nl80211: Memory leak fixed
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
176 };
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
192 };
193
194 /*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 struct timeval tv;
223
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
230
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
233
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
240 }
241 return 0;
242 }
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
249 }
250
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
260 }
261 }
262
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
270 }
271 }
272 }
273
274
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 int err = 0;
278 int skb_len;
279
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
282 */
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
292
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
296 }
297
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
300
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
305 */
306 skb_len = skb->len;
307
308 skb_queue_tail(&sk->sk_receive_queue, skb);
309
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 int rc = NET_RX_SUCCESS;
320
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
323
324 skb->dev = NULL;
325
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
331 /*
332 * trylock + unlock semantics:
333 */
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335
336 rc = sk_backlog_rcv(sk, skb);
337
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 struct dst_entry *dst = sk->sk_dst_cache;
354
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
359 }
360
361 return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 struct dst_entry *dst = sk_dst_get(sk);
368
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
373 }
374
375 return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
386
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
391
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
395
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
400 */
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
404
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
408
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
413
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
417
418 index = dev->ifindex;
419 dev_put(dev);
420 }
421
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
426
427 ret = 0;
428
429 out:
430 #endif
431
432 return ret;
433 }
434
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
441 }
442
443 /*
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
446 */
447
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
450 {
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
456
457 /*
458 * Options without arguments
459 */
460
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
463
464 if (optlen < sizeof(int))
465 return -EINVAL;
466
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
469
470 valbool = val ? 1 : 0;
471
472 lock_sock(sk);
473
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
499
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
508
509 /*
510 * Wake up sending tasks if we
511 * upped the value.
512 */
513 sk->sk_write_space(sk);
514 break;
515
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
520 }
521 goto set_sndbuf;
522
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
528
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
533 /*
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
539 *
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
543 *
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
547 */
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
553
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
558 }
559 goto set_rcvbuf;
560
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
568
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
572
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
576
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
583
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
588 }
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
592 }
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
603 }
604 break;
605
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
609
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
616
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629 }
630 break;
631
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = -EINVAL;
635 break;
636 }
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
656
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
662
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
666
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
670
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
675
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
679
680 ret = sk_attach_filter(&fprog, sk);
681 }
682 break;
683
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
687
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
700
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
706 }
707 release_sock(sk);
708 return ret;
709 }
710 EXPORT_SYMBOL(sock_setsockopt);
711
712
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
715 {
716 struct sock *sk = sock->sk;
717
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
723
724 unsigned int lv = sizeof(int);
725 int len;
726
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
731
732 memset(&v, 0, sizeof(v));
733
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
738
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
742
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
746
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
750
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
754
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
758
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
762
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
766
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
772
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
776
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
780
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
784
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
790
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
794
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
799
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
803
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
821
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
830 }
831 break;
832
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
841 }
842 break;
843
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
847
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
851
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
855
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
862
863 case SO_PEERNAME:
864 {
865 char address[128];
866
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
874 }
875
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
878 */
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
882
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
886
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
889
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
893
894 default:
895 return -ENOPROTOOPT;
896 }
897
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
906 }
907
908 /*
909 * Initialize an sk_lock.
910 *
911 * (We also register the sk_lock with the lock validator.)
912 */
913 static inline void sock_lock_init(struct sock *sk)
914 {
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
920 }
921
922 /*
923 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
924 * even temporarly, because of RCU lookups. sk_node should also be left as is.
925 */
926 static void sock_copy(struct sock *nsk, const struct sock *osk)
927 {
928 #ifdef CONFIG_SECURITY_NETWORK
929 void *sptr = nsk->sk_security;
930 #endif
931 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
932 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
933 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
934 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
935 #ifdef CONFIG_SECURITY_NETWORK
936 nsk->sk_security = sptr;
937 security_sk_clone(osk, nsk);
938 #endif
939 }
940
941 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
942 int family)
943 {
944 struct sock *sk;
945 struct kmem_cache *slab;
946
947 slab = prot->slab;
948 if (slab != NULL) {
949 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
950 if (!sk)
951 return sk;
952 if (priority & __GFP_ZERO) {
953 /*
954 * caches using SLAB_DESTROY_BY_RCU should let
955 * sk_node.next un-modified. Special care is taken
956 * when initializing object to zero.
957 */
958 if (offsetof(struct sock, sk_node.next) != 0)
959 memset(sk, 0, offsetof(struct sock, sk_node.next));
960 memset(&sk->sk_node.pprev, 0,
961 prot->obj_size - offsetof(struct sock,
962 sk_node.pprev));
963 }
964 }
965 else
966 sk = kmalloc(prot->obj_size, priority);
967
968 if (sk != NULL) {
969 kmemcheck_annotate_bitfield(sk, flags);
970
971 if (security_sk_alloc(sk, family, priority))
972 goto out_free;
973
974 if (!try_module_get(prot->owner))
975 goto out_free_sec;
976 }
977
978 return sk;
979
980 out_free_sec:
981 security_sk_free(sk);
982 out_free:
983 if (slab != NULL)
984 kmem_cache_free(slab, sk);
985 else
986 kfree(sk);
987 return NULL;
988 }
989
990 static void sk_prot_free(struct proto *prot, struct sock *sk)
991 {
992 struct kmem_cache *slab;
993 struct module *owner;
994
995 owner = prot->owner;
996 slab = prot->slab;
997
998 security_sk_free(sk);
999 if (slab != NULL)
1000 kmem_cache_free(slab, sk);
1001 else
1002 kfree(sk);
1003 module_put(owner);
1004 }
1005
1006 /**
1007 * sk_alloc - All socket objects are allocated here
1008 * @net: the applicable net namespace
1009 * @family: protocol family
1010 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1011 * @prot: struct proto associated with this new sock instance
1012 */
1013 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1014 struct proto *prot)
1015 {
1016 struct sock *sk;
1017
1018 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1019 if (sk) {
1020 sk->sk_family = family;
1021 /*
1022 * See comment in struct sock definition to understand
1023 * why we need sk_prot_creator -acme
1024 */
1025 sk->sk_prot = sk->sk_prot_creator = prot;
1026 sock_lock_init(sk);
1027 sock_net_set(sk, get_net(net));
1028 }
1029
1030 return sk;
1031 }
1032 EXPORT_SYMBOL(sk_alloc);
1033
1034 static void __sk_free(struct sock *sk)
1035 {
1036 struct sk_filter *filter;
1037
1038 if (sk->sk_destruct)
1039 sk->sk_destruct(sk);
1040
1041 filter = rcu_dereference(sk->sk_filter);
1042 if (filter) {
1043 sk_filter_uncharge(sk, filter);
1044 rcu_assign_pointer(sk->sk_filter, NULL);
1045 }
1046
1047 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1048 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1049
1050 if (atomic_read(&sk->sk_omem_alloc))
1051 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1052 __func__, atomic_read(&sk->sk_omem_alloc));
1053
1054 put_net(sock_net(sk));
1055 sk_prot_free(sk->sk_prot_creator, sk);
1056 }
1057
1058 void sk_free(struct sock *sk)
1059 {
1060 /*
1061 * We substract one from sk_wmem_alloc and can know if
1062 * some packets are still in some tx queue.
1063 * If not null, sock_wfree() will call __sk_free(sk) later
1064 */
1065 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1066 __sk_free(sk);
1067 }
1068 EXPORT_SYMBOL(sk_free);
1069
1070 /*
1071 * Last sock_put should drop referrence to sk->sk_net. It has already
1072 * been dropped in sk_change_net. Taking referrence to stopping namespace
1073 * is not an option.
1074 * Take referrence to a socket to remove it from hash _alive_ and after that
1075 * destroy it in the context of init_net.
1076 */
1077 void sk_release_kernel(struct sock *sk)
1078 {
1079 if (sk == NULL || sk->sk_socket == NULL)
1080 return;
1081
1082 sock_hold(sk);
1083 sock_release(sk->sk_socket);
1084 release_net(sock_net(sk));
1085 sock_net_set(sk, get_net(&init_net));
1086 sock_put(sk);
1087 }
1088 EXPORT_SYMBOL(sk_release_kernel);
1089
1090 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1091 {
1092 struct sock *newsk;
1093
1094 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1095 if (newsk != NULL) {
1096 struct sk_filter *filter;
1097
1098 sock_copy(newsk, sk);
1099
1100 /* SANITY */
1101 get_net(sock_net(newsk));
1102 sk_node_init(&newsk->sk_node);
1103 sock_lock_init(newsk);
1104 bh_lock_sock(newsk);
1105 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1106
1107 atomic_set(&newsk->sk_rmem_alloc, 0);
1108 /*
1109 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1110 */
1111 atomic_set(&newsk->sk_wmem_alloc, 1);
1112 atomic_set(&newsk->sk_omem_alloc, 0);
1113 skb_queue_head_init(&newsk->sk_receive_queue);
1114 skb_queue_head_init(&newsk->sk_write_queue);
1115 #ifdef CONFIG_NET_DMA
1116 skb_queue_head_init(&newsk->sk_async_wait_queue);
1117 #endif
1118
1119 rwlock_init(&newsk->sk_dst_lock);
1120 rwlock_init(&newsk->sk_callback_lock);
1121 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1122 af_callback_keys + newsk->sk_family,
1123 af_family_clock_key_strings[newsk->sk_family]);
1124
1125 newsk->sk_dst_cache = NULL;
1126 newsk->sk_wmem_queued = 0;
1127 newsk->sk_forward_alloc = 0;
1128 newsk->sk_send_head = NULL;
1129 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1130
1131 sock_reset_flag(newsk, SOCK_DONE);
1132 skb_queue_head_init(&newsk->sk_error_queue);
1133
1134 filter = newsk->sk_filter;
1135 if (filter != NULL)
1136 sk_filter_charge(newsk, filter);
1137
1138 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1139 /* It is still raw copy of parent, so invalidate
1140 * destructor and make plain sk_free() */
1141 newsk->sk_destruct = NULL;
1142 sk_free(newsk);
1143 newsk = NULL;
1144 goto out;
1145 }
1146
1147 newsk->sk_err = 0;
1148 newsk->sk_priority = 0;
1149 /*
1150 * Before updating sk_refcnt, we must commit prior changes to memory
1151 * (Documentation/RCU/rculist_nulls.txt for details)
1152 */
1153 smp_wmb();
1154 atomic_set(&newsk->sk_refcnt, 2);
1155
1156 /*
1157 * Increment the counter in the same struct proto as the master
1158 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1159 * is the same as sk->sk_prot->socks, as this field was copied
1160 * with memcpy).
1161 *
1162 * This _changes_ the previous behaviour, where
1163 * tcp_create_openreq_child always was incrementing the
1164 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1165 * to be taken into account in all callers. -acme
1166 */
1167 sk_refcnt_debug_inc(newsk);
1168 sk_set_socket(newsk, NULL);
1169 newsk->sk_sleep = NULL;
1170
1171 if (newsk->sk_prot->sockets_allocated)
1172 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1173 }
1174 out:
1175 return newsk;
1176 }
1177 EXPORT_SYMBOL_GPL(sk_clone);
1178
1179 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1180 {
1181 __sk_dst_set(sk, dst);
1182 sk->sk_route_caps = dst->dev->features;
1183 if (sk->sk_route_caps & NETIF_F_GSO)
1184 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1185 if (sk_can_gso(sk)) {
1186 if (dst->header_len) {
1187 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1188 } else {
1189 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1190 sk->sk_gso_max_size = dst->dev->gso_max_size;
1191 }
1192 }
1193 }
1194 EXPORT_SYMBOL_GPL(sk_setup_caps);
1195
1196 void __init sk_init(void)
1197 {
1198 if (num_physpages <= 4096) {
1199 sysctl_wmem_max = 32767;
1200 sysctl_rmem_max = 32767;
1201 sysctl_wmem_default = 32767;
1202 sysctl_rmem_default = 32767;
1203 } else if (num_physpages >= 131072) {
1204 sysctl_wmem_max = 131071;
1205 sysctl_rmem_max = 131071;
1206 }
1207 }
1208
1209 /*
1210 * Simple resource managers for sockets.
1211 */
1212
1213
1214 /*
1215 * Write buffer destructor automatically called from kfree_skb.
1216 */
1217 void sock_wfree(struct sk_buff *skb)
1218 {
1219 struct sock *sk = skb->sk;
1220 int res;
1221
1222 /* In case it might be waiting for more memory. */
1223 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1224 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1225 sk->sk_write_space(sk);
1226 /*
1227 * if sk_wmem_alloc reached 0, we are last user and should
1228 * free this sock, as sk_free() call could not do it.
1229 */
1230 if (res == 0)
1231 __sk_free(sk);
1232 }
1233 EXPORT_SYMBOL(sock_wfree);
1234
1235 /*
1236 * Read buffer destructor automatically called from kfree_skb.
1237 */
1238 void sock_rfree(struct sk_buff *skb)
1239 {
1240 struct sock *sk = skb->sk;
1241
1242 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1243 sk_mem_uncharge(skb->sk, skb->truesize);
1244 }
1245 EXPORT_SYMBOL(sock_rfree);
1246
1247
1248 int sock_i_uid(struct sock *sk)
1249 {
1250 int uid;
1251
1252 read_lock(&sk->sk_callback_lock);
1253 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1254 read_unlock(&sk->sk_callback_lock);
1255 return uid;
1256 }
1257 EXPORT_SYMBOL(sock_i_uid);
1258
1259 unsigned long sock_i_ino(struct sock *sk)
1260 {
1261 unsigned long ino;
1262
1263 read_lock(&sk->sk_callback_lock);
1264 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1265 read_unlock(&sk->sk_callback_lock);
1266 return ino;
1267 }
1268 EXPORT_SYMBOL(sock_i_ino);
1269
1270 /*
1271 * Allocate a skb from the socket's send buffer.
1272 */
1273 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1274 gfp_t priority)
1275 {
1276 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1277 struct sk_buff *skb = alloc_skb(size, priority);
1278 if (skb) {
1279 skb_set_owner_w(skb, sk);
1280 return skb;
1281 }
1282 }
1283 return NULL;
1284 }
1285 EXPORT_SYMBOL(sock_wmalloc);
1286
1287 /*
1288 * Allocate a skb from the socket's receive buffer.
1289 */
1290 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1291 gfp_t priority)
1292 {
1293 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1294 struct sk_buff *skb = alloc_skb(size, priority);
1295 if (skb) {
1296 skb_set_owner_r(skb, sk);
1297 return skb;
1298 }
1299 }
1300 return NULL;
1301 }
1302
1303 /*
1304 * Allocate a memory block from the socket's option memory buffer.
1305 */
1306 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1307 {
1308 if ((unsigned)size <= sysctl_optmem_max &&
1309 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1310 void *mem;
1311 /* First do the add, to avoid the race if kmalloc
1312 * might sleep.
1313 */
1314 atomic_add(size, &sk->sk_omem_alloc);
1315 mem = kmalloc(size, priority);
1316 if (mem)
1317 return mem;
1318 atomic_sub(size, &sk->sk_omem_alloc);
1319 }
1320 return NULL;
1321 }
1322 EXPORT_SYMBOL(sock_kmalloc);
1323
1324 /*
1325 * Free an option memory block.
1326 */
1327 void sock_kfree_s(struct sock *sk, void *mem, int size)
1328 {
1329 kfree(mem);
1330 atomic_sub(size, &sk->sk_omem_alloc);
1331 }
1332 EXPORT_SYMBOL(sock_kfree_s);
1333
1334 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1335 I think, these locks should be removed for datagram sockets.
1336 */
1337 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1338 {
1339 DEFINE_WAIT(wait);
1340
1341 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1342 for (;;) {
1343 if (!timeo)
1344 break;
1345 if (signal_pending(current))
1346 break;
1347 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1348 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1349 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1350 break;
1351 if (sk->sk_shutdown & SEND_SHUTDOWN)
1352 break;
1353 if (sk->sk_err)
1354 break;
1355 timeo = schedule_timeout(timeo);
1356 }
1357 finish_wait(sk->sk_sleep, &wait);
1358 return timeo;
1359 }
1360
1361
1362 /*
1363 * Generic send/receive buffer handlers
1364 */
1365
1366 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1367 unsigned long data_len, int noblock,
1368 int *errcode)
1369 {
1370 struct sk_buff *skb;
1371 gfp_t gfp_mask;
1372 long timeo;
1373 int err;
1374
1375 gfp_mask = sk->sk_allocation;
1376 if (gfp_mask & __GFP_WAIT)
1377 gfp_mask |= __GFP_REPEAT;
1378
1379 timeo = sock_sndtimeo(sk, noblock);
1380 while (1) {
1381 err = sock_error(sk);
1382 if (err != 0)
1383 goto failure;
1384
1385 err = -EPIPE;
1386 if (sk->sk_shutdown & SEND_SHUTDOWN)
1387 goto failure;
1388
1389 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1390 skb = alloc_skb(header_len, gfp_mask);
1391 if (skb) {
1392 int npages;
1393 int i;
1394
1395 /* No pages, we're done... */
1396 if (!data_len)
1397 break;
1398
1399 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1400 skb->truesize += data_len;
1401 skb_shinfo(skb)->nr_frags = npages;
1402 for (i = 0; i < npages; i++) {
1403 struct page *page;
1404 skb_frag_t *frag;
1405
1406 page = alloc_pages(sk->sk_allocation, 0);
1407 if (!page) {
1408 err = -ENOBUFS;
1409 skb_shinfo(skb)->nr_frags = i;
1410 kfree_skb(skb);
1411 goto failure;
1412 }
1413
1414 frag = &skb_shinfo(skb)->frags[i];
1415 frag->page = page;
1416 frag->page_offset = 0;
1417 frag->size = (data_len >= PAGE_SIZE ?
1418 PAGE_SIZE :
1419 data_len);
1420 data_len -= PAGE_SIZE;
1421 }
1422
1423 /* Full success... */
1424 break;
1425 }
1426 err = -ENOBUFS;
1427 goto failure;
1428 }
1429 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1431 err = -EAGAIN;
1432 if (!timeo)
1433 goto failure;
1434 if (signal_pending(current))
1435 goto interrupted;
1436 timeo = sock_wait_for_wmem(sk, timeo);
1437 }
1438
1439 skb_set_owner_w(skb, sk);
1440 return skb;
1441
1442 interrupted:
1443 err = sock_intr_errno(timeo);
1444 failure:
1445 *errcode = err;
1446 return NULL;
1447 }
1448 EXPORT_SYMBOL(sock_alloc_send_pskb);
1449
1450 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1451 int noblock, int *errcode)
1452 {
1453 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1454 }
1455 EXPORT_SYMBOL(sock_alloc_send_skb);
1456
1457 static void __lock_sock(struct sock *sk)
1458 {
1459 DEFINE_WAIT(wait);
1460
1461 for (;;) {
1462 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1463 TASK_UNINTERRUPTIBLE);
1464 spin_unlock_bh(&sk->sk_lock.slock);
1465 schedule();
1466 spin_lock_bh(&sk->sk_lock.slock);
1467 if (!sock_owned_by_user(sk))
1468 break;
1469 }
1470 finish_wait(&sk->sk_lock.wq, &wait);
1471 }
1472
1473 static void __release_sock(struct sock *sk)
1474 {
1475 struct sk_buff *skb = sk->sk_backlog.head;
1476
1477 do {
1478 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1479 bh_unlock_sock(sk);
1480
1481 do {
1482 struct sk_buff *next = skb->next;
1483
1484 skb->next = NULL;
1485 sk_backlog_rcv(sk, skb);
1486
1487 /*
1488 * We are in process context here with softirqs
1489 * disabled, use cond_resched_softirq() to preempt.
1490 * This is safe to do because we've taken the backlog
1491 * queue private:
1492 */
1493 cond_resched_softirq();
1494
1495 skb = next;
1496 } while (skb != NULL);
1497
1498 bh_lock_sock(sk);
1499 } while ((skb = sk->sk_backlog.head) != NULL);
1500 }
1501
1502 /**
1503 * sk_wait_data - wait for data to arrive at sk_receive_queue
1504 * @sk: sock to wait on
1505 * @timeo: for how long
1506 *
1507 * Now socket state including sk->sk_err is changed only under lock,
1508 * hence we may omit checks after joining wait queue.
1509 * We check receive queue before schedule() only as optimization;
1510 * it is very likely that release_sock() added new data.
1511 */
1512 int sk_wait_data(struct sock *sk, long *timeo)
1513 {
1514 int rc;
1515 DEFINE_WAIT(wait);
1516
1517 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1518 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1519 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1520 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1521 finish_wait(sk->sk_sleep, &wait);
1522 return rc;
1523 }
1524 EXPORT_SYMBOL(sk_wait_data);
1525
1526 /**
1527 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1528 * @sk: socket
1529 * @size: memory size to allocate
1530 * @kind: allocation type
1531 *
1532 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1533 * rmem allocation. This function assumes that protocols which have
1534 * memory_pressure use sk_wmem_queued as write buffer accounting.
1535 */
1536 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1537 {
1538 struct proto *prot = sk->sk_prot;
1539 int amt = sk_mem_pages(size);
1540 int allocated;
1541
1542 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1543 allocated = atomic_add_return(amt, prot->memory_allocated);
1544
1545 /* Under limit. */
1546 if (allocated <= prot->sysctl_mem[0]) {
1547 if (prot->memory_pressure && *prot->memory_pressure)
1548 *prot->memory_pressure = 0;
1549 return 1;
1550 }
1551
1552 /* Under pressure. */
1553 if (allocated > prot->sysctl_mem[1])
1554 if (prot->enter_memory_pressure)
1555 prot->enter_memory_pressure(sk);
1556
1557 /* Over hard limit. */
1558 if (allocated > prot->sysctl_mem[2])
1559 goto suppress_allocation;
1560
1561 /* guarantee minimum buffer size under pressure */
1562 if (kind == SK_MEM_RECV) {
1563 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1564 return 1;
1565 } else { /* SK_MEM_SEND */
1566 if (sk->sk_type == SOCK_STREAM) {
1567 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1568 return 1;
1569 } else if (atomic_read(&sk->sk_wmem_alloc) <
1570 prot->sysctl_wmem[0])
1571 return 1;
1572 }
1573
1574 if (prot->memory_pressure) {
1575 int alloc;
1576
1577 if (!*prot->memory_pressure)
1578 return 1;
1579 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1580 if (prot->sysctl_mem[2] > alloc *
1581 sk_mem_pages(sk->sk_wmem_queued +
1582 atomic_read(&sk->sk_rmem_alloc) +
1583 sk->sk_forward_alloc))
1584 return 1;
1585 }
1586
1587 suppress_allocation:
1588
1589 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1590 sk_stream_moderate_sndbuf(sk);
1591
1592 /* Fail only if socket is _under_ its sndbuf.
1593 * In this case we cannot block, so that we have to fail.
1594 */
1595 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1596 return 1;
1597 }
1598
1599 /* Alas. Undo changes. */
1600 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1601 atomic_sub(amt, prot->memory_allocated);
1602 return 0;
1603 }
1604 EXPORT_SYMBOL(__sk_mem_schedule);
1605
1606 /**
1607 * __sk_reclaim - reclaim memory_allocated
1608 * @sk: socket
1609 */
1610 void __sk_mem_reclaim(struct sock *sk)
1611 {
1612 struct proto *prot = sk->sk_prot;
1613
1614 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1615 prot->memory_allocated);
1616 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1617
1618 if (prot->memory_pressure && *prot->memory_pressure &&
1619 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1620 *prot->memory_pressure = 0;
1621 }
1622 EXPORT_SYMBOL(__sk_mem_reclaim);
1623
1624
1625 /*
1626 * Set of default routines for initialising struct proto_ops when
1627 * the protocol does not support a particular function. In certain
1628 * cases where it makes no sense for a protocol to have a "do nothing"
1629 * function, some default processing is provided.
1630 */
1631
1632 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1633 {
1634 return -EOPNOTSUPP;
1635 }
1636 EXPORT_SYMBOL(sock_no_bind);
1637
1638 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1639 int len, int flags)
1640 {
1641 return -EOPNOTSUPP;
1642 }
1643 EXPORT_SYMBOL(sock_no_connect);
1644
1645 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1646 {
1647 return -EOPNOTSUPP;
1648 }
1649 EXPORT_SYMBOL(sock_no_socketpair);
1650
1651 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1652 {
1653 return -EOPNOTSUPP;
1654 }
1655 EXPORT_SYMBOL(sock_no_accept);
1656
1657 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1658 int *len, int peer)
1659 {
1660 return -EOPNOTSUPP;
1661 }
1662 EXPORT_SYMBOL(sock_no_getname);
1663
1664 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1665 {
1666 return 0;
1667 }
1668 EXPORT_SYMBOL(sock_no_poll);
1669
1670 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1671 {
1672 return -EOPNOTSUPP;
1673 }
1674 EXPORT_SYMBOL(sock_no_ioctl);
1675
1676 int sock_no_listen(struct socket *sock, int backlog)
1677 {
1678 return -EOPNOTSUPP;
1679 }
1680 EXPORT_SYMBOL(sock_no_listen);
1681
1682 int sock_no_shutdown(struct socket *sock, int how)
1683 {
1684 return -EOPNOTSUPP;
1685 }
1686 EXPORT_SYMBOL(sock_no_shutdown);
1687
1688 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1689 char __user *optval, int optlen)
1690 {
1691 return -EOPNOTSUPP;
1692 }
1693 EXPORT_SYMBOL(sock_no_setsockopt);
1694
1695 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1696 char __user *optval, int __user *optlen)
1697 {
1698 return -EOPNOTSUPP;
1699 }
1700 EXPORT_SYMBOL(sock_no_getsockopt);
1701
1702 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1703 size_t len)
1704 {
1705 return -EOPNOTSUPP;
1706 }
1707 EXPORT_SYMBOL(sock_no_sendmsg);
1708
1709 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1710 size_t len, int flags)
1711 {
1712 return -EOPNOTSUPP;
1713 }
1714 EXPORT_SYMBOL(sock_no_recvmsg);
1715
1716 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1717 {
1718 /* Mirror missing mmap method error code */
1719 return -ENODEV;
1720 }
1721 EXPORT_SYMBOL(sock_no_mmap);
1722
1723 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1724 {
1725 ssize_t res;
1726 struct msghdr msg = {.msg_flags = flags};
1727 struct kvec iov;
1728 char *kaddr = kmap(page);
1729 iov.iov_base = kaddr + offset;
1730 iov.iov_len = size;
1731 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1732 kunmap(page);
1733 return res;
1734 }
1735 EXPORT_SYMBOL(sock_no_sendpage);
1736
1737 /*
1738 * Default Socket Callbacks
1739 */
1740
1741 static void sock_def_wakeup(struct sock *sk)
1742 {
1743 read_lock(&sk->sk_callback_lock);
1744 if (sk_has_sleeper(sk))
1745 wake_up_interruptible_all(sk->sk_sleep);
1746 read_unlock(&sk->sk_callback_lock);
1747 }
1748
1749 static void sock_def_error_report(struct sock *sk)
1750 {
1751 read_lock(&sk->sk_callback_lock);
1752 if (sk_has_sleeper(sk))
1753 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1754 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1755 read_unlock(&sk->sk_callback_lock);
1756 }
1757
1758 static void sock_def_readable(struct sock *sk, int len)
1759 {
1760 read_lock(&sk->sk_callback_lock);
1761 if (sk_has_sleeper(sk))
1762 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1763 POLLRDNORM | POLLRDBAND);
1764 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1765 read_unlock(&sk->sk_callback_lock);
1766 }
1767
1768 static void sock_def_write_space(struct sock *sk)
1769 {
1770 read_lock(&sk->sk_callback_lock);
1771
1772 /* Do not wake up a writer until he can make "significant"
1773 * progress. --DaveM
1774 */
1775 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1776 if (sk_has_sleeper(sk))
1777 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1778 POLLWRNORM | POLLWRBAND);
1779
1780 /* Should agree with poll, otherwise some programs break */
1781 if (sock_writeable(sk))
1782 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1783 }
1784
1785 read_unlock(&sk->sk_callback_lock);
1786 }
1787
1788 static void sock_def_destruct(struct sock *sk)
1789 {
1790 kfree(sk->sk_protinfo);
1791 }
1792
1793 void sk_send_sigurg(struct sock *sk)
1794 {
1795 if (sk->sk_socket && sk->sk_socket->file)
1796 if (send_sigurg(&sk->sk_socket->file->f_owner))
1797 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1798 }
1799 EXPORT_SYMBOL(sk_send_sigurg);
1800
1801 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1802 unsigned long expires)
1803 {
1804 if (!mod_timer(timer, expires))
1805 sock_hold(sk);
1806 }
1807 EXPORT_SYMBOL(sk_reset_timer);
1808
1809 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1810 {
1811 if (timer_pending(timer) && del_timer(timer))
1812 __sock_put(sk);
1813 }
1814 EXPORT_SYMBOL(sk_stop_timer);
1815
1816 void sock_init_data(struct socket *sock, struct sock *sk)
1817 {
1818 skb_queue_head_init(&sk->sk_receive_queue);
1819 skb_queue_head_init(&sk->sk_write_queue);
1820 skb_queue_head_init(&sk->sk_error_queue);
1821 #ifdef CONFIG_NET_DMA
1822 skb_queue_head_init(&sk->sk_async_wait_queue);
1823 #endif
1824
1825 sk->sk_send_head = NULL;
1826
1827 init_timer(&sk->sk_timer);
1828
1829 sk->sk_allocation = GFP_KERNEL;
1830 sk->sk_rcvbuf = sysctl_rmem_default;
1831 sk->sk_sndbuf = sysctl_wmem_default;
1832 sk->sk_state = TCP_CLOSE;
1833 sk_set_socket(sk, sock);
1834
1835 sock_set_flag(sk, SOCK_ZAPPED);
1836
1837 if (sock) {
1838 sk->sk_type = sock->type;
1839 sk->sk_sleep = &sock->wait;
1840 sock->sk = sk;
1841 } else
1842 sk->sk_sleep = NULL;
1843
1844 rwlock_init(&sk->sk_dst_lock);
1845 rwlock_init(&sk->sk_callback_lock);
1846 lockdep_set_class_and_name(&sk->sk_callback_lock,
1847 af_callback_keys + sk->sk_family,
1848 af_family_clock_key_strings[sk->sk_family]);
1849
1850 sk->sk_state_change = sock_def_wakeup;
1851 sk->sk_data_ready = sock_def_readable;
1852 sk->sk_write_space = sock_def_write_space;
1853 sk->sk_error_report = sock_def_error_report;
1854 sk->sk_destruct = sock_def_destruct;
1855
1856 sk->sk_sndmsg_page = NULL;
1857 sk->sk_sndmsg_off = 0;
1858
1859 sk->sk_peercred.pid = 0;
1860 sk->sk_peercred.uid = -1;
1861 sk->sk_peercred.gid = -1;
1862 sk->sk_write_pending = 0;
1863 sk->sk_rcvlowat = 1;
1864 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1865 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1866
1867 sk->sk_stamp = ktime_set(-1L, 0);
1868
1869 /*
1870 * Before updating sk_refcnt, we must commit prior changes to memory
1871 * (Documentation/RCU/rculist_nulls.txt for details)
1872 */
1873 smp_wmb();
1874 atomic_set(&sk->sk_refcnt, 1);
1875 atomic_set(&sk->sk_wmem_alloc, 1);
1876 atomic_set(&sk->sk_drops, 0);
1877 }
1878 EXPORT_SYMBOL(sock_init_data);
1879
1880 void lock_sock_nested(struct sock *sk, int subclass)
1881 {
1882 might_sleep();
1883 spin_lock_bh(&sk->sk_lock.slock);
1884 if (sk->sk_lock.owned)
1885 __lock_sock(sk);
1886 sk->sk_lock.owned = 1;
1887 spin_unlock(&sk->sk_lock.slock);
1888 /*
1889 * The sk_lock has mutex_lock() semantics here:
1890 */
1891 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1892 local_bh_enable();
1893 }
1894 EXPORT_SYMBOL(lock_sock_nested);
1895
1896 void release_sock(struct sock *sk)
1897 {
1898 /*
1899 * The sk_lock has mutex_unlock() semantics:
1900 */
1901 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1902
1903 spin_lock_bh(&sk->sk_lock.slock);
1904 if (sk->sk_backlog.tail)
1905 __release_sock(sk);
1906 sk->sk_lock.owned = 0;
1907 if (waitqueue_active(&sk->sk_lock.wq))
1908 wake_up(&sk->sk_lock.wq);
1909 spin_unlock_bh(&sk->sk_lock.slock);
1910 }
1911 EXPORT_SYMBOL(release_sock);
1912
1913 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1914 {
1915 struct timeval tv;
1916 if (!sock_flag(sk, SOCK_TIMESTAMP))
1917 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1918 tv = ktime_to_timeval(sk->sk_stamp);
1919 if (tv.tv_sec == -1)
1920 return -ENOENT;
1921 if (tv.tv_sec == 0) {
1922 sk->sk_stamp = ktime_get_real();
1923 tv = ktime_to_timeval(sk->sk_stamp);
1924 }
1925 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1926 }
1927 EXPORT_SYMBOL(sock_get_timestamp);
1928
1929 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1930 {
1931 struct timespec ts;
1932 if (!sock_flag(sk, SOCK_TIMESTAMP))
1933 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1934 ts = ktime_to_timespec(sk->sk_stamp);
1935 if (ts.tv_sec == -1)
1936 return -ENOENT;
1937 if (ts.tv_sec == 0) {
1938 sk->sk_stamp = ktime_get_real();
1939 ts = ktime_to_timespec(sk->sk_stamp);
1940 }
1941 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1942 }
1943 EXPORT_SYMBOL(sock_get_timestampns);
1944
1945 void sock_enable_timestamp(struct sock *sk, int flag)
1946 {
1947 if (!sock_flag(sk, flag)) {
1948 sock_set_flag(sk, flag);
1949 /*
1950 * we just set one of the two flags which require net
1951 * time stamping, but time stamping might have been on
1952 * already because of the other one
1953 */
1954 if (!sock_flag(sk,
1955 flag == SOCK_TIMESTAMP ?
1956 SOCK_TIMESTAMPING_RX_SOFTWARE :
1957 SOCK_TIMESTAMP))
1958 net_enable_timestamp();
1959 }
1960 }
1961
1962 /*
1963 * Get a socket option on an socket.
1964 *
1965 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1966 * asynchronous errors should be reported by getsockopt. We assume
1967 * this means if you specify SO_ERROR (otherwise whats the point of it).
1968 */
1969 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1970 char __user *optval, int __user *optlen)
1971 {
1972 struct sock *sk = sock->sk;
1973
1974 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1975 }
1976 EXPORT_SYMBOL(sock_common_getsockopt);
1977
1978 #ifdef CONFIG_COMPAT
1979 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1980 char __user *optval, int __user *optlen)
1981 {
1982 struct sock *sk = sock->sk;
1983
1984 if (sk->sk_prot->compat_getsockopt != NULL)
1985 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1986 optval, optlen);
1987 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1988 }
1989 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1990 #endif
1991
1992 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1993 struct msghdr *msg, size_t size, int flags)
1994 {
1995 struct sock *sk = sock->sk;
1996 int addr_len = 0;
1997 int err;
1998
1999 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2000 flags & ~MSG_DONTWAIT, &addr_len);
2001 if (err >= 0)
2002 msg->msg_namelen = addr_len;
2003 return err;
2004 }
2005 EXPORT_SYMBOL(sock_common_recvmsg);
2006
2007 /*
2008 * Set socket options on an inet socket.
2009 */
2010 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2011 char __user *optval, int optlen)
2012 {
2013 struct sock *sk = sock->sk;
2014
2015 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2016 }
2017 EXPORT_SYMBOL(sock_common_setsockopt);
2018
2019 #ifdef CONFIG_COMPAT
2020 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2021 char __user *optval, int optlen)
2022 {
2023 struct sock *sk = sock->sk;
2024
2025 if (sk->sk_prot->compat_setsockopt != NULL)
2026 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2027 optval, optlen);
2028 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2029 }
2030 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2031 #endif
2032
2033 void sk_common_release(struct sock *sk)
2034 {
2035 if (sk->sk_prot->destroy)
2036 sk->sk_prot->destroy(sk);
2037
2038 /*
2039 * Observation: when sock_common_release is called, processes have
2040 * no access to socket. But net still has.
2041 * Step one, detach it from networking:
2042 *
2043 * A. Remove from hash tables.
2044 */
2045
2046 sk->sk_prot->unhash(sk);
2047
2048 /*
2049 * In this point socket cannot receive new packets, but it is possible
2050 * that some packets are in flight because some CPU runs receiver and
2051 * did hash table lookup before we unhashed socket. They will achieve
2052 * receive queue and will be purged by socket destructor.
2053 *
2054 * Also we still have packets pending on receive queue and probably,
2055 * our own packets waiting in device queues. sock_destroy will drain
2056 * receive queue, but transmitted packets will delay socket destruction
2057 * until the last reference will be released.
2058 */
2059
2060 sock_orphan(sk);
2061
2062 xfrm_sk_free_policy(sk);
2063
2064 sk_refcnt_debug_release(sk);
2065 sock_put(sk);
2066 }
2067 EXPORT_SYMBOL(sk_common_release);
2068
2069 static DEFINE_RWLOCK(proto_list_lock);
2070 static LIST_HEAD(proto_list);
2071
2072 #ifdef CONFIG_PROC_FS
2073 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2074 struct prot_inuse {
2075 int val[PROTO_INUSE_NR];
2076 };
2077
2078 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2079
2080 #ifdef CONFIG_NET_NS
2081 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2082 {
2083 int cpu = smp_processor_id();
2084 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2085 }
2086 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2087
2088 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2089 {
2090 int cpu, idx = prot->inuse_idx;
2091 int res = 0;
2092
2093 for_each_possible_cpu(cpu)
2094 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2095
2096 return res >= 0 ? res : 0;
2097 }
2098 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2099
2100 static int sock_inuse_init_net(struct net *net)
2101 {
2102 net->core.inuse = alloc_percpu(struct prot_inuse);
2103 return net->core.inuse ? 0 : -ENOMEM;
2104 }
2105
2106 static void sock_inuse_exit_net(struct net *net)
2107 {
2108 free_percpu(net->core.inuse);
2109 }
2110
2111 static struct pernet_operations net_inuse_ops = {
2112 .init = sock_inuse_init_net,
2113 .exit = sock_inuse_exit_net,
2114 };
2115
2116 static __init int net_inuse_init(void)
2117 {
2118 if (register_pernet_subsys(&net_inuse_ops))
2119 panic("Cannot initialize net inuse counters");
2120
2121 return 0;
2122 }
2123
2124 core_initcall(net_inuse_init);
2125 #else
2126 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2127
2128 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2129 {
2130 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2131 }
2132 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2133
2134 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2135 {
2136 int cpu, idx = prot->inuse_idx;
2137 int res = 0;
2138
2139 for_each_possible_cpu(cpu)
2140 res += per_cpu(prot_inuse, cpu).val[idx];
2141
2142 return res >= 0 ? res : 0;
2143 }
2144 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2145 #endif
2146
2147 static void assign_proto_idx(struct proto *prot)
2148 {
2149 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2150
2151 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2152 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2153 return;
2154 }
2155
2156 set_bit(prot->inuse_idx, proto_inuse_idx);
2157 }
2158
2159 static void release_proto_idx(struct proto *prot)
2160 {
2161 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2162 clear_bit(prot->inuse_idx, proto_inuse_idx);
2163 }
2164 #else
2165 static inline void assign_proto_idx(struct proto *prot)
2166 {
2167 }
2168
2169 static inline void release_proto_idx(struct proto *prot)
2170 {
2171 }
2172 #endif
2173
2174 int proto_register(struct proto *prot, int alloc_slab)
2175 {
2176 if (alloc_slab) {
2177 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2178 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2179 NULL);
2180
2181 if (prot->slab == NULL) {
2182 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2183 prot->name);
2184 goto out;
2185 }
2186
2187 if (prot->rsk_prot != NULL) {
2188 static const char mask[] = "request_sock_%s";
2189
2190 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2191 if (prot->rsk_prot->slab_name == NULL)
2192 goto out_free_sock_slab;
2193
2194 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2195 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2196 prot->rsk_prot->obj_size, 0,
2197 SLAB_HWCACHE_ALIGN, NULL);
2198
2199 if (prot->rsk_prot->slab == NULL) {
2200 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2201 prot->name);
2202 goto out_free_request_sock_slab_name;
2203 }
2204 }
2205
2206 if (prot->twsk_prot != NULL) {
2207 static const char mask[] = "tw_sock_%s";
2208
2209 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2210
2211 if (prot->twsk_prot->twsk_slab_name == NULL)
2212 goto out_free_request_sock_slab;
2213
2214 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2215 prot->twsk_prot->twsk_slab =
2216 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2217 prot->twsk_prot->twsk_obj_size,
2218 0,
2219 SLAB_HWCACHE_ALIGN |
2220 prot->slab_flags,
2221 NULL);
2222 if (prot->twsk_prot->twsk_slab == NULL)
2223 goto out_free_timewait_sock_slab_name;
2224 }
2225 }
2226
2227 write_lock(&proto_list_lock);
2228 list_add(&prot->node, &proto_list);
2229 assign_proto_idx(prot);
2230 write_unlock(&proto_list_lock);
2231 return 0;
2232
2233 out_free_timewait_sock_slab_name:
2234 kfree(prot->twsk_prot->twsk_slab_name);
2235 out_free_request_sock_slab:
2236 if (prot->rsk_prot && prot->rsk_prot->slab) {
2237 kmem_cache_destroy(prot->rsk_prot->slab);
2238 prot->rsk_prot->slab = NULL;
2239 }
2240 out_free_request_sock_slab_name:
2241 kfree(prot->rsk_prot->slab_name);
2242 out_free_sock_slab:
2243 kmem_cache_destroy(prot->slab);
2244 prot->slab = NULL;
2245 out:
2246 return -ENOBUFS;
2247 }
2248 EXPORT_SYMBOL(proto_register);
2249
2250 void proto_unregister(struct proto *prot)
2251 {
2252 write_lock(&proto_list_lock);
2253 release_proto_idx(prot);
2254 list_del(&prot->node);
2255 write_unlock(&proto_list_lock);
2256
2257 if (prot->slab != NULL) {
2258 kmem_cache_destroy(prot->slab);
2259 prot->slab = NULL;
2260 }
2261
2262 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2263 kmem_cache_destroy(prot->rsk_prot->slab);
2264 kfree(prot->rsk_prot->slab_name);
2265 prot->rsk_prot->slab = NULL;
2266 }
2267
2268 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2269 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2270 kfree(prot->twsk_prot->twsk_slab_name);
2271 prot->twsk_prot->twsk_slab = NULL;
2272 }
2273 }
2274 EXPORT_SYMBOL(proto_unregister);
2275
2276 #ifdef CONFIG_PROC_FS
2277 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2278 __acquires(proto_list_lock)
2279 {
2280 read_lock(&proto_list_lock);
2281 return seq_list_start_head(&proto_list, *pos);
2282 }
2283
2284 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2285 {
2286 return seq_list_next(v, &proto_list, pos);
2287 }
2288
2289 static void proto_seq_stop(struct seq_file *seq, void *v)
2290 __releases(proto_list_lock)
2291 {
2292 read_unlock(&proto_list_lock);
2293 }
2294
2295 static char proto_method_implemented(const void *method)
2296 {
2297 return method == NULL ? 'n' : 'y';
2298 }
2299
2300 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2301 {
2302 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2303 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2304 proto->name,
2305 proto->obj_size,
2306 sock_prot_inuse_get(seq_file_net(seq), proto),
2307 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2308 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2309 proto->max_header,
2310 proto->slab == NULL ? "no" : "yes",
2311 module_name(proto->owner),
2312 proto_method_implemented(proto->close),
2313 proto_method_implemented(proto->connect),
2314 proto_method_implemented(proto->disconnect),
2315 proto_method_implemented(proto->accept),
2316 proto_method_implemented(proto->ioctl),
2317 proto_method_implemented(proto->init),
2318 proto_method_implemented(proto->destroy),
2319 proto_method_implemented(proto->shutdown),
2320 proto_method_implemented(proto->setsockopt),
2321 proto_method_implemented(proto->getsockopt),
2322 proto_method_implemented(proto->sendmsg),
2323 proto_method_implemented(proto->recvmsg),
2324 proto_method_implemented(proto->sendpage),
2325 proto_method_implemented(proto->bind),
2326 proto_method_implemented(proto->backlog_rcv),
2327 proto_method_implemented(proto->hash),
2328 proto_method_implemented(proto->unhash),
2329 proto_method_implemented(proto->get_port),
2330 proto_method_implemented(proto->enter_memory_pressure));
2331 }
2332
2333 static int proto_seq_show(struct seq_file *seq, void *v)
2334 {
2335 if (v == &proto_list)
2336 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2337 "protocol",
2338 "size",
2339 "sockets",
2340 "memory",
2341 "press",
2342 "maxhdr",
2343 "slab",
2344 "module",
2345 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2346 else
2347 proto_seq_printf(seq, list_entry(v, struct proto, node));
2348 return 0;
2349 }
2350
2351 static const struct seq_operations proto_seq_ops = {
2352 .start = proto_seq_start,
2353 .next = proto_seq_next,
2354 .stop = proto_seq_stop,
2355 .show = proto_seq_show,
2356 };
2357
2358 static int proto_seq_open(struct inode *inode, struct file *file)
2359 {
2360 return seq_open_net(inode, file, &proto_seq_ops,
2361 sizeof(struct seq_net_private));
2362 }
2363
2364 static const struct file_operations proto_seq_fops = {
2365 .owner = THIS_MODULE,
2366 .open = proto_seq_open,
2367 .read = seq_read,
2368 .llseek = seq_lseek,
2369 .release = seq_release_net,
2370 };
2371
2372 static __net_init int proto_init_net(struct net *net)
2373 {
2374 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2375 return -ENOMEM;
2376
2377 return 0;
2378 }
2379
2380 static __net_exit void proto_exit_net(struct net *net)
2381 {
2382 proc_net_remove(net, "protocols");
2383 }
2384
2385
2386 static __net_initdata struct pernet_operations proto_net_ops = {
2387 .init = proto_init_net,
2388 .exit = proto_exit_net,
2389 };
2390
2391 static int __init proto_init(void)
2392 {
2393 return register_pernet_subsys(&proto_net_ops);
2394 }
2395
2396 subsys_initcall(proto_init);
2397
2398 #endif /* PROC_FS */
This page took 0.079789 seconds and 5 git commands to generate.