fd4b3e829a1855b565ea744fb5b76e13178cb70f
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/slab.h>
101 #ifdef CONFIG_SYSCTL
102 #include <linux/sysctl.h>
103 #endif
104
105 #include <net/net_namespace.h>
106 #include <net/ip.h>
107 #include <net/icmp.h>
108 #include <net/route.h>
109 #include <net/protocol.h>
110 #include <net/tcp.h>
111 #include <net/sock.h>
112 #include <net/arp.h>
113 #include <net/ax25.h>
114 #include <net/netrom.h>
115 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
116 #include <net/atmclip.h>
117 struct neigh_table *clip_tbl_hook;
118 EXPORT_SYMBOL(clip_tbl_hook);
119 #endif
120
121 #include <asm/system.h>
122 #include <linux/uaccess.h>
123
124 #include <linux/netfilter_arp.h>
125
126 /*
127 * Interface to generic neighbour cache.
128 */
129 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
134
135 static const struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 };
142
143 static const struct neigh_ops arp_hh_ops = {
144 .family = AF_INET,
145 .solicit = arp_solicit,
146 .error_report = arp_error_report,
147 .output = neigh_resolve_output,
148 .connected_output = neigh_resolve_output,
149 };
150
151 static const struct neigh_ops arp_direct_ops = {
152 .family = AF_INET,
153 .output = neigh_direct_output,
154 .connected_output = neigh_direct_output,
155 };
156
157 static const struct neigh_ops arp_broken_ops = {
158 .family = AF_INET,
159 .solicit = arp_solicit,
160 .error_report = arp_error_report,
161 .output = neigh_compat_output,
162 .connected_output = neigh_compat_output,
163 };
164
165 struct neigh_table arp_tbl = {
166 .family = AF_INET,
167 .key_len = 4,
168 .hash = arp_hash,
169 .constructor = arp_constructor,
170 .proxy_redo = parp_redo,
171 .id = "arp_cache",
172 .parms = {
173 .tbl = &arp_tbl,
174 .base_reachable_time = 30 * HZ,
175 .retrans_time = 1 * HZ,
176 .gc_staletime = 60 * HZ,
177 .reachable_time = 30 * HZ,
178 .delay_probe_time = 5 * HZ,
179 .queue_len_bytes = 64*1024,
180 .ucast_probes = 3,
181 .mcast_probes = 3,
182 .anycast_delay = 1 * HZ,
183 .proxy_delay = (8 * HZ) / 10,
184 .proxy_qlen = 64,
185 .locktime = 1 * HZ,
186 },
187 .gc_interval = 30 * HZ,
188 .gc_thresh1 = 128,
189 .gc_thresh2 = 512,
190 .gc_thresh3 = 1024,
191 };
192 EXPORT_SYMBOL(arp_tbl);
193
194 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
195 {
196 switch (dev->type) {
197 case ARPHRD_ETHER:
198 case ARPHRD_FDDI:
199 case ARPHRD_IEEE802:
200 ip_eth_mc_map(addr, haddr);
201 return 0;
202 case ARPHRD_IEEE802_TR:
203 ip_tr_mc_map(addr, haddr);
204 return 0;
205 case ARPHRD_INFINIBAND:
206 ip_ib_mc_map(addr, dev->broadcast, haddr);
207 return 0;
208 case ARPHRD_IPGRE:
209 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
210 return 0;
211 default:
212 if (dir) {
213 memcpy(haddr, dev->broadcast, dev->addr_len);
214 return 0;
215 }
216 }
217 return -EINVAL;
218 }
219
220
221 static u32 arp_hash(const void *pkey,
222 const struct net_device *dev,
223 __u32 hash_rnd)
224 {
225 return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
226 }
227
228 static int arp_constructor(struct neighbour *neigh)
229 {
230 __be32 addr = *(__be32 *)neigh->primary_key;
231 struct net_device *dev = neigh->dev;
232 struct in_device *in_dev;
233 struct neigh_parms *parms;
234
235 rcu_read_lock();
236 in_dev = __in_dev_get_rcu(dev);
237 if (in_dev == NULL) {
238 rcu_read_unlock();
239 return -EINVAL;
240 }
241
242 neigh->type = inet_addr_type(dev_net(dev), addr);
243
244 parms = in_dev->arp_parms;
245 __neigh_parms_put(neigh->parms);
246 neigh->parms = neigh_parms_clone(parms);
247 rcu_read_unlock();
248
249 if (!dev->header_ops) {
250 neigh->nud_state = NUD_NOARP;
251 neigh->ops = &arp_direct_ops;
252 neigh->output = neigh_direct_output;
253 } else {
254 /* Good devices (checked by reading texts, but only Ethernet is
255 tested)
256
257 ARPHRD_ETHER: (ethernet, apfddi)
258 ARPHRD_FDDI: (fddi)
259 ARPHRD_IEEE802: (tr)
260 ARPHRD_METRICOM: (strip)
261 ARPHRD_ARCNET:
262 etc. etc. etc.
263
264 ARPHRD_IPDDP will also work, if author repairs it.
265 I did not it, because this driver does not work even
266 in old paradigm.
267 */
268
269 #if 1
270 /* So... these "amateur" devices are hopeless.
271 The only thing, that I can say now:
272 It is very sad that we need to keep ugly obsolete
273 code to make them happy.
274
275 They should be moved to more reasonable state, now
276 they use rebuild_header INSTEAD OF hard_start_xmit!!!
277 Besides that, they are sort of out of date
278 (a lot of redundant clones/copies, useless in 2.1),
279 I wonder why people believe that they work.
280 */
281 switch (dev->type) {
282 default:
283 break;
284 case ARPHRD_ROSE:
285 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
286 case ARPHRD_AX25:
287 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
288 case ARPHRD_NETROM:
289 #endif
290 neigh->ops = &arp_broken_ops;
291 neigh->output = neigh->ops->output;
292 return 0;
293 #else
294 break;
295 #endif
296 }
297 #endif
298 if (neigh->type == RTN_MULTICAST) {
299 neigh->nud_state = NUD_NOARP;
300 arp_mc_map(addr, neigh->ha, dev, 1);
301 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
302 neigh->nud_state = NUD_NOARP;
303 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
304 } else if (neigh->type == RTN_BROADCAST ||
305 (dev->flags & IFF_POINTOPOINT)) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 }
309
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
314
315 if (neigh->nud_state & NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
319 }
320 return 0;
321 }
322
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324 {
325 dst_link_failure(skb);
326 kfree_skb(skb);
327 }
328
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32 *)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev;
337
338 rcu_read_lock();
339 in_dev = __in_dev_get_rcu(dev);
340 if (!in_dev) {
341 rcu_read_unlock();
342 return;
343 }
344 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
345 default:
346 case 0: /* By default announce any local IP */
347 if (skb && inet_addr_type(dev_net(dev),
348 ip_hdr(skb)->saddr) == RTN_LOCAL)
349 saddr = ip_hdr(skb)->saddr;
350 break;
351 case 1: /* Restrict announcements of saddr in same subnet */
352 if (!skb)
353 break;
354 saddr = ip_hdr(skb)->saddr;
355 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
356 /* saddr should be known to target */
357 if (inet_addr_onlink(in_dev, target, saddr))
358 break;
359 }
360 saddr = 0;
361 break;
362 case 2: /* Avoid secondary IPs, get a primary/preferred one */
363 break;
364 }
365 rcu_read_unlock();
366
367 if (!saddr)
368 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
369
370 probes -= neigh->parms->ucast_probes;
371 if (probes < 0) {
372 if (!(neigh->nud_state & NUD_VALID))
373 printk(KERN_DEBUG
374 "trying to ucast probe in NUD_INVALID\n");
375 dst_ha = neigh->ha;
376 read_lock_bh(&neigh->lock);
377 } else {
378 probes -= neigh->parms->app_probes;
379 if (probes < 0) {
380 #ifdef CONFIG_ARPD
381 neigh_app_ns(neigh);
382 #endif
383 return;
384 }
385 }
386
387 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
388 dst_ha, dev->dev_addr, NULL);
389 if (dst_ha)
390 read_unlock_bh(&neigh->lock);
391 }
392
393 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
394 {
395 int scope;
396
397 switch (IN_DEV_ARP_IGNORE(in_dev)) {
398 case 0: /* Reply, the tip is already validated */
399 return 0;
400 case 1: /* Reply only if tip is configured on the incoming interface */
401 sip = 0;
402 scope = RT_SCOPE_HOST;
403 break;
404 case 2: /*
405 * Reply only if tip is configured on the incoming interface
406 * and is in same subnet as sip
407 */
408 scope = RT_SCOPE_HOST;
409 break;
410 case 3: /* Do not reply for scope host addresses */
411 sip = 0;
412 scope = RT_SCOPE_LINK;
413 break;
414 case 4: /* Reserved */
415 case 5:
416 case 6:
417 case 7:
418 return 0;
419 case 8: /* Do not reply */
420 return 1;
421 default:
422 return 0;
423 }
424 return !inet_confirm_addr(in_dev, sip, tip, scope);
425 }
426
427 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
428 {
429 struct rtable *rt;
430 int flag = 0;
431 /*unsigned long now; */
432 struct net *net = dev_net(dev);
433
434 rt = ip_route_output(net, sip, tip, 0, 0);
435 if (IS_ERR(rt))
436 return 1;
437 if (rt->dst.dev != dev) {
438 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
439 flag = 1;
440 }
441 ip_rt_put(rt);
442 return flag;
443 }
444
445 /* OBSOLETE FUNCTIONS */
446
447 /*
448 * Find an arp mapping in the cache. If not found, post a request.
449 *
450 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
451 * even if it exists. It is supposed that skb->dev was mangled
452 * by a virtual device (eql, shaper). Nobody but broken devices
453 * is allowed to use this function, it is scheduled to be removed. --ANK
454 */
455
456 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
457 __be32 paddr, struct net_device *dev)
458 {
459 switch (addr_hint) {
460 case RTN_LOCAL:
461 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
462 memcpy(haddr, dev->dev_addr, dev->addr_len);
463 return 1;
464 case RTN_MULTICAST:
465 arp_mc_map(paddr, haddr, dev, 1);
466 return 1;
467 case RTN_BROADCAST:
468 memcpy(haddr, dev->broadcast, dev->addr_len);
469 return 1;
470 }
471 return 0;
472 }
473
474
475 int arp_find(unsigned char *haddr, struct sk_buff *skb)
476 {
477 struct net_device *dev = skb->dev;
478 __be32 paddr;
479 struct neighbour *n;
480
481 if (!skb_dst(skb)) {
482 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
483 kfree_skb(skb);
484 return 1;
485 }
486
487 paddr = skb_rtable(skb)->rt_gateway;
488
489 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
490 paddr, dev))
491 return 0;
492
493 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
494
495 if (n) {
496 n->used = jiffies;
497 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
498 neigh_ha_snapshot(haddr, n, dev);
499 neigh_release(n);
500 return 0;
501 }
502 neigh_release(n);
503 } else
504 kfree_skb(skb);
505 return 1;
506 }
507 EXPORT_SYMBOL(arp_find);
508
509 /* END OF OBSOLETE FUNCTIONS */
510
511 /*
512 * Check if we can use proxy ARP for this path
513 */
514 static inline int arp_fwd_proxy(struct in_device *in_dev,
515 struct net_device *dev, struct rtable *rt)
516 {
517 struct in_device *out_dev;
518 int imi, omi = -1;
519
520 if (rt->dst.dev == dev)
521 return 0;
522
523 if (!IN_DEV_PROXY_ARP(in_dev))
524 return 0;
525 imi = IN_DEV_MEDIUM_ID(in_dev);
526 if (imi == 0)
527 return 1;
528 if (imi == -1)
529 return 0;
530
531 /* place to check for proxy_arp for routes */
532
533 out_dev = __in_dev_get_rcu(rt->dst.dev);
534 if (out_dev)
535 omi = IN_DEV_MEDIUM_ID(out_dev);
536
537 return omi != imi && omi != -1;
538 }
539
540 /*
541 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
542 *
543 * RFC3069 supports proxy arp replies back to the same interface. This
544 * is done to support (ethernet) switch features, like RFC 3069, where
545 * the individual ports are not allowed to communicate with each
546 * other, BUT they are allowed to talk to the upstream router. As
547 * described in RFC 3069, it is possible to allow these hosts to
548 * communicate through the upstream router, by proxy_arp'ing.
549 *
550 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
551 *
552 * This technology is known by different names:
553 * In RFC 3069 it is called VLAN Aggregation.
554 * Cisco and Allied Telesyn call it Private VLAN.
555 * Hewlett-Packard call it Source-Port filtering or port-isolation.
556 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
557 *
558 */
559 static inline int arp_fwd_pvlan(struct in_device *in_dev,
560 struct net_device *dev, struct rtable *rt,
561 __be32 sip, __be32 tip)
562 {
563 /* Private VLAN is only concerned about the same ethernet segment */
564 if (rt->dst.dev != dev)
565 return 0;
566
567 /* Don't reply on self probes (often done by windowz boxes)*/
568 if (sip == tip)
569 return 0;
570
571 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
572 return 1;
573 else
574 return 0;
575 }
576
577 /*
578 * Interface to link layer: send routine and receive handler.
579 */
580
581 /*
582 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
583 * message.
584 */
585 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
586 struct net_device *dev, __be32 src_ip,
587 const unsigned char *dest_hw,
588 const unsigned char *src_hw,
589 const unsigned char *target_hw)
590 {
591 struct sk_buff *skb;
592 struct arphdr *arp;
593 unsigned char *arp_ptr;
594 int hlen = LL_RESERVED_SPACE(dev);
595 int tlen = dev->needed_tailroom;
596
597 /*
598 * Allocate a buffer
599 */
600
601 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
602 if (skb == NULL)
603 return NULL;
604
605 skb_reserve(skb, hlen);
606 skb_reset_network_header(skb);
607 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
608 skb->dev = dev;
609 skb->protocol = htons(ETH_P_ARP);
610 if (src_hw == NULL)
611 src_hw = dev->dev_addr;
612 if (dest_hw == NULL)
613 dest_hw = dev->broadcast;
614
615 /*
616 * Fill the device header for the ARP frame
617 */
618 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
619 goto out;
620
621 /*
622 * Fill out the arp protocol part.
623 *
624 * The arp hardware type should match the device type, except for FDDI,
625 * which (according to RFC 1390) should always equal 1 (Ethernet).
626 */
627 /*
628 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
629 * DIX code for the protocol. Make these device structure fields.
630 */
631 switch (dev->type) {
632 default:
633 arp->ar_hrd = htons(dev->type);
634 arp->ar_pro = htons(ETH_P_IP);
635 break;
636
637 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
638 case ARPHRD_AX25:
639 arp->ar_hrd = htons(ARPHRD_AX25);
640 arp->ar_pro = htons(AX25_P_IP);
641 break;
642
643 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
644 case ARPHRD_NETROM:
645 arp->ar_hrd = htons(ARPHRD_NETROM);
646 arp->ar_pro = htons(AX25_P_IP);
647 break;
648 #endif
649 #endif
650
651 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
652 case ARPHRD_FDDI:
653 arp->ar_hrd = htons(ARPHRD_ETHER);
654 arp->ar_pro = htons(ETH_P_IP);
655 break;
656 #endif
657 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
658 case ARPHRD_IEEE802_TR:
659 arp->ar_hrd = htons(ARPHRD_IEEE802);
660 arp->ar_pro = htons(ETH_P_IP);
661 break;
662 #endif
663 }
664
665 arp->ar_hln = dev->addr_len;
666 arp->ar_pln = 4;
667 arp->ar_op = htons(type);
668
669 arp_ptr = (unsigned char *)(arp + 1);
670
671 memcpy(arp_ptr, src_hw, dev->addr_len);
672 arp_ptr += dev->addr_len;
673 memcpy(arp_ptr, &src_ip, 4);
674 arp_ptr += 4;
675 if (target_hw != NULL)
676 memcpy(arp_ptr, target_hw, dev->addr_len);
677 else
678 memset(arp_ptr, 0, dev->addr_len);
679 arp_ptr += dev->addr_len;
680 memcpy(arp_ptr, &dest_ip, 4);
681
682 return skb;
683
684 out:
685 kfree_skb(skb);
686 return NULL;
687 }
688 EXPORT_SYMBOL(arp_create);
689
690 /*
691 * Send an arp packet.
692 */
693 void arp_xmit(struct sk_buff *skb)
694 {
695 /* Send it off, maybe filter it using firewalling first. */
696 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
697 }
698 EXPORT_SYMBOL(arp_xmit);
699
700 /*
701 * Create and send an arp packet.
702 */
703 void arp_send(int type, int ptype, __be32 dest_ip,
704 struct net_device *dev, __be32 src_ip,
705 const unsigned char *dest_hw, const unsigned char *src_hw,
706 const unsigned char *target_hw)
707 {
708 struct sk_buff *skb;
709
710 /*
711 * No arp on this interface.
712 */
713
714 if (dev->flags&IFF_NOARP)
715 return;
716
717 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
718 dest_hw, src_hw, target_hw);
719 if (skb == NULL)
720 return;
721
722 arp_xmit(skb);
723 }
724 EXPORT_SYMBOL(arp_send);
725
726 /*
727 * Process an arp request.
728 */
729
730 static int arp_process(struct sk_buff *skb)
731 {
732 struct net_device *dev = skb->dev;
733 struct in_device *in_dev = __in_dev_get_rcu(dev);
734 struct arphdr *arp;
735 unsigned char *arp_ptr;
736 struct rtable *rt;
737 unsigned char *sha;
738 __be32 sip, tip;
739 u16 dev_type = dev->type;
740 int addr_type;
741 struct neighbour *n;
742 struct net *net = dev_net(dev);
743
744 /* arp_rcv below verifies the ARP header and verifies the device
745 * is ARP'able.
746 */
747
748 if (in_dev == NULL)
749 goto out;
750
751 arp = arp_hdr(skb);
752
753 switch (dev_type) {
754 default:
755 if (arp->ar_pro != htons(ETH_P_IP) ||
756 htons(dev_type) != arp->ar_hrd)
757 goto out;
758 break;
759 case ARPHRD_ETHER:
760 case ARPHRD_IEEE802_TR:
761 case ARPHRD_FDDI:
762 case ARPHRD_IEEE802:
763 /*
764 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
765 * devices, according to RFC 2625) devices will accept ARP
766 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
767 * This is the case also of FDDI, where the RFC 1390 says that
768 * FDDI devices should accept ARP hardware of (1) Ethernet,
769 * however, to be more robust, we'll accept both 1 (Ethernet)
770 * or 6 (IEEE 802.2)
771 */
772 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
773 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
774 arp->ar_pro != htons(ETH_P_IP))
775 goto out;
776 break;
777 case ARPHRD_AX25:
778 if (arp->ar_pro != htons(AX25_P_IP) ||
779 arp->ar_hrd != htons(ARPHRD_AX25))
780 goto out;
781 break;
782 case ARPHRD_NETROM:
783 if (arp->ar_pro != htons(AX25_P_IP) ||
784 arp->ar_hrd != htons(ARPHRD_NETROM))
785 goto out;
786 break;
787 }
788
789 /* Understand only these message types */
790
791 if (arp->ar_op != htons(ARPOP_REPLY) &&
792 arp->ar_op != htons(ARPOP_REQUEST))
793 goto out;
794
795 /*
796 * Extract fields
797 */
798 arp_ptr = (unsigned char *)(arp + 1);
799 sha = arp_ptr;
800 arp_ptr += dev->addr_len;
801 memcpy(&sip, arp_ptr, 4);
802 arp_ptr += 4;
803 arp_ptr += dev->addr_len;
804 memcpy(&tip, arp_ptr, 4);
805 /*
806 * Check for bad requests for 127.x.x.x and requests for multicast
807 * addresses. If this is one such, delete it.
808 */
809 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
810 goto out;
811
812 /*
813 * Special case: We must set Frame Relay source Q.922 address
814 */
815 if (dev_type == ARPHRD_DLCI)
816 sha = dev->broadcast;
817
818 /*
819 * Process entry. The idea here is we want to send a reply if it is a
820 * request for us or if it is a request for someone else that we hold
821 * a proxy for. We want to add an entry to our cache if it is a reply
822 * to us or if it is a request for our address.
823 * (The assumption for this last is that if someone is requesting our
824 * address, they are probably intending to talk to us, so it saves time
825 * if we cache their address. Their address is also probably not in
826 * our cache, since ours is not in their cache.)
827 *
828 * Putting this another way, we only care about replies if they are to
829 * us, in which case we add them to the cache. For requests, we care
830 * about those for us and those for our proxies. We reply to both,
831 * and in the case of requests for us we add the requester to the arp
832 * cache.
833 */
834
835 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
836 if (sip == 0) {
837 if (arp->ar_op == htons(ARPOP_REQUEST) &&
838 inet_addr_type(net, tip) == RTN_LOCAL &&
839 !arp_ignore(in_dev, sip, tip))
840 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
841 dev->dev_addr, sha);
842 goto out;
843 }
844
845 if (arp->ar_op == htons(ARPOP_REQUEST) &&
846 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
847
848 rt = skb_rtable(skb);
849 addr_type = rt->rt_type;
850
851 if (addr_type == RTN_LOCAL) {
852 int dont_send;
853
854 dont_send = arp_ignore(in_dev, sip, tip);
855 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
856 dont_send = arp_filter(sip, tip, dev);
857 if (!dont_send) {
858 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859 if (n) {
860 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
861 dev, tip, sha, dev->dev_addr,
862 sha);
863 neigh_release(n);
864 }
865 }
866 goto out;
867 } else if (IN_DEV_FORWARD(in_dev)) {
868 if (addr_type == RTN_UNICAST &&
869 (arp_fwd_proxy(in_dev, dev, rt) ||
870 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
871 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
872 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
873 if (n)
874 neigh_release(n);
875
876 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
877 skb->pkt_type == PACKET_HOST ||
878 in_dev->arp_parms->proxy_delay == 0) {
879 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
880 dev, tip, sha, dev->dev_addr,
881 sha);
882 } else {
883 pneigh_enqueue(&arp_tbl,
884 in_dev->arp_parms, skb);
885 return 0;
886 }
887 goto out;
888 }
889 }
890 }
891
892 /* Update our ARP tables */
893
894 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
895
896 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
897 /* Unsolicited ARP is not accepted by default.
898 It is possible, that this option should be enabled for some
899 devices (strip is candidate)
900 */
901 if (n == NULL &&
902 (arp->ar_op == htons(ARPOP_REPLY) ||
903 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
904 inet_addr_type(net, sip) == RTN_UNICAST)
905 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
906 }
907
908 if (n) {
909 int state = NUD_REACHABLE;
910 int override;
911
912 /* If several different ARP replies follows back-to-back,
913 use the FIRST one. It is possible, if several proxy
914 agents are active. Taking the first reply prevents
915 arp trashing and chooses the fastest router.
916 */
917 override = time_after(jiffies, n->updated + n->parms->locktime);
918
919 /* Broadcast replies and request packets
920 do not assert neighbour reachability.
921 */
922 if (arp->ar_op != htons(ARPOP_REPLY) ||
923 skb->pkt_type != PACKET_HOST)
924 state = NUD_STALE;
925 neigh_update(n, sha, state,
926 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
927 neigh_release(n);
928 }
929
930 out:
931 consume_skb(skb);
932 return 0;
933 }
934
935 static void parp_redo(struct sk_buff *skb)
936 {
937 arp_process(skb);
938 }
939
940
941 /*
942 * Receive an arp request from the device layer.
943 */
944
945 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
946 struct packet_type *pt, struct net_device *orig_dev)
947 {
948 struct arphdr *arp;
949
950 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
951 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
952 goto freeskb;
953
954 arp = arp_hdr(skb);
955 if (arp->ar_hln != dev->addr_len ||
956 dev->flags & IFF_NOARP ||
957 skb->pkt_type == PACKET_OTHERHOST ||
958 skb->pkt_type == PACKET_LOOPBACK ||
959 arp->ar_pln != 4)
960 goto freeskb;
961
962 skb = skb_share_check(skb, GFP_ATOMIC);
963 if (skb == NULL)
964 goto out_of_mem;
965
966 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
967
968 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
969
970 freeskb:
971 kfree_skb(skb);
972 out_of_mem:
973 return 0;
974 }
975
976 /*
977 * User level interface (ioctl)
978 */
979
980 /*
981 * Set (create) an ARP cache entry.
982 */
983
984 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
985 {
986 if (dev == NULL) {
987 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
988 return 0;
989 }
990 if (__in_dev_get_rtnl(dev)) {
991 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
992 return 0;
993 }
994 return -ENXIO;
995 }
996
997 static int arp_req_set_public(struct net *net, struct arpreq *r,
998 struct net_device *dev)
999 {
1000 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1001 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1002
1003 if (mask && mask != htonl(0xFFFFFFFF))
1004 return -EINVAL;
1005 if (!dev && (r->arp_flags & ATF_COM)) {
1006 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1007 r->arp_ha.sa_data);
1008 if (!dev)
1009 return -ENODEV;
1010 }
1011 if (mask) {
1012 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1013 return -ENOBUFS;
1014 return 0;
1015 }
1016
1017 return arp_req_set_proxy(net, dev, 1);
1018 }
1019
1020 static int arp_req_set(struct net *net, struct arpreq *r,
1021 struct net_device *dev)
1022 {
1023 __be32 ip;
1024 struct neighbour *neigh;
1025 int err;
1026
1027 if (r->arp_flags & ATF_PUBL)
1028 return arp_req_set_public(net, r, dev);
1029
1030 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1031 if (r->arp_flags & ATF_PERM)
1032 r->arp_flags |= ATF_COM;
1033 if (dev == NULL) {
1034 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1035
1036 if (IS_ERR(rt))
1037 return PTR_ERR(rt);
1038 dev = rt->dst.dev;
1039 ip_rt_put(rt);
1040 if (!dev)
1041 return -EINVAL;
1042 }
1043 switch (dev->type) {
1044 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1045 case ARPHRD_FDDI:
1046 /*
1047 * According to RFC 1390, FDDI devices should accept ARP
1048 * hardware types of 1 (Ethernet). However, to be more
1049 * robust, we'll accept hardware types of either 1 (Ethernet)
1050 * or 6 (IEEE 802.2).
1051 */
1052 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1053 r->arp_ha.sa_family != ARPHRD_ETHER &&
1054 r->arp_ha.sa_family != ARPHRD_IEEE802)
1055 return -EINVAL;
1056 break;
1057 #endif
1058 default:
1059 if (r->arp_ha.sa_family != dev->type)
1060 return -EINVAL;
1061 break;
1062 }
1063
1064 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1065 err = PTR_ERR(neigh);
1066 if (!IS_ERR(neigh)) {
1067 unsigned state = NUD_STALE;
1068 if (r->arp_flags & ATF_PERM)
1069 state = NUD_PERMANENT;
1070 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1071 r->arp_ha.sa_data : NULL, state,
1072 NEIGH_UPDATE_F_OVERRIDE |
1073 NEIGH_UPDATE_F_ADMIN);
1074 neigh_release(neigh);
1075 }
1076 return err;
1077 }
1078
1079 static unsigned arp_state_to_flags(struct neighbour *neigh)
1080 {
1081 if (neigh->nud_state&NUD_PERMANENT)
1082 return ATF_PERM | ATF_COM;
1083 else if (neigh->nud_state&NUD_VALID)
1084 return ATF_COM;
1085 else
1086 return 0;
1087 }
1088
1089 /*
1090 * Get an ARP cache entry.
1091 */
1092
1093 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1094 {
1095 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1096 struct neighbour *neigh;
1097 int err = -ENXIO;
1098
1099 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1100 if (neigh) {
1101 read_lock_bh(&neigh->lock);
1102 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1103 r->arp_flags = arp_state_to_flags(neigh);
1104 read_unlock_bh(&neigh->lock);
1105 r->arp_ha.sa_family = dev->type;
1106 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1107 neigh_release(neigh);
1108 err = 0;
1109 }
1110 return err;
1111 }
1112
1113 int arp_invalidate(struct net_device *dev, __be32 ip)
1114 {
1115 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116 int err = -ENXIO;
1117
1118 if (neigh) {
1119 if (neigh->nud_state & ~NUD_NOARP)
1120 err = neigh_update(neigh, NULL, NUD_FAILED,
1121 NEIGH_UPDATE_F_OVERRIDE|
1122 NEIGH_UPDATE_F_ADMIN);
1123 neigh_release(neigh);
1124 }
1125
1126 return err;
1127 }
1128 EXPORT_SYMBOL(arp_invalidate);
1129
1130 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1131 struct net_device *dev)
1132 {
1133 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1134 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1135
1136 if (mask == htonl(0xFFFFFFFF))
1137 return pneigh_delete(&arp_tbl, net, &ip, dev);
1138
1139 if (mask)
1140 return -EINVAL;
1141
1142 return arp_req_set_proxy(net, dev, 0);
1143 }
1144
1145 static int arp_req_delete(struct net *net, struct arpreq *r,
1146 struct net_device *dev)
1147 {
1148 __be32 ip;
1149
1150 if (r->arp_flags & ATF_PUBL)
1151 return arp_req_delete_public(net, r, dev);
1152
1153 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1154 if (dev == NULL) {
1155 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1156 if (IS_ERR(rt))
1157 return PTR_ERR(rt);
1158 dev = rt->dst.dev;
1159 ip_rt_put(rt);
1160 if (!dev)
1161 return -EINVAL;
1162 }
1163 return arp_invalidate(dev, ip);
1164 }
1165
1166 /*
1167 * Handle an ARP layer I/O control request.
1168 */
1169
1170 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1171 {
1172 int err;
1173 struct arpreq r;
1174 struct net_device *dev = NULL;
1175
1176 switch (cmd) {
1177 case SIOCDARP:
1178 case SIOCSARP:
1179 if (!capable(CAP_NET_ADMIN))
1180 return -EPERM;
1181 case SIOCGARP:
1182 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1183 if (err)
1184 return -EFAULT;
1185 break;
1186 default:
1187 return -EINVAL;
1188 }
1189
1190 if (r.arp_pa.sa_family != AF_INET)
1191 return -EPFNOSUPPORT;
1192
1193 if (!(r.arp_flags & ATF_PUBL) &&
1194 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1195 return -EINVAL;
1196 if (!(r.arp_flags & ATF_NETMASK))
1197 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1198 htonl(0xFFFFFFFFUL);
1199 rtnl_lock();
1200 if (r.arp_dev[0]) {
1201 err = -ENODEV;
1202 dev = __dev_get_by_name(net, r.arp_dev);
1203 if (dev == NULL)
1204 goto out;
1205
1206 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1207 if (!r.arp_ha.sa_family)
1208 r.arp_ha.sa_family = dev->type;
1209 err = -EINVAL;
1210 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1211 goto out;
1212 } else if (cmd == SIOCGARP) {
1213 err = -ENODEV;
1214 goto out;
1215 }
1216
1217 switch (cmd) {
1218 case SIOCDARP:
1219 err = arp_req_delete(net, &r, dev);
1220 break;
1221 case SIOCSARP:
1222 err = arp_req_set(net, &r, dev);
1223 break;
1224 case SIOCGARP:
1225 err = arp_req_get(&r, dev);
1226 break;
1227 }
1228 out:
1229 rtnl_unlock();
1230 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1231 err = -EFAULT;
1232 return err;
1233 }
1234
1235 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1236 void *ptr)
1237 {
1238 struct net_device *dev = ptr;
1239
1240 switch (event) {
1241 case NETDEV_CHANGEADDR:
1242 neigh_changeaddr(&arp_tbl, dev);
1243 rt_cache_flush(dev_net(dev), 0);
1244 break;
1245 default:
1246 break;
1247 }
1248
1249 return NOTIFY_DONE;
1250 }
1251
1252 static struct notifier_block arp_netdev_notifier = {
1253 .notifier_call = arp_netdev_event,
1254 };
1255
1256 /* Note, that it is not on notifier chain.
1257 It is necessary, that this routine was called after route cache will be
1258 flushed.
1259 */
1260 void arp_ifdown(struct net_device *dev)
1261 {
1262 neigh_ifdown(&arp_tbl, dev);
1263 }
1264
1265
1266 /*
1267 * Called once on startup.
1268 */
1269
1270 static struct packet_type arp_packet_type __read_mostly = {
1271 .type = cpu_to_be16(ETH_P_ARP),
1272 .func = arp_rcv,
1273 };
1274
1275 static int arp_proc_init(void);
1276
1277 void __init arp_init(void)
1278 {
1279 neigh_table_init(&arp_tbl);
1280
1281 dev_add_pack(&arp_packet_type);
1282 arp_proc_init();
1283 #ifdef CONFIG_SYSCTL
1284 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1285 #endif
1286 register_netdevice_notifier(&arp_netdev_notifier);
1287 }
1288
1289 #ifdef CONFIG_PROC_FS
1290 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1291
1292 /* ------------------------------------------------------------------------ */
1293 /*
1294 * ax25 -> ASCII conversion
1295 */
1296 static char *ax2asc2(ax25_address *a, char *buf)
1297 {
1298 char c, *s;
1299 int n;
1300
1301 for (n = 0, s = buf; n < 6; n++) {
1302 c = (a->ax25_call[n] >> 1) & 0x7F;
1303
1304 if (c != ' ')
1305 *s++ = c;
1306 }
1307
1308 *s++ = '-';
1309 n = (a->ax25_call[6] >> 1) & 0x0F;
1310 if (n > 9) {
1311 *s++ = '1';
1312 n -= 10;
1313 }
1314
1315 *s++ = n + '0';
1316 *s++ = '\0';
1317
1318 if (*buf == '\0' || *buf == '-')
1319 return "*";
1320
1321 return buf;
1322 }
1323 #endif /* CONFIG_AX25 */
1324
1325 #define HBUFFERLEN 30
1326
1327 static void arp_format_neigh_entry(struct seq_file *seq,
1328 struct neighbour *n)
1329 {
1330 char hbuffer[HBUFFERLEN];
1331 int k, j;
1332 char tbuf[16];
1333 struct net_device *dev = n->dev;
1334 int hatype = dev->type;
1335
1336 read_lock(&n->lock);
1337 /* Convert hardware address to XX:XX:XX:XX ... form. */
1338 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1339 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1340 ax2asc2((ax25_address *)n->ha, hbuffer);
1341 else {
1342 #endif
1343 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1344 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1345 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1346 hbuffer[k++] = ':';
1347 }
1348 if (k != 0)
1349 --k;
1350 hbuffer[k] = 0;
1351 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1352 }
1353 #endif
1354 sprintf(tbuf, "%pI4", n->primary_key);
1355 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1356 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1357 read_unlock(&n->lock);
1358 }
1359
1360 static void arp_format_pneigh_entry(struct seq_file *seq,
1361 struct pneigh_entry *n)
1362 {
1363 struct net_device *dev = n->dev;
1364 int hatype = dev ? dev->type : 0;
1365 char tbuf[16];
1366
1367 sprintf(tbuf, "%pI4", n->key);
1368 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1369 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1370 dev ? dev->name : "*");
1371 }
1372
1373 static int arp_seq_show(struct seq_file *seq, void *v)
1374 {
1375 if (v == SEQ_START_TOKEN) {
1376 seq_puts(seq, "IP address HW type Flags "
1377 "HW address Mask Device\n");
1378 } else {
1379 struct neigh_seq_state *state = seq->private;
1380
1381 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1382 arp_format_pneigh_entry(seq, v);
1383 else
1384 arp_format_neigh_entry(seq, v);
1385 }
1386
1387 return 0;
1388 }
1389
1390 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1391 {
1392 /* Don't want to confuse "arp -a" w/ magic entries,
1393 * so we tell the generic iterator to skip NUD_NOARP.
1394 */
1395 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1396 }
1397
1398 /* ------------------------------------------------------------------------ */
1399
1400 static const struct seq_operations arp_seq_ops = {
1401 .start = arp_seq_start,
1402 .next = neigh_seq_next,
1403 .stop = neigh_seq_stop,
1404 .show = arp_seq_show,
1405 };
1406
1407 static int arp_seq_open(struct inode *inode, struct file *file)
1408 {
1409 return seq_open_net(inode, file, &arp_seq_ops,
1410 sizeof(struct neigh_seq_state));
1411 }
1412
1413 static const struct file_operations arp_seq_fops = {
1414 .owner = THIS_MODULE,
1415 .open = arp_seq_open,
1416 .read = seq_read,
1417 .llseek = seq_lseek,
1418 .release = seq_release_net,
1419 };
1420
1421
1422 static int __net_init arp_net_init(struct net *net)
1423 {
1424 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1425 return -ENOMEM;
1426 return 0;
1427 }
1428
1429 static void __net_exit arp_net_exit(struct net *net)
1430 {
1431 proc_net_remove(net, "arp");
1432 }
1433
1434 static struct pernet_operations arp_net_ops = {
1435 .init = arp_net_init,
1436 .exit = arp_net_exit,
1437 };
1438
1439 static int __init arp_proc_init(void)
1440 {
1441 return register_pernet_subsys(&arp_net_ops);
1442 }
1443
1444 #else /* CONFIG_PROC_FS */
1445
1446 static int __init arp_proc_init(void)
1447 {
1448 return 0;
1449 }
1450
1451 #endif /* CONFIG_PROC_FS */
This page took 0.057356 seconds and 4 git commands to generate.