net: poll/select low latency socket support
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 #include <net/ll_poll.h>
143
144 static DEFINE_MUTEX(proto_list_mutex);
145 static LIST_HEAD(proto_list);
146
147 #ifdef CONFIG_MEMCG_KMEM
148 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
149 {
150 struct proto *proto;
151 int ret = 0;
152
153 mutex_lock(&proto_list_mutex);
154 list_for_each_entry(proto, &proto_list, node) {
155 if (proto->init_cgroup) {
156 ret = proto->init_cgroup(memcg, ss);
157 if (ret)
158 goto out;
159 }
160 }
161
162 mutex_unlock(&proto_list_mutex);
163 return ret;
164 out:
165 list_for_each_entry_continue_reverse(proto, &proto_list, node)
166 if (proto->destroy_cgroup)
167 proto->destroy_cgroup(memcg);
168 mutex_unlock(&proto_list_mutex);
169 return ret;
170 }
171
172 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
173 {
174 struct proto *proto;
175
176 mutex_lock(&proto_list_mutex);
177 list_for_each_entry_reverse(proto, &proto_list, node)
178 if (proto->destroy_cgroup)
179 proto->destroy_cgroup(memcg);
180 mutex_unlock(&proto_list_mutex);
181 }
182 #endif
183
184 /*
185 * Each address family might have different locking rules, so we have
186 * one slock key per address family:
187 */
188 static struct lock_class_key af_family_keys[AF_MAX];
189 static struct lock_class_key af_family_slock_keys[AF_MAX];
190
191 #if defined(CONFIG_MEMCG_KMEM)
192 struct static_key memcg_socket_limit_enabled;
193 EXPORT_SYMBOL(memcg_socket_limit_enabled);
194 #endif
195
196 /*
197 * Make lock validator output more readable. (we pre-construct these
198 * strings build-time, so that runtime initialization of socket
199 * locks is fast):
200 */
201 static const char *const af_family_key_strings[AF_MAX+1] = {
202 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
203 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
204 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
205 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
206 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
207 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
208 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
209 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
210 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
211 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
212 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
213 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
214 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
215 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
216 };
217 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
218 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
219 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
220 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
221 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
222 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
223 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
224 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
225 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
226 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
227 "slock-27" , "slock-28" , "slock-AF_CAN" ,
228 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
229 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
230 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
231 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
232 };
233 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
234 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
235 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
236 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
237 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
238 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
239 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
240 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
241 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
242 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
243 "clock-27" , "clock-28" , "clock-AF_CAN" ,
244 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
245 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
246 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
247 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
248 };
249
250 /*
251 * sk_callback_lock locking rules are per-address-family,
252 * so split the lock classes by using a per-AF key:
253 */
254 static struct lock_class_key af_callback_keys[AF_MAX];
255
256 /* Take into consideration the size of the struct sk_buff overhead in the
257 * determination of these values, since that is non-constant across
258 * platforms. This makes socket queueing behavior and performance
259 * not depend upon such differences.
260 */
261 #define _SK_MEM_PACKETS 256
262 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
263 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
264 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
265
266 /* Run time adjustable parameters. */
267 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
268 EXPORT_SYMBOL(sysctl_wmem_max);
269 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
270 EXPORT_SYMBOL(sysctl_rmem_max);
271 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
272 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
273
274 /* Maximal space eaten by iovec or ancillary data plus some space */
275 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
276 EXPORT_SYMBOL(sysctl_optmem_max);
277
278 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
279 EXPORT_SYMBOL_GPL(memalloc_socks);
280
281 /**
282 * sk_set_memalloc - sets %SOCK_MEMALLOC
283 * @sk: socket to set it on
284 *
285 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
286 * It's the responsibility of the admin to adjust min_free_kbytes
287 * to meet the requirements
288 */
289 void sk_set_memalloc(struct sock *sk)
290 {
291 sock_set_flag(sk, SOCK_MEMALLOC);
292 sk->sk_allocation |= __GFP_MEMALLOC;
293 static_key_slow_inc(&memalloc_socks);
294 }
295 EXPORT_SYMBOL_GPL(sk_set_memalloc);
296
297 void sk_clear_memalloc(struct sock *sk)
298 {
299 sock_reset_flag(sk, SOCK_MEMALLOC);
300 sk->sk_allocation &= ~__GFP_MEMALLOC;
301 static_key_slow_dec(&memalloc_socks);
302
303 /*
304 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
305 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
306 * it has rmem allocations there is a risk that the user of the
307 * socket cannot make forward progress due to exceeding the rmem
308 * limits. By rights, sk_clear_memalloc() should only be called
309 * on sockets being torn down but warn and reset the accounting if
310 * that assumption breaks.
311 */
312 if (WARN_ON(sk->sk_forward_alloc))
313 sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 int ret;
320 unsigned long pflags = current->flags;
321
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324
325 current->flags |= PF_MEMALLOC;
326 ret = sk->sk_backlog_rcv(sk, skb);
327 tsk_restore_flags(current, pflags, PF_MEMALLOC);
328
329 return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332
333 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
334 {
335 struct timeval tv;
336
337 if (optlen < sizeof(tv))
338 return -EINVAL;
339 if (copy_from_user(&tv, optval, sizeof(tv)))
340 return -EFAULT;
341 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
342 return -EDOM;
343
344 if (tv.tv_sec < 0) {
345 static int warned __read_mostly;
346
347 *timeo_p = 0;
348 if (warned < 10 && net_ratelimit()) {
349 warned++;
350 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
351 __func__, current->comm, task_pid_nr(current));
352 }
353 return 0;
354 }
355 *timeo_p = MAX_SCHEDULE_TIMEOUT;
356 if (tv.tv_sec == 0 && tv.tv_usec == 0)
357 return 0;
358 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
359 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
360 return 0;
361 }
362
363 static void sock_warn_obsolete_bsdism(const char *name)
364 {
365 static int warned;
366 static char warncomm[TASK_COMM_LEN];
367 if (strcmp(warncomm, current->comm) && warned < 5) {
368 strcpy(warncomm, current->comm);
369 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
370 warncomm, name);
371 warned++;
372 }
373 }
374
375 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
376
377 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
378 {
379 if (sk->sk_flags & flags) {
380 sk->sk_flags &= ~flags;
381 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
382 net_disable_timestamp();
383 }
384 }
385
386
387 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
388 {
389 int err;
390 int skb_len;
391 unsigned long flags;
392 struct sk_buff_head *list = &sk->sk_receive_queue;
393
394 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
395 atomic_inc(&sk->sk_drops);
396 trace_sock_rcvqueue_full(sk, skb);
397 return -ENOMEM;
398 }
399
400 err = sk_filter(sk, skb);
401 if (err)
402 return err;
403
404 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
405 atomic_inc(&sk->sk_drops);
406 return -ENOBUFS;
407 }
408
409 skb->dev = NULL;
410 skb_set_owner_r(skb, sk);
411
412 /* Cache the SKB length before we tack it onto the receive
413 * queue. Once it is added it no longer belongs to us and
414 * may be freed by other threads of control pulling packets
415 * from the queue.
416 */
417 skb_len = skb->len;
418
419 /* we escape from rcu protected region, make sure we dont leak
420 * a norefcounted dst
421 */
422 skb_dst_force(skb);
423
424 spin_lock_irqsave(&list->lock, flags);
425 skb->dropcount = atomic_read(&sk->sk_drops);
426 __skb_queue_tail(list, skb);
427 spin_unlock_irqrestore(&list->lock, flags);
428
429 if (!sock_flag(sk, SOCK_DEAD))
430 sk->sk_data_ready(sk, skb_len);
431 return 0;
432 }
433 EXPORT_SYMBOL(sock_queue_rcv_skb);
434
435 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
436 {
437 int rc = NET_RX_SUCCESS;
438
439 if (sk_filter(sk, skb))
440 goto discard_and_relse;
441
442 skb->dev = NULL;
443
444 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
445 atomic_inc(&sk->sk_drops);
446 goto discard_and_relse;
447 }
448 if (nested)
449 bh_lock_sock_nested(sk);
450 else
451 bh_lock_sock(sk);
452 if (!sock_owned_by_user(sk)) {
453 /*
454 * trylock + unlock semantics:
455 */
456 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
457
458 rc = sk_backlog_rcv(sk, skb);
459
460 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
461 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
462 bh_unlock_sock(sk);
463 atomic_inc(&sk->sk_drops);
464 goto discard_and_relse;
465 }
466
467 bh_unlock_sock(sk);
468 out:
469 sock_put(sk);
470 return rc;
471 discard_and_relse:
472 kfree_skb(skb);
473 goto out;
474 }
475 EXPORT_SYMBOL(sk_receive_skb);
476
477 void sk_reset_txq(struct sock *sk)
478 {
479 sk_tx_queue_clear(sk);
480 }
481 EXPORT_SYMBOL(sk_reset_txq);
482
483 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
484 {
485 struct dst_entry *dst = __sk_dst_get(sk);
486
487 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
488 sk_tx_queue_clear(sk);
489 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
490 dst_release(dst);
491 return NULL;
492 }
493
494 return dst;
495 }
496 EXPORT_SYMBOL(__sk_dst_check);
497
498 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
499 {
500 struct dst_entry *dst = sk_dst_get(sk);
501
502 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
503 sk_dst_reset(sk);
504 dst_release(dst);
505 return NULL;
506 }
507
508 return dst;
509 }
510 EXPORT_SYMBOL(sk_dst_check);
511
512 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
513 int optlen)
514 {
515 int ret = -ENOPROTOOPT;
516 #ifdef CONFIG_NETDEVICES
517 struct net *net = sock_net(sk);
518 char devname[IFNAMSIZ];
519 int index;
520
521 /* Sorry... */
522 ret = -EPERM;
523 if (!ns_capable(net->user_ns, CAP_NET_RAW))
524 goto out;
525
526 ret = -EINVAL;
527 if (optlen < 0)
528 goto out;
529
530 /* Bind this socket to a particular device like "eth0",
531 * as specified in the passed interface name. If the
532 * name is "" or the option length is zero the socket
533 * is not bound.
534 */
535 if (optlen > IFNAMSIZ - 1)
536 optlen = IFNAMSIZ - 1;
537 memset(devname, 0, sizeof(devname));
538
539 ret = -EFAULT;
540 if (copy_from_user(devname, optval, optlen))
541 goto out;
542
543 index = 0;
544 if (devname[0] != '\0') {
545 struct net_device *dev;
546
547 rcu_read_lock();
548 dev = dev_get_by_name_rcu(net, devname);
549 if (dev)
550 index = dev->ifindex;
551 rcu_read_unlock();
552 ret = -ENODEV;
553 if (!dev)
554 goto out;
555 }
556
557 lock_sock(sk);
558 sk->sk_bound_dev_if = index;
559 sk_dst_reset(sk);
560 release_sock(sk);
561
562 ret = 0;
563
564 out:
565 #endif
566
567 return ret;
568 }
569
570 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
571 int __user *optlen, int len)
572 {
573 int ret = -ENOPROTOOPT;
574 #ifdef CONFIG_NETDEVICES
575 struct net *net = sock_net(sk);
576 struct net_device *dev;
577 char devname[IFNAMSIZ];
578 unsigned seq;
579
580 if (sk->sk_bound_dev_if == 0) {
581 len = 0;
582 goto zero;
583 }
584
585 ret = -EINVAL;
586 if (len < IFNAMSIZ)
587 goto out;
588
589 retry:
590 seq = read_seqcount_begin(&devnet_rename_seq);
591 rcu_read_lock();
592 dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
593 ret = -ENODEV;
594 if (!dev) {
595 rcu_read_unlock();
596 goto out;
597 }
598
599 strcpy(devname, dev->name);
600 rcu_read_unlock();
601 if (read_seqcount_retry(&devnet_rename_seq, seq))
602 goto retry;
603
604 len = strlen(devname) + 1;
605
606 ret = -EFAULT;
607 if (copy_to_user(optval, devname, len))
608 goto out;
609
610 zero:
611 ret = -EFAULT;
612 if (put_user(len, optlen))
613 goto out;
614
615 ret = 0;
616
617 out:
618 #endif
619
620 return ret;
621 }
622
623 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
624 {
625 if (valbool)
626 sock_set_flag(sk, bit);
627 else
628 sock_reset_flag(sk, bit);
629 }
630
631 /*
632 * This is meant for all protocols to use and covers goings on
633 * at the socket level. Everything here is generic.
634 */
635
636 int sock_setsockopt(struct socket *sock, int level, int optname,
637 char __user *optval, unsigned int optlen)
638 {
639 struct sock *sk = sock->sk;
640 int val;
641 int valbool;
642 struct linger ling;
643 int ret = 0;
644
645 /*
646 * Options without arguments
647 */
648
649 if (optname == SO_BINDTODEVICE)
650 return sock_setbindtodevice(sk, optval, optlen);
651
652 if (optlen < sizeof(int))
653 return -EINVAL;
654
655 if (get_user(val, (int __user *)optval))
656 return -EFAULT;
657
658 valbool = val ? 1 : 0;
659
660 lock_sock(sk);
661
662 switch (optname) {
663 case SO_DEBUG:
664 if (val && !capable(CAP_NET_ADMIN))
665 ret = -EACCES;
666 else
667 sock_valbool_flag(sk, SOCK_DBG, valbool);
668 break;
669 case SO_REUSEADDR:
670 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
671 break;
672 case SO_REUSEPORT:
673 sk->sk_reuseport = valbool;
674 break;
675 case SO_TYPE:
676 case SO_PROTOCOL:
677 case SO_DOMAIN:
678 case SO_ERROR:
679 ret = -ENOPROTOOPT;
680 break;
681 case SO_DONTROUTE:
682 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
683 break;
684 case SO_BROADCAST:
685 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
686 break;
687 case SO_SNDBUF:
688 /* Don't error on this BSD doesn't and if you think
689 * about it this is right. Otherwise apps have to
690 * play 'guess the biggest size' games. RCVBUF/SNDBUF
691 * are treated in BSD as hints
692 */
693 val = min_t(u32, val, sysctl_wmem_max);
694 set_sndbuf:
695 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
696 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
697 /* Wake up sending tasks if we upped the value. */
698 sk->sk_write_space(sk);
699 break;
700
701 case SO_SNDBUFFORCE:
702 if (!capable(CAP_NET_ADMIN)) {
703 ret = -EPERM;
704 break;
705 }
706 goto set_sndbuf;
707
708 case SO_RCVBUF:
709 /* Don't error on this BSD doesn't and if you think
710 * about it this is right. Otherwise apps have to
711 * play 'guess the biggest size' games. RCVBUF/SNDBUF
712 * are treated in BSD as hints
713 */
714 val = min_t(u32, val, sysctl_rmem_max);
715 set_rcvbuf:
716 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
717 /*
718 * We double it on the way in to account for
719 * "struct sk_buff" etc. overhead. Applications
720 * assume that the SO_RCVBUF setting they make will
721 * allow that much actual data to be received on that
722 * socket.
723 *
724 * Applications are unaware that "struct sk_buff" and
725 * other overheads allocate from the receive buffer
726 * during socket buffer allocation.
727 *
728 * And after considering the possible alternatives,
729 * returning the value we actually used in getsockopt
730 * is the most desirable behavior.
731 */
732 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
733 break;
734
735 case SO_RCVBUFFORCE:
736 if (!capable(CAP_NET_ADMIN)) {
737 ret = -EPERM;
738 break;
739 }
740 goto set_rcvbuf;
741
742 case SO_KEEPALIVE:
743 #ifdef CONFIG_INET
744 if (sk->sk_protocol == IPPROTO_TCP &&
745 sk->sk_type == SOCK_STREAM)
746 tcp_set_keepalive(sk, valbool);
747 #endif
748 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
749 break;
750
751 case SO_OOBINLINE:
752 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
753 break;
754
755 case SO_NO_CHECK:
756 sk->sk_no_check = valbool;
757 break;
758
759 case SO_PRIORITY:
760 if ((val >= 0 && val <= 6) ||
761 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
762 sk->sk_priority = val;
763 else
764 ret = -EPERM;
765 break;
766
767 case SO_LINGER:
768 if (optlen < sizeof(ling)) {
769 ret = -EINVAL; /* 1003.1g */
770 break;
771 }
772 if (copy_from_user(&ling, optval, sizeof(ling))) {
773 ret = -EFAULT;
774 break;
775 }
776 if (!ling.l_onoff)
777 sock_reset_flag(sk, SOCK_LINGER);
778 else {
779 #if (BITS_PER_LONG == 32)
780 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
781 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
782 else
783 #endif
784 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
785 sock_set_flag(sk, SOCK_LINGER);
786 }
787 break;
788
789 case SO_BSDCOMPAT:
790 sock_warn_obsolete_bsdism("setsockopt");
791 break;
792
793 case SO_PASSCRED:
794 if (valbool)
795 set_bit(SOCK_PASSCRED, &sock->flags);
796 else
797 clear_bit(SOCK_PASSCRED, &sock->flags);
798 break;
799
800 case SO_TIMESTAMP:
801 case SO_TIMESTAMPNS:
802 if (valbool) {
803 if (optname == SO_TIMESTAMP)
804 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
805 else
806 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
807 sock_set_flag(sk, SOCK_RCVTSTAMP);
808 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
809 } else {
810 sock_reset_flag(sk, SOCK_RCVTSTAMP);
811 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
812 }
813 break;
814
815 case SO_TIMESTAMPING:
816 if (val & ~SOF_TIMESTAMPING_MASK) {
817 ret = -EINVAL;
818 break;
819 }
820 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
821 val & SOF_TIMESTAMPING_TX_HARDWARE);
822 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
823 val & SOF_TIMESTAMPING_TX_SOFTWARE);
824 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
825 val & SOF_TIMESTAMPING_RX_HARDWARE);
826 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
827 sock_enable_timestamp(sk,
828 SOCK_TIMESTAMPING_RX_SOFTWARE);
829 else
830 sock_disable_timestamp(sk,
831 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
832 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
833 val & SOF_TIMESTAMPING_SOFTWARE);
834 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
835 val & SOF_TIMESTAMPING_SYS_HARDWARE);
836 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
837 val & SOF_TIMESTAMPING_RAW_HARDWARE);
838 break;
839
840 case SO_RCVLOWAT:
841 if (val < 0)
842 val = INT_MAX;
843 sk->sk_rcvlowat = val ? : 1;
844 break;
845
846 case SO_RCVTIMEO:
847 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
848 break;
849
850 case SO_SNDTIMEO:
851 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
852 break;
853
854 case SO_ATTACH_FILTER:
855 ret = -EINVAL;
856 if (optlen == sizeof(struct sock_fprog)) {
857 struct sock_fprog fprog;
858
859 ret = -EFAULT;
860 if (copy_from_user(&fprog, optval, sizeof(fprog)))
861 break;
862
863 ret = sk_attach_filter(&fprog, sk);
864 }
865 break;
866
867 case SO_DETACH_FILTER:
868 ret = sk_detach_filter(sk);
869 break;
870
871 case SO_LOCK_FILTER:
872 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
873 ret = -EPERM;
874 else
875 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
876 break;
877
878 case SO_PASSSEC:
879 if (valbool)
880 set_bit(SOCK_PASSSEC, &sock->flags);
881 else
882 clear_bit(SOCK_PASSSEC, &sock->flags);
883 break;
884 case SO_MARK:
885 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
886 ret = -EPERM;
887 else
888 sk->sk_mark = val;
889 break;
890
891 /* We implement the SO_SNDLOWAT etc to
892 not be settable (1003.1g 5.3) */
893 case SO_RXQ_OVFL:
894 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
895 break;
896
897 case SO_WIFI_STATUS:
898 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
899 break;
900
901 case SO_PEEK_OFF:
902 if (sock->ops->set_peek_off)
903 sock->ops->set_peek_off(sk, val);
904 else
905 ret = -EOPNOTSUPP;
906 break;
907
908 case SO_NOFCS:
909 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
910 break;
911
912 case SO_SELECT_ERR_QUEUE:
913 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
914 break;
915
916 #ifdef CONFIG_NET_LL_RX_POLL
917 case SO_LL:
918 /* allow unprivileged users to decrease the value */
919 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
920 ret = -EPERM;
921 else {
922 if (val < 0)
923 ret = -EINVAL;
924 else
925 sk->sk_ll_usec = val;
926 }
927 break;
928 #endif
929 default:
930 ret = -ENOPROTOOPT;
931 break;
932 }
933 release_sock(sk);
934 return ret;
935 }
936 EXPORT_SYMBOL(sock_setsockopt);
937
938
939 void cred_to_ucred(struct pid *pid, const struct cred *cred,
940 struct ucred *ucred)
941 {
942 ucred->pid = pid_vnr(pid);
943 ucred->uid = ucred->gid = -1;
944 if (cred) {
945 struct user_namespace *current_ns = current_user_ns();
946
947 ucred->uid = from_kuid_munged(current_ns, cred->euid);
948 ucred->gid = from_kgid_munged(current_ns, cred->egid);
949 }
950 }
951 EXPORT_SYMBOL_GPL(cred_to_ucred);
952
953 int sock_getsockopt(struct socket *sock, int level, int optname,
954 char __user *optval, int __user *optlen)
955 {
956 struct sock *sk = sock->sk;
957
958 union {
959 int val;
960 struct linger ling;
961 struct timeval tm;
962 } v;
963
964 int lv = sizeof(int);
965 int len;
966
967 if (get_user(len, optlen))
968 return -EFAULT;
969 if (len < 0)
970 return -EINVAL;
971
972 memset(&v, 0, sizeof(v));
973
974 switch (optname) {
975 case SO_DEBUG:
976 v.val = sock_flag(sk, SOCK_DBG);
977 break;
978
979 case SO_DONTROUTE:
980 v.val = sock_flag(sk, SOCK_LOCALROUTE);
981 break;
982
983 case SO_BROADCAST:
984 v.val = sock_flag(sk, SOCK_BROADCAST);
985 break;
986
987 case SO_SNDBUF:
988 v.val = sk->sk_sndbuf;
989 break;
990
991 case SO_RCVBUF:
992 v.val = sk->sk_rcvbuf;
993 break;
994
995 case SO_REUSEADDR:
996 v.val = sk->sk_reuse;
997 break;
998
999 case SO_REUSEPORT:
1000 v.val = sk->sk_reuseport;
1001 break;
1002
1003 case SO_KEEPALIVE:
1004 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1005 break;
1006
1007 case SO_TYPE:
1008 v.val = sk->sk_type;
1009 break;
1010
1011 case SO_PROTOCOL:
1012 v.val = sk->sk_protocol;
1013 break;
1014
1015 case SO_DOMAIN:
1016 v.val = sk->sk_family;
1017 break;
1018
1019 case SO_ERROR:
1020 v.val = -sock_error(sk);
1021 if (v.val == 0)
1022 v.val = xchg(&sk->sk_err_soft, 0);
1023 break;
1024
1025 case SO_OOBINLINE:
1026 v.val = sock_flag(sk, SOCK_URGINLINE);
1027 break;
1028
1029 case SO_NO_CHECK:
1030 v.val = sk->sk_no_check;
1031 break;
1032
1033 case SO_PRIORITY:
1034 v.val = sk->sk_priority;
1035 break;
1036
1037 case SO_LINGER:
1038 lv = sizeof(v.ling);
1039 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1040 v.ling.l_linger = sk->sk_lingertime / HZ;
1041 break;
1042
1043 case SO_BSDCOMPAT:
1044 sock_warn_obsolete_bsdism("getsockopt");
1045 break;
1046
1047 case SO_TIMESTAMP:
1048 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1049 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1050 break;
1051
1052 case SO_TIMESTAMPNS:
1053 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1054 break;
1055
1056 case SO_TIMESTAMPING:
1057 v.val = 0;
1058 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1059 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1060 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1061 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1062 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1063 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1064 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1065 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1066 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1067 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1068 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1069 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1070 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1071 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1072 break;
1073
1074 case SO_RCVTIMEO:
1075 lv = sizeof(struct timeval);
1076 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1077 v.tm.tv_sec = 0;
1078 v.tm.tv_usec = 0;
1079 } else {
1080 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1081 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1082 }
1083 break;
1084
1085 case SO_SNDTIMEO:
1086 lv = sizeof(struct timeval);
1087 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1088 v.tm.tv_sec = 0;
1089 v.tm.tv_usec = 0;
1090 } else {
1091 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1092 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1093 }
1094 break;
1095
1096 case SO_RCVLOWAT:
1097 v.val = sk->sk_rcvlowat;
1098 break;
1099
1100 case SO_SNDLOWAT:
1101 v.val = 1;
1102 break;
1103
1104 case SO_PASSCRED:
1105 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1106 break;
1107
1108 case SO_PEERCRED:
1109 {
1110 struct ucred peercred;
1111 if (len > sizeof(peercred))
1112 len = sizeof(peercred);
1113 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1114 if (copy_to_user(optval, &peercred, len))
1115 return -EFAULT;
1116 goto lenout;
1117 }
1118
1119 case SO_PEERNAME:
1120 {
1121 char address[128];
1122
1123 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1124 return -ENOTCONN;
1125 if (lv < len)
1126 return -EINVAL;
1127 if (copy_to_user(optval, address, len))
1128 return -EFAULT;
1129 goto lenout;
1130 }
1131
1132 /* Dubious BSD thing... Probably nobody even uses it, but
1133 * the UNIX standard wants it for whatever reason... -DaveM
1134 */
1135 case SO_ACCEPTCONN:
1136 v.val = sk->sk_state == TCP_LISTEN;
1137 break;
1138
1139 case SO_PASSSEC:
1140 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1141 break;
1142
1143 case SO_PEERSEC:
1144 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1145
1146 case SO_MARK:
1147 v.val = sk->sk_mark;
1148 break;
1149
1150 case SO_RXQ_OVFL:
1151 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1152 break;
1153
1154 case SO_WIFI_STATUS:
1155 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1156 break;
1157
1158 case SO_PEEK_OFF:
1159 if (!sock->ops->set_peek_off)
1160 return -EOPNOTSUPP;
1161
1162 v.val = sk->sk_peek_off;
1163 break;
1164 case SO_NOFCS:
1165 v.val = sock_flag(sk, SOCK_NOFCS);
1166 break;
1167
1168 case SO_BINDTODEVICE:
1169 return sock_getbindtodevice(sk, optval, optlen, len);
1170
1171 case SO_GET_FILTER:
1172 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1173 if (len < 0)
1174 return len;
1175
1176 goto lenout;
1177
1178 case SO_LOCK_FILTER:
1179 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1180 break;
1181
1182 case SO_SELECT_ERR_QUEUE:
1183 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1184 break;
1185
1186 #ifdef CONFIG_NET_LL_RX_POLL
1187 case SO_LL:
1188 v.val = sk->sk_ll_usec;
1189 break;
1190 #endif
1191
1192 default:
1193 return -ENOPROTOOPT;
1194 }
1195
1196 if (len > lv)
1197 len = lv;
1198 if (copy_to_user(optval, &v, len))
1199 return -EFAULT;
1200 lenout:
1201 if (put_user(len, optlen))
1202 return -EFAULT;
1203 return 0;
1204 }
1205
1206 /*
1207 * Initialize an sk_lock.
1208 *
1209 * (We also register the sk_lock with the lock validator.)
1210 */
1211 static inline void sock_lock_init(struct sock *sk)
1212 {
1213 sock_lock_init_class_and_name(sk,
1214 af_family_slock_key_strings[sk->sk_family],
1215 af_family_slock_keys + sk->sk_family,
1216 af_family_key_strings[sk->sk_family],
1217 af_family_keys + sk->sk_family);
1218 }
1219
1220 /*
1221 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1222 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1223 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1224 */
1225 static void sock_copy(struct sock *nsk, const struct sock *osk)
1226 {
1227 #ifdef CONFIG_SECURITY_NETWORK
1228 void *sptr = nsk->sk_security;
1229 #endif
1230 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1231
1232 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1233 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1234
1235 #ifdef CONFIG_SECURITY_NETWORK
1236 nsk->sk_security = sptr;
1237 security_sk_clone(osk, nsk);
1238 #endif
1239 }
1240
1241 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1242 {
1243 unsigned long nulls1, nulls2;
1244
1245 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1246 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1247 if (nulls1 > nulls2)
1248 swap(nulls1, nulls2);
1249
1250 if (nulls1 != 0)
1251 memset((char *)sk, 0, nulls1);
1252 memset((char *)sk + nulls1 + sizeof(void *), 0,
1253 nulls2 - nulls1 - sizeof(void *));
1254 memset((char *)sk + nulls2 + sizeof(void *), 0,
1255 size - nulls2 - sizeof(void *));
1256 }
1257 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1258
1259 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1260 int family)
1261 {
1262 struct sock *sk;
1263 struct kmem_cache *slab;
1264
1265 slab = prot->slab;
1266 if (slab != NULL) {
1267 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1268 if (!sk)
1269 return sk;
1270 if (priority & __GFP_ZERO) {
1271 if (prot->clear_sk)
1272 prot->clear_sk(sk, prot->obj_size);
1273 else
1274 sk_prot_clear_nulls(sk, prot->obj_size);
1275 }
1276 } else
1277 sk = kmalloc(prot->obj_size, priority);
1278
1279 if (sk != NULL) {
1280 kmemcheck_annotate_bitfield(sk, flags);
1281
1282 if (security_sk_alloc(sk, family, priority))
1283 goto out_free;
1284
1285 if (!try_module_get(prot->owner))
1286 goto out_free_sec;
1287 sk_tx_queue_clear(sk);
1288 }
1289
1290 return sk;
1291
1292 out_free_sec:
1293 security_sk_free(sk);
1294 out_free:
1295 if (slab != NULL)
1296 kmem_cache_free(slab, sk);
1297 else
1298 kfree(sk);
1299 return NULL;
1300 }
1301
1302 static void sk_prot_free(struct proto *prot, struct sock *sk)
1303 {
1304 struct kmem_cache *slab;
1305 struct module *owner;
1306
1307 owner = prot->owner;
1308 slab = prot->slab;
1309
1310 security_sk_free(sk);
1311 if (slab != NULL)
1312 kmem_cache_free(slab, sk);
1313 else
1314 kfree(sk);
1315 module_put(owner);
1316 }
1317
1318 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1319 void sock_update_classid(struct sock *sk)
1320 {
1321 u32 classid;
1322
1323 classid = task_cls_classid(current);
1324 if (classid != sk->sk_classid)
1325 sk->sk_classid = classid;
1326 }
1327 EXPORT_SYMBOL(sock_update_classid);
1328 #endif
1329
1330 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1331 void sock_update_netprioidx(struct sock *sk)
1332 {
1333 if (in_interrupt())
1334 return;
1335
1336 sk->sk_cgrp_prioidx = task_netprioidx(current);
1337 }
1338 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1339 #endif
1340
1341 /**
1342 * sk_alloc - All socket objects are allocated here
1343 * @net: the applicable net namespace
1344 * @family: protocol family
1345 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1346 * @prot: struct proto associated with this new sock instance
1347 */
1348 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1349 struct proto *prot)
1350 {
1351 struct sock *sk;
1352
1353 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1354 if (sk) {
1355 sk->sk_family = family;
1356 /*
1357 * See comment in struct sock definition to understand
1358 * why we need sk_prot_creator -acme
1359 */
1360 sk->sk_prot = sk->sk_prot_creator = prot;
1361 sock_lock_init(sk);
1362 sock_net_set(sk, get_net(net));
1363 atomic_set(&sk->sk_wmem_alloc, 1);
1364
1365 sock_update_classid(sk);
1366 sock_update_netprioidx(sk);
1367 }
1368
1369 return sk;
1370 }
1371 EXPORT_SYMBOL(sk_alloc);
1372
1373 static void __sk_free(struct sock *sk)
1374 {
1375 struct sk_filter *filter;
1376
1377 if (sk->sk_destruct)
1378 sk->sk_destruct(sk);
1379
1380 filter = rcu_dereference_check(sk->sk_filter,
1381 atomic_read(&sk->sk_wmem_alloc) == 0);
1382 if (filter) {
1383 sk_filter_uncharge(sk, filter);
1384 RCU_INIT_POINTER(sk->sk_filter, NULL);
1385 }
1386
1387 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1388
1389 if (atomic_read(&sk->sk_omem_alloc))
1390 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1391 __func__, atomic_read(&sk->sk_omem_alloc));
1392
1393 if (sk->sk_peer_cred)
1394 put_cred(sk->sk_peer_cred);
1395 put_pid(sk->sk_peer_pid);
1396 put_net(sock_net(sk));
1397 sk_prot_free(sk->sk_prot_creator, sk);
1398 }
1399
1400 void sk_free(struct sock *sk)
1401 {
1402 /*
1403 * We subtract one from sk_wmem_alloc and can know if
1404 * some packets are still in some tx queue.
1405 * If not null, sock_wfree() will call __sk_free(sk) later
1406 */
1407 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1408 __sk_free(sk);
1409 }
1410 EXPORT_SYMBOL(sk_free);
1411
1412 /*
1413 * Last sock_put should drop reference to sk->sk_net. It has already
1414 * been dropped in sk_change_net. Taking reference to stopping namespace
1415 * is not an option.
1416 * Take reference to a socket to remove it from hash _alive_ and after that
1417 * destroy it in the context of init_net.
1418 */
1419 void sk_release_kernel(struct sock *sk)
1420 {
1421 if (sk == NULL || sk->sk_socket == NULL)
1422 return;
1423
1424 sock_hold(sk);
1425 sock_release(sk->sk_socket);
1426 release_net(sock_net(sk));
1427 sock_net_set(sk, get_net(&init_net));
1428 sock_put(sk);
1429 }
1430 EXPORT_SYMBOL(sk_release_kernel);
1431
1432 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1433 {
1434 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1435 sock_update_memcg(newsk);
1436 }
1437
1438 /**
1439 * sk_clone_lock - clone a socket, and lock its clone
1440 * @sk: the socket to clone
1441 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1442 *
1443 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1444 */
1445 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1446 {
1447 struct sock *newsk;
1448
1449 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1450 if (newsk != NULL) {
1451 struct sk_filter *filter;
1452
1453 sock_copy(newsk, sk);
1454
1455 /* SANITY */
1456 get_net(sock_net(newsk));
1457 sk_node_init(&newsk->sk_node);
1458 sock_lock_init(newsk);
1459 bh_lock_sock(newsk);
1460 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1461 newsk->sk_backlog.len = 0;
1462
1463 atomic_set(&newsk->sk_rmem_alloc, 0);
1464 /*
1465 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1466 */
1467 atomic_set(&newsk->sk_wmem_alloc, 1);
1468 atomic_set(&newsk->sk_omem_alloc, 0);
1469 skb_queue_head_init(&newsk->sk_receive_queue);
1470 skb_queue_head_init(&newsk->sk_write_queue);
1471 #ifdef CONFIG_NET_DMA
1472 skb_queue_head_init(&newsk->sk_async_wait_queue);
1473 #endif
1474
1475 spin_lock_init(&newsk->sk_dst_lock);
1476 rwlock_init(&newsk->sk_callback_lock);
1477 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1478 af_callback_keys + newsk->sk_family,
1479 af_family_clock_key_strings[newsk->sk_family]);
1480
1481 newsk->sk_dst_cache = NULL;
1482 newsk->sk_wmem_queued = 0;
1483 newsk->sk_forward_alloc = 0;
1484 newsk->sk_send_head = NULL;
1485 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1486
1487 sock_reset_flag(newsk, SOCK_DONE);
1488 skb_queue_head_init(&newsk->sk_error_queue);
1489
1490 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1491 if (filter != NULL)
1492 sk_filter_charge(newsk, filter);
1493
1494 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1495 /* It is still raw copy of parent, so invalidate
1496 * destructor and make plain sk_free() */
1497 newsk->sk_destruct = NULL;
1498 bh_unlock_sock(newsk);
1499 sk_free(newsk);
1500 newsk = NULL;
1501 goto out;
1502 }
1503
1504 newsk->sk_err = 0;
1505 newsk->sk_priority = 0;
1506 /*
1507 * Before updating sk_refcnt, we must commit prior changes to memory
1508 * (Documentation/RCU/rculist_nulls.txt for details)
1509 */
1510 smp_wmb();
1511 atomic_set(&newsk->sk_refcnt, 2);
1512
1513 /*
1514 * Increment the counter in the same struct proto as the master
1515 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1516 * is the same as sk->sk_prot->socks, as this field was copied
1517 * with memcpy).
1518 *
1519 * This _changes_ the previous behaviour, where
1520 * tcp_create_openreq_child always was incrementing the
1521 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1522 * to be taken into account in all callers. -acme
1523 */
1524 sk_refcnt_debug_inc(newsk);
1525 sk_set_socket(newsk, NULL);
1526 newsk->sk_wq = NULL;
1527
1528 sk_update_clone(sk, newsk);
1529
1530 if (newsk->sk_prot->sockets_allocated)
1531 sk_sockets_allocated_inc(newsk);
1532
1533 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1534 net_enable_timestamp();
1535 }
1536 out:
1537 return newsk;
1538 }
1539 EXPORT_SYMBOL_GPL(sk_clone_lock);
1540
1541 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1542 {
1543 __sk_dst_set(sk, dst);
1544 sk->sk_route_caps = dst->dev->features;
1545 if (sk->sk_route_caps & NETIF_F_GSO)
1546 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1547 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1548 if (sk_can_gso(sk)) {
1549 if (dst->header_len) {
1550 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1551 } else {
1552 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1553 sk->sk_gso_max_size = dst->dev->gso_max_size;
1554 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1555 }
1556 }
1557 }
1558 EXPORT_SYMBOL_GPL(sk_setup_caps);
1559
1560 /*
1561 * Simple resource managers for sockets.
1562 */
1563
1564
1565 /*
1566 * Write buffer destructor automatically called from kfree_skb.
1567 */
1568 void sock_wfree(struct sk_buff *skb)
1569 {
1570 struct sock *sk = skb->sk;
1571 unsigned int len = skb->truesize;
1572
1573 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1574 /*
1575 * Keep a reference on sk_wmem_alloc, this will be released
1576 * after sk_write_space() call
1577 */
1578 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1579 sk->sk_write_space(sk);
1580 len = 1;
1581 }
1582 /*
1583 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1584 * could not do because of in-flight packets
1585 */
1586 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1587 __sk_free(sk);
1588 }
1589 EXPORT_SYMBOL(sock_wfree);
1590
1591 /*
1592 * Read buffer destructor automatically called from kfree_skb.
1593 */
1594 void sock_rfree(struct sk_buff *skb)
1595 {
1596 struct sock *sk = skb->sk;
1597 unsigned int len = skb->truesize;
1598
1599 atomic_sub(len, &sk->sk_rmem_alloc);
1600 sk_mem_uncharge(sk, len);
1601 }
1602 EXPORT_SYMBOL(sock_rfree);
1603
1604 void sock_edemux(struct sk_buff *skb)
1605 {
1606 struct sock *sk = skb->sk;
1607
1608 #ifdef CONFIG_INET
1609 if (sk->sk_state == TCP_TIME_WAIT)
1610 inet_twsk_put(inet_twsk(sk));
1611 else
1612 #endif
1613 sock_put(sk);
1614 }
1615 EXPORT_SYMBOL(sock_edemux);
1616
1617 kuid_t sock_i_uid(struct sock *sk)
1618 {
1619 kuid_t uid;
1620
1621 read_lock_bh(&sk->sk_callback_lock);
1622 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1623 read_unlock_bh(&sk->sk_callback_lock);
1624 return uid;
1625 }
1626 EXPORT_SYMBOL(sock_i_uid);
1627
1628 unsigned long sock_i_ino(struct sock *sk)
1629 {
1630 unsigned long ino;
1631
1632 read_lock_bh(&sk->sk_callback_lock);
1633 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1634 read_unlock_bh(&sk->sk_callback_lock);
1635 return ino;
1636 }
1637 EXPORT_SYMBOL(sock_i_ino);
1638
1639 /*
1640 * Allocate a skb from the socket's send buffer.
1641 */
1642 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1643 gfp_t priority)
1644 {
1645 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1646 struct sk_buff *skb = alloc_skb(size, priority);
1647 if (skb) {
1648 skb_set_owner_w(skb, sk);
1649 return skb;
1650 }
1651 }
1652 return NULL;
1653 }
1654 EXPORT_SYMBOL(sock_wmalloc);
1655
1656 /*
1657 * Allocate a skb from the socket's receive buffer.
1658 */
1659 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1660 gfp_t priority)
1661 {
1662 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1663 struct sk_buff *skb = alloc_skb(size, priority);
1664 if (skb) {
1665 skb_set_owner_r(skb, sk);
1666 return skb;
1667 }
1668 }
1669 return NULL;
1670 }
1671
1672 /*
1673 * Allocate a memory block from the socket's option memory buffer.
1674 */
1675 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1676 {
1677 if ((unsigned int)size <= sysctl_optmem_max &&
1678 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1679 void *mem;
1680 /* First do the add, to avoid the race if kmalloc
1681 * might sleep.
1682 */
1683 atomic_add(size, &sk->sk_omem_alloc);
1684 mem = kmalloc(size, priority);
1685 if (mem)
1686 return mem;
1687 atomic_sub(size, &sk->sk_omem_alloc);
1688 }
1689 return NULL;
1690 }
1691 EXPORT_SYMBOL(sock_kmalloc);
1692
1693 /*
1694 * Free an option memory block.
1695 */
1696 void sock_kfree_s(struct sock *sk, void *mem, int size)
1697 {
1698 kfree(mem);
1699 atomic_sub(size, &sk->sk_omem_alloc);
1700 }
1701 EXPORT_SYMBOL(sock_kfree_s);
1702
1703 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1704 I think, these locks should be removed for datagram sockets.
1705 */
1706 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1707 {
1708 DEFINE_WAIT(wait);
1709
1710 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1711 for (;;) {
1712 if (!timeo)
1713 break;
1714 if (signal_pending(current))
1715 break;
1716 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1717 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1718 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1719 break;
1720 if (sk->sk_shutdown & SEND_SHUTDOWN)
1721 break;
1722 if (sk->sk_err)
1723 break;
1724 timeo = schedule_timeout(timeo);
1725 }
1726 finish_wait(sk_sleep(sk), &wait);
1727 return timeo;
1728 }
1729
1730
1731 /*
1732 * Generic send/receive buffer handlers
1733 */
1734
1735 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1736 unsigned long data_len, int noblock,
1737 int *errcode)
1738 {
1739 struct sk_buff *skb;
1740 gfp_t gfp_mask;
1741 long timeo;
1742 int err;
1743 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1744
1745 err = -EMSGSIZE;
1746 if (npages > MAX_SKB_FRAGS)
1747 goto failure;
1748
1749 gfp_mask = sk->sk_allocation;
1750 if (gfp_mask & __GFP_WAIT)
1751 gfp_mask |= __GFP_REPEAT;
1752
1753 timeo = sock_sndtimeo(sk, noblock);
1754 while (1) {
1755 err = sock_error(sk);
1756 if (err != 0)
1757 goto failure;
1758
1759 err = -EPIPE;
1760 if (sk->sk_shutdown & SEND_SHUTDOWN)
1761 goto failure;
1762
1763 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1764 skb = alloc_skb(header_len, gfp_mask);
1765 if (skb) {
1766 int i;
1767
1768 /* No pages, we're done... */
1769 if (!data_len)
1770 break;
1771
1772 skb->truesize += data_len;
1773 skb_shinfo(skb)->nr_frags = npages;
1774 for (i = 0; i < npages; i++) {
1775 struct page *page;
1776
1777 page = alloc_pages(sk->sk_allocation, 0);
1778 if (!page) {
1779 err = -ENOBUFS;
1780 skb_shinfo(skb)->nr_frags = i;
1781 kfree_skb(skb);
1782 goto failure;
1783 }
1784
1785 __skb_fill_page_desc(skb, i,
1786 page, 0,
1787 (data_len >= PAGE_SIZE ?
1788 PAGE_SIZE :
1789 data_len));
1790 data_len -= PAGE_SIZE;
1791 }
1792
1793 /* Full success... */
1794 break;
1795 }
1796 err = -ENOBUFS;
1797 goto failure;
1798 }
1799 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1800 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1801 err = -EAGAIN;
1802 if (!timeo)
1803 goto failure;
1804 if (signal_pending(current))
1805 goto interrupted;
1806 timeo = sock_wait_for_wmem(sk, timeo);
1807 }
1808
1809 skb_set_owner_w(skb, sk);
1810 return skb;
1811
1812 interrupted:
1813 err = sock_intr_errno(timeo);
1814 failure:
1815 *errcode = err;
1816 return NULL;
1817 }
1818 EXPORT_SYMBOL(sock_alloc_send_pskb);
1819
1820 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1821 int noblock, int *errcode)
1822 {
1823 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1824 }
1825 EXPORT_SYMBOL(sock_alloc_send_skb);
1826
1827 /* On 32bit arches, an skb frag is limited to 2^15 */
1828 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1829
1830 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1831 {
1832 int order;
1833
1834 if (pfrag->page) {
1835 if (atomic_read(&pfrag->page->_count) == 1) {
1836 pfrag->offset = 0;
1837 return true;
1838 }
1839 if (pfrag->offset < pfrag->size)
1840 return true;
1841 put_page(pfrag->page);
1842 }
1843
1844 /* We restrict high order allocations to users that can afford to wait */
1845 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1846
1847 do {
1848 gfp_t gfp = sk->sk_allocation;
1849
1850 if (order)
1851 gfp |= __GFP_COMP | __GFP_NOWARN;
1852 pfrag->page = alloc_pages(gfp, order);
1853 if (likely(pfrag->page)) {
1854 pfrag->offset = 0;
1855 pfrag->size = PAGE_SIZE << order;
1856 return true;
1857 }
1858 } while (--order >= 0);
1859
1860 sk_enter_memory_pressure(sk);
1861 sk_stream_moderate_sndbuf(sk);
1862 return false;
1863 }
1864 EXPORT_SYMBOL(sk_page_frag_refill);
1865
1866 static void __lock_sock(struct sock *sk)
1867 __releases(&sk->sk_lock.slock)
1868 __acquires(&sk->sk_lock.slock)
1869 {
1870 DEFINE_WAIT(wait);
1871
1872 for (;;) {
1873 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1874 TASK_UNINTERRUPTIBLE);
1875 spin_unlock_bh(&sk->sk_lock.slock);
1876 schedule();
1877 spin_lock_bh(&sk->sk_lock.slock);
1878 if (!sock_owned_by_user(sk))
1879 break;
1880 }
1881 finish_wait(&sk->sk_lock.wq, &wait);
1882 }
1883
1884 static void __release_sock(struct sock *sk)
1885 __releases(&sk->sk_lock.slock)
1886 __acquires(&sk->sk_lock.slock)
1887 {
1888 struct sk_buff *skb = sk->sk_backlog.head;
1889
1890 do {
1891 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1892 bh_unlock_sock(sk);
1893
1894 do {
1895 struct sk_buff *next = skb->next;
1896
1897 prefetch(next);
1898 WARN_ON_ONCE(skb_dst_is_noref(skb));
1899 skb->next = NULL;
1900 sk_backlog_rcv(sk, skb);
1901
1902 /*
1903 * We are in process context here with softirqs
1904 * disabled, use cond_resched_softirq() to preempt.
1905 * This is safe to do because we've taken the backlog
1906 * queue private:
1907 */
1908 cond_resched_softirq();
1909
1910 skb = next;
1911 } while (skb != NULL);
1912
1913 bh_lock_sock(sk);
1914 } while ((skb = sk->sk_backlog.head) != NULL);
1915
1916 /*
1917 * Doing the zeroing here guarantee we can not loop forever
1918 * while a wild producer attempts to flood us.
1919 */
1920 sk->sk_backlog.len = 0;
1921 }
1922
1923 /**
1924 * sk_wait_data - wait for data to arrive at sk_receive_queue
1925 * @sk: sock to wait on
1926 * @timeo: for how long
1927 *
1928 * Now socket state including sk->sk_err is changed only under lock,
1929 * hence we may omit checks after joining wait queue.
1930 * We check receive queue before schedule() only as optimization;
1931 * it is very likely that release_sock() added new data.
1932 */
1933 int sk_wait_data(struct sock *sk, long *timeo)
1934 {
1935 int rc;
1936 DEFINE_WAIT(wait);
1937
1938 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1939 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1940 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1941 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1942 finish_wait(sk_sleep(sk), &wait);
1943 return rc;
1944 }
1945 EXPORT_SYMBOL(sk_wait_data);
1946
1947 /**
1948 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1949 * @sk: socket
1950 * @size: memory size to allocate
1951 * @kind: allocation type
1952 *
1953 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1954 * rmem allocation. This function assumes that protocols which have
1955 * memory_pressure use sk_wmem_queued as write buffer accounting.
1956 */
1957 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1958 {
1959 struct proto *prot = sk->sk_prot;
1960 int amt = sk_mem_pages(size);
1961 long allocated;
1962 int parent_status = UNDER_LIMIT;
1963
1964 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1965
1966 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1967
1968 /* Under limit. */
1969 if (parent_status == UNDER_LIMIT &&
1970 allocated <= sk_prot_mem_limits(sk, 0)) {
1971 sk_leave_memory_pressure(sk);
1972 return 1;
1973 }
1974
1975 /* Under pressure. (we or our parents) */
1976 if ((parent_status > SOFT_LIMIT) ||
1977 allocated > sk_prot_mem_limits(sk, 1))
1978 sk_enter_memory_pressure(sk);
1979
1980 /* Over hard limit (we or our parents) */
1981 if ((parent_status == OVER_LIMIT) ||
1982 (allocated > sk_prot_mem_limits(sk, 2)))
1983 goto suppress_allocation;
1984
1985 /* guarantee minimum buffer size under pressure */
1986 if (kind == SK_MEM_RECV) {
1987 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1988 return 1;
1989
1990 } else { /* SK_MEM_SEND */
1991 if (sk->sk_type == SOCK_STREAM) {
1992 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1993 return 1;
1994 } else if (atomic_read(&sk->sk_wmem_alloc) <
1995 prot->sysctl_wmem[0])
1996 return 1;
1997 }
1998
1999 if (sk_has_memory_pressure(sk)) {
2000 int alloc;
2001
2002 if (!sk_under_memory_pressure(sk))
2003 return 1;
2004 alloc = sk_sockets_allocated_read_positive(sk);
2005 if (sk_prot_mem_limits(sk, 2) > alloc *
2006 sk_mem_pages(sk->sk_wmem_queued +
2007 atomic_read(&sk->sk_rmem_alloc) +
2008 sk->sk_forward_alloc))
2009 return 1;
2010 }
2011
2012 suppress_allocation:
2013
2014 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2015 sk_stream_moderate_sndbuf(sk);
2016
2017 /* Fail only if socket is _under_ its sndbuf.
2018 * In this case we cannot block, so that we have to fail.
2019 */
2020 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2021 return 1;
2022 }
2023
2024 trace_sock_exceed_buf_limit(sk, prot, allocated);
2025
2026 /* Alas. Undo changes. */
2027 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2028
2029 sk_memory_allocated_sub(sk, amt);
2030
2031 return 0;
2032 }
2033 EXPORT_SYMBOL(__sk_mem_schedule);
2034
2035 /**
2036 * __sk_reclaim - reclaim memory_allocated
2037 * @sk: socket
2038 */
2039 void __sk_mem_reclaim(struct sock *sk)
2040 {
2041 sk_memory_allocated_sub(sk,
2042 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2043 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2044
2045 if (sk_under_memory_pressure(sk) &&
2046 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2047 sk_leave_memory_pressure(sk);
2048 }
2049 EXPORT_SYMBOL(__sk_mem_reclaim);
2050
2051
2052 /*
2053 * Set of default routines for initialising struct proto_ops when
2054 * the protocol does not support a particular function. In certain
2055 * cases where it makes no sense for a protocol to have a "do nothing"
2056 * function, some default processing is provided.
2057 */
2058
2059 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2060 {
2061 return -EOPNOTSUPP;
2062 }
2063 EXPORT_SYMBOL(sock_no_bind);
2064
2065 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2066 int len, int flags)
2067 {
2068 return -EOPNOTSUPP;
2069 }
2070 EXPORT_SYMBOL(sock_no_connect);
2071
2072 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2073 {
2074 return -EOPNOTSUPP;
2075 }
2076 EXPORT_SYMBOL(sock_no_socketpair);
2077
2078 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2079 {
2080 return -EOPNOTSUPP;
2081 }
2082 EXPORT_SYMBOL(sock_no_accept);
2083
2084 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2085 int *len, int peer)
2086 {
2087 return -EOPNOTSUPP;
2088 }
2089 EXPORT_SYMBOL(sock_no_getname);
2090
2091 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2092 {
2093 return 0;
2094 }
2095 EXPORT_SYMBOL(sock_no_poll);
2096
2097 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2098 {
2099 return -EOPNOTSUPP;
2100 }
2101 EXPORT_SYMBOL(sock_no_ioctl);
2102
2103 int sock_no_listen(struct socket *sock, int backlog)
2104 {
2105 return -EOPNOTSUPP;
2106 }
2107 EXPORT_SYMBOL(sock_no_listen);
2108
2109 int sock_no_shutdown(struct socket *sock, int how)
2110 {
2111 return -EOPNOTSUPP;
2112 }
2113 EXPORT_SYMBOL(sock_no_shutdown);
2114
2115 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2116 char __user *optval, unsigned int optlen)
2117 {
2118 return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_setsockopt);
2121
2122 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2123 char __user *optval, int __user *optlen)
2124 {
2125 return -EOPNOTSUPP;
2126 }
2127 EXPORT_SYMBOL(sock_no_getsockopt);
2128
2129 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2130 size_t len)
2131 {
2132 return -EOPNOTSUPP;
2133 }
2134 EXPORT_SYMBOL(sock_no_sendmsg);
2135
2136 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2137 size_t len, int flags)
2138 {
2139 return -EOPNOTSUPP;
2140 }
2141 EXPORT_SYMBOL(sock_no_recvmsg);
2142
2143 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2144 {
2145 /* Mirror missing mmap method error code */
2146 return -ENODEV;
2147 }
2148 EXPORT_SYMBOL(sock_no_mmap);
2149
2150 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2151 {
2152 ssize_t res;
2153 struct msghdr msg = {.msg_flags = flags};
2154 struct kvec iov;
2155 char *kaddr = kmap(page);
2156 iov.iov_base = kaddr + offset;
2157 iov.iov_len = size;
2158 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2159 kunmap(page);
2160 return res;
2161 }
2162 EXPORT_SYMBOL(sock_no_sendpage);
2163
2164 /*
2165 * Default Socket Callbacks
2166 */
2167
2168 static void sock_def_wakeup(struct sock *sk)
2169 {
2170 struct socket_wq *wq;
2171
2172 rcu_read_lock();
2173 wq = rcu_dereference(sk->sk_wq);
2174 if (wq_has_sleeper(wq))
2175 wake_up_interruptible_all(&wq->wait);
2176 rcu_read_unlock();
2177 }
2178
2179 static void sock_def_error_report(struct sock *sk)
2180 {
2181 struct socket_wq *wq;
2182
2183 rcu_read_lock();
2184 wq = rcu_dereference(sk->sk_wq);
2185 if (wq_has_sleeper(wq))
2186 wake_up_interruptible_poll(&wq->wait, POLLERR);
2187 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2188 rcu_read_unlock();
2189 }
2190
2191 static void sock_def_readable(struct sock *sk, int len)
2192 {
2193 struct socket_wq *wq;
2194
2195 rcu_read_lock();
2196 wq = rcu_dereference(sk->sk_wq);
2197 if (wq_has_sleeper(wq))
2198 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2199 POLLRDNORM | POLLRDBAND);
2200 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2201 rcu_read_unlock();
2202 }
2203
2204 static void sock_def_write_space(struct sock *sk)
2205 {
2206 struct socket_wq *wq;
2207
2208 rcu_read_lock();
2209
2210 /* Do not wake up a writer until he can make "significant"
2211 * progress. --DaveM
2212 */
2213 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2214 wq = rcu_dereference(sk->sk_wq);
2215 if (wq_has_sleeper(wq))
2216 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2217 POLLWRNORM | POLLWRBAND);
2218
2219 /* Should agree with poll, otherwise some programs break */
2220 if (sock_writeable(sk))
2221 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2222 }
2223
2224 rcu_read_unlock();
2225 }
2226
2227 static void sock_def_destruct(struct sock *sk)
2228 {
2229 kfree(sk->sk_protinfo);
2230 }
2231
2232 void sk_send_sigurg(struct sock *sk)
2233 {
2234 if (sk->sk_socket && sk->sk_socket->file)
2235 if (send_sigurg(&sk->sk_socket->file->f_owner))
2236 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2237 }
2238 EXPORT_SYMBOL(sk_send_sigurg);
2239
2240 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2241 unsigned long expires)
2242 {
2243 if (!mod_timer(timer, expires))
2244 sock_hold(sk);
2245 }
2246 EXPORT_SYMBOL(sk_reset_timer);
2247
2248 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2249 {
2250 if (del_timer(timer))
2251 __sock_put(sk);
2252 }
2253 EXPORT_SYMBOL(sk_stop_timer);
2254
2255 void sock_init_data(struct socket *sock, struct sock *sk)
2256 {
2257 skb_queue_head_init(&sk->sk_receive_queue);
2258 skb_queue_head_init(&sk->sk_write_queue);
2259 skb_queue_head_init(&sk->sk_error_queue);
2260 #ifdef CONFIG_NET_DMA
2261 skb_queue_head_init(&sk->sk_async_wait_queue);
2262 #endif
2263
2264 sk->sk_send_head = NULL;
2265
2266 init_timer(&sk->sk_timer);
2267
2268 sk->sk_allocation = GFP_KERNEL;
2269 sk->sk_rcvbuf = sysctl_rmem_default;
2270 sk->sk_sndbuf = sysctl_wmem_default;
2271 sk->sk_state = TCP_CLOSE;
2272 sk_set_socket(sk, sock);
2273
2274 sock_set_flag(sk, SOCK_ZAPPED);
2275
2276 if (sock) {
2277 sk->sk_type = sock->type;
2278 sk->sk_wq = sock->wq;
2279 sock->sk = sk;
2280 } else
2281 sk->sk_wq = NULL;
2282
2283 spin_lock_init(&sk->sk_dst_lock);
2284 rwlock_init(&sk->sk_callback_lock);
2285 lockdep_set_class_and_name(&sk->sk_callback_lock,
2286 af_callback_keys + sk->sk_family,
2287 af_family_clock_key_strings[sk->sk_family]);
2288
2289 sk->sk_state_change = sock_def_wakeup;
2290 sk->sk_data_ready = sock_def_readable;
2291 sk->sk_write_space = sock_def_write_space;
2292 sk->sk_error_report = sock_def_error_report;
2293 sk->sk_destruct = sock_def_destruct;
2294
2295 sk->sk_frag.page = NULL;
2296 sk->sk_frag.offset = 0;
2297 sk->sk_peek_off = -1;
2298
2299 sk->sk_peer_pid = NULL;
2300 sk->sk_peer_cred = NULL;
2301 sk->sk_write_pending = 0;
2302 sk->sk_rcvlowat = 1;
2303 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2304 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2305
2306 sk->sk_stamp = ktime_set(-1L, 0);
2307
2308 #ifdef CONFIG_NET_LL_RX_POLL
2309 sk->sk_napi_id = 0;
2310 sk->sk_ll_usec = sysctl_net_ll_read;
2311 #endif
2312
2313 /*
2314 * Before updating sk_refcnt, we must commit prior changes to memory
2315 * (Documentation/RCU/rculist_nulls.txt for details)
2316 */
2317 smp_wmb();
2318 atomic_set(&sk->sk_refcnt, 1);
2319 atomic_set(&sk->sk_drops, 0);
2320 }
2321 EXPORT_SYMBOL(sock_init_data);
2322
2323 void lock_sock_nested(struct sock *sk, int subclass)
2324 {
2325 might_sleep();
2326 spin_lock_bh(&sk->sk_lock.slock);
2327 if (sk->sk_lock.owned)
2328 __lock_sock(sk);
2329 sk->sk_lock.owned = 1;
2330 spin_unlock(&sk->sk_lock.slock);
2331 /*
2332 * The sk_lock has mutex_lock() semantics here:
2333 */
2334 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2335 local_bh_enable();
2336 }
2337 EXPORT_SYMBOL(lock_sock_nested);
2338
2339 void release_sock(struct sock *sk)
2340 {
2341 /*
2342 * The sk_lock has mutex_unlock() semantics:
2343 */
2344 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2345
2346 spin_lock_bh(&sk->sk_lock.slock);
2347 if (sk->sk_backlog.tail)
2348 __release_sock(sk);
2349
2350 if (sk->sk_prot->release_cb)
2351 sk->sk_prot->release_cb(sk);
2352
2353 sk->sk_lock.owned = 0;
2354 if (waitqueue_active(&sk->sk_lock.wq))
2355 wake_up(&sk->sk_lock.wq);
2356 spin_unlock_bh(&sk->sk_lock.slock);
2357 }
2358 EXPORT_SYMBOL(release_sock);
2359
2360 /**
2361 * lock_sock_fast - fast version of lock_sock
2362 * @sk: socket
2363 *
2364 * This version should be used for very small section, where process wont block
2365 * return false if fast path is taken
2366 * sk_lock.slock locked, owned = 0, BH disabled
2367 * return true if slow path is taken
2368 * sk_lock.slock unlocked, owned = 1, BH enabled
2369 */
2370 bool lock_sock_fast(struct sock *sk)
2371 {
2372 might_sleep();
2373 spin_lock_bh(&sk->sk_lock.slock);
2374
2375 if (!sk->sk_lock.owned)
2376 /*
2377 * Note : We must disable BH
2378 */
2379 return false;
2380
2381 __lock_sock(sk);
2382 sk->sk_lock.owned = 1;
2383 spin_unlock(&sk->sk_lock.slock);
2384 /*
2385 * The sk_lock has mutex_lock() semantics here:
2386 */
2387 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2388 local_bh_enable();
2389 return true;
2390 }
2391 EXPORT_SYMBOL(lock_sock_fast);
2392
2393 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2394 {
2395 struct timeval tv;
2396 if (!sock_flag(sk, SOCK_TIMESTAMP))
2397 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2398 tv = ktime_to_timeval(sk->sk_stamp);
2399 if (tv.tv_sec == -1)
2400 return -ENOENT;
2401 if (tv.tv_sec == 0) {
2402 sk->sk_stamp = ktime_get_real();
2403 tv = ktime_to_timeval(sk->sk_stamp);
2404 }
2405 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2406 }
2407 EXPORT_SYMBOL(sock_get_timestamp);
2408
2409 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2410 {
2411 struct timespec ts;
2412 if (!sock_flag(sk, SOCK_TIMESTAMP))
2413 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2414 ts = ktime_to_timespec(sk->sk_stamp);
2415 if (ts.tv_sec == -1)
2416 return -ENOENT;
2417 if (ts.tv_sec == 0) {
2418 sk->sk_stamp = ktime_get_real();
2419 ts = ktime_to_timespec(sk->sk_stamp);
2420 }
2421 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2422 }
2423 EXPORT_SYMBOL(sock_get_timestampns);
2424
2425 void sock_enable_timestamp(struct sock *sk, int flag)
2426 {
2427 if (!sock_flag(sk, flag)) {
2428 unsigned long previous_flags = sk->sk_flags;
2429
2430 sock_set_flag(sk, flag);
2431 /*
2432 * we just set one of the two flags which require net
2433 * time stamping, but time stamping might have been on
2434 * already because of the other one
2435 */
2436 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2437 net_enable_timestamp();
2438 }
2439 }
2440
2441 /*
2442 * Get a socket option on an socket.
2443 *
2444 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2445 * asynchronous errors should be reported by getsockopt. We assume
2446 * this means if you specify SO_ERROR (otherwise whats the point of it).
2447 */
2448 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2449 char __user *optval, int __user *optlen)
2450 {
2451 struct sock *sk = sock->sk;
2452
2453 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2454 }
2455 EXPORT_SYMBOL(sock_common_getsockopt);
2456
2457 #ifdef CONFIG_COMPAT
2458 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2459 char __user *optval, int __user *optlen)
2460 {
2461 struct sock *sk = sock->sk;
2462
2463 if (sk->sk_prot->compat_getsockopt != NULL)
2464 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2465 optval, optlen);
2466 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2467 }
2468 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2469 #endif
2470
2471 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2472 struct msghdr *msg, size_t size, int flags)
2473 {
2474 struct sock *sk = sock->sk;
2475 int addr_len = 0;
2476 int err;
2477
2478 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2479 flags & ~MSG_DONTWAIT, &addr_len);
2480 if (err >= 0)
2481 msg->msg_namelen = addr_len;
2482 return err;
2483 }
2484 EXPORT_SYMBOL(sock_common_recvmsg);
2485
2486 /*
2487 * Set socket options on an inet socket.
2488 */
2489 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2490 char __user *optval, unsigned int optlen)
2491 {
2492 struct sock *sk = sock->sk;
2493
2494 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2495 }
2496 EXPORT_SYMBOL(sock_common_setsockopt);
2497
2498 #ifdef CONFIG_COMPAT
2499 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2500 char __user *optval, unsigned int optlen)
2501 {
2502 struct sock *sk = sock->sk;
2503
2504 if (sk->sk_prot->compat_setsockopt != NULL)
2505 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2506 optval, optlen);
2507 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2508 }
2509 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2510 #endif
2511
2512 void sk_common_release(struct sock *sk)
2513 {
2514 if (sk->sk_prot->destroy)
2515 sk->sk_prot->destroy(sk);
2516
2517 /*
2518 * Observation: when sock_common_release is called, processes have
2519 * no access to socket. But net still has.
2520 * Step one, detach it from networking:
2521 *
2522 * A. Remove from hash tables.
2523 */
2524
2525 sk->sk_prot->unhash(sk);
2526
2527 /*
2528 * In this point socket cannot receive new packets, but it is possible
2529 * that some packets are in flight because some CPU runs receiver and
2530 * did hash table lookup before we unhashed socket. They will achieve
2531 * receive queue and will be purged by socket destructor.
2532 *
2533 * Also we still have packets pending on receive queue and probably,
2534 * our own packets waiting in device queues. sock_destroy will drain
2535 * receive queue, but transmitted packets will delay socket destruction
2536 * until the last reference will be released.
2537 */
2538
2539 sock_orphan(sk);
2540
2541 xfrm_sk_free_policy(sk);
2542
2543 sk_refcnt_debug_release(sk);
2544
2545 if (sk->sk_frag.page) {
2546 put_page(sk->sk_frag.page);
2547 sk->sk_frag.page = NULL;
2548 }
2549
2550 sock_put(sk);
2551 }
2552 EXPORT_SYMBOL(sk_common_release);
2553
2554 #ifdef CONFIG_PROC_FS
2555 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2556 struct prot_inuse {
2557 int val[PROTO_INUSE_NR];
2558 };
2559
2560 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2561
2562 #ifdef CONFIG_NET_NS
2563 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2564 {
2565 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2566 }
2567 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2568
2569 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2570 {
2571 int cpu, idx = prot->inuse_idx;
2572 int res = 0;
2573
2574 for_each_possible_cpu(cpu)
2575 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2576
2577 return res >= 0 ? res : 0;
2578 }
2579 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2580
2581 static int __net_init sock_inuse_init_net(struct net *net)
2582 {
2583 net->core.inuse = alloc_percpu(struct prot_inuse);
2584 return net->core.inuse ? 0 : -ENOMEM;
2585 }
2586
2587 static void __net_exit sock_inuse_exit_net(struct net *net)
2588 {
2589 free_percpu(net->core.inuse);
2590 }
2591
2592 static struct pernet_operations net_inuse_ops = {
2593 .init = sock_inuse_init_net,
2594 .exit = sock_inuse_exit_net,
2595 };
2596
2597 static __init int net_inuse_init(void)
2598 {
2599 if (register_pernet_subsys(&net_inuse_ops))
2600 panic("Cannot initialize net inuse counters");
2601
2602 return 0;
2603 }
2604
2605 core_initcall(net_inuse_init);
2606 #else
2607 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2608
2609 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2610 {
2611 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2612 }
2613 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2614
2615 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2616 {
2617 int cpu, idx = prot->inuse_idx;
2618 int res = 0;
2619
2620 for_each_possible_cpu(cpu)
2621 res += per_cpu(prot_inuse, cpu).val[idx];
2622
2623 return res >= 0 ? res : 0;
2624 }
2625 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2626 #endif
2627
2628 static void assign_proto_idx(struct proto *prot)
2629 {
2630 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2631
2632 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2633 pr_err("PROTO_INUSE_NR exhausted\n");
2634 return;
2635 }
2636
2637 set_bit(prot->inuse_idx, proto_inuse_idx);
2638 }
2639
2640 static void release_proto_idx(struct proto *prot)
2641 {
2642 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2643 clear_bit(prot->inuse_idx, proto_inuse_idx);
2644 }
2645 #else
2646 static inline void assign_proto_idx(struct proto *prot)
2647 {
2648 }
2649
2650 static inline void release_proto_idx(struct proto *prot)
2651 {
2652 }
2653 #endif
2654
2655 int proto_register(struct proto *prot, int alloc_slab)
2656 {
2657 if (alloc_slab) {
2658 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2659 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2660 NULL);
2661
2662 if (prot->slab == NULL) {
2663 pr_crit("%s: Can't create sock SLAB cache!\n",
2664 prot->name);
2665 goto out;
2666 }
2667
2668 if (prot->rsk_prot != NULL) {
2669 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2670 if (prot->rsk_prot->slab_name == NULL)
2671 goto out_free_sock_slab;
2672
2673 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2674 prot->rsk_prot->obj_size, 0,
2675 SLAB_HWCACHE_ALIGN, NULL);
2676
2677 if (prot->rsk_prot->slab == NULL) {
2678 pr_crit("%s: Can't create request sock SLAB cache!\n",
2679 prot->name);
2680 goto out_free_request_sock_slab_name;
2681 }
2682 }
2683
2684 if (prot->twsk_prot != NULL) {
2685 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2686
2687 if (prot->twsk_prot->twsk_slab_name == NULL)
2688 goto out_free_request_sock_slab;
2689
2690 prot->twsk_prot->twsk_slab =
2691 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2692 prot->twsk_prot->twsk_obj_size,
2693 0,
2694 SLAB_HWCACHE_ALIGN |
2695 prot->slab_flags,
2696 NULL);
2697 if (prot->twsk_prot->twsk_slab == NULL)
2698 goto out_free_timewait_sock_slab_name;
2699 }
2700 }
2701
2702 mutex_lock(&proto_list_mutex);
2703 list_add(&prot->node, &proto_list);
2704 assign_proto_idx(prot);
2705 mutex_unlock(&proto_list_mutex);
2706 return 0;
2707
2708 out_free_timewait_sock_slab_name:
2709 kfree(prot->twsk_prot->twsk_slab_name);
2710 out_free_request_sock_slab:
2711 if (prot->rsk_prot && prot->rsk_prot->slab) {
2712 kmem_cache_destroy(prot->rsk_prot->slab);
2713 prot->rsk_prot->slab = NULL;
2714 }
2715 out_free_request_sock_slab_name:
2716 if (prot->rsk_prot)
2717 kfree(prot->rsk_prot->slab_name);
2718 out_free_sock_slab:
2719 kmem_cache_destroy(prot->slab);
2720 prot->slab = NULL;
2721 out:
2722 return -ENOBUFS;
2723 }
2724 EXPORT_SYMBOL(proto_register);
2725
2726 void proto_unregister(struct proto *prot)
2727 {
2728 mutex_lock(&proto_list_mutex);
2729 release_proto_idx(prot);
2730 list_del(&prot->node);
2731 mutex_unlock(&proto_list_mutex);
2732
2733 if (prot->slab != NULL) {
2734 kmem_cache_destroy(prot->slab);
2735 prot->slab = NULL;
2736 }
2737
2738 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2739 kmem_cache_destroy(prot->rsk_prot->slab);
2740 kfree(prot->rsk_prot->slab_name);
2741 prot->rsk_prot->slab = NULL;
2742 }
2743
2744 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2745 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2746 kfree(prot->twsk_prot->twsk_slab_name);
2747 prot->twsk_prot->twsk_slab = NULL;
2748 }
2749 }
2750 EXPORT_SYMBOL(proto_unregister);
2751
2752 #ifdef CONFIG_PROC_FS
2753 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2754 __acquires(proto_list_mutex)
2755 {
2756 mutex_lock(&proto_list_mutex);
2757 return seq_list_start_head(&proto_list, *pos);
2758 }
2759
2760 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2761 {
2762 return seq_list_next(v, &proto_list, pos);
2763 }
2764
2765 static void proto_seq_stop(struct seq_file *seq, void *v)
2766 __releases(proto_list_mutex)
2767 {
2768 mutex_unlock(&proto_list_mutex);
2769 }
2770
2771 static char proto_method_implemented(const void *method)
2772 {
2773 return method == NULL ? 'n' : 'y';
2774 }
2775 static long sock_prot_memory_allocated(struct proto *proto)
2776 {
2777 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2778 }
2779
2780 static char *sock_prot_memory_pressure(struct proto *proto)
2781 {
2782 return proto->memory_pressure != NULL ?
2783 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2784 }
2785
2786 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2787 {
2788
2789 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2790 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2791 proto->name,
2792 proto->obj_size,
2793 sock_prot_inuse_get(seq_file_net(seq), proto),
2794 sock_prot_memory_allocated(proto),
2795 sock_prot_memory_pressure(proto),
2796 proto->max_header,
2797 proto->slab == NULL ? "no" : "yes",
2798 module_name(proto->owner),
2799 proto_method_implemented(proto->close),
2800 proto_method_implemented(proto->connect),
2801 proto_method_implemented(proto->disconnect),
2802 proto_method_implemented(proto->accept),
2803 proto_method_implemented(proto->ioctl),
2804 proto_method_implemented(proto->init),
2805 proto_method_implemented(proto->destroy),
2806 proto_method_implemented(proto->shutdown),
2807 proto_method_implemented(proto->setsockopt),
2808 proto_method_implemented(proto->getsockopt),
2809 proto_method_implemented(proto->sendmsg),
2810 proto_method_implemented(proto->recvmsg),
2811 proto_method_implemented(proto->sendpage),
2812 proto_method_implemented(proto->bind),
2813 proto_method_implemented(proto->backlog_rcv),
2814 proto_method_implemented(proto->hash),
2815 proto_method_implemented(proto->unhash),
2816 proto_method_implemented(proto->get_port),
2817 proto_method_implemented(proto->enter_memory_pressure));
2818 }
2819
2820 static int proto_seq_show(struct seq_file *seq, void *v)
2821 {
2822 if (v == &proto_list)
2823 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2824 "protocol",
2825 "size",
2826 "sockets",
2827 "memory",
2828 "press",
2829 "maxhdr",
2830 "slab",
2831 "module",
2832 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2833 else
2834 proto_seq_printf(seq, list_entry(v, struct proto, node));
2835 return 0;
2836 }
2837
2838 static const struct seq_operations proto_seq_ops = {
2839 .start = proto_seq_start,
2840 .next = proto_seq_next,
2841 .stop = proto_seq_stop,
2842 .show = proto_seq_show,
2843 };
2844
2845 static int proto_seq_open(struct inode *inode, struct file *file)
2846 {
2847 return seq_open_net(inode, file, &proto_seq_ops,
2848 sizeof(struct seq_net_private));
2849 }
2850
2851 static const struct file_operations proto_seq_fops = {
2852 .owner = THIS_MODULE,
2853 .open = proto_seq_open,
2854 .read = seq_read,
2855 .llseek = seq_lseek,
2856 .release = seq_release_net,
2857 };
2858
2859 static __net_init int proto_init_net(struct net *net)
2860 {
2861 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2862 return -ENOMEM;
2863
2864 return 0;
2865 }
2866
2867 static __net_exit void proto_exit_net(struct net *net)
2868 {
2869 remove_proc_entry("protocols", net->proc_net);
2870 }
2871
2872
2873 static __net_initdata struct pernet_operations proto_net_ops = {
2874 .init = proto_init_net,
2875 .exit = proto_exit_net,
2876 };
2877
2878 static int __init proto_init(void)
2879 {
2880 return register_pernet_subsys(&proto_net_ops);
2881 }
2882
2883 subsys_initcall(proto_init);
2884
2885 #endif /* PROC_FS */
This page took 0.121075 seconds and 5 git commands to generate.