Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126 static int arp_constructor(struct neighbour *neigh);
127 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129 static void parp_redo(struct sk_buff *skb);
130
131 static const struct neigh_ops arp_generic_ops = {
132 .family = AF_INET,
133 .solicit = arp_solicit,
134 .error_report = arp_error_report,
135 .output = neigh_resolve_output,
136 .connected_output = neigh_connected_output,
137 };
138
139 static const struct neigh_ops arp_hh_ops = {
140 .family = AF_INET,
141 .solicit = arp_solicit,
142 .error_report = arp_error_report,
143 .output = neigh_resolve_output,
144 .connected_output = neigh_resolve_output,
145 };
146
147 static const struct neigh_ops arp_direct_ops = {
148 .family = AF_INET,
149 .output = neigh_direct_output,
150 .connected_output = neigh_direct_output,
151 };
152
153 struct neigh_table arp_tbl = {
154 .family = AF_INET,
155 .key_len = 4,
156 .protocol = cpu_to_be16(ETH_P_IP),
157 .hash = arp_hash,
158 .key_eq = arp_key_eq,
159 .constructor = arp_constructor,
160 .proxy_redo = parp_redo,
161 .id = "arp_cache",
162 .parms = {
163 .tbl = &arp_tbl,
164 .reachable_time = 30 * HZ,
165 .data = {
166 [NEIGH_VAR_MCAST_PROBES] = 3,
167 [NEIGH_VAR_UCAST_PROBES] = 3,
168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173 [NEIGH_VAR_PROXY_QLEN] = 64,
174 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 },
178 },
179 .gc_interval = 30 * HZ,
180 .gc_thresh1 = 128,
181 .gc_thresh2 = 512,
182 .gc_thresh3 = 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 switch (dev->type) {
189 case ARPHRD_ETHER:
190 case ARPHRD_FDDI:
191 case ARPHRD_IEEE802:
192 ip_eth_mc_map(addr, haddr);
193 return 0;
194 case ARPHRD_INFINIBAND:
195 ip_ib_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 case ARPHRD_IPGRE:
198 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 default:
201 if (dir) {
202 memcpy(haddr, dev->broadcast, dev->addr_len);
203 return 0;
204 }
205 }
206 return -EINVAL;
207 }
208
209
210 static u32 arp_hash(const void *pkey,
211 const struct net_device *dev,
212 __u32 *hash_rnd)
213 {
214 return arp_hashfn(pkey, dev, hash_rnd);
215 }
216
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 return neigh_key_eq32(neigh, pkey);
220 }
221
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 __be32 addr = *(__be32 *)neigh->primary_key;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228
229 rcu_read_lock();
230 in_dev = __in_dev_get_rcu(dev);
231 if (!in_dev) {
232 rcu_read_unlock();
233 return -EINVAL;
234 }
235
236 neigh->type = inet_addr_type(dev_net(dev), addr);
237
238 parms = in_dev->arp_parms;
239 __neigh_parms_put(neigh->parms);
240 neigh->parms = neigh_parms_clone(parms);
241 rcu_read_unlock();
242
243 if (!dev->header_ops) {
244 neigh->nud_state = NUD_NOARP;
245 neigh->ops = &arp_direct_ops;
246 neigh->output = neigh_direct_output;
247 } else {
248 /* Good devices (checked by reading texts, but only Ethernet is
249 tested)
250
251 ARPHRD_ETHER: (ethernet, apfddi)
252 ARPHRD_FDDI: (fddi)
253 ARPHRD_IEEE802: (tr)
254 ARPHRD_METRICOM: (strip)
255 ARPHRD_ARCNET:
256 etc. etc. etc.
257
258 ARPHRD_IPDDP will also work, if author repairs it.
259 I did not it, because this driver does not work even
260 in old paradigm.
261 */
262
263 if (neigh->type == RTN_MULTICAST) {
264 neigh->nud_state = NUD_NOARP;
265 arp_mc_map(addr, neigh->ha, dev, 1);
266 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267 neigh->nud_state = NUD_NOARP;
268 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269 } else if (neigh->type == RTN_BROADCAST ||
270 (dev->flags & IFF_POINTOPOINT)) {
271 neigh->nud_state = NUD_NOARP;
272 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273 }
274
275 if (dev->header_ops->cache)
276 neigh->ops = &arp_hh_ops;
277 else
278 neigh->ops = &arp_generic_ops;
279
280 if (neigh->nud_state & NUD_VALID)
281 neigh->output = neigh->ops->connected_output;
282 else
283 neigh->output = neigh->ops->output;
284 }
285 return 0;
286 }
287
288 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289 {
290 dst_link_failure(skb);
291 kfree_skb(skb);
292 }
293
294 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
295 {
296 __be32 saddr = 0;
297 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
298 struct net_device *dev = neigh->dev;
299 __be32 target = *(__be32 *)neigh->primary_key;
300 int probes = atomic_read(&neigh->probes);
301 struct in_device *in_dev;
302
303 rcu_read_lock();
304 in_dev = __in_dev_get_rcu(dev);
305 if (!in_dev) {
306 rcu_read_unlock();
307 return;
308 }
309 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
310 default:
311 case 0: /* By default announce any local IP */
312 if (skb && inet_addr_type(dev_net(dev),
313 ip_hdr(skb)->saddr) == RTN_LOCAL)
314 saddr = ip_hdr(skb)->saddr;
315 break;
316 case 1: /* Restrict announcements of saddr in same subnet */
317 if (!skb)
318 break;
319 saddr = ip_hdr(skb)->saddr;
320 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
321 /* saddr should be known to target */
322 if (inet_addr_onlink(in_dev, target, saddr))
323 break;
324 }
325 saddr = 0;
326 break;
327 case 2: /* Avoid secondary IPs, get a primary/preferred one */
328 break;
329 }
330 rcu_read_unlock();
331
332 if (!saddr)
333 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
334
335 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
336 if (probes < 0) {
337 if (!(neigh->nud_state & NUD_VALID))
338 pr_debug("trying to ucast probe in NUD_INVALID\n");
339 neigh_ha_snapshot(dst_ha, neigh, dev);
340 dst_hw = dst_ha;
341 } else {
342 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
343 if (probes < 0) {
344 neigh_app_ns(neigh);
345 return;
346 }
347 }
348
349 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
350 dst_hw, dev->dev_addr, NULL);
351 }
352
353 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
354 {
355 struct net *net = dev_net(in_dev->dev);
356 int scope;
357
358 switch (IN_DEV_ARP_IGNORE(in_dev)) {
359 case 0: /* Reply, the tip is already validated */
360 return 0;
361 case 1: /* Reply only if tip is configured on the incoming interface */
362 sip = 0;
363 scope = RT_SCOPE_HOST;
364 break;
365 case 2: /*
366 * Reply only if tip is configured on the incoming interface
367 * and is in same subnet as sip
368 */
369 scope = RT_SCOPE_HOST;
370 break;
371 case 3: /* Do not reply for scope host addresses */
372 sip = 0;
373 scope = RT_SCOPE_LINK;
374 in_dev = NULL;
375 break;
376 case 4: /* Reserved */
377 case 5:
378 case 6:
379 case 7:
380 return 0;
381 case 8: /* Do not reply */
382 return 1;
383 default:
384 return 0;
385 }
386 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
387 }
388
389 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
390 {
391 struct rtable *rt;
392 int flag = 0;
393 /*unsigned long now; */
394 struct net *net = dev_net(dev);
395
396 rt = ip_route_output(net, sip, tip, 0, 0);
397 if (IS_ERR(rt))
398 return 1;
399 if (rt->dst.dev != dev) {
400 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
401 flag = 1;
402 }
403 ip_rt_put(rt);
404 return flag;
405 }
406
407 /*
408 * Check if we can use proxy ARP for this path
409 */
410 static inline int arp_fwd_proxy(struct in_device *in_dev,
411 struct net_device *dev, struct rtable *rt)
412 {
413 struct in_device *out_dev;
414 int imi, omi = -1;
415
416 if (rt->dst.dev == dev)
417 return 0;
418
419 if (!IN_DEV_PROXY_ARP(in_dev))
420 return 0;
421 imi = IN_DEV_MEDIUM_ID(in_dev);
422 if (imi == 0)
423 return 1;
424 if (imi == -1)
425 return 0;
426
427 /* place to check for proxy_arp for routes */
428
429 out_dev = __in_dev_get_rcu(rt->dst.dev);
430 if (out_dev)
431 omi = IN_DEV_MEDIUM_ID(out_dev);
432
433 return omi != imi && omi != -1;
434 }
435
436 /*
437 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
438 *
439 * RFC3069 supports proxy arp replies back to the same interface. This
440 * is done to support (ethernet) switch features, like RFC 3069, where
441 * the individual ports are not allowed to communicate with each
442 * other, BUT they are allowed to talk to the upstream router. As
443 * described in RFC 3069, it is possible to allow these hosts to
444 * communicate through the upstream router, by proxy_arp'ing.
445 *
446 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
447 *
448 * This technology is known by different names:
449 * In RFC 3069 it is called VLAN Aggregation.
450 * Cisco and Allied Telesyn call it Private VLAN.
451 * Hewlett-Packard call it Source-Port filtering or port-isolation.
452 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
453 *
454 */
455 static inline int arp_fwd_pvlan(struct in_device *in_dev,
456 struct net_device *dev, struct rtable *rt,
457 __be32 sip, __be32 tip)
458 {
459 /* Private VLAN is only concerned about the same ethernet segment */
460 if (rt->dst.dev != dev)
461 return 0;
462
463 /* Don't reply on self probes (often done by windowz boxes)*/
464 if (sip == tip)
465 return 0;
466
467 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
468 return 1;
469 else
470 return 0;
471 }
472
473 /*
474 * Interface to link layer: send routine and receive handler.
475 */
476
477 /*
478 * Create an arp packet. If dest_hw is not set, we create a broadcast
479 * message.
480 */
481 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
482 struct net_device *dev, __be32 src_ip,
483 const unsigned char *dest_hw,
484 const unsigned char *src_hw,
485 const unsigned char *target_hw)
486 {
487 struct sk_buff *skb;
488 struct arphdr *arp;
489 unsigned char *arp_ptr;
490 int hlen = LL_RESERVED_SPACE(dev);
491 int tlen = dev->needed_tailroom;
492
493 /*
494 * Allocate a buffer
495 */
496
497 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
498 if (!skb)
499 return NULL;
500
501 skb_reserve(skb, hlen);
502 skb_reset_network_header(skb);
503 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
504 skb->dev = dev;
505 skb->protocol = htons(ETH_P_ARP);
506 if (!src_hw)
507 src_hw = dev->dev_addr;
508 if (!dest_hw)
509 dest_hw = dev->broadcast;
510
511 /*
512 * Fill the device header for the ARP frame
513 */
514 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
515 goto out;
516
517 /*
518 * Fill out the arp protocol part.
519 *
520 * The arp hardware type should match the device type, except for FDDI,
521 * which (according to RFC 1390) should always equal 1 (Ethernet).
522 */
523 /*
524 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
525 * DIX code for the protocol. Make these device structure fields.
526 */
527 switch (dev->type) {
528 default:
529 arp->ar_hrd = htons(dev->type);
530 arp->ar_pro = htons(ETH_P_IP);
531 break;
532
533 #if IS_ENABLED(CONFIG_AX25)
534 case ARPHRD_AX25:
535 arp->ar_hrd = htons(ARPHRD_AX25);
536 arp->ar_pro = htons(AX25_P_IP);
537 break;
538
539 #if IS_ENABLED(CONFIG_NETROM)
540 case ARPHRD_NETROM:
541 arp->ar_hrd = htons(ARPHRD_NETROM);
542 arp->ar_pro = htons(AX25_P_IP);
543 break;
544 #endif
545 #endif
546
547 #if IS_ENABLED(CONFIG_FDDI)
548 case ARPHRD_FDDI:
549 arp->ar_hrd = htons(ARPHRD_ETHER);
550 arp->ar_pro = htons(ETH_P_IP);
551 break;
552 #endif
553 }
554
555 arp->ar_hln = dev->addr_len;
556 arp->ar_pln = 4;
557 arp->ar_op = htons(type);
558
559 arp_ptr = (unsigned char *)(arp + 1);
560
561 memcpy(arp_ptr, src_hw, dev->addr_len);
562 arp_ptr += dev->addr_len;
563 memcpy(arp_ptr, &src_ip, 4);
564 arp_ptr += 4;
565
566 switch (dev->type) {
567 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
568 case ARPHRD_IEEE1394:
569 break;
570 #endif
571 default:
572 if (target_hw)
573 memcpy(arp_ptr, target_hw, dev->addr_len);
574 else
575 memset(arp_ptr, 0, dev->addr_len);
576 arp_ptr += dev->addr_len;
577 }
578 memcpy(arp_ptr, &dest_ip, 4);
579
580 return skb;
581
582 out:
583 kfree_skb(skb);
584 return NULL;
585 }
586 EXPORT_SYMBOL(arp_create);
587
588 /*
589 * Send an arp packet.
590 */
591 void arp_xmit(struct sk_buff *skb)
592 {
593 /* Send it off, maybe filter it using firewalling first. */
594 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, NULL, skb,
595 NULL, skb->dev, dev_queue_xmit_sk);
596 }
597 EXPORT_SYMBOL(arp_xmit);
598
599 /*
600 * Create and send an arp packet.
601 */
602 void arp_send(int type, int ptype, __be32 dest_ip,
603 struct net_device *dev, __be32 src_ip,
604 const unsigned char *dest_hw, const unsigned char *src_hw,
605 const unsigned char *target_hw)
606 {
607 struct sk_buff *skb;
608
609 /*
610 * No arp on this interface.
611 */
612
613 if (dev->flags&IFF_NOARP)
614 return;
615
616 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
617 dest_hw, src_hw, target_hw);
618 if (!skb)
619 return;
620
621 arp_xmit(skb);
622 }
623 EXPORT_SYMBOL(arp_send);
624
625 /*
626 * Process an arp request.
627 */
628
629 static int arp_process(struct sock *sk, struct sk_buff *skb)
630 {
631 struct net_device *dev = skb->dev;
632 struct in_device *in_dev = __in_dev_get_rcu(dev);
633 struct arphdr *arp;
634 unsigned char *arp_ptr;
635 struct rtable *rt;
636 unsigned char *sha;
637 __be32 sip, tip;
638 u16 dev_type = dev->type;
639 int addr_type;
640 struct neighbour *n;
641 struct net *net = dev_net(dev);
642 bool is_garp = false;
643
644 /* arp_rcv below verifies the ARP header and verifies the device
645 * is ARP'able.
646 */
647
648 if (!in_dev)
649 goto out;
650
651 arp = arp_hdr(skb);
652
653 switch (dev_type) {
654 default:
655 if (arp->ar_pro != htons(ETH_P_IP) ||
656 htons(dev_type) != arp->ar_hrd)
657 goto out;
658 break;
659 case ARPHRD_ETHER:
660 case ARPHRD_FDDI:
661 case ARPHRD_IEEE802:
662 /*
663 * ETHERNET, and Fibre Channel (which are IEEE 802
664 * devices, according to RFC 2625) devices will accept ARP
665 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
666 * This is the case also of FDDI, where the RFC 1390 says that
667 * FDDI devices should accept ARP hardware of (1) Ethernet,
668 * however, to be more robust, we'll accept both 1 (Ethernet)
669 * or 6 (IEEE 802.2)
670 */
671 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
672 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
673 arp->ar_pro != htons(ETH_P_IP))
674 goto out;
675 break;
676 case ARPHRD_AX25:
677 if (arp->ar_pro != htons(AX25_P_IP) ||
678 arp->ar_hrd != htons(ARPHRD_AX25))
679 goto out;
680 break;
681 case ARPHRD_NETROM:
682 if (arp->ar_pro != htons(AX25_P_IP) ||
683 arp->ar_hrd != htons(ARPHRD_NETROM))
684 goto out;
685 break;
686 }
687
688 /* Understand only these message types */
689
690 if (arp->ar_op != htons(ARPOP_REPLY) &&
691 arp->ar_op != htons(ARPOP_REQUEST))
692 goto out;
693
694 /*
695 * Extract fields
696 */
697 arp_ptr = (unsigned char *)(arp + 1);
698 sha = arp_ptr;
699 arp_ptr += dev->addr_len;
700 memcpy(&sip, arp_ptr, 4);
701 arp_ptr += 4;
702 switch (dev_type) {
703 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
704 case ARPHRD_IEEE1394:
705 break;
706 #endif
707 default:
708 arp_ptr += dev->addr_len;
709 }
710 memcpy(&tip, arp_ptr, 4);
711 /*
712 * Check for bad requests for 127.x.x.x and requests for multicast
713 * addresses. If this is one such, delete it.
714 */
715 if (ipv4_is_multicast(tip) ||
716 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
717 goto out;
718
719 /*
720 * Special case: We must set Frame Relay source Q.922 address
721 */
722 if (dev_type == ARPHRD_DLCI)
723 sha = dev->broadcast;
724
725 /*
726 * Process entry. The idea here is we want to send a reply if it is a
727 * request for us or if it is a request for someone else that we hold
728 * a proxy for. We want to add an entry to our cache if it is a reply
729 * to us or if it is a request for our address.
730 * (The assumption for this last is that if someone is requesting our
731 * address, they are probably intending to talk to us, so it saves time
732 * if we cache their address. Their address is also probably not in
733 * our cache, since ours is not in their cache.)
734 *
735 * Putting this another way, we only care about replies if they are to
736 * us, in which case we add them to the cache. For requests, we care
737 * about those for us and those for our proxies. We reply to both,
738 * and in the case of requests for us we add the requester to the arp
739 * cache.
740 */
741
742 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
743 if (sip == 0) {
744 if (arp->ar_op == htons(ARPOP_REQUEST) &&
745 inet_addr_type(net, tip) == RTN_LOCAL &&
746 !arp_ignore(in_dev, sip, tip))
747 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
748 dev->dev_addr, sha);
749 goto out;
750 }
751
752 if (arp->ar_op == htons(ARPOP_REQUEST) &&
753 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
754
755 rt = skb_rtable(skb);
756 addr_type = rt->rt_type;
757
758 if (addr_type == RTN_LOCAL) {
759 int dont_send;
760
761 dont_send = arp_ignore(in_dev, sip, tip);
762 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
763 dont_send = arp_filter(sip, tip, dev);
764 if (!dont_send) {
765 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
766 if (n) {
767 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
768 dev, tip, sha, dev->dev_addr,
769 sha);
770 neigh_release(n);
771 }
772 }
773 goto out;
774 } else if (IN_DEV_FORWARD(in_dev)) {
775 if (addr_type == RTN_UNICAST &&
776 (arp_fwd_proxy(in_dev, dev, rt) ||
777 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
778 (rt->dst.dev != dev &&
779 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
780 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
781 if (n)
782 neigh_release(n);
783
784 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
785 skb->pkt_type == PACKET_HOST ||
786 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
787 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
788 dev, tip, sha, dev->dev_addr,
789 sha);
790 } else {
791 pneigh_enqueue(&arp_tbl,
792 in_dev->arp_parms, skb);
793 return 0;
794 }
795 goto out;
796 }
797 }
798 }
799
800 /* Update our ARP tables */
801
802 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
803
804 if (IN_DEV_ARP_ACCEPT(in_dev)) {
805 /* Unsolicited ARP is not accepted by default.
806 It is possible, that this option should be enabled for some
807 devices (strip is candidate)
808 */
809 is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
810 inet_addr_type(net, sip) == RTN_UNICAST;
811
812 if (!n &&
813 ((arp->ar_op == htons(ARPOP_REPLY) &&
814 inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
815 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
816 }
817
818 if (n) {
819 int state = NUD_REACHABLE;
820 int override;
821
822 /* If several different ARP replies follows back-to-back,
823 use the FIRST one. It is possible, if several proxy
824 agents are active. Taking the first reply prevents
825 arp trashing and chooses the fastest router.
826 */
827 override = time_after(jiffies,
828 n->updated +
829 NEIGH_VAR(n->parms, LOCKTIME)) ||
830 is_garp;
831
832 /* Broadcast replies and request packets
833 do not assert neighbour reachability.
834 */
835 if (arp->ar_op != htons(ARPOP_REPLY) ||
836 skb->pkt_type != PACKET_HOST)
837 state = NUD_STALE;
838 neigh_update(n, sha, state,
839 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
840 neigh_release(n);
841 }
842
843 out:
844 consume_skb(skb);
845 return 0;
846 }
847
848 static void parp_redo(struct sk_buff *skb)
849 {
850 arp_process(NULL, skb);
851 }
852
853
854 /*
855 * Receive an arp request from the device layer.
856 */
857
858 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
859 struct packet_type *pt, struct net_device *orig_dev)
860 {
861 const struct arphdr *arp;
862
863 /* do not tweak dropwatch on an ARP we will ignore */
864 if (dev->flags & IFF_NOARP ||
865 skb->pkt_type == PACKET_OTHERHOST ||
866 skb->pkt_type == PACKET_LOOPBACK)
867 goto consumeskb;
868
869 skb = skb_share_check(skb, GFP_ATOMIC);
870 if (!skb)
871 goto out_of_mem;
872
873 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
874 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
875 goto freeskb;
876
877 arp = arp_hdr(skb);
878 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
879 goto freeskb;
880
881 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
882
883 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, NULL, skb,
884 dev, NULL, arp_process);
885
886 consumeskb:
887 consume_skb(skb);
888 return 0;
889 freeskb:
890 kfree_skb(skb);
891 out_of_mem:
892 return 0;
893 }
894
895 /*
896 * User level interface (ioctl)
897 */
898
899 /*
900 * Set (create) an ARP cache entry.
901 */
902
903 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
904 {
905 if (!dev) {
906 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
907 return 0;
908 }
909 if (__in_dev_get_rtnl(dev)) {
910 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
911 return 0;
912 }
913 return -ENXIO;
914 }
915
916 static int arp_req_set_public(struct net *net, struct arpreq *r,
917 struct net_device *dev)
918 {
919 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
920 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
921
922 if (mask && mask != htonl(0xFFFFFFFF))
923 return -EINVAL;
924 if (!dev && (r->arp_flags & ATF_COM)) {
925 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
926 r->arp_ha.sa_data);
927 if (!dev)
928 return -ENODEV;
929 }
930 if (mask) {
931 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
932 return -ENOBUFS;
933 return 0;
934 }
935
936 return arp_req_set_proxy(net, dev, 1);
937 }
938
939 static int arp_req_set(struct net *net, struct arpreq *r,
940 struct net_device *dev)
941 {
942 __be32 ip;
943 struct neighbour *neigh;
944 int err;
945
946 if (r->arp_flags & ATF_PUBL)
947 return arp_req_set_public(net, r, dev);
948
949 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
950 if (r->arp_flags & ATF_PERM)
951 r->arp_flags |= ATF_COM;
952 if (!dev) {
953 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
954
955 if (IS_ERR(rt))
956 return PTR_ERR(rt);
957 dev = rt->dst.dev;
958 ip_rt_put(rt);
959 if (!dev)
960 return -EINVAL;
961 }
962 switch (dev->type) {
963 #if IS_ENABLED(CONFIG_FDDI)
964 case ARPHRD_FDDI:
965 /*
966 * According to RFC 1390, FDDI devices should accept ARP
967 * hardware types of 1 (Ethernet). However, to be more
968 * robust, we'll accept hardware types of either 1 (Ethernet)
969 * or 6 (IEEE 802.2).
970 */
971 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
972 r->arp_ha.sa_family != ARPHRD_ETHER &&
973 r->arp_ha.sa_family != ARPHRD_IEEE802)
974 return -EINVAL;
975 break;
976 #endif
977 default:
978 if (r->arp_ha.sa_family != dev->type)
979 return -EINVAL;
980 break;
981 }
982
983 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
984 err = PTR_ERR(neigh);
985 if (!IS_ERR(neigh)) {
986 unsigned int state = NUD_STALE;
987 if (r->arp_flags & ATF_PERM)
988 state = NUD_PERMANENT;
989 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
990 r->arp_ha.sa_data : NULL, state,
991 NEIGH_UPDATE_F_OVERRIDE |
992 NEIGH_UPDATE_F_ADMIN);
993 neigh_release(neigh);
994 }
995 return err;
996 }
997
998 static unsigned int arp_state_to_flags(struct neighbour *neigh)
999 {
1000 if (neigh->nud_state&NUD_PERMANENT)
1001 return ATF_PERM | ATF_COM;
1002 else if (neigh->nud_state&NUD_VALID)
1003 return ATF_COM;
1004 else
1005 return 0;
1006 }
1007
1008 /*
1009 * Get an ARP cache entry.
1010 */
1011
1012 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1013 {
1014 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1015 struct neighbour *neigh;
1016 int err = -ENXIO;
1017
1018 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1019 if (neigh) {
1020 if (!(neigh->nud_state & NUD_NOARP)) {
1021 read_lock_bh(&neigh->lock);
1022 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1023 r->arp_flags = arp_state_to_flags(neigh);
1024 read_unlock_bh(&neigh->lock);
1025 r->arp_ha.sa_family = dev->type;
1026 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1027 err = 0;
1028 }
1029 neigh_release(neigh);
1030 }
1031 return err;
1032 }
1033
1034 static int arp_invalidate(struct net_device *dev, __be32 ip)
1035 {
1036 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1037 int err = -ENXIO;
1038
1039 if (neigh) {
1040 if (neigh->nud_state & ~NUD_NOARP)
1041 err = neigh_update(neigh, NULL, NUD_FAILED,
1042 NEIGH_UPDATE_F_OVERRIDE|
1043 NEIGH_UPDATE_F_ADMIN);
1044 neigh_release(neigh);
1045 }
1046
1047 return err;
1048 }
1049
1050 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1051 struct net_device *dev)
1052 {
1053 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1054 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1055
1056 if (mask == htonl(0xFFFFFFFF))
1057 return pneigh_delete(&arp_tbl, net, &ip, dev);
1058
1059 if (mask)
1060 return -EINVAL;
1061
1062 return arp_req_set_proxy(net, dev, 0);
1063 }
1064
1065 static int arp_req_delete(struct net *net, struct arpreq *r,
1066 struct net_device *dev)
1067 {
1068 __be32 ip;
1069
1070 if (r->arp_flags & ATF_PUBL)
1071 return arp_req_delete_public(net, r, dev);
1072
1073 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1074 if (!dev) {
1075 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1076 if (IS_ERR(rt))
1077 return PTR_ERR(rt);
1078 dev = rt->dst.dev;
1079 ip_rt_put(rt);
1080 if (!dev)
1081 return -EINVAL;
1082 }
1083 return arp_invalidate(dev, ip);
1084 }
1085
1086 /*
1087 * Handle an ARP layer I/O control request.
1088 */
1089
1090 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1091 {
1092 int err;
1093 struct arpreq r;
1094 struct net_device *dev = NULL;
1095
1096 switch (cmd) {
1097 case SIOCDARP:
1098 case SIOCSARP:
1099 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1100 return -EPERM;
1101 case SIOCGARP:
1102 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1103 if (err)
1104 return -EFAULT;
1105 break;
1106 default:
1107 return -EINVAL;
1108 }
1109
1110 if (r.arp_pa.sa_family != AF_INET)
1111 return -EPFNOSUPPORT;
1112
1113 if (!(r.arp_flags & ATF_PUBL) &&
1114 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1115 return -EINVAL;
1116 if (!(r.arp_flags & ATF_NETMASK))
1117 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1118 htonl(0xFFFFFFFFUL);
1119 rtnl_lock();
1120 if (r.arp_dev[0]) {
1121 err = -ENODEV;
1122 dev = __dev_get_by_name(net, r.arp_dev);
1123 if (!dev)
1124 goto out;
1125
1126 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1127 if (!r.arp_ha.sa_family)
1128 r.arp_ha.sa_family = dev->type;
1129 err = -EINVAL;
1130 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1131 goto out;
1132 } else if (cmd == SIOCGARP) {
1133 err = -ENODEV;
1134 goto out;
1135 }
1136
1137 switch (cmd) {
1138 case SIOCDARP:
1139 err = arp_req_delete(net, &r, dev);
1140 break;
1141 case SIOCSARP:
1142 err = arp_req_set(net, &r, dev);
1143 break;
1144 case SIOCGARP:
1145 err = arp_req_get(&r, dev);
1146 break;
1147 }
1148 out:
1149 rtnl_unlock();
1150 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1151 err = -EFAULT;
1152 return err;
1153 }
1154
1155 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1156 void *ptr)
1157 {
1158 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1159 struct netdev_notifier_change_info *change_info;
1160
1161 switch (event) {
1162 case NETDEV_CHANGEADDR:
1163 neigh_changeaddr(&arp_tbl, dev);
1164 rt_cache_flush(dev_net(dev));
1165 break;
1166 case NETDEV_CHANGE:
1167 change_info = ptr;
1168 if (change_info->flags_changed & IFF_NOARP)
1169 neigh_changeaddr(&arp_tbl, dev);
1170 break;
1171 default:
1172 break;
1173 }
1174
1175 return NOTIFY_DONE;
1176 }
1177
1178 static struct notifier_block arp_netdev_notifier = {
1179 .notifier_call = arp_netdev_event,
1180 };
1181
1182 /* Note, that it is not on notifier chain.
1183 It is necessary, that this routine was called after route cache will be
1184 flushed.
1185 */
1186 void arp_ifdown(struct net_device *dev)
1187 {
1188 neigh_ifdown(&arp_tbl, dev);
1189 }
1190
1191
1192 /*
1193 * Called once on startup.
1194 */
1195
1196 static struct packet_type arp_packet_type __read_mostly = {
1197 .type = cpu_to_be16(ETH_P_ARP),
1198 .func = arp_rcv,
1199 };
1200
1201 static int arp_proc_init(void);
1202
1203 void __init arp_init(void)
1204 {
1205 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1206
1207 dev_add_pack(&arp_packet_type);
1208 arp_proc_init();
1209 #ifdef CONFIG_SYSCTL
1210 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1211 #endif
1212 register_netdevice_notifier(&arp_netdev_notifier);
1213 }
1214
1215 #ifdef CONFIG_PROC_FS
1216 #if IS_ENABLED(CONFIG_AX25)
1217
1218 /* ------------------------------------------------------------------------ */
1219 /*
1220 * ax25 -> ASCII conversion
1221 */
1222 static char *ax2asc2(ax25_address *a, char *buf)
1223 {
1224 char c, *s;
1225 int n;
1226
1227 for (n = 0, s = buf; n < 6; n++) {
1228 c = (a->ax25_call[n] >> 1) & 0x7F;
1229
1230 if (c != ' ')
1231 *s++ = c;
1232 }
1233
1234 *s++ = '-';
1235 n = (a->ax25_call[6] >> 1) & 0x0F;
1236 if (n > 9) {
1237 *s++ = '1';
1238 n -= 10;
1239 }
1240
1241 *s++ = n + '0';
1242 *s++ = '\0';
1243
1244 if (*buf == '\0' || *buf == '-')
1245 return "*";
1246
1247 return buf;
1248 }
1249 #endif /* CONFIG_AX25 */
1250
1251 #define HBUFFERLEN 30
1252
1253 static void arp_format_neigh_entry(struct seq_file *seq,
1254 struct neighbour *n)
1255 {
1256 char hbuffer[HBUFFERLEN];
1257 int k, j;
1258 char tbuf[16];
1259 struct net_device *dev = n->dev;
1260 int hatype = dev->type;
1261
1262 read_lock(&n->lock);
1263 /* Convert hardware address to XX:XX:XX:XX ... form. */
1264 #if IS_ENABLED(CONFIG_AX25)
1265 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1266 ax2asc2((ax25_address *)n->ha, hbuffer);
1267 else {
1268 #endif
1269 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1270 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1271 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1272 hbuffer[k++] = ':';
1273 }
1274 if (k != 0)
1275 --k;
1276 hbuffer[k] = 0;
1277 #if IS_ENABLED(CONFIG_AX25)
1278 }
1279 #endif
1280 sprintf(tbuf, "%pI4", n->primary_key);
1281 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1282 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1283 read_unlock(&n->lock);
1284 }
1285
1286 static void arp_format_pneigh_entry(struct seq_file *seq,
1287 struct pneigh_entry *n)
1288 {
1289 struct net_device *dev = n->dev;
1290 int hatype = dev ? dev->type : 0;
1291 char tbuf[16];
1292
1293 sprintf(tbuf, "%pI4", n->key);
1294 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1295 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1296 dev ? dev->name : "*");
1297 }
1298
1299 static int arp_seq_show(struct seq_file *seq, void *v)
1300 {
1301 if (v == SEQ_START_TOKEN) {
1302 seq_puts(seq, "IP address HW type Flags "
1303 "HW address Mask Device\n");
1304 } else {
1305 struct neigh_seq_state *state = seq->private;
1306
1307 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1308 arp_format_pneigh_entry(seq, v);
1309 else
1310 arp_format_neigh_entry(seq, v);
1311 }
1312
1313 return 0;
1314 }
1315
1316 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1317 {
1318 /* Don't want to confuse "arp -a" w/ magic entries,
1319 * so we tell the generic iterator to skip NUD_NOARP.
1320 */
1321 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1322 }
1323
1324 /* ------------------------------------------------------------------------ */
1325
1326 static const struct seq_operations arp_seq_ops = {
1327 .start = arp_seq_start,
1328 .next = neigh_seq_next,
1329 .stop = neigh_seq_stop,
1330 .show = arp_seq_show,
1331 };
1332
1333 static int arp_seq_open(struct inode *inode, struct file *file)
1334 {
1335 return seq_open_net(inode, file, &arp_seq_ops,
1336 sizeof(struct neigh_seq_state));
1337 }
1338
1339 static const struct file_operations arp_seq_fops = {
1340 .owner = THIS_MODULE,
1341 .open = arp_seq_open,
1342 .read = seq_read,
1343 .llseek = seq_lseek,
1344 .release = seq_release_net,
1345 };
1346
1347
1348 static int __net_init arp_net_init(struct net *net)
1349 {
1350 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1351 return -ENOMEM;
1352 return 0;
1353 }
1354
1355 static void __net_exit arp_net_exit(struct net *net)
1356 {
1357 remove_proc_entry("arp", net->proc_net);
1358 }
1359
1360 static struct pernet_operations arp_net_ops = {
1361 .init = arp_net_init,
1362 .exit = arp_net_exit,
1363 };
1364
1365 static int __init arp_proc_init(void)
1366 {
1367 return register_pernet_subsys(&arp_net_ops);
1368 }
1369
1370 #else /* CONFIG_PROC_FS */
1371
1372 static int __init arp_proc_init(void)
1373 {
1374 return 0;
1375 }
1376
1377 #endif /* CONFIG_PROC_FS */
This page took 0.062596 seconds and 5 git commands to generate.