Merge branch 'core-printk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
176 };
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
192 };
193
194 /*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 struct timeval tv;
223
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
230
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
233
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
240 }
241 return 0;
242 }
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
249 }
250
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
260 }
261 }
262
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
270 }
271 }
272 }
273
274
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 int err = 0;
278 int skb_len;
279
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
282 */
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
292
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
296 }
297
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
300
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
305 */
306 skb_len = skb->len;
307
308 skb_queue_tail(&sk->sk_receive_queue, skb);
309
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 int rc = NET_RX_SUCCESS;
320
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
323
324 skb->dev = NULL;
325
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
331 /*
332 * trylock + unlock semantics:
333 */
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335
336 rc = sk_backlog_rcv(sk, skb);
337
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 struct dst_entry *dst = sk->sk_dst_cache;
354
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
359 }
360
361 return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 struct dst_entry *dst = sk_dst_get(sk);
368
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
373 }
374
375 return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
386
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
391
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
395
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
400 */
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
404
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
408
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
413
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
417
418 index = dev->ifindex;
419 dev_put(dev);
420 }
421
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
426
427 ret = 0;
428
429 out:
430 #endif
431
432 return ret;
433 }
434
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
441 }
442
443 /*
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
446 */
447
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
450 {
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
456
457 /*
458 * Options without arguments
459 */
460
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
463
464 if (optlen < sizeof(int))
465 return -EINVAL;
466
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
469
470 valbool = val ? 1 : 0;
471
472 lock_sock(sk);
473
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
499
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
508
509 /*
510 * Wake up sending tasks if we
511 * upped the value.
512 */
513 sk->sk_write_space(sk);
514 break;
515
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
520 }
521 goto set_sndbuf;
522
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
528
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
533 /*
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
539 *
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
543 *
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
547 */
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
553
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
558 }
559 goto set_rcvbuf;
560
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
568
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
572
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
576
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
583
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
588 }
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
592 }
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
603 }
604 break;
605
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
609
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
616
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629 }
630 break;
631
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = -EINVAL;
635 break;
636 }
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
656
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
662
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
666
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
670
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
675
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
679
680 ret = sk_attach_filter(&fprog, sk);
681 }
682 break;
683
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
687
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
700
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
706 }
707 release_sock(sk);
708 return ret;
709 }
710 EXPORT_SYMBOL(sock_setsockopt);
711
712
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
715 {
716 struct sock *sk = sock->sk;
717
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
723
724 unsigned int lv = sizeof(int);
725 int len;
726
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
731
732 memset(&v, 0, sizeof(v));
733
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
738
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
742
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
746
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
750
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
754
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
758
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
762
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
766
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
772
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
776
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
780
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
784
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
790
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
794
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
799
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
803
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
821
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
830 }
831 break;
832
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
841 }
842 break;
843
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
847
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
851
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
855
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
862
863 case SO_PEERNAME:
864 {
865 char address[128];
866
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
874 }
875
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
878 */
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
882
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
886
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
889
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
893
894 default:
895 return -ENOPROTOOPT;
896 }
897
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
906 }
907
908 /*
909 * Initialize an sk_lock.
910 *
911 * (We also register the sk_lock with the lock validator.)
912 */
913 static inline void sock_lock_init(struct sock *sk)
914 {
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
920 }
921
922 /*
923 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
924 * even temporarly, because of RCU lookups. sk_node should also be left as is.
925 */
926 static void sock_copy(struct sock *nsk, const struct sock *osk)
927 {
928 #ifdef CONFIG_SECURITY_NETWORK
929 void *sptr = nsk->sk_security;
930 #endif
931 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
932 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
933 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
934 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
935 #ifdef CONFIG_SECURITY_NETWORK
936 nsk->sk_security = sptr;
937 security_sk_clone(osk, nsk);
938 #endif
939 }
940
941 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
942 int family)
943 {
944 struct sock *sk;
945 struct kmem_cache *slab;
946
947 slab = prot->slab;
948 if (slab != NULL) {
949 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
950 if (!sk)
951 return sk;
952 if (priority & __GFP_ZERO) {
953 /*
954 * caches using SLAB_DESTROY_BY_RCU should let
955 * sk_node.next un-modified. Special care is taken
956 * when initializing object to zero.
957 */
958 if (offsetof(struct sock, sk_node.next) != 0)
959 memset(sk, 0, offsetof(struct sock, sk_node.next));
960 memset(&sk->sk_node.pprev, 0,
961 prot->obj_size - offsetof(struct sock,
962 sk_node.pprev));
963 }
964 }
965 else
966 sk = kmalloc(prot->obj_size, priority);
967
968 if (sk != NULL) {
969 kmemcheck_annotate_bitfield(sk, flags);
970
971 if (security_sk_alloc(sk, family, priority))
972 goto out_free;
973
974 if (!try_module_get(prot->owner))
975 goto out_free_sec;
976 }
977
978 return sk;
979
980 out_free_sec:
981 security_sk_free(sk);
982 out_free:
983 if (slab != NULL)
984 kmem_cache_free(slab, sk);
985 else
986 kfree(sk);
987 return NULL;
988 }
989
990 static void sk_prot_free(struct proto *prot, struct sock *sk)
991 {
992 struct kmem_cache *slab;
993 struct module *owner;
994
995 owner = prot->owner;
996 slab = prot->slab;
997
998 security_sk_free(sk);
999 if (slab != NULL)
1000 kmem_cache_free(slab, sk);
1001 else
1002 kfree(sk);
1003 module_put(owner);
1004 }
1005
1006 /**
1007 * sk_alloc - All socket objects are allocated here
1008 * @net: the applicable net namespace
1009 * @family: protocol family
1010 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1011 * @prot: struct proto associated with this new sock instance
1012 */
1013 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1014 struct proto *prot)
1015 {
1016 struct sock *sk;
1017
1018 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1019 if (sk) {
1020 sk->sk_family = family;
1021 /*
1022 * See comment in struct sock definition to understand
1023 * why we need sk_prot_creator -acme
1024 */
1025 sk->sk_prot = sk->sk_prot_creator = prot;
1026 sock_lock_init(sk);
1027 sock_net_set(sk, get_net(net));
1028 atomic_set(&sk->sk_wmem_alloc, 1);
1029 }
1030
1031 return sk;
1032 }
1033 EXPORT_SYMBOL(sk_alloc);
1034
1035 static void __sk_free(struct sock *sk)
1036 {
1037 struct sk_filter *filter;
1038
1039 if (sk->sk_destruct)
1040 sk->sk_destruct(sk);
1041
1042 filter = rcu_dereference(sk->sk_filter);
1043 if (filter) {
1044 sk_filter_uncharge(sk, filter);
1045 rcu_assign_pointer(sk->sk_filter, NULL);
1046 }
1047
1048 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1049 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1050
1051 if (atomic_read(&sk->sk_omem_alloc))
1052 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1053 __func__, atomic_read(&sk->sk_omem_alloc));
1054
1055 put_net(sock_net(sk));
1056 sk_prot_free(sk->sk_prot_creator, sk);
1057 }
1058
1059 void sk_free(struct sock *sk)
1060 {
1061 /*
1062 * We substract one from sk_wmem_alloc and can know if
1063 * some packets are still in some tx queue.
1064 * If not null, sock_wfree() will call __sk_free(sk) later
1065 */
1066 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1067 __sk_free(sk);
1068 }
1069 EXPORT_SYMBOL(sk_free);
1070
1071 /*
1072 * Last sock_put should drop referrence to sk->sk_net. It has already
1073 * been dropped in sk_change_net. Taking referrence to stopping namespace
1074 * is not an option.
1075 * Take referrence to a socket to remove it from hash _alive_ and after that
1076 * destroy it in the context of init_net.
1077 */
1078 void sk_release_kernel(struct sock *sk)
1079 {
1080 if (sk == NULL || sk->sk_socket == NULL)
1081 return;
1082
1083 sock_hold(sk);
1084 sock_release(sk->sk_socket);
1085 release_net(sock_net(sk));
1086 sock_net_set(sk, get_net(&init_net));
1087 sock_put(sk);
1088 }
1089 EXPORT_SYMBOL(sk_release_kernel);
1090
1091 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1092 {
1093 struct sock *newsk;
1094
1095 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1096 if (newsk != NULL) {
1097 struct sk_filter *filter;
1098
1099 sock_copy(newsk, sk);
1100
1101 /* SANITY */
1102 get_net(sock_net(newsk));
1103 sk_node_init(&newsk->sk_node);
1104 sock_lock_init(newsk);
1105 bh_lock_sock(newsk);
1106 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1107
1108 atomic_set(&newsk->sk_rmem_alloc, 0);
1109 /*
1110 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1111 */
1112 atomic_set(&newsk->sk_wmem_alloc, 1);
1113 atomic_set(&newsk->sk_omem_alloc, 0);
1114 skb_queue_head_init(&newsk->sk_receive_queue);
1115 skb_queue_head_init(&newsk->sk_write_queue);
1116 #ifdef CONFIG_NET_DMA
1117 skb_queue_head_init(&newsk->sk_async_wait_queue);
1118 #endif
1119
1120 rwlock_init(&newsk->sk_dst_lock);
1121 rwlock_init(&newsk->sk_callback_lock);
1122 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1123 af_callback_keys + newsk->sk_family,
1124 af_family_clock_key_strings[newsk->sk_family]);
1125
1126 newsk->sk_dst_cache = NULL;
1127 newsk->sk_wmem_queued = 0;
1128 newsk->sk_forward_alloc = 0;
1129 newsk->sk_send_head = NULL;
1130 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1131
1132 sock_reset_flag(newsk, SOCK_DONE);
1133 skb_queue_head_init(&newsk->sk_error_queue);
1134
1135 filter = newsk->sk_filter;
1136 if (filter != NULL)
1137 sk_filter_charge(newsk, filter);
1138
1139 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1140 /* It is still raw copy of parent, so invalidate
1141 * destructor and make plain sk_free() */
1142 newsk->sk_destruct = NULL;
1143 sk_free(newsk);
1144 newsk = NULL;
1145 goto out;
1146 }
1147
1148 newsk->sk_err = 0;
1149 newsk->sk_priority = 0;
1150 /*
1151 * Before updating sk_refcnt, we must commit prior changes to memory
1152 * (Documentation/RCU/rculist_nulls.txt for details)
1153 */
1154 smp_wmb();
1155 atomic_set(&newsk->sk_refcnt, 2);
1156
1157 /*
1158 * Increment the counter in the same struct proto as the master
1159 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1160 * is the same as sk->sk_prot->socks, as this field was copied
1161 * with memcpy).
1162 *
1163 * This _changes_ the previous behaviour, where
1164 * tcp_create_openreq_child always was incrementing the
1165 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1166 * to be taken into account in all callers. -acme
1167 */
1168 sk_refcnt_debug_inc(newsk);
1169 sk_set_socket(newsk, NULL);
1170 newsk->sk_sleep = NULL;
1171
1172 if (newsk->sk_prot->sockets_allocated)
1173 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1174 }
1175 out:
1176 return newsk;
1177 }
1178 EXPORT_SYMBOL_GPL(sk_clone);
1179
1180 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1181 {
1182 __sk_dst_set(sk, dst);
1183 sk->sk_route_caps = dst->dev->features;
1184 if (sk->sk_route_caps & NETIF_F_GSO)
1185 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1186 if (sk_can_gso(sk)) {
1187 if (dst->header_len) {
1188 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1189 } else {
1190 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1191 sk->sk_gso_max_size = dst->dev->gso_max_size;
1192 }
1193 }
1194 }
1195 EXPORT_SYMBOL_GPL(sk_setup_caps);
1196
1197 void __init sk_init(void)
1198 {
1199 if (num_physpages <= 4096) {
1200 sysctl_wmem_max = 32767;
1201 sysctl_rmem_max = 32767;
1202 sysctl_wmem_default = 32767;
1203 sysctl_rmem_default = 32767;
1204 } else if (num_physpages >= 131072) {
1205 sysctl_wmem_max = 131071;
1206 sysctl_rmem_max = 131071;
1207 }
1208 }
1209
1210 /*
1211 * Simple resource managers for sockets.
1212 */
1213
1214
1215 /*
1216 * Write buffer destructor automatically called from kfree_skb.
1217 */
1218 void sock_wfree(struct sk_buff *skb)
1219 {
1220 struct sock *sk = skb->sk;
1221 int res;
1222
1223 /* In case it might be waiting for more memory. */
1224 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1225 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1226 sk->sk_write_space(sk);
1227 /*
1228 * if sk_wmem_alloc reached 0, we are last user and should
1229 * free this sock, as sk_free() call could not do it.
1230 */
1231 if (res == 0)
1232 __sk_free(sk);
1233 }
1234 EXPORT_SYMBOL(sock_wfree);
1235
1236 /*
1237 * Read buffer destructor automatically called from kfree_skb.
1238 */
1239 void sock_rfree(struct sk_buff *skb)
1240 {
1241 struct sock *sk = skb->sk;
1242
1243 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1244 sk_mem_uncharge(skb->sk, skb->truesize);
1245 }
1246 EXPORT_SYMBOL(sock_rfree);
1247
1248
1249 int sock_i_uid(struct sock *sk)
1250 {
1251 int uid;
1252
1253 read_lock(&sk->sk_callback_lock);
1254 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1255 read_unlock(&sk->sk_callback_lock);
1256 return uid;
1257 }
1258 EXPORT_SYMBOL(sock_i_uid);
1259
1260 unsigned long sock_i_ino(struct sock *sk)
1261 {
1262 unsigned long ino;
1263
1264 read_lock(&sk->sk_callback_lock);
1265 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1266 read_unlock(&sk->sk_callback_lock);
1267 return ino;
1268 }
1269 EXPORT_SYMBOL(sock_i_ino);
1270
1271 /*
1272 * Allocate a skb from the socket's send buffer.
1273 */
1274 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1275 gfp_t priority)
1276 {
1277 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1278 struct sk_buff *skb = alloc_skb(size, priority);
1279 if (skb) {
1280 skb_set_owner_w(skb, sk);
1281 return skb;
1282 }
1283 }
1284 return NULL;
1285 }
1286 EXPORT_SYMBOL(sock_wmalloc);
1287
1288 /*
1289 * Allocate a skb from the socket's receive buffer.
1290 */
1291 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1292 gfp_t priority)
1293 {
1294 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1295 struct sk_buff *skb = alloc_skb(size, priority);
1296 if (skb) {
1297 skb_set_owner_r(skb, sk);
1298 return skb;
1299 }
1300 }
1301 return NULL;
1302 }
1303
1304 /*
1305 * Allocate a memory block from the socket's option memory buffer.
1306 */
1307 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1308 {
1309 if ((unsigned)size <= sysctl_optmem_max &&
1310 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1311 void *mem;
1312 /* First do the add, to avoid the race if kmalloc
1313 * might sleep.
1314 */
1315 atomic_add(size, &sk->sk_omem_alloc);
1316 mem = kmalloc(size, priority);
1317 if (mem)
1318 return mem;
1319 atomic_sub(size, &sk->sk_omem_alloc);
1320 }
1321 return NULL;
1322 }
1323 EXPORT_SYMBOL(sock_kmalloc);
1324
1325 /*
1326 * Free an option memory block.
1327 */
1328 void sock_kfree_s(struct sock *sk, void *mem, int size)
1329 {
1330 kfree(mem);
1331 atomic_sub(size, &sk->sk_omem_alloc);
1332 }
1333 EXPORT_SYMBOL(sock_kfree_s);
1334
1335 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1336 I think, these locks should be removed for datagram sockets.
1337 */
1338 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1339 {
1340 DEFINE_WAIT(wait);
1341
1342 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1343 for (;;) {
1344 if (!timeo)
1345 break;
1346 if (signal_pending(current))
1347 break;
1348 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1349 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1350 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1351 break;
1352 if (sk->sk_shutdown & SEND_SHUTDOWN)
1353 break;
1354 if (sk->sk_err)
1355 break;
1356 timeo = schedule_timeout(timeo);
1357 }
1358 finish_wait(sk->sk_sleep, &wait);
1359 return timeo;
1360 }
1361
1362
1363 /*
1364 * Generic send/receive buffer handlers
1365 */
1366
1367 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1368 unsigned long data_len, int noblock,
1369 int *errcode)
1370 {
1371 struct sk_buff *skb;
1372 gfp_t gfp_mask;
1373 long timeo;
1374 int err;
1375
1376 gfp_mask = sk->sk_allocation;
1377 if (gfp_mask & __GFP_WAIT)
1378 gfp_mask |= __GFP_REPEAT;
1379
1380 timeo = sock_sndtimeo(sk, noblock);
1381 while (1) {
1382 err = sock_error(sk);
1383 if (err != 0)
1384 goto failure;
1385
1386 err = -EPIPE;
1387 if (sk->sk_shutdown & SEND_SHUTDOWN)
1388 goto failure;
1389
1390 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1391 skb = alloc_skb(header_len, gfp_mask);
1392 if (skb) {
1393 int npages;
1394 int i;
1395
1396 /* No pages, we're done... */
1397 if (!data_len)
1398 break;
1399
1400 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1401 skb->truesize += data_len;
1402 skb_shinfo(skb)->nr_frags = npages;
1403 for (i = 0; i < npages; i++) {
1404 struct page *page;
1405 skb_frag_t *frag;
1406
1407 page = alloc_pages(sk->sk_allocation, 0);
1408 if (!page) {
1409 err = -ENOBUFS;
1410 skb_shinfo(skb)->nr_frags = i;
1411 kfree_skb(skb);
1412 goto failure;
1413 }
1414
1415 frag = &skb_shinfo(skb)->frags[i];
1416 frag->page = page;
1417 frag->page_offset = 0;
1418 frag->size = (data_len >= PAGE_SIZE ?
1419 PAGE_SIZE :
1420 data_len);
1421 data_len -= PAGE_SIZE;
1422 }
1423
1424 /* Full success... */
1425 break;
1426 }
1427 err = -ENOBUFS;
1428 goto failure;
1429 }
1430 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1431 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1432 err = -EAGAIN;
1433 if (!timeo)
1434 goto failure;
1435 if (signal_pending(current))
1436 goto interrupted;
1437 timeo = sock_wait_for_wmem(sk, timeo);
1438 }
1439
1440 skb_set_owner_w(skb, sk);
1441 return skb;
1442
1443 interrupted:
1444 err = sock_intr_errno(timeo);
1445 failure:
1446 *errcode = err;
1447 return NULL;
1448 }
1449 EXPORT_SYMBOL(sock_alloc_send_pskb);
1450
1451 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1452 int noblock, int *errcode)
1453 {
1454 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1455 }
1456 EXPORT_SYMBOL(sock_alloc_send_skb);
1457
1458 static void __lock_sock(struct sock *sk)
1459 {
1460 DEFINE_WAIT(wait);
1461
1462 for (;;) {
1463 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1464 TASK_UNINTERRUPTIBLE);
1465 spin_unlock_bh(&sk->sk_lock.slock);
1466 schedule();
1467 spin_lock_bh(&sk->sk_lock.slock);
1468 if (!sock_owned_by_user(sk))
1469 break;
1470 }
1471 finish_wait(&sk->sk_lock.wq, &wait);
1472 }
1473
1474 static void __release_sock(struct sock *sk)
1475 {
1476 struct sk_buff *skb = sk->sk_backlog.head;
1477
1478 do {
1479 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1480 bh_unlock_sock(sk);
1481
1482 do {
1483 struct sk_buff *next = skb->next;
1484
1485 skb->next = NULL;
1486 sk_backlog_rcv(sk, skb);
1487
1488 /*
1489 * We are in process context here with softirqs
1490 * disabled, use cond_resched_softirq() to preempt.
1491 * This is safe to do because we've taken the backlog
1492 * queue private:
1493 */
1494 cond_resched_softirq();
1495
1496 skb = next;
1497 } while (skb != NULL);
1498
1499 bh_lock_sock(sk);
1500 } while ((skb = sk->sk_backlog.head) != NULL);
1501 }
1502
1503 /**
1504 * sk_wait_data - wait for data to arrive at sk_receive_queue
1505 * @sk: sock to wait on
1506 * @timeo: for how long
1507 *
1508 * Now socket state including sk->sk_err is changed only under lock,
1509 * hence we may omit checks after joining wait queue.
1510 * We check receive queue before schedule() only as optimization;
1511 * it is very likely that release_sock() added new data.
1512 */
1513 int sk_wait_data(struct sock *sk, long *timeo)
1514 {
1515 int rc;
1516 DEFINE_WAIT(wait);
1517
1518 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1519 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1520 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1521 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1522 finish_wait(sk->sk_sleep, &wait);
1523 return rc;
1524 }
1525 EXPORT_SYMBOL(sk_wait_data);
1526
1527 /**
1528 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1529 * @sk: socket
1530 * @size: memory size to allocate
1531 * @kind: allocation type
1532 *
1533 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1534 * rmem allocation. This function assumes that protocols which have
1535 * memory_pressure use sk_wmem_queued as write buffer accounting.
1536 */
1537 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1538 {
1539 struct proto *prot = sk->sk_prot;
1540 int amt = sk_mem_pages(size);
1541 int allocated;
1542
1543 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1544 allocated = atomic_add_return(amt, prot->memory_allocated);
1545
1546 /* Under limit. */
1547 if (allocated <= prot->sysctl_mem[0]) {
1548 if (prot->memory_pressure && *prot->memory_pressure)
1549 *prot->memory_pressure = 0;
1550 return 1;
1551 }
1552
1553 /* Under pressure. */
1554 if (allocated > prot->sysctl_mem[1])
1555 if (prot->enter_memory_pressure)
1556 prot->enter_memory_pressure(sk);
1557
1558 /* Over hard limit. */
1559 if (allocated > prot->sysctl_mem[2])
1560 goto suppress_allocation;
1561
1562 /* guarantee minimum buffer size under pressure */
1563 if (kind == SK_MEM_RECV) {
1564 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1565 return 1;
1566 } else { /* SK_MEM_SEND */
1567 if (sk->sk_type == SOCK_STREAM) {
1568 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1569 return 1;
1570 } else if (atomic_read(&sk->sk_wmem_alloc) <
1571 prot->sysctl_wmem[0])
1572 return 1;
1573 }
1574
1575 if (prot->memory_pressure) {
1576 int alloc;
1577
1578 if (!*prot->memory_pressure)
1579 return 1;
1580 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1581 if (prot->sysctl_mem[2] > alloc *
1582 sk_mem_pages(sk->sk_wmem_queued +
1583 atomic_read(&sk->sk_rmem_alloc) +
1584 sk->sk_forward_alloc))
1585 return 1;
1586 }
1587
1588 suppress_allocation:
1589
1590 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1591 sk_stream_moderate_sndbuf(sk);
1592
1593 /* Fail only if socket is _under_ its sndbuf.
1594 * In this case we cannot block, so that we have to fail.
1595 */
1596 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1597 return 1;
1598 }
1599
1600 /* Alas. Undo changes. */
1601 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1602 atomic_sub(amt, prot->memory_allocated);
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(__sk_mem_schedule);
1606
1607 /**
1608 * __sk_reclaim - reclaim memory_allocated
1609 * @sk: socket
1610 */
1611 void __sk_mem_reclaim(struct sock *sk)
1612 {
1613 struct proto *prot = sk->sk_prot;
1614
1615 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1616 prot->memory_allocated);
1617 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1618
1619 if (prot->memory_pressure && *prot->memory_pressure &&
1620 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1621 *prot->memory_pressure = 0;
1622 }
1623 EXPORT_SYMBOL(__sk_mem_reclaim);
1624
1625
1626 /*
1627 * Set of default routines for initialising struct proto_ops when
1628 * the protocol does not support a particular function. In certain
1629 * cases where it makes no sense for a protocol to have a "do nothing"
1630 * function, some default processing is provided.
1631 */
1632
1633 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1634 {
1635 return -EOPNOTSUPP;
1636 }
1637 EXPORT_SYMBOL(sock_no_bind);
1638
1639 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1640 int len, int flags)
1641 {
1642 return -EOPNOTSUPP;
1643 }
1644 EXPORT_SYMBOL(sock_no_connect);
1645
1646 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1647 {
1648 return -EOPNOTSUPP;
1649 }
1650 EXPORT_SYMBOL(sock_no_socketpair);
1651
1652 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1653 {
1654 return -EOPNOTSUPP;
1655 }
1656 EXPORT_SYMBOL(sock_no_accept);
1657
1658 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1659 int *len, int peer)
1660 {
1661 return -EOPNOTSUPP;
1662 }
1663 EXPORT_SYMBOL(sock_no_getname);
1664
1665 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1666 {
1667 return 0;
1668 }
1669 EXPORT_SYMBOL(sock_no_poll);
1670
1671 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1672 {
1673 return -EOPNOTSUPP;
1674 }
1675 EXPORT_SYMBOL(sock_no_ioctl);
1676
1677 int sock_no_listen(struct socket *sock, int backlog)
1678 {
1679 return -EOPNOTSUPP;
1680 }
1681 EXPORT_SYMBOL(sock_no_listen);
1682
1683 int sock_no_shutdown(struct socket *sock, int how)
1684 {
1685 return -EOPNOTSUPP;
1686 }
1687 EXPORT_SYMBOL(sock_no_shutdown);
1688
1689 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1690 char __user *optval, int optlen)
1691 {
1692 return -EOPNOTSUPP;
1693 }
1694 EXPORT_SYMBOL(sock_no_setsockopt);
1695
1696 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1697 char __user *optval, int __user *optlen)
1698 {
1699 return -EOPNOTSUPP;
1700 }
1701 EXPORT_SYMBOL(sock_no_getsockopt);
1702
1703 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1704 size_t len)
1705 {
1706 return -EOPNOTSUPP;
1707 }
1708 EXPORT_SYMBOL(sock_no_sendmsg);
1709
1710 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1711 size_t len, int flags)
1712 {
1713 return -EOPNOTSUPP;
1714 }
1715 EXPORT_SYMBOL(sock_no_recvmsg);
1716
1717 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1718 {
1719 /* Mirror missing mmap method error code */
1720 return -ENODEV;
1721 }
1722 EXPORT_SYMBOL(sock_no_mmap);
1723
1724 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1725 {
1726 ssize_t res;
1727 struct msghdr msg = {.msg_flags = flags};
1728 struct kvec iov;
1729 char *kaddr = kmap(page);
1730 iov.iov_base = kaddr + offset;
1731 iov.iov_len = size;
1732 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1733 kunmap(page);
1734 return res;
1735 }
1736 EXPORT_SYMBOL(sock_no_sendpage);
1737
1738 /*
1739 * Default Socket Callbacks
1740 */
1741
1742 static void sock_def_wakeup(struct sock *sk)
1743 {
1744 read_lock(&sk->sk_callback_lock);
1745 if (sk_has_sleeper(sk))
1746 wake_up_interruptible_all(sk->sk_sleep);
1747 read_unlock(&sk->sk_callback_lock);
1748 }
1749
1750 static void sock_def_error_report(struct sock *sk)
1751 {
1752 read_lock(&sk->sk_callback_lock);
1753 if (sk_has_sleeper(sk))
1754 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1755 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1756 read_unlock(&sk->sk_callback_lock);
1757 }
1758
1759 static void sock_def_readable(struct sock *sk, int len)
1760 {
1761 read_lock(&sk->sk_callback_lock);
1762 if (sk_has_sleeper(sk))
1763 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1764 POLLRDNORM | POLLRDBAND);
1765 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1766 read_unlock(&sk->sk_callback_lock);
1767 }
1768
1769 static void sock_def_write_space(struct sock *sk)
1770 {
1771 read_lock(&sk->sk_callback_lock);
1772
1773 /* Do not wake up a writer until he can make "significant"
1774 * progress. --DaveM
1775 */
1776 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1777 if (sk_has_sleeper(sk))
1778 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1779 POLLWRNORM | POLLWRBAND);
1780
1781 /* Should agree with poll, otherwise some programs break */
1782 if (sock_writeable(sk))
1783 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1784 }
1785
1786 read_unlock(&sk->sk_callback_lock);
1787 }
1788
1789 static void sock_def_destruct(struct sock *sk)
1790 {
1791 kfree(sk->sk_protinfo);
1792 }
1793
1794 void sk_send_sigurg(struct sock *sk)
1795 {
1796 if (sk->sk_socket && sk->sk_socket->file)
1797 if (send_sigurg(&sk->sk_socket->file->f_owner))
1798 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1799 }
1800 EXPORT_SYMBOL(sk_send_sigurg);
1801
1802 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1803 unsigned long expires)
1804 {
1805 if (!mod_timer(timer, expires))
1806 sock_hold(sk);
1807 }
1808 EXPORT_SYMBOL(sk_reset_timer);
1809
1810 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1811 {
1812 if (timer_pending(timer) && del_timer(timer))
1813 __sock_put(sk);
1814 }
1815 EXPORT_SYMBOL(sk_stop_timer);
1816
1817 void sock_init_data(struct socket *sock, struct sock *sk)
1818 {
1819 skb_queue_head_init(&sk->sk_receive_queue);
1820 skb_queue_head_init(&sk->sk_write_queue);
1821 skb_queue_head_init(&sk->sk_error_queue);
1822 #ifdef CONFIG_NET_DMA
1823 skb_queue_head_init(&sk->sk_async_wait_queue);
1824 #endif
1825
1826 sk->sk_send_head = NULL;
1827
1828 init_timer(&sk->sk_timer);
1829
1830 sk->sk_allocation = GFP_KERNEL;
1831 sk->sk_rcvbuf = sysctl_rmem_default;
1832 sk->sk_sndbuf = sysctl_wmem_default;
1833 sk->sk_state = TCP_CLOSE;
1834 sk_set_socket(sk, sock);
1835
1836 sock_set_flag(sk, SOCK_ZAPPED);
1837
1838 if (sock) {
1839 sk->sk_type = sock->type;
1840 sk->sk_sleep = &sock->wait;
1841 sock->sk = sk;
1842 } else
1843 sk->sk_sleep = NULL;
1844
1845 rwlock_init(&sk->sk_dst_lock);
1846 rwlock_init(&sk->sk_callback_lock);
1847 lockdep_set_class_and_name(&sk->sk_callback_lock,
1848 af_callback_keys + sk->sk_family,
1849 af_family_clock_key_strings[sk->sk_family]);
1850
1851 sk->sk_state_change = sock_def_wakeup;
1852 sk->sk_data_ready = sock_def_readable;
1853 sk->sk_write_space = sock_def_write_space;
1854 sk->sk_error_report = sock_def_error_report;
1855 sk->sk_destruct = sock_def_destruct;
1856
1857 sk->sk_sndmsg_page = NULL;
1858 sk->sk_sndmsg_off = 0;
1859
1860 sk->sk_peercred.pid = 0;
1861 sk->sk_peercred.uid = -1;
1862 sk->sk_peercred.gid = -1;
1863 sk->sk_write_pending = 0;
1864 sk->sk_rcvlowat = 1;
1865 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1866 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1867
1868 sk->sk_stamp = ktime_set(-1L, 0);
1869
1870 /*
1871 * Before updating sk_refcnt, we must commit prior changes to memory
1872 * (Documentation/RCU/rculist_nulls.txt for details)
1873 */
1874 smp_wmb();
1875 atomic_set(&sk->sk_refcnt, 1);
1876 atomic_set(&sk->sk_drops, 0);
1877 }
1878 EXPORT_SYMBOL(sock_init_data);
1879
1880 void lock_sock_nested(struct sock *sk, int subclass)
1881 {
1882 might_sleep();
1883 spin_lock_bh(&sk->sk_lock.slock);
1884 if (sk->sk_lock.owned)
1885 __lock_sock(sk);
1886 sk->sk_lock.owned = 1;
1887 spin_unlock(&sk->sk_lock.slock);
1888 /*
1889 * The sk_lock has mutex_lock() semantics here:
1890 */
1891 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1892 local_bh_enable();
1893 }
1894 EXPORT_SYMBOL(lock_sock_nested);
1895
1896 void release_sock(struct sock *sk)
1897 {
1898 /*
1899 * The sk_lock has mutex_unlock() semantics:
1900 */
1901 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1902
1903 spin_lock_bh(&sk->sk_lock.slock);
1904 if (sk->sk_backlog.tail)
1905 __release_sock(sk);
1906 sk->sk_lock.owned = 0;
1907 if (waitqueue_active(&sk->sk_lock.wq))
1908 wake_up(&sk->sk_lock.wq);
1909 spin_unlock_bh(&sk->sk_lock.slock);
1910 }
1911 EXPORT_SYMBOL(release_sock);
1912
1913 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1914 {
1915 struct timeval tv;
1916 if (!sock_flag(sk, SOCK_TIMESTAMP))
1917 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1918 tv = ktime_to_timeval(sk->sk_stamp);
1919 if (tv.tv_sec == -1)
1920 return -ENOENT;
1921 if (tv.tv_sec == 0) {
1922 sk->sk_stamp = ktime_get_real();
1923 tv = ktime_to_timeval(sk->sk_stamp);
1924 }
1925 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1926 }
1927 EXPORT_SYMBOL(sock_get_timestamp);
1928
1929 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1930 {
1931 struct timespec ts;
1932 if (!sock_flag(sk, SOCK_TIMESTAMP))
1933 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1934 ts = ktime_to_timespec(sk->sk_stamp);
1935 if (ts.tv_sec == -1)
1936 return -ENOENT;
1937 if (ts.tv_sec == 0) {
1938 sk->sk_stamp = ktime_get_real();
1939 ts = ktime_to_timespec(sk->sk_stamp);
1940 }
1941 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1942 }
1943 EXPORT_SYMBOL(sock_get_timestampns);
1944
1945 void sock_enable_timestamp(struct sock *sk, int flag)
1946 {
1947 if (!sock_flag(sk, flag)) {
1948 sock_set_flag(sk, flag);
1949 /*
1950 * we just set one of the two flags which require net
1951 * time stamping, but time stamping might have been on
1952 * already because of the other one
1953 */
1954 if (!sock_flag(sk,
1955 flag == SOCK_TIMESTAMP ?
1956 SOCK_TIMESTAMPING_RX_SOFTWARE :
1957 SOCK_TIMESTAMP))
1958 net_enable_timestamp();
1959 }
1960 }
1961
1962 /*
1963 * Get a socket option on an socket.
1964 *
1965 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1966 * asynchronous errors should be reported by getsockopt. We assume
1967 * this means if you specify SO_ERROR (otherwise whats the point of it).
1968 */
1969 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1970 char __user *optval, int __user *optlen)
1971 {
1972 struct sock *sk = sock->sk;
1973
1974 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1975 }
1976 EXPORT_SYMBOL(sock_common_getsockopt);
1977
1978 #ifdef CONFIG_COMPAT
1979 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1980 char __user *optval, int __user *optlen)
1981 {
1982 struct sock *sk = sock->sk;
1983
1984 if (sk->sk_prot->compat_getsockopt != NULL)
1985 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1986 optval, optlen);
1987 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1988 }
1989 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1990 #endif
1991
1992 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1993 struct msghdr *msg, size_t size, int flags)
1994 {
1995 struct sock *sk = sock->sk;
1996 int addr_len = 0;
1997 int err;
1998
1999 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2000 flags & ~MSG_DONTWAIT, &addr_len);
2001 if (err >= 0)
2002 msg->msg_namelen = addr_len;
2003 return err;
2004 }
2005 EXPORT_SYMBOL(sock_common_recvmsg);
2006
2007 /*
2008 * Set socket options on an inet socket.
2009 */
2010 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2011 char __user *optval, int optlen)
2012 {
2013 struct sock *sk = sock->sk;
2014
2015 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2016 }
2017 EXPORT_SYMBOL(sock_common_setsockopt);
2018
2019 #ifdef CONFIG_COMPAT
2020 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2021 char __user *optval, int optlen)
2022 {
2023 struct sock *sk = sock->sk;
2024
2025 if (sk->sk_prot->compat_setsockopt != NULL)
2026 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2027 optval, optlen);
2028 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2029 }
2030 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2031 #endif
2032
2033 void sk_common_release(struct sock *sk)
2034 {
2035 if (sk->sk_prot->destroy)
2036 sk->sk_prot->destroy(sk);
2037
2038 /*
2039 * Observation: when sock_common_release is called, processes have
2040 * no access to socket. But net still has.
2041 * Step one, detach it from networking:
2042 *
2043 * A. Remove from hash tables.
2044 */
2045
2046 sk->sk_prot->unhash(sk);
2047
2048 /*
2049 * In this point socket cannot receive new packets, but it is possible
2050 * that some packets are in flight because some CPU runs receiver and
2051 * did hash table lookup before we unhashed socket. They will achieve
2052 * receive queue and will be purged by socket destructor.
2053 *
2054 * Also we still have packets pending on receive queue and probably,
2055 * our own packets waiting in device queues. sock_destroy will drain
2056 * receive queue, but transmitted packets will delay socket destruction
2057 * until the last reference will be released.
2058 */
2059
2060 sock_orphan(sk);
2061
2062 xfrm_sk_free_policy(sk);
2063
2064 sk_refcnt_debug_release(sk);
2065 sock_put(sk);
2066 }
2067 EXPORT_SYMBOL(sk_common_release);
2068
2069 static DEFINE_RWLOCK(proto_list_lock);
2070 static LIST_HEAD(proto_list);
2071
2072 #ifdef CONFIG_PROC_FS
2073 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2074 struct prot_inuse {
2075 int val[PROTO_INUSE_NR];
2076 };
2077
2078 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2079
2080 #ifdef CONFIG_NET_NS
2081 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2082 {
2083 int cpu = smp_processor_id();
2084 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2085 }
2086 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2087
2088 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2089 {
2090 int cpu, idx = prot->inuse_idx;
2091 int res = 0;
2092
2093 for_each_possible_cpu(cpu)
2094 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2095
2096 return res >= 0 ? res : 0;
2097 }
2098 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2099
2100 static int sock_inuse_init_net(struct net *net)
2101 {
2102 net->core.inuse = alloc_percpu(struct prot_inuse);
2103 return net->core.inuse ? 0 : -ENOMEM;
2104 }
2105
2106 static void sock_inuse_exit_net(struct net *net)
2107 {
2108 free_percpu(net->core.inuse);
2109 }
2110
2111 static struct pernet_operations net_inuse_ops = {
2112 .init = sock_inuse_init_net,
2113 .exit = sock_inuse_exit_net,
2114 };
2115
2116 static __init int net_inuse_init(void)
2117 {
2118 if (register_pernet_subsys(&net_inuse_ops))
2119 panic("Cannot initialize net inuse counters");
2120
2121 return 0;
2122 }
2123
2124 core_initcall(net_inuse_init);
2125 #else
2126 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2127
2128 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2129 {
2130 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2131 }
2132 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2133
2134 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2135 {
2136 int cpu, idx = prot->inuse_idx;
2137 int res = 0;
2138
2139 for_each_possible_cpu(cpu)
2140 res += per_cpu(prot_inuse, cpu).val[idx];
2141
2142 return res >= 0 ? res : 0;
2143 }
2144 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2145 #endif
2146
2147 static void assign_proto_idx(struct proto *prot)
2148 {
2149 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2150
2151 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2152 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2153 return;
2154 }
2155
2156 set_bit(prot->inuse_idx, proto_inuse_idx);
2157 }
2158
2159 static void release_proto_idx(struct proto *prot)
2160 {
2161 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2162 clear_bit(prot->inuse_idx, proto_inuse_idx);
2163 }
2164 #else
2165 static inline void assign_proto_idx(struct proto *prot)
2166 {
2167 }
2168
2169 static inline void release_proto_idx(struct proto *prot)
2170 {
2171 }
2172 #endif
2173
2174 int proto_register(struct proto *prot, int alloc_slab)
2175 {
2176 if (alloc_slab) {
2177 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2178 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2179 NULL);
2180
2181 if (prot->slab == NULL) {
2182 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2183 prot->name);
2184 goto out;
2185 }
2186
2187 if (prot->rsk_prot != NULL) {
2188 static const char mask[] = "request_sock_%s";
2189
2190 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2191 if (prot->rsk_prot->slab_name == NULL)
2192 goto out_free_sock_slab;
2193
2194 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2195 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2196 prot->rsk_prot->obj_size, 0,
2197 SLAB_HWCACHE_ALIGN, NULL);
2198
2199 if (prot->rsk_prot->slab == NULL) {
2200 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2201 prot->name);
2202 goto out_free_request_sock_slab_name;
2203 }
2204 }
2205
2206 if (prot->twsk_prot != NULL) {
2207 static const char mask[] = "tw_sock_%s";
2208
2209 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2210
2211 if (prot->twsk_prot->twsk_slab_name == NULL)
2212 goto out_free_request_sock_slab;
2213
2214 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2215 prot->twsk_prot->twsk_slab =
2216 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2217 prot->twsk_prot->twsk_obj_size,
2218 0,
2219 SLAB_HWCACHE_ALIGN |
2220 prot->slab_flags,
2221 NULL);
2222 if (prot->twsk_prot->twsk_slab == NULL)
2223 goto out_free_timewait_sock_slab_name;
2224 }
2225 }
2226
2227 write_lock(&proto_list_lock);
2228 list_add(&prot->node, &proto_list);
2229 assign_proto_idx(prot);
2230 write_unlock(&proto_list_lock);
2231 return 0;
2232
2233 out_free_timewait_sock_slab_name:
2234 kfree(prot->twsk_prot->twsk_slab_name);
2235 out_free_request_sock_slab:
2236 if (prot->rsk_prot && prot->rsk_prot->slab) {
2237 kmem_cache_destroy(prot->rsk_prot->slab);
2238 prot->rsk_prot->slab = NULL;
2239 }
2240 out_free_request_sock_slab_name:
2241 kfree(prot->rsk_prot->slab_name);
2242 out_free_sock_slab:
2243 kmem_cache_destroy(prot->slab);
2244 prot->slab = NULL;
2245 out:
2246 return -ENOBUFS;
2247 }
2248 EXPORT_SYMBOL(proto_register);
2249
2250 void proto_unregister(struct proto *prot)
2251 {
2252 write_lock(&proto_list_lock);
2253 release_proto_idx(prot);
2254 list_del(&prot->node);
2255 write_unlock(&proto_list_lock);
2256
2257 if (prot->slab != NULL) {
2258 kmem_cache_destroy(prot->slab);
2259 prot->slab = NULL;
2260 }
2261
2262 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2263 kmem_cache_destroy(prot->rsk_prot->slab);
2264 kfree(prot->rsk_prot->slab_name);
2265 prot->rsk_prot->slab = NULL;
2266 }
2267
2268 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2269 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2270 kfree(prot->twsk_prot->twsk_slab_name);
2271 prot->twsk_prot->twsk_slab = NULL;
2272 }
2273 }
2274 EXPORT_SYMBOL(proto_unregister);
2275
2276 #ifdef CONFIG_PROC_FS
2277 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2278 __acquires(proto_list_lock)
2279 {
2280 read_lock(&proto_list_lock);
2281 return seq_list_start_head(&proto_list, *pos);
2282 }
2283
2284 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2285 {
2286 return seq_list_next(v, &proto_list, pos);
2287 }
2288
2289 static void proto_seq_stop(struct seq_file *seq, void *v)
2290 __releases(proto_list_lock)
2291 {
2292 read_unlock(&proto_list_lock);
2293 }
2294
2295 static char proto_method_implemented(const void *method)
2296 {
2297 return method == NULL ? 'n' : 'y';
2298 }
2299
2300 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2301 {
2302 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2303 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2304 proto->name,
2305 proto->obj_size,
2306 sock_prot_inuse_get(seq_file_net(seq), proto),
2307 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2308 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2309 proto->max_header,
2310 proto->slab == NULL ? "no" : "yes",
2311 module_name(proto->owner),
2312 proto_method_implemented(proto->close),
2313 proto_method_implemented(proto->connect),
2314 proto_method_implemented(proto->disconnect),
2315 proto_method_implemented(proto->accept),
2316 proto_method_implemented(proto->ioctl),
2317 proto_method_implemented(proto->init),
2318 proto_method_implemented(proto->destroy),
2319 proto_method_implemented(proto->shutdown),
2320 proto_method_implemented(proto->setsockopt),
2321 proto_method_implemented(proto->getsockopt),
2322 proto_method_implemented(proto->sendmsg),
2323 proto_method_implemented(proto->recvmsg),
2324 proto_method_implemented(proto->sendpage),
2325 proto_method_implemented(proto->bind),
2326 proto_method_implemented(proto->backlog_rcv),
2327 proto_method_implemented(proto->hash),
2328 proto_method_implemented(proto->unhash),
2329 proto_method_implemented(proto->get_port),
2330 proto_method_implemented(proto->enter_memory_pressure));
2331 }
2332
2333 static int proto_seq_show(struct seq_file *seq, void *v)
2334 {
2335 if (v == &proto_list)
2336 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2337 "protocol",
2338 "size",
2339 "sockets",
2340 "memory",
2341 "press",
2342 "maxhdr",
2343 "slab",
2344 "module",
2345 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2346 else
2347 proto_seq_printf(seq, list_entry(v, struct proto, node));
2348 return 0;
2349 }
2350
2351 static const struct seq_operations proto_seq_ops = {
2352 .start = proto_seq_start,
2353 .next = proto_seq_next,
2354 .stop = proto_seq_stop,
2355 .show = proto_seq_show,
2356 };
2357
2358 static int proto_seq_open(struct inode *inode, struct file *file)
2359 {
2360 return seq_open_net(inode, file, &proto_seq_ops,
2361 sizeof(struct seq_net_private));
2362 }
2363
2364 static const struct file_operations proto_seq_fops = {
2365 .owner = THIS_MODULE,
2366 .open = proto_seq_open,
2367 .read = seq_read,
2368 .llseek = seq_lseek,
2369 .release = seq_release_net,
2370 };
2371
2372 static __net_init int proto_init_net(struct net *net)
2373 {
2374 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2375 return -ENOMEM;
2376
2377 return 0;
2378 }
2379
2380 static __net_exit void proto_exit_net(struct net *net)
2381 {
2382 proc_net_remove(net, "protocols");
2383 }
2384
2385
2386 static __net_initdata struct pernet_operations proto_net_ops = {
2387 .init = proto_init_net,
2388 .exit = proto_exit_net,
2389 };
2390
2391 static int __init proto_init(void)
2392 {
2393 return register_pernet_subsys(&proto_net_ops);
2394 }
2395
2396 subsys_initcall(proto_init);
2397
2398 #endif /* PROC_FS */
This page took 0.077827 seconds and 6 git commands to generate.