so
1225 * allocate additional space.
1226 *
1227 * This is used when the caller wishes to modify the data and needs a
1228 * private copy of the data to alter as well as more space for new fields.
1229 * Returns %NULL on failure or the pointer to the buffer
1230 * on success. The returned buffer has a reference count of 1.
1231 *
1232 * You must pass %GFP_ATOMIC as the allocation priority if this function
1233 * is called from an interrupt.
1234 */
1235 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1236 int newheadroom, int newtailroom,
1237 gfp_t gfp_mask)
1238 {
1239 /*
1240 * Allocate the copy buffer
1241 */
1242 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1243 gfp_mask, skb_alloc_rx_flag(skb),
1244 NUMA_NO_NODE);
1245 int oldheadroom = skb_headroom(skb);
1246 int head_copy_len, head_copy_off;
1247
1248 if (!n)
1249 return NULL;
1250
1251 skb_reserve(n, newheadroom);
1252
1253 /* Set the tail pointer and length */
1254 skb_put(n, skb->len);
1255
1256 head_copy_len = oldheadroom;
1257 head_copy_off = 0;
1258 if (newheadroom <= head_copy_len)
1259 head_copy_len = newheadroom;
1260 else
1261 head_copy_off = newheadroom - head_copy_len;
1262
1263 /* Copy the linear header and data. */
1264 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1265 skb->len + head_copy_len))
1266 BUG();
1267
1268 copy_skb_header(n, skb);
1269
1270 skb_headers_offset_update(n, newheadroom - oldheadroom);
1271
1272 return n;
1273 }
1274 EXPORT_SYMBOL(skb_copy_expand);
1275
1276 /**
1277 * skb_pad - zero pad the tail of an skb
1278 * @skb: buffer to pad
1279 * @pad: space to pad
1280 *
1281 * Ensure that a buffer is followed by a padding area that is zero
1282 * filled. Used by network drivers which may DMA or transfer data
1283 * beyond the buffer end onto the wire.
1284 *
1285 * May return error in out of memory cases. The skb is freed on error.
1286 */
1287
1288 int skb_pad(struct sk_buff *skb, int pad)
1289 {
1290 int err;
1291 int ntail;
1292
1293 /* If the skbuff is non linear tailroom is always zero.. */
1294 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1295 memset(skb->data+skb->len, 0, pad);
1296 return 0;
1297 }
1298
1299 ntail = skb->data_len + pad - (skb->end - skb->tail);
1300 if (likely(skb_cloned(skb) || ntail > 0)) {
1301 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1302 if (unlikely(err))
1303 goto free_skb;
1304 }
1305
1306 /* FIXME: The use of this function with non-linear skb's really needs
1307 * to be audited.
1308 */
1309 err = skb_linearize(skb);
1310 if (unlikely(err))
1311 goto free_skb;
1312
1313 memset(skb->data + skb->len, 0, pad);
1314 return 0;
1315
1316 free_skb:
1317 kfree_skb(skb);
1318 return err;
1319 }
1320 EXPORT_SYMBOL(skb_pad);
1321
1322 /**
1323 * pskb_put - add data to the tail of a potentially fragmented buffer
1324 * @skb: start of the buffer to use
1325 * @tail: tail fragment of the buffer to use
1326 * @len: amount of data to add
1327 *
1328 * This function extends the used data area of the potentially
1329 * fragmented buffer. @tail must be the last fragment of @skb -- or
1330 * @skb itself. If this would exceed the total buffer size the kernel
1331 * will panic. A pointer to the first byte of the extra data is
1332 * returned.
1333 */
1334
1335 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1336 {
1337 if (tail != skb) {
1338 skb->data_len += len;
1339 skb->len += len;
1340 }
1341 return skb_put(tail, len);
1342 }
1343 EXPORT_SYMBOL_GPL(pskb_put);
1344
1345 /**
1346 * skb_put - add data to a buffer
1347 * @skb: buffer to use
1348 * @len: amount of data to add
1349 *
1350 * This function extends the used data area of the buffer. If this would
1351 * exceed the total buffer size the kernel will panic. A pointer to the
1352 * first byte of the extra data is returned.
1353 */
1354 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1355 {
1356 unsigned char *tmp = skb_tail_pointer(skb);
1357 SKB_LINEAR_ASSERT(skb);
1358 skb->tail += len;
1359 skb->len += len;
1360 if (unlikely(skb->tail > skb->end))
1361 skb_over_panic(skb, len, __builtin_return_address(0));
1362 return tmp;
1363 }
1364 EXPORT_SYMBOL(skb_put);
1365
1366 /**
1367 * skb_push - add data to the start of a buffer
1368 * @skb: buffer to use
1369 * @len: amount of data to add
1370 *
1371 * This function extends the used data area of the buffer at the buffer
1372 * start. If this would exceed the total buffer headroom the kernel will
1373 * panic. A pointer to the first byte of the extra data is returned.
1374 */
1375 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1376 {
1377 skb->data -= len;
1378 skb->len += len;
1379 if (unlikely(skb->data<skb->head))
1380 skb_under_panic(skb, len, __builtin_return_address(0));
1381 return skb->data;
1382 }
1383 EXPORT_SYMBOL(skb_push);
1384
1385 /**
1386 * skb_pull - remove data from the start of a buffer
1387 * @skb: buffer to use
1388 * @len: amount of data to remove
1389 *
1390 * This function removes data from the start of a buffer, returning
1391 * the memory to the headroom. A pointer to the next data in the buffer
1392 * is returned. Once the data has been pulled future pushes will overwrite
1393 * the old data.
1394 */
1395 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1396 {
1397 return skb_pull_inline(skb, len);
1398 }
1399 EXPORT_SYMBOL(skb_pull);
1400
1401 /**
1402 * skb_trim - remove end from a buffer
1403 * @skb: buffer to alter
1404 * @len: new length
1405 *
1406 * Cut the length of a buffer down by removing data from the tail. If
1407 * the buffer is already under the length specified it is not modified.
1408 * The skb must be linear.
1409 */
1410 void skb_trim(struct sk_buff *skb, unsigned int len)
1411 {
1412 if (skb->len > len)
1413 __skb_trim(skb, len);
1414 }
1415 EXPORT_SYMBOL(skb_trim);
1416
1417 /* Trims skb to length len. It can change skb pointers.
1418 */
1419
1420 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1421 {
1422 struct sk_buff **fragp;
1423 struct sk_buff *frag;
1424 int offset = skb_headlen(skb);
1425 int nfrags = skb_shinfo(skb)->nr_frags;
1426 int i;
1427 int err;
1428
1429 if (skb_cloned(skb) &&
1430 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1431 return err;
1432
1433 i = 0;
1434 if (offset >= len)
1435 goto drop_pages;
1436
1437 for (; i < nfrags; i++) {
1438 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1439
1440 if (end < len) {
1441 offset = end;
1442 continue;
1443 }
1444
1445 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1446
1447 drop_pages:
1448 skb_shinfo(skb)->nr_frags = i;
1449
1450 for (; i < nfrags; i++)
1451 skb_frag_unref(skb, i);
1452
1453 if (skb_has_frag_list(skb))
1454 skb_drop_fraglist(skb);
1455 goto done;
1456 }
1457
1458 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1459 fragp = &frag->next) {
1460 int end = offset + frag->len;
1461
1462 if (skb_shared(frag)) {
1463 struct sk_buff *nfrag;
1464
1465 nfrag = skb_clone(frag, GFP_ATOMIC);
1466 if (unlikely(!nfrag))
1467 return -ENOMEM;
1468
1469 nfrag->next = frag->next;
1470 consume_skb(frag);
1471 frag = nfrag;
1472 *fragp = frag;
1473 }
1474
1475 if (end < len) {
1476 offset = end;
1477 continue;
1478 }
1479
1480 if (end > len &&
1481 unlikely((err = pskb_trim(frag, len - offset))))
1482 return err;
1483
1484 if (frag->next)
1485 skb_drop_list(&frag->next);
1486 break;
1487 }
1488
1489 done:
1490 if (len > skb_headlen(skb)) {
1491 skb->data_len -= skb->len - len;
1492 skb->len = len;
1493 } else {
1494 skb->len = len;
1495 skb->data_len = 0;
1496 skb_set_tail_pointer(skb, len);
1497 }
1498
1499 return 0;
1500 }
1501 EXPORT_SYMBOL(___pskb_trim);
1502
1503 /**
1504 * __pskb_pull_tail - advance tail of skb header
1505 * @skb: buffer to reallocate
1506 * @delta: number of bytes to advance tail
1507 *
1508 * The function makes a sense only on a fragmented &sk_buff,
1509 * it expands header moving its tail forward and copying necessary
1510 * data from fragmented part.
1511 *
1512 * &sk_buff MUST have reference count of 1.
1513 *
1514 * Returns %NULL (and &sk_buff does not change) if pull failed
1515 * or value of new tail of skb in the case of success.
1516 *
1517 * All the pointers pointing into skb header may change and must be
1518 * reloaded after call to this function.
1519 */
1520
1521 /* Moves tail of skb head forward, copying data from fragmented part,
1522 * when it is necessary.
1523 * 1. It may fail due to malloc failure.
1524 * 2. It may change skb pointers.
1525 *
1526 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1527 */
1528 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1529 {
1530 /* If skb has not enough free space at tail, get new one
1531 * plus 128 bytes for future expansions. If we have enough
1532 * room at tail, reallocate without expansion only if skb is cloned.
1533 */
1534 int i, k, eat = (skb->tail + delta) - skb->end;
1535
1536 if (eat > 0 || skb_cloned(skb)) {
1537 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1538 GFP_ATOMIC))
1539 return NULL;
1540 }
1541
1542 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1543 BUG();
1544
1545 /* Optimization: no fragments, no reasons to preestimate
1546 * size of pulled pages. Superb.
1547 */
1548 if (!skb_has_frag_list(skb))
1549 goto pull_pages;
1550
1551 /* Estimate size of pulled pages. */
1552 eat = delta;
1553 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1554 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1555
1556 if (size >= eat)
1557 goto pull_pages;
1558 eat -= size;
1559 }
1560
1561 /* If we need update frag list, we are in troubles.
1562 * Certainly, it possible to add an offset to skb data,
1563 * but taking into account that pulling is expected to
1564 * be very rare operation, it is worth to fight against
1565 * further bloating skb head and crucify ourselves here instead.
1566 * Pure masohism, indeed. 8)8)
1567 */
1568 if (eat) {
1569 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1570 struct sk_buff *clone = NULL;
1571 struct sk_buff *insp = NULL;
1572
1573 do {
1574 BUG_ON(!list);
1575
1576 if (list->len <= eat) {
1577 /* Eaten as whole. */
1578 eat -= list->len;
1579 list = list->next;
1580 insp = list;
1581 } else {
1582 /* Eaten partially. */
1583
1584 if (skb_shared(list)) {
1585 /* Sucks! We need to fork list. :-( */
1586 clone = skb_clone(list, GFP_ATOMIC);
1587 if (!clone)
1588 return NULL;
1589 insp = list->next;
1590 list = clone;
1591 } else {
1592 /* This may be pulled without
1593 * problems. */
1594 insp = list;
1595 }
1596 if (!pskb_pull(list, eat)) {
1597 kfree_skb(clone);
1598 return NULL;
1599 }
1600 break;
1601 }
1602 } while (eat);
1603
1604 /* Free pulled out fragments. */
1605 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1606 skb_shinfo(skb)->frag_list = list->next;
1607 kfree_skb(list);
1608 }
1609 /* And insert new clone at head. */
1610 if (clone) {
1611 clone->next = list;
1612 skb_shinfo(skb)->frag_list = clone;
1613 }
1614 }
1615 /* Success! Now we may commit changes to skb data. */
1616
1617 pull_pages:
1618 eat = delta;
1619 k = 0;
1620 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1621 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1622
1623 if (size <= eat) {
1624 skb_frag_unref(skb, i);
1625 eat -= size;
1626 } else {
1627 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1628 if (eat) {
1629 skb_shinfo(skb)->frags[k].page_offset += eat;
1630 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1631 eat = 0;
1632 }
1633 k++;
1634 }
1635 }
1636 skb_shinfo(skb)->nr_frags = k;
1637
1638 skb->tail += delta;
1639 skb->data_len -= delta;
1640
1641 return skb_tail_pointer(skb);
1642 }
1643 EXPORT_SYMBOL(__pskb_pull_tail);
1644
1645 /**
1646 * skb_copy_bits - copy bits from skb to kernel buffer
1647 * @skb: source skb
1648 * @offset: offset in source
1649 * @to: destination buffer
1650 * @len: number of bytes to copy
1651 *
1652 * Copy the specified number of bytes from the source skb to the
1653 * destination buffer.
1654 *
1655 * CAUTION ! :
1656 * If its prototype is ever changed,
1657 * check arch/{*}/net/{*}.S files,
1658 * since it is called from BPF assembly code.
1659 */
1660 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1661 {
1662 int start = skb_headlen(skb);
1663 struct sk_buff *frag_iter;
1664 int i, copy;
1665
1666 if (offset > (int)skb->len - len)
1667 goto fault;
1668
1669 /* Copy header. */
1670 if ((copy = start - offset) > 0) {
1671 if (copy > len)
1672 copy = len;
1673 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1674 if ((len -= copy) == 0)
1675 return 0;
1676 offset += copy;
1677 to += copy;
1678 }
1679
1680 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1681 int end;
1682 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1683
1684 WARN_ON(start > offset + len);
1685
1686 end = start + skb_frag_size(f);
1687 if ((copy = end - offset) > 0) {
1688 u8 *vaddr;
1689
1690 if (copy > len)
1691 copy = len;
1692
1693 vaddr = kmap_atomic(skb_frag_page(f));
1694 memcpy(to,
1695 vaddr + f->page_offset + offset - start,
1696 copy);
1697 kunmap_atomic(vaddr);
1698
1699 if ((len -= copy) == 0)
1700 return 0;
1701 offset += copy;
1702 to += copy;
1703 }
1704 start = end;
1705 }
1706
1707 skb_walk_frags(skb, frag_iter) {
1708 int end;
1709
1710 WARN_ON(start > offset + len);
1711
1712 end = start + frag_iter->len;
1713 if ((copy = end - offset) > 0) {
1714 if (copy > len)
1715 copy = len;
1716 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1717 goto fault;
1718 if ((len -= copy) == 0)
1719 return 0;
1720 offset += copy;
1721 to += copy;
1722 }
1723 start = end;
1724 }
1725
1726 if (!len)
1727 return 0;
1728
1729 fault:
1730 return -EFAULT;
1731 }
1732 EXPORT_SYMBOL(skb_copy_bits);
1733
1734 /*
1735 * Callback from splice_to_pipe(), if we need to release some pages
1736 * at the end of the spd in case we error'ed out in filling the pipe.
1737 */
1738 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1739 {
1740 put_page(spd->pages[i]);
1741 }
1742
1743 static struct page *linear_to_page(struct page *page, unsigned int *len,
1744 unsigned int *offset,
1745 struct sock *sk)
1746 {
1747 struct page_frag *pfrag = sk_page_frag(sk);
1748
1749 if (!sk_page_frag_refill(sk, pfrag))
1750 return NULL;
1751
1752 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1753
1754 memcpy(page_address(pfrag->page) + pfrag->offset,
1755 page_address(page) + *offset, *len);
1756 *offset = pfrag->offset;
1757 pfrag->offset += *len;
1758
1759 return pfrag->page;
1760 }
1761
1762 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1763 struct page *page,
1764 unsigned int offset)
1765 {
1766 return spd->nr_pages &&
1767 spd->pages[spd->nr_pages - 1] == page &&
1768 (spd->partial[spd->nr_pages - 1].offset +
1769 spd->partial[spd->nr_pages - 1].len == offset);
1770 }
1771
1772 /*
1773 * Fill page/offset/length into spd, if it can hold more pages.
1774 */
1775 static bool spd_fill_page(struct splice_pipe_desc *spd,
1776 struct pipe_inode_info *pipe, struct page *page,
1777 unsigned int *len, unsigned int offset,
1778 bool linear,
1779 struct sock *sk)
1780 {
1781 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1782 return true;
1783
1784 if (linear) {
1785 page = linear_to_page(page, len, &offset, sk);
1786 if (!page)
1787 return true;
1788 }
1789 if (spd_can_coalesce(spd, page, offset)) {
1790 spd->partial[spd->nr_pages - 1].len += *len;
1791 return false;
1792 }
1793 get_page(page);
1794 spd->pages[spd->nr_pages] = page;
1795 spd->partial[spd->nr_pages].len = *len;
1796 spd->partial[spd->nr_pages].offset = offset;
1797 spd->nr_pages++;
1798
1799 return false;
1800 }
1801
1802 static bool __splice_segment(struct page *page, unsigned int poff,
1803 unsigned int plen, unsigned int *off,
1804 unsigned int *len,
1805 struct splice_pipe_desc *spd, bool linear,
1806 struct sock *sk,
1807 struct pipe_inode_info *pipe)
1808 {
1809 if (!*len)
1810 return true;
1811
1812 /* skip this segment if already processed */
1813 if (*off >= plen) {
1814 *off -= plen;
1815 return false;
1816 }
1817
1818 /* ignore any bits we already processed */
1819 poff += *off;
1820 plen -= *off;
1821 *off = 0;
1822
1823 do {
1824 unsigned int flen = min(*len, plen);
1825
1826 if (spd_fill_page(spd, pipe, page, &flen, poff,
1827 linear, sk))
1828 return true;
1829 poff += flen;
1830 plen -= flen;
1831 *len -= flen;
1832 } while (*len && plen);
1833
1834 return false;
1835 }
1836
1837 /*
1838 * Map linear and fragment data from the skb to spd. It reports true if the
1839 * pipe is full or if we already spliced the requested length.
1840 */
1841 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1842 unsigned int *offset, unsigned int *len,
1843 struct splice_pipe_desc *spd, struct sock *sk)
1844 {
1845 int seg;
1846
1847 /* map the linear part :
1848 * If skb->head_frag is set, this 'linear' part is backed by a
1849 * fragment, and if the head is not shared with any clones then
1850 * we can avoid a copy since we own the head portion of this page.
1851 */
1852 if (__splice_segment(virt_to_page(skb->data),
1853 (unsigned long) skb->data & (PAGE_SIZE - 1),
1854 skb_headlen(skb),
1855 offset, len, spd,
1856 skb_head_is_locked(skb),
1857 sk, pipe))
1858 return true;
1859
1860 /*
1861 * then map the fragments
1862 */
1863 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1864 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1865
1866 if (__splice_segment(skb_frag_page(f),
1867 f->page_offset, skb_frag_size(f),
1868 offset, len, spd, false, sk, pipe))
1869 return true;
1870 }
1871
1872 return false;
1873 }
1874
1875 ssize_t skb_socket_splice(struct sock *sk,
1876 struct pipe_inode_info *pipe,
1877 struct splice_pipe_desc *spd)
1878 {
1879 int ret;
1880
1881 /* Drop the socket lock, otherwise we have reverse
1882 * locking dependencies between sk_lock and i_mutex
1883 * here as compared to sendfile(). We enter here
1884 * with the socket lock held, and splice_to_pipe() will
1885 * grab the pipe inode lock. For sendfile() emulation,
1886 * we call into ->sendpage() with the i_mutex lock held
1887 * and networking will grab the socket lock.
1888 */
1889 release_sock(sk);
1890 ret = splice_to_pipe(pipe, spd);
1891 lock_sock(sk);
1892
1893 return ret;
1894 }
1895
1896 /*
1897 * Map data from the skb to a pipe. Should handle both the linear part,
1898 * the fragments, and the frag list. It does NOT handle frag lists within
1899 * the frag list, if such a thing exists. We'd probably need to recurse to
1900 * handle that cleanly.
1901 */
1902 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1903 struct pipe_inode_info *pipe, unsigned int tlen,
1904 unsigned int flags,
1905 ssize_t (*splice_cb)(struct sock *,
1906 struct pipe_inode_info *,
1907 struct splice_pipe_desc *))
1908 {
1909 struct partial_page partial[MAX_SKB_FRAGS];
1910 struct page *pages[MAX_SKB_FRAGS];
1911 struct splice_pipe_desc spd = {
1912 .pages = pages,
1913 .partial = partial,
1914 .nr_pages_max = MAX_SKB_FRAGS,
1915 .flags = flags,
1916 .ops = &nosteal_pipe_buf_ops,
1917 .spd_release = sock_spd_release,
1918 };
1919 struct sk_buff *frag_iter;
1920 int ret = 0;
1921
1922 /*
1923 * __skb_splice_bits() only fails if the output has no room left,
1924 * so no point in going over the frag_list for the error case.
1925 */
1926 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1927 goto done;
1928 else if (!tlen)
1929 goto done;
1930
1931 /*
1932 * now see if we have a frag_list to map
1933 */
1934 skb_walk_frags(skb, frag_iter) {
1935 if (!tlen)
1936 break;
1937 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1938 break;
1939 }
1940
1941 done:
1942 if (spd.nr_pages)
1943 ret = splice_cb(sk, pipe, &spd);
1944
1945 return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(skb_splice_bits);
1948
1949 /**
1950 * skb_store_bits - store bits from kernel buffer to skb
1951 * @skb: destination buffer
1952 * @offset: offset in destination
1953 * @from: source buffer
1954 * @len: number of bytes to copy
1955 *
1956 * Copy the specified number of bytes from the source buffer to the
1957 * destination skb. This function handles all the messy bits of
1958 * traversing fragment lists and such.
1959 */
1960
1961 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1962 {
1963 int start = skb_headlen(skb);
1964 struct sk_buff *frag_iter;
1965 int i, copy;
1966
1967 if (offset > (int)skb->len - len)
1968 goto fault;
1969
1970 if ((copy = start - offset) > 0) {
1971 if (copy > len)
1972 copy = len;
1973 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1974 if ((len -= copy) == 0)
1975 return 0;
1976 offset += copy;
1977 from += copy;
1978 }
1979
1980 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1981 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1982 int end;
1983
1984 WARN_ON(start > offset + len);
1985
1986 end = start + skb_frag_size(frag);
1987 if ((copy = end - offset) > 0) {
1988 u8 *vaddr;
1989
1990 if (copy > len)
1991 copy = len;
1992
1993 vaddr = kmap_atomic(skb_frag_page(frag));
1994 memcpy(vaddr + frag->page_offset + offset - start,
1995 from, copy);
1996 kunmap_atomic(vaddr);
1997
1998 if ((len -= copy) == 0)
1999 return 0;
2000 offset += copy;
2001 from += copy;
2002 }
2003 start = end;
2004 }
2005
2006 skb_walk_frags(skb, frag_iter) {
2007 int end;
2008
2009 WARN_ON(start > offset + len);
2010
2011 end = start + frag_iter->len;
2012 if ((copy = end - offset) > 0) {
2013 if (copy > len)
2014 copy = len;
2015 if (skb_store_bits(frag_iter, offset - start,
2016 from, copy))
2017 goto fault;
2018 if ((len -= copy) == 0)
2019 return 0;
2020 offset += copy;
2021 from += copy;
2022 }
2023 start = end;
2024 }
2025 if (!len)
2026 return 0;
2027
2028 fault:
2029 return -EFAULT;
2030 }
2031 EXPORT_SYMBOL(skb_store_bits);
2032
2033 /* Checksum skb data. */
2034 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2035 __wsum csum, const struct skb_checksum_ops *ops)
2036 {
2037 int start = skb_headlen(skb);
2038 int i, copy = start - offset;
2039 struct sk_buff *frag_iter;
2040 int pos = 0;
2041
2042 /* Checksum header. */
2043 if (copy > 0) {
2044 if (copy > len)
2045 copy = len;
2046 csum = ops->update(skb->data + offset, copy, csum);
2047 if ((len -= copy) == 0)
2048 return csum;
2049 offset += copy;
2050 pos = copy;
2051 }
2052
2053 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2054 int end;
2055 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2056
2057 WARN_ON(start > offset + len);
2058
2059 end = start + skb_frag_size(frag);
2060 if ((copy = end - offset) > 0) {
2061 __wsum csum2;
2062 u8 *vaddr;
2063
2064 if (copy > len)
2065 copy = len;
2066 vaddr = kmap_atomic(skb_frag_page(frag));
2067 csum2 = ops->update(vaddr + frag->page_offset +
2068 offset - start, copy, 0);
2069 kunmap_atomic(vaddr);
2070 csum = ops->combine(csum, csum2, pos, copy);
2071 if (!(len -= copy))
2072 return csum;
2073 offset += copy;
2074 pos += copy;
2075 }
2076 start = end;
2077 }
2078
2079 skb_walk_frags(skb, frag_iter) {
2080 int end;
2081
2082 WARN_ON(start > offset + len);
2083
2084 end = start + frag_iter->len;
2085 if ((copy = end - offset) > 0) {
2086 __wsum csum2;
2087 if (copy > len)
2088 copy = len;
2089 csum2 = __skb_checksum(frag_iter, offset - start,
2090 copy, 0, ops);
2091 csum = ops->combine(csum, csum2, pos, copy);
2092 if ((len -= copy) == 0)
2093 return csum;
2094 offset += copy;
2095 pos += copy;
2096 }
2097 start = end;
2098 }
2099 BUG_ON(len);
2100
2101 return csum;
2102 }
2103 EXPORT_SYMBOL(__skb_checksum);
2104
2105 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2106 int len, __wsum csum)
2107 {
2108 const struct skb_checksum_ops ops = {
2109 .update = csum_partial_ext,
2110 .combine = csum_block_add_ext,
2111 };
2112
2113 return __skb_checksum(skb, offset, len, csum, &ops);
2114 }
2115 EXPORT_SYMBOL(skb_checksum);
2116
2117 /* Both of above in one bottle. */
2118
2119 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2120 u8 *to, int len, __wsum csum)
2121 {
2122 int start = skb_headlen(skb);
2123 int i, copy = start - offset;
2124 struct sk_buff *frag_iter;
2125 int pos = 0;
2126
2127 /* Copy header. */
2128 if (copy > 0) {
2129 if (copy > len)
2130 copy = len;
2131 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2132 copy, csum);
2133 if ((len -= copy) == 0)
2134 return csum;
2135 offset += copy;
2136 to += copy;
2137 pos = copy;
2138 }
2139
2140 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141 int end;
2142
2143 WARN_ON(start > offset + len);
2144
2145 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2146 if ((copy = end - offset) > 0) {
2147 __wsum csum2;
2148 u8 *vaddr;
2149 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2150
2151 if (copy > len)
2152 copy = len;
2153 vaddr = kmap_atomic(skb_frag_page(frag));
2154 csum2 = csum_partial_copy_nocheck(vaddr +
2155 frag->page_offset +
2156 offset - start, to,
2157 copy, 0);
2158 kunmap_atomic(vaddr);
2159 csum = csum_block_add(csum, csum2, pos);
2160 if (!(len -= copy))
2161 return csum;
2162 offset += copy;
2163 to += copy;
2164 pos += copy;
2165 }
2166 start = end;
2167 }
2168
2169 skb_walk_frags(skb, frag_iter) {
2170 __wsum csum2;
2171 int end;
2172
2173 WARN_ON(start > offset + len);
2174
2175 end = start + frag_iter->len;
2176 if ((copy = end - offset) > 0) {
2177 if (copy > len)
2178 copy = len;
2179 csum2 = skb_copy_and_csum_bits(frag_iter,
2180 offset - start,
2181 to, copy, 0);
2182 csum = csum_block_add(csum, csum2, pos);
2183 if ((len -= copy) == 0)
2184 return csum;
2185 offset += copy;
2186 to += copy;
2187 pos += copy;
2188 }
2189 start = end;
2190 }
2191 BUG_ON(len);
2192 return csum;
2193 }
2194 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2195
2196 /**
2197 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2198 * @from: source buffer
2199 *
2200 * Calculates the amount of linear headroom needed in the 'to' skb passed
2201 * into skb_zerocopy().
2202 */
2203 unsigned int
2204 skb_zerocopy_headlen(const struct sk_buff *from)
2205 {
2206 unsigned int hlen = 0;
2207
2208 if (!from->head_frag ||
2209 skb_headlen(from) < L1_CACHE_BYTES ||
2210 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2211 hlen = skb_headlen(from);
2212
2213 if (skb_has_frag_list(from))
2214 hlen = from->len;
2215
2216 return hlen;
2217 }
2218 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2219
2220 /**
2221 * skb_zerocopy - Zero copy skb to skb
2222 * @to: destination buffer
2223 * @from: source buffer
2224 * @len: number of bytes to copy from source buffer
2225 * @hlen: size of linear headroom in destination buffer
2226 *
2227 * Copies up to `len` bytes from `from` to `to` by creating references
2228 * to the frags in the source buffer.
2229 *
2230 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2231 * headroom in the `to` buffer.
2232 *
2233 * Return value:
2234 * 0: everything is OK
2235 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2236 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2237 */
2238 int
2239 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2240 {
2241 int i, j = 0;
2242 int plen = 0; /* length of skb->head fragment */
2243 int ret;
2244 struct page *page;
2245 unsigned int offset;
2246
2247 BUG_ON(!from->head_frag && !hlen);
2248
2249 /* dont bother with small payloads */
2250 if (len <= skb_tailroom(to))
2251 return skb_copy_bits(from, 0, skb_put(to, len), len);
2252
2253 if (hlen) {
2254 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2255 if (unlikely(ret))
2256 return ret;
2257 len -= hlen;
2258 } else {
2259 plen = min_t(int, skb_headlen(from), len);
2260 if (plen) {
2261 page = virt_to_head_page(from->head);
2262 offset = from->data - (unsigned char *)page_address(page);
2263 __skb_fill_page_desc(to, 0, page, offset, plen);
2264 get_page(page);
2265 j = 1;
2266 len -= plen;
2267 }
2268 }
2269
2270 to->truesize += len + plen;
2271 to->len += len + plen;
2272 to->data_len += len + plen;
2273
2274 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2275 skb_tx_error(from);
2276 return -ENOMEM;
2277 }
2278
2279 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2280 if (!len)
2281 break;
2282 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2283 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2284 len -= skb_shinfo(to)->frags[j].size;
2285 skb_frag_ref(to, j);
2286 j++;
2287 }
2288 skb_shinfo(to)->nr_frags = j;
2289
2290 return 0;
2291 }
2292 EXPORT_SYMBOL_GPL(skb_zerocopy);
2293
2294 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2295 {
2296 __wsum csum;
2297 long csstart;
2298
2299 if (skb->ip_summed == CHECKSUM_PARTIAL)
2300 csstart = skb_checksum_start_offset(skb);
2301 else
2302 csstart = skb_headlen(skb);
2303
2304 BUG_ON(csstart > skb_headlen(skb));
2305
2306 skb_copy_from_linear_data(skb, to, csstart);
2307
2308 csum = 0;
2309 if (csstart != skb->len)
2310 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2311 skb->len - csstart, 0);
2312
2313 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2314 long csstuff = csstart + skb->csum_offset;
2315
2316 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2317 }
2318 }
2319 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2320
2321 /**
2322 * skb_dequeue - remove from the head of the queue
2323 * @list: list to dequeue from
2324 *
2325 * Remove the head of the list. The list lock is taken so the function
2326 * may be used safely with other locking list functions. The head item is
2327 * returned or %NULL if the list is empty.
2328 */
2329
2330 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2331 {
2332 unsigned long flags;
2333 struct sk_buff *result;
2334
2335 spin_lock_irqsave(&list->lock, flags);
2336 result = __skb_dequeue(list);
2337 spin_unlock_irqrestore(&list->lock, flags);
2338 return result;
2339 }
2340 EXPORT_SYMBOL(skb_dequeue);
2341
2342 /**
2343 * skb_dequeue_tail - remove from the tail of the queue
2344 * @list: list to dequeue from
2345 *
2346 * Remove the tail of the list. The list lock is taken so the function
2347 * may be used safely with other locking list functions. The tail item is
2348 * returned or %NULL if the list is empty.
2349 */
2350 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2351 {
2352 unsigned long flags;
2353 struct sk_buff *result;
2354
2355 spin_lock_irqsave(&list->lock, flags);
2356 result = __skb_dequeue_tail(list);
2357 spin_unlock_irqrestore(&list->lock, flags);
2358 return result;
2359 }
2360 EXPORT_SYMBOL(skb_dequeue_tail);
2361
2362 /**
2363 * skb_queue_purge - empty a list
2364 * @list: list to empty
2365 *
2366 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2367 * the list and one reference dropped. This function takes the list
2368 * lock and is atomic with respect to other list locking functions.
2369 */
2370 void skb_queue_purge(struct sk_buff_head *list)
2371 {
2372 struct sk_buff *skb;
2373 while ((skb = skb_dequeue(list)) != NULL)
2374 kfree_skb(skb);
2375 }
2376 EXPORT_SYMBOL(skb_queue_purge);
2377
2378 /**
2379 * skb_queue_head - queue a buffer at the list head
2380 * @list: list to use
2381 * @newsk: buffer to queue
2382 *
2383 * Queue a buffer at the start of the list. This function takes the
2384 * list lock and can be used safely with other locking &sk_buff functions
2385 * safely.
2386 *
2387 * A buffer cannot be placed on two lists at the same time.
2388 */
2389 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2390 {
2391 unsigned long flags;
2392
2393 spin_lock_irqsave(&list->lock, flags);
2394 __skb_queue_head(list, newsk);
2395 spin_unlock_irqrestore(&list->lock, flags);
2396 }
2397 EXPORT_SYMBOL(skb_queue_head);
2398
2399 /**
2400 * skb_queue_tail - queue a buffer at the list tail
2401 * @list: list to use
2402 * @newsk: buffer to queue
2403 *
2404 * Queue a buffer at the tail of the list. This function takes the
2405 * list lock and can be used safely with other locking &sk_buff functions
2406 * safely.
2407 *
2408 * A buffer cannot be placed on two lists at the same time.
2409 */
2410 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2411 {
2412 unsigned long flags;
2413
2414 spin_lock_irqsave(&list->lock, flags);
2415 __skb_queue_tail(list, newsk);
2416 spin_unlock_irqrestore(&list->lock, flags);
2417 }
2418 EXPORT_SYMBOL(skb_queue_tail);
2419
2420 /**
2421 * skb_unlink - remove a buffer from a list
2422 * @skb: buffer to remove
2423 * @list: list to use
2424 *
2425 * Remove a packet from a list. The list locks are taken and this
2426 * function is atomic with respect to other list locked calls
2427 *
2428 * You must know what list the SKB is on.
2429 */
2430 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2431 {
2432 unsigned long flags;
2433
2434 spin_lock_irqsave(&list->lock, flags);
2435 __skb_unlink(skb, list);
2436 spin_unlock_irqrestore(&list->lock, flags);
2437 }
2438 EXPORT_SYMBOL(skb_unlink);
2439
2440 /**
2441 * skb_append - append a buffer
2442 * @old: buffer to insert after
2443 * @newsk: buffer to insert
2444 * @list: list to use
2445 *
2446 * Place a packet after a given packet in a list. The list locks are taken
2447 * and this function is atomic with respect to other list locked calls.
2448 * A buffer cannot be placed on two lists at the same time.
2449 */
2450 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2451 {
2452 unsigned long flags;
2453
2454 spin_lock_irqsave(&list->lock, flags);
2455 __skb_queue_after(list, old, newsk);
2456 spin_unlock_irqrestore(&list->lock, flags);
2457 }
2458 EXPORT_SYMBOL(skb_append);
2459
2460 /**
2461 * skb_insert - insert a buffer
2462 * @old: buffer to insert before
2463 * @newsk: buffer to insert
2464 * @list: list to use
2465 *
2466 * Place a packet before a given packet in a list. The list locks are
2467 * taken and this function is atomic with respect to other list locked
2468 * calls.
2469 *
2470 * A buffer cannot be placed on two lists at the same time.
2471 */
2472 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2473 {
2474 unsigned long flags;
2475
2476 spin_lock_irqsave(&list->lock, flags);
2477 __skb_insert(newsk, old->prev, old, list);
2478 spin_unlock_irqrestore(&list->lock, flags);
2479 }
2480 EXPORT_SYMBOL(skb_insert);
2481
2482 static inline void skb_split_inside_header(struct sk_buff *skb,
2483 struct sk_buff* skb1,
2484 const u32 len, const int pos)
2485 {
2486 int i;
2487
2488 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2489 pos - len);
2490 /* And move data appendix as is. */
2491 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2492 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2493
2494 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2495 skb_shinfo(skb)->nr_frags = 0;
2496 skb1->data_len = skb->data_len;
2497 skb1->len += skb1->data_len;
2498 skb->data_len = 0;
2499 skb->len = len;
2500 skb_set_tail_pointer(skb, len);
2501 }
2502
2503 static inline void skb_split_no_header(struct sk_buff *skb,
2504 struct sk_buff* skb1,
2505 const u32 len, int pos)
2506 {
2507 int i, k = 0;
2508 const int nfrags = skb_shinfo(skb)->nr_frags;
2509
2510 skb_shinfo(skb)->nr_frags = 0;
2511 skb1->len = skb1->data_len = skb->len - len;
2512 skb->len = len;
2513 skb->data_len = len - pos;
2514
2515 for (i = 0; i < nfrags; i++) {
2516 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2517
2518 if (pos + size > len) {
2519 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2520
2521 if (pos < len) {
2522 /* Split frag.
2523 * We have two variants in this case:
2524 * 1. Move all the frag to the second
2525 * part, if it is possible. F.e.
2526 * this approach is mandatory for TUX,
2527 * where splitting is expensive.
2528 * 2. Split is accurately. We make this.
2529 */
2530 skb_frag_ref(skb, i);
2531 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2532 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2533 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2534 skb_shinfo(skb)->nr_frags++;
2535 }
2536 k++;
2537 } else
2538 skb_shinfo(skb)->nr_frags++;
2539 pos += size;
2540 }
2541 skb_shinfo(skb1)->nr_frags = k;
2542 }
2543
2544 /**
2545 * skb_split - Split fragmented skb to two parts at length len.
2546 * @skb: the buffer to split
2547 * @skb1: the buffer to receive the second part
2548 * @len: new length for skb
2549 */
2550 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2551 {
2552 int pos = skb_headlen(skb);
2553
2554 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2555 if (len < pos) /* Split line is inside header. */
2556 skb_split_inside_header(skb, skb1, len, pos);
2557 else /* Second chunk has no header, nothing to copy. */
2558 skb_split_no_header(skb, skb1, len, pos);
2559 }
2560 EXPORT_SYMBOL(skb_split);
2561
2562 /* Shifting from/to a cloned skb is a no-go.
2563 *
2564 * Caller cannot keep skb_shinfo related pointers past calling here!
2565 */
2566 static int skb_prepare_for_shift(struct sk_buff *skb)
2567 {
2568 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2569 }
2570
2571 /**
2572 * skb_shift - Shifts paged data partially from skb to another
2573 * @tgt: buffer into which tail data gets added
2574 * @skb: buffer from which the paged data comes from
2575 * @shiftlen: shift up to this many bytes
2576 *
2577 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2578 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2579 * It's up to caller to free skb if everything was shifted.
2580 *
2581 * If @tgt runs out of frags, the whole operation is aborted.
2582 *
2583 * Skb cannot include anything else but paged data while tgt is allowed
2584 * to have non-paged data as well.
2585 *
2586 * TODO: full sized shift could be optimized but that would need
2587 * specialized skb free'er to handle frags without up-to-date nr_frags.
2588 */
2589 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2590 {
2591 int from, to, merge, todo;
2592 struct skb_frag_struct *fragfrom, *fragto;
2593
2594 BUG_ON(shiftlen > skb->len);
2595 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2596
2597 todo = shiftlen;
2598 from = 0;
2599 to = skb_shinfo(tgt)->nr_frags;
2600 fragfrom = &skb_shinfo(skb)->frags[from];
2601
2602 /* Actual merge is delayed until the point when we know we can
2603 * commit all, so that we don't have to undo partial changes
2604 */
2605 if (!to ||
2606 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2607 fragfrom->page_offset)) {
2608 merge = -1;
2609 } else {
2610 merge = to - 1;
2611
2612 todo -= skb_frag_size(fragfrom);
2613 if (todo < 0) {
2614 if (skb_prepare_for_shift(skb) ||
2615 skb_prepare_for_shift(tgt))
2616 return 0;
2617
2618 /* All previous frag pointers might be stale! */
2619 fragfrom = &skb_shinfo(skb)->frags[from];
2620 fragto = &skb_shinfo(tgt)->frags[merge];
2621
2622 skb_frag_size_add(fragto, shiftlen);
2623 skb_frag_size_sub(fragfrom, shiftlen);
2624 fragfrom->page_offset += shiftlen;
2625
2626 goto onlymerged;
2627 }
2628
2629 from++;
2630 }
2631
2632 /* Skip full, not-fitting skb to avoid expensive operations */
2633 if ((shiftlen == skb->len) &&
2634 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2635 return 0;
2636
2637 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2638 return 0;
2639
2640 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2641 if (to == MAX_SKB_FRAGS)
2642 return 0;
2643
2644 fragfrom = &skb_shinfo(skb)->frags[from];
2645 fragto = &skb_shinfo(tgt)->frags[to];
2646
2647 if (todo >= skb_frag_size(fragfrom)) {
2648 *fragto = *fragfrom;
2649 todo -= skb_frag_size(fragfrom);
2650 from++;
2651 to++;
2652
2653 } else {
2654 __skb_frag_ref(fragfrom);
2655 fragto->page = fragfrom->page;
2656 fragto->page_offset = fragfrom->page_offset;
2657 skb_frag_size_set(fragto, todo);
2658
2659 fragfrom->page_offset += todo;
2660 skb_frag_size_sub(fragfrom, todo);
2661 todo = 0;
2662
2663 to++;
2664 break;
2665 }
2666 }
2667
2668 /* Ready to "commit" this state change to tgt */
2669 skb_shinfo(tgt)->nr_frags = to;
2670
2671 if (merge >= 0) {
2672 fragfrom = &skb_shinfo(skb)->frags[0];
2673 fragto = &skb_shinfo(tgt)->frags[merge];
2674
2675 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2676 __skb_frag_unref(fragfrom);
2677 }
2678
2679 /* Reposition in the original skb */
2680 to = 0;
2681 while (from < skb_shinfo(skb)->nr_frags)
2682 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2683 skb_shinfo(skb)->nr_frags = to;
2684
2685 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2686
2687 onlymerged:
2688 /* Most likely the tgt won't ever need its checksum anymore, skb on
2689 * the other hand might need it if it needs to be resent
2690 */
2691 tgt->ip_summed = CHECKSUM_PARTIAL;
2692 skb->ip_summed = CHECKSUM_PARTIAL;
2693
2694 /* Yak, is it really working this way? Some helper please? */
2695 skb->len -= shiftlen;
2696 skb->data_len -= shiftlen;
2697 skb->truesize -= shiftlen;
2698 tgt->len += shiftlen;
2699 tgt->data_len += shiftlen;
2700 tgt->truesize += shiftlen;
2701
2702 return shiftlen;
2703 }
2704
2705 /**
2706 * skb_prepare_seq_read - Prepare a sequential read of skb data
2707 * @skb: the buffer to read
2708 * @from: lower offset of data to be read
2709 * @to: upper offset of data to be read
2710 * @st: state variable
2711 *
2712 * Initializes the specified state variable. Must be called before
2713 * invoking skb_seq_read() for the first time.
2714 */
2715 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2716 unsigned int to, struct skb_seq_state *st)
2717 {
2718 st->lower_offset = from;
2719 st->upper_offset = to;
2720 st->root_skb = st->cur_skb = skb;
2721 st->frag_idx = st->stepped_offset = 0;
2722 st->frag_data = NULL;
2723 }
2724 EXPORT_SYMBOL(skb_prepare_seq_read);
2725
2726 /**
2727 * skb_seq_read - Sequentially read skb data
2728 * @consumed: number of bytes consumed by the caller so far
2729 * @data: destination pointer for data to be returned
2730 * @st: state variable
2731 *
2732 * Reads a block of skb data at @consumed relative to the
2733 * lower offset specified to skb_prepare_seq_read(). Assigns
2734 * the head of the data block to @data and returns the length
2735 * of the block or 0 if the end of the skb data or the upper
2736 * offset has been reached.
2737 *
2738 * The caller is not required to consume all of the data
2739 * returned, i.e. @consumed is typically set to the number
2740 * of bytes already consumed and the next call to
2741 * skb_seq_read() will return the remaining part of the block.
2742 *
2743 * Note 1: The size of each block of data returned can be arbitrary,
2744 * this limitation is the cost for zerocopy sequential
2745 * reads of potentially non linear data.
2746 *
2747 * Note 2: Fragment lists within fragments are not implemented
2748 * at the moment, state->root_skb could be replaced with
2749 * a stack for this purpose.
2750 */
2751 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2752 struct skb_seq_state *st)
2753 {
2754 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2755 skb_frag_t *frag;
2756
2757 if (unlikely(abs_offset >= st->upper_offset)) {
2758 if (st->frag_data) {
2759 kunmap_atomic(st->frag_data);
2760 st->frag_data = NULL;
2761 }
2762 return 0;
2763 }
2764
2765 next_skb:
2766 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2767
2768 if (abs_offset < block_limit && !st->frag_data) {
2769 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2770 return block_limit - abs_offset;
2771 }
2772
2773 if (st->frag_idx == 0 && !st->frag_data)
2774 st->stepped_offset += skb_headlen(st->cur_skb);
2775
2776 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2777 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2778 block_limit = skb_frag_size(frag) + st->stepped_offset;
2779
2780 if (abs_offset < block_limit) {
2781 if (!st->frag_data)
2782 st->frag_data = kmap_atomic(skb_frag_page(frag));
2783
2784 *data = (u8 *) st->frag_data + frag->page_offset +
2785 (abs_offset - st->stepped_offset);
2786
2787 return block_limit - abs_offset;
2788 }
2789
2790 if (st->frag_data) {
2791 kunmap_atomic(st->frag_data);
2792 st->frag_data = NULL;
2793 }
2794
2795 st->frag_idx++;
2796 st->stepped_offset += skb_frag_size(frag);
2797 }
2798
2799 if (st->frag_data) {
2800 kunmap_atomic(st->frag_data);
2801 st->frag_data = NULL;
2802 }
2803
2804 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2805 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2806 st->frag_idx = 0;
2807 goto next_skb;
2808 } else if (st->cur_skb->next) {
2809 st->cur_skb = st->cur_skb->next;
2810 st->frag_idx = 0;
2811 goto next_skb;
2812 }
2813
2814 return 0;
2815 }
2816 EXPORT_SYMBOL(skb_seq_read);
2817
2818 /**
2819 * skb_abort_seq_read - Abort a sequential read of skb data
2820 * @st: state variable
2821 *
2822 * Must be called if skb_seq_read() was not called until it
2823 * returned 0.
2824 */
2825 void skb_abort_seq_read(struct skb_seq_state *st)
2826 {
2827 if (st->frag_data)
2828 kunmap_atomic(st->frag_data);
2829 }
2830 EXPORT_SYMBOL(skb_abort_seq_read);
2831
2832 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2833
2834 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2835 struct ts_config *conf,
2836 struct ts_state *state)
2837 {
2838 return skb_seq_read(offset, text, TS_SKB_CB(state));
2839 }
2840
2841 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2842 {
2843 skb_abort_seq_read(TS_SKB_CB(state));
2844 }
2845
2846 /**
2847 * skb_find_text - Find a text pattern in skb data
2848 * @skb: the buffer to look in
2849 * @from: search offset
2850 * @to: search limit
2851 * @config: textsearch configuration
2852 *
2853 * Finds a pattern in the skb data according to the specified
2854 * textsearch configuration. Use textsearch_next() to retrieve
2855 * subsequent occurrences of the pattern. Returns the offset
2856 * to the first occurrence or UINT_MAX if no match was found.
2857 */
2858 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2859 unsigned int to, struct ts_config *config)
2860 {
2861 struct ts_state state;
2862 unsigned int ret;
2863
2864 config->get_next_block = skb_ts_get_next_block;
2865 config->finish = skb_ts_finish;
2866
2867 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2868
2869 ret = textsearch_find(config, &state);
2870 return (ret <= to - from ? ret : UINT_MAX);
2871 }
2872 EXPORT_SYMBOL(skb_find_text);
2873
2874 /**
2875 * skb_append_datato_frags - append the user data to a skb
2876 * @sk: sock structure
2877 * @skb: skb structure to be appended with user data.
2878 * @getfrag: call back function to be used for getting the user data
2879 * @from: pointer to user message iov
2880 * @length: length of the iov message
2881 *
2882 * Description: This procedure append the user data in the fragment part
2883 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2884 */
2885 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2886 int (*getfrag)(void *from, char *to, int offset,
2887 int len, int odd, struct sk_buff *skb),
2888 void *from, int length)
2889 {
2890 int frg_cnt = skb_shinfo(skb)->nr_frags;
2891 int copy;
2892 int offset = 0;
2893 int ret;
2894 struct page_frag *pfrag = &current->task_frag;
2895
2896 do {
2897 /* Return error if we don't have space for new frag */
2898 if (frg_cnt >= MAX_SKB_FRAGS)
2899 return -EMSGSIZE;
2900
2901 if (!sk_page_frag_refill(sk, pfrag))
2902 return -ENOMEM;
2903
2904 /* copy the user data to page */
2905 copy = min_t(int, length, pfrag->size - pfrag->offset);
2906
2907 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2908 offset, copy, 0, skb);
2909 if (ret < 0)
2910 return -EFAULT;
2911
2912 /* copy was successful so update the size parameters */
2913 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2914 copy);
2915 frg_cnt++;
2916 pfrag->offset += copy;
2917 get_page(pfrag->page);
2918
2919 skb->truesize += copy;
2920 atomic_add(copy, &sk->sk_wmem_alloc);
2921 skb->len += copy;
2922 skb->data_len += copy;
2923 offset += copy;
2924 length -= copy;
2925
2926 } while (length > 0);
2927
2928 return 0;
2929 }
2930 EXPORT_SYMBOL(skb_append_datato_frags);
2931
2932 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2933 int offset, size_t size)
2934 {
2935 int i = skb_shinfo(skb)->nr_frags;
2936
2937 if (skb_can_coalesce(skb, i, page, offset)) {
2938 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
2939 } else if (i < MAX_SKB_FRAGS) {
2940 get_page(page);
2941 skb_fill_page_desc(skb, i, page, offset, size);
2942 } else {
2943 return -EMSGSIZE;
2944 }
2945
2946 return 0;
2947 }
2948 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
2949
2950 /**
2951 * skb_push_rcsum - push skb and update receive checksum
2952 * @skb: buffer to update
2953 * @len: length of data pulled
2954 *
2955 * This function performs an skb_push on the packet and updates
2956 * the CHECKSUM_COMPLETE checksum. It should be used on
2957 * receive path processing instead of skb_push unless you know
2958 * that the checksum difference is zero (e.g., a valid IP header)
2959 * or you are setting ip_summed to CHECKSUM_NONE.
2960 */
2961 static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
2962 {
2963 skb_push(skb, len);
2964 skb_postpush_rcsum(skb, skb->data, len);
2965 return skb->data;
2966 }
2967
2968 /**
2969 * skb_pull_rcsum - pull skb and update receive checksum
2970 * @skb: buffer to update
2971 * @len: length of data pulled
2972 *
2973 * This function performs an skb_pull on the packet and updates
2974 * the CHECKSUM_COMPLETE checksum. It should be used on
2975 * receive path processing instead of skb_pull unless you know
2976 * that the checksum difference is zero (e.g., a valid IP header)
2977 * or you are setting ip_summed to CHECKSUM_NONE.
2978 */
2979 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2980 {
2981 unsigned char *data = skb->data;
2982
2983 BUG_ON(len > skb->len);
2984 __skb_pull(skb, len);
2985 skb_postpull_rcsum(skb, data, len);
2986 return skb->data;
2987 }
2988 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2989
2990 /**
2991 * skb_segment - Perform protocol segmentation on skb.
2992 * @head_skb: buffer to segment
2993 * @features: features for the output path (see dev->features)
2994 *
2995 * This function performs segmentation on the given skb. It returns
2996 * a pointer to the first in a list of new skbs for the segments.
2997 * In case of error it returns ERR_PTR(err).
2998 */
2999 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3000 netdev_features_t features)
3001 {
3002 struct sk_buff *segs = NULL;
3003 struct sk_buff *tail = NULL;
3004 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3005 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3006 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3007 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3008 struct sk_buff *frag_skb = head_skb;
3009 unsigned int offset = doffset;
3010 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3011 unsigned int headroom;
3012 unsigned int len;
3013 __be16 proto;
3014 bool csum;
3015 int sg = !!(features & NETIF_F_SG);
3016 int nfrags = skb_shinfo(head_skb)->nr_frags;
3017 int err = -ENOMEM;
3018 int i = 0;
3019 int pos;
3020 int dummy;
3021
3022 __skb_push(head_skb, doffset);
3023 proto = skb_network_protocol(head_skb, &dummy);
3024 if (unlikely(!proto))
3025 return ERR_PTR(-EINVAL);
3026
3027 csum = !head_skb->encap_hdr_csum &&
3028 !!can_checksum_protocol(features, proto);
3029
3030 headroom = skb_headroom(head_skb);
3031 pos = skb_headlen(head_skb);
3032
3033 do {
3034 struct sk_buff *nskb;
3035 skb_frag_t *nskb_frag;
3036 int hsize;
3037 int size;
3038
3039 len = head_skb->len - offset;
3040 if (len > mss)
3041 len = mss;
3042
3043 hsize = skb_headlen(head_skb) - offset;
3044 if (hsize < 0)
3045 hsize = 0;
3046 if (hsize > len || !sg)
3047 hsize = len;
3048
3049 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3050 (skb_headlen(list_skb) == len || sg)) {
3051 BUG_ON(skb_headlen(list_skb) > len);
3052
3053 i = 0;
3054 nfrags = skb_shinfo(list_skb)->nr_frags;
3055 frag = skb_shinfo(list_skb)->frags;
3056 frag_skb = list_skb;
3057 pos += skb_headlen(list_skb);
3058
3059 while (pos < offset + len) {
3060 BUG_ON(i >= nfrags);
3061
3062 size = skb_frag_size(frag);
3063 if (pos + size > offset + len)
3064 break;
3065
3066 i++;
3067 pos += size;
3068 frag++;
3069 }
3070
3071 nskb = skb_clone(list_skb, GFP_ATOMIC);
3072 list_skb = list_skb->next;
3073
3074 if (unlikely(!nskb))
3075 goto err;
3076
3077 if (unlikely(pskb_trim(nskb, len))) {
3078 kfree_skb(nskb);
3079 goto err;
3080 }
3081
3082 hsize = skb_end_offset(nskb);
3083 if (skb_cow_head(nskb, doffset + headroom)) {
3084 kfree_skb(nskb);
3085 goto err;
3086 }
3087
3088 nskb->truesize += skb_end_offset(nskb) - hsize;
3089 skb_release_head_state(nskb);
3090 __skb_push(nskb, doffset);
3091 } else {
3092 nskb = __alloc_skb(hsize + doffset + headroom,
3093 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3094 NUMA_NO_NODE);
3095
3096 if (unlikely(!nskb))
3097 goto err;
3098
3099 skb_reserve(nskb, headroom);
3100 __skb_put(nskb, doffset);
3101 }
3102
3103 if (segs)
3104 tail->next = nskb;
3105 else
3106 segs = nskb;
3107 tail = nskb;
3108
3109 __copy_skb_header(nskb, head_skb);
3110
3111 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3112 skb_reset_mac_len(nskb);
3113
3114 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3115 nskb->data - tnl_hlen,
3116 doffset + tnl_hlen);
3117
3118 if (nskb->len == len + doffset)
3119 goto perform_csum_check;
3120
3121 if (!sg && !nskb->remcsum_offload) {
3122 nskb->ip_summed = CHECKSUM_NONE;
3123 nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3124 skb_put(nskb, len),
3125 len, 0);
3126 SKB_GSO_CB(nskb)->csum_start =
3127 skb_headroom(nskb) + doffset;
3128 continue;
3129 }
3130
3131 nskb_frag = skb_shinfo(nskb)->frags;
3132
3133 skb_copy_from_linear_data_offset(head_skb, offset,
3134 skb_put(nskb, hsize), hsize);
3135
3136 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3137 SKBTX_SHARED_FRAG;
3138
3139 while (pos < offset + len) {
3140 if (i >= nfrags) {
3141 BUG_ON(skb_headlen(list_skb));
3142
3143 i = 0;
3144 nfrags = skb_shinfo(list_skb)->nr_frags;
3145 frag = skb_shinfo(list_skb)->frags;
3146 frag_skb = list_skb;
3147
3148 BUG_ON(!nfrags);
3149
3150 list_skb = list_skb->next;
3151 }
3152
3153 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3154 MAX_SKB_FRAGS)) {
3155 net_warn_ratelimited(
3156 "skb_segment: too many frags: %u %u\n",
3157 pos, mss);
3158 goto err;
3159 }
3160
3161 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3162 goto err;
3163
3164 *nskb_frag = *frag;
3165 __skb_frag_ref(nskb_frag);
3166 size = skb_frag_size(nskb_frag);
3167
3168 if (pos < offset) {
3169 nskb_frag->page_offset += offset - pos;
3170 skb_frag_size_sub(nskb_frag, offset - pos);
3171 }
3172
3173 skb_shinfo(nskb)->nr_frags++;
3174
3175 if (pos + size <= offset + len) {
3176 i++;
3177 frag++;
3178 pos += size;
3179 } else {
3180 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3181 goto skip_fraglist;
3182 }
3183
3184 nskb_frag++;
3185 }
3186
3187 skip_fraglist:
3188 nskb->data_len = len - hsize;
3189 nskb->len += nskb->data_len;
3190 nskb->truesize += nskb->data_len;
3191
3192 perform_csum_check:
3193 if (!csum && !nskb->remcsum_offload) {
3194 nskb->csum = skb_checksum(nskb, doffset,
3195 nskb->len - doffset, 0);
3196 nskb->ip_summed = CHECKSUM_NONE;
3197 SKB_GSO_CB(nskb)->csum_start =
3198 skb_headroom(nskb) + doffset;
3199 }
3200 } while ((offset += len) < head_skb->len);
3201
3202 /* Some callers want to get the end of the list.
3203 * Put it in segs->prev to avoid walking the list.
3204 * (see validate_xmit_skb_list() for example)
3205 */
3206 segs->prev = tail;
3207
3208 /* Following permits correct backpressure, for protocols
3209 * using skb_set_owner_w().
3210 * Idea is to tranfert ownership from head_skb to last segment.
3211 */
3212 if (head_skb->destructor == sock_wfree) {
3213 swap(tail->truesize, head_skb->truesize);
3214 swap(tail->destructor, head_skb->destructor);
3215 swap(tail->sk, head_skb->sk);
3216 }
3217 return segs;
3218
3219 err:
3220 kfree_skb_list(segs);
3221 return ERR_PTR(err);
3222 }
3223 EXPORT_SYMBOL_GPL(skb_segment);
3224
3225 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3226 {
3227 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3228 unsigned int offset = skb_gro_offset(skb);
3229 unsigned int headlen = skb_headlen(skb);
3230 unsigned int len = skb_gro_len(skb);
3231 struct sk_buff *lp, *p = *head;
3232 unsigned int delta_truesize;
3233
3234 if (unlikely(p->len + len >= 65536))
3235 return -E2BIG;
3236
3237 lp = NAPI_GRO_CB(p)->last;
3238 pinfo = skb_shinfo(lp);
3239
3240 if (headlen <= offset) {
3241 skb_frag_t *frag;
3242 skb_frag_t *frag2;
3243 int i = skbinfo->nr_frags;
3244 int nr_frags = pinfo->nr_frags + i;
3245
3246 if (nr_frags > MAX_SKB_FRAGS)
3247 goto merge;
3248
3249 offset -= headlen;
3250 pinfo->nr_frags = nr_frags;
3251 skbinfo->nr_frags = 0;
3252
3253 frag = pinfo->frags + nr_frags;
3254 frag2 = skbinfo->frags + i;
3255 do {
3256 *--frag = *--frag2;
3257 } while (--i);
3258
3259 frag->page_offset += offset;
3260 skb_frag_size_sub(frag, offset);
3261
3262 /* all fragments truesize : remove (head size + sk_buff) */
3263 delta_truesize = skb->truesize -
3264 SKB_TRUESIZE(skb_end_offset(skb));
3265
3266 skb->truesize -= skb->data_len;
3267 skb->len -= skb->data_len;
3268 skb->data_len = 0;
3269
3270 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3271 goto done;
3272 } else if (skb->head_frag) {
3273 int nr_frags = pinfo->nr_frags;
3274 skb_frag_t *frag = pinfo->frags + nr_frags;
3275 struct page *page = virt_to_head_page(skb->head);
3276 unsigned int first_size = headlen - offset;
3277 unsigned int first_offset;
3278
3279 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3280 goto merge;
3281
3282 first_offset = skb->data -
3283 (unsigned char *)page_address(page) +
3284 offset;
3285
3286 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3287
3288 frag->page.p = page;
3289 frag->page_offset = first_offset;
3290 skb_frag_size_set(frag, first_size);
3291
3292 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3293 /* We dont need to clear skbinfo->nr_frags here */
3294
3295 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3296 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3297 goto done;
3298 }
3299
3300 merge:
3301 delta_truesize = skb->truesize;
3302 if (offset > headlen) {
3303 unsigned int eat = offset - headlen;
3304
3305 skbinfo->frags[0].page_offset += eat;
3306 skb_frag_size_sub(&skbinfo->frags[0], eat);
3307 skb->data_len -= eat;
3308 skb->len -= eat;
3309 offset = headlen;
3310 }
3311
3312 __skb_pull(skb, offset);
3313
3314 if (NAPI_GRO_CB(p)->last == p)
3315 skb_shinfo(p)->frag_list = skb;
3316 else
3317 NAPI_GRO_CB(p)->last->next = skb;
3318 NAPI_GRO_CB(p)->last = skb;
3319 __skb_header_release(skb);
3320 lp = p;
3321
3322 done:
3323 NAPI_GRO_CB(p)->count++;
3324 p->data_len += len;
3325 p->truesize += delta_truesize;
3326 p->len += len;
3327 if (lp != p) {
3328 lp->data_len += len;
3329 lp->truesize += delta_truesize;
3330 lp->len += len;
3331 }
3332 NAPI_GRO_CB(skb)->same_flow = 1;
3333 return 0;
3334 }
3335
3336 void __init skb_init(void)
3337 {
3338 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3339 sizeof(struct sk_buff),
3340 0,
3341 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3342 NULL);
3343 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3344 sizeof(struct sk_buff_fclones),
3345 0,
3346 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3347 NULL);
3348 }
3349
3350 /**
3351 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3352 * @skb: Socket buffer containing the buffers to be mapped
3353 * @sg: The scatter-gather list to map into
3354 * @offset: The offset into the buffer's contents to start mapping
3355 * @len: Length of buffer space to be mapped
3356 *
3357 * Fill the specified scatter-gather list with mappings/pointers into a
3358 * region of the buffer space attached to a socket buffer.
3359 */
3360 static int
3361 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3362 {
3363 int start = skb_headlen(skb);
3364 int i, copy = start - offset;
3365 struct sk_buff *frag_iter;
3366 int elt = 0;
3367
3368 if (copy > 0) {
3369 if (copy > len)
3370 copy = len;
3371 sg_set_buf(sg, skb->data + offset, copy);
3372 elt++;
3373 if ((len -= copy) == 0)
3374 return elt;
3375 offset += copy;
3376 }
3377
3378 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3379 int end;
3380
3381 WARN_ON(start > offset + len);
3382
3383 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3384 if ((copy = end - offset) > 0) {
3385 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3386
3387 if (copy > len)
3388 copy = len;
3389 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3390 frag->page_offset+offset-start);
3391 elt++;
3392 if (!(len -= copy))
3393 return elt;
3394 offset += copy;
3395 }
3396 start = end;
3397 }
3398
3399 skb_walk_frags(skb, frag_iter) {
3400 int end;
3401
3402 WARN_ON(start > offset + len);
3403
3404 end = start + frag_iter->len;
3405 if ((copy = end - offset) > 0) {
3406 if (copy > len)
3407 copy = len;
3408 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3409 copy);
3410 if ((len -= copy) == 0)
3411 return elt;
3412 offset += copy;
3413 }
3414 start = end;
3415 }
3416 BUG_ON(len);
3417 return elt;
3418 }
3419
3420 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3421 * sglist without mark the sg which contain last skb data as the end.
3422 * So the caller can mannipulate sg list as will when padding new data after
3423 * the first call without calling sg_unmark_end to expend sg list.
3424 *
3425 * Scenario to use skb_to_sgvec_nomark:
3426 * 1. sg_init_table
3427 * 2. skb_to_sgvec_nomark(payload1)
3428 * 3. skb_to_sgvec_nomark(payload2)
3429 *
3430 * This is equivalent to:
3431 * 1. sg_init_table
3432 * 2. skb_to_sgvec(payload1)
3433 * 3. sg_unmark_end
3434 * 4. skb_to_sgvec(payload2)
3435 *
3436 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3437 * is more preferable.
3438 */
3439 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3440 int offset, int len)
3441 {
3442 return __skb_to_sgvec(skb, sg, offset, len);
3443 }
3444 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3445
3446 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3447 {
3448 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3449
3450 sg_mark_end(&sg[nsg - 1]);
3451
3452 return nsg;
3453 }
3454 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3455
3456 /**
3457 * skb_cow_data - Check that a socket buffer's data buffers are writable
3458 * @skb: The socket buffer to check.
3459 * @tailbits: Amount of trailing space to be added
3460 * @trailer: Returned pointer to the skb where the @tailbits space begins
3461 *
3462 * Make sure that the data buffers attached to a socket buffer are
3463 * writable. If they are not, private copies are made of the data buffers
3464 * and the socket buffer is set to use these instead.
3465 *
3466 * If @tailbits is given, make sure that there is space to write @tailbits
3467 * bytes of data beyond current end of socket buffer. @trailer will be
3468 * set to point to the skb in which this space begins.
3469 *
3470 * The number of scatterlist elements required to completely map the
3471 * COW'd and extended socket buffer will be returned.
3472 */
3473 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3474 {
3475 int copyflag;
3476 int elt;
3477 struct sk_buff *skb1, **skb_p;
3478
3479 /* If skb is cloned or its head is paged, reallocate
3480 * head pulling out all the pages (pages are considered not writable
3481 * at the moment even if they are anonymous).
3482 */
3483 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3484 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3485 return -ENOMEM;
3486
3487 /* Easy case. Most of packets will go this way. */
3488 if (!skb_has_frag_list(skb)) {
3489 /* A little of trouble, not enough of space for trailer.
3490 * This should not happen, when stack is tuned to generate
3491 * good frames. OK, on miss we reallocate and reserve even more
3492 * space, 128 bytes is fair. */
3493
3494 if (skb_tailroom(skb) < tailbits &&
3495 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3496 return -ENOMEM;
3497
3498 /* Voila! */
3499 *trailer = skb;
3500 return 1;
3501 }
3502
3503 /* Misery. We are in troubles, going to mincer fragments... */
3504
3505 elt = 1;
3506 skb_p = &skb_shinfo(skb)->frag_list;
3507 copyflag = 0;
3508
3509 while ((skb1 = *skb_p) != NULL) {
3510 int ntail = 0;
3511
3512 /* The fragment is partially pulled by someone,
3513 * this can happen on input. Copy it and everything
3514 * after it. */
3515
3516 if (skb_shared(skb1))
3517 copyflag = 1;
3518
3519 /* If the skb is the last, worry about trailer. */
3520
3521 if (skb1->next == NULL && tailbits) {
3522 if (skb_shinfo(skb1)->nr_frags ||
3523 skb_has_frag_list(skb1) ||
3524 skb_tailroom(skb1) < tailbits)
3525 ntail = tailbits + 128;
3526 }
3527
3528 if (copyflag ||
3529 skb_cloned(skb1) ||
3530 ntail ||
3531 skb_shinfo(skb1)->nr_frags ||
3532 skb_has_frag_list(skb1)) {
3533 struct sk_buff *skb2;
3534
3535 /* Fuck, we are miserable poor guys... */
3536 if (ntail == 0)
3537 skb2 = skb_copy(skb1, GFP_ATOMIC);
3538 else
3539 skb2 = skb_copy_expand(skb1,
3540 skb_headroom(skb1),
3541 ntail,
3542 GFP_ATOMIC);
3543 if (unlikely(skb2 == NULL))
3544 return -ENOMEM;
3545
3546 if (skb1->sk)
3547 skb_set_owner_w(skb2, skb1->sk);
3548
3549 /* Looking around. Are we still alive?
3550 * OK, link new skb, drop old one */
3551
3552 skb2->next = skb1->next;
3553 *skb_p = skb2;
3554 kfree_skb(skb1);
3555 skb1 = skb2;
3556 }
3557 elt++;
3558 *trailer = skb1;
3559 skb_p = &skb1->next;
3560 }
3561
3562 return elt;
3563 }
3564 EXPORT_SYMBOL_GPL(skb_cow_data);
3565
3566 static void sock_rmem_free(struct sk_buff *skb)
3567 {
3568 struct sock *sk = skb->sk;
3569
3570 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3571 }
3572
3573 /*
3574 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3575 */
3576 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3577 {
3578 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3579 (unsigned int)sk->sk_rcvbuf)
3580 return -ENOMEM;
3581
3582 skb_orphan(skb);
3583 skb->sk = sk;
3584 skb->destructor = sock_rmem_free;
3585 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3586
3587 /* before exiting rcu section, make sure dst is refcounted */
3588 skb_dst_force(skb);
3589
3590 skb_queue_tail(&sk->sk_error_queue, skb);
3591 if (!sock_flag(sk, SOCK_DEAD))
3592 sk->sk_data_ready(sk);
3593 return 0;
3594 }
3595 EXPORT_SYMBOL(sock_queue_err_skb);
3596
3597 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3598 {
3599 struct sk_buff_head *q = &sk->sk_error_queue;
3600 struct sk_buff *skb, *skb_next;
3601 unsigned long flags;
3602 int err = 0;
3603
3604 spin_lock_irqsave(&q->lock, flags);
3605 skb = __skb_dequeue(q);
3606 if (skb && (skb_next = skb_peek(q)))
3607 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3608 spin_unlock_irqrestore(&q->lock, flags);
3609
3610 sk->sk_err = err;
3611 if (err)
3612 sk->sk_error_report(sk);
3613
3614 return skb;
3615 }
3616 EXPORT_SYMBOL(sock_dequeue_err_skb);
3617
3618 /**
3619 * skb_clone_sk - create clone of skb, and take reference to socket
3620 * @skb: the skb to clone
3621 *
3622 * This function creates a clone of a buffer that holds a reference on
3623 * sk_refcnt. Buffers created via this function are meant to be
3624 * returned using sock_queue_err_skb, or free via kfree_skb.
3625 *
3626 * When passing buffers allocated with this function to sock_queue_err_skb
3627 * it is necessary to wrap the call with sock_hold/sock_put in order to
3628 * prevent the socket from being released prior to being enqueued on
3629 * the sk_error_queue.
3630 */
3631 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3632 {
3633 struct sock *sk = skb->sk;
3634 struct sk_buff *clone;
3635
3636 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3637 return NULL;
3638
3639 clone = skb_clone(skb, GFP_ATOMIC);
3640 if (!clone) {
3641 sock_put(sk);
3642 return NULL;
3643 }
3644
3645 clone->sk = sk;
3646 clone->destructor = sock_efree;
3647
3648 return clone;
3649 }
3650 EXPORT_SYMBOL(skb_clone_sk);
3651
3652 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3653 struct sock *sk,
3654 int tstype)
3655 {
3656 struct sock_exterr_skb *serr;
3657 int err;
3658
3659 serr = SKB_EXT_ERR(skb);
3660 memset(serr, 0, sizeof(*serr));
3661 serr->ee.ee_errno = ENOMSG;
3662 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3663 serr->ee.ee_info = tstype;
3664 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3665 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3666 if (sk->sk_protocol == IPPROTO_TCP &&
3667 sk->sk_type == SOCK_STREAM)
3668 serr->ee.ee_data -= sk->sk_tskey;
3669 }
3670
3671 err = sock_queue_err_skb(sk, skb);
3672
3673 if (err)
3674 kfree_skb(skb);
3675 }
3676
3677 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3678 {
3679 bool ret;
3680
3681 if (likely(sysctl_tstamp_allow_data || tsonly))
3682 return true;
3683
3684 read_lock_bh(&sk->sk_callback_lock);
3685 ret = sk->sk_socket && sk->sk_socket->file &&
3686 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3687 read_unlock_bh(&sk->sk_callback_lock);
3688 return ret;
3689 }
3690
3691 void skb_complete_tx_timestamp(struct sk_buff *skb,
3692 struct skb_shared_hwtstamps *hwtstamps)
3693 {
3694 struct sock *sk = skb->sk;
3695
3696 if (!skb_may_tx_timestamp(sk, false))
3697 return;
3698
3699 /* take a reference to prevent skb_orphan() from freeing the socket */
3700 sock_hold(sk);
3701
3702 *skb_hwtstamps(skb) = *hwtstamps;
3703 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3704
3705 sock_put(sk);
3706 }
3707 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3708
3709 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3710 struct skb_shared_hwtstamps *hwtstamps,
3711 struct sock *sk, int tstype)
3712 {
3713 struct sk_buff *skb;
3714 bool tsonly;
3715
3716 if (!sk)
3717 return;
3718
3719 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3720 if (!skb_may_tx_timestamp(sk, tsonly))
3721 return;
3722
3723 if (tsonly)
3724 skb = alloc_skb(0, GFP_ATOMIC);
3725 else
3726 skb = skb_clone(orig_skb, GFP_ATOMIC);
3727 if (!skb)
3728 return;
3729
3730 if (tsonly) {
3731 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3732 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3733 }
3734
3735 if (hwtstamps)
3736 *skb_hwtstamps(skb) = *hwtstamps;
3737 else
3738 skb->tstamp = ktime_get_real();
3739
3740 __skb_complete_tx_timestamp(skb, sk, tstype);
3741 }
3742 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3743
3744 void skb_tstamp_tx(struct sk_buff *orig_skb,
3745 struct skb_shared_hwtstamps *hwtstamps)
3746 {
3747 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3748 SCM_TSTAMP_SND);
3749 }
3750 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3751
3752 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3753 {
3754 struct sock *sk = skb->sk;
3755 struct sock_exterr_skb *serr;
3756 int err;
3757
3758 skb->wifi_acked_valid = 1;
3759 skb->wifi_acked = acked;
3760
3761 serr = SKB_EXT_ERR(skb);
3762 memset(serr, 0, sizeof(*serr));
3763 serr->ee.ee_errno = ENOMSG;
3764 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3765
3766 /* take a reference to prevent skb_orphan() from freeing the socket */
3767 sock_hold(sk);
3768
3769 err = sock_queue_err_skb(sk, skb);
3770 if (err)
3771 kfree_skb(skb);
3772
3773 sock_put(sk);
3774 }
3775 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3776
3777 /**
3778 * skb_partial_csum_set - set up and verify partial csum values for packet
3779 * @skb: the skb to set
3780 * @start: the number of bytes after skb->data to start checksumming.
3781 * @off: the offset from start to place the checksum.
3782 *
3783 * For untrusted partially-checksummed packets, we need to make sure the values
3784 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3785 *
3786 * This function checks and sets those values and skb->ip_summed: if this
3787 * returns false you should drop the packet.
3788 */
3789 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3790 {
3791 if (unlikely(start > skb_headlen(skb)) ||
3792 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3793 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3794 start, off, skb_headlen(skb));
3795 return false;
3796 }
3797 skb->ip_summed = CHECKSUM_PARTIAL;
3798 skb->csum_start = skb_headroom(skb) + start;
3799 skb->csum_offset = off;
3800 skb_set_transport_header(skb, start);
3801 return true;
3802 }
3803 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3804
3805 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3806 unsigned int max)
3807 {
3808 if (skb_headlen(skb) >= len)
3809 return 0;
3810
3811 /* If we need to pullup then pullup to the max, so we
3812 * won't need to do it again.
3813 */
3814 if (max > skb->len)
3815 max = skb->len;
3816
3817 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3818 return -ENOMEM;
3819
3820 if (skb_headlen(skb) < len)
3821 return -EPROTO;
3822
3823 return 0;
3824 }
3825
3826 #define MAX_TCP_HDR_LEN (15 * 4)
3827
3828 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3829 typeof(IPPROTO_IP) proto,
3830 unsigned int off)
3831 {
3832 switch (proto) {
3833 int err;
3834
3835 case IPPROTO_TCP:
3836 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3837 off + MAX_TCP_HDR_LEN);
3838 if (!err && !skb_partial_csum_set(skb, off,
3839 offsetof(struct tcphdr,
3840 check)))
3841 err = -EPROTO;
3842 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3843
3844 case IPPROTO_UDP:
3845 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3846 off + sizeof(struct udphdr));
3847 if (!err && !skb_partial_csum_set(skb, off,
3848 offsetof(struct udphdr,
3849 check)))
3850 err = -EPROTO;
3851 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3852 }
3853
3854 return ERR_PTR(-EPROTO);
3855 }
3856
3857 /* This value should be large enough to cover a tagged ethernet header plus
3858 * maximally sized IP and TCP or UDP headers.
3859 */
3860 #define MAX_IP_HDR_LEN 128
3861
3862 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3863 {
3864 unsigned int off;
3865 bool fragment;
3866 __sum16 *csum;
3867 int err;
3868
3869 fragment = false;
3870
3871 err = skb_maybe_pull_tail(skb,
3872 sizeof(struct iphdr),
3873 MAX_IP_HDR_LEN);
3874 if (err < 0)
3875 goto out;
3876
3877 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3878 fragment = true;
3879
3880 off = ip_hdrlen(skb);
3881
3882 err = -EPROTO;
3883
3884 if (fragment)
3885 goto out;
3886
3887 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3888 if (IS_ERR(csum))
3889 return PTR_ERR(csum);
3890
3891 if (recalculate)
3892 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3893 ip_hdr(skb)->daddr,
3894 skb->len - off,
3895 ip_hdr(skb)->protocol, 0);
3896 err = 0;
3897
3898 out:
3899 return err;
3900 }
3901
3902 /* This value should be large enough to cover a tagged ethernet header plus
3903 * an IPv6 header, all options, and a maximal TCP or UDP header.
3904 */
3905 #define MAX_IPV6_HDR_LEN 256
3906
3907 #define OPT_HDR(type, skb, off) \
3908 (type *)(skb_network_header(skb) + (off))
3909
3910 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3911 {
3912 int err;
3913 u8 nexthdr;
3914 unsigned int off;
3915 unsigned int len;
3916 bool fragment;
3917 bool done;
3918 __sum16 *csum;
3919
3920 fragment = false;
3921 done = false;
3922
3923 off = sizeof(struct ipv6hdr);
3924
3925 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3926 if (err < 0)
3927 goto out;
3928
3929 nexthdr = ipv6_hdr(skb)->nexthdr;
3930
3931 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3932 while (off <= len && !done) {
3933 switch (nexthdr) {
3934 case IPPROTO_DSTOPTS:
3935 case IPPROTO_HOPOPTS:
3936 case IPPROTO_ROUTING: {
3937 struct ipv6_opt_hdr *hp;
3938
3939 err = skb_maybe_pull_tail(skb,
3940 off +
3941 sizeof(struct ipv6_opt_hdr),
3942 MAX_IPV6_HDR_LEN);
3943 if (err < 0)
3944 goto out;
3945
3946 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3947 nexthdr = hp->nexthdr;
3948 off += ipv6_optlen(hp);
3949 break;
3950 }
3951 case IPPROTO_AH: {
3952 struct ip_auth_hdr *hp;
3953
3954 err = skb_maybe_pull_tail(skb,
3955 off +
3956 sizeof(struct ip_auth_hdr),
3957 MAX_IPV6_HDR_LEN);
3958 if (err < 0)
3959 goto out;
3960
3961 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3962 nexthdr = hp->nexthdr;
3963 off += ipv6_authlen(hp);
3964 break;
3965 }
3966 case IPPROTO_FRAGMENT: {
3967 struct frag_hdr *hp;
3968
3969 err = skb_maybe_pull_tail(skb,
3970 off +
3971 sizeof(struct frag_hdr),
3972 MAX_IPV6_HDR_LEN);
3973 if (err < 0)
3974 goto out;
3975
3976 hp = OPT_HDR(struct frag_hdr, skb, off);
3977
3978 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3979 fragment = true;
3980
3981 nexthdr = hp->nexthdr;
3982 off += sizeof(struct frag_hdr);
3983 break;
3984 }
3985 default:
3986 done = true;
3987 break;
3988 }
3989 }
3990
3991 err = -EPROTO;
3992
3993 if (!done || fragment)
3994 goto out;
3995
3996 csum = skb_checksum_setup_ip(skb, nexthdr, off);
3997 if (IS_ERR(csum))
3998 return PTR_ERR(csum);
3999
4000 if (recalculate)
4001 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4002 &ipv6_hdr(skb)->daddr,
4003 skb->len - off, nexthdr, 0);
4004 err = 0;
4005
4006 out:
4007 return err;
4008 }
4009
4010 /**
4011 * skb_checksum_setup - set up partial checksum offset
4012 * @skb: the skb to set up
4013 * @recalculate: if true the pseudo-header checksum will be recalculated
4014 */
4015 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4016 {
4017 int err;
4018
4019 switch (skb->protocol) {
4020 case htons(ETH_P_IP):
4021 err = skb_checksum_setup_ipv4(skb, recalculate);
4022 break;
4023
4024 case htons(ETH_P_IPV6):
4025 err = skb_checksum_setup_ipv6(skb, recalculate);
4026 break;
4027
4028 default:
4029 err = -EPROTO;
4030 break;
4031 }
4032
4033 return err;
4034 }
4035 EXPORT_SYMBOL(skb_checksum_setup);
4036
4037 /**
4038 * skb_checksum_maybe_trim - maybe trims the given skb
4039 * @skb: the skb to check
4040 * @transport_len: the data length beyond the network header
4041 *
4042 * Checks whether the given skb has data beyond the given transport length.
4043 * If so, returns a cloned skb trimmed to this transport length.
4044 * Otherwise returns the provided skb. Returns NULL in error cases
4045 * (e.g. transport_len exceeds skb length or out-of-memory).
4046 *
4047 * Caller needs to set the skb transport header and free any returned skb if it
4048 * differs from the provided skb.
4049 */
4050 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4051 unsigned int transport_len)
4052 {
4053 struct sk_buff *skb_chk;
4054 unsigned int len = skb_transport_offset(skb) + transport_len;
4055 int ret;
4056
4057 if (skb->len < len)
4058 return NULL;
4059 else if (skb->len == len)
4060 return skb;
4061
4062 skb_chk = skb_clone(skb, GFP_ATOMIC);
4063 if (!skb_chk)
4064 return NULL;
4065
4066 ret = pskb_trim_rcsum(skb_chk, len);
4067 if (ret) {
4068 kfree_skb(skb_chk);
4069 return NULL;
4070 }
4071
4072 return skb_chk;
4073 }
4074
4075 /**
4076 * skb_checksum_trimmed - validate checksum of an skb
4077 * @skb: the skb to check
4078 * @transport_len: the data length beyond the network header
4079 * @skb_chkf: checksum function to use
4080 *
4081 * Applies the given checksum function skb_chkf to the provided skb.
4082 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4083 *
4084 * If the skb has data beyond the given transport length, then a
4085 * trimmed & cloned skb is checked and returned.
4086 *
4087 * Caller needs to set the skb transport header and free any returned skb if it
4088 * differs from the provided skb.
4089 */
4090 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4091 unsigned int transport_len,
4092 __sum16(*skb_chkf)(struct sk_buff *skb))
4093 {
4094 struct sk_buff *skb_chk;
4095 unsigned int offset = skb_transport_offset(skb);
4096 __sum16 ret;
4097
4098 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4099 if (!skb_chk)
4100 goto err;
4101
4102 if (!pskb_may_pull(skb_chk, offset))
4103 goto err;
4104
4105 skb_pull_rcsum(skb_chk, offset);
4106 ret = skb_chkf(skb_chk);
4107 skb_push_rcsum(skb_chk, offset);
4108
4109 if (ret)
4110 goto err;
4111
4112 return skb_chk;
4113
4114 err:
4115 if (skb_chk && skb_chk != skb)
4116 kfree_skb(skb_chk);
4117
4118 return NULL;
4119
4120 }
4121 EXPORT_SYMBOL(skb_checksum_trimmed);
4122
4123 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4124 {
4125 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4126 skb->dev->name);
4127 }
4128 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4129
4130 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4131 {
4132 if (head_stolen) {
4133 skb_release_head_state(skb);
4134 kmem_cache_free(skbuff_head_cache, skb);
4135 } else {
4136 __kfree_skb(skb);
4137 }
4138 }
4139 EXPORT_SYMBOL(kfree_skb_partial);
4140
4141 /**
4142 * skb_try_coalesce - try to merge skb to prior one
4143 * @to: prior buffer
4144 * @from: buffer to add
4145 * @fragstolen: pointer to boolean
4146 * @delta_truesize: how much more was allocated than was requested
4147 */
4148 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4149 bool *fragstolen, int *delta_truesize)
4150 {
4151 int i, delta, len = from->len;
4152
4153 *fragstolen = false;
4154
4155 if (skb_cloned(to))
4156 return false;
4157
4158 if (len <= skb_tailroom(to)) {
4159 if (len)
4160 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4161 *delta_truesize = 0;
4162 return true;
4163 }
4164
4165 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4166 return false;
4167
4168 if (skb_headlen(from) != 0) {
4169 struct page *page;
4170 unsigned int offset;
4171
4172 if (skb_shinfo(to)->nr_frags +
4173 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4174 return false;
4175
4176 if (skb_head_is_locked(from))
4177 return false;
4178
4179 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4180
4181 page = virt_to_head_page(from->head);
4182 offset = from->data - (unsigned char *)page_address(page);
4183
4184 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4185 page, offset, skb_headlen(from));
4186 *fragstolen = true;
4187 } else {
4188 if (skb_shinfo(to)->nr_frags +
4189 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4190 return false;
4191
4192 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4193 }
4194
4195 WARN_ON_ONCE(delta < len);
4196
4197 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4198 skb_shinfo(from)->frags,
4199 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4200 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4201
4202 if (!skb_cloned(from))
4203 skb_shinfo(from)->nr_frags = 0;
4204
4205 /* if the skb is not cloned this does nothing
4206 * since we set nr_frags to 0.
4207 */
4208 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4209 skb_frag_ref(from, i);
4210
4211 to->truesize += delta;
4212 to->len += len;
4213 to->data_len += len;
4214
4215 *delta_truesize = delta;
4216 return true;
4217 }
4218 EXPORT_SYMBOL(skb_try_coalesce);
4219
4220 /**
4221 * skb_scrub_packet - scrub an skb
4222 *
4223 * @skb: buffer to clean
4224 * @xnet: packet is crossing netns
4225 *
4226 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4227 * into/from a tunnel. Some information have to be cleared during these
4228 * operations.
4229 * skb_scrub_packet can also be used to clean a skb before injecting it in
4230 * another namespace (@xnet == true). We have to clear all information in the
4231 * skb that could impact namespace isolation.
4232 */
4233 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4234 {
4235 skb->tstamp.tv64 = 0;
4236 skb->pkt_type = PACKET_HOST;
4237 skb->skb_iif = 0;
4238 skb->ignore_df = 0;
4239 skb_dst_drop(skb);
4240 skb_sender_cpu_clear(skb);
4241 secpath_reset(skb);
4242 nf_reset(skb);
4243 nf_reset_trace(skb);
4244
4245 if (!xnet)
4246 return;
4247
4248 skb_orphan(skb);
4249 skb->mark = 0;
4250 }
4251 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4252
4253 /**
4254 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4255 *
4256 * @skb: GSO skb
4257 *
4258 * skb_gso_transport_seglen is used to determine the real size of the
4259 * individual segments, including Layer4 headers (TCP/UDP).
4260 *
4261 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4262 */
4263 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4264 {
4265 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4266 unsigned int thlen = 0;
4267
4268 if (skb->encapsulation) {
4269 thlen = skb_inner_transport_header(skb) -
4270 skb_transport_header(skb);
4271
4272 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4273 thlen += inner_tcp_hdrlen(skb);
4274 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4275 thlen = tcp_hdrlen(skb);
4276 }
4277 /* UFO sets gso_size to the size of the fragmentation
4278 * payload, i.e. the size of the L4 (UDP) header is already
4279 * accounted for.
4280 */
4281 return thlen + shinfo->gso_size;
4282 }
4283 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4284
4285 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4286 {
4287 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4288 kfree_skb(skb);
4289 return NULL;
4290 }
4291
4292 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4293 2 * ETH_ALEN);
4294 skb->mac_header += VLAN_HLEN;
4295 return skb;
4296 }
4297
4298 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4299 {
4300 struct vlan_hdr *vhdr;
4301 u16 vlan_tci;
4302
4303 if (unlikely(skb_vlan_tag_present(skb))) {
4304 /* vlan_tci is already set-up so leave this for another time */
4305 return skb;
4306 }
4307
4308 skb = skb_share_check(skb, GFP_ATOMIC);
4309 if (unlikely(!skb))
4310 goto err_free;
4311
4312 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4313 goto err_free;
4314
4315 vhdr = (struct vlan_hdr *)skb->data;
4316 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4317 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4318
4319 skb_pull_rcsum(skb, VLAN_HLEN);
4320 vlan_set_encap_proto(skb, vhdr);
4321
4322 skb = skb_reorder_vlan_header(skb);
4323 if (unlikely(!skb))
4324 goto err_free;
4325
4326 skb_reset_network_header(skb);
4327 skb_reset_transport_header(skb);
4328 skb_reset_mac_len(skb);
4329
4330 return skb;
4331
4332 err_free:
4333 kfree_skb(skb);
4334 return NULL;
4335 }
4336 EXPORT_SYMBOL(skb_vlan_untag);
4337
4338 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4339 {
4340 if (!pskb_may_pull(skb, write_len))
4341 return -ENOMEM;
4342
4343 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4344 return 0;
4345
4346 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4347 }
4348 EXPORT_SYMBOL(skb_ensure_writable);
4349
4350 /* remove VLAN header from packet and update csum accordingly. */
4351 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4352 {
4353 struct vlan_hdr *vhdr;
4354 unsigned int offset = skb->data - skb_mac_header(skb);
4355 int err;
4356
4357 __skb_push(skb, offset);
4358 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4359 if (unlikely(err))
4360 goto pull;
4361
4362 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4363
4364 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4365 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4366
4367 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4368 __skb_pull(skb, VLAN_HLEN);
4369
4370 vlan_set_encap_proto(skb, vhdr);
4371 skb->mac_header += VLAN_HLEN;
4372
4373 if (skb_network_offset(skb) < ETH_HLEN)
4374 skb_set_network_header(skb, ETH_HLEN);
4375
4376 skb_reset_mac_len(skb);
4377 pull:
4378 __skb_pull(skb, offset);
4379
4380 return err;
4381 }
4382
4383 int skb_vlan_pop(struct sk_buff *skb)
4384 {
4385 u16 vlan_tci;
4386 __be16 vlan_proto;
4387 int err;
4388
4389 if (likely(skb_vlan_tag_present(skb))) {
4390 skb->vlan_tci = 0;
4391 } else {
4392 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4393 skb->protocol != htons(ETH_P_8021AD)) ||
4394 skb->len < VLAN_ETH_HLEN))
4395 return 0;
4396
4397 err = __skb_vlan_pop(skb, &vlan_tci);
4398 if (err)
4399 return err;
4400 }
4401 /* move next vlan tag to hw accel tag */
4402 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4403 skb->protocol != htons(ETH_P_8021AD)) ||
4404 skb->len < VLAN_ETH_HLEN))
4405 return 0;
4406
4407 vlan_proto = skb->protocol;
4408 err = __skb_vlan_pop(skb, &vlan_tci);
4409 if (unlikely(err))
4410 return err;
4411
4412 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4413 return 0;
4414 }
4415 EXPORT_SYMBOL(skb_vlan_pop);
4416
4417 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4418 {
4419 if (skb_vlan_tag_present(skb)) {
4420 unsigned int offset = skb->data - skb_mac_header(skb);
4421 int err;
4422
4423 /* __vlan_insert_tag expect skb->data pointing to mac header.
4424 * So change skb->data before calling it and change back to
4425 * original position later
4426 */
4427 __skb_push(skb, offset);
4428 err = __vlan_insert_tag(skb, skb->vlan_proto,
4429 skb_vlan_tag_get(skb));
4430 if (err)
4431 return err;
4432 skb->protocol = skb->vlan_proto;
4433 skb->mac_len += VLAN_HLEN;
4434 __skb_pull(skb, offset);
4435
4436 if (skb->ip_summed == CHECKSUM_COMPLETE)
4437 skb->csum = csum_add(skb->csum, csum_partial(skb->data
4438 + (2 * ETH_ALEN), VLAN_HLEN, 0));
4439 }
4440 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4441 return 0;
4442 }
4443 EXPORT_SYMBOL(skb_vlan_push);
4444
4445 /**
4446 * alloc_skb_with_frags - allocate skb with page frags
4447 *
4448 * @header_len: size of linear part
4449 * @data_len: needed length in frags
4450 * @max_page_order: max page order desired.
4451 * @errcode: pointer to error code if any
4452 * @gfp_mask: allocation mask
4453 *
4454 * This can be used to allocate a paged skb, given a maximal order for frags.
4455 */
4456 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4457 unsigned long data_len,
4458 int max_page_order,
4459 int *errcode,
4460 gfp_t gfp_mask)
4461 {
4462 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4463 unsigned long chunk;
4464 struct sk_buff *skb;
4465 struct page *page;
4466 gfp_t gfp_head;
4467 int i;
4468
4469 *errcode = -EMSGSIZE;
4470 /* Note this test could be relaxed, if we succeed to allocate
4471 * high order pages...
4472 */
4473 if (npages > MAX_SKB_FRAGS)
4474 return NULL;
4475
4476 gfp_head = gfp_mask;
4477 if (gfp_head & __GFP_DIRECT_RECLAIM)
4478 gfp_head |= __GFP_REPEAT;
4479
4480 *errcode = -ENOBUFS;
4481 skb = alloc_skb(header_len, gfp_head);
4482 if (!skb)
4483 return NULL;
4484
4485 skb->truesize += npages << PAGE_SHIFT;
4486
4487 for (i = 0; npages > 0; i++) {
4488 int order = max_page_order;
4489
4490 while (order) {
4491 if (npages >= 1 << order) {
4492 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4493 __GFP_COMP |
4494 __GFP_NOWARN |
4495 __GFP_NORETRY,
4496 order);
4497 if (page)
4498 goto fill_page;
4499 /* Do not retry other high order allocations */
4500 order = 1;
4501 max_page_order = 0;
4502 }
4503 order--;
4504 }
4505 page = alloc_page(gfp_mask);
4506 if (!page)
4507 goto failure;
4508 fill_page:
4509 chunk = min_t(unsigned long, data_len,
4510 PAGE_SIZE << order);
4511 skb_fill_page_desc(skb, i, page, 0, chunk);
4512 data_len -= chunk;
4513 npages -= 1 << order;
4514 }
4515 return skb;
4516
4517 failure:
4518 kfree_skb(skb);
4519 return NULL;
4520 }
4521 EXPORT_SYMBOL(alloc_skb_with_frags);
This page took 0.114595 seconds and 6 git commands to generate.