[NET] NETNS: Omit sock->sk_net without CONFIG_NET_NS.
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
137 */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-29" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 struct timeval tv;
219
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
226
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
229
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit())
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 return 0;
237 }
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
255 }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
263 }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 int err = 0;
270 int skb_len;
271
272 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
274 */
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
279 }
280
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
284
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
288 }
289
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
292
293 /* Cache the SKB length before we tack it onto the receive
294 * queue. Once it is added it no longer belongs to us and
295 * may be freed by other threads of control pulling packets
296 * from the queue.
297 */
298 skb_len = skb->len;
299
300 skb_queue_tail(&sk->sk_receive_queue, skb);
301
302 if (!sock_flag(sk, SOCK_DEAD))
303 sk->sk_data_ready(sk, skb_len);
304 out:
305 return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311 int rc = NET_RX_SUCCESS;
312
313 if (sk_filter(sk, skb))
314 goto discard_and_relse;
315
316 skb->dev = NULL;
317
318 if (nested)
319 bh_lock_sock_nested(sk);
320 else
321 bh_lock_sock(sk);
322 if (!sock_owned_by_user(sk)) {
323 /*
324 * trylock + unlock semantics:
325 */
326 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328 rc = sk->sk_backlog_rcv(sk, skb);
329
330 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331 } else
332 sk_add_backlog(sk, skb);
333 bh_unlock_sock(sk);
334 out:
335 sock_put(sk);
336 return rc;
337 discard_and_relse:
338 kfree_skb(skb);
339 goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345 struct dst_entry *dst = sk->sk_dst_cache;
346
347 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348 sk->sk_dst_cache = NULL;
349 dst_release(dst);
350 return NULL;
351 }
352
353 return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359 struct dst_entry *dst = sk_dst_get(sk);
360
361 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362 sk_dst_reset(sk);
363 dst_release(dst);
364 return NULL;
365 }
366
367 return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373 int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375 struct net *net = sock_net(sk);
376 char devname[IFNAMSIZ];
377 int index;
378
379 /* Sorry... */
380 ret = -EPERM;
381 if (!capable(CAP_NET_RAW))
382 goto out;
383
384 ret = -EINVAL;
385 if (optlen < 0)
386 goto out;
387
388 /* Bind this socket to a particular device like "eth0",
389 * as specified in the passed interface name. If the
390 * name is "" or the option length is zero the socket
391 * is not bound.
392 */
393 if (optlen > IFNAMSIZ - 1)
394 optlen = IFNAMSIZ - 1;
395 memset(devname, 0, sizeof(devname));
396
397 ret = -EFAULT;
398 if (copy_from_user(devname, optval, optlen))
399 goto out;
400
401 if (devname[0] == '\0') {
402 index = 0;
403 } else {
404 struct net_device *dev = dev_get_by_name(net, devname);
405
406 ret = -ENODEV;
407 if (!dev)
408 goto out;
409
410 index = dev->ifindex;
411 dev_put(dev);
412 }
413
414 lock_sock(sk);
415 sk->sk_bound_dev_if = index;
416 sk_dst_reset(sk);
417 release_sock(sk);
418
419 ret = 0;
420
421 out:
422 #endif
423
424 return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429 if (valbool)
430 sock_set_flag(sk, bit);
431 else
432 sock_reset_flag(sk, bit);
433 }
434
435 /*
436 * This is meant for all protocols to use and covers goings on
437 * at the socket level. Everything here is generic.
438 */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441 char __user *optval, int optlen)
442 {
443 struct sock *sk=sock->sk;
444 int val;
445 int valbool;
446 struct linger ling;
447 int ret = 0;
448
449 /*
450 * Options without arguments
451 */
452
453 #ifdef SO_DONTLINGER /* Compatibility item... */
454 if (optname == SO_DONTLINGER) {
455 lock_sock(sk);
456 sock_reset_flag(sk, SOCK_LINGER);
457 release_sock(sk);
458 return 0;
459 }
460 #endif
461
462 if (optname == SO_BINDTODEVICE)
463 return sock_bindtodevice(sk, optval, optlen);
464
465 if (optlen < sizeof(int))
466 return -EINVAL;
467
468 if (get_user(val, (int __user *)optval))
469 return -EFAULT;
470
471 valbool = val?1:0;
472
473 lock_sock(sk);
474
475 switch(optname) {
476 case SO_DEBUG:
477 if (val && !capable(CAP_NET_ADMIN)) {
478 ret = -EACCES;
479 } else
480 sock_valbool_flag(sk, SOCK_DBG, valbool);
481 break;
482 case SO_REUSEADDR:
483 sk->sk_reuse = valbool;
484 break;
485 case SO_TYPE:
486 case SO_ERROR:
487 ret = -ENOPROTOOPT;
488 break;
489 case SO_DONTROUTE:
490 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491 break;
492 case SO_BROADCAST:
493 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494 break;
495 case SO_SNDBUF:
496 /* Don't error on this BSD doesn't and if you think
497 about it this is right. Otherwise apps have to
498 play 'guess the biggest size' games. RCVBUF/SNDBUF
499 are treated in BSD as hints */
500
501 if (val > sysctl_wmem_max)
502 val = sysctl_wmem_max;
503 set_sndbuf:
504 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505 if ((val * 2) < SOCK_MIN_SNDBUF)
506 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507 else
508 sk->sk_sndbuf = val * 2;
509
510 /*
511 * Wake up sending tasks if we
512 * upped the value.
513 */
514 sk->sk_write_space(sk);
515 break;
516
517 case SO_SNDBUFFORCE:
518 if (!capable(CAP_NET_ADMIN)) {
519 ret = -EPERM;
520 break;
521 }
522 goto set_sndbuf;
523
524 case SO_RCVBUF:
525 /* Don't error on this BSD doesn't and if you think
526 about it this is right. Otherwise apps have to
527 play 'guess the biggest size' games. RCVBUF/SNDBUF
528 are treated in BSD as hints */
529
530 if (val > sysctl_rmem_max)
531 val = sysctl_rmem_max;
532 set_rcvbuf:
533 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534 /*
535 * We double it on the way in to account for
536 * "struct sk_buff" etc. overhead. Applications
537 * assume that the SO_RCVBUF setting they make will
538 * allow that much actual data to be received on that
539 * socket.
540 *
541 * Applications are unaware that "struct sk_buff" and
542 * other overheads allocate from the receive buffer
543 * during socket buffer allocation.
544 *
545 * And after considering the possible alternatives,
546 * returning the value we actually used in getsockopt
547 * is the most desirable behavior.
548 */
549 if ((val * 2) < SOCK_MIN_RCVBUF)
550 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551 else
552 sk->sk_rcvbuf = val * 2;
553 break;
554
555 case SO_RCVBUFFORCE:
556 if (!capable(CAP_NET_ADMIN)) {
557 ret = -EPERM;
558 break;
559 }
560 goto set_rcvbuf;
561
562 case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564 if (sk->sk_protocol == IPPROTO_TCP)
565 tcp_set_keepalive(sk, valbool);
566 #endif
567 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568 break;
569
570 case SO_OOBINLINE:
571 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572 break;
573
574 case SO_NO_CHECK:
575 sk->sk_no_check = valbool;
576 break;
577
578 case SO_PRIORITY:
579 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580 sk->sk_priority = val;
581 else
582 ret = -EPERM;
583 break;
584
585 case SO_LINGER:
586 if (optlen < sizeof(ling)) {
587 ret = -EINVAL; /* 1003.1g */
588 break;
589 }
590 if (copy_from_user(&ling,optval,sizeof(ling))) {
591 ret = -EFAULT;
592 break;
593 }
594 if (!ling.l_onoff)
595 sock_reset_flag(sk, SOCK_LINGER);
596 else {
597 #if (BITS_PER_LONG == 32)
598 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600 else
601 #endif
602 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603 sock_set_flag(sk, SOCK_LINGER);
604 }
605 break;
606
607 case SO_BSDCOMPAT:
608 sock_warn_obsolete_bsdism("setsockopt");
609 break;
610
611 case SO_PASSCRED:
612 if (valbool)
613 set_bit(SOCK_PASSCRED, &sock->flags);
614 else
615 clear_bit(SOCK_PASSCRED, &sock->flags);
616 break;
617
618 case SO_TIMESTAMP:
619 case SO_TIMESTAMPNS:
620 if (valbool) {
621 if (optname == SO_TIMESTAMP)
622 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 else
624 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625 sock_set_flag(sk, SOCK_RCVTSTAMP);
626 sock_enable_timestamp(sk);
627 } else {
628 sock_reset_flag(sk, SOCK_RCVTSTAMP);
629 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630 }
631 break;
632
633 case SO_RCVLOWAT:
634 if (val < 0)
635 val = INT_MAX;
636 sk->sk_rcvlowat = val ? : 1;
637 break;
638
639 case SO_RCVTIMEO:
640 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641 break;
642
643 case SO_SNDTIMEO:
644 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645 break;
646
647 case SO_ATTACH_FILTER:
648 ret = -EINVAL;
649 if (optlen == sizeof(struct sock_fprog)) {
650 struct sock_fprog fprog;
651
652 ret = -EFAULT;
653 if (copy_from_user(&fprog, optval, sizeof(fprog)))
654 break;
655
656 ret = sk_attach_filter(&fprog, sk);
657 }
658 break;
659
660 case SO_DETACH_FILTER:
661 ret = sk_detach_filter(sk);
662 break;
663
664 case SO_PASSSEC:
665 if (valbool)
666 set_bit(SOCK_PASSSEC, &sock->flags);
667 else
668 clear_bit(SOCK_PASSSEC, &sock->flags);
669 break;
670 case SO_MARK:
671 if (!capable(CAP_NET_ADMIN))
672 ret = -EPERM;
673 else {
674 sk->sk_mark = val;
675 }
676 break;
677
678 /* We implement the SO_SNDLOWAT etc to
679 not be settable (1003.1g 5.3) */
680 default:
681 ret = -ENOPROTOOPT;
682 break;
683 }
684 release_sock(sk);
685 return ret;
686 }
687
688
689 int sock_getsockopt(struct socket *sock, int level, int optname,
690 char __user *optval, int __user *optlen)
691 {
692 struct sock *sk = sock->sk;
693
694 union {
695 int val;
696 struct linger ling;
697 struct timeval tm;
698 } v;
699
700 unsigned int lv = sizeof(int);
701 int len;
702
703 if (get_user(len, optlen))
704 return -EFAULT;
705 if (len < 0)
706 return -EINVAL;
707
708 switch(optname) {
709 case SO_DEBUG:
710 v.val = sock_flag(sk, SOCK_DBG);
711 break;
712
713 case SO_DONTROUTE:
714 v.val = sock_flag(sk, SOCK_LOCALROUTE);
715 break;
716
717 case SO_BROADCAST:
718 v.val = !!sock_flag(sk, SOCK_BROADCAST);
719 break;
720
721 case SO_SNDBUF:
722 v.val = sk->sk_sndbuf;
723 break;
724
725 case SO_RCVBUF:
726 v.val = sk->sk_rcvbuf;
727 break;
728
729 case SO_REUSEADDR:
730 v.val = sk->sk_reuse;
731 break;
732
733 case SO_KEEPALIVE:
734 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735 break;
736
737 case SO_TYPE:
738 v.val = sk->sk_type;
739 break;
740
741 case SO_ERROR:
742 v.val = -sock_error(sk);
743 if (v.val==0)
744 v.val = xchg(&sk->sk_err_soft, 0);
745 break;
746
747 case SO_OOBINLINE:
748 v.val = !!sock_flag(sk, SOCK_URGINLINE);
749 break;
750
751 case SO_NO_CHECK:
752 v.val = sk->sk_no_check;
753 break;
754
755 case SO_PRIORITY:
756 v.val = sk->sk_priority;
757 break;
758
759 case SO_LINGER:
760 lv = sizeof(v.ling);
761 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
762 v.ling.l_linger = sk->sk_lingertime / HZ;
763 break;
764
765 case SO_BSDCOMPAT:
766 sock_warn_obsolete_bsdism("getsockopt");
767 break;
768
769 case SO_TIMESTAMP:
770 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771 !sock_flag(sk, SOCK_RCVTSTAMPNS);
772 break;
773
774 case SO_TIMESTAMPNS:
775 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776 break;
777
778 case SO_RCVTIMEO:
779 lv=sizeof(struct timeval);
780 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781 v.tm.tv_sec = 0;
782 v.tm.tv_usec = 0;
783 } else {
784 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
786 }
787 break;
788
789 case SO_SNDTIMEO:
790 lv=sizeof(struct timeval);
791 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792 v.tm.tv_sec = 0;
793 v.tm.tv_usec = 0;
794 } else {
795 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
797 }
798 break;
799
800 case SO_RCVLOWAT:
801 v.val = sk->sk_rcvlowat;
802 break;
803
804 case SO_SNDLOWAT:
805 v.val=1;
806 break;
807
808 case SO_PASSCRED:
809 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810 break;
811
812 case SO_PEERCRED:
813 if (len > sizeof(sk->sk_peercred))
814 len = sizeof(sk->sk_peercred);
815 if (copy_to_user(optval, &sk->sk_peercred, len))
816 return -EFAULT;
817 goto lenout;
818
819 case SO_PEERNAME:
820 {
821 char address[128];
822
823 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824 return -ENOTCONN;
825 if (lv < len)
826 return -EINVAL;
827 if (copy_to_user(optval, address, len))
828 return -EFAULT;
829 goto lenout;
830 }
831
832 /* Dubious BSD thing... Probably nobody even uses it, but
833 * the UNIX standard wants it for whatever reason... -DaveM
834 */
835 case SO_ACCEPTCONN:
836 v.val = sk->sk_state == TCP_LISTEN;
837 break;
838
839 case SO_PASSSEC:
840 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841 break;
842
843 case SO_PEERSEC:
844 return security_socket_getpeersec_stream(sock, optval, optlen, len);
845
846 case SO_MARK:
847 v.val = sk->sk_mark;
848 break;
849
850 default:
851 return -ENOPROTOOPT;
852 }
853
854 if (len > lv)
855 len = lv;
856 if (copy_to_user(optval, &v, len))
857 return -EFAULT;
858 lenout:
859 if (put_user(len, optlen))
860 return -EFAULT;
861 return 0;
862 }
863
864 /*
865 * Initialize an sk_lock.
866 *
867 * (We also register the sk_lock with the lock validator.)
868 */
869 static inline void sock_lock_init(struct sock *sk)
870 {
871 sock_lock_init_class_and_name(sk,
872 af_family_slock_key_strings[sk->sk_family],
873 af_family_slock_keys + sk->sk_family,
874 af_family_key_strings[sk->sk_family],
875 af_family_keys + sk->sk_family);
876 }
877
878 static void sock_copy(struct sock *nsk, const struct sock *osk)
879 {
880 #ifdef CONFIG_SECURITY_NETWORK
881 void *sptr = nsk->sk_security;
882 #endif
883
884 memcpy(nsk, osk, osk->sk_prot->obj_size);
885 #ifdef CONFIG_SECURITY_NETWORK
886 nsk->sk_security = sptr;
887 security_sk_clone(osk, nsk);
888 #endif
889 }
890
891 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892 int family)
893 {
894 struct sock *sk;
895 struct kmem_cache *slab;
896
897 slab = prot->slab;
898 if (slab != NULL)
899 sk = kmem_cache_alloc(slab, priority);
900 else
901 sk = kmalloc(prot->obj_size, priority);
902
903 if (sk != NULL) {
904 if (security_sk_alloc(sk, family, priority))
905 goto out_free;
906
907 if (!try_module_get(prot->owner))
908 goto out_free_sec;
909 }
910
911 return sk;
912
913 out_free_sec:
914 security_sk_free(sk);
915 out_free:
916 if (slab != NULL)
917 kmem_cache_free(slab, sk);
918 else
919 kfree(sk);
920 return NULL;
921 }
922
923 static void sk_prot_free(struct proto *prot, struct sock *sk)
924 {
925 struct kmem_cache *slab;
926 struct module *owner;
927
928 owner = prot->owner;
929 slab = prot->slab;
930
931 security_sk_free(sk);
932 if (slab != NULL)
933 kmem_cache_free(slab, sk);
934 else
935 kfree(sk);
936 module_put(owner);
937 }
938
939 /**
940 * sk_alloc - All socket objects are allocated here
941 * @net: the applicable net namespace
942 * @family: protocol family
943 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944 * @prot: struct proto associated with this new sock instance
945 * @zero_it: if we should zero the newly allocated sock
946 */
947 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948 struct proto *prot)
949 {
950 struct sock *sk;
951
952 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953 if (sk) {
954 sk->sk_family = family;
955 /*
956 * See comment in struct sock definition to understand
957 * why we need sk_prot_creator -acme
958 */
959 sk->sk_prot = sk->sk_prot_creator = prot;
960 sock_lock_init(sk);
961 sock_net_set(sk, get_net(net));
962 }
963
964 return sk;
965 }
966
967 void sk_free(struct sock *sk)
968 {
969 struct sk_filter *filter;
970
971 if (sk->sk_destruct)
972 sk->sk_destruct(sk);
973
974 filter = rcu_dereference(sk->sk_filter);
975 if (filter) {
976 sk_filter_uncharge(sk, filter);
977 rcu_assign_pointer(sk->sk_filter, NULL);
978 }
979
980 sock_disable_timestamp(sk);
981
982 if (atomic_read(&sk->sk_omem_alloc))
983 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984 __func__, atomic_read(&sk->sk_omem_alloc));
985
986 put_net(sock_net(sk));
987 sk_prot_free(sk->sk_prot_creator, sk);
988 }
989
990 /*
991 * Last sock_put should drop referrence to sk->sk_net. It has already
992 * been dropped in sk_change_net. Taking referrence to stopping namespace
993 * is not an option.
994 * Take referrence to a socket to remove it from hash _alive_ and after that
995 * destroy it in the context of init_net.
996 */
997 void sk_release_kernel(struct sock *sk)
998 {
999 if (sk == NULL || sk->sk_socket == NULL)
1000 return;
1001
1002 sock_hold(sk);
1003 sock_release(sk->sk_socket);
1004 sock_net_set(sk, get_net(&init_net));
1005 sock_put(sk);
1006 }
1007 EXPORT_SYMBOL(sk_release_kernel);
1008
1009 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1010 {
1011 struct sock *newsk;
1012
1013 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1014 if (newsk != NULL) {
1015 struct sk_filter *filter;
1016
1017 sock_copy(newsk, sk);
1018
1019 /* SANITY */
1020 get_net(sock_net(newsk));
1021 sk_node_init(&newsk->sk_node);
1022 sock_lock_init(newsk);
1023 bh_lock_sock(newsk);
1024 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1025
1026 atomic_set(&newsk->sk_rmem_alloc, 0);
1027 atomic_set(&newsk->sk_wmem_alloc, 0);
1028 atomic_set(&newsk->sk_omem_alloc, 0);
1029 skb_queue_head_init(&newsk->sk_receive_queue);
1030 skb_queue_head_init(&newsk->sk_write_queue);
1031 #ifdef CONFIG_NET_DMA
1032 skb_queue_head_init(&newsk->sk_async_wait_queue);
1033 #endif
1034
1035 rwlock_init(&newsk->sk_dst_lock);
1036 rwlock_init(&newsk->sk_callback_lock);
1037 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1038 af_callback_keys + newsk->sk_family,
1039 af_family_clock_key_strings[newsk->sk_family]);
1040
1041 newsk->sk_dst_cache = NULL;
1042 newsk->sk_wmem_queued = 0;
1043 newsk->sk_forward_alloc = 0;
1044 newsk->sk_send_head = NULL;
1045 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1046
1047 sock_reset_flag(newsk, SOCK_DONE);
1048 skb_queue_head_init(&newsk->sk_error_queue);
1049
1050 filter = newsk->sk_filter;
1051 if (filter != NULL)
1052 sk_filter_charge(newsk, filter);
1053
1054 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1055 /* It is still raw copy of parent, so invalidate
1056 * destructor and make plain sk_free() */
1057 newsk->sk_destruct = NULL;
1058 sk_free(newsk);
1059 newsk = NULL;
1060 goto out;
1061 }
1062
1063 newsk->sk_err = 0;
1064 newsk->sk_priority = 0;
1065 atomic_set(&newsk->sk_refcnt, 2);
1066
1067 /*
1068 * Increment the counter in the same struct proto as the master
1069 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1070 * is the same as sk->sk_prot->socks, as this field was copied
1071 * with memcpy).
1072 *
1073 * This _changes_ the previous behaviour, where
1074 * tcp_create_openreq_child always was incrementing the
1075 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1076 * to be taken into account in all callers. -acme
1077 */
1078 sk_refcnt_debug_inc(newsk);
1079 newsk->sk_socket = NULL;
1080 newsk->sk_sleep = NULL;
1081
1082 if (newsk->sk_prot->sockets_allocated)
1083 atomic_inc(newsk->sk_prot->sockets_allocated);
1084 }
1085 out:
1086 return newsk;
1087 }
1088
1089 EXPORT_SYMBOL_GPL(sk_clone);
1090
1091 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1092 {
1093 __sk_dst_set(sk, dst);
1094 sk->sk_route_caps = dst->dev->features;
1095 if (sk->sk_route_caps & NETIF_F_GSO)
1096 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1097 if (sk_can_gso(sk)) {
1098 if (dst->header_len) {
1099 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1100 } else {
1101 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1102 sk->sk_gso_max_size = dst->dev->gso_max_size;
1103 }
1104 }
1105 }
1106 EXPORT_SYMBOL_GPL(sk_setup_caps);
1107
1108 void __init sk_init(void)
1109 {
1110 if (num_physpages <= 4096) {
1111 sysctl_wmem_max = 32767;
1112 sysctl_rmem_max = 32767;
1113 sysctl_wmem_default = 32767;
1114 sysctl_rmem_default = 32767;
1115 } else if (num_physpages >= 131072) {
1116 sysctl_wmem_max = 131071;
1117 sysctl_rmem_max = 131071;
1118 }
1119 }
1120
1121 /*
1122 * Simple resource managers for sockets.
1123 */
1124
1125
1126 /*
1127 * Write buffer destructor automatically called from kfree_skb.
1128 */
1129 void sock_wfree(struct sk_buff *skb)
1130 {
1131 struct sock *sk = skb->sk;
1132
1133 /* In case it might be waiting for more memory. */
1134 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1135 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1136 sk->sk_write_space(sk);
1137 sock_put(sk);
1138 }
1139
1140 /*
1141 * Read buffer destructor automatically called from kfree_skb.
1142 */
1143 void sock_rfree(struct sk_buff *skb)
1144 {
1145 struct sock *sk = skb->sk;
1146
1147 skb_truesize_check(skb);
1148 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1149 sk_mem_uncharge(skb->sk, skb->truesize);
1150 }
1151
1152
1153 int sock_i_uid(struct sock *sk)
1154 {
1155 int uid;
1156
1157 read_lock(&sk->sk_callback_lock);
1158 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1159 read_unlock(&sk->sk_callback_lock);
1160 return uid;
1161 }
1162
1163 unsigned long sock_i_ino(struct sock *sk)
1164 {
1165 unsigned long ino;
1166
1167 read_lock(&sk->sk_callback_lock);
1168 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1169 read_unlock(&sk->sk_callback_lock);
1170 return ino;
1171 }
1172
1173 /*
1174 * Allocate a skb from the socket's send buffer.
1175 */
1176 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1177 gfp_t priority)
1178 {
1179 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1180 struct sk_buff * skb = alloc_skb(size, priority);
1181 if (skb) {
1182 skb_set_owner_w(skb, sk);
1183 return skb;
1184 }
1185 }
1186 return NULL;
1187 }
1188
1189 /*
1190 * Allocate a skb from the socket's receive buffer.
1191 */
1192 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1193 gfp_t priority)
1194 {
1195 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1196 struct sk_buff *skb = alloc_skb(size, priority);
1197 if (skb) {
1198 skb_set_owner_r(skb, sk);
1199 return skb;
1200 }
1201 }
1202 return NULL;
1203 }
1204
1205 /*
1206 * Allocate a memory block from the socket's option memory buffer.
1207 */
1208 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1209 {
1210 if ((unsigned)size <= sysctl_optmem_max &&
1211 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1212 void *mem;
1213 /* First do the add, to avoid the race if kmalloc
1214 * might sleep.
1215 */
1216 atomic_add(size, &sk->sk_omem_alloc);
1217 mem = kmalloc(size, priority);
1218 if (mem)
1219 return mem;
1220 atomic_sub(size, &sk->sk_omem_alloc);
1221 }
1222 return NULL;
1223 }
1224
1225 /*
1226 * Free an option memory block.
1227 */
1228 void sock_kfree_s(struct sock *sk, void *mem, int size)
1229 {
1230 kfree(mem);
1231 atomic_sub(size, &sk->sk_omem_alloc);
1232 }
1233
1234 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1235 I think, these locks should be removed for datagram sockets.
1236 */
1237 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1238 {
1239 DEFINE_WAIT(wait);
1240
1241 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1242 for (;;) {
1243 if (!timeo)
1244 break;
1245 if (signal_pending(current))
1246 break;
1247 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1248 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1249 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1250 break;
1251 if (sk->sk_shutdown & SEND_SHUTDOWN)
1252 break;
1253 if (sk->sk_err)
1254 break;
1255 timeo = schedule_timeout(timeo);
1256 }
1257 finish_wait(sk->sk_sleep, &wait);
1258 return timeo;
1259 }
1260
1261
1262 /*
1263 * Generic send/receive buffer handlers
1264 */
1265
1266 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1267 unsigned long header_len,
1268 unsigned long data_len,
1269 int noblock, int *errcode)
1270 {
1271 struct sk_buff *skb;
1272 gfp_t gfp_mask;
1273 long timeo;
1274 int err;
1275
1276 gfp_mask = sk->sk_allocation;
1277 if (gfp_mask & __GFP_WAIT)
1278 gfp_mask |= __GFP_REPEAT;
1279
1280 timeo = sock_sndtimeo(sk, noblock);
1281 while (1) {
1282 err = sock_error(sk);
1283 if (err != 0)
1284 goto failure;
1285
1286 err = -EPIPE;
1287 if (sk->sk_shutdown & SEND_SHUTDOWN)
1288 goto failure;
1289
1290 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1291 skb = alloc_skb(header_len, gfp_mask);
1292 if (skb) {
1293 int npages;
1294 int i;
1295
1296 /* No pages, we're done... */
1297 if (!data_len)
1298 break;
1299
1300 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1301 skb->truesize += data_len;
1302 skb_shinfo(skb)->nr_frags = npages;
1303 for (i = 0; i < npages; i++) {
1304 struct page *page;
1305 skb_frag_t *frag;
1306
1307 page = alloc_pages(sk->sk_allocation, 0);
1308 if (!page) {
1309 err = -ENOBUFS;
1310 skb_shinfo(skb)->nr_frags = i;
1311 kfree_skb(skb);
1312 goto failure;
1313 }
1314
1315 frag = &skb_shinfo(skb)->frags[i];
1316 frag->page = page;
1317 frag->page_offset = 0;
1318 frag->size = (data_len >= PAGE_SIZE ?
1319 PAGE_SIZE :
1320 data_len);
1321 data_len -= PAGE_SIZE;
1322 }
1323
1324 /* Full success... */
1325 break;
1326 }
1327 err = -ENOBUFS;
1328 goto failure;
1329 }
1330 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1331 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1332 err = -EAGAIN;
1333 if (!timeo)
1334 goto failure;
1335 if (signal_pending(current))
1336 goto interrupted;
1337 timeo = sock_wait_for_wmem(sk, timeo);
1338 }
1339
1340 skb_set_owner_w(skb, sk);
1341 return skb;
1342
1343 interrupted:
1344 err = sock_intr_errno(timeo);
1345 failure:
1346 *errcode = err;
1347 return NULL;
1348 }
1349
1350 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1351 int noblock, int *errcode)
1352 {
1353 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1354 }
1355
1356 static void __lock_sock(struct sock *sk)
1357 {
1358 DEFINE_WAIT(wait);
1359
1360 for (;;) {
1361 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1362 TASK_UNINTERRUPTIBLE);
1363 spin_unlock_bh(&sk->sk_lock.slock);
1364 schedule();
1365 spin_lock_bh(&sk->sk_lock.slock);
1366 if (!sock_owned_by_user(sk))
1367 break;
1368 }
1369 finish_wait(&sk->sk_lock.wq, &wait);
1370 }
1371
1372 static void __release_sock(struct sock *sk)
1373 {
1374 struct sk_buff *skb = sk->sk_backlog.head;
1375
1376 do {
1377 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1378 bh_unlock_sock(sk);
1379
1380 do {
1381 struct sk_buff *next = skb->next;
1382
1383 skb->next = NULL;
1384 sk->sk_backlog_rcv(sk, skb);
1385
1386 /*
1387 * We are in process context here with softirqs
1388 * disabled, use cond_resched_softirq() to preempt.
1389 * This is safe to do because we've taken the backlog
1390 * queue private:
1391 */
1392 cond_resched_softirq();
1393
1394 skb = next;
1395 } while (skb != NULL);
1396
1397 bh_lock_sock(sk);
1398 } while ((skb = sk->sk_backlog.head) != NULL);
1399 }
1400
1401 /**
1402 * sk_wait_data - wait for data to arrive at sk_receive_queue
1403 * @sk: sock to wait on
1404 * @timeo: for how long
1405 *
1406 * Now socket state including sk->sk_err is changed only under lock,
1407 * hence we may omit checks after joining wait queue.
1408 * We check receive queue before schedule() only as optimization;
1409 * it is very likely that release_sock() added new data.
1410 */
1411 int sk_wait_data(struct sock *sk, long *timeo)
1412 {
1413 int rc;
1414 DEFINE_WAIT(wait);
1415
1416 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1417 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1418 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1419 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1420 finish_wait(sk->sk_sleep, &wait);
1421 return rc;
1422 }
1423
1424 EXPORT_SYMBOL(sk_wait_data);
1425
1426 /**
1427 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1428 * @sk: socket
1429 * @size: memory size to allocate
1430 * @kind: allocation type
1431 *
1432 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1433 * rmem allocation. This function assumes that protocols which have
1434 * memory_pressure use sk_wmem_queued as write buffer accounting.
1435 */
1436 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1437 {
1438 struct proto *prot = sk->sk_prot;
1439 int amt = sk_mem_pages(size);
1440 int allocated;
1441
1442 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1443 allocated = atomic_add_return(amt, prot->memory_allocated);
1444
1445 /* Under limit. */
1446 if (allocated <= prot->sysctl_mem[0]) {
1447 if (prot->memory_pressure && *prot->memory_pressure)
1448 *prot->memory_pressure = 0;
1449 return 1;
1450 }
1451
1452 /* Under pressure. */
1453 if (allocated > prot->sysctl_mem[1])
1454 if (prot->enter_memory_pressure)
1455 prot->enter_memory_pressure();
1456
1457 /* Over hard limit. */
1458 if (allocated > prot->sysctl_mem[2])
1459 goto suppress_allocation;
1460
1461 /* guarantee minimum buffer size under pressure */
1462 if (kind == SK_MEM_RECV) {
1463 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1464 return 1;
1465 } else { /* SK_MEM_SEND */
1466 if (sk->sk_type == SOCK_STREAM) {
1467 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1468 return 1;
1469 } else if (atomic_read(&sk->sk_wmem_alloc) <
1470 prot->sysctl_wmem[0])
1471 return 1;
1472 }
1473
1474 if (prot->memory_pressure) {
1475 if (!*prot->memory_pressure ||
1476 prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1477 sk_mem_pages(sk->sk_wmem_queued +
1478 atomic_read(&sk->sk_rmem_alloc) +
1479 sk->sk_forward_alloc))
1480 return 1;
1481 }
1482
1483 suppress_allocation:
1484
1485 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1486 sk_stream_moderate_sndbuf(sk);
1487
1488 /* Fail only if socket is _under_ its sndbuf.
1489 * In this case we cannot block, so that we have to fail.
1490 */
1491 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1492 return 1;
1493 }
1494
1495 /* Alas. Undo changes. */
1496 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1497 atomic_sub(amt, prot->memory_allocated);
1498 return 0;
1499 }
1500
1501 EXPORT_SYMBOL(__sk_mem_schedule);
1502
1503 /**
1504 * __sk_reclaim - reclaim memory_allocated
1505 * @sk: socket
1506 */
1507 void __sk_mem_reclaim(struct sock *sk)
1508 {
1509 struct proto *prot = sk->sk_prot;
1510
1511 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1512 prot->memory_allocated);
1513 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1514
1515 if (prot->memory_pressure && *prot->memory_pressure &&
1516 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1517 *prot->memory_pressure = 0;
1518 }
1519
1520 EXPORT_SYMBOL(__sk_mem_reclaim);
1521
1522
1523 /*
1524 * Set of default routines for initialising struct proto_ops when
1525 * the protocol does not support a particular function. In certain
1526 * cases where it makes no sense for a protocol to have a "do nothing"
1527 * function, some default processing is provided.
1528 */
1529
1530 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1531 {
1532 return -EOPNOTSUPP;
1533 }
1534
1535 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1536 int len, int flags)
1537 {
1538 return -EOPNOTSUPP;
1539 }
1540
1541 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1542 {
1543 return -EOPNOTSUPP;
1544 }
1545
1546 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1547 {
1548 return -EOPNOTSUPP;
1549 }
1550
1551 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1552 int *len, int peer)
1553 {
1554 return -EOPNOTSUPP;
1555 }
1556
1557 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1558 {
1559 return 0;
1560 }
1561
1562 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1563 {
1564 return -EOPNOTSUPP;
1565 }
1566
1567 int sock_no_listen(struct socket *sock, int backlog)
1568 {
1569 return -EOPNOTSUPP;
1570 }
1571
1572 int sock_no_shutdown(struct socket *sock, int how)
1573 {
1574 return -EOPNOTSUPP;
1575 }
1576
1577 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, int optlen)
1579 {
1580 return -EOPNOTSUPP;
1581 }
1582
1583 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1584 char __user *optval, int __user *optlen)
1585 {
1586 return -EOPNOTSUPP;
1587 }
1588
1589 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1590 size_t len)
1591 {
1592 return -EOPNOTSUPP;
1593 }
1594
1595 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1596 size_t len, int flags)
1597 {
1598 return -EOPNOTSUPP;
1599 }
1600
1601 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1602 {
1603 /* Mirror missing mmap method error code */
1604 return -ENODEV;
1605 }
1606
1607 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1608 {
1609 ssize_t res;
1610 struct msghdr msg = {.msg_flags = flags};
1611 struct kvec iov;
1612 char *kaddr = kmap(page);
1613 iov.iov_base = kaddr + offset;
1614 iov.iov_len = size;
1615 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1616 kunmap(page);
1617 return res;
1618 }
1619
1620 /*
1621 * Default Socket Callbacks
1622 */
1623
1624 static void sock_def_wakeup(struct sock *sk)
1625 {
1626 read_lock(&sk->sk_callback_lock);
1627 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1628 wake_up_interruptible_all(sk->sk_sleep);
1629 read_unlock(&sk->sk_callback_lock);
1630 }
1631
1632 static void sock_def_error_report(struct sock *sk)
1633 {
1634 read_lock(&sk->sk_callback_lock);
1635 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1636 wake_up_interruptible(sk->sk_sleep);
1637 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1638 read_unlock(&sk->sk_callback_lock);
1639 }
1640
1641 static void sock_def_readable(struct sock *sk, int len)
1642 {
1643 read_lock(&sk->sk_callback_lock);
1644 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1645 wake_up_interruptible(sk->sk_sleep);
1646 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1647 read_unlock(&sk->sk_callback_lock);
1648 }
1649
1650 static void sock_def_write_space(struct sock *sk)
1651 {
1652 read_lock(&sk->sk_callback_lock);
1653
1654 /* Do not wake up a writer until he can make "significant"
1655 * progress. --DaveM
1656 */
1657 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1658 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1659 wake_up_interruptible(sk->sk_sleep);
1660
1661 /* Should agree with poll, otherwise some programs break */
1662 if (sock_writeable(sk))
1663 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1664 }
1665
1666 read_unlock(&sk->sk_callback_lock);
1667 }
1668
1669 static void sock_def_destruct(struct sock *sk)
1670 {
1671 kfree(sk->sk_protinfo);
1672 }
1673
1674 void sk_send_sigurg(struct sock *sk)
1675 {
1676 if (sk->sk_socket && sk->sk_socket->file)
1677 if (send_sigurg(&sk->sk_socket->file->f_owner))
1678 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1679 }
1680
1681 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1682 unsigned long expires)
1683 {
1684 if (!mod_timer(timer, expires))
1685 sock_hold(sk);
1686 }
1687
1688 EXPORT_SYMBOL(sk_reset_timer);
1689
1690 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1691 {
1692 if (timer_pending(timer) && del_timer(timer))
1693 __sock_put(sk);
1694 }
1695
1696 EXPORT_SYMBOL(sk_stop_timer);
1697
1698 void sock_init_data(struct socket *sock, struct sock *sk)
1699 {
1700 skb_queue_head_init(&sk->sk_receive_queue);
1701 skb_queue_head_init(&sk->sk_write_queue);
1702 skb_queue_head_init(&sk->sk_error_queue);
1703 #ifdef CONFIG_NET_DMA
1704 skb_queue_head_init(&sk->sk_async_wait_queue);
1705 #endif
1706
1707 sk->sk_send_head = NULL;
1708
1709 init_timer(&sk->sk_timer);
1710
1711 sk->sk_allocation = GFP_KERNEL;
1712 sk->sk_rcvbuf = sysctl_rmem_default;
1713 sk->sk_sndbuf = sysctl_wmem_default;
1714 sk->sk_state = TCP_CLOSE;
1715 sk->sk_socket = sock;
1716
1717 sock_set_flag(sk, SOCK_ZAPPED);
1718
1719 if (sock) {
1720 sk->sk_type = sock->type;
1721 sk->sk_sleep = &sock->wait;
1722 sock->sk = sk;
1723 } else
1724 sk->sk_sleep = NULL;
1725
1726 rwlock_init(&sk->sk_dst_lock);
1727 rwlock_init(&sk->sk_callback_lock);
1728 lockdep_set_class_and_name(&sk->sk_callback_lock,
1729 af_callback_keys + sk->sk_family,
1730 af_family_clock_key_strings[sk->sk_family]);
1731
1732 sk->sk_state_change = sock_def_wakeup;
1733 sk->sk_data_ready = sock_def_readable;
1734 sk->sk_write_space = sock_def_write_space;
1735 sk->sk_error_report = sock_def_error_report;
1736 sk->sk_destruct = sock_def_destruct;
1737
1738 sk->sk_sndmsg_page = NULL;
1739 sk->sk_sndmsg_off = 0;
1740
1741 sk->sk_peercred.pid = 0;
1742 sk->sk_peercred.uid = -1;
1743 sk->sk_peercred.gid = -1;
1744 sk->sk_write_pending = 0;
1745 sk->sk_rcvlowat = 1;
1746 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1747 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1748
1749 sk->sk_stamp = ktime_set(-1L, -1L);
1750
1751 atomic_set(&sk->sk_refcnt, 1);
1752 atomic_set(&sk->sk_drops, 0);
1753 }
1754
1755 void lock_sock_nested(struct sock *sk, int subclass)
1756 {
1757 might_sleep();
1758 spin_lock_bh(&sk->sk_lock.slock);
1759 if (sk->sk_lock.owned)
1760 __lock_sock(sk);
1761 sk->sk_lock.owned = 1;
1762 spin_unlock(&sk->sk_lock.slock);
1763 /*
1764 * The sk_lock has mutex_lock() semantics here:
1765 */
1766 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1767 local_bh_enable();
1768 }
1769
1770 EXPORT_SYMBOL(lock_sock_nested);
1771
1772 void release_sock(struct sock *sk)
1773 {
1774 /*
1775 * The sk_lock has mutex_unlock() semantics:
1776 */
1777 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1778
1779 spin_lock_bh(&sk->sk_lock.slock);
1780 if (sk->sk_backlog.tail)
1781 __release_sock(sk);
1782 sk->sk_lock.owned = 0;
1783 if (waitqueue_active(&sk->sk_lock.wq))
1784 wake_up(&sk->sk_lock.wq);
1785 spin_unlock_bh(&sk->sk_lock.slock);
1786 }
1787 EXPORT_SYMBOL(release_sock);
1788
1789 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1790 {
1791 struct timeval tv;
1792 if (!sock_flag(sk, SOCK_TIMESTAMP))
1793 sock_enable_timestamp(sk);
1794 tv = ktime_to_timeval(sk->sk_stamp);
1795 if (tv.tv_sec == -1)
1796 return -ENOENT;
1797 if (tv.tv_sec == 0) {
1798 sk->sk_stamp = ktime_get_real();
1799 tv = ktime_to_timeval(sk->sk_stamp);
1800 }
1801 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1802 }
1803 EXPORT_SYMBOL(sock_get_timestamp);
1804
1805 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1806 {
1807 struct timespec ts;
1808 if (!sock_flag(sk, SOCK_TIMESTAMP))
1809 sock_enable_timestamp(sk);
1810 ts = ktime_to_timespec(sk->sk_stamp);
1811 if (ts.tv_sec == -1)
1812 return -ENOENT;
1813 if (ts.tv_sec == 0) {
1814 sk->sk_stamp = ktime_get_real();
1815 ts = ktime_to_timespec(sk->sk_stamp);
1816 }
1817 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1818 }
1819 EXPORT_SYMBOL(sock_get_timestampns);
1820
1821 void sock_enable_timestamp(struct sock *sk)
1822 {
1823 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1824 sock_set_flag(sk, SOCK_TIMESTAMP);
1825 net_enable_timestamp();
1826 }
1827 }
1828
1829 /*
1830 * Get a socket option on an socket.
1831 *
1832 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1833 * asynchronous errors should be reported by getsockopt. We assume
1834 * this means if you specify SO_ERROR (otherwise whats the point of it).
1835 */
1836 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1837 char __user *optval, int __user *optlen)
1838 {
1839 struct sock *sk = sock->sk;
1840
1841 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1842 }
1843
1844 EXPORT_SYMBOL(sock_common_getsockopt);
1845
1846 #ifdef CONFIG_COMPAT
1847 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1848 char __user *optval, int __user *optlen)
1849 {
1850 struct sock *sk = sock->sk;
1851
1852 if (sk->sk_prot->compat_getsockopt != NULL)
1853 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1854 optval, optlen);
1855 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1856 }
1857 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1858 #endif
1859
1860 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1861 struct msghdr *msg, size_t size, int flags)
1862 {
1863 struct sock *sk = sock->sk;
1864 int addr_len = 0;
1865 int err;
1866
1867 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1868 flags & ~MSG_DONTWAIT, &addr_len);
1869 if (err >= 0)
1870 msg->msg_namelen = addr_len;
1871 return err;
1872 }
1873
1874 EXPORT_SYMBOL(sock_common_recvmsg);
1875
1876 /*
1877 * Set socket options on an inet socket.
1878 */
1879 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1880 char __user *optval, int optlen)
1881 {
1882 struct sock *sk = sock->sk;
1883
1884 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1885 }
1886
1887 EXPORT_SYMBOL(sock_common_setsockopt);
1888
1889 #ifdef CONFIG_COMPAT
1890 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1891 char __user *optval, int optlen)
1892 {
1893 struct sock *sk = sock->sk;
1894
1895 if (sk->sk_prot->compat_setsockopt != NULL)
1896 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1897 optval, optlen);
1898 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1899 }
1900 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1901 #endif
1902
1903 void sk_common_release(struct sock *sk)
1904 {
1905 if (sk->sk_prot->destroy)
1906 sk->sk_prot->destroy(sk);
1907
1908 /*
1909 * Observation: when sock_common_release is called, processes have
1910 * no access to socket. But net still has.
1911 * Step one, detach it from networking:
1912 *
1913 * A. Remove from hash tables.
1914 */
1915
1916 sk->sk_prot->unhash(sk);
1917
1918 /*
1919 * In this point socket cannot receive new packets, but it is possible
1920 * that some packets are in flight because some CPU runs receiver and
1921 * did hash table lookup before we unhashed socket. They will achieve
1922 * receive queue and will be purged by socket destructor.
1923 *
1924 * Also we still have packets pending on receive queue and probably,
1925 * our own packets waiting in device queues. sock_destroy will drain
1926 * receive queue, but transmitted packets will delay socket destruction
1927 * until the last reference will be released.
1928 */
1929
1930 sock_orphan(sk);
1931
1932 xfrm_sk_free_policy(sk);
1933
1934 sk_refcnt_debug_release(sk);
1935 sock_put(sk);
1936 }
1937
1938 EXPORT_SYMBOL(sk_common_release);
1939
1940 static DEFINE_RWLOCK(proto_list_lock);
1941 static LIST_HEAD(proto_list);
1942
1943 int proto_register(struct proto *prot, int alloc_slab)
1944 {
1945 char *request_sock_slab_name = NULL;
1946 char *timewait_sock_slab_name;
1947
1948 if (sock_prot_inuse_init(prot) != 0) {
1949 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1950 goto out;
1951 }
1952
1953 if (alloc_slab) {
1954 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1955 SLAB_HWCACHE_ALIGN, NULL);
1956
1957 if (prot->slab == NULL) {
1958 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1959 prot->name);
1960 goto out_free_inuse;
1961 }
1962
1963 if (prot->rsk_prot != NULL) {
1964 static const char mask[] = "request_sock_%s";
1965
1966 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1967 if (request_sock_slab_name == NULL)
1968 goto out_free_sock_slab;
1969
1970 sprintf(request_sock_slab_name, mask, prot->name);
1971 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1972 prot->rsk_prot->obj_size, 0,
1973 SLAB_HWCACHE_ALIGN, NULL);
1974
1975 if (prot->rsk_prot->slab == NULL) {
1976 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1977 prot->name);
1978 goto out_free_request_sock_slab_name;
1979 }
1980 }
1981
1982 if (prot->twsk_prot != NULL) {
1983 static const char mask[] = "tw_sock_%s";
1984
1985 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1986
1987 if (timewait_sock_slab_name == NULL)
1988 goto out_free_request_sock_slab;
1989
1990 sprintf(timewait_sock_slab_name, mask, prot->name);
1991 prot->twsk_prot->twsk_slab =
1992 kmem_cache_create(timewait_sock_slab_name,
1993 prot->twsk_prot->twsk_obj_size,
1994 0, SLAB_HWCACHE_ALIGN,
1995 NULL);
1996 if (prot->twsk_prot->twsk_slab == NULL)
1997 goto out_free_timewait_sock_slab_name;
1998 }
1999 }
2000
2001 write_lock(&proto_list_lock);
2002 list_add(&prot->node, &proto_list);
2003 write_unlock(&proto_list_lock);
2004 return 0;
2005
2006 out_free_timewait_sock_slab_name:
2007 kfree(timewait_sock_slab_name);
2008 out_free_request_sock_slab:
2009 if (prot->rsk_prot && prot->rsk_prot->slab) {
2010 kmem_cache_destroy(prot->rsk_prot->slab);
2011 prot->rsk_prot->slab = NULL;
2012 }
2013 out_free_request_sock_slab_name:
2014 kfree(request_sock_slab_name);
2015 out_free_sock_slab:
2016 kmem_cache_destroy(prot->slab);
2017 prot->slab = NULL;
2018 out_free_inuse:
2019 sock_prot_inuse_free(prot);
2020 out:
2021 return -ENOBUFS;
2022 }
2023
2024 EXPORT_SYMBOL(proto_register);
2025
2026 void proto_unregister(struct proto *prot)
2027 {
2028 write_lock(&proto_list_lock);
2029 list_del(&prot->node);
2030 write_unlock(&proto_list_lock);
2031
2032 sock_prot_inuse_free(prot);
2033
2034 if (prot->slab != NULL) {
2035 kmem_cache_destroy(prot->slab);
2036 prot->slab = NULL;
2037 }
2038
2039 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2040 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2041
2042 kmem_cache_destroy(prot->rsk_prot->slab);
2043 kfree(name);
2044 prot->rsk_prot->slab = NULL;
2045 }
2046
2047 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2048 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2049
2050 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2051 kfree(name);
2052 prot->twsk_prot->twsk_slab = NULL;
2053 }
2054 }
2055
2056 EXPORT_SYMBOL(proto_unregister);
2057
2058 #ifdef CONFIG_PROC_FS
2059 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2060 __acquires(proto_list_lock)
2061 {
2062 read_lock(&proto_list_lock);
2063 return seq_list_start_head(&proto_list, *pos);
2064 }
2065
2066 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2067 {
2068 return seq_list_next(v, &proto_list, pos);
2069 }
2070
2071 static void proto_seq_stop(struct seq_file *seq, void *v)
2072 __releases(proto_list_lock)
2073 {
2074 read_unlock(&proto_list_lock);
2075 }
2076
2077 static char proto_method_implemented(const void *method)
2078 {
2079 return method == NULL ? 'n' : 'y';
2080 }
2081
2082 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2083 {
2084 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2085 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2086 proto->name,
2087 proto->obj_size,
2088 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2089 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2090 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2091 proto->max_header,
2092 proto->slab == NULL ? "no" : "yes",
2093 module_name(proto->owner),
2094 proto_method_implemented(proto->close),
2095 proto_method_implemented(proto->connect),
2096 proto_method_implemented(proto->disconnect),
2097 proto_method_implemented(proto->accept),
2098 proto_method_implemented(proto->ioctl),
2099 proto_method_implemented(proto->init),
2100 proto_method_implemented(proto->destroy),
2101 proto_method_implemented(proto->shutdown),
2102 proto_method_implemented(proto->setsockopt),
2103 proto_method_implemented(proto->getsockopt),
2104 proto_method_implemented(proto->sendmsg),
2105 proto_method_implemented(proto->recvmsg),
2106 proto_method_implemented(proto->sendpage),
2107 proto_method_implemented(proto->bind),
2108 proto_method_implemented(proto->backlog_rcv),
2109 proto_method_implemented(proto->hash),
2110 proto_method_implemented(proto->unhash),
2111 proto_method_implemented(proto->get_port),
2112 proto_method_implemented(proto->enter_memory_pressure));
2113 }
2114
2115 static int proto_seq_show(struct seq_file *seq, void *v)
2116 {
2117 if (v == &proto_list)
2118 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2119 "protocol",
2120 "size",
2121 "sockets",
2122 "memory",
2123 "press",
2124 "maxhdr",
2125 "slab",
2126 "module",
2127 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2128 else
2129 proto_seq_printf(seq, list_entry(v, struct proto, node));
2130 return 0;
2131 }
2132
2133 static const struct seq_operations proto_seq_ops = {
2134 .start = proto_seq_start,
2135 .next = proto_seq_next,
2136 .stop = proto_seq_stop,
2137 .show = proto_seq_show,
2138 };
2139
2140 static int proto_seq_open(struct inode *inode, struct file *file)
2141 {
2142 return seq_open(file, &proto_seq_ops);
2143 }
2144
2145 static const struct file_operations proto_seq_fops = {
2146 .owner = THIS_MODULE,
2147 .open = proto_seq_open,
2148 .read = seq_read,
2149 .llseek = seq_lseek,
2150 .release = seq_release,
2151 };
2152
2153 static int __init proto_init(void)
2154 {
2155 /* register /proc/net/protocols */
2156 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2157 }
2158
2159 subsys_initcall(proto_init);
2160
2161 #endif /* PROC_FS */
2162
2163 EXPORT_SYMBOL(sk_alloc);
2164 EXPORT_SYMBOL(sk_free);
2165 EXPORT_SYMBOL(sk_send_sigurg);
2166 EXPORT_SYMBOL(sock_alloc_send_skb);
2167 EXPORT_SYMBOL(sock_init_data);
2168 EXPORT_SYMBOL(sock_kfree_s);
2169 EXPORT_SYMBOL(sock_kmalloc);
2170 EXPORT_SYMBOL(sock_no_accept);
2171 EXPORT_SYMBOL(sock_no_bind);
2172 EXPORT_SYMBOL(sock_no_connect);
2173 EXPORT_SYMBOL(sock_no_getname);
2174 EXPORT_SYMBOL(sock_no_getsockopt);
2175 EXPORT_SYMBOL(sock_no_ioctl);
2176 EXPORT_SYMBOL(sock_no_listen);
2177 EXPORT_SYMBOL(sock_no_mmap);
2178 EXPORT_SYMBOL(sock_no_poll);
2179 EXPORT_SYMBOL(sock_no_recvmsg);
2180 EXPORT_SYMBOL(sock_no_sendmsg);
2181 EXPORT_SYMBOL(sock_no_sendpage);
2182 EXPORT_SYMBOL(sock_no_setsockopt);
2183 EXPORT_SYMBOL(sock_no_shutdown);
2184 EXPORT_SYMBOL(sock_no_socketpair);
2185 EXPORT_SYMBOL(sock_rfree);
2186 EXPORT_SYMBOL(sock_setsockopt);
2187 EXPORT_SYMBOL(sock_wfree);
2188 EXPORT_SYMBOL(sock_wmalloc);
2189 EXPORT_SYMBOL(sock_i_uid);
2190 EXPORT_SYMBOL(sock_i_ino);
2191 EXPORT_SYMBOL(sysctl_optmem_max);
This page took 0.115309 seconds and 5 git commands to generate.